code
stringlengths 1
13.8M
|
---|
expected <- eval(parse(text="c(\"3\", \"3\", NA, NA, NA, NA, \"4\", \"3\", \"4\", NA, NA, \"2\", \"3\", \"3\", NA, NA, \"2\", \"4\", NA, \"2\", \"5\", \"2\", \"2\", \"4\", \"3\", NA, \"2\", NA, \"3\", \"3\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(3, 3, NA, NA, NA, NA, 4, 3, 4, NA, NA, 2, 3, 3, NA, NA, 2, 4, NA, 2, 5, 2, 2, 4, 3, NA, 2, NA, 3, 3))"));
do.call(`as.character`, argv);
}, o=expected);
|
test_that("validateIsInteger works as expected", {
expect_null(validateIsInteger(5))
expect_null(validateIsInteger(5L))
expect_null(validateIsInteger(c(1L, 5)))
expect_null(validateIsInteger(c(1L, 5L)))
expect_null(validateIsInteger(NA_integer_))
expect_error(validateIsInteger(c(1.5, 5)))
expect_error(validateIsInteger(2.4))
expect_error(validateIsInteger("2"))
expect_error(validateIsInteger(TRUE))
expect_error(validateIsInteger(NA_character_))
})
test_that("It accepts an empty string", {
expect_error(validatePathIsAbsolute(""), NA)
})
test_that("It accepts a path without wildcard", {
path <- "Organism|path"
expect_error(validatePathIsAbsolute(path), NA)
})
test_that("It throws an error for a path with a wildcard", {
path <- "Organism|*path"
expect_error(validatePathIsAbsolute(path), messages$errorEntityPathNotAbsolute(path))
})
test_that("It does not throw an error when a number is indeed an integer", {
validateIsOfType(object = 2, type = "integer")
expect_true(TRUE)
})
test_that("It does throw an error when a number is not an integer", {
expect_error(validateIsOfType(object = 2.5, type = "integer"))
})
test_that("It does not throw an error when a validating that a string in an integer", {
expect_error(validateIsInteger("s"), messages$errorWrongType(objectName = "\"s\"", expectedType = "integer", type = "character"))
})
A <- data.frame(
col1 = c(1, 2, 3),
col2 = c(4, 5, 6),
col3 = c(7, 8, 9)
)
B <- data.frame(
col1 = c(1, 2, 3),
col2 = c(4, 5, 6),
col3 = c(7, 8, 9),
col4 = c(7, 8, 9)
)
test_that("Checks method of type 'validate' work properly", {
expect_null(validateIsSameLength(A, A))
expect_null(validateIsOfLength(A, 3))
expect_null(validateIsOfType(A, "data.frame"))
expect_null(validateIsIncluded("col3", names(A)))
expect_null(validateIsIncluded(NULL, nullAllowed = TRUE))
expect_null(validateIsString("x"))
expect_null(validateIsNumeric(1.2))
expect_null(validateIsNumeric(NULL, nullAllowed = TRUE))
expect_null(validateIsInteger(5))
expect_null(validateIsInteger(NULL, nullAllowed = TRUE))
expect_null(validateIsLogical(TRUE))
errorMessageIsSameLength <- "Arguments 'A, B' must have the same length, but they don't!"
errorMessageIsOfLength <- "Object should be of length '5', but is of length '3' instead."
errorMessageIsOfType <- "argument 'A' is of type 'data.frame', but expected 'character'!"
errorMessageIsIncluded <- "Values 'col4' are not in included in parent values: 'col1, col2, col3'."
expect_error(validateIsSameLength(A, B), errorMessageIsSameLength)
expect_error(validateIsOfLength(A, 5), errorMessageIsOfLength)
expect_error(validateIsOfType(A, "character"), errorMessageIsOfType)
expect_error(validateIsIncluded("col4", names(A)), errorMessageIsIncluded)
})
test_that("enum validation works as expected", {
expect_error(validateEnumValue(NULL))
expect_null(validateEnumValue(NULL, nullAllowed = TRUE))
Symbol <- enum(c(Diamond = 1, Triangle = 2, Circle = 2))
expect_null(validateEnumValue(1, Symbol))
expect_error(validateEnumValue(4, Symbol))
})
|
setClass('vclVector',
slots = c(address="externalptr",
.context_index = "integer",
.platform_index = "integer",
.platform = "character",
.device_index = "integer",
.device = "character"))
setClass("vclVectorSlice",
contains = "vclVector")
setClass("ivclVector",
contains = "vclVector",
validity = function(object) {
if( typeof(object) != "integer"){
return("ivclVector must be of type 'integer'")
}
TRUE
})
setClass("fvclVector",
contains = "vclVector",
validity = function(object) {
if( typeof(object) != "float"){
return("fvclVector must be of type 'float'")
}
TRUE
})
setClass("dvclVector",
contains = "vclVector",
validity = function(object) {
if( typeof(object) != "double"){
return("dvclVector must be of type 'double'")
}
TRUE
})
setClass("ivclVectorSlice",
contains = "vclVectorSlice")
setClass("fvclVectorSlice",
contains = "vclVectorSlice")
setClass("dvclVectorSlice",
contains = "vclVectorSlice")
|
sine_up_ <- function(data,
grp_id,
cols,
fs = NULL,
periods = NULL,
phase = 0,
suffix = "_sined",
overwrite = FALSE) {
num_dims <- length(cols)
dim_vectors <- as.list(data[, cols, drop = FALSE])
if (is.null(fs)) {
fs <-
apply_coordinate_fn_(
dim_vectors = dim_vectors,
coordinates = fs,
fn = create_origin_fn(function(x) {
max(x) - min(x)
}),
num_dims = num_dims,
coordinate_name = "fs",
fn_name = "fs_fn",
dim_var_name = "cols",
grp_id = grp_id,
allow_len_one = TRUE
)
}
if (!is.null(periods)) {
fs <- fs / periods
}
print(fs)
sined_dim_vectors <-
purrr::map2(.x = dim_vectors, .y = fs, .f = ~ {
.x * generate_sine_wave(.x,
fs = .y,
amplitude = 1,
phase = phase
)
})
data <- add_dimensions_(
data = data,
new_vectors = setNames(sined_dim_vectors, cols),
suffix = suffix,
overwrite = overwrite
)
data
}
|
test_that("stop if ncol dat !2", {
dat1 <- data.frame(x=c(0,0,0))
dat2 <- data.frame(x=c(0,0,0), y=c(10, 10, 10), z=c(10, 10, 10))
expect_error(pi_rho_est(dat=dat1))
expect_error(pi_rho_est(dat=dat2))
})
test_that("adjustment works if all x are 0", {
dat <- data.frame(x=c(0,0,0), y=c(10, 10, 10))
pi_rho <- suppressWarnings(pi_rho_est(dat=dat))
expect_equal(round(unname(pi_rho[1]), 4), 0.0167)
expect_equal(round(unname(pi_rho[2]), 4), -0.0556)
})
test_that("adjustment works if all y are 0", {
dat <- data.frame(x=c(10, 10, 10), y=c(0,0,0))
pi_rho <- suppressWarnings(pi_rho_est(dat=dat))
expect_equal(round(unname(pi_rho[1]), 4), 0.9833)
expect_equal(round(unname(pi_rho[2]), 4), -0.0556 )
})
test_that("warning if all x are 0", {
dat <- data.frame(x=c(0,0,0), y=c(10, 10, 10))
expect_warning(pi_rho_est(dat=dat))
})
test_that("warning if all x are 0", {
dat <- data.frame(x=c(10, 10, 10), y=c(0,0,0))
expect_warning(pi_rho_est(dat=dat))
})
test_that("output must be a vector of length 2", {
dat <- data.frame(x=c(10, 10, 10), y=c(0,0,0))
pi_rho <- suppressWarnings(pi_rho_est(dat=dat))
expect_equal(length(pi_rho), 2)
})
|
get_ces <- function(srvy, pos = 1){
if(srvy %in% ces_codes){
if(srvy == "ces2019_web"){
hldr <- tempfile(fileext = ".dta")
if(!file.exists(hldr)){
cesfile <- "https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/DUS88V/RZFNOV"
utils::download.file(cesfile, hldr, quiet = F, mode = "wb")
assign("ces2019_web", haven::read_dta(hldr, encoding = "latin1"), envir = as.environment(pos))
unlink(hldr, recursive = T)
message(ref2019web)
}
}
else if(srvy == "ces2019_phone"){
hldr <- tempfile(fileext = ".tab")
if(!file.exists(hldr)){
cesfile <- "https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/8RHLG1/DW4GZZ"
utils::download.file(cesfile, hldr, quiet = F, mode = "wb")
assign("ces2019_phone", readr::read_tsv(hldr, show_col_types = F), envir = as.environment(pos))
unlink(hldr, recursive = T)
message(ref2019phone)
}
}
else if(srvy == "ces2015_web"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2015_web")
if(!file.exists(hldr)){
cesfile <- "https://ces-eec.sites.olt.ubc.ca/files/2018/07/CES15_CPSPES_Web_SSI-Full-Stata-14.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES15_CPS+PES_Web_SSI Full Stata 14.dta")
assign("ces2015_web", haven::read_dta(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2015web)
}
}
else if(srvy == "ces2015_phone"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2015_phone")
if(!file.exists(hldr)){
cesfile <- "https://ces-eec.sites.olt.ubc.ca/files/2018/08/CES2015-phone-Stata.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES2015_CPS-PES-MBS_complete-v2.dta")
assign("ces2015_phone", haven::read_dta(datafile, encoding = "latin1"), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2015phone)
}
}
else if(srvy == "ces2015_combo"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2015_combo")
if(!file.exists(hldr)){
cesfile <- "https://ces-eec.sites.olt.ubc.ca/files/2017/04/CES2015_Combined_Stata14.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES2015_Combined_Stata14.dta")
assign("ces2015_combo", haven::read_dta(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2015combo)
}
}
else if(srvy == "ces2011"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2011")
if(!file.exists(hldr)){
cesfile <- "https://ces-eec.sites.olt.ubc.ca/files/2014/07/CES2011-final-1.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CPS&PES&MBS&WEB_2011_final.dta")
assign("ces2011", haven::read_dta(datafile), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2011)
}
}
else if(srvy == "ces2008"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2008")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-2008.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES2015_Combined_Stata14.dta")
assign("ces2008", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2008)
}
}
else if(srvy == "ces2004"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2004")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-2004.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-2004_F1.sav")
assign("ces2004", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2004)
}
}
else if(srvy == "ces0411"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces0411")
if(!file.exists(hldr)){
cesfile <- "https://ces-eec.sites.olt.ubc.ca/files/2014/07/CES_04060811_final_without-geo-data.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES_04060811_final_without-geo-data.dta")
assign("ces0411", haven::read_dta(hldr, encoding = "latin1"), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref0411)
}
}
else if(srvy == "ces0406"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces0406")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-2004-2006.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-2004-2006_F1.sav")
assign("ces0406", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref0406)
}
}
else if(srvy == "ces2000"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces2000")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-2000.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-2000_F1.sav")
assign("ces2000", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref2000)
}
}
else if(srvy == "ces1997"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1997")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1997.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1997_F1.sav")
assign("ces1997", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1997)
}
}
else if(srvy == "ces1993"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1993")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1993.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1993_F1.sav")
assign("ces1993", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1993)
}
}
else if(srvy == "ces1988"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1988")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1988.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1988_F1.sav")
assign("ces1988", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1988)
}
}
else if(srvy == "ces1984"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1984")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1984.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1984_F1.sav")
assign("ces1984", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1984)
}
}
else if(srvy == "ces1974"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1974")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1974.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1974_F1.sav")
assign("ces1974", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1974)
}
}
else if(srvy == "ces7480"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces7480")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1974-1980.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1974-1980_F1.sav")
assign("ces7480", haven::read_sav(hldr), as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref7480)
}
}
else if(srvy == "ces72_jnjl"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces72jnjl")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1972-jun-july.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1972-jun-july_F1.sav")
assign("ces72_jnjl", haven::read_sav(hldr), as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref72jnjl)
}
}
else if(srvy == "ces72_sep"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces72sep")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1972-sept.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1972-sept_F1.sav")
assign("ces72_sep", haven::read_sav(hldr), as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref72sep)
}
}
else if(srvy == "ces72_nov"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces72nov")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1972-nov.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1972-nov_F1.sav")
assign("ces72_nov", haven::read_sav(hldr), as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref72nov)
}
}
else if(srvy == "ces1968"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1968")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1968.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1968_F1.sav")
assign("ces1968", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1968)
message("\n\nMESSAGE: It is recommended to download the codebook for this dataset to better understand the column names.")
