state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β ⊢ image (fun i => b ↑i) univ = erase (image b univ) k
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by
apply subset_antisymm
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β ⊢ image (fun i => b ↑i) univ ⊆ erase (image b univ) k
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm ·
rw [image_subset_iff]
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm ·
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β ⊢ ∀ x ∈ univ, b ↑x ∈ erase (image b univ) k
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff]
intro i _
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff]
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β i : { a // b a ≠ k } a✝ : i ∈ univ ⊢ b ↑i ∈ erase (image b univ) k
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _
apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _))
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β ⊢ erase (image b univ) k ⊆ image (fun i => b ↑i) univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) ·
intro i hi
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) ·
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β i : β hi : i ∈ erase (image b univ) k ⊢ i ∈ image (fun i => b ↑i) univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi
rw [mem_image]
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β i : β hi : i ∈ erase (image b univ) k ⊢ ∃ a ∈ univ, b ↑a = i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image]
rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image]
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β i : β hi : i ∈ erase (image b univ) k a : α left✝ : a ∈ univ ha : b a = i ⊢ ∃ a ∈ univ, b ↑a = i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩
subst ha
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
case a.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β k : β b : α → β a : α left✝ : a ∈ univ hi : b a ∈ erase (image b univ) k ⊢ ∃ a_1 ∈ univ, b ↑a_1 = b a
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha
exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha
Mathlib.Data.Fintype.Sum.47_0.wOnqEoxEwKMN7BR
theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k ⊢ image (fun i => b ↑i) univ ⊂ image b univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by
constructor
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case left α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k ⊢ image (fun i => b ↑i) univ ⊆ image b univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor ·
intro x hx
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor ·
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case left α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k x : β hx : x ∈ image (fun i => b ↑i) univ ⊢ x ∈ image b univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx
rcases mem_image.1 hx with ⟨y, _, hy⟩
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case left.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k x : β hx : x ∈ image (fun i => b ↑i) univ y : { a // p (b a) } left✝ : y ∈ univ hy : b ↑y = x ⊢ x ∈ image b univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩
exact hy ▸ mem_image_of_mem b (mem_univ (y : α))
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k ⊢ ¬image b univ ⊆ image (fun i => b ↑i) univ
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) ·
intro h
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) ·
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : k ∈ image b univ p : β → Prop inst✝ : DecidablePred p hp : ¬p k h : image b univ ⊆ image (fun i => b ↑i) univ ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h
rw [mem_image] at hk
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β hk : ∃ a ∈ univ, b a = k p : β → Prop inst✝ : DecidablePred p hp : ¬p k h : image b univ ⊆ image (fun i => b ↑i) univ ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk
rcases hk with ⟨k', _, hk'⟩
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β k : β b : α → β p : β → Prop inst✝ : DecidablePred p hp : ¬p k h : image b univ ⊆ image (fun i => b ↑i) univ k' : α left✝ : k' ∈ univ hk' : b k' = k ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩
subst hk'
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β b : α → β p : β → Prop inst✝ : DecidablePred p h : image b univ ⊆ image (fun i => b ↑i) univ k' : α left✝ : k' ∈ univ hp : ¬p (b k') ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk'
have := h (mem_image_of_mem b (mem_univ k'))
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk'
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β b : α → β p : β → Prop inst✝ : DecidablePred p h : image b univ ⊆ image (fun i => b ↑i) univ k' : α left✝ : k' ∈ univ hp : ¬p (b k') this : b k' ∈ image (fun i => b ↑i) univ ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k'))
rw [mem_image] at this
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k'))
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β b : α → β p : β → Prop inst✝ : DecidablePred p h : image b univ ⊆ image (fun i => b ↑i) univ k' : α left✝ : k' ∈ univ hp : ¬p (b k') this : ∃ a ∈ univ, b ↑a = b k' ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this
rcases this with ⟨j, _, hj'⟩
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
case right.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝² : Fintype α inst✝¹ : DecidableEq β b : α → β p : β → Prop inst✝ : DecidablePred p h : image b univ ⊆ image (fun i => b ↑i) univ k' : α left✝¹ : k' ∈ univ hp : ¬p (b k') j : { a // p (b a) } left✝ : j ∈ univ hj' : b ↑j = b k' ⊢ False
