state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case hβ‚€ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ e : E r : ℝ a : ΞΉ ⊒ ball (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => ball (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical
simp
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical
Mathlib.Analysis.Seminorm.759_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r
Mathlib_Analysis_Seminorm
case h₁ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s✝ : Finset ΞΉ e : E r : ℝ a : ΞΉ s : Finset ΞΉ ha : a βˆ‰ s hs : Finset.Nonempty s ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r ⊒ ball (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r = Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => ball (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β·
rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β·
Mathlib.Analysis.Seminorm.759_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r
Mathlib_Analysis_Seminorm
case h₁ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s✝ : Finset ΞΉ e : E r : ℝ a : ΞΉ s : Finset ΞΉ ha : a βˆ‰ s hs : Finset.Nonempty s ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r ⊒ ball (p a) e r ∩ ball (Finset.sup' s hs p) e r = ball (p a) e r βŠ“ Finset.inf' s hs fun i => ball (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
Mathlib.Analysis.Seminorm.759_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ H : Finset.Nonempty s e : E r : ℝ ⊒ closedBall (Finset.sup' s H p) e r = Finset.inf' s H fun i => closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
Mathlib.Analysis.Seminorm.768_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Mathlib_Analysis_Seminorm
case hβ‚€ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ e : E r : ℝ a : ΞΉ ⊒ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β·
classical simp
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β·
Mathlib.Analysis.Seminorm.768_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Mathlib_Analysis_Seminorm
case hβ‚€ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ e : E r : ℝ a : ΞΉ ⊒ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical
simp
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical
Mathlib.Analysis.Seminorm.768_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Mathlib_Analysis_Seminorm
case h₁ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s✝ : Finset ΞΉ e : E r : ℝ a : ΞΉ s : Finset ΞΉ ha : a βˆ‰ s hs : Finset.Nonempty s ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r ⊒ closedBall (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r = Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β·
rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β·
Mathlib.Analysis.Seminorm.768_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Mathlib_Analysis_Seminorm
case h₁ R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r✝ : ℝ p : ΞΉ β†’ Seminorm π•œ E s✝ : Finset ΞΉ e : E r : ℝ a : ΞΉ s : Finset ΞΉ ha : a βˆ‰ s hs : Finset.Nonempty s ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r ⊒ closedBall (p a) e r ∩ closedBall (Finset.sup' s hs p) e r = closedBall (p a) e r βŠ“ Finset.inf' s hs fun i => closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
Mathlib.Analysis.Seminorm.768_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ : E ⊒ ball p x₁ r₁ + ball p xβ‚‚ rβ‚‚ βŠ† ball p (x₁ + xβ‚‚) (r₁ + rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
Mathlib.Analysis.Seminorm.793_0.ywwMCgoKeIFKDZ3
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro.intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ y₁ yβ‚‚ : E hy₁ : y₁ ∈ ball p x₁ r₁ hyβ‚‚ : yβ‚‚ ∈ ball p xβ‚‚ rβ‚‚ ⊒ (fun x x_1 => x + x_1) y₁ yβ‚‚ ∈ ball p (x₁ + xβ‚‚) (r₁ + rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
rw [mem_ball, add_sub_add_comm]
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
Mathlib.Analysis.Seminorm.793_0.ywwMCgoKeIFKDZ3
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro.intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ y₁ yβ‚‚ : E hy₁ : y₁ ∈ ball p x₁ r₁ hyβ‚‚ : yβ‚‚ ∈ ball p xβ‚‚ rβ‚‚ ⊒ p (y₁ - x₁ + (yβ‚‚ - xβ‚‚)) < r₁ + rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚)
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm]
Mathlib.Analysis.Seminorm.793_0.ywwMCgoKeIFKDZ3
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ : E ⊒ closedBall p x₁ r₁ + closedBall p xβ‚‚ rβ‚‚ βŠ† closedBall p (x₁ + xβ‚‚) (r₁ + rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
Mathlib.Analysis.Seminorm.800_0.ywwMCgoKeIFKDZ3
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro.intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ y₁ yβ‚‚ : E hy₁ : y₁ ∈ closedBall p x₁ r₁ hyβ‚‚ : yβ‚‚ ∈ closedBall p xβ‚‚ rβ‚‚ ⊒ (fun x x_1 => x + x_1) y₁ yβ‚‚ ∈ closedBall p (x₁ + xβ‚‚) (r₁ + rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
rw [mem_closedBall, add_sub_add_comm]
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩
Mathlib.Analysis.Seminorm.800_0.ywwMCgoKeIFKDZ3
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro.intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y : E r : ℝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ x₁ xβ‚‚ y₁ yβ‚‚ : E hy₁ : y₁ ∈ closedBall p x₁ r₁ hyβ‚‚ : yβ‚‚ ∈ closedBall p xβ‚‚ rβ‚‚ ⊒ p (y₁ - x₁ + (yβ‚‚ - xβ‚‚)) ≀ r₁ + rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚)
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm]
Mathlib.Analysis.Seminorm.800_0.ywwMCgoKeIFKDZ3
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : SeminormedRing π•œ inst✝¹ : AddCommGroup E inst✝ : SMul π•œ E p✝ : Seminorm π•œ E x y✝ : E r✝ : ℝ p : Seminorm π•œ E x₁ xβ‚‚ y : E r : ℝ ⊒ x₁ - xβ‚‚ ∈ ball p y r ↔ x₁ ∈ ball p (xβ‚‚ + y) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by
simp_rw [mem_ball, sub_sub]
theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by
Mathlib.Analysis.Seminorm.807_0.ywwMCgoKeIFKDZ3
theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œβ‚‚ Eβ‚‚ f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚ x : E r : ℝ ⊒ ball (comp p f) x r = ⇑f ⁻¹' ball p (f x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by
ext
theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by
Mathlib.Analysis.Seminorm.833_0.ywwMCgoKeIFKDZ3
theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œβ‚‚ Eβ‚‚ f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚ x : E r : ℝ x✝ : E ⊒ x✝ ∈ ball (comp p f) x r ↔ x✝ ∈ ⇑f ⁻¹' ball p (f x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext
Mathlib.Analysis.Seminorm.833_0.ywwMCgoKeIFKDZ3
theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œβ‚‚ Eβ‚‚ f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚ x : E r : ℝ ⊒ closedBall (comp p f) x r = ⇑f ⁻¹' closedBall p (f x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by
ext
theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by
Mathlib.Analysis.Seminorm.839_0.ywwMCgoKeIFKDZ3
theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œβ‚‚ Eβ‚‚ f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚ x : E r : ℝ x✝ : E ⊒ x✝ ∈ closedBall (comp p f) x r ↔ x✝ ∈ ⇑f ⁻¹' closedBall p (f x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext
Mathlib.Analysis.Seminorm.839_0.ywwMCgoKeIFKDZ3
theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ ⇑p ⁻¹' Metric.ball 0 r = {x | p x < r}
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by
ext x
theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by
Mathlib.Analysis.Seminorm.847_0.ywwMCgoKeIFKDZ3
theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r }
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ x : E ⊒ x ∈ ⇑p ⁻¹' Metric.ball 0 r ↔ x ∈ {x | p x < r}
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x
Mathlib.Analysis.Seminorm.847_0.ywwMCgoKeIFKDZ3
theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r }
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ ⇑p ⁻¹' Metric.closedBall 0 r = {x | p x ≀ r}
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by
ext x
theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by
Mathlib.Analysis.Seminorm.852_0.ywwMCgoKeIFKDZ3
theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r }
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ x : E ⊒ x ∈ ⇑p ⁻¹' Metric.closedBall 0 r ↔ x ∈ {x | p x ≀ r}
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x
Mathlib.Analysis.Seminorm.852_0.ywwMCgoKeIFKDZ3
theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r }
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ ball p 0 r = ⇑p ⁻¹' Metric.ball 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by
Mathlib.Analysis.Seminorm.858_0.ywwMCgoKeIFKDZ3
theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ closedBall p 0 r = ⇑p ⁻¹' Metric.closedBall 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by
Mathlib.Analysis.Seminorm.862_0.ywwMCgoKeIFKDZ3
theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ Balanced π•œ (ball p 0 r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by
rintro a ha x ⟨y, hy, hx⟩
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by
Mathlib.Analysis.Seminorm.878_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a β€’ x) y = x ⊒ x ∈ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩
rw [mem_ball_zero, ← hx, map_smul_eq_mul]
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩
Mathlib.Analysis.Seminorm.878_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a β€’ x) y = x ⊒ β€–aβ€– * p y < r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul]
calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.878_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a β€’ x) y = x ⊒ p y < r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by
rwa [mem_ball_zero] at hy
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by
Mathlib.Analysis.Seminorm.878_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ ⊒ Balanced π•œ (closedBall p 0 r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by
rintro a ha x ⟨y, hy, hx⟩
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by
Mathlib.Analysis.Seminorm.887_0.ywwMCgoKeIFKDZ3
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a β€’ x) y = x ⊒ x ∈ closedBall p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩
rw [mem_closedBall_zero, ← hx, map_smul_eq_mul]
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩
Mathlib.Analysis.Seminorm.887_0.ywwMCgoKeIFKDZ3
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a β€’ x) y = x ⊒ β€–aβ€– * p y ≀ r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul]
calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.887_0.ywwMCgoKeIFKDZ3
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E r : ℝ a : π•œ ha : β€–aβ€– ≀ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a β€’ x) y = x ⊒ p y ≀ r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by
rwa [mem_closedBall_zero] at hy
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by
Mathlib.Analysis.Seminorm.887_0.ywwMCgoKeIFKDZ3
/-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 < r ⊒ ball (Finset.sup s p) x r = β‹‚ i ∈ s, ball (p i) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by
lift r to NNReal using hr.le
theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by
Mathlib.Analysis.Seminorm.896_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r
Mathlib_Analysis_Seminorm
case intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝβ‰₯0 hr : 0 < ↑r ⊒ ball (Finset.sup s p) x ↑r = β‹‚ i ∈ s, ball (p i) x ↑r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk]
theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le
Mathlib.Analysis.Seminorm.896_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 ≀ r ⊒ closedBall (Finset.sup s p) x r = β‹‚ i ∈ s, closedBall (p i) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by
lift r to NNReal using hr
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by
Mathlib.Analysis.Seminorm.903_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r
Mathlib_Analysis_Seminorm
case intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝβ‰₯0 ⊒ closedBall (Finset.sup s p) x ↑r = β‹‚ i ∈ s, closedBall (p i) x ↑r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk]
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr
Mathlib.Analysis.Seminorm.903_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 < r ⊒ ball (Finset.sup s p) x r = Finset.inf s fun i => ball (p i) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
Mathlib.Analysis.Seminorm.910_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 < r ⊒ ball (Finset.sup s p) x r = β¨… a ∈ s, ball (p a) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf]
Mathlib.Analysis.Seminorm.910_0.ywwMCgoKeIFKDZ3
theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 ≀ r ⊒ closedBall (Finset.sup s p) x r = Finset.inf s fun i => closedBall (p i) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
Mathlib.Analysis.Seminorm.916_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm π•œ E p : ΞΉ β†’ Seminorm π•œ E s : Finset ΞΉ x : E r : ℝ hr : 0 ≀ r ⊒ closedBall (Finset.sup s p) x r = β¨… a ∈ s, closedBall (p a) x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf]
Mathlib.Analysis.Seminorm.916_0.ywwMCgoKeIFKDZ3
theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r ≀ 0 ⊒ ball p x r = βˆ…
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by
ext
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by
Mathlib.Analysis.Seminorm.922_0.ywwMCgoKeIFKDZ3
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ…
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r ≀ 0 x✝ : E ⊒ x✝ ∈ ball p x r ↔ x✝ ∈ βˆ…
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext
Mathlib.Analysis.Seminorm.922_0.ywwMCgoKeIFKDZ3
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ…
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r ≀ 0 x✝ : E ⊒ r ≀ p (x✝ - x)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
Mathlib.Analysis.Seminorm.922_0.ywwMCgoKeIFKDZ3
@[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ…
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r < 0 ⊒ closedBall p x r = βˆ…
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by
ext
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by
Mathlib.Analysis.Seminorm.929_0.ywwMCgoKeIFKDZ3
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ…
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r < 0 x✝ : E ⊒ x✝ ∈ closedBall p x r ↔ x✝ ∈ βˆ…
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext
Mathlib.Analysis.Seminorm.929_0.ywwMCgoKeIFKDZ3
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ…
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E x : E r : ℝ hr : r < 0 x✝ : E ⊒ r < p (x✝ - x)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
Mathlib.Analysis.Seminorm.929_0.ywwMCgoKeIFKDZ3
@[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ…