}
}
else if(srvy == "ces1965"){
hldr <- tempfile(fileext = ".zip")
fldr <- paste0(tempdir(), "\\ces1965")
if(!file.exists(hldr)){
cesfile <- "https://raw.github.com/hodgettsp/ces_data/master/extdata/CES-E-1965.zip"
utils::download.file(cesfile, hldr, quiet = F)
utils::unzip(hldr, exdir = fldr)
datafile <- file.path(fldr, "CES-E-1965_F1.sav")
assign("ces1965", haven::read_sav(hldr), envir = as.environment(pos))
unlink(hldr, recursive = T)
unlink(fldr, recursive = T)
message(ref1965)
message("\n\nIt is recommended to download the codebook for this dataset to better understand the column names.")
}
}
}
else{
stop("Incorrect CES dataset code provided. Use function get_cescodes() for a printout of useable code calls.")
}
}
ref2019web <- "TO CITE THIS SURVEY FILE:\n
- Stephenson, Laura B; Harell, Allison; Rubenson, Daniel; Loewen, Peter John, 2020, '2019 Canadian Election Study - Online Survey', https://doi.org/10.7910/DVN/DUS88V, Harvard Dataverse, V1\n
- Stephenson, Laura, Allison Harrel, Daniel Rubenson and Peter Loewen. Forthcoming. 'Measuring Preferences and Behaviour in the 2019 Canadian Election Study,' Canadian Journal of Political Science.\n
LINK: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DUS88V"
ref2019phone <- "TO CITE THIS SURVEY FILE:\n
- Stephenson, Laura B; Harell, Allison; Rubenson, Daniel; Loewen, Peter John, 2020, '2019 Canadian Election Study - Phone Survey', https://doi.org/10.7910/DVN/8RHLG1, Harvard Dataverse, V1, UNF:6:eyR28qaoYlHj9qwPWZmmVQ== [fileUNF]\n
- Stephenson, Laura, Allison Harrel, Daniel Rubenson and Peter Loewen. Forthcoming. 'Measuring Preferences and Behaviour in the 2019 Canadian Election Study,' Canadian Journal of Political Science.\n
LINK: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8RHLG1"
ref2015web <- "TO CITE THIS SURVEY FILE: Fournier, Patrick, Fred Cutler, Stuart Soroka and Dietlind Stolle. 2015. The 2015 Canadian Election Study. [dataset]\n
LINK: https://ces-eec.arts.ubc.ca/english-section/surveys/"
ref2015phone <- "TO CITE THIS SURVEY FILE: Fournier, Patrick, Fred Cutler, Stuart Soroka and Dietlind Stolle. 2015. The 2015 Canadian Election Study. [dataset]\n
LINK:https://ces-eec.arts.ubc.ca/english-section/surveys/"
ref2015combo <- "TO CITE THIS SURVEY FILE: Fournier, Patrick, Fred Cutler, Stuart Soroka and Dietlind Stolle. 2015. The 2015 Canadian Election Study. [dataset]\n
LINK: https://ces-eec.arts.ubc.ca/english-section/surveys/"
ref2011 <- "TO CITE THIS SURVEY FILE: Fournier, Patrick, Fred Cutler, Stuart Soroka and Dietlind Stolle. 2011. The 2011 Canadian Election Study. [dataset]\n
LINK: https://ces-eec.arts.ubc.ca/english-section/surveys/"
ref2008 <- "TO CITE THIS SURVEY FILE: Gidengil, E, Everitt, J, Fournier, P and Nevitte, N. 2009. The 2008 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&previousmode=table&analysismode=table&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-2008&mode=documentation&top=yes"
ref2004 <- "TO CITE THIS SURVEY FILE: Blais, A, Everitt, J, Fournier, P, Gidengil, E and Nevitte, N. 2005. The 2004 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-2004&mode=documentation&top=yes"
ref0411 <- "TO CITE THIS SURVEY FILE: Fournier, P, Stolle, D, Soroka, S, Cutler, F, Blais, A, Everitt, J, Gidengil, E and Nevitte, N. 2011. The 2004-2011 Merged Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: https://ces-eec.arts.ubc.ca/english-section/surveys/"
ref0406 <- "TO CITE THIS SURVEY FILE: Blais, A, Everitt, J, Fournier, P and Nevitte, N. 2011. The 2011 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-2004-2006&mode=documentation&top=yes"
ref2000 <- "TO CITE THIS SURVEY FILE: Blais, A, Gidengil, E, Nadeau, R and Nevitte, N. 2001. The 2000 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-2000&mode=documentation&top=yes"
ref1997 <- "TO CITE THIS SURVEY FILE: Blais, A, Gidengil, E, Nadeau, R and Nevitte, N. 1998. The 1997 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1997&mode=documentation&top=yes"
ref1993 <- "TO CITE THIS SURVEY FILE: Blais, A, Brady, H, Gidengil, E, Johnston, R and Nevitte, N. 1994. The 1993 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1993&mode=documentation&top=yes"
ref1988 <- "TO CITE THIS SURVEY FILE: Johnston, R, Blais, A, Brady, H. E. and Cr\u00eate, J. 1989. The 1988 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK:http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1988&mode=documentation&top=yes"
ref1984 <- "TO CITE THIS SURVEY FILE: Lambert, R. D., Brown, S. D., Curtis, J. E., Kay, B. J. and Wilson, J. M. 1985. The 1984 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1984&mode=documentation&top=yes"
ref1974 <- "TO CITE THIS SURVEY FILE: Clarke, H, Jenson, J, LeDuc, L and Pammett, J. 1975. The 1974 Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1974&mode=documentation&top=yes"
ref7480 <- "TO CITE THIS SURVEY FILE: Clarke, H, Jenson, J, LeDuc, L and Pammett, J. 1980. The 1974-1980 Merged Canadian Election Study [dataset]. Toronto, Ontario, Canada: Institute for Social Research [producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1974-1980&mode=documentation&top=yes"
ref72jnjl <- "TO CITE THIS SURVEY FILE: Ruban, C. 1972. The 1972 Canadian Election Study [dataset]. 2nd ICPSR version. Toronto, Ontario, Canada: Market Opinion Research (Canada) Ltd. [producer], 1972. Ann Arbor, MI: Interuniversity Consortium for Political and Social Research [distributor], 2001.\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1972-jun-july&mode=documentation&top=yes"
ref72sep <- "TO CITE THIS SURVEY FILE: Ruban, C. 1972. The 1972 Canadian Election Study [dataset]. 2nd ICPSR version. Toronto, Ontario, Canada: Market Opinion Research (Canada) Ltd. [producer], 1972. Ann Arbor, MI: Interuniversity Consortium for Political and Social Research [distributor], 2001.\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1972-sept&mode=documentation&top=yes"
ref72nov <- "TO CITE THIS SURVEY FILE: Ruban, C. 1972. The 1972 Canadian Election Study [dataset]. 2nd ICPSR version. Toronto, Ontario, Canada: Market Opinion Research (Canada) Ltd. [producer], 1972. Ann Arbor, MI: Interuniversity Consortium for Political and Social Research [distributor], 2001.\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1972-nov&mode=documentation&top=yes"
ref1968 <- "TO CITE THIS SURVEY FILE: Meisel, J. 1968. The 1968 Canadian Election Study [dataset]. Inter-University Consortium for Political and Social Research, University of Michigan, Ann Arbor MI [Producer and distributor].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1968&mode=documentation&top=yes"
ref1965 <- "TO CITE THIS SURVEY FILE: Converse, P, Meisel, J, Pinard, M, Regenstreif, P and Schwartz, M. 1966. Canadian Election Survey, 1965. [Microdata File]. Inter-University Consortium for Political and Social Research, University of Michigan, Ann Arbor MI [Producer].\n
LINK: http://odesi2.scholarsportal.info/webview/index.jsp?v=2&submode=abstract&study=http%3A%2F%2F142.150.190.128%3A80%2Fobj%2FfStudy%2FCES-E-1965&mode=documentation&top=yes"
ces_codes <- (c("ces2019_web", "ces2019_phone", "ces2015_web", "ces2015_phone", "ces2015_combo",
"ces2011", "ces2008", "ces2004", "ces0411", "ces0406", "ces2000", "ces1997", "ces1993",
"ces1988", "ces1984", "ces1974", "ces7480", "ces72_jnjl", "ces72_sep", "ces72_nov",
"ces1968", "ces1965"))
|
context("TEST COMBINING MULTIPLE MODELTIME TABLES")
m750 <- m4_monthly %>%
filter(id == "M750")
splits <- time_series_split(m750, assess = "3 years", cumulative = TRUE)
model_fit_arima <- arima_reg() %>%
set_engine("auto_arima") %>%
fit(value ~ date, training(splits))
model_fit_prophet <- prophet_reg() %>%
set_engine("prophet") %>%
fit(value ~ date, training(splits))
model_fit_ets <- exp_smoothing() %>%
set_engine("ets") %>%
fit(value ~ date, training(splits))
model_tbl_1 <- modeltime_table(model_fit_arima)
model_tbl_2 <- modeltime_table(model_fit_prophet)
model_tbl_3 <- modeltime_table(model_fit_ets)
calib_tbl <- model_tbl_1 %>%
modeltime_calibrate(testing(splits))
test_that("combine_modeltime_table(): succeeds with mdl_time_tbl classes", {
model_tbl_combo <- combine_modeltime_tables(model_tbl_1, model_tbl_2, model_tbl_3)
expect_s3_class(model_tbl_combo, "mdl_time_tbl")
expect_equal(model_tbl_combo$.model_id, 1:3)
})
test_that("combine_modeltime_table(): fails with non-mdl_time_tbl classes", {
expect_error({
combine_modeltime_tables(
model_tbl_1, model_tbl_2, model_tbl_3,
model_fit_arima
)
})
})
test_that("combine_modeltime_table(): Removes columns when combining calibration tbl", {
expect_message({
combine_modeltime_tables(
model_tbl_1, model_tbl_2, model_tbl_3,
calib_tbl, calib_tbl
)
})
combo_tbl <- combine_modeltime_tables(
model_tbl_1, model_tbl_2, model_tbl_3,
calib_tbl
)
expect_equal(ncol(combo_tbl), 3)
expect_equal(nrow(combo_tbl), 4)
})
|
NULL
extMetricsEnv = new.env()
getExternalMetricNames = function() {
sort(names(extMetricsEnv))
}
defineExternalMetric = function(name, fun, warnIfExists = getOption('latrend.warnMetricOverride', TRUE)) {
assert_that(is.function(fun))
assert_that(length(formalArgs(fun)) == 2, msg = 'function must accept two arguments (two lcModels)')
.defineMetric(name, fun = fun, warnIfExists = warnIfExists, envir = extMetricsEnv)
}
getExternalMetricDefinition = function(name) {
.getMetricDef(name, envir = extMetricsEnv)
}
extMetricsEnv$adjustedRand = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'adjrand'
)$scores
}
extMetricsEnv$CohensKappa = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
psych::cohen.kappa(
cbind(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer
),
alpha = 1
)$kappa
}
extMetricsEnv$`F` = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'f'
)$scores
}
extMetricsEnv$F1 = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'sdc'
)$scores
}
extMetricsEnv$FolkesMallows = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Folkes_Mallows'
)[[1]]
}
extMetricsEnv$Hubert = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Hubert'
)[[1]]
}
extMetricsEnv$Jaccard = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Jaccard'
)[[1]]
}
extMetricsEnv$jointEntropy = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'jent'
)$scores
}
extMetricsEnv$Kulczynski = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Kulczynski'