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩
exact hp (hj' ▸ j.2)
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩
Mathlib.Data.Fintype.Sum.60_0.wOnqEoxEwKMN7BR
theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t s : Finset α f : α → β hfst : image f s ⊆ t hfs : Set.InjOn f ↑s ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by
classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has)
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t s : Finset α f : α → β hfst : image f s ⊆ t hfs : Set.InjOn f ↑s ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical
induction' s using Finset.induction with a s has H generalizing f
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case empty α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t f : α → β hfst : image f ∅ ⊆ t hfs : Set.InjOn f ↑∅ ⊢ ∃ g, ∀ i ∈ ∅, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f ·
obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe]
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f ·
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t f : α → β hfst : image f ∅ ⊆ t hfs : Set.InjOn f ↑∅ ⊢ Nonempty (α ≃ { x // x ∈ t })
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by
rwa [← Fintype.card_eq, Fintype.card_coe]
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case empty.intro α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t f : α → β hfst : image f ∅ ⊆ t hfs : Set.InjOn f ↑∅ e : α ≃ { x // x ∈ t } ⊢ ∃ g, ∀ i ∈ ∅, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe]
use e
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe]
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t f : α → β hfst : image f ∅ ⊆ t hfs : Set.InjOn f ↑∅ e : α ≃ { x // x ∈ t } ⊢ ∀ i ∈ ∅, ↑(e i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e
simp
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case insert α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) ⊢ ∃ g, ∀ i ∈ insert a s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp
have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case insert α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t ⊢ ∃ g, ∀ i ∈ insert a s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst
have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a)
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case insert α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s ⊢ ∃ g, ∀ i ∈ insert a s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a)
obtain ⟨g', hg'⟩ := H hfst' hfs'
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a)
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case insert.intro α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i ⊢ ∃ g, ∀ i ∈ insert a s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs'
have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a))
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs'
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case insert.intro α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t ⊢ ∃ g, ∀ i ∈ insert a s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a))
use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a))
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a))
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t ⊢ ∀ i ∈ insert a s, ↑((g'.trans (Equiv.swap { val := f a, property := hfat } (g' a))) i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a))
simp_rw [mem_insert]
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a))
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t ⊢ ∀ (i : α), i = a ∨ i ∈ s → ↑((g'.trans (Equiv.swap { val := f a, property := hfat } (g' a))) i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert]
rintro i (rfl | hi)
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert]
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h.inl α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t s : Finset α H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i i : α has : i ∉ s hfst : image f (insert i s) ⊆ t hfs : Set.InjOn f ↑(insert i s) hfat : f i ∈ t ⊢ ↑((g'.trans (Equiv.swap { val := f i, property := hfat } (g' i))) i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) ·
simp
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) ·
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h.inr α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t i : α hi : i ∈ s ⊢ ↑((g'.trans (Equiv.swap { val := f a, property := hfat } (g' a))) i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp
rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi]
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h.inr.a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t i : α hi : i ∈ s ⊢ g' i ≠ { val := f a, property := hfat }
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] ·
exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has)
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] ·
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case h.inr.a α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq β t : Finset β hαt : Fintype.card α = card t a : α s : Finset α has : a ∉ s H : ∀ {f : α → β}, image f s ⊆ t → Set.InjOn f ↑s → ∃ g, ∀ i ∈ s, ↑(g i) = f i f : α → β hfst : image f (insert a s) ⊆ t hfs : Set.InjOn f ↑(insert a s) hfst' : image f s ⊆ t hfs' : Set.InjOn f ↑s g' : α ≃ { x // x ∈ t } hg' : ∀ i ∈ s, ↑(g' i) = f i hfat : f a ∈ t i : α hi : i ∈ s ⊢ g' i ≠ g' a