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ : ℝ hr₁ : r₁ β‰  0 rβ‚‚ : ℝ ⊒ Metric.closedBall 0 r₁ β€’ ball p 0 rβ‚‚ βŠ† ball p 0 (r₁ * rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
Mathlib.Analysis.Seminorm.937_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ : ℝ hr₁ : r₁ β‰  0 rβ‚‚ : ℝ ⊒ βˆ€ (a : π•œ), β€–aβ€– ≀ r₁ β†’ βˆ€ (b : E), p b < rβ‚‚ β†’ β€–aβ€– * p b < r₁ * rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.937_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ : ℝ hr₁ : r₁ β‰  0 rβ‚‚ : ℝ a : π•œ ha : β€–aβ€– ≀ r₁ b : E hb : p b < rβ‚‚ ⊒ 0 < r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
Mathlib.Analysis.Seminorm.937_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 ⊒ Metric.ball 0 r₁ β€’ closedBall p 0 rβ‚‚ βŠ† ball p 0 (r₁ * rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul]
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
Mathlib.Analysis.Seminorm.943_0.ywwMCgoKeIFKDZ3
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 ⊒ βˆ€ (a : π•œ), β€–aβ€– < r₁ β†’ βˆ€ (b : E), p b ≀ rβ‚‚ β†’ β€–aβ€– * p b < r₁ * rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul]
intro a ha b hb
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.943_0.ywwMCgoKeIFKDZ3
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 a : π•œ ha : β€–aβ€– < r₁ b : E hb : p b ≀ rβ‚‚ ⊒ β€–aβ€– * p b < r₁ * rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb
rw [mul_comm, mul_comm r₁]
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb
Mathlib.Analysis.Seminorm.943_0.ywwMCgoKeIFKDZ3
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 a : π•œ ha : β€–aβ€– < r₁ b : E hb : p b ≀ rβ‚‚ ⊒ p b * β€–aβ€– < rβ‚‚ * r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_)
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁]
Mathlib.Analysis.Seminorm.943_0.ywwMCgoKeIFKDZ3
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 a : π•œ ha : β€–aβ€– < r₁ b : E hb : p b ≀ rβ‚‚ ⊒ Β¬rβ‚‚ < 0
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_)
Mathlib.Analysis.Seminorm.943_0.ywwMCgoKeIFKDZ3
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ ⊒ Metric.ball 0 r₁ β€’ ball p 0 rβ‚‚ βŠ† ball p 0 (r₁ * rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
Mathlib.Analysis.Seminorm.952_0.ywwMCgoKeIFKDZ3
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
case inl R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ : ℝ ⊒ Metric.ball 0 r₁ β€’ ball p 0 0 βŠ† ball p 0 (r₁ * 0)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β·
simp
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β·
Mathlib.Analysis.Seminorm.952_0.ywwMCgoKeIFKDZ3
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
case inr R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hrβ‚‚ : rβ‚‚ β‰  0 ⊒ Metric.ball 0 r₁ β€’ ball p 0 rβ‚‚ βŠ† ball p 0 (r₁ * rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β·
exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚)
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β·
Mathlib.Analysis.Seminorm.952_0.ywwMCgoKeIFKDZ3
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ ⊒ Metric.closedBall 0 r₁ β€’ closedBall p 0 rβ‚‚ βŠ† closedBall p 0 (r₁ * rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by
Mathlib.Analysis.Seminorm.960_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ ⊒ βˆ€ (a : π•œ), β€–aβ€– ≀ r₁ β†’ βˆ€ (b : E), p b ≀ rβ‚‚ β†’ β€–aβ€– * p b ≀ r₁ * rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.960_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ a : π•œ ha : β€–aβ€– ≀ r₁ b : E hb : p b ≀ rβ‚‚ ⊒ β€–aβ€– * p b ≀ r₁ * rβ‚‚
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb
gcongr
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb
Mathlib.Analysis.Seminorm.960_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
case b0 R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r₁ rβ‚‚ : ℝ a : π•œ ha : β€–aβ€– ≀ r₁ b : E hb : p b ≀ rβ‚‚ ⊒ 0 ≀ r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr
exact (norm_nonneg _).trans ha
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr
Mathlib.Analysis.Seminorm.960_0.ywwMCgoKeIFKDZ3
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p : Seminorm π•œ E x : E r : ℝ hx : x ∈ ball p 0 r ⊒ -x ∈ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by
Mathlib.Analysis.Seminorm.969_0.ywwMCgoKeIFKDZ3
theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r : ℝ x : E ⊒ -ball p x r = ball p (-x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by
ext
@[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by
Mathlib.Analysis.Seminorm.973_0.ywwMCgoKeIFKDZ3
@[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝⁢ : SeminormedRing π•œ inst✝⁡ : AddCommGroup E inst✝⁴ : Module π•œ E inst✝³ : SeminormedRing π•œβ‚‚ inst✝² : AddCommGroup Eβ‚‚ inst✝¹ : Module π•œβ‚‚ Eβ‚‚ σ₁₂ : π•œ β†’+* π•œβ‚‚ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm π•œ E r : ℝ x x✝ : E ⊒ x✝ ∈ -ball p x r ↔ x✝ ∈ ball p (-x) r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext
rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map]
@[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext
Mathlib.Analysis.Seminorm.973_0.ywwMCgoKeIFKDZ3
@[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r ⊒ closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
case inl R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : IsEmpty ΞΉ ⊒ closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β·
rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β·
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
case inl R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : IsEmpty ΞΉ ⊒ closedBall βŠ₯ e r = univ
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
case inr R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ΞΉ ⊒ closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β·
ext x
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β·
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
case inr.h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ΞΉ x : E ⊒ x ∈ closedBall (⨆ i, p i) e r ↔ x ∈ β‹‚ i, closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
case inr.h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : ΞΉ β†’ Seminorm π•œ E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ΞΉ x : E this : BddAbove (range fun i => (p i) (x - e)) ⊒ x ∈ closedBall (⨆ i, p i) e r ↔ x ∈ β‹‚ i, closedBall (p i) e r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e)
Mathlib.Analysis.Seminorm.990_0.ywwMCgoKeIFKDZ3
theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ ⊒ ball p 0 (β€–kβ€– * r) βŠ† k β€’ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inl R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E r : ℝ ⊒ ball p 0 (β€–0β€– * r) βŠ† 0 β€’ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β·
rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β·
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inl R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E r : ℝ ⊒ βˆ… βŠ† 0 β€’ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inr R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 ⊒ ball p 0 (β€–kβ€– * r) βŠ† k β€’ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β·
intro x
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β·
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inr R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 x : E ⊒ x ∈ ball p 0 (β€–kβ€– * r) β†’ x ∈ k β€’ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inr R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 x : E ⊒ p x < β€–kβ€– * r β†’ βˆƒ y ∈ ball p 0 r, k β€’ y = x