)[[1]]
}
extMetricsEnv$MaximumMatch = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'mmm'
)$scores
}
extMetricsEnv$McNemar = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'McNemar'
)[[1]]
}
extMetricsEnv$MeilaHeckerman = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'mhm'
)$scores
}
extMetricsEnv$Mirkin = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'mirkin'
)$scores
}
extMetricsEnv$MI = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'mi'
)$scores
}
extMetricsEnv$NMI = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
igraph::compare(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
method = 'nmi'
)
}
extMetricsEnv$NSJ = function(m1, m2) {
extMetricsEnv$splitJoin(m1, m2) / (2 * nIds(m1))
}
extMetricsEnv$NVI = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'nvi'
)$scores
}
extMetricsEnv$Overlap = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'overlap'
)$scores
}
extMetricsEnv$PD = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'pd'
)$scores
}
extMetricsEnv$Phi = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Phi'
)[[1]]
}
extMetricsEnv$precision = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Precision'
)[[1]]
}
extMetricsEnv$Rand = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Rand'
)[[1]]
}
extMetricsEnv$recall = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Recall'
)[[1]]
}
extMetricsEnv$RogersTanimoto = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Rogers_Tanimoto'
)[[1]]
}
extMetricsEnv$RusselRao = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Russel_Rao'
)[[1]]
}
extMetricsEnv$SMC = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'smc'
)$scores
}
extMetricsEnv$splitJoin = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
igraph::split_join_distance(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer
) %>%
sum()
}
extMetricsEnv$splitJoin.ref = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
igraph::split_join_distance(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer
)[1]
}
extMetricsEnv$SokalSneath1 = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Sokal_Sneath1'
)[[1]]
}
extMetricsEnv$SokalSneath2 = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
clusterCrit::extCriteria(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
'Sokal_Sneath2'
)[[1]]
}
extMetricsEnv$VI = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'vi'
)$scores
}
extMetricsEnv$Wallace1 = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'wallace1'
)$scores
}
extMetricsEnv$Wallace2 = function(m1, m2) {
assert_that(has_same_ids(m1, m2))
mclustcomp::mclustcomp(
trajectoryAssignments(m1) %>% as.integer,
trajectoryAssignments(m2) %>% as.integer,
types = 'wallace2'
)$scores
}
.wmrss = function(m1, m2, newdata = union(time(m1), time(m2))) {
resp1 = responseVariable(m1)
resp2 = responseVariable(m2)
trajmat1 = clusterTrajectories(m1, at = newdata)[[resp1]] %>%
matrix(ncol = nClusters(m1))
trajmat2 = clusterTrajectories(m2, at = newdata)[[resp2]] %>%
matrix(ncol = nClusters(m2))
groupMetric1 = foreach(g = seq_len(nClusters(m1)), .combine = c) %do% {
min(colSums(sweep(trajmat2, 1, trajmat1[, g]) ^ 2))
}
groupMetric2 = foreach(g = seq_len(nClusters(m2)), .combine = c) %do% {
min(colSums(sweep(trajmat1, 1, trajmat2[, g]) ^ 2))
}
wmsse1 = clusterProportions(m1) * groupMetric1
wmsse2 = clusterProportions(m2) * groupMetric2
c(wmsse1, wmsse2)
}
extMetricsEnv$WMRSS = function(m1, m2, newdata = union(time(m1), time(m2))) {
out = .wmrss(m1, m2, newdata)
sum(out)
}
extMetricsEnv$WMRSS.ref = function(m1, m2, newdata = union(time(m1), time(m2))) {
out = .wmrss(m1, m2, newdata)
out[2]
}
extMetricsEnv$WMMSE = function(m1, m2, newdata = union(time(m1), time(m2))) {
if (is.data.frame(newdata) || is.matrix(newdata)) {
nob = nrow(newdata)
} else {
nob = length(newdata)
}
extMetricsEnv$WMRSS(m1, m2, newdata) / (2 * nob)
}
extMetricsEnv$WMMSE.ref = function(m1, m2, newdata = union(time(m1), time(m2))) {
if (is.data.frame(newdata) || is.matrix(newdata)) {
nob = nrow(newdata)
} else {
nob = length(newdata)
}
extMetricsEnv$WMRSS.ref(m1, m2, newdata) / nob
}
.wmmae = function(m1, m2, newdata = union(time(m1), time(m2))) {
resp1 = responseVariable(m1)
resp2 = responseVariable(m2)
trajmat1 = clusterTrajectories(m1, at = newdata)[[resp1]] %>%
matrix(ncol = nClusters(m1))
trajmat2 = clusterTrajectories(m2, at = newdata)[[resp2]] %>%
matrix(ncol = nClusters(m2))
groupMetric1 = foreach(g = seq_len(nClusters(m1)), .combine = c) %do% {
min(colMeans(abs(sweep(
trajmat2, 1, trajmat1[, g]
))))
}
groupMetric2 = foreach(g = seq_len(nClusters(m2)), .combine = c) %do% {
min(colMeans(abs(sweep(
trajmat1, 1, trajmat2[, g]
))))
}
wmmae1 = clusterProportions(m1) * groupMetric1
wmmae2 = clusterProportions(m2) * groupMetric2
c(wmmae1, wmmae2)
}
extMetricsEnv$WMMAE = function(m1, m2, newdata = union(time(m1), time(m2))) {
out = .wmmae(m1, m2, newdata)
mean(out)
}
extMetricsEnv$WMMAE.ref = function(m1, m2, newdata = union(time(m1), time(m2))) {
out = .wmmae(m1, m2, newdata)
out[2]
}
|
test_that("add_node works", {
expect_equal(add_node(list("test" = 1)), "INSERT INTO nodes VALUES(json('{\"test\":1}'));")
})
|
PBDes<-function(nruns,nfactors,randomize=FALSE)
{
irun<-1
if (nruns == 12) {irun<-0}
if (nruns == 20) {irun<-0}
if (nruns == 24) {irun<-0}
if(irun>0) {stop("This function only works for nruns=12 or nruns=20, or nruns=24") }
if (nruns==12){
if (nfactors < 5) {stop("At least 5 factors required for 12-run PB design")}
if (nfactors > 11){stop("No more than 11 factors can be used for 12 run PB design")}
}
if (nruns==20){
if (nfactors < 8) {stop("At least 8 factors required for 20-run PB design")}
if (nfactors > 19){stop("No more than 19 factors can be used for 20 run PB design")}
}
if (nruns==24){
if (nfactors < 15) {stop("At least 15 factors required for 24-run PB design")}
if (nfactors > 23){stop("No more than 23 factors can be used for 20 run PB design")}
}
if(nruns==12){
pb12r1<-c( 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1)
pb12r2<-c(pb12r1[11],pb12r1[1:10])
pb12r3<-c(pb12r2[11],pb12r2[1:10])
pb12r4<-c(pb12r3[11],pb12r3[1:10])
pb12r5<-c(pb12r4[11],pb12r4[1:10])
pb12r6<-c(pb12r5[11],pb12r5[1:10])
pb12r7<-c(pb12r6[11],pb12r6[1:10])
pb12r8<-c(pb12r7[11],pb12r7[1:10])
pb12r9<-c(pb12r8[11],pb12r8[1:10])
pb12r10<-c(pb12r9[11],pb12r9[1:10])
pb12r11<-c(pb12r10[11],pb12r10[1:10])
pb12r12<-rep(-1,11)
des<-rbind(pb12r1,pb12r2,pb12r3,pb12r4,pb12r5,pb12r6,pb12r7,pb12r8,pb12r9,pb12r10,pb12r11,pb12r12)
randord<-sample(1:12)
if (randomize==TRUE){des <- des[randord, ] }
colnames(des)<-c("A","B","C","D","E","F","G","H","J","K","L")
row.names(des)<-c(1:12)
}
if(nruns==20){
pb20r1<-c(1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1)
pb20r2<-c(pb20r1[19],pb20r1[1:18])
pb20r3<-c(pb20r2[19],pb20r2[1:18])
pb20r4<-c(pb20r3[19],pb20r3[1:18])
pb20r5<-c(pb20r4[19],pb20r4[1:18])
pb20r6<-c(pb20r5[19],pb20r5[1:18])
pb20r7<-c(pb20r6[19],pb20r6[1:18])
pb20r8<-c(pb20r7[19],pb20r7[1:18])
pb20r9<-c(pb20r8[19],pb20r8[1:18])
pb20r10<-c(pb20r9[19],pb20r9[1:18])
pb20r11<-c(pb20r10[19],pb20r10[1:18])
pb20r12<-c(pb20r11[19],pb20r11[1:18])
pb20r13<-c(pb20r12[19],pb20r12[1:18])
pb20r14<-c(pb20r13[19],pb20r13[1:18])
pb20r15<-c(pb20r14[19],pb20r14[1:18])
pb20r16<-c(pb20r15[19],pb20r15[1:18])
pb20r17<-c(pb20r16[19],pb20r16[1:18])
pb20r18<-c(pb20r17[19],pb20r17[1:18])
pb20r19<-c(pb20r18[19],pb20r18[1:18])
pb20r20<-c(rep(-1,19))
des<-rbind(pb20r1,pb20r2,pb20r3,pb20r4,pb20r5,pb20r6,
pb20r7,pb20r8,pb20r9,pb20r10,pb20r11,pb20r12,
pb20r13,pb20r14,pb20r15,pb20r16,pb20r17,pb20r18,
pb20r19,pb20r20)
randord<-sample(1:20)
if (randomize==TRUE){des <- des[randord, ] }
colnames(des)<-c("A","B","C","D","E","F","G","H","J","K",
"L","M","N","O","P","Q","R","S","T")
row.names(des)<-c(1:20)
}
if(nruns==24){
pb24r1<-c(1,1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1)
pb24r2<-c(pb24r1[23],pb24r1[1:22])
pb24r3<-c(pb24r2[23],pb24r2[1:22])
pb24r4<-c(pb24r3[23],pb24r3[1:22])
pb24r5<-c(pb24r4[23],pb24r4[1:22])
pb24r6<-c(pb24r5[23],pb24r5[1:22])
pb24r7<-c(pb24r6[23],pb24r6[1:22])
pb24r8<-c(pb24r7[23],pb24r7[1:22])
pb24r9<-c(pb24r8[23],pb24r8[1:22])
pb24r10<-c(pb24r9[23],pb24r9[1:22])
pb24r11<-c(pb24r10[23],pb24r10[1:22])
pb24r12<-c(pb24r11[23],pb24r11[1:22])
pb24r13<-c(pb24r12[23],pb24r12[1:22])
pb24r14<-c(pb24r13[23],pb24r13[1:22])
pb24r15<-c(pb24r14[23],pb24r14[1:22])
pb24r16<-c(pb24r15[23],pb24r15[1:22])
pb24r17<-c(pb24r16[23],pb24r16[1:22])
pb24r18<-c(pb24r17[23],pb24r17[1:22])
pb24r19<-c(pb24r18[23],pb24r18[1:22])
pb24r20<-c(pb24r19[23],pb24r19[1:22])
pb24r21<-c(pb24r20[23],pb24r20[1:22])
pb24r22<-c(pb24r21[23],pb24r21[1:22])
pb24r23<-c(pb24r22[23],pb24r22[1:22])
pb24r24<-c(rep(-1,23))
des<-rbind(pb24r1,pb24r2,pb24r3,pb24r4,pb24r5,pb24r6,
pb24r7,pb24r8,pb24r9,pb24r10,pb24r11,pb24r12,
pb24r13,pb24r14,pb24r15,pb24r16,pb24r17,pb24r18,
pb24r19,pb24r20,pb24r21,pb24r22,pb24r23,pb24r24)
randord<-sample(1:24)
if (randomize==TRUE){des <- des[randord, ] }
colnames(des)<-c("A","B","C","D","E","F","G","H","J","K",
"L","M","N","O","P","Q","R","S","T","U",
"V","W","X")
row.names(des)<-c(1:24)
}
des<-as.data.frame(des[,1:nfactors] )
return(des)
}
|
session <- RevoIOQ:::saveRUnitSession()
"reg.BLAS.stress" <- function()
{
stopifnot(is.na(NA %*% 0), is.na(0 %*% NA))
x <- matrix(c(1, 0, NA, 1), 2, 2)
y <- matrix(c(1, 0, 0, 2, 1, 0), 3, 2)
(z <- tcrossprod(x, y))
stopifnot(identical(z, x %*% t(y)))
stopifnot(is.nan(log(0) %*% 0))
}
"test.reg.BLAS.stress" <- function()
{
res <- try(reg.BLAS.stress())
checkTrue(!is(res, "try-error"), msg="reg.BLAS stress test failed")
}
"testzzz.restore.session" <- function()
{
checkTrue(RevoIOQ:::restoreRUnitSession(session), msg="Session restoration failed")
}
|
cumul.rma.peto <- function(x, order, digits, transf, targs, progbar=FALSE, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(x), must="rma.peto")
na.act <- getOption("na.action")
if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass")))
stop(mstyle$stop("Unknown 'na.action' specified under options()."))
if (missing(digits)) {
digits <- .get.digits(xdigits=x$digits, dmiss=TRUE)
} else {
digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE)
}
if (missing(transf))
transf <- FALSE
if (missing(targs))
targs <- NULL
ddd <- list(...)