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) ·
exact g'.injective.ne (ne_of_mem_of_not_mem hi has)
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) ·
Mathlib.Data.Fintype.Sum.77_0.wOnqEoxEwKMN7BR
/-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by
classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical
let s' : Finset α := s.toFinset
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset
have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s ⊢ Finset.image f s' ⊆ t
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by
simpa [← Finset.coe_subset] using hfst
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst
have hfs' : Set.InjOn f s' := by simpa using hfs
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t ⊢ InjOn f ↑s'
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by
simpa using hfs
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t hfs' : InjOn f ↑s' ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs
obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs'
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case intro α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t hfs' : InjOn f ↑s' g : α ≃ { x // x ∈ t } hg : ∀ i ∈ s', ↑(g i) = f i ⊢ ∃ g, ∀ i ∈ s, ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs'
refine' ⟨g, fun i hi => _⟩
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs'
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case intro α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t hfs' : InjOn f ↑s' g : α ≃ { x // x ∈ t } hg : ∀ i ∈ s', ↑(g i) = f i i : α hi : i ∈ s ⊢ ↑(g i) = f i
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩
apply hg
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
case intro.a α : Type u_1 β : Type u_2 inst✝ : Fintype α t : Finset β hαt : Fintype.card α = card t s : Set α f : α → β hfst : MapsTo f s ↑t hfs : InjOn f s s' : Finset α := toFinset s hfst' : Finset.image f s' ⊆ t hfs' : InjOn f ↑s' g : α ≃ { x // x ∈ t } hg : ∀ i ∈ s', ↑(g i) = f i i : α hi : i ∈ s ⊢ i ∈ s'
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg
simpa using hi
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg
Mathlib.Data.Fintype.Sum.103_0.wOnqEoxEwKMN7BR
/-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 p q : α → Prop inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x ∨ q x } ≤ card { x // p x } + card { x // q x }
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by
classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum]
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by
Mathlib.Data.Fintype.Sum.118_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 p q : α → Prop inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x ∨ q x } ≤ card { x // p x } + card { x // q x }
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical
convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q)
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical
Mathlib.Data.Fintype.Sum.118_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
case h.e'_4 α : Type u_1 β : Type u_2 p q : α → Prop inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x } + card { x // q x } = card ({ x // p x } ⊕ { x // q x })
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q)
rw [Fintype.card_sum]
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q)
Mathlib.Data.Fintype.Sum.118_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 p q : α → Prop h : Disjoint p q inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x ∨ q x } = card { x // p x } + card { x // q x }
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by
classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by
Mathlib.Data.Fintype.Sum.126_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 p q : α → Prop h : Disjoint p q inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x ∨ q x } = card { x // p x } + card { x // q x }
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical
convert Fintype.card_congr (subtypeOrEquiv p q h)
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical
Mathlib.Data.Fintype.Sum.126_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
case h.e'_3 α : Type u_1 β : Type u_2 p q : α → Prop h : Disjoint p q inst✝² : Fintype { x // p x } inst✝¹ : Fintype { x // q x } inst✝ : Fintype { x // p x ∨ q x } ⊢ card { x // p x } + card { x // q x } = card ({ x // p x } ⊕ { x // q x })
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h)
simp
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h)
Mathlib.Data.Fintype.Sum.126_0.wOnqEoxEwKMN7BR
theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x }
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 ⊢ Infinite (α ⊕ β) ↔ Infinite α ∨ Infinite β
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp #align fintype.card_subtype_or_disjoint Fintype.card_subtype_or_disjoint section open Classical @[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by
refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by
Mathlib.Data.Fintype.Sum.138_0.wOnqEoxEwKMN7BR
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 H : Infinite (α ⊕ β) ⊢ Infinite α ∨ Infinite β
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp #align fintype.card_subtype_or_disjoint Fintype.card_subtype_or_disjoint section open Classical @[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩
contrapose! H
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩
Mathlib.Data.Fintype.Sum.138_0.wOnqEoxEwKMN7BR
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 H : ¬Infinite α ∧ ¬Infinite β ⊢ ¬Infinite (α ⊕ β)