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inr.refine'_1 R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 x : E hx : p x < β€–kβ€– * r ⊒ k⁻¹ β€’ x ∈ ball p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β·
rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β·
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
case inr.refine'_2 R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 x : E hx : p x < β€–kβ€– * r ⊒ k β€’ k⁻¹ β€’ x = x
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul]
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
Mathlib.Analysis.Seminorm.999_0.ywwMCgoKeIFKDZ3
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 ⊒ k β€’ ball p 0 r = ball p 0 (β€–kβ€– * r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by
ext
theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by
Mathlib.Analysis.Seminorm.1013_0.ywwMCgoKeIFKDZ3
theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case h R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ hk : k β‰  0 x✝ : E ⊒ x✝ ∈ k β€’ ball p 0 r ↔ x✝ ∈ ball p 0 (β€–kβ€– * r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext
rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext
Mathlib.Analysis.Seminorm.1013_0.ywwMCgoKeIFKDZ3
theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ ⊒ k β€’ closedBall p 0 r βŠ† closedBall p 0 (β€–kβ€– * r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by
rintro x ⟨y, hy, h⟩
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by
Mathlib.Analysis.Seminorm.1020_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ x y : E hy : y ∈ closedBall p 0 r h : (fun x => k β€’ x) y = x ⊒ x ∈ closedBall p 0 (β€–kβ€– * r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩
rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul]
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩
Mathlib.Analysis.Seminorm.1020_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ x y : E hy : y ∈ closedBall p 0 r h : (fun x => k β€’ x) y = x ⊒ β€–kβ€– * p y ≀ β€–kβ€– * r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul]
Mathlib.Analysis.Seminorm.1020_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ x y : E hy : p y ≀ r h : (fun x => k β€’ x) y = x ⊒ β€–kβ€– * p y ≀ β€–kβ€– * r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy
gcongr
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy
Mathlib.Analysis.Seminorm.1020_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– ⊒ k β€’ closedBall p 0 r = closedBall p 0 (β€–kβ€– * r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by
refine' subset_antisymm smul_closedBall_subset _
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– ⊒ closedBall p 0 (β€–kβ€– * r) βŠ† k β€’ closedBall p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _
intro x
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– x : E ⊒ x ∈ closedBall p 0 (β€–kβ€– * r) β†’ x ∈ k β€’ closedBall p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– x : E ⊒ p x ≀ β€–kβ€– * r β†’ βˆƒ y ∈ closedBall p 0 r, k β€’ y = x
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case refine'_1 R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– x : E hx : p x ≀ β€–kβ€– * r ⊒ k⁻¹ β€’ x ∈ closedBall p 0 r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β·
rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul]
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β·
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
case refine'_2 R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E k : π•œ r : ℝ hk : 0 < β€–kβ€– x : E hx : p x ≀ β€–kβ€– * r ⊒ k β€’ k⁻¹ β€’ x = x
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul]
rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul]
Mathlib.Analysis.Seminorm.1028_0.ywwMCgoKeIFKDZ3
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r : ℝ x : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ ⊒ Absorbs π•œ (ball p 0 r₁) (ball p 0 rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by
rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a : π•œ r✝ : ℝ x : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ r : ℝ hrβ‚€ : 0 < r hr : rβ‚‚ < r * r₁ ⊒ Absorbs π•œ (ball p 0 r₁) (ball p 0 rβ‚‚)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩
refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a✝ : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ r : ℝ hrβ‚€ : 0 < r hr : rβ‚‚ < r * r₁ a : π•œ ha : r ≀ β€–aβ€– x : E hx : x ∈ ball p 0 rβ‚‚ ⊒ x ∈ a β€’ ball p 0 r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero]
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a✝ : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ r : ℝ hrβ‚€ : 0 < r hr : rβ‚‚ < r * r₁ a : π•œ ha : r ≀ β€–aβ€– x : E hx : x ∈ ball p 0 rβ‚‚ ⊒ p x < β€–aβ€– * r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero]
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
case intro.intro R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a✝ : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ r : ℝ hrβ‚€ : 0 < r hr : rβ‚‚ < r * r₁ a : π•œ ha : r ≀ β€–aβ€– x : E hx : p x < rβ‚‚ ⊒ p x < β€–aβ€– * r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p✝ : Seminorm π•œ E A B : Set E a✝ : π•œ r✝ : ℝ x✝ : E p : Seminorm π•œ E r₁ rβ‚‚ : ℝ hr₁ : 0 < r₁ r : ℝ hrβ‚€ : 0 < r hr : rβ‚‚ < r * r₁ a : π•œ ha : r ≀ β€–aβ€– x : E hx : p x < rβ‚‚ ⊒ r * r₁ ≀ β€–aβ€– * r₁
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx exact hx.trans (hr.trans_le <| by
gcongr
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx exact hx.trans (hr.trans_le <| by
Mathlib.Analysis.Seminorm.1039_0.ywwMCgoKeIFKDZ3
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p : Seminorm π•œ E A B : Set E a : π•œ r : ℝ x : E hpr : p x < r ⊒ Absorbent π•œ (ball p x r)
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx exact hx.trans (hr.trans_le <| by gcongr) #align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero /-- Seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π•œ (ball p (0 : E) r) := absorbent_iff_forall_absorbs_singleton.2 fun _ => (p.ball_zero_absorbs_ball_zero hr).mono_right <| singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _ #align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero /-- Closed seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π•œ (closedBall p (0 : E) r) := (p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _) #align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero /-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by
Mathlib.Analysis.Seminorm.1060_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p : Seminorm π•œ E A B : Set E a : π•œ r : ℝ x : E hpr : p x < r y : E hy : y ∈ ball p 0 (r - p x) ⊒ y ∈ ball p x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx exact hx.trans (hr.trans_le <| by gcongr) #align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero /-- Seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π•œ (ball p (0 : E) r) := absorbent_iff_forall_absorbs_singleton.2 fun _ => (p.ball_zero_absorbs_ball_zero hr).mono_right <| singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _ #align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero /-- Closed seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π•œ (closedBall p (0 : E) r) := (p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _) #align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero /-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