.chkdots(ddd, c("time", "decreasing"))
if (.isTRUE(ddd$time))
time.start <- proc.time()
if (is.null(ddd$decreasing)) {
decreasing <- FALSE
} else {
decreasing <- ddd$decreasing
}
if (grepl("^order\\(", deparse1(substitute(order))))
warning(mstyle$warning("Use of order() in 'order' argument is probably erroneous."), call.=FALSE)
if (missing(order)) {
order <- seq_len(x$k.all)
} else {
mf <- match.call()
order <- .getx("order", mf=mf, data=x$data)
}
if (length(order) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'order' argument (", length(order), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
order <- order[x$subset]
order <- order(order, decreasing=decreasing)
ai.f <- x$ai.f[order]
bi.f <- x$bi.f[order]
ci.f <- x$ci.f[order]
di.f <- x$di.f[order]
yi.f <- x$yi.f[order]
vi.f <- x$vi.f[order]
not.na <- x$not.na[order]
slab <- x$slab[order]
ids <- x$ids[order]
beta <- rep(NA_real_, x$k.f)
se <- rep(NA_real_, x$k.f)
zval <- rep(NA_real_, x$k.f)
pval <- rep(NA_real_, x$k.f)
ci.lb <- rep(NA_real_, x$k.f)
ci.ub <- rep(NA_real_, x$k.f)
QE <- rep(NA_real_, x$k.f)
QEp <- rep(NA_real_, x$k.f)
I2 <- rep(NA_real_, x$k.f)
H2 <- rep(NA_real_, x$k.f)
outlist <- "beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, tau2=tau2, I2=I2, H2=H2"
if (progbar)
pbar <- pbapply::startpb(min=0, max=x$k.f)
for (i in seq_len(x$k.f)) {
if (progbar)
pbapply::setpb(pbar, i)
if (!not.na[i])
next
args <- list(ai=ai.f, bi=bi.f, ci=ci.f, di=di.f, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=seq_len(i), outlist=outlist)
res <- try(suppressWarnings(.do.call(rma.peto, args)), silent=TRUE)
if (inherits(res, "try-error"))
next
beta[i] <- res$beta
se[i] <- res$se
zval[i] <- res$zval
pval[i] <- res$pval
ci.lb[i] <- res$ci.lb
ci.ub[i] <- res$ci.ub
QE[i] <- res$QE
QEp[i] <- res$QEp
I2[i] <- res$I2
H2[i] <- res$H2
}
if (progbar)
pbapply::closepb(pbar)
if (.isTRUE(transf))
transf <- exp
if (is.function(transf)) {
if (is.null(targs)) {
beta <- sapply(beta, transf)
se <- rep(NA,x$k.f)
ci.lb <- sapply(ci.lb, transf)
ci.ub <- sapply(ci.ub, transf)
} else {
beta <- sapply(beta, transf, targs)
se <- rep(NA,x$k.f)
ci.lb <- sapply(ci.lb, transf, targs)
ci.ub <- sapply(ci.ub, transf, targs)
}
transf <- TRUE
}
tmp <- .psort(ci.lb, ci.ub)
ci.lb <- tmp[,1]
ci.ub <- tmp[,2]
if (na.act == "na.omit") {
out <- list(estimate=beta[not.na], se=se[not.na], zval=zval[not.na], pval=pval[not.na], ci.lb=ci.lb[not.na], ci.ub=ci.ub[not.na], Q=QE[not.na], Qp=QEp[not.na], I2=I2[not.na], H2=H2[not.na])
out$slab <- slab[not.na]
out$ids <- ids[not.na]
}
if (na.act == "na.exclude" || na.act == "na.pass") {
out <- list(estimate=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, Q=QE, Qp=QEp, I2=I2, H2=H2)
out$slab <- slab
out$ids <- ids
}
if (na.act == "na.fail" && any(!x$not.na))
stop(mstyle$stop("Missing values in results."))
out$digits <- digits
out$transf <- transf
out$slab.null <- x$slab.null
out$level <- x$level
out$measure <- x$measure
out$test <- x$test
attr(out$estimate, "measure") <- x$measure
if (.isTRUE(ddd$time)) {
time.end <- proc.time()
.print.time(unname(time.end - time.start)[3])
}
class(out) <- c("list.rma", "cumul.rma")
return(out)
}
|
expm <- function(x) {
if (length(dim(x)) != 2 || nrow(x) != ncol(x)) {
stop("input to omxExponential() must be a square matrix")
}
.Call(do_expm_eigen, x)
}
omxExponential <- expm
logm <- function(x, tol = .Machine$double.eps) {
d <- dim(x)
if(length(d) != 2 || d[1] != d[2]) stop("'x' must be a quadratic matrix")
.Call(do_logm_eigen, x)
}
|
met.betweenness.single <- function(m, binary = FALSE, shortest.weight = FALSE, normalization = TRUE, sym = TRUE, out = TRUE, df = NULL, dfid = NULL) {
name <- colnames(m)
if (sym) {
m <- m + t(m)
}
if (binary) {
m <- mat_filter(m, 1, 1)
colnames(m) <- name
rownames(m) <- name
}
if (shortest.weight == FALSE) {
if (normalization) {
number.of.links = sum(m > 0)
avg_strength <- sum(m) / number.of.links
m <- m / avg_strength
}
m <- 1 / m
m[is.infinite(m)] <- 0
}
if (out == FALSE) {
m <- t(m)
}
result <- metric_node_betweeness(m)
result
if (is.null(df)) {
attr(result, "names") <- colnames(m)
result
return(result)
}
else {
if (is.data.frame(df) == FALSE) {
stop("Argument df must be a data frame")
}
if (!is.null(dfid)) {
if (is.null(colnames(m))) {
stop("Argument m doesn't have column names")
}
col.id <- df.col.findId(df, dfid)
df <- df[match(colnames(m), df[, col.id]), ]
}
df[, ncol(df) + 1] <- result
return(df)
}
}
|
gx.scores <-
function (xx, tholds, rwts = NULL, setna = FALSE)
{
if (!is.matrix(xx))
stop(deparse(substitute(xx)), " is not a Matrix")
temp.x <- remove.na(xx)
x <- temp.x$x
n <- temp.x$n
ncolx <- temp.x$m
nthld <- length(tholds)
if (ncolx != nthld)
stop("\n Number of variables and thresholds do not match")
if (!is.null(rwts) && length(rwts) != nthld)
stop("\n Number of thresholds and weights do not match")
for (i in 1:n) {
for (j in 1:nthld) {
x[i,j] <- x[i,j]/tholds[j]
if (x[i,j] < 1) x[i,j] <- 0
if (!is.null(rwts)) x[i,j] <- x[i,j] * rwts[j]
}
}
scores <- rowSums(x)
scores[scores <= 0] <- 0
if (setna) scores[scores <= 0] <- NA
invisible(list(input = deparse(substitute(xx)), tholds = tholds,
rwts = rwts, scores = scores))
}
|
test_that("parallel runs work as planned", {
set.seed(123)
arrival1 <- rkiToBabsimArrivals(babsim.hospital::rkidata)
arrival1 <- data.frame("time" = arrival1[1:1000, ])
para <- babsimHospitalPara()
conf <- babsimToolsConf()
expect_error(
{
babsimHospital(
arrivalTimes = arrival1,
conf = conf,
para = para
)
},
NA
)
})
|
ena.optimize.set <- function(
) {
}
|
demo("SETUP", package = "rstanarm", verbose = FALSE, echo = FALSE, ask = FALSE)
source(paste0(ROOT, "ARM/Ch.3/kidiq.data.R"), local = DATA_ENV, verbose = FALSE)
dat <- with(DATA_ENV, data.frame(kid_score, mom_hs, mom_iq))
post1 <- stan_glm(kid_score ~ mom_hs, data = dat,
family = gaussian(link = "identity"),
seed = SEED, refresh = REFRESH)
post2 <- update(post1, formula = kid_score ~ mom_iq)
post3 <- stan_lm(kid_score ~ mom_hs + mom_iq, data = dat,
prior = R2(location = 0.25, what = "mean"),
seed = SEED, refresh = REFRESH)
post4 <- update(post3, formula = kid_score ~ mom_hs * mom_iq,
prior = R2(location = 0.30, what = "mean"))
loo1 <- loo(post1)
loo2 <- loo(post2)
loo3 <- loo(post3)
loo4 <- loo(post4)
par(mfrow = c(2,2), mar = c(4,4,2,1) + .1)
plot(loo1, label_points = TRUE); title(main = "Model 1")
plot(loo2, label_points = TRUE); title(main = "Model 2")
plot(loo3, label_points = TRUE); title(main = "Model 3")
plot(loo4, label_points = TRUE); title(main = "Model 4")
compare(loo1, loo2, loo3, loo4)
IQ_SEQ <- seq(from = 75, to = 135, by = 5)
y_nohs <- posterior_predict(post4, newdata = data.frame(mom_hs = 0, mom_iq = IQ_SEQ))
y_hs <- posterior_predict(post4, newdata = data.frame(mom_hs = 1, mom_iq = IQ_SEQ))
par(mfrow = c(1:2), mar = c(5,4,2,1))
boxplot(y_hs, axes = FALSE, outline = FALSE, ylim = c(30,160),
xlab = "Mom IQ", ylab = "Predicted Kid IQ", main = "Mom HS")
axis(1, at = 1:ncol(y_hs), labels = IQ_SEQ, las = 3)
axis(2, las = 1)
boxplot(y_nohs, outline = FALSE, col = "red", axes = FALSE, ylim = c(30,160),
xlab = "Mom IQ", ylab = "Predicted Kid IQ", main = "Mom No HS")
axis(1, at = 1:ncol(y_hs), labels = IQ_SEQ, las = 3)
axis(2, las = 1)
source(paste0(ROOT, "ARM/Ch.3/kids_before1987.data.R"),
local = DATA_ENV, verbose = FALSE)
source(paste0(ROOT, "ARM/Ch.3/kids_after1987.data.R"),
local = DATA_ENV, verbose = FALSE)
fit_data <- with(DATA_ENV, data.frame(ppvt, hs, afqt))
pred_data <- with(DATA_ENV, data.frame(ppvt_ev, hs_ev, afqt_ev))
post5 <- stan_lm(ppvt ~ hs + afqt, data = fit_data,
prior = R2(location = 0.25, what = "mean"),
seed = SEED, refresh = REFRESH)
y_ev <- posterior_predict(
post5,
newdata = with(pred_data, data.frame(hs = hs_ev, afqt = afqt_ev))
)
par(mfrow = c(1,1))
hist(-sweep(y_ev, 2, STATS = pred_data$ppvt_ev, FUN = "-"), prob = TRUE,
xlab = "Predictive Errors in ppvt", main = "", las = 2)
ANSWER <- tolower(readline("Do you want to remove the objects this demo created? (y/n) "))
if (ANSWER != "n") {
rm(IQ_SEQ, y_nohs, y_hs, y_ev, ANSWER)
demo("CLEANUP", package = "rstanarm", verbose = FALSE, echo = FALSE, ask = FALSE)
}
|
block_average <-
function(data,
x = t,
y = temp,
report = "full") {
quo_x <- rlang::enquo(x)
quo_y <- rlang::enquo(y)
clim <- data$clim %>%
dplyr::rename(t = !!quo_x,
temp = !!quo_y)
year <- temp <- date_start <- temp_mean <- temp_min <- temp_max <- NULL
temp_yr <- clim %>%
dplyr::group_by(year = lubridate::year(t)) %>%
dplyr::summarise(temp_mean = mean(temp, na.rm = TRUE),
temp_min = min(temp),
temp_max = max(temp))
duration <- count <- int_mean <- int_max <- int_var <- int_cum <-
int_mean_rel_thresh <- int_max_rel_thresh <- int_var_rel_thresh <-
int_cum_rel_thresh <- int_mean_abs <- int_max_abs <- int_var_abs <-
int_cum_abs <- int_mean_norm <- int_max_norm <- rate_onset <-
rate_decline <- total_days <- total_icum <- NULL
event_block <- data$event %>%
dplyr::group_by(year = lubridate::year(date_start)) %>%
dplyr::summarise(count = length(duration),
int_mean = mean(int_mean),
int_max = mean(int_max),
int_var = mean(int_var),
int_cum = mean(int_cum),
int_mean_rel_thresh = mean(int_mean_rel_thresh),
int_max_rel_thresh = mean(int_max_rel_thresh),
int_var_rel_thresh = mean(int_var_rel_thresh),
int_cum_rel_thresh = mean(int_cum_rel_thresh),
int_mean_abs = mean(int_mean_abs),
int_max_abs = mean(int_max_abs),
int_var_abs = mean(int_var_abs),
int_cum_abs = mean(int_cum_abs),
int_mean_norm = mean(int_mean_norm),
int_max_norm = mean(int_max_norm),
rate_onset = mean(rate_onset),
rate_decline = mean(rate_decline),
total_days = sum(duration),
total_icum = sum(int_cum))
if (report == "full") {
event_block <- dplyr::left_join(temp_yr, event_block, by = "year")
} else if (report == "partial") {
event_block <-
dplyr::inner_join(temp_yr, event_block, by = "year")
} else stop("Oops, 'report' must be either 'full' or 'partial'!")
