state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: tail✝ | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => | rw [← ih]; rfl | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => | Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: tail✝ | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => | rw [← ih] | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => | Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; | rfl | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; | Mathlib.Control.Fold.382_0.ilkJEkQU7vZZ6HB | @[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ length xs = List.length (toList xs) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
| unfold length | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ (foldl (fun l x => { down := l.down + 1 }) { down := 0 } xs).down = List.length (toList xs) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
| rw [foldl_toList] | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } (toList xs)).down = List.length (toList xs) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
| generalize toList xs = ys | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
| rw [← Nat.add_zero ys.length] | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys + 0 | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
| generalize 0 = n | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } ys).down = List.length ys + n | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
| induction' ys with _ _ ih generalizing n | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
| Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
case nil
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } []).down = List.length [] + n | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· | simp | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· | Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
case cons
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
head✝ : α
tail✝ : List α
ih : ∀ (n : ℕ), (List.foldl (fun l x => { down := l.down + 1 }) { down := n } tail✝).down = List.length tail✝ + n
n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } (head✝ :: tail✝)).down =
List.length (head✝ :: tail✝) + n | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· | simp_arith [ih] | theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· | Mathlib.Control.Fold.390_0.ilkJEkQU7vZZ6HB | theorem length_toList {xs : t α} : length xs = List.length (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
x : α
xs : t β
⊢ foldlm f x xs = unop ((foldlM.ofFreeMonoid f) (FreeMonoid.ofList (toList xs))) x | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by | simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList] | theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by | Mathlib.Control.Fold.403_0.ilkJEkQU7vZZ6HB | theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
x : α
xs : t β
⊢ unop ((foldlM.ofFreeMonoid f) (FreeMonoid.ofList (toList xs))) x = List.foldlM f x (toList xs) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by | simp [foldlM.ofFreeMonoid, unop_op, flip] | theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by | Mathlib.Control.Fold.403_0.ilkJEkQU7vZZ6HB | theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m β
x : β
xs : t α
⊢ foldrm f x xs = List.foldrM f x (toList xs) | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by simp [foldlM.ofFreeMonoid, unop_op, flip]
#align traversable.mfoldl_to_list Traversable.foldlm_toList
theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
| change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x | theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
| Mathlib.Control.Fold.412_0.ilkJEkQU7vZZ6HB | theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m β
x : β
xs : t α
⊢ foldrm f x xs = (foldrM.ofFreeMonoid f) (FreeMonoid.ofList (toList xs)) x | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by simp [foldlM.ofFreeMonoid, unop_op, flip]
#align traversable.mfoldl_to_list Traversable.foldlm_toList
theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x
| simp only [foldrm, toList_spec, foldMap_hom_free (foldrM.ofFreeMonoid f),
foldrm.ofFreeMonoid_comp_of, foldrM.get, FreeMonoid.ofList_toList] | theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x
| Mathlib.Control.Fold.412_0.ilkJEkQU7vZZ6HB | theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
g : β → γ
f : α → γ → m α
a : α
l : t β
⊢ foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by simp [foldlM.ofFreeMonoid, unop_op, flip]
#align traversable.mfoldl_to_list Traversable.foldlm_toList
theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x
simp only [foldrm, toList_spec, foldMap_hom_free (foldrM.ofFreeMonoid f),
foldrm.ofFreeMonoid_comp_of, foldrM.get, FreeMonoid.ofList_toList]
#align traversable.mfoldr_to_list Traversable.foldrm_toList
@[simp]
theorem foldlm_map (g : β → γ) (f : α → γ → m α) (a : α) (l : t β) :
foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l := by
| simp only [foldlm, foldMap_map, (· ∘ ·), flip] | @[simp]
theorem foldlm_map (g : β → γ) (f : α → γ → m α) (a : α) (l : t β) :
foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l := by
| Mathlib.Control.Fold.419_0.ilkJEkQU7vZZ6HB | @[simp]
theorem foldlm_map (g : β → γ) (f : α → γ → m α) (a : α) (l : t β) :
foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l | Mathlib_Control_Fold |
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
g : β → γ
f : γ → α → m α
a : α
l : t β
⊢ foldrm f a (g <$> l) = foldrm (f ∘ g) a l | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Sean Leather
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.FreeMonoid.Basic
import Mathlib.Control.Traversable.Instances
import Mathlib.Control.Traversable.Lemmas
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.CategoryTheory.Types
import Mathlib.CategoryTheory.Category.KleisliCat
#align_import control.fold from "leanprover-community/mathlib"@"740acc0e6f9adf4423f92a485d0456fc271482da"
/-!
# List folds generalized to `Traversable`
Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the
reconstructed data structure and, in a state monad, we care about the final state.
The obvious way to define `foldl` would be to use the state monad but it
is nicer to reason about a more abstract interface with `foldMap` as a
primitive and `foldMap_hom` as a defining property.
```
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω := ...
lemma foldMap_hom (α β) [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
...
```
`foldMap` uses a monoid ω to accumulate a value for every element of
a data structure and `foldMap_hom` uses a monoid homomorphism to
substitute the monoid used by `foldMap`. The two are sufficient to
define `foldl`, `foldr` and `toList`. `toList` permits the
formulation of specifications in terms of operations on lists.
Each fold function can be defined using a specialized
monoid. `toList` uses a free monoid represented as a list with
concatenation while `foldl` uses endofunctions together with function
composition.
The definition through monoids uses `traverse` together with the
applicative functor `const m` (where `m` is the monoid). As an
implementation, `const` guarantees that no resource is spent on
reconstructing the structure during traversal.
A special class could be defined for `foldable`, similarly to Haskell,
but the author cannot think of instances of `foldable` that are not also
`Traversable`.
-/
universe u v
open ULift CategoryTheory MulOpposite
namespace Monoid
variable {m : Type u → Type u} [Monad m]
variable {α β : Type u}
/-- For a list, foldl f x [y₀,y₁] reduces as follows:
```
calc foldl f x [y₀,y₁]
= foldl f (f x y₀) [y₁] : rfl
... = foldl f (f (f x y₀) y₁) [] : rfl
... = f (f x y₀) y₁ : rfl
```
with
```
f : α → β → α
x : α
[y₀,y₁] : List β
```
We can view the above as a composition of functions:
```
... = f (f x y₀) y₁ : rfl
... = flip f y₁ (flip f y₀ x) : rfl
... = (flip f y₁ ∘ flip f y₀) x : rfl
```
We can use traverse and const to construct this composition:
```
calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x
= const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x
... = const.run ((::) <$> const.mk' (flip f y₀) <*>
( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x
... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘
((::) <$> const.mk' (flip f y₀)) ) x
... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x
... = const.run ( flip f y₁ ∘ flip f y₀ ) x
... = f (f x y₀) y₁
```
And this is how `const` turns a monoid into an applicative functor and
how the monoid of endofunctions define `Foldl`.