Mathlib.Analysis.Seminorm.1060_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r)
Mathlib_Analysis_Seminorm
R : Type u_1 R' : Type u_2 π•œ : Type u_3 π•œβ‚‚ : Type u_4 π•œβ‚ƒ : Type u_5 𝕝 : Type u_6 E : Type u_7 Eβ‚‚ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ΞΉ : Type u_12 inst✝² : NormedField π•œ inst✝¹ : AddCommGroup E inst✝ : Module π•œ E p : Seminorm π•œ E A B : Set E a : π•œ r : ℝ x : E hpr : p x < r y : E hy : p y < r - p x ⊒ y ∈ ball p x r
/- Copyright (c) 2019 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll -/ import Mathlib.Data.Real.Pointwise import Mathlib.Analysis.Convex.Function import Mathlib.Analysis.LocallyConvex.Basic import Mathlib.Analysis.Normed.Group.AddTorsor #align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c" /-! # Seminorms This file defines seminorms. A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms. ## Main declarations For a module over a normed ring: * `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * `normSeminorm π•œ E`: The norm on `E` as a seminorm. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags seminorm, locally convex, LCTVS -/ set_option autoImplicit true open NormedField Set Filter open scoped BigOperators NNReal Pointwise Topology Uniformity variable {R R' π•œ π•œβ‚‚ π•œβ‚ƒ 𝕝 E Eβ‚‚ E₃ F G ΞΉ : Type*} /-- A seminorm on a module over a normed ring is a function to the reals that is positive semidefinite, positive homogeneous, and subadditive. -/ structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x #align seminorm Seminorm attribute [nolint docBlame] Seminorm.toAddGroupSeminorm /-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`. You should extend this class when you extend `Seminorm`. -/ class SeminormClass (F : Type*) (π•œ E : outParam <| Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminormClass F E ℝ where /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar and the original seminorm. -/ map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x #align seminorm_class SeminormClass export SeminormClass (map_smul_eq_mul) -- Porting note: dangerous instances no longer exist -- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass section Of /-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a `SeminormedRing π•œ`. -/ def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E where toFun := f map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul] add_le' := add_le smul' := smul neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul] #align seminorm.of Seminorm.of /-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0` and an inequality for the scalar multiplication. -/ def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E := Seminorm.of f add_le fun r x => by refine' le_antisymm (smul_le r x) _ by_cases h : r = 0 Β· simp [h, map_zero] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)] specialize smul_le r⁻¹ (r β€’ x) rw [norm_inv] at smul_le convert smul_le simp [h] #align seminorm.of_smul_le Seminorm.ofSMulLE end Of namespace Seminorm section SeminormedRing variable [SeminormedRing π•œ] section AddGroup variable [AddGroup E] section SMul variable [SMul π•œ E] instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where coe f := f.toFun coe_injective' f g h := by rcases f with ⟨⟨_⟩⟩ rcases g with ⟨⟨_⟩⟩ congr map_zero f := f.map_zero' map_add_le_add f := f.add_le' map_neg_eq_map f := f.neg' map_smul_eq_mul f := f.smul' #align seminorm.seminorm_class Seminorm.instSeminormClass /-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/ instance instCoeFun : CoeFun (Seminorm π•œ E) fun _ => E β†’ ℝ := FunLike.hasCoeToFun @[ext] theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := FunLike.ext p q h #align seminorm.ext Seminorm.ext instance instZero : Zero (Seminorm π•œ E) := ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with smul' := fun _ _ => (mul_zero _).symm }⟩ @[simp] theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_zero Seminorm.coe_zero @[simp] theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 := rfl #align seminorm.zero_apply Seminorm.zero_apply instance : Inhabited (Seminorm π•œ E) := ⟨0⟩ variable (p : Seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ) /-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/ instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where smul r p := { r β€’ p.toAddGroupSeminorm with toFun := fun x => r β€’ p x smul' := fun _ _ => by simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] rw [map_smul_eq_mul, mul_left_comm] } instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E) where smul_assoc r a p := ext fun x => smul_assoc r a (p x) theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p := rfl #align seminorm.coe_smul Seminorm.coe_smul @[simp] theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl #align seminorm.smul_apply Seminorm.smul_apply instance instAdd : Add (Seminorm π•œ E) where add p q := { p.toAddGroupSeminorm + q.toAddGroupSeminorm with toFun := fun x => p x + q x smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] } theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q := rfl #align seminorm.coe_add Seminorm.coe_add @[simp] theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl #align seminorm.add_apply Seminorm.add_apply instance instAddMonoid : AddMonoid (Seminorm π•œ E) := FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π•œ E) := FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E) := FunLike.coe_injective.mulAction _ (by intros; rfl) variable (π•œ E) /-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/ @[simps] def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where toFun := (↑) map_zero' := coe_zero map_add' := coe_add #align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) := show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from FunLike.coe_injective #align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective variable {π•œ E} instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl) instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E) := (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl) instance instSup : Sup (Seminorm π•œ E) where sup p q := { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with toFun := p βŠ” q smul' := fun x v => (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <| (mul_max_of_nonneg _ _ <| norm_nonneg x).symm } @[simp] theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) := rfl #align seminorm.coe_sup Seminorm.coe_sup theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl #align seminorm.sup_apply Seminorm.sup_apply theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q := have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg ext fun x => real.smul_max _ _ #align seminorm.smul_sup Seminorm.smul_sup instance instPartialOrder : PartialOrder (Seminorm π•œ E) := PartialOrder.lift _ FunLike.coe_injective @[simp, norm_cast] theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q := Iff.rfl #align seminorm.coe_le_coe Seminorm.