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp #align fintype.card_subtype_or_disjoint Fintype.card_subtype_or_disjoint section open Classical @[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H;
haveI := fintypeOfNotInfinite H.1
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H;
Mathlib.Data.Fintype.Sum.138_0.wOnqEoxEwKMN7BR
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 H : ¬Infinite α ∧ ¬Infinite β this : Fintype α ⊢ ¬Infinite (α ⊕ β)
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp #align fintype.card_subtype_or_disjoint Fintype.card_subtype_or_disjoint section open Classical @[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H; haveI := fintypeOfNotInfinite H.1;
haveI := fintypeOfNotInfinite H.2
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H; haveI := fintypeOfNotInfinite H.1;
Mathlib.Data.Fintype.Sum.138_0.wOnqEoxEwKMN7BR
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β
Mathlib_Data_Fintype_Sum
α : Type u_1 β : Type u_2 H : ¬Infinite α ∧ ¬Infinite β this✝ : Fintype α this : Fintype β ⊢ ¬Infinite (α ⊕ β)
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Card import Mathlib.Data.Finset.Sum import Mathlib.Logic.Embedding.Set #align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1" /-! ## Instances We provide the `Fintype` instance for the sum of two fintypes. -/ universe u v variable {α β : Type*} open Finset instance (α : Type u) (β : Type v) [Fintype α] [Fintype β] : Fintype (Sum α β) where elems := univ.disjSum univ complete := by rintro (_ | _) <;> simp @[simp] theorem Finset.univ_disjSum_univ {α β : Type*} [Fintype α] [Fintype β] : univ.disjSum univ = (univ : Finset (Sum α β)) := rfl #align finset.univ_disj_sum_univ Finset.univ_disjSum_univ @[simp] theorem Fintype.card_sum [Fintype α] [Fintype β] : Fintype.card (Sum α β) = Fintype.card α + Fintype.card β := card_disjSum _ _ #align fintype.card_sum Fintype.card_sum /-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/ def fintypeOfFintypeNe (a : α) (h : Fintype { b // b ≠ a }) : Fintype α := Fintype.ofBijective (Sum.elim ((↑) : { b // b = a } → α) ((↑) : { b // b ≠ a } → α)) <| by classical exact (Equiv.sumCompl (· = a)).bijective #align fintype_of_fintype_ne fintypeOfFintypeNe theorem image_subtype_ne_univ_eq_image_erase [Fintype α] [DecidableEq β] (k : β) (b : α → β) : image (fun i : { a // b a ≠ k } => b ↑i) univ = (image b univ).erase k := by apply subset_antisymm · rw [image_subset_iff] intro i _ apply mem_erase_of_ne_of_mem i.2 (mem_image_of_mem _ (mem_univ _)) · intro i hi rw [mem_image] rcases mem_image.1 (erase_subset _ _ hi) with ⟨a, _, ha⟩ subst ha exact ⟨⟨a, ne_of_mem_erase hi⟩, mem_univ _, rfl⟩ #align image_subtype_ne_univ_eq_image_erase image_subtype_ne_univ_eq_image_erase theorem image_subtype_univ_ssubset_image_univ [Fintype α] [DecidableEq β] (k : β) (b : α → β) (hk : k ∈ Finset.image b univ) (p : β → Prop) [DecidablePred p] (hp : ¬p k) : image (fun i : { a // p (b a) } => b ↑i) univ ⊂ image b univ := by constructor · intro x hx rcases mem_image.1 hx with ⟨y, _, hy⟩ exact hy ▸ mem_image_of_mem b (mem_univ (y : α)) · intro h rw [mem_image] at hk rcases hk with ⟨k', _, hk'⟩ subst hk' have := h (mem_image_of_mem b (mem_univ k')) rw [mem_image] at this rcases this with ⟨j, _, hj'⟩ exact hp (hj' ▸ j.2) #align image_subtype_univ_ssubset_image_univ image_subtype_univ_ssubset_image_univ /-- Any injection from a finset `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Finset.exists_equiv_extend_of_card_eq [Fintype α] [DecidableEq β] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Finset α} {f : α → β} (hfst : Finset.image f s ⊆ t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical induction' s using Finset.induction with a s has H generalizing f · obtain ⟨e⟩ : Nonempty (α ≃ ↥t) := by rwa [← Fintype.card_eq, Fintype.card_coe] use e simp have hfst' : Finset.image f s ⊆ t := (Finset.image_mono _ (s.subset_insert a)).trans hfst have hfs' : Set.InjOn f s := hfs.mono (s.subset_insert a) obtain ⟨g', hg'⟩ := H hfst' hfs' have hfat : f a ∈ t := hfst (mem_image_of_mem _ (s.mem_insert_self a)) use g'.trans (Equiv.swap (⟨f a, hfat⟩ : t) (g' a)) simp_rw [mem_insert] rintro i (rfl | hi) · simp rw [Equiv.trans_apply, Equiv.swap_apply_of_ne_of_ne, hg' _ hi] · exact ne_of_apply_ne Subtype.val (ne_of_eq_of_ne (hg' _ hi) <| hfs.ne (subset_insert _ _ hi) (mem_insert_self _ _) <| ne_of_mem_of_not_mem hi has) · exact g'.injective.ne (ne_of_mem_of_not_mem hi has) #align finset.exists_equiv_extend_of_card_eq Finset.exists_equiv_extend_of_card_eq /-- Any injection from a set `s` in a fintype `α` to a finset `t` of the same cardinality as `α` can be extended to a bijection between `α` and `t`. -/ theorem Set.MapsTo.exists_equiv_extend_of_card_eq [Fintype α] {t : Finset β} (hαt : Fintype.card α = t.card) {s : Set α} {f : α → β} (hfst : s.MapsTo f t) (hfs : Set.InjOn f s) : ∃ g : α ≃ t, ∀ i ∈ s, (g i : β) = f i := by classical let s' : Finset α := s.toFinset have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst have hfs' : Set.InjOn f s' := by simpa using hfs obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs' refine' ⟨g, fun i hi => _⟩ apply hg simpa using hi #align set.maps_to.exists_equiv_extend_of_card_eq Set.MapsTo.exists_equiv_extend_of_card_eq theorem Fintype.card_subtype_or (p q : α → Prop) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } ≤ Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_le_of_embedding (subtypeOrLeftEmbedding p q) rw [Fintype.card_sum] #align fintype.card_subtype_or Fintype.card_subtype_or theorem Fintype.card_subtype_or_disjoint (p q : α → Prop) (h : Disjoint p q) [Fintype { x // p x }] [Fintype { x // q x }] [Fintype { x // p x ∨ q x }] : Fintype.card { x // p x ∨ q x } = Fintype.card { x // p x } + Fintype.card { x // q x } := by classical convert Fintype.card_congr (subtypeOrEquiv p q h) simp #align fintype.card_subtype_or_disjoint Fintype.card_subtype_or_disjoint section open Classical @[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H; haveI := fintypeOfNotInfinite H.1; haveI := fintypeOfNotInfinite H.2