-/
@[reducible]
def Foldl (α : Type u) : Type u :=
(End α)ᵐᵒᵖ
#align monoid.foldl Monoid.Foldl
def Foldl.mk (f : α → α) : Foldl α :=
op f
#align monoid.foldl.mk Monoid.Foldl.mk
def Foldl.get (x : Foldl α) : α → α :=
unop x
#align monoid.foldl.get Monoid.Foldl.get
@[simps]
def Foldl.ofFreeMonoid (f : β → α → β) : FreeMonoid α →* Monoid.Foldl β
where
toFun xs := op <| flip (List.foldl f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by
intros; simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]; rfl
#align monoid.foldl.of_free_monoid Monoid.Foldl.ofFreeMonoid
@[reducible]
def Foldr (α : Type u) : Type u :=
End α
#align monoid.foldr Monoid.Foldr
def Foldr.mk (f : α → α) : Foldr α :=
f
#align monoid.foldr.mk Monoid.Foldr.mk
def Foldr.get (x : Foldr α) : α → α :=
x
#align monoid.foldr.get Monoid.Foldr.get
@[simps]
def Foldr.ofFreeMonoid (f : α → β → β) : FreeMonoid α →* Monoid.Foldr β
where
toFun xs := flip (List.foldr f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' _ _ := funext fun _ => List.foldr_append _ _ _ _
#align monoid.foldr.of_free_monoid Monoid.Foldr.ofFreeMonoid
@[reducible]
def foldlM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
MulOpposite <| End <| KleisliCat.mk m α
#align monoid.mfoldl Monoid.foldlM
def foldlM.mk (f : α → m α) : foldlM m α :=
op f
#align monoid.mfoldl.mk Monoid.foldlM.mk
def foldlM.get (x : foldlM m α) : α → m α :=
unop x
#align monoid.mfoldl.get Monoid.foldlM.get
@[simps]
def foldlM.ofFreeMonoid [LawfulMonad m] (f : β → α → m β) : FreeMonoid α →* Monoid.foldlM m β
where
toFun xs := op <| flip (List.foldlM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; apply unop_injective; funext; apply List.foldlM_append
#align monoid.mfoldl.of_free_monoid Monoid.foldlM.ofFreeMonoid
@[reducible]
def foldrM (m : Type u → Type u) [Monad m] (α : Type u) : Type u :=
End <| KleisliCat.mk m α
#align monoid.mfoldr Monoid.foldrM
def foldrM.mk (f : α → m α) : foldrM m α :=
f
#align monoid.mfoldr.mk Monoid.foldrM.mk
def foldrM.get (x : foldrM m α) : α → m α :=
x
#align monoid.mfoldr.get Monoid.foldrM.get
@[simps]
def foldrM.ofFreeMonoid [LawfulMonad m] (f : α → β → m β) : FreeMonoid α →* Monoid.foldrM m β
where
toFun xs := flip (List.foldrM f) (FreeMonoid.toList xs)
map_one' := rfl
map_mul' := by intros; funext; apply List.foldrM_append
#align monoid.mfoldr.of_free_monoid Monoid.foldrM.ofFreeMonoid
end Monoid
namespace Traversable
open Monoid Functor
section Defs
variable {α β : Type u} {t : Type u → Type u} [Traversable t]
def foldMap {α ω} [One ω] [Mul ω] (f : α → ω) : t α → ω :=
traverse (Const.mk' ∘ f)
#align traversable.fold_map Traversable.foldMap
def foldl (f : α → β → α) (x : α) (xs : t β) : α :=
(foldMap (Foldl.mk ∘ flip f) xs).get x
#align traversable.foldl Traversable.foldl
def foldr (f : α → β → β) (x : β) (xs : t α) : β :=
(foldMap (Foldr.mk ∘ f) xs).get x
#align traversable.foldr Traversable.foldr
/-- Conceptually, `toList` collects all the elements of a collection
in a list. This idea is formalized by
`lemma toList_spec (x : t α) : toList x = foldMap FreeMonoid.mk x`.
The definition of `toList` is based on `foldl` and `List.cons` for
speed. It is faster than using `foldMap FreeMonoid.mk` because, by
using `foldl` and `List.cons`, each insertion is done in constant
time. As a consequence, `toList` performs in linear.
On the other hand, `foldMap FreeMonoid.mk` creates a singleton list
around each element and concatenates all the resulting lists. In
`xs ++ ys`, concatenation takes a time proportional to `length xs`. Since
the order in which concatenation is evaluated is unspecified, nothing
prevents each element of the traversable to be appended at the end
`xs ++ [x]` which would yield a `O(n²)` run time. -/
def toList : t α → List α :=
List.reverse ∘ foldl (flip List.cons) []
#align traversable.to_list Traversable.toList
def length (xs : t α) : ℕ :=
down <| foldl (fun l _ => up <| l.down + 1) (up 0) xs
#align traversable.length Traversable.length
variable {m : Type u → Type u} [Monad m]
def foldlm (f : α → β → m α) (x : α) (xs : t β) : m α :=
(foldMap (foldlM.mk ∘ flip f) xs).get x
#align traversable.mfoldl Traversable.foldlm
def foldrm (f : α → β → m β) (x : β) (xs : t α) : m β :=
(foldMap (foldrM.mk ∘ f) xs).get x
#align traversable.mfoldr Traversable.foldrm
end Defs
section ApplicativeTransformation
variable {α β γ : Type u}
open Function hiding const
def mapFold [Monoid α] [Monoid β] (f : α →* β) : ApplicativeTransformation (Const α) (Const β)
where
app _ := f
preserves_seq' := by intros; simp only [Seq.seq, map_mul]
preserves_pure' := by intros; simp only [map_one, pure]
#align traversable.map_fold Traversable.mapFold
theorem Free.map_eq_map (f : α → β) (xs : List α) :
f <$> xs = (FreeMonoid.toList (FreeMonoid.map f (FreeMonoid.ofList xs))) :=
rfl
#align traversable.free.map_eq_map Traversable.Free.map_eq_map
theorem foldl.unop_ofFreeMonoid (f : β → α → β) (xs : FreeMonoid α) (a : β) :
unop (Foldl.ofFreeMonoid f xs) a = List.foldl f a (FreeMonoid.toList xs) :=
rfl
#align traversable.foldl.unop_of_free_monoid Traversable.foldl.unop_ofFreeMonoid
variable (m : Type u → Type u) [Monad m] [LawfulMonad m]
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
open LawfulTraversable
theorem foldMap_hom [Monoid α] [Monoid β] (f : α →* β) (g : γ → α) (x : t γ) :
f (foldMap g x) = foldMap (f ∘ g) x :=
calc
f (foldMap g x) = f (traverse (Const.mk' ∘ g) x) := rfl
_ = (mapFold f).app _ (traverse (Const.mk' ∘ g) x) := rfl
_ = traverse ((mapFold f).app _ ∘ Const.mk' ∘ g) x := naturality (mapFold f) _ _
_ = foldMap (f ∘ g) x := rfl
#align traversable.fold_map_hom Traversable.foldMap_hom
theorem foldMap_hom_free [Monoid β] (f : FreeMonoid α →* β) (x : t α) :
f (foldMap FreeMonoid.of x) = foldMap (f ∘ FreeMonoid.of) x :=
foldMap_hom f _ x
#align traversable.fold_map_hom_free Traversable.foldMap_hom_free
end ApplicativeTransformation
section Equalities
open LawfulTraversable
open List (cons)
variable {α β γ : Type u}
variable {t : Type u → Type u} [Traversable t] [LawfulTraversable t]
@[simp]
theorem foldl.ofFreeMonoid_comp_of (f : α → β → α) :
Foldl.ofFreeMonoid f ∘ FreeMonoid.of = Foldl.mk ∘ flip f :=
rfl
#align traversable.foldl.of_free_monoid_comp_of Traversable.foldl.ofFreeMonoid_comp_of
@[simp]
theorem foldr.ofFreeMonoid_comp_of (f : β → α → α) :
Foldr.ofFreeMonoid f ∘ FreeMonoid.of = Foldr.mk ∘ f :=
rfl
#align traversable.foldr.of_free_monoid_comp_of Traversable.foldr.ofFreeMonoid_comp_of
@[simp]
theorem foldlm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : α → β → m α) :
foldlM.ofFreeMonoid f ∘ FreeMonoid.of = foldlM.mk ∘ flip f := by
ext1 x
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
rfl
#align traversable.mfoldl.of_free_monoid_comp_of Traversable.foldlm.ofFreeMonoid_comp_of
@[simp]
theorem foldrm.ofFreeMonoid_comp_of {m} [Monad m] [LawfulMonad m] (f : β → α → m α) :
foldrM.ofFreeMonoid f ∘ FreeMonoid.of = foldrM.mk ∘ f := by
ext
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
#align traversable.mfoldr.of_free_monoid_comp_of Traversable.foldrm.ofFreeMonoid_comp_of
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) :=
Eq.symm <|
calc
FreeMonoid.toList (foldMap FreeMonoid.of xs) =
FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse :=
by simp only [List.reverse_reverse]
_ = FreeMonoid.toList (List.foldr cons [] (foldMap FreeMonoid.of xs).reverse).reverse :=
by simp only [List.foldr_eta]
_ = (unop (Foldl.ofFreeMonoid (flip cons) (foldMap FreeMonoid.of xs)) []).reverse :=
by simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
_ = toList xs :=
by rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of,
Function.comp_apply]
#align traversable.to_list_spec Traversable.toList_spec
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) :
foldMap g (f <$> xs) = foldMap (g ∘ f) xs := by simp only [foldMap, traverse_map, Function.comp]
#align traversable.fold_map_map Traversable.foldMap_map
theorem foldl_toList (f : α → β → α) (xs : t β) (x : α) :
foldl f x xs = List.foldl f x (toList xs) := by
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get,
FreeMonoid.ofList_toList]
#align traversable.foldl_to_list Traversable.foldl_toList
theorem foldr_toList (f : α → β → β) (xs : t α) (x : β) :
foldr f x xs = List.foldr f x (toList xs) := by
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free,
foldr.ofFreeMonoid_comp_of]
#align traversable.foldr_to_list Traversable.foldr_toList
theorem toList_map (f : α → β) (xs : t α) : toList (f <$> xs) = f <$> toList xs := by