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q := Iff.rfl #align seminorm.coe_lt_coe Seminorm.coe_lt_coe theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x := Iff.rfl #align seminorm.le_def Seminorm.le_def theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x := @Pi.lt_def _ _ _ p q #align seminorm.lt_def Seminorm.lt_def instance instSemilatticeSup : SemilatticeSup (Seminorm π•œ E) := Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup end SMul end AddGroup section Module variable [SeminormedRing π•œβ‚‚] [SeminormedRing π•œβ‚ƒ] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₂₃] variable {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomIsometric σ₁₃] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [AddCommGroup E₃] variable [AddCommGroup F] [AddCommGroup G] variable [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] [Module π•œβ‚ƒ E₃] [Module π•œ F] [Module π•œ G] -- Porting note: even though this instance is found immediately by typeclass search, -- it seems to be needed below!? noncomputable instance smul_nnreal_real : SMul ℝβ‰₯0 ℝ := inferInstance variable [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] /-- Composition of a seminorm with a linear map is a seminorm. -/ def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E := { p.toAddGroupSeminorm.comp f.toAddMonoidHom with toFun := fun x => p (f x) -- Porting note: the `simp only` below used to be part of the `rw`. -- I'm not sure why this change was needed, and am worried by it! smul' := fun _ _ => by simp only [map_smulβ‚›β‚—]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] } #align seminorm.comp Seminorm.comp theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f := rfl #align seminorm.coe_comp Seminorm.coe_comp @[simp] theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) := rfl #align seminorm.comp_apply Seminorm.comp_apply @[simp] theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p := ext fun _ => rfl #align seminorm.comp_id Seminorm.comp_id @[simp] theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 := ext fun _ => map_zero p #align seminorm.comp_zero Seminorm.comp_zero @[simp] theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 := ext fun _ => rfl #align seminorm.zero_comp Seminorm.zero_comp theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f := ext fun _ => rfl #align seminorm.comp_comp Seminorm.comp_comp theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f := ext fun _ => rfl #align seminorm.add_comp Seminorm.add_comp theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _ #align seminorm.comp_add_le Seminorm.comp_add_le theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f := ext fun _ => rfl #align seminorm.smul_comp Seminorm.smul_comp theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f := fun _ => hp _ #align seminorm.comp_mono Seminorm.comp_mono /-- The composition as an `AddMonoidHom`. -/ @[simps] def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where toFun := fun p => p.comp f map_zero' := zero_comp f map_add' := fun p q => add_comp p q f #align seminorm.pullback Seminorm.pullback instance instOrderBot : OrderBot (Seminorm π•œ E) where bot := 0 bot_le := map_nonneg @[simp] theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.coe_bot Seminorm.coe_bot theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 := rfl #align seminorm.bot_eq_zero Seminorm.bot_eq_zero theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q := by simp_rw [le_def] intro x exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) #align seminorm.smul_le_smul Seminorm.smul_le_smul theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, map_nonneg (p i) x⟩ : ℝβ‰₯0) := by induction' s using Finset.cons_induction_on with a s ha ih Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] norm_cast Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, NNReal.coe_mk, ih] #align seminorm.finset_sup_apply Seminorm.finset_sup_apply theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩ rw [finset_sup_apply] exact ⟨i, hi, congr_arg _ hix⟩ theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by rcases Finset.eq_empty_or_nonempty s with (rfl|hs) Β· left; rfl Β· right; exact exists_apply_eq_finset_sup p hs x theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p := by ext x rw [smul_apply, finset_sup_apply, finset_sup_apply] symm exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i := by classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le #align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by lift a to ℝβ‰₯0 using ha rw [finset_sup_apply, NNReal.coe_le_coe] exact Finset.sup_le h #align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x := (Finset.le_sup hi : p i ≀ s.sup p) x theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by lift a to ℝβ‰₯0 using ha.le rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] Β· exact h Β· exact NNReal.coe_pos.mpr ha #align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) := abs_sub_map_le_sub p x y #align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub end Module end SeminormedRing section SeminormedCommRing variable [SeminormedRing π•œ] [SeminormedCommRing π•œβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] variable [AddCommGroup E] [AddCommGroup Eβ‚‚] [Module π•œ E] [Module π•œβ‚‚ Eβ‚‚] theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f := ext fun _ => by rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] #align seminorm.comp_smul Seminorm.comp_smul theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x) := map_smul_eq_mul p _ _ #align seminorm.comp_smul_apply Seminorm.comp_smul_apply end SeminormedCommRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p q : Seminorm π•œ E} {x : E} /-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/ theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) := ⟨0, by rintro _ ⟨x, rfl⟩ dsimp; positivity⟩ #align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add noncomputable instance instInf : Inf (Seminorm π•œ E) where inf p q := { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with toFun := fun x => β¨… u : E, p u + q (x - u) smul' := by intro a x obtain rfl | ha := eq_or_ne a 0 Β· rw [norm_zero, zero_mul, zero_smul] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt -- Porting note: the following was previously `fun i => by positivity` (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] refine' Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E) (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => _ rw [smul_inv_smulβ‚€ ha] } @[simp] theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) := rfl #align seminorm.inf_apply Seminorm.inf_apply noncomputable instance instLattice : Lattice (Seminorm π•œ E) := { Seminorm.instSemilatticeSup with inf := (Β· βŠ“ Β·) inf_le_left := fun p q x => ciInf_le_of_le bddBelow_range_add x <| by simp only [sub_self, map_zero, add_zero]; rfl inf_le_right := fun p q x => ciInf_le_of_le bddBelow_range_add 0 <| by simp only [sub_self, map_zero, zero_add, sub_zero]; rfl le_inf := fun a b c hab hac x => le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) } theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by ext simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] #align seminorm.smul_inf Seminorm.smul_inf section Classical open Classical /-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows: * if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a seminorm. * otherwise, we take the zero seminorm `βŠ₯`. There are two things worth