exact Infinite.false
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β := by refine' ⟨fun H => _, fun H => H.elim (@Sum.infinite_of_left α β) (@Sum.infinite_of_right α β)⟩ contrapose! H; haveI := fintypeOfNotInfinite H.1; haveI := fintypeOfNotInfinite H.2
Mathlib.Data.Fintype.Sum.138_0.wOnqEoxEwKMN7BR
@[simp] theorem infinite_sum : Infinite (Sum α β) ↔ Infinite α ∨ Infinite β
Mathlib_Data_Fintype_Sum
m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } (x * y) = OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } x * OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
intros
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
Mathlib.Control.Fold.120_0.ilkJEkQU7vZZ6HB
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (FreeMonoid.toList xs))) 1) } y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
Mathlib.Control.Fold.120_0.ilkJEkQU7vZZ6HB
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β x✝ y✝ : FreeMonoid α ⊢ (op fun a => List.foldl f (List.foldl f a (FreeMonoid.toList x✝)) (FreeMonoid.toList y✝)) = (op fun a => List.foldl f a (FreeMonoid.toList x✝)) * op fun a => List.foldl f a (FreeMonoid.toList y✝)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj];
rfl
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj];
Mathlib.Control.Fold.120_0.ilkJEkQU7vZZ6HB
@[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } (x * y) = OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } x * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
intros
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
Mathlib.Control.Fold.163_0.ilkJEkQU7vZZ6HB
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
apply unop_injective
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
Mathlib.Control.Fold.163_0.ilkJEkQU7vZZ6HB
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs
Mathlib_Control_Fold
case a m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝ y✝ : FreeMonoid α ⊢ unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } (x✝ * y✝)) = unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } y✝)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective;
funext
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective;
Mathlib.Control.Fold.163_0.ilkJEkQU7vZZ6HB
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs
Mathlib_Control_Fold
case a.h m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝¹ y✝ : FreeMonoid α x✝ : KleisliCat.mk m β ⊢ unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } (x✝¹ * y✝)) x✝ = unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } x✝¹ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (FreeMonoid.toList xs))) 1) } y✝) x✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext;
apply List.foldlM_append
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext;
Mathlib.Control.Fold.163_0.ilkJEkQU7vZZ6HB
@[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } (x * y) = OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } x * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
intros
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by
Mathlib.Control.Fold.184_0.ilkJEkQU7vZZ6HB
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs
Mathlib_Control_Fold
m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } x✝ * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
funext
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros;
Mathlib.Control.Fold.184_0.ilkJEkQU7vZZ6HB
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs
Mathlib_Control_Fold
case h m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β x✝¹ y✝ : FreeMonoid α x✝ : KleisliCat.mk m β ⊢ OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } (x✝¹ * y✝) x✝ = (OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } x✝¹ * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (FreeMonoid.toList xs)) 1) } y✝) x✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext;
apply List.foldrM_append
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext;
Mathlib.Control.Fold.184_0.ilkJEkQU7vZZ6HB
@[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs
Mathlib_Control_Fold
α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β ⊢ ∀ {α_1 : Type ?u.11039} (x : α_1), (fun x => ⇑f) α_1 (pure x) = pure x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by
intros
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by
Mathlib.Control.Fold.256_0.ilkJEkQU7vZZ6HB
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _
Mathlib_Control_Fold
α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β α✝ : Type ?u.11039 x✝ : α✝ ⊢ (fun x => ⇑f) α✝ (pure x✝) = pure x✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros;
simp only [map_one, pure]
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros;
Mathlib.Control.Fold.256_0.ilkJEkQU7vZZ6HB
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _
Mathlib_Control_Fold