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList,
FreeMonoid.map_of, (· ∘ ·)]
#align traversable.to_list_map Traversable.toList_map
@[simp]
theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) :
foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l := by
simp only [foldl, foldMap_map, (· ∘ ·), flip]
#align traversable.foldl_map Traversable.foldl_map
@[simp]
theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) :
foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, foldMap_map, (· ∘ ·), flip]
#align traversable.foldr_map Traversable.foldr_map
@[simp]
theorem toList_eq_self {xs : List α} : toList xs = xs := by
simp only [toList_spec, foldMap, traverse]
induction xs
case nil => rfl
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
#align traversable.to_list_eq_self Traversable.toList_eq_self
theorem length_toList {xs : t α} : length xs = List.length (toList xs) := by
unfold length
rw [foldl_toList]
generalize toList xs = ys
rw [← Nat.add_zero ys.length]
generalize 0 = n
induction' ys with _ _ ih generalizing n
· simp
· simp_arith [ih]
#align traversable.length_to_list Traversable.length_toList
variable {m : Type u → Type u} [Monad m] [LawfulMonad m]
theorem foldlm_toList {f : α → β → m α} {x : α} {xs : t β} :
foldlm f x xs = List.foldlM f x (toList xs) :=
calc
foldlm f x xs = unop (foldlM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs)) x :=
by simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f),
foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList]
_ = List.foldlM f x (toList xs) := by simp [foldlM.ofFreeMonoid, unop_op, flip]
#align traversable.mfoldl_to_list Traversable.foldlm_toList
theorem foldrm_toList (f : α → β → m β) (x : β) (xs : t α) :
foldrm f x xs = List.foldrM f x (toList xs) := by
change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x
simp only [foldrm, toList_spec, foldMap_hom_free (foldrM.ofFreeMonoid f),
foldrm.ofFreeMonoid_comp_of, foldrM.get, FreeMonoid.ofList_toList]
#align traversable.mfoldr_to_list Traversable.foldrm_toList
@[simp]
theorem foldlm_map (g : β → γ) (f : α → γ → m α) (a : α) (l : t β) :
foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l := by
simp only [foldlm, foldMap_map, (· ∘ ·), flip]
#align traversable.mfoldl_map Traversable.foldlm_map
@[simp]
theorem foldrm_map (g : β → γ) (f : γ → α → m α) (a : α) (l : t β) :
foldrm f a (g <$> l) = foldrm (f ∘ g) a l := by | simp only [foldrm, foldMap_map, (· ∘ ·), flip] | @[simp]
theorem foldrm_map (g : β → γ) (f : γ → α → m α) (a : α) (l : t β) :
foldrm f a (g <$> l) = foldrm (f ∘ g) a l := by | Mathlib.Control.Fold.425_0.ilkJEkQU7vZZ6HB | @[simp]
theorem foldrm_map (g : β → γ) (f : γ → α → m α) (a : α) (l : t β) :
foldrm f a (g <$> l) = foldrm (f ∘ g) a l | Mathlib_Control_Fold |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ LeftInverse (Polynomial.eval₂ C (X PUnit.unit)) (eval₂ Polynomial.C fun x => Polynomial.X) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
| let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit) | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.1943 + 1} R := eval₂RingHom C (X PUnit.unit)
⊢ LeftInverse (Polynomial.eval₂ C (X PUnit.unit)) (eval₂ Polynomial.C fun x => Polynomial.X) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
| let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.1943 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ LeftInverse (Polynomial.eval₂ C (X PUnit.unit)) (eval₂ Polynomial.C fun x => Polynomial.X) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
| show ∀ p, f.comp g p = p | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ ∀ (p : MvPolynomial PUnit.{?u.2335 + 1} R), (RingHom.comp f g) p = p | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
| apply is_id | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hC
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ RingHom.comp (RingHom.comp f g) C = C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· | ext a | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· | Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hC.a.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a✝ a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
a : R
m✝ : PUnit.{?u.2335 + 1} →₀ ℕ
⊢ coeff m✝ ((RingHom.comp (RingHom.comp f g) C) a) = coeff m✝ (C a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
| dsimp | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hC.a.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a✝ a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
a : R
m✝ : PUnit.{?u.2335 + 1} →₀ ℕ
⊢ coeff m✝ (Polynomial.eval₂ C (X PUnit.unit) (eval₂ Polynomial.C (fun x => Polynomial.X) (C a))) = coeff m✝ (C a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
| rw [eval₂_C, Polynomial.eval₂_C] | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ ∀ (n : PUnit.{?u.2335 + 1}), (RingHom.comp f g) (X n) = X n | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· | rintro ⟨⟩ | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· | Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hX.unit
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ (RingHom.comp f g) (X PUnit.unit) = X PUnit.unit | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
| dsimp | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
case hX.unit
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
f : R[X] →+* MvPolynomial PUnit.{?u.2335 + 1} R := eval₂RingHom C (X PUnit.unit)
g : MvPolynomial PUnit.{?u.2335 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X
⊢ Polynomial.eval₂ C (X PUnit.unit) (eval₂ Polynomial.C (fun x => Polynomial.X) (X PUnit.unit)) = X PUnit.unit | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
| rw [eval₂_X, Polynomial.eval₂_X] | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a✝ a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
p : R[X]
a : R
⊢ eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C a)) = Polynomial.C a | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by | rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C] | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by | Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
p✝ p q : R[X]
hp : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) p) = p
hq : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) q) = q
⊢ eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (p + q)) = p + q | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by | rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq] | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by | Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
p✝ : R[X]
p : ℕ
n : R
x✝ :
eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ p)) =
Polynomial.C n * Polynomial.X ^ p
⊢ eval₂ Polynomial.C (fun x => Polynomial.X)
(Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ (p + 1))) =
Polynomial.C n * Polynomial.X ^ (p + 1) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
| rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X] | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
| Mathlib.Data.MvPolynomial.Equiv.61_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e✝ : ℕ
s : σ →₀ ℕ
inst✝³ : CommSemiring R
inst✝² : CommSemiring S₁
inst✝¹ : CommSemiring S₂
inst✝ : CommSemiring S₃
e : S₁ ≃+* S₂
f : S₂ ≃+* S₃
p : MvPolynomial σ S₁
⊢ (RingEquiv.trans (mapEquiv σ e) (mapEquiv σ f)) p = (mapEquiv σ (RingEquiv.trans e f)) p | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
| simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map] | @[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
| Mathlib.Data.MvPolynomial.Equiv.115_0.88gPfxLltQQTcHM | @[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e✝ : ℕ
s : σ →₀ ℕ
inst✝⁶ : CommSemiring R
A₁ : Type u_2
A₂ : Type u_3
A₃ : Type u_4
inst✝⁵ : CommSemiring A₁
inst✝⁴ : CommSemiring A₂
inst✝³ : CommSemiring A₃
inst✝² : Algebra R A₁
inst✝¹ : Algebra R A₂
inst✝ : Algebra R A₃
e : A₁ ≃ₐ[R] A₂
f : A₂ ≃ₐ[R] A₃
⊢ AlgEquiv.trans (mapAlgEquiv σ e) (mapAlgEquiv σ f) = mapAlgEquiv σ (AlgEquiv.trans e f) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
| ext | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
| Mathlib.Data.MvPolynomial.Equiv.143_0.88gPfxLltQQTcHM | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) | Mathlib_Data_MvPolynomial_Equiv |
case h.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e✝ : ℕ
s : σ →₀ ℕ
inst✝⁶ : CommSemiring R
A₁ : Type u_2
A₂ : Type u_3
A₃ : Type u_4
inst✝⁵ : CommSemiring A₁
inst✝⁴ : CommSemiring A₂
inst✝³ : CommSemiring A₃