mentioning here: * First, it is not trivial at first that `s` being bounded above *by a function* implies being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`. * Since the pointwise `Sup` already gives `0` at points where a family of functions is not bounded above, one could hope that just using the pointwise `Sup` would work here, without the need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can give a function which does *not* satisfy the seminorm axioms (typically sub-additivity). -/ noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where sSup s := if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) map_zero' := by rw [iSup_apply, ← @Real.ciSup_const_zero s] congr! rename_i _ _ _ i exact map_zero i.1 add_le' := fun x y => by rcases h with ⟨q, hq⟩ obtain rfl | h := s.eq_empty_or_nonempty Β· simp [Real.ciSup_empty] haveI : Nonempty ↑s := h.coe_sort simp only [iSup_apply] refine' ciSup_le fun i => ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add -- Porting note: `f` is provided to force `Subtype.val` to appear. -- A type ascription on `_` would have also worked, but would have been more verbose. (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, _⟩ i) <;> rw [mem_upperBounds, forall_range_iff] <;> exact fun j => hq (mem_image_of_mem _ j.2) _ neg' := fun x => by simp only [iSup_apply] congr! 2 rename_i _ _ _ i exact i.1.neg' _ smul' := fun a x => by simp only [iSup_apply] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x] congr! rename_i _ _ _ i exact i.1.smul' a x } else βŠ₯ protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := congr_arg _ (dif_pos hs) #align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq' protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) := ⟨fun ⟨q, hq⟩ => ⟨q, ball_image_of_ball fun p hp => hq hp⟩, fun H => ⟨sSup s, fun p hp x => by dsimp rw [Seminorm.coe_sSup_eq' H, iSup_apply] rcases H with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩ #align seminorm.bdd_above_iff Seminorm.bddAbove_iff protected theorem bddAbove_range_iff {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) := Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs) #align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by rw [← sSup_range, Seminorm.coe_sSup_eq hp] exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p #align seminorm.coe_supr_eq Seminorm.coe_iSup_eq protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by rw [Seminorm.coe_sSup_eq hp, iSup_apply] protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by rw [Seminorm.coe_iSup_eq hp, iSup_apply] protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by ext rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] rfl private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π•œ E)) (hs₁ : BddAbove s) (hsβ‚‚ : s.Nonempty) : IsLUB s (sSup s) := by refine' ⟨fun p hp x => _, fun p hp x => _⟩ <;> haveI : Nonempty ↑s := hsβ‚‚.coe_sort <;> dsimp <;> rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] Β· rcases hs₁ with ⟨q, hq⟩ exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ Β· exact ciSup_le fun q => hp q.2 x /-- `Seminorm π•œ E` is a conditionally complete lattice. Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you need to use `sInf` on seminorms, then you should probably provide a more workable definition first, but this is unlikely to happen so we keep the "bad" definition for now. -/ noncomputable instance instConditionallyCompleteLattice : ConditionallyCompleteLattice (Seminorm π•œ E) := conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup end Classical end NormedField /-! ### Seminorm ball -/ section SeminormedRing variable [SeminormedRing π•œ] section AddCommGroup variable [AddCommGroup E] section SMul variable [SMul π•œ E] (p : Seminorm π•œ E) /-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) < r`. -/ def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r } #align seminorm.ball Seminorm.ball /-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with `p (y - x) ≀ r`. -/ def closedBall (x : E) (r : ℝ) := { y : E | p (y - x) ≀ r } #align seminorm.closed_ball Seminorm.closedBall variable {x y : E} {r : ℝ} @[simp] theorem mem_ball : y ∈ ball p x r ↔ p (y - x) < r := Iff.rfl #align seminorm.mem_ball Seminorm.mem_ball @[simp] theorem mem_closedBall : y ∈ closedBall p x r ↔ p (y - x) ≀ r := Iff.rfl #align seminorm.mem_closed_ball Seminorm.mem_closedBall theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr] #align seminorm.mem_ball_self Seminorm.mem_ball_self theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr] #align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self theorem mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero] #align seminorm.mem_ball_zero Seminorm.mem_ball_zero theorem mem_closedBall_zero : y ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero] #align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } := Set.ext fun _ => p.mem_ball_zero #align seminorm.ball_zero_eq Seminorm.ball_zero_eq theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } := Set.ext fun _ => p.mem_closedBall_zero #align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq theorem ball_subset_closedBall (x r) : ball p x r βŠ† closedBall p x r := fun _ h => (mem_closedBall _).mpr ((mem_ball _).mp h).le #align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le'] #align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball @[simp] theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by rw [Set.eq_univ_iff_forall, ball] simp [hr] #align seminorm.ball_zero' Seminorm.ball_zero' @[simp] theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ := eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr) #align seminorm.closed_ball_zero' Seminorm.closedBall_zero' theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c) := by ext rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.ball_smul Seminorm.ball_smul theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c) := by ext rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] #align seminorm.closed_ball_smul Seminorm.closedBall_smul theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r := by simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] #align seminorm.ball_sup Seminorm.ball_sup theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r := by simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] #align seminorm.closed_ball_sup Seminorm.closedBall_sup theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.ball_finset_sup' Seminorm.ball_finset_sup' theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih Β· classical simp Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? simp only [inf_eq_inter, ih] #align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup' theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ := fun _ (hx : _ < _) => hx.trans_le h #align seminorm.ball_mono Seminorm.ball_mono theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h #align seminorm.closed_ball_mono Seminorm.closedBall_mono theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ => (h _).trans_lt #align seminorm.ball_antitone Seminorm.ball_antitone theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans #align seminorm.closed_ball_antitone Seminorm.closedBall_antitone theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_ball, add_sub_add_comm] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚) #align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by rintro x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩ rw [mem_closedBall, add_sub_add_comm] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚) #align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub] #align seminorm.sub_mem_ball Seminorm.sub_mem_ball /-- The image of a ball under addition with a singleton is another ball. -/ theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_ball x y r #align seminorm.vadd_ball Seminorm.vadd_ball /-- The image of a closed ball under addition with a singleton is another closed ball. -/ theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r := letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm Metric.vadd_closedBall x y r #align seminorm.vadd_closed_ball Seminorm.vadd_closedBall end SMul section Module variable [Module π•œ E] variable [SeminormedRing π•œβ‚‚] [AddCommGroup Eβ‚‚] [Module π•œβ‚‚ Eβ‚‚] variable {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by ext simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.ball_comp Seminorm.ball_comp theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by ext simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] #align seminorm.closed_ball_comp Seminorm.closedBall_comp variable (p : Seminorm π•œ E) theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by ext x simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by ext x simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] #align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by rw [ball_zero_eq, preimage_metric_ball] #align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by rw [closedBall_zero_eq, preimage_metric_closedBall] #align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall @[simp] theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ := ball_zero' x hr #align seminorm.ball_bot Seminorm.ball_bot @[simp] theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ := closedBall_zero' x hr #align seminorm.closed_ball_bot Seminorm.closedBall_bot /-- Seminorm-balls at the origin are balanced. -/ theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_ball_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy #align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero /-- Closed seminorm-balls at the origin are balanced. -/ theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by rintro a ha x ⟨y, hy, hx⟩ rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] calc _ ≀ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≀ r := by rwa [mem_closedBall_zero] at hy #align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by lift r to NNReal using hr.le simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk] #align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by lift r to NNReal using hr simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, NNReal.coe_mk] #align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by rw [Finset.inf_eq_iInf] exact ball_finset_sup_eq_iInter _ _ _ hr #align seminorm.ball_finset_sup Seminorm.ball_finset_sup theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by rw [Finset.inf_eq_iInf] exact closedBall_finset_sup_eq_iInter _ _ _ hr #align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup @[simp] theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by ext rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] exact hr.trans (map_nonneg p _) #align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset @[simp] theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ… := by ext rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] exact hr.trans_le (map_nonneg _ _) #align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul] refine fun a ha b hb ↦ mul_lt_mul' ha hb (map_nonneg _ _) ?_ exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff, map_smul_eq_mul] intro a ha b hb rw [mul_comm, mul_comm r₁] refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_) exact ((map_nonneg p b).trans hb).not_lt theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚ Β· simp Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans (ball_smul_closedBall _ _ hrβ‚‚) #align seminorm.ball_smul_ball Seminorm.ball_smul_ball theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul] intro a ha b hb gcongr exact (norm_nonneg _).trans ha #align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall -- Porting note: TODO: make that an `iff` theorem neg_mem_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r := by simpa only [mem_ball_zero, map_neg_eq_map] using hx #align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero @[simp] theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by ext rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] #align seminorm.neg_ball Seminorm.neg_ball end Module end AddCommGroup end SeminormedRing section NormedField variable [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : Seminorm π•œ E) {A B : Set E} {a : π•œ} {r : ℝ} {x : E} theorem closedBall_iSup {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by cases isEmpty_or_nonempty ΞΉ Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] exact closedBall_bot _ hr Β· ext x have := Seminorm.bddAbove_range_iff.mp hp (x - e) simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by rcases eq_or_ne k 0 with (rfl | hk) Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] exact empty_subset _ Β· intro x rw [Set.mem_smul_set, Seminorm.mem_ball_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] #align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by ext rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] #align seminorm.smul_ball_zero Seminorm.smul_ball_zero theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by rintro x ⟨y, hy, h⟩ rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] rw [Seminorm.mem_closedBall_zero] at hy gcongr #align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by refine' subset_antisymm smul_closedBall_subset _ intro x rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] refine' fun hx => ⟨k⁻¹ β€’ x, _, _⟩ Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] #align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩ refine' ⟨r, hrβ‚€, fun a ha x hx => _⟩ rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero] rw [p.mem_ball_zero] at hx exact hx.trans (hr.trans_le <| by gcongr) #align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero /-- Seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π•œ (ball p (0 : E) r) := absorbent_iff_forall_absorbs_singleton.2 fun _ => (p.ball_zero_absorbs_ball_zero hr).mono_right <| singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _ #align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero /-- Closed seminorm-balls at the origin are absorbent. -/ protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π•œ (closedBall p (0 : E) r) := (p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _) #align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero /-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _ rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _ rw [p.mem_ball_zero] at hy
Mathlib.Analysis.Seminorm.1060_0.ywwMCgoKeIFKDZ3
/-- Seminorm-balls containing the origin are absorbent. -/ protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r)
Mathlib_Analysis_Seminorm