α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β ⊢ ∀ {α_1 β_1 : Type ?u.11039} (x : Const α (α_1 → β_1)) (y : Const α α_1), (fun x => ⇑f) β_1 (Seq.seq x fun x => y) = Seq.seq ((fun x => ⇑f) (α_1 → β_1) x) fun x => (fun x => ⇑f) α_1 y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by
intros
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by
Mathlib.Control.Fold.256_0.ilkJEkQU7vZZ6HB
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _
Mathlib_Control_Fold
α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β α✝ β✝ : Type ?u.11039 x✝ : Const α (α✝ → β✝) y✝ : Const α α✝ ⊢ (fun x => ⇑f) β✝ (Seq.seq x✝ fun x => y✝) = Seq.seq ((fun x => ⇑f) (α✝ → β✝) x✝) fun x => (fun x => ⇑f) α✝ y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros;
simp only [Seq.seq, map_mul]
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros;
Mathlib.Control.Fold.256_0.ilkJEkQU7vZZ6HB
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α ⊢ ⇑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of = foldlM.mk ∘ flip f
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
Mathlib.Control.Fold.317_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f
Mathlib_Control_Fold
case h α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α x : β ⊢ (⇑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of) x = (foldlM.mk ∘ flip f) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x
Mathlib.Control.Fold.317_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f
Mathlib_Control_Fold
case h α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α x : β ⊢ (fun a => f a x) = fun a => f a x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
Mathlib.Control.Fold.317_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : β → α → m α ⊢ ⇑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of = foldrM.mk ∘ f
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
@[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
Mathlib.Control.Fold.325_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f
Mathlib_Control_Fold
case h α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : β → α → m α x✝ : β ⊢ (⇑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of) x✝ = (foldrM.mk ∘ f) x✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
@[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext
Mathlib.Control.Fold.325_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs)))
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by
simp only [List.reverse_reverse]
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by
Mathlib.Control.Fold.332_0.ilkJEkQU7vZZ6HB
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs))) = FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs))))
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by
simp only [List.foldr_eta]
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by
Mathlib.Control.Fold.332_0.ilkJEkQU7vZZ6HB
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs)))) = List.reverse (unop ((Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) [])
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by
simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by
Mathlib.Control.Fold.332_0.ilkJEkQU7vZZ6HB
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ List.reverse (unop ((Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []) = toList xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by
rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by
Mathlib.Control.Fold.332_0.ilkJEkQU7vZZ6HB
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ List.reverse (unop (foldMap (⇑(Foldl.ofFreeMonoid (flip cons)) ∘ FreeMonoid.of) xs) []) = toList xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply]
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
Mathlib.Control.Fold.332_0.ilkJEkQU7vZZ6HB
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝² : Traversable t inst✝¹ : LawfulTraversable t inst✝ : Monoid γ f : α → β g : β → γ xs : t α ⊢ foldMap g (f <$> xs) = foldMap (g ∘ f) xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by
simp only [foldMap, traverse_map, Function.comp]
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by
Mathlib.Control.Fold.348_0.ilkJEkQU7vZZ6HB
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → α xs : t β x : α ⊢ foldl f x xs = List.foldl f x (toList xs)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by
Mathlib.Control.Fold.352_0.ilkJEkQU7vZZ6HB
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → α xs : t β x : α ⊢ foldl f x xs = unop ((Foldl.ofFreeMonoid f) (FreeMonoid.ofList (toList xs))) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList]
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
Mathlib.Control.Fold.352_0.ilkJEkQU7vZZ6HB
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → β xs : t α x : β ⊢ foldr f x xs = List.foldr f x (toList xs)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by
Mathlib.Control.Fold.359_0.ilkJEkQU7vZZ6HB
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → β xs : t α x : β ⊢ foldr f x xs = (Foldr.ofFreeMonoid f) (FreeMonoid.ofList (toList xs)) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of]
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
Mathlib.Control.Fold.359_0.ilkJEkQU7vZZ6HB
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs)
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β xs : t α ⊢ toList (f <$> xs) = f <$> toList xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)]
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
Mathlib.Control.Fold.366_0.ilkJEkQU7vZZ6HB