inst✝² : Algebra R A₁
inst✝¹ : Algebra R A₂
inst✝ : Algebra R A₃
e : A₁ ≃ₐ[R] A₂
f : A₂ ≃ₐ[R] A₃
a✝ : MvPolynomial σ A₁
m✝ : σ →₀ ℕ
⊢ coeff m✝ ((AlgEquiv.trans (mapAlgEquiv σ e) (mapAlgEquiv σ f)) a✝) =
coeff m✝ ((mapAlgEquiv σ (AlgEquiv.trans e f)) a✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
| simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map] | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
| Mathlib.Data.MvPolynomial.Equiv.143_0.88gPfxLltQQTcHM | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) | Mathlib_Data_MvPolynomial_Equiv |
case h.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e✝ : ℕ
s : σ →₀ ℕ
inst✝⁶ : CommSemiring R
A₁ : Type u_2
A₂ : Type u_3
A₃ : Type u_4
inst✝⁵ : CommSemiring A₁
inst✝⁴ : CommSemiring A₂
inst✝³ : CommSemiring A₃
inst✝² : Algebra R A₁
inst✝¹ : Algebra R A₂
inst✝ : Algebra R A₃
e : A₁ ≃ₐ[R] A₂
f : A₂ ≃ₐ[R] A₃
a✝ : MvPolynomial σ A₁
m✝ : σ →₀ ℕ
⊢ coeff m✝ ((map (RingHom.comp ↑f ↑e)) a✝) = coeff m✝ ((map ↑(AlgEquiv.trans e f)) a✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
| rfl | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
| Mathlib.Data.MvPolynomial.Equiv.143_0.88gPfxLltQQTcHM | @[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
he : IsEmpty σ
⊢ AlgHom.comp (aeval fun a => IsEmpty.elim he a) (Algebra.ofId R (MvPolynomial σ R)) = AlgHom.id R R | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by | ext | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by | Mathlib.Data.MvPolynomial.Equiv.212_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
he : IsEmpty σ
⊢ AlgHom.comp (Algebra.ofId R (MvPolynomial σ R)) (aeval fun a => IsEmpty.elim he a) = AlgHom.id R (MvPolynomial σ R) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
| ext i m | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
| Mathlib.Data.MvPolynomial.Equiv.212_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R | Mathlib_Data_MvPolynomial_Equiv |
case hf.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
he : IsEmpty σ
i : σ
m : σ →₀ ℕ
⊢ coeff m ((AlgHom.comp (Algebra.ofId R (MvPolynomial σ R)) (aeval fun a => IsEmpty.elim he a)) (X i)) =
coeff m ((AlgHom.id R (MvPolynomial σ R)) (X i)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
| exact IsEmpty.elim' he i | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
| Mathlib.Data.MvPolynomial.Equiv.212_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ MvPolynomial (S₁ ⊕ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
| apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂) | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
| Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hfgC
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C = C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· | refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX) | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hC
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ RingHom.comp (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) C = RingHom.comp C C
case hX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₂), (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) (X n) = C (X n) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
| case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
| Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ RingHom.comp (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) C = RingHom.comp C C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
| case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
| Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ RingHom.comp (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) C = RingHom.comp C C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => | ext1 | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
x✝ : R
⊢ (RingHom.comp (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) C) x✝ = (RingHom.comp C C) x✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; | simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₂), (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) (X n) = C (X n) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
| case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
| Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₂), (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) (X n) = C (X n) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
| case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
| Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₂), (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) (X n) = C (X n) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => | intro | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n✝ : S₂
⊢ (RingHom.comp (RingHom.comp (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)) C) (X n✝) = C (X n✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; | simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hfgX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₁), (sumToIter R S₁ S₂) ((iterToSum R S₁ S₂) (X n)) = X n | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· | simp [iterToSum_X, sumToIter_Xl] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hgfC
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ RingHom.comp (RingHom.comp (iterToSum R S₁ S₂) (sumToIter R S₁ S₂)) C = C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· | ext1 | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hgfC.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
x✝ : R
⊢ (RingHom.comp (RingHom.comp (iterToSum R S₁ S₂) (sumToIter R S₁ S₂)) C) x✝ = C x✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; | simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hgfX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ ∀ (n : S₁ ⊕ S₂), (iterToSum R S₁ S₂) ((sumToIter R S₁ S₂) (X n)) = X n | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· | rintro ⟨⟩ | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hgfX.inl
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
val✝ : S₁
⊢ (iterToSum R S₁ S₂) ((sumToIter R S₁ S₂) (X (Sum.inl val✝))) = X (Sum.inl val✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> | simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
case hgfX.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
val✝ : S₂
⊢ (iterToSum R S₁ S₂) ((sumToIter R S₁ S₂) (X (Sum.inr val✝))) = X (Sum.inr val✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> | simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X] | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> | Mathlib.Data.MvPolynomial.Equiv.247_0.88gPfxLltQQTcHM | /-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
src✝ : MvPolynomial (S₁ ⊕ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := sumRingEquiv R S₁ S₂
⊢ ∀ (r : R),
Equiv.toFun src✝.toEquiv ((algebraMap R (MvPolynomial (S₁ ⊕ S₂) R)) r) =
(algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
| intro r | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
| Mathlib.Data.MvPolynomial.Equiv.261_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
src✝ : MvPolynomial (S₁ ⊕ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := sumRingEquiv R S₁ S₂
r : R
⊢ Equiv.toFun src✝.toEquiv ((algebraMap R (MvPolynomial (S₁ ⊕ S₂) R)) r) =
(algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
| have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
| Mathlib.Data.MvPolynomial.Equiv.261_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
src✝ : MvPolynomial (S₁ ⊕ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := sumRingEquiv R S₁ S₂
r : R
A : (algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r = C (C r)
⊢ Equiv.toFun src✝.toEquiv ((algebraMap R (MvPolynomial (S₁ ⊕ S₂) R)) r) =
(algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
| have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
| Mathlib.Data.MvPolynomial.Equiv.261_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
src✝ : MvPolynomial (S₁ ⊕ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := sumRingEquiv R S₁ S₂
r : R
A : (algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r = C (C r)
B : (algebraMap R (MvPolynomial (S₁ ⊕ S₂) R)) r = C r
⊢ Equiv.toFun src✝.toEquiv ((algebraMap R (MvPolynomial (S₁ ⊕ S₂) R)) r) =
(algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R))) r | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
| simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
| Mathlib.Data.MvPolynomial.Equiv.261_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ AlgHom.comp (aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (rename Option.some) (X none)) =