event_block$count[is.na(event_block$count)] <- 0
return(event_block)
}
|
wc.phasediff.image <-
function(WC, use.sAngle = FALSE,
plot.coi = TRUE,
plot.contour = TRUE, which.contour = "wp", siglvl = 0.1, col.contour = "white",
n.levels = 100, color.palette = "rainbow(n.levels, start = 0, end = .7)",
useRaster = TRUE, max.contour.segments = 250000,
plot.legend = TRUE,
legend.params = list(width = 1.2, shrink = 0.9, mar = 5.1,
n.ticks = 6, pi.style = TRUE,
label.digits = 1, label.format = "f",
lab = NULL, lab.line = 3),
label.time.axis = TRUE,
show.date = FALSE, date.format = NULL, date.tz = NULL,
timelab = NULL, timetck = 0.02, timetcl = 0.5,
spec.time.axis = list(at = NULL, labels = TRUE,
las = 1, hadj = NA, padj = NA),
label.period.axis = TRUE,
periodlab = NULL, periodtck = 0.02, periodtcl = 0.5,
spec.period.axis = list(at = NULL, labels = TRUE,
las = 1, hadj = NA, padj = NA),
main = NULL,
lwd = 2, lwd.axis = 1,
graphics.reset = TRUE,
verbose = FALSE) {
if(verbose == T){
out <- function(...){ cat(...) }
}
else{
out <- function(...) { }
}
default.options = options()
options(max.contour.segments = as.integer(max.contour.segments))
if (class(WC) == 'analyze.wavelet') { stop("Your object class is 'analyze.wavelet' --- please use wt.phase.image!") }
series.data = WC$series
axis.1 <- WC$axis.1
axis.2 <- WC$axis.2
if (use.sAngle == T) {
Angle <- WC$sAngle
}
if (use.sAngle == F) {
Angle <- WC$Angle
}
phasediff.levels = seq(-pi,pi,length.out=n.levels+1)
key.cols = rev(eval(parse(text=color.palette)))
if (is.null(legend.params$width)) legend.params$width = 1.2
if (is.null(legend.params$shrink)) legend.params$shrink = 0.9
if (is.null(legend.params$mar)) legend.params$mar = ifelse(is.null(legend.params$lab), 5.1, 6.1)
if (is.null(legend.params$n.ticks)) legend.params$n.ticks = 6
if (is.null(legend.params$pi.style)) legend.params$pi.style = TRUE
if (is.null(legend.params$label.digits)) {
if (legend.params$pi.style == TRUE) {legend.params$label.digits = 1}
else {legend.params$label.digits = 2}
}
if (is.null(legend.params$label.format)) legend.params$label.format = "f"
if (is.null(legend.params$lab.line)) legend.params$lab.line = 3
if (is.null(date.format)) { date.format = WC$date.format }
if (is.null(date.tz)) { date.tz = ifelse(is.null(WC$date.tz),"",WC$date.tz) }
if (!is.list(spec.time.axis)) spec.time.axis = list()
if (is.null(spec.time.axis$at)) spec.time.axis$at = NULL
if (is.null(spec.time.axis$labels)) spec.time.axis$labels = T
if (is.null(spec.time.axis$las)) spec.time.axis$las = 1
if (is.null(spec.time.axis$hadj)) spec.time.axis$hadj = NA
if (is.null(spec.time.axis$padj)) spec.time.axis$padj = NA
time.axis.warning = F
time.axis.warning.na = F
chronology.warning = F
if ( (!is.null(spec.time.axis$at)) & (label.time.axis==F) ) warning("\nPlease set label.time.axis = TRUE to make time axis specification effective.", immediate. = TRUE)
if (!is.list(spec.period.axis)) spec.period.axis = list()
if (is.null(spec.period.axis$at)) spec.period.axis$at = NULL
if (is.null(spec.period.axis$labels)) spec.period.axis$labels = T
if (is.null(spec.period.axis$las)) spec.period.axis$las = 1
if (is.null(spec.period.axis$hadj)) spec.period.axis$hadj = NA
if (is.null(spec.period.axis$padj)) spec.period.axis$padj = NA
period.axis.warning = F
period.axis.warning.na = F
if ( (!is.null(spec.period.axis$at)) & (label.period.axis==F) ) warning("\nPlease set label.period.axis = TRUE to make period axis specification effective.", immediate. = TRUE)
op = par(no.readonly = TRUE)
image.plt = par()$plt
legend.plt = NULL
if (plot.legend == T) {
legend.plt = par()$plt
char.size = par()$cin[1]/par()$din[1]
hoffset = char.size * par()$mar[4]
legend.width = char.size * legend.params$width
legend.mar = char.size * legend.params$mar
legend.plt[2] = 1 - legend.mar
legend.plt[1] = legend.plt[2] - legend.width
vmar = (legend.plt[4] - legend.plt[3]) * ((1 - legend.params$shrink)/2)
legend.plt[4] = legend.plt[4] - vmar
legend.plt[3] = legend.plt[3] + vmar
image.plt[2] = min(image.plt[2], legend.plt[1] - hoffset)
par(plt = legend.plt)
key.marks = round(seq(from = 0, to = 1, length.out=legend.params$n.ticks)*n.levels)
if (legend.params$pi.style == FALSE) {
line.add = 0
key.labels = formatC(as.numeric(phasediff.levels), digits = legend.params$label.digits, format = legend.params$label.format)[key.marks+1]
}
if (legend.params$pi.style == TRUE) {
line.add = 0.6
pi.fac.seq = seq(-1,1,length.out=n.levels+1)
neg.ind = (pi.fac.seq<0)[key.marks+1]
pos.ind = (pi.fac.seq>0)[key.marks+1]
pi.fac = formatC(abs(pi.fac.seq), digits = legend.params$label.digits, format = legend.params$label.format)[key.marks+1]
inner.key.labels = NULL
for (label.i in (2:(legend.params$n.ticks-1))) {
pi.fac.i = pi.fac[label.i]
if (neg.ind[label.i] == TRUE) { inner.key.labels = c( inner.key.labels, bquote(-.(pi.fac.i)*pi)) }
if ((neg.ind[label.i] == FALSE) & (pos.ind[label.i] == FALSE)) { inner.key.labels = c( inner.key.labels, 0) }
if ((neg.ind[label.i] == FALSE) & (pos.ind[label.i] == TRUE)) { inner.key.labels = c( inner.key.labels, bquote(.(pi.fac.i)*pi)) }
}
key.labels = c(expression(-pi), inner.key.labels, expression(pi))
}
image(1, seq(from = 0, to = n.levels), matrix(phasediff.levels, nrow=1), col = key.cols, breaks = phasediff.levels, useRaster=T, xaxt='n', yaxt='n', xlab='', ylab='')
axis(4, lwd=lwd.axis, at=key.marks, labels=NA, tck=0.02, tcl=(par()$usr[2]-par()$usr[1])*legend.params$width-0.04)
mtext(key.labels, side = 4, at = key.marks, adj=1, line = 0.5 + ( 1 + 0.5*legend.params$label.digits + line.add)*par()$cex.axis, las=2, font = par()$font.axis, cex=par()$cex.axis)
text(x = par()$usr[2] + (1.5+legend.params$lab.line)*par()$cxy[1], y=n.levels/2, labels=legend.params$lab, xpd=NA, srt = 270, font = par()$font.lab, cex=par()$cex.lab)
box(lwd = lwd.axis)
par(new=TRUE, plt = image.plt)
}
image(axis.1, axis.2, t(Angle), col = key.cols, breaks = phasediff.levels, useRaster = useRaster,
ylab = "", xlab = '', axes = FALSE, main = main)
if (plot.contour == T) {
if (which.contour == 'wc') {
W.pval = WC$Coherence.pval
}
if (which.contour == 'wp') {
W.pval = WC$Power.xy.pval
}
if (is.null(W.pval) == F) {
contour(axis.1, axis.2, t(W.pval) < siglvl, levels = 1, lwd = lwd,
add = TRUE, col = col.contour, drawlabels = FALSE)
}
}
if (plot.coi == T) {
polygon(WC$coi.1, WC$coi.1, border = NA, col = rgb(1, 1, 1, 0.5))
}
box(lwd = lwd.axis)
if (label.period.axis == T) {
period.axis.default = ( is.null(spec.period.axis$at) )
if ( !period.axis.default ) {
if ( is.numeric(spec.period.axis$at) ) {
period.axis.warning = ( ( sum(spec.period.axis$at<=0, na.rm=T)>0 ) | ( sum(!is.na(spec.period.axis$at)) != sum(is.finite(spec.period.axis$at)) ) )
}
else { period.axis.warning = TRUE }
if ( is.logical(spec.period.axis$labels) ) {
period.axis.warning = ( period.axis.warning | ifelse(length(spec.period.axis$labels)!=1,TRUE, is.na(spec.period.axis$labels)) )
}
if ( !is.logical(spec.period.axis$labels) ) {
period.axis.warning = ( period.axis.warning | (length(spec.period.axis$labels) != length(spec.period.axis$at)) )
}
}
period.axis.default = (period.axis.default | period.axis.warning)
if ( (is.null(periodlab)) | (!is.null(periodlab) & period.axis.warning) ) {periodlab='period'}
if (period.axis.default) {
period.tick = unique(trunc(axis.2))
period.tick[period.tick<log2(WC$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2^(period.tick)
axis(2, lwd = lwd.axis, at = period.tick, labels = NA, tck=periodtck, tcl=periodtcl)
axis(4, lwd = lwd.axis, at = period.tick, labels = NA, tck=periodtck, tcl=periodtcl)
mtext(period.tick.label, side = 2, at = period.tick, las = 1, line = par()$mgp[2]-0.5, font = par()$font.axis, cex=par()$cex.axis)
}
if (!period.axis.default) {
period.tick = log2(spec.period.axis$at)
period.tick[(period.tick<log2(WC$Period[1]))] = NA
period.tick.label = spec.period.axis$labels
which.na = which(is.na(period.tick))
if ( length(which.na)>0 ) { period.axis.warning.na = T }
if ( is.logical(period.tick.label) ) {
if (period.tick.label == T) { period.tick.label = 2^(period.tick) }
}
axis(2, lwd = lwd.axis, at = period.tick, labels = period.tick.label, tck=periodtck, tcl=periodtcl,
las = spec.period.axis$las, hadj = spec.period.axis$hadj, padj=spec.period.axis$padj,
mgp = par()$mgp - c(0,0.5,0), font = par()$font.axis, cex.axis=par()$cex.axis)
axis(4, lwd = lwd.axis, at = period.tick, labels = NA, tck=periodtck, tcl=periodtcl)
}
mtext(periodlab, side = 2, line = par()$mgp[1]-0.5, font = par()$font.lab, cex=par()$cex.lab)
}
if (label.time.axis == T) {
time.axis.default = ( is.null(spec.time.axis$at) )
if (show.date==T) {
if (is.element('date',names(series.data))) { my.date = series.data$date } else { my.date = rownames(series.data) }
if (is.null(date.format)) {
chronology.warning = inherits(try(as.Date(my.date, tz=date.tz), silent=T),'try-error')
if (!chronology.warning) {
my.date = as.Date(my.date, tz=date.tz)
chronology.warning = ifelse( sum(is.na(my.date))> 0, TRUE, sum(diff(my.date, tz=date.tz)<0)>0 )
}
}
if (!is.null(date.format)) {
chronology.warning = inherits(try(as.POSIXct(my.date, format=date.format, tz=date.tz), silent=T),'try-error')
if (!chronology.warning) {
my.date = as.POSIXct(my.date, format=date.format, tz=date.tz)
chronology.warning = ifelse( sum(is.na(my.date))> 0, TRUE, sum(diff(my.date, tz=date.tz)<0)>0 )
}
}
if (chronology.warning) {
show.date = F
time.axis.default = T
timelab = 'index'
}
}
if ( !time.axis.default ) {
if (show.date==F) { time.axis.warning = (!is.numeric(spec.time.axis$at)) }
if (show.date==T) {
if (is.null(date.format)) {
time.axis.warning = inherits(try(as.Date(spec.time.axis$at, tz=date.tz), silent=T), 'try-error')
if (!time.axis.warning) { time.axis.warning = (sum(!is.na(as.Date(spec.time.axis$at, tz=date.tz)))==0) }
}
if (!is.null(date.format)) {
time.axis.warning = inherits(try(as.POSIXct(spec.time.axis$at, format=date.format, tz=date.tz), silent=T),'try-error')
if (!time.axis.warning) { time.axis.warning = (sum(!is.na(as.POSIXct(spec.time.axis$at, format=date.format, tz=date.tz)))==0) }
}
}
if (!time.axis.warning) {
if ( is.logical(spec.time.axis$labels) ) {
time.axis.warning = ( ifelse(length(spec.time.axis$labels)!=1,TRUE, is.na(spec.time.axis$labels)) )
}
if (!is.logical(spec.time.axis$labels)) {
time.axis.warning = ( length(spec.time.axis$labels) != length(spec.time.axis$at) )
}
}
}
time.axis.default = (time.axis.default | time.axis.warning)
}
half.increment.2 = (axis.2[2]-axis.2[1])/2
my.ylim = c(min(axis.2)-half.increment.2, max(axis.2)+half.increment.2)
index.condition = ( (show.date==F) | (label.time.axis==F) )
if ((WC$dt != 1) & (index.condition)) {
par(new=TRUE)
plot(1:WC$nc, seq(min(axis.2),max(axis.2), length.out=WC$nc),
xlim = c(0.5,WC$nc+0.5),
ylim = my.ylim,
type="n",
xaxs = "i", yaxs ='i',
xaxt='n', yaxt='n',
xlab="", ylab="")
}
if (label.time.axis == T) {
if ( (is.null(timelab) & time.axis.default) | (!is.null(timelab) & time.axis.warning) ) {timelab=ifelse(show.date, 'calendar date','index')}
if (show.date == F) {
if (time.axis.default) {
A.1 = axis(1, lwd = lwd.axis, labels=NA, tck = timetck, tcl = timetcl)
mtext(A.1, side = 1, at = A.1, line = par()$mgp[2]-0.5, font = par()$font.axis, cex=par()$cex.axis)
}
if (!time.axis.default) {
time.tick = spec.time.axis$at
time.tick.label = spec.time.axis$labels
which.na = which(is.na(time.tick))
if ( length(which.na)>0 ) { time.axis.warning.na = T }
axis(1, lwd = lwd.axis, at=time.tick, labels=time.tick.label, tck = timetck, tcl = timetcl,
las = spec.time.axis$las, hadj = spec.time.axis$hadj, padj=spec.time.axis$padj,
mgp = par()$mgp - c(0,0.5,0), font = par()$font.axis, cex.axis=par()$cex.axis)
}
mtext(timelab, side = 1, line = par()$mgp[1]-1, font = par()$font.lab, cex=par()$cex.lab)
}
if (show.date == T) {
half.increment = difftime(my.date[2],my.date[1], tz=date.tz)/2
if (is.null(date.format)) { my.xlim = as.Date(range(my.date) - c(half.increment,-half.increment),tz=date.tz) }
else { my.xlim = as.POSIXct(range(my.date) - c(half.increment,-half.increment),format=date.format, tz=date.tz) }
par(new=TRUE)
if (time.axis.default) {
plot(my.date, seq(min(axis.2),max(axis.2), length.out=WC$nc),
xlim = my.xlim,
ylim = my.ylim,
type="n",
xaxs = "i", yaxs ='i',
yaxt='n',
xlab="", ylab="",
lwd = lwd.axis, tck=timetck, tcl=timetcl,
mgp = par()$mgp - c(0,0.5,0), font = par()$font.axis, cex.axis=par()$cex.axis)
}
if (!time.axis.default) {
plot(my.date, seq(min(axis.2),max(axis.2), length.out=WC$nc),
xlim = my.xlim,
ylim = my.ylim,
type="n",
xaxs = "i", yaxs ='i',
xaxt='n', yaxt='n',
xlab="", ylab="")
if (is.null(date.format)) { time.tick = as.Date(spec.time.axis$at, tz=date.tz) }
if (!is.null(date.format)) { time.tick = as.POSIXct(spec.time.axis$at, format=date.format, tz=date.tz) }
time.tick.label = spec.time.axis$labels
which.na = which(is.na(time.tick))
if ( length(which.na)>0 ) { time.axis.warning.na = T }
if ( is.logical(time.tick.label) ) {
if (time.tick.label == T) {time.tick.label = time.tick}
}
axis(1, lwd = lwd.axis, at=time.tick, labels=time.tick.label, tck = timetck, tcl = timetcl,
las = spec.time.axis$las, hadj = spec.time.axis$hadj, padj=spec.time.axis$padj,
mgp = par()$mgp - c(0,0.5,0), font = par()$font.axis, cex.axis=par()$cex.axis)
}
mtext(timelab, side = 1, line = par()$mgp[1]-1, font = par()$font.lab, cex=par()$cex.lab)
}
}
options(default.options)
if (graphics.reset == T) {
par(op)
}
if (chronology.warning) {
warning("\nPlease check your calendar dates, format and time zone: dates may not be in an unambiguous format or chronological. The default numerical axis was used instead.")