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t g : β → γ f : α → γ → α a : α l : t β ⊢ foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
@[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
Mathlib.Control.Fold.371_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t g : β → γ f : γ → α → α a : α l : t β ⊢ foldr f a (g <$> l) = foldr (f ∘ g) a l
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by
simp only [foldr, foldMap_map, (· ∘ ·), flip]
@[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by
Mathlib.Control.Fold.377_0.ilkJEkQU7vZZ6HB
@[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : List α ⊢ toList xs = xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : List α ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) xs) = xs
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse]
induction xs
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse]
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
case nil α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = [] case cons α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α tail_ih✝ : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs
case nil => rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = []
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs
case nil => rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = []
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil =>
rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil =>
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
case cons α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α tail_ih✝ : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl case cons _ _ ih =>
conv_rhs => rw [← ih]; rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl case cons _ _ ih =>
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold
α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ | head✝ :: tail✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.FreeMonoid.Basic import Mathlib.Control.Traversable.Instances import Mathlib.Control.Traversable.Lemmas import Mathlib.CategoryTheory.Endomorphism import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Category.KleisliCat #align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da" /-! # List folds generalized to `Traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `foldMap` as a primitive and `foldMap_hom` as a defining property. ``` def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ... lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := ... ``` `foldMap` uses a monoid ω to accumulate a value for every element of a data structure and `foldMap_hom` uses a monoid homomorphism to substitute the monoid used by `foldMap`. The two are sufficient to define `foldl`, `foldr` and `toList`. `toList` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `toList` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `Traversable`. -/ universe u v open ULift CategoryTheory MulOpposite namespace Monoid variable {m : Type u → Type u} [Monad m] variable {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : List β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `Foldl`. -/ @[reducible] def Foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ #align monoid.foldl Monoid.Foldl def Foldl.mk (f : α → α) : Foldl α := op f #align monoid.foldl.mk Monoid.Foldl.mk def Foldl.get (x : Foldl α) : α → α := unop x #align monoid.foldl.get Monoid.Foldl.get @[simps] def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β where toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl #align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid @[reducible] def Foldr (α : Type u) : Type u := End α #align monoid.foldr Monoid.Foldr def Foldr.mk (f : α → α) : Foldr α := f #align monoid.foldr.mk Monoid.Foldr.mk def Foldr.get (x : Foldr α) : α → α := x #align monoid.foldr.get Monoid.Foldr.get @[simps] def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β where toFun xs := flip (List.foldr f) (FreeMonoid.toList xs) map_one' := rfl map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _ #align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid @[reducible] def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := MulOpposite <| End <| KleisliCat.mk m α #align monoid.mfoldl Monoid.foldlM def foldlM.mk (f : α → m α) : foldlM m α := op f #align monoid.mfoldl.mk Monoid.foldlM.mk def foldlM.get (x : foldlM m α) : α → m α := unop x #align monoid.mfoldl.get Monoid.foldlM.get @[simps] def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β where toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append #align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid @[reducible] def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u := End <| KleisliCat.mk m α #align monoid.mfoldr Monoid.foldrM def foldrM.mk (f : α → m α) : foldrM m α := f #align monoid.mfoldr.mk Monoid.foldrM.mk def foldrM.get (x : foldrM m α) : α → m α := x #align monoid.mfoldr.get Monoid.foldrM.get @[simps] def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β where toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs) map_one' := rfl map_mul' := by intros; funext; apply List.foldrM_append #align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid end Monoid namespace Traversable open Monoid Functor section Defs variable {α β : Type u} {t : Type u → Type u} [Traversable t] def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := traverse (Const.mk' ∘ f) #align traversable.fold_map Traversable.foldMap