AlgHom.id R (MvPolynomial S₁ R)[X] | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by | ext : 2 | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
case hC.hf
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
i✝ : S₁
⊢ (AlgHom.comp
(AlgHom.comp (aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (rename Option.some) (X none)))
CAlgHom)
(X i✝) =
(AlgHom.comp (AlgHom.id R (MvPolynomial S₁ R)[X]) CAlgHom) (X i✝) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> | simp [← Polynomial.C_eq_algebraMap] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
case hX.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n✝ : ℕ
⊢ Polynomial.coeff
((AlgHom.comp (aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (rename Option.some) (X none)))
Polynomial.X)
n✝ =
Polynomial.coeff ((AlgHom.id R (MvPolynomial S₁ R)[X]) Polynomial.X) n✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> | simp [← Polynomial.C_eq_algebraMap] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ AlgHom.comp (Polynomial.aevalTower (rename Option.some) (X none))
(aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s)) =
AlgHom.id R (MvPolynomial (Option S₁) R) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by | ext i : 2 | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
case hf.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
i : Option S₁
m✝ : Option S₁ →₀ ℕ
⊢ coeff m✝
((AlgHom.comp (Polynomial.aevalTower (rename Option.some) (X none))
(aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s)))
(X i)) =
coeff m✝ ((AlgHom.id R (MvPolynomial (Option S₁) R)) (X i)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; | cases i | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
case hf.a.none
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
m✝ : Option S₁ →₀ ℕ
⊢ coeff m✝
((AlgHom.comp (Polynomial.aevalTower (rename Option.some) (X none))
(aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s)))
(X none)) =
coeff m✝ ((AlgHom.id R (MvPolynomial (Option S₁) R)) (X none)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> | simp | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
case hf.a.some
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
m✝ : Option S₁ →₀ ℕ
val✝ : S₁
⊢ coeff m✝
((AlgHom.comp (Polynomial.aevalTower (rename Option.some) (X none))
(aeval fun o => Option.elim o Polynomial.X fun s => Polynomial.C (X s)))
(X (Option.some val✝))) =
coeff m✝ ((AlgHom.id R (MvPolynomial (Option S₁) R)) (X (Option.some val✝))) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> | simp | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> | Mathlib.Data.MvPolynomial.Equiv.280_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ AlgHom.comp (aeval fun o => Option.elim o (C Polynomial.X) X)
(aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i)) =
AlgHom.id R (MvPolynomial S₁ R[X]) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
| ext : 2 | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
case h₁.hX
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ (AlgHom.comp
(AlgHom.comp (aeval fun o => Option.elim o (C Polynomial.X) X)
(aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i)))
(IsScalarTower.toAlgHom R R[X] (MvPolynomial S₁ R[X])))
Polynomial.X =
(AlgHom.comp (AlgHom.id R (MvPolynomial S₁ R[X])) (IsScalarTower.toAlgHom R R[X] (MvPolynomial S₁ R[X])))
Polynomial.X | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
| simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
case h₂.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
i✝ : S₁
m✝ : S₁ →₀ ℕ
⊢ coeff m✝
((AlgHom.comp (aeval fun o => Option.elim o (C Polynomial.X) X)
(aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i)))
(X i✝)) =
coeff m✝ ((AlgHom.id R (MvPolynomial S₁ R[X])) (X i✝)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
| simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
⊢ AlgHom.comp (aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(aeval fun o => Option.elim o (C Polynomial.X) X) =
AlgHom.id R (MvPolynomial (Option S₁) R) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
| ext ⟨i⟩ : 2 | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
case hf.none.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
m✝ : Option S₁ →₀ ℕ
⊢ coeff m✝
((AlgHom.comp (aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(aeval fun o => Option.elim o (C Polynomial.X) X))
(X none)) =
coeff m✝ ((AlgHom.id R (MvPolynomial (Option S₁) R)) (X none)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
| simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
case hf.some.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
val✝ : S₁
m✝ : Option S₁ →₀ ℕ
⊢ coeff m✝
((AlgHom.comp (aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(aeval fun o => Option.elim o (C Polynomial.X) X))
(X (Option.some val✝))) =
coeff m✝ ((AlgHom.id R (MvPolynomial (Option S₁) R)) (X (Option.some val✝))) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
| simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X] | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
| Mathlib.Data.MvPolynomial.Equiv.292_0.88gPfxLltQQTcHM | /-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
⊢ ↑(finSuccEquiv R n) =
eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
| ext i : 2 | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
| Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
case hC.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
i : R
⊢ (RingHom.comp (↑(finSuccEquiv R n)) C) i =
(RingHom.comp
(eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) C)
i | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· | simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C] | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· | Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
case hC.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
i : R
⊢ (algebraMap R (MvPolynomial (Fin n) R)[X]) i = Polynomial.C (C i) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
| rfl | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
| Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
case hX.a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
i : Fin (n + 1)
n✝ : ℕ
⊢ Polynomial.coeff (↑(finSuccEquiv R n) (X i)) n✝ =
Polynomial.coeff
((eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) (X i))
n✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· | refine' Fin.cases _ _ i | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· | Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
case hX.a.refine'_1
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
i : Fin (n + 1)
n✝ : ℕ
⊢ Polynomial.coeff (↑(finSuccEquiv R n) (X 0)) n✝ =
Polynomial.coeff
((eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) (X 0))
n✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> | simp [finSuccEquiv] | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> | Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
case hX.a.refine'_2
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
i : Fin (n + 1)
n✝ : ℕ
⊢ ∀ (i : Fin n),
Polynomial.coeff (↑(finSuccEquiv R n) (X (Fin.succ i))) n✝ =
Polynomial.coeff
((eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i)
(X (Fin.succ i)))
n✝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> | simp [finSuccEquiv] | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> | Mathlib.Data.MvPolynomial.Equiv.318_0.88gPfxLltQQTcHM | theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
p : MvPolynomial (Fin (n + 1)) R
⊢ (finSuccEquiv R n) p =
(eval₂Hom (RingHom.comp Polynomial.C C) fun i => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
| rw [← finSuccEquiv_eq, RingHom.coe_coe] | @[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
| Mathlib.Data.MvPolynomial.Equiv.329_0.88gPfxLltQQTcHM | @[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p | Mathlib_Data_MvPolynomial_Equiv |
R✝ : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R✝
e : ℕ
s : σ →₀ ℕ
inst✝¹ : CommSemiring R✝
n✝ : ℕ
R : Type u
inst✝ : CommSemiring R
n : ℕ
⊢ RingHom.comp (↑(AlgEquiv.symm (finSuccEquiv R n))) (RingHom.comp Polynomial.C C) = C | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
| refine' RingHom.ext fun x => _ | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
| Mathlib.Data.MvPolynomial.Equiv.337_0.88gPfxLltQQTcHM | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) | Mathlib_Data_MvPolynomial_Equiv |
R✝ : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R✝
e : ℕ
s : σ →₀ ℕ
inst✝¹ : CommSemiring R✝
n✝ : ℕ
R : Type u
inst✝ : CommSemiring R
n : ℕ
x : R
⊢ (RingHom.comp (↑(AlgEquiv.symm (finSuccEquiv R n))) (RingHom.comp Polynomial.C C)) x = C x | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
| rw [RingHom.comp_apply] | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
| Mathlib.Data.MvPolynomial.Equiv.337_0.88gPfxLltQQTcHM | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) | Mathlib_Data_MvPolynomial_Equiv |
R✝ : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R✝
e : ℕ
s : σ →₀ ℕ
inst✝¹ : CommSemiring R✝
n✝ : ℕ
R : Type u
inst✝ : CommSemiring R
n : ℕ
x : R
⊢ ↑(AlgEquiv.symm (finSuccEquiv R n)) ((RingHom.comp Polynomial.C C) x) = C x | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
| refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _) | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
| Mathlib.Data.MvPolynomial.Equiv.337_0.88gPfxLltQQTcHM | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) | Mathlib_Data_MvPolynomial_Equiv |
R✝ : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R✝
e : ℕ
s : σ →₀ ℕ
inst✝¹ : CommSemiring R✝
n✝ : ℕ
R : Type u
inst✝ : CommSemiring R
n : ℕ
x : R
⊢ (RingHom.comp Polynomial.C C) x = (finSuccEquiv R n) (C x) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
| simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C] | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
| Mathlib.Data.MvPolynomial.Equiv.337_0.88gPfxLltQQTcHM | theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
⊢ (finSuccEquiv R n) (X 0) = Polynomial.X | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by | simp | theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by | Mathlib.Data.MvPolynomial.Equiv.352_0.88gPfxLltQQTcHM | theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin n
⊢ (finSuccEquiv R n) (X (Fin.succ j)) = Polynomial.C (X j) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
| simp | theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
| Mathlib.Data.MvPolynomial.Equiv.356_0.88gPfxLltQQTcHM | theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
m : Fin n →₀ ℕ
f : MvPolynomial (Fin (n + 1)) R
i : ℕ
⊢ coeff m (Polynomial.coeff ((finSuccEquiv R n) f) i) = coeff (cons i m) f | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
| induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (Polynomial.coeff ((finSuccEquiv R n) ((monomial j) r)) i) = coeff (cons i m) ((monomial j) r)
case h2
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
p q : MvPolynomial (Fin (n + 1)) R
hp : ∀ (m : Fin n →₀ ℕ) (i : ℕ), coeff m (Polynomial.coeff ((finSuccEquiv R n) p) i) = coeff (cons i m) p
hq : ∀ (m : Fin n →₀ ℕ) (i : ℕ), coeff m (Polynomial.coeff ((finSuccEquiv R n) q) i) = coeff (cons i m) q
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (Polynomial.coeff ((finSuccEquiv R n) (p + q)) i) = coeff (cons i m) (p + q) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
| swap | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h2
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
p q : MvPolynomial (Fin (n + 1)) R
hp : ∀ (m : Fin n →₀ ℕ) (i : ℕ), coeff m (Polynomial.coeff ((finSuccEquiv R n) p) i) = coeff (cons i m) p
hq : ∀ (m : Fin n →₀ ℕ) (i : ℕ), coeff m (Polynomial.coeff ((finSuccEquiv R n) q) i) = coeff (cons i m) q
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (Polynomial.coeff ((finSuccEquiv R n) (p + q)) i) = coeff (cons i m) (p + q) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· | simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· | Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (Polynomial.coeff ((finSuccEquiv R n) ((monomial j) r)) i) = coeff (cons i m) ((monomial j) r) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
| simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ r * coeff m (Polynomial.coeff (Polynomial.X ^ j 0 * Polynomial.C (∏ x : Fin n, X x ^ j (Fin.succ x))) i) =
if j = cons i m then r else 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
| rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ r * coeff m (if i = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = r * if j = cons i m then 1 else 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; | congr 1 | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; | Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (if i = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = if j = cons i m then 1 else 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
| obtain rfl | hjmi := eq_or_ne j (m.cons i) | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inl
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
⊢ coeff m (if i = (cons i m) 0 then ∏ x : Fin n, X x ^ (cons i m) (Fin.succ x) else 0) =
if cons i m = cons i m then 1 else 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· | simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R) | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· | Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
hjmi : j ≠ cons i m
⊢ coeff m (if i = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = if j = cons i m then 1 else 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· | simp only [hjmi, if_false] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· | Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
hjmi : j ≠ cons i m
⊢ coeff m (if i = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
| obtain hij | rfl := ne_or_eq i (j 0) | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr.inl
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
i : ℕ
hjmi : j ≠ cons i m
hij : i ≠ j 0
⊢ coeff m (if i = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· | simp only [hij, if_false, coeff_zero] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· | Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
hjmi : j ≠ cons (j 0) m
⊢ coeff m (if j 0 = j 0 then ∏ x : Fin n, X x ^ j (Fin.succ x) else 0) = 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
| simp only [eq_self_iff_true, if_true] | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
hjmi : j ≠ cons (j 0) m
⊢ coeff m (∏ x : Fin n, X x ^ j (Fin.succ x)) = 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
| have hmj : m ≠ j.tail := by
rintro rfl
rw [cons_tail] at hjmi
contradiction | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
hjmi : j ≠ cons (j 0) m
⊢ m ≠ tail j | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
| rintro rfl | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
hjmi : j ≠ cons (j 0) (tail j)
⊢ False | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
| rw [cons_tail] at hjmi | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
hjmi : j ≠ j
⊢ False | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
rw [cons_tail] at hjmi
| contradiction | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
rw [cons_tail] at hjmi
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
case h1.e_a.inr.inr
R : Type u
S₁ : Type v
S₂ : Type w
S₃ : Type x
σ : Type u_1
a a' a₁ a₂ : R
e : ℕ
s : σ →₀ ℕ
inst✝ : CommSemiring R
n : ℕ
j : Fin (n + 1) →₀ ℕ
r : R
m : Fin n →₀ ℕ
hjmi : j ≠ cons (j 0) m
hmj : m ≠ tail j
⊢ coeff m (∏ x : Fin n, X x ^ j (Fin.succ x)) = 0 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.Data.MvPolynomial.Variables
import Mathlib.Data.Finsupp.Fin
import Mathlib.Logic.Equiv.Fin
import Mathlib.Algebra.BigOperators.Fin
#align_import data.mv_polynomial.equiv from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
/-!
# Equivalences between polynomial rings
This file establishes a number of equivalences between polynomial rings,
based on equivalences between the underlying types.
## Notation
As in other polynomial files, we typically use the notation:
+ `σ : Type*` (indexing the variables)
+ `R : Type*` `[CommSemiring R]` (the coefficients)
+ `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set.
This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s`
+ `a : R`
+ `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians
+ `p : MvPolynomial σ R`
## Tags
equivalence, isomorphism, morphism, ring hom, hom
-/
noncomputable section
open BigOperators Polynomial Set Function Finsupp AddMonoidAlgebra
universe u v w x
variable {R : Type u} {S₁ : Type v} {S₂ : Type w} {S₃ : Type x}
namespace MvPolynomial
variable {σ : Type*} {a a' a₁ a₂ : R} {e : ℕ} {s : σ →₀ ℕ}
section Equiv
variable (R) [CommSemiring R]
/-- The ring isomorphism between multivariable polynomials in a single variable and
polynomials over the ground ring.
-/
@[simps]
def pUnitAlgEquiv : MvPolynomial PUnit R ≃ₐ[R] R[X] where
toFun := eval₂ Polynomial.C fun _ => Polynomial.X
invFun := Polynomial.eval₂ MvPolynomial.C (X PUnit.unit)
left_inv := by
let f : R[X] →+* MvPolynomial PUnit R := Polynomial.eval₂RingHom MvPolynomial.C (X PUnit.unit)
let g : MvPolynomial PUnit R →+* R[X] := eval₂Hom Polynomial.C fun _ => Polynomial.X
show ∀ p, f.comp g p = p
apply is_id
· ext a
dsimp
rw [eval₂_C, Polynomial.eval₂_C]
· rintro ⟨⟩
dsimp
rw [eval₂_X, Polynomial.eval₂_X]
right_inv p :=
Polynomial.induction_on p (fun a => by rw [Polynomial.eval₂_C, MvPolynomial.eval₂_C])
(fun p q hp hq => by rw [Polynomial.eval₂_add, MvPolynomial.eval₂_add, hp, hq]) fun p n _ => by
rw [Polynomial.eval₂_mul, Polynomial.eval₂_pow, Polynomial.eval₂_X, Polynomial.eval₂_C,
eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]
map_mul' _ _ := eval₂_mul _ _
map_add' _ _ := eval₂_add _ _
commutes' _ := eval₂_C _ _ _
#align mv_polynomial.punit_alg_equiv MvPolynomial.pUnitAlgEquiv
section Map
variable {R} (σ)
/-- If `e : A ≃+* B` is an isomorphism of rings, then so is `map e`. -/
@[simps apply]
def mapEquiv [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
MvPolynomial σ S₁ ≃+* MvPolynomial σ S₂ :=
{ map (e : S₁ →+* S₂) with
toFun := map (e : S₁ →+* S₂)
invFun := map (e.symm : S₂ →+* S₁)
left_inv := map_leftInverse e.left_inv
right_inv := map_rightInverse e.right_inv }
#align mv_polynomial.map_equiv MvPolynomial.mapEquiv
@[simp]
theorem mapEquiv_refl : mapEquiv σ (RingEquiv.refl R) = RingEquiv.refl _ :=
RingEquiv.ext map_id
#align mv_polynomial.map_equiv_refl MvPolynomial.mapEquiv_refl
@[simp]
theorem mapEquiv_symm [CommSemiring S₁] [CommSemiring S₂] (e : S₁ ≃+* S₂) :
(mapEquiv σ e).symm = mapEquiv σ e.symm :=
rfl
#align mv_polynomial.map_equiv_symm MvPolynomial.mapEquiv_symm
@[simp]
theorem mapEquiv_trans [CommSemiring S₁] [CommSemiring S₂] [CommSemiring S₃] (e : S₁ ≃+* S₂)
(f : S₂ ≃+* S₃) : (mapEquiv σ e).trans (mapEquiv σ f) = mapEquiv σ (e.trans f) :=
RingEquiv.ext fun p => by
simp only [RingEquiv.coe_trans, comp_apply, mapEquiv_apply, RingEquiv.coe_ringHom_trans,
map_map]
#align mv_polynomial.map_equiv_trans MvPolynomial.mapEquiv_trans
variable {A₁ A₂ A₃ : Type*} [CommSemiring A₁] [CommSemiring A₂] [CommSemiring A₃]
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
/-- If `e : A ≃ₐ[R] B` is an isomorphism of `R`-algebras, then so is `map e`. -/
@[simps apply]
def mapAlgEquiv (e : A₁ ≃ₐ[R] A₂) : MvPolynomial σ A₁ ≃ₐ[R] MvPolynomial σ A₂ :=
{ mapAlgHom (e : A₁ →ₐ[R] A₂), mapEquiv σ (e : A₁ ≃+* A₂) with toFun := map (e : A₁ →+* A₂) }
#align mv_polynomial.map_alg_equiv MvPolynomial.mapAlgEquiv
@[simp]
theorem mapAlgEquiv_refl : mapAlgEquiv σ (AlgEquiv.refl : A₁ ≃ₐ[R] A₁) = AlgEquiv.refl :=
AlgEquiv.ext map_id
#align mv_polynomial.map_alg_equiv_refl MvPolynomial.mapAlgEquiv_refl
@[simp]
theorem mapAlgEquiv_symm (e : A₁ ≃ₐ[R] A₂) : (mapAlgEquiv σ e).symm = mapAlgEquiv σ e.symm :=
rfl
#align mv_polynomial.map_alg_equiv_symm MvPolynomial.mapAlgEquiv_symm
@[simp]
theorem mapAlgEquiv_trans (e : A₁ ≃ₐ[R] A₂) (f : A₂ ≃ₐ[R] A₃) :
(mapAlgEquiv σ e).trans (mapAlgEquiv σ f) = mapAlgEquiv σ (e.trans f) := by
ext
simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]
rfl
#align mv_polynomial.map_alg_equiv_trans MvPolynomial.mapAlgEquiv_trans
end Map
section
variable (S₁ S₂ S₃)
/-- The function from multivariable polynomials in a sum of two types,
to multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
See `sumRingEquiv` for the ring isomorphism.
-/
def sumToIter : MvPolynomial (Sum S₁ S₂) R →+* MvPolynomial S₁ (MvPolynomial S₂ R) :=
eval₂Hom (C.comp C) fun bc => Sum.recOn bc X (C ∘ X)
#align mv_polynomial.sum_to_iter MvPolynomial.sumToIter
@[simp]
theorem sumToIter_C (a : R) : sumToIter R S₁ S₂ (C a) = C (C a) :=
eval₂_C _ _ a
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_C MvPolynomial.sumToIter_C
@[simp]
theorem sumToIter_Xl (b : S₁) : sumToIter R S₁ S₂ (X (Sum.inl b)) = X b :=
eval₂_X _ _ (Sum.inl b)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xl MvPolynomial.sumToIter_Xl
@[simp]
theorem sumToIter_Xr (c : S₂) : sumToIter R S₁ S₂ (X (Sum.inr c)) = C (X c) :=
eval₂_X _ _ (Sum.inr c)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.sum_to_iter_Xr MvPolynomial.sumToIter_Xr
/-- The function from multivariable polynomials in one type,
with coefficients in multivariable polynomials in another type,
to multivariable polynomials in the sum of the two types.
See `sumRingEquiv` for the ring isomorphism.
-/
def iterToSum : MvPolynomial S₁ (MvPolynomial S₂ R) →+* MvPolynomial (Sum S₁ S₂) R :=
eval₂Hom (eval₂Hom C (X ∘ Sum.inr)) (X ∘ Sum.inl)
#align mv_polynomial.iter_to_sum MvPolynomial.iterToSum
theorem iterToSum_C_C (a : R) : iterToSum R S₁ S₂ (C (C a)) = C a :=
Eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_C MvPolynomial.iterToSum_C_C
theorem iterToSum_X (b : S₁) : iterToSum R S₁ S₂ (X b) = X (Sum.inl b) :=
eval₂_X _ _ _
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_X MvPolynomial.iterToSum_X
theorem iterToSum_C_X (c : S₂) : iterToSum R S₁ S₂ (C (X c)) = X (Sum.inr c) :=
Eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _)
set_option linter.uppercaseLean3 false in
#align mv_polynomial.iter_to_sum_C_X MvPolynomial.iterToSum_C_X
variable (σ)
/-- The algebra isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R :=
AlgEquiv.ofAlgHom (aeval (IsEmpty.elim he)) (Algebra.ofId _ _)
(by ext)
(by
ext i m
exact IsEmpty.elim' he i)
#align mv_polynomial.is_empty_alg_equiv MvPolynomial.isEmptyAlgEquiv
/-- The ring isomorphism between multivariable polynomials in no variables
and the ground ring. -/
@[simps!]
def isEmptyRingEquiv [IsEmpty σ] : MvPolynomial σ R ≃+* R :=
(isEmptyAlgEquiv R σ).toRingEquiv
#align mv_polynomial.is_empty_ring_equiv MvPolynomial.isEmptyRingEquiv
variable {σ}
/-- A helper function for `sumRingEquiv`. -/
@[simps]
def mvPolynomialEquivMvPolynomial [CommSemiring S₃] (f : MvPolynomial S₁ R →+* MvPolynomial S₂ S₃)
(g : MvPolynomial S₂ S₃ →+* MvPolynomial S₁ R) (hfgC : (f.comp g).comp C = C)
(hfgX : ∀ n, f (g (X n)) = X n) (hgfC : (g.comp f).comp C = C) (hgfX : ∀ n, g (f (X n)) = X n) :
MvPolynomial S₁ R ≃+* MvPolynomial S₂ S₃
where
toFun := f
invFun := g
left_inv := is_id (RingHom.comp _ _) hgfC hgfX
right_inv := is_id (RingHom.comp _ _) hfgC hfgX
map_mul' := f.map_mul
map_add' := f.map_add
#align mv_polynomial.mv_polynomial_equiv_mv_polynomial MvPolynomial.mvPolynomialEquivMvPolynomial
/-- The ring isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumRingEquiv : MvPolynomial (Sum S₁ S₂) R ≃+* MvPolynomial S₁ (MvPolynomial S₂ R) := by
apply mvPolynomialEquivMvPolynomial R (Sum S₁ S₂) _ _ (sumToIter R S₁ S₂) (iterToSum R S₁ S₂)
· refine RingHom.ext (hom_eq_hom _ _ ?hC ?hX)
case hC => ext1; simp only [RingHom.comp_apply, iterToSum_C_C, sumToIter_C]
case hX => intro; simp only [RingHom.comp_apply, iterToSum_C_X, sumToIter_Xr]
· simp [iterToSum_X, sumToIter_Xl]
· ext1; simp only [RingHom.comp_apply, sumToIter_C, iterToSum_C_C]
· rintro ⟨⟩ <;> simp only [sumToIter_Xl, iterToSum_X, sumToIter_Xr, iterToSum_C_X]
#align mv_polynomial.sum_ring_equiv MvPolynomial.sumRingEquiv
/-- The algebra isomorphism between multivariable polynomials in a sum of two types,
and multivariable polynomials in one of the types,
with coefficients in multivariable polynomials in the other type.
-/
def sumAlgEquiv : MvPolynomial (Sum S₁ S₂) R ≃ₐ[R] MvPolynomial S₁ (MvPolynomial S₂ R) :=
{ sumRingEquiv R S₁ S₂ with
commutes' := by
intro r
have A : algebraMap R (MvPolynomial S₁ (MvPolynomial S₂ R)) r = (C (C r) : _) := rfl
have B : algebraMap R (MvPolynomial (Sum S₁ S₂) R) r = C r := rfl
simp only [sumRingEquiv, mvPolynomialEquivMvPolynomial, Equiv.toFun_as_coe,
Equiv.coe_fn_mk, B, sumToIter_C, A] }
#align mv_polynomial.sum_alg_equiv MvPolynomial.sumAlgEquiv
section
-- this speeds up typeclass search in the lemma below
attribute [local instance] IsScalarTower.right
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
polynomials with coefficients in `MvPolynomial S₁ R`.
-/
@[simps!]
def optionEquivLeft : MvPolynomial (Option S₁) R ≃ₐ[R] Polynomial (MvPolynomial S₁ R) :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim Polynomial.X fun s => Polynomial.C (X s))
(Polynomial.aevalTower (MvPolynomial.rename some) (X none))
(by ext : 2 <;> simp [← Polynomial.C_eq_algebraMap]) (by ext i : 2; cases i <;> simp)
#align mv_polynomial.option_equiv_left MvPolynomial.optionEquivLeft
end
/-- The algebra isomorphism between multivariable polynomials in `Option S₁` and
multivariable polynomials with coefficients in polynomials.
-/
def optionEquivRight : MvPolynomial (Option S₁) R ≃ₐ[R] MvPolynomial S₁ R[X] :=
AlgEquiv.ofAlgHom (MvPolynomial.aeval fun o => o.elim (C Polynomial.X) X)
(MvPolynomial.aevalTower (Polynomial.aeval (X none)) fun i => X (Option.some i))
(by
ext : 2 <;>
simp only [MvPolynomial.algebraMap_eq, Option.elim, AlgHom.coe_comp, AlgHom.id_comp,
IsScalarTower.coe_toAlgHom', comp_apply, aevalTower_C, Polynomial.aeval_X, aeval_X,
Option.elim', aevalTower_X, AlgHom.coe_id, id.def, eq_self_iff_true, imp_true_iff])
(by
ext ⟨i⟩ : 2 <;>
simp only [Option.elim, AlgHom.coe_comp, comp_apply, aeval_X, aevalTower_C,
Polynomial.aeval_X, AlgHom.coe_id, id.def, aevalTower_X])
#align mv_polynomial.option_equiv_right MvPolynomial.optionEquivRight
variable (n : ℕ)
/-- The algebra isomorphism between multivariable polynomials in `Fin (n + 1)` and
polynomials over multivariable polynomials in `Fin n`.
-/
def finSuccEquiv : MvPolynomial (Fin (n + 1)) R ≃ₐ[R] Polynomial (MvPolynomial (Fin n) R) :=
(renameEquiv R (_root_.finSuccEquiv n)).trans (optionEquivLeft R (Fin n))
#align mv_polynomial.fin_succ_equiv MvPolynomial.finSuccEquiv
theorem finSuccEquiv_eq :
(finSuccEquiv R n : MvPolynomial (Fin (n + 1)) R →+* Polynomial (MvPolynomial (Fin n) R)) =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R)) fun i : Fin (n + 1) =>
Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i := by
ext i : 2
· simp only [finSuccEquiv, optionEquivLeft_apply, aeval_C, AlgEquiv.coe_trans, RingHom.coe_coe,
coe_eval₂Hom, comp_apply, renameEquiv_apply, eval₂_C, RingHom.coe_comp, rename_C]
rfl
· refine' Fin.cases _ _ i <;> simp [finSuccEquiv]
#align mv_polynomial.fin_succ_equiv_eq MvPolynomial.finSuccEquiv_eq
@[simp]
theorem finSuccEquiv_apply (p : MvPolynomial (Fin (n + 1)) R) :
finSuccEquiv R n p =
eval₂Hom (Polynomial.C.comp (C : R →+* MvPolynomial (Fin n) R))
(fun i : Fin (n + 1) => Fin.cases Polynomial.X (fun k => Polynomial.C (X k)) i) p := by
rw [← finSuccEquiv_eq, RingHom.coe_coe]
#align mv_polynomial.fin_succ_equiv_apply MvPolynomial.finSuccEquiv_apply
theorem finSuccEquiv_comp_C_eq_C {R : Type u} [CommSemiring R] (n : ℕ) :
(↑(MvPolynomial.finSuccEquiv R n).symm : Polynomial (MvPolynomial (Fin n) R) →+* _).comp
(Polynomial.C.comp MvPolynomial.C) =
(MvPolynomial.C : R →+* MvPolynomial (Fin n.succ) R) := by
refine' RingHom.ext fun x => _
rw [RingHom.comp_apply]
refine'
(MvPolynomial.finSuccEquiv R n).injective
(Trans.trans ((MvPolynomial.finSuccEquiv R n).apply_symm_apply _) _)
simp only [MvPolynomial.finSuccEquiv_apply, MvPolynomial.eval₂Hom_C]
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_comp_C_eq_C MvPolynomial.finSuccEquiv_comp_C_eq_C
variable {n} {R}
theorem finSuccEquiv_X_zero : finSuccEquiv R n (X 0) = Polynomial.X := by simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_zero MvPolynomial.finSuccEquiv_X_zero
theorem finSuccEquiv_X_succ {j : Fin n} : finSuccEquiv R n (X j.succ) = Polynomial.C (X j) := by
simp
set_option linter.uppercaseLean3 false in
#align mv_polynomial.fin_succ_equiv_X_succ MvPolynomial.finSuccEquiv_X_succ
/-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
rw [cons_tail] at hjmi
contradiction
| simpa only [monomial_eq, C_1, one_mul, prod_pow, Finsupp.tail_apply, if_neg hmj.symm] using
coeff_monomial m j.tail (1 : R) | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f := by
induction' f using MvPolynomial.induction_on' with j r p q hp hq generalizing i m
swap
· simp only [(finSuccEquiv R n).map_add, Polynomial.coeff_add, coeff_add, hp, hq]
simp only [finSuccEquiv_apply, coe_eval₂Hom, eval₂_monomial, RingHom.coe_comp, prod_pow,
Polynomial.coeff_C_mul, coeff_C_mul, coeff_monomial, Fin.prod_univ_succ, Fin.cases_zero,
Fin.cases_succ, ← map_prod, ← RingHom.map_pow, Function.comp_apply]
rw [← mul_boole, mul_comm (Polynomial.X ^ j 0), Polynomial.coeff_C_mul_X_pow]; congr 1
obtain rfl | hjmi := eq_or_ne j (m.cons i)
· simpa only [cons_zero, cons_succ, if_pos rfl, monomial_eq, C_1, one_mul, prod_pow] using
coeff_monomial m m (1 : R)
· simp only [hjmi, if_false]
obtain hij | rfl := ne_or_eq i (j 0)
· simp only [hij, if_false, coeff_zero]
simp only [eq_self_iff_true, if_true]
have hmj : m ≠ j.tail := by
rintro rfl
rw [cons_tail] at hjmi
contradiction
| Mathlib.Data.MvPolynomial.Equiv.361_0.88gPfxLltQQTcHM | /-- The coefficient of `m` in the `i`-th coefficient of `finSuccEquiv R n f` equals the
coefficient of `Finsupp.cons i m` in `f`. -/
theorem finSuccEquiv_coeff_coeff (m : Fin n →₀ ℕ) (f : MvPolynomial (Fin (n + 1)) R) (i : ℕ) :
coeff m (Polynomial.coeff (finSuccEquiv R n f) i) = coeff (m.cons i) f | Mathlib_Data_MvPolynomial_Equiv |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.