}
if (period.axis.warning == T) {
warning("\nPlease check your period axis specifications. Default settings were used.")
}
if (period.axis.warning.na == T) {
warning("\nNAs were produced with your period axis specifications.")
}
if (time.axis.warning == T) {
warning("\nPlease check your time axis specifications. Default settings were used.")
}
if (time.axis.warning.na == T) {
warning("\nNAs were produced with your time axis specifications.")
}
output = list(op = op, image.plt = image.plt, legend.plt=legend.plt)
class(output) = "graphical parameters"
out("Class attributes are accessible through following names:\n")
out(names(output), "\n")
return(invisible(output))
}
|
gradeAllBus<- function(scores, z, zip.cutoffs){
X<- as.numeric(scores)
z<- as.character(z)
zip.cutoffs<- as.data.frame(zip.cutoffs)
if(length(X) != length(z)) stop("length of X and length of z do not match!")
all.bus.grades<- lapply(1:length(X), FUN = function(i) gradeBus(scores[i], z[i], zip.cutoffs))
return(as.character(all.bus.grades))
}
gradeBus<- function(x.bar.i, z.i, zip.cutoffs){
x.bar.i<- as.numeric(x.bar.i)
z.i<- as.character(z.i)
zip.cutoffs<- as.data.frame(zip.cutoffs)
if(ncol(zip.cutoffs) >= 3){
for(j in 2:(ncol(zip.cutoffs)-1)){
if(FALSE %in% (as.numeric(zip.cutoffs[,c(j)]) <= as.numeric(zip.cutoffs[,c(j+1)]))) stop("incorrect specification of ZIP code cutoff frame - cutoffs are not ordered from lowest to highest for each ZIP!")
}
}
zip.of.interest<- zip.cutoffs[which(zip.cutoffs[,c(1)] == z.i),]
no.grades<- ncol(zip.cutoffs)
if(is.na(z.i)==TRUE){
bus.grade=NA
} else if(is.na(x.bar.i)==TRUE){
bus.grade= NA
} else{
letter.index<-match(TRUE, x.bar.i<= as.numeric(zip.of.interest[,c(2:ncol(zip.cutoffs))]), nomatch = ncol(zip.cutoffs))
bus.grade<- LETTERS[letter.index]
}
return(bus.grade)
}
|
venn.diagram.crispr<-
function (x, filename=NULL, height = 3000, width = 3000, resolution = 500,
imagetype = "tiff", units = "px", compression = "lzw", na = "stop",
main = NULL, sub = NULL, main.pos = c(0.5, 1.05), main.fontface = "plain",
main.fontfamily = "serif", main.col = "black", main.cex = 1,
main.just = c(0.5, 1), sub.pos = c(0.5, 1.05), sub.fontface = "plain",
sub.fontfamily = "serif", sub.col = "black", sub.cex = 1,
sub.just = c(0.5, 1), category.names = names(x), force.unique = TRUE,
...)
{
VennDiagram::venn.diagram(...)
}
|
context("Generate SSL Data")
test_that("generateFourClusters does not return error",{
library(ggplot2)
data <- generateFourClusters()
expect_silent(ggplot(data,aes(x=X1,y=X2,color=Class)) + geom_point())
})
test_that("generateCrescentMoon does not return error",{
library(ggplot2)
data <- generateCrescentMoon()
expect_silent(ggplot(data,aes(x=X1,y=X2,color=Class)) + geom_point())
})
test_that("generate2ClassGaussian does not return error",{
library(ggplot2)
data <- generate2ClassGaussian()
expect_silent(ggplot(data,aes(x=X1,y=X2,color=Class)) + geom_point())
})
test_that("generateTwoCircles does not return error",{
library(ggplot2)
data <- generateTwoCircles()
expect_silent(ggplot(data,aes(x=X1,y=X2,color=Class)) + geom_point())
})
|
generateRandomDesign = function(n = 10L, par.set, trafo = FALSE) {
doBasicGenDesignChecks(par.set)
des = sampleValues(par.set, n, discrete.names = TRUE, trafo = trafo)
elementsToDf = function(x) {
Map(function(p, v) {
if (isScalarNA(v)) {
v = as.data.frame(t(rep(v, p$len)), stringsAsFactors = TRUE)
} else {
as.data.frame(t(v), stringsAsFactors = TRUE)
}
}, par.set$pars, x)
}
des = lapply(des, elementsToDf)
des = lapply(des, do.call, what = cbind)
des = do.call(rbind, des)
colnames(des) = getParamIds(par.set, repeated = TRUE, with.nr = TRUE)
des = fixDesignFactors(des, par.set)
attr(des, "trafo") = trafo
return(des)
}
|
html_vignette <- function(fig_width = 6,
fig_height = 6,
dev = 'png',
css = NULL,
...) {
if (is.null(css)) {
css <- system.file("rmarkdown", "templates", "html_vignette" ,"resources",
"vignette.css", package = "rmarkdown")
}
html_document(fig_width = fig_width,
fig_height = fig_height,
dev = dev,
fig_retina = FALSE,
css = css,
theme = NULL,
highlight = "pygments",
...)
}
options(repos = c(CRAN="http://cran.r-project.org"))
if("caRpools" %in% rownames(installed.packages()) == FALSE) {install.packages("caRpools")}
library(caRpools,warn.conflicts = FALSE, quietly = TRUE,verbose =FALSE)
load.packages()
data(caRpools)
CONTROL1.g.annotate=aggregatetogenes(data.frame = CONTROL1, agg.function=sum,
extractpattern = expression("^(.+?)(_.+)"), type="annotate")
knitr::kable(CONTROL1.g.annotate[1:10,])
CONTROL1.replaced = get.gene.info(CONTROL1, namecolumn=1, host="www.ensembl.org",
extractpattern=expression("^(.+?)(_.+)"), database="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl",
filters="hgnc_symbol", attributes =c("ensembl_gene_id"), return.val = "dataset")
knitr::kable(CONTROL1.replaced[1:10,])
CONTROL1.replaced.info = get.gene.info(CONTROL1, namecolumn=1, host="www.ensembl.org",
extractpattern=expression("^(.+?)(_.+)"), database="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl",
filters="hgnc_symbol", attributes = c("ensembl_gene_id","description"), return.val = "info")
knitr::kable(CONTROL1.replaced.info[1:10,])
U1.stats = stats.data(dataset=CONTROL1, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), type="stats")
U2.stats = stats.data(dataset=CONTROL2, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), type="stats")
T1.stats =stats.data(dataset=TREAT1, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), type="stats")
T2.stats =stats.data(dataset=TREAT2, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), type="stats")
combined.stats = cbind.data.frame(U1.stats[,1:2], U2.stats[,2], T1.stats[,2], T2.stats[,2])
colnames(combined.stats) = c("Readcount", d.CONTROL1, d.CONTROL2, d.TREAT1, d.TREAT2)
knitr::kable(stats.data(dataset=CONTROL1, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), readcount.unmapped.total = 1786217, type="mapping"))
knitr::kable(stats.data(dataset=CONTROL1, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), readcount.unmapped.total = 1786217,
type="stats"))
knitr::kable(stats.data(dataset=CONTROL1, namecolumn = 1, fullmatchcolumn = 2,
extractpattern=expression("^(.+?)_.+"), readcount.unmapped.total = 1786217,
type="dataset")[1:10,1:5])
U1.unmapped = unmapped.genes(data=CONTROL1, namecolumn=1, fullmatchcolumn=2, genes=NULL, extractpattern=expression("^(.+?)_.+"))
xlsx::write.xlsx(U1.unmapped, file="DROPOUT.xls", sheetName=d.CONTROL1, row.names=FALSE)
U1.unmapped = unmapped.genes(data=CONTROL1, namecolumn=1, fullmatchcolumn=2, genes="random", extractpattern=expression("^(.+?)_.+"))
carpools.read.distribution(CONTROL1, fullmatchcolumn=2,breaks=200,
title=d.CONTROL1, xlab="log2 Readcount", ylab="
carpools.read.distribution(CONTROL1, fullmatchcolumn=2,breaks=200,
title=d.CONTROL1, xlab="log2 Readcount", ylab="
type="whisker")
carpools.read.distribution(CONTROL1, fullmatchcolumn=2,breaks=200,
title=d.CONTROL1, xlab="log2 Readcount", ylab="
carpools.read.depth(datasets = list(CONTROL1), namecolumn=1 ,fullmatchcolumn=2,
dataset.names=list(d.CONTROL1), extractpattern=expression("^(.+?)_.+"),
xlab="Genes", ylab="Read Count per sgRNA",statistics=TRUE, labelgenes = NULL,
controls.target = "CASP8", controls.nontarget="random", waterfall=FALSE)
carpools.read.depth(datasets = list(CONTROL1), namecolumn=1 ,fullmatchcolumn=2,
dataset.names=list(d.CONTROL1), extractpattern=expression("^(.+?)_.+"),
xlab="Genes", ylab="Read Count per sgRNA",statistics=TRUE, labelgenes = NULL,
controls.target = "CASP8", controls.nontarget="random", waterfall=TRUE)
control1.readspergene = carpools.reads.genedesigns(CONTROL1, namecolumn=1, fullmatchcolumn=2, title=paste("% sgRNAs:", d.CONTROL1, sep=" "), xlab="% of sgRNAs present", ylab="
carpools.read.count.vs(dataset=list(TREAT1,CONTROL1), dataset.names = c(d.TREAT1, d.CONTROL1),
pairs=FALSE, namecolumn=1, fullmatchcolumn=2, title="", pch=16,
normalize=TRUE, norm.function=median, labelgenes="random", labelcolor="blue",
center=FALSE, aggregated=FALSE)
carpools.read.count.vs(dataset=list(TREAT1,CONTROL1), dataset.names = c(d.TREAT1, d.CONTROL1),
pairs=FALSE, namecolumn=1, fullmatchcolumn=2, title="", pch=16,
normalize=TRUE, norm.function=median, labelgenes="random", labelcolor="blue",
center=TRUE, aggregated=FALSE)
carpools.read.count.vs(dataset=list(TREAT1.g,CONTROL1.g), dataset.names = c(d.TREAT1, d.CONTROL1),
pairs=FALSE, namecolumn=1, fullmatchcolumn=2, title="", pch=16,
normalize=TRUE, norm.function=median, labelgenes="CASP8", labelcolor="red",
center=FALSE, aggregated=TRUE)
carpools.read.count.vs(dataset=list(TREAT1, TREAT2, CONTROL1, CONTROL2),
dataset.names = c(d.TREAT1, d.TREAT2, d.CONTROL1, d.CONTROL2), pairs=TRUE, namecolumn=1,
fullmatchcolumn=2, title="", pch=16, normalize=TRUE, norm.function=median,
labelgenes="random", labelcolor="blue", center=FALSE, aggregated=FALSE)
carpools.read.count.vs(dataset=list(TREAT1.g, TREAT2.g, CONTROL1.g, CONTROL2.g),
dataset.names = c(d.TREAT1, d.TREAT2, d.CONTROL1, d.CONTROL2), pairs=TRUE, namecolumn=1,
fullmatchcolumn=2, title="", pch=16, normalize=TRUE, norm.function=median,
labelgenes="CASP8", labelcolor="blue", center=FALSE, aggregated=TRUE)
p1 = carpools.raw.genes(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1, TREAT2), genes="CASP8", namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)_.+"),
do.plot=TRUE, log=FALSE, put.names=TRUE, type="foldchange" )
p2 = carpools.raw.genes(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1, TREAT2), genes="CASP8", namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)_.+"),
do.plot=TRUE, log=FALSE, put.names=TRUE, type="z-ratio" )
p3 = carpools.raw.genes(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1, TREAT2), genes="CASP8", namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)_.+"),
do.plot=TRUE, log=FALSE, put.names=TRUE, type="readcount" )
p4 = carpools.raw.genes(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1, TREAT2), genes="CASP8", namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)_.+"),
do.plot=TRUE, log=FALSE, put.names=TRUE, type="vioplot" )
data.wilcox = stat.wilcox(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1,TREAT2), namecolumn=1, fullmatchcolumn=2,
normalize=TRUE, norm.fun=median, sorting=FALSE, controls="random",
control.picks=NULL)
data.deseq = stat.DESeq(untreated.list = list(CONTROL1, CONTROL2),
treated.list = list(TREAT1,TREAT2), namecolumn=1,
fullmatchcolumn=2, extractpattern=expression("^(.+?)(_.+)"),
sorting=FALSE, filename.deseq = "ANALYSIS-DESeq2-sgRNA.tab",
fitType="parametric")
data.mageck = stat.mageck(untreated.list = list(CONTROL1, CONTROL2), treated.list = list(TREAT1,TREAT2), namecolumn=1, fullmatchcolumn=2, norm.fun="median", extractpattern=expression("^(.+?)(_.+)"), mageckfolder=NULL, sort.criteria="neg", adjust.method="fdr", filename = "TEST" , fdr.pval = 0.05)
carpools.waterfall.pval(type="mageck", dataset=data.mageck, pval=0.05, log=TRUE)
mageck.result = carpools.hitident(data.mageck, type="mageck", title="MAGeCK", inches=0.1, print.names=TRUE, plot.p=0.05, offsetplot=1.2, sgRNA.top=1)
wilcox.result = carpools.hitident(data.wilcox, type="wilcox", title="Wilcox", inches=0.1, print.names=TRUE, plot.p=0.05, offsetplot=1.2, sgRNA.top=1)
carpools.hit.overview(wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck,
cutoff.deseq = 0.001, cutoff.wilcox = 0.05, cutoff.mageck = 0.05,
cutoff.override=FALSE, cutoff.hits=NULL, plot.genes="overlapping", type="enriched")
venn.enriched = compare.analysis(wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck, type="enriched", cutoff.deseq = 0.001, cutoff.wilcox = 0.05, cutoff.mageck = 0.05, cutoff.override=FALSE, cutoff.hits=NULL, output="venn")
require(VennDiagram)
plot.new()
grid::grid.draw(VennDiagram::venn.diagram(venn.enriched, file=NULL, fill=c("lightgreen","lightblue2","lightgray"), na="remove", cex=2,lty=2, cat.cex=2))
data.analysis.enriched = compare.analysis(wilcox=data.wilcox,
deseq=data.deseq, mageck=data.mageck, type="enriched",
cutoff.override = FALSE, cutoff.hits=NULL, output="list",
sort.by=c("mageck","fdr","rank"))
xlsx::write.xlsx(data.analysis.enriched,
file="COMPARE-HITS.xls",
sheetName="Enriched")
knitr::kable(data.analysis.enriched[1:10,c(2:7)])
data.analysis.enriched = compare.analysis(wilcox=data.wilcox,
deseq=data.deseq, mageck=data.mageck, type="enriched",
cutoff.override = FALSE, cutoff.hits=NULL, output="rank",
sort.by=c("mageck","fdr","rank"))
xlsx::write.xlsx(data.analysis.enriched,
file="COMPARE-RANKs.xls",
sheetName="Enriched")
knitr::kable(data.analysis.enriched[1:10,])
compared = compare.analysis( wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck, type="enriched", cutoff.deseq = 0.001, cutoff.wilcox = 0.05, cutoff.mageck = 0.05, cutoff.override=FALSE, cutoff.hits=NULL, output="3dplot", sort.by=c("mageck","rank","rank"), plot.method=c("wilcox","deseq","mageck"), plot.feature=c("pval","pval","fdr"))
final.tab = final.table(wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck, dataset=CONTROL1.g, namecolumn=1, type="genes")
xlsx::write.xlsx(final.tab, "FINAL.xls", sheetName="Genelist",
col.names=TRUE, row.names=FALSE, append=FALSE, showNA=TRUE)
overlap.enriched = generate.hits(wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck, type="enriched", cutoff.deseq = 0.001, cutoff.wilcox = 0.05, cutoff.mageck = 0.05, cutoff.override=FALSE, cutoff.hits=NULL , plot.genes="overlapping")
plothitsscatter.enriched = carpools.hit.scatter(wilcox=data.wilcox, deseq=data.deseq, mageck=data.mageck, dataset=list(TREAT1, TREAT2, CONTROL1, CONTROL2), dataset.names = c(d.TREAT1, d.TREAT2, d.CONTROL1, d.CONTROL2), namecolumn=1, fullmatchcolumn=2, title="Title", labelgenes="CASP8", labelcolor="orange", extractpattern=expression("^(.+?)(_.+)"), normalize=TRUE, norm.function=median, offsetplot=1.2, center=FALSE, aggregated=FALSE, type="enriched", cutoff.deseq = 0.001, cutoff.wilcox = 0.05, cutoff.mageck = 0.05, cutoff.override=FALSE, cutoff.hits=NULL, pch=16)
sgrnas.en = carpools.hit.sgrna(wilcox=data.wilcox, deseq=data.deseq,
mageck=data.mageck, dataset=list(CONTROL1, CONTROL2, TREAT1, TREAT2),
dataset.names = c(d.CONTROL1, d.CONTROL2, d.TREAT1, d.TREAT2), namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)(_.+)"),
put.names=TRUE, type="enriched", labelgenes="CASP8", plot.type=NULL,
cutoff.deseq = 0.001, cutoff.wilcox=0.05, cutoff.mageck = 0.05,
cutoff.override=FALSE, cutoff.hits=NULL, controls.target="CASP8", controls.nontarget="random")
sgrnas.en.table = carpools.sgrna.table(wilcox=data.wilcox, deseq=data.deseq,
mageck=data.mageck, dataset=list(CONTROL1, CONTROL2, TREAT1, TREAT2),
dataset.names = c(d.CONTROL1, d.CONTROL2, d.TREAT1, d.TREAT2), namecolumn=1,
fullmatchcolumn=2, norm.function=median, extractpattern=expression("^(.+?)(_.+)"),
type="enriched", labelgenes="CASP8", cutoff.deseq = 0.001, cutoff.wilcox=0.05,
cutoff.mageck = 0.05, cutoff.override=FALSE, cutoff.hits=NULL, sgrna.file = libFILE,
write=FALSE)
|
check.type.one.var <- function(data.to.work, show.message=0, variable.name)
{
typeVars <- vector(mode = "numeric", length = 4)
commandAssign <- paste("typeVars[1] <- length(sapply(data.to.work$", variable.name,", is.character)[sapply(data.to.work$", variable.name,", is.character)==TRUE])", sep = "")
eval(parse(text=commandAssign))
commandAssign <- paste("typeVars[2] <- length(sapply(data.to.work$", variable.name,", is.integer)[sapply(data.to.work$", variable.name,", is.numeric)==TRUE])", sep = "")
eval(parse(text=commandAssign))
commandAssign <- paste("typeVars[3] <- length(sapply(data.to.work$", variable.name,", is.numeric)[sapply(data.to.work$", variable.name,", is.numeric)==TRUE])", sep = "")
eval(parse(text=commandAssign))
commandAssign <- paste("typeVars[4] <- length(sapply(data.to.work$", variable.name,", is.factor)[sapply(data.to.work$", variable.name,", is.factor)==TRUE])", sep = "")
eval(parse(text=commandAssign))
result.type <- 0
if (typeVars[1] > 0)
{
result.type <- 8
} else if (typeVars[2] > 0)
{
result.type <- 1
} else if (typeVars[3] > 0)
{
if (check.dichotomic.one.var(data.to.work, variable.name) == TRUE)
{
result.type <- 9
} else
{
result.type <- 2
}
} else if (typeVars[4] > 0)
{
result.type <- 3
}
return(result.type)
}
|
context("is-methods")
invisible(linting_opts(suppress_pkgcheck_warnings = TRUE))
test_that("is-methods", {
expect_is(is_generator, "function")
expect_is(is.point, "function")
expect_is(is.multipoint, "function")
expect_is(is.linestring, "function")
expect_is(is.multilinestring, "function")
expect_is(is.polygon, "function")
expect_is(is.multipolygon, "function")
expect_is(is.feature, "function")
expect_is(is.featurecollection, "function")
expect_is(is.geometrycollection, "function")
pt <- point('{ "type": "Point", "coordinates": [100.0, 0.0] }')
mpt <- multipoint('{"type": "MultiPoint", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }')
ls <- linestring('{ "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }')
x <- '{ "type": "MultiLineString",
"coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] }'
mls <- multilinestring(x)
x <- '{ "type": "Polygon",
"coordinates": [
[ [100.0, 0.0], [100.0, 1.0], [101.0, 1.0], [101.0, 0.0], [100.0, 0.0] ]
]
}'
pg <- polygon(x)
x <- '{ "type": "MultiPolygon",
"coordinates": [
[[[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]],
[[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]],
[[100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2]]]
]
}'
mpg <- multipolygon(x)
ft <- feature(pt)
fc <- featurecollection(geojson_data$polygons_within)
x <- '{
"type": "GeometryCollection",
"geometries": [
{
"type": "Point",
"coordinates": [100.0, 0.0]
},
{
"type": "LineString",
"coordinates": [ [101.0, 0.0], [102.0, 1.0] ]
}
]
}'
gc <- geometrycollection(x)
expect_null(is.point(pt))
expect_null(is.multipoint(mpt))
expect_null(is.linestring(ls))
expect_null(is.multilinestring(mls))
expect_null(is.polygon(pg))
expect_null(is.multipolygon(mpg))
expect_null(is.feature(ft))
expect_null(is.featurecollection(fc))
expect_null(is.geometrycollection(gc))
})
test_that("is-methods fail well", {
expect_error(is_generator(), "argument \"x\" is missing")
expect_error(is.point(), "argument \"x\" is missing")
expect_error(is.multipoint(), "argument \"x\" is missing")
expect_error(is.linestring(), "argument \"x\" is missing")
expect_error(is.multilinestring(), "argument \"x\" is missing")
expect_error(is.polygon(), "argument \"x\" is missing")
expect_error(is.multipolygon(), "argument \"x\" is missing")
expect_error(is.feature(), "argument \"x\" is missing")
expect_error(is.featurecollection(), "argument \"x\" is missing")
expect_error(is.geometrycollection(), "argument \"x\" is missing")
expect_error(is.point("foobar"), "x must be of class 'geopoint'")
expect_error(is.multipoint("foobar"), "x must be of class 'geomultipoint'")
expect_error(is.linestring("foobar"), "x must be of class 'geolinestring'")
expect_error(is.multilinestring("foobar"),
"x must be of class 'geomultilinestring'")
expect_error(is.polygon("foobar"), "x must be of class 'geopolygon'")
expect_error(is.multipolygon("foobar"),
"x must be of class 'geomultipolygon'")
expect_error(is.feature("foobar"), "x must be of class 'geofeature'")
expect_error(is.featurecollection("foobar"),
"x must be of class 'geofeaturecollection'")
expect_error(is.geometrycollection("foobar"),
"x must be of class 'geogeometrycollection'")
})
|
context("Negative binomial regression")
set.seed(1, kind="Mersenne-Twister", normal.kind="Inversion")
n <- 1000L
r <- 0.17
df <- data.frame(x1=rnorm(n), x2=runif(n))
mod <- ~ reg(~ 1 + x1 + x2, b0=c(3, 1, 0.5), Q0=1e10*diag(3), name="beta")
dat <- generate_data(mod, family="negbinomial", ry=r, r.mod=pr_fixed(value=1), data=df)
test_that("fitting a negative binomial model works", {
sampler <- create_sampler(dat$y ~ reg(~ 1 + x1 + x2, name="beta"), data=df,
family="negbinomial", ry=r, r.mod=pr_fixed(value=1))
sim <- MCMCsim(sampler, n.iter=400L, burnin=150L, n.chain=2L, verbose=FALSE)
summ <- summary(sim)
expect_equivalent(summ$beta[, "Mean"], dat$pars$beta, tol=0.5)
DIC <- compute_DIC(sim)
WAIC <- compute_WAIC(sim)
expect_true(abs((DIC["DIC"] - WAIC["WAIC2"])/abs(DIC["DIC"])) < 0.05)
pred <- as.matrix(predict(sim, type="response", iters=1:100, show.progress=FALSE))
expect_equivalent(r*mean(pred/(1 - pred)), mean(dat$y), tol=2)
})
test_that("fitting a negative binomial model with scaled beta prime prior on dispersion parameter works", {
sampler <- create_sampler(dat$y ~ x1 + x2, data=df, family="negbinomial", r.mod=pr_invchisq(df=1, scale="modeled"))
sim <- MCMCsim(sampler, n.iter=400L, burnin=150L, n.chain=2L, verbose=FALSE)
summ <- summary(sim)
expect_true(abs(summ$negbin_r_[, "Mean"] - r) < 0.05)
compute_DIC(sim)
})
test_that("fitting a negative binomial model with chi-squared prior on dispersion parameter works", {
sampler <- create_sampler(dat$y ~ x1 + x2, data=df, family="negbinomial", r.mod=pr_invchisq(df=1, scale=1))
sim <- MCMCsim(sampler, n.iter=400L, burnin=150L, n.chain=2L, verbose=FALSE)
summ <- summary(sim)
expect_true(abs(summ$negbin_r_[, "Mean"] - r) < 0.05)
compute_DIC(sim)
})
test_that("fitting a negative binomial model with GIG prior on dispersion parameter works", {
sampler <- create_sampler(dat$y ~ x1 + x2, data=df, family="negbinomial", r.mod=pr_gig(a=0, b=1, p=-1/2))
sim <- MCMCsim(sampler, n.iter=400L, burnin=150L, n.chain=2L, verbose=FALSE)
summ <- summary(sim)
expect_true(abs(summ$negbin_r_[, "Mean"] - r) < 0.05)
compute_DIC(sim)
})
test_that("fitting a negative binomial model with dispersion parameter fixed by prior works", {
sampler <- create_sampler(dat$y ~ x1 + x2, data=df, family="negbinomial", r.mod=pr_fixed(value=1/r))
expect_true(all(replicate(10, sampler$rprior()$negbin_r_) == r))
sim <- MCMCsim(sampler, n.iter=400L, burnin=150L, n.chain=2L, verbose=FALSE)
summ <- summary(sim)
expect_true(abs(summ$negbin_r_[, "Mean"] - r) < 0.05)
compute_DIC(sim)
})
n <- 1000L
r <- 1
df <- data.frame(x1=rnorm(n), x2=runif(n), f=factor(sample(1:25, n, replace=TRUE)))
mod <- ~ reg(~ 1 + x1 + x2, b0=c(3, 1, 0.5), Q0=1e10*diag(3), name="beta") +
gen(factor=~f, prior=pr_invchisq(df=1000, scale=0.1), name="v")
ry <- c(rep.int(1, 500), rep.int(5, 500))
dat <- generate_data(mod, family="negbinomial", ry=ry, r.mod=pr_fixed(value=1/r), data=df)
test_that("prediction works well for negative binomial data", {
s <- 1:500
sampler <- create_sampler(dat$y[s] ~ x1 + x2 + gen(factor=~f), data=df[s, ],
family="negbinomial", ry=ry[s], block=TRUE)
sim <- MCMCsim(sampler, n.iter=500L, burnin=200L, n.chain=2L, store.all=TRUE,
start=list(list(negbin_r_=2), list(negbin_r_=3)), verbose=FALSE)
summ <- summary(sim)
expect_true(abs(summ$negbin_r_[, "Mean"] - r) < 0.25)
sn <- 501:1000
pred <- predict(sim, newdata=df[sn, ], ry=ry[sn], fun.=function(x) sum(x), show.progress=FALSE)
summ <- summary(pred)
expect_true(abs(summ[, "Mean"] - sum(dat$y[sn])) < 50000)
})
|
widals.predict <-
function(Z, Hs, Ht, Hst.ls, locs, lags, b.lag, Hs0, Hst0.ls, locs0, geodesic=FALSE, wrap.around=NULL, GP, stnd.d=FALSE, ltco=-16) {
tau <- nrow(Z)
n <- nrow(locs)
k <- length(lags)
n0 <- nrow(locs0)
rho <- GP[ 1 ]
reg <- GP[ 2 ]
alpha <- GP[ 3 ]
beta <- GP[ 4 ]
flatten <- GP[ 5 ]
locs0.3D <- cbind( locs0, rep(0, n0) )
locs.long.3D <- cbind( rep(locs[ ,1], k), rep(locs[ ,2], k), beta*rep( lags, each=n ) )
z.lags.vec <- rep( lags, each=n )
ALS <- H.als.b(Z=Z, Hs=Hs, Ht=Ht, Hst.ls=Hst.ls, rho=rho, reg=reg, b.lag=b.lag, Hs0=Hs0, Ht0=Ht, Hst0.ls=Hst0.ls)
Y.als <- ALS$Z.hat ; dim(Y.als)
Y0.als <- ALS$Z0.hat ; dim(Y0.als)
rm(ALS)
Z.delta <- Z - Y.als
Z.delta <- Z.clean.up( Z.delta )
Z.adj <- crispify( locs1=locs0.3D, locs2=locs.long.3D, Z.delta=Z.delta, z.lags.vec=z.lags.vec, geodesic=geodesic,
alpha=alpha, flatten=flatten, self.refs=c(-1), lags=lags, stnd.d=stnd.d, log10cutoff=ltco )
Z0.wid <- Y0.als + Z.adj
return(Z0.wid)
}
|
generate_data <- function(formula) {
print("generate data")
df <- seq(from = -pi, to = pi, by = 0.01) %>%
expand.grid(x_i = ., y_i = .) %>%
dplyr::mutate(!!!formula)
return(df)
}
|
NULL
.dittodb_env <- new.env(parent = emptyenv())
set_default_db_mock_paths()
|
material_tab_content <- function(tab_id, ...){
shiny::tagList(
shiny::tags$div(
class = "col s12 shiny-material-tab-content",
id = tab_id,
style = "visibility:hidden",
...
),
shiny::singleton(
shiny::includeScript(
system.file("js/shiny-material-tabs.js",
package = "shinymaterial")
)
)
)
}
|
test_that("Elasticity function returns 2 for the CES_sigma_2 dataset", {
elas <- elasticity(CES_sigma_2, pvar = "prices", qvar = "quantities", pervar = "time", prodID = "prodID",
compIndex = "ces")
expect_equal(elas$sigma, 2, tolerance = 0.0000001)
})
|
GLVmix <- function (t, s, m, u = 30, v = 30, ...)
{
n <- length(t)
w <- rep(1, n)/n
eps <- 1e-04
if(length(m) == 1) m <- rep(m, length(t))
r <- (m - 1)/2
if (length(u) == 1)
u <- seq(min(t) - eps, max(t) + eps, length = u)
if (length(v) == 1)
v <- seq(min(s) - eps, max(s) + eps, length = v)
pu <- length(u)
du <- rep(1, pu)
pv <- length(v)
dv <- rep(1, pv)
R <- outer(r * s, v, "/")
G <- outer(s * gamma(r), rep(1, pv))
r <- outer((m - 1)/2, rep(1, pv))
Av <- outer((exp(-R) * R^r)/G, rep(1,pu))
Av <- aperm(Av,c(1,3,2))
Au <- dnorm(outer(outer(t, u, "-") *
outer(sqrt(m), rep(1, pu)), sqrt(v), "/"))
Au <- Au/outer(outer(1/sqrt(m), rep(1, pu)), sqrt(v))
Auv <- Av * Au
A <- NULL
for (j in 1:pv) A <- cbind(A, Auv[, , j])
duv = as.vector(kronecker(du, dv))
f <- KWDual(A, duv, w, ...)
fuv <- f$f
uv <- expand.grid(alpha = u, theta = v)
g <- as.vector(A %*% (duv * fuv))
logLik <- n * sum(w * log(f$g))
du <- A%*%(uv[,1] * duv * fuv)/g
dv <- A %*% (uv[,2] * duv * fuv)/g
z <- list(u = u, v = v, fuv = fuv, logLik = logLik,
du = du, dv = dv, A = A, status = f$status)
class(z) <- "GLVmix"
z
}
|
"throat.otu.tab"
|
zip_code <-
function (n, k = 10, x = 10000:99999, prob = NULL, name = "Zip") {
stopifnot(k < length(x) || k > 0)
if (!is.null(prob) && length(prob) != k) stop("length of `prob` must equa `k`")
out <- sample(x = lvls <- gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", sample(x, k),
perl=TRUE), size = n, replace = TRUE, prob = prob)
varname(out, name)
}
|
cv.boosting <- function(training.data,training.y,wt,control)
{
boost.rounds <- control$boost.rounds
n.training <- length(training.y)
cv.div <- n.training%/%5
cv.mod <- n.training%%5
error5.list <- vector("list",5)
for(i in 1:5) error5.list[[i]] <- matrix(NA_real_,4,boost.rounds)
samp5.cv <- sample(1:n.training,replace=FALSE)
samp5.n <- rep(cv.div,5)
if(cv.mod>0) samp5.n[1:cv.mod] <- samp5.n[1:cv.mod]+1
samp5.ends <- cumsum(samp5.n)
samp5.starts <- c(1,samp5.ends[1:4]+1)
samp5.list <- vector("list",5)
for(i in 1:5) samp5.list[[i]] <- sort(samp5.cv[samp5.starts[i]:samp5.ends[i]])
training5.list <- vector("list",5)
test5.list <- vector("list",5)
for(i in 1:5) training5.list[[i]] <- training.data[-samp5.list[[i]],]
for(i in 1:5) test5.list[[i]] <- training.data[samp5.list[[i]],]
trainingy5.list <- vector("list",5)
testy5.list <- vector("list",5)
for(i in 1:5) trainingy5.list[[i]] <- training.y[-samp5.list[[i]]]
for(i in 1:5) testy5.list[[i]] <- training.y[samp5.list[[i]]]
wt5.list <- vector("list",5)
for(i in 1:5) wt5.list[[i]] <- wt[-samp5.list[[i]]]
for(i in 2:5)
{
print(paste(i,"Boosting Partitions"))
control$cut.off.growth <- i
for(j in 1:5)
{
pdfit <- run.boosting(x=training5.list[[j]],y=as.matrix(trainingy5.list[[j]]),wt=wt5.list[[j]],x.test=test5.list[[j]],y.test=testy5.list[[j]],control = control)
error5.list[[j]][i-1,] <- pdfit$Test.Set.Errors
}
}
error.5cv <- error5.list[[1]]+error5.list[[2]]+error5.list[[3]]+error5.list[[4]]+error5.list[[5]]
min.5partitions <- apply(error.5cv,1,min)
order.5min.partitions <- order(min.5partitions)[1]
boost.5part <- order.5min.partitions+1
boost.5rounds <- order(error.5cv[order.5min.partitions,])[1]
list(boost.5part=boost.5part,boost.5rounds=boost.5rounds)
}
|
analyse_Al2O3C_ITC <- function(
object,
signal_integral = NULL,
dose_points = c(2,4,8,12,16),
recordType = c("OSL (UVVIS)"),
method_control = NULL,
verbose = TRUE,
plot = TRUE,
...
){
if(is.list(object)){
if(!all(unique(sapply(object, class)) == "RLum.Analysis")){
stop("[analyse_Al2O3C()] All objects in the list provided by 'objects' need to be of type 'RLum.Analysis'",
call. = FALSE)
}
if(!is.null(signal_integral)){