def foldl (f : α → β → α) (x : α) (xs : t β) : α := (foldMap (Foldl.mk ∘ flip f) xs).get x #align traversable.foldl Traversable.foldl def foldr (f : α → β → β) (x : β) (xs : t α) : β := (foldMap (Foldr.mk ∘ f) xs).get x #align traversable.foldr Traversable.foldr /-- Conceptually, `toList` collects all the elements of a collection in a list. This idea is formalized by `lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`. The definition of `toList` is based on `foldl` and `List.cons` for speed. It is faster than using `foldMap FreeMonoid.mk` because, by using `foldl` and `List.cons`, each insertion is done in constant time. As a consequence, `toList` performs in linear. On the other hand, `foldMap FreeMonoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def toList : t α → List α := List.reverse ∘ foldl (flip List.cons) [] #align traversable.to_list Traversable.toList def length (xs : t α) : ℕ := down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs #align traversable.length Traversable.length variable {m : Type u → Type u} [Monad m] def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α := (foldMap (foldlM.mk ∘ flip f) xs).get x #align traversable.mfoldl Traversable.foldlm def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β := (foldMap (foldrM.mk ∘ f) xs).get x #align traversable.mfoldr Traversable.foldrm end Defs section ApplicativeTransformation variable {α β γ : Type u} open Function hiding const def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β) where app _ := f preserves_seq' := by intros; simp only [Seq.seq, map_mul] preserves_pure' := by intros; simp only [map_one, pure] #align traversable.map_fold Traversable.mapFold theorem Free.map_eq_map (f : α → β) (xs : List α) : f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) := rfl #align traversable.free.map_eq_map Traversable.Free.map_eq_map theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) : unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) := rfl #align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid variable (m : Type u → Type u) [Monad m] [LawfulMonad m] variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] open LawfulTraversable theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (foldMap g x) = foldMap (f ∘ g) x := calc f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl _ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl _ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _ _ = foldMap (f ∘ g) x := rfl #align traversable.fold_map_hom Traversable.foldMap_hom theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) : f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x := foldMap_hom f _ x #align traversable.fold_map_hom_free Traversable.foldMap_hom_free end ApplicativeTransformation section Equalities open LawfulTraversable open List (cons) variable {α β γ : Type u} variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t] @[simp] theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) : Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f := rfl #align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of @[simp] theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) : Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f := rfl #align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of @[simp] theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) : foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by ext1 x simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] rfl #align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of @[simp] theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) : foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by ext simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] #align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse := by simp only [List.reverse_reverse] _ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse := by simp only [List.foldr_eta] _ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse := by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] _ = toList xs := by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] #align traversable.to_list_spec Traversable.toList_spec theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp] #align traversable.fold_map_map Traversable.foldMap_map theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = List.foldl f x (toList xs) := by rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] #align traversable.foldl_to_list Traversable.foldl_toList theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = List.foldr f x (toList xs) := by change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] #align traversable.foldr_to_list Traversable.foldr_toList theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] #align traversable.to_list_map Traversable.toList_map @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by simp only [foldl, foldMap_map, (· ∘ ·), flip] #align traversable.foldl_map Traversable.foldl_map @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip] #align traversable.foldr_map Traversable.foldr_map @[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl case cons _ _ ih => conv_rhs =>
rw [← ih]; rfl
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs := by simp only [toList_spec, foldMap, traverse] induction xs case nil => rfl case cons _ _ ih => conv_rhs =>
Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB
@[simp] theorem toList_eq_self {xs : List α} : toList xs = xs
Mathlib_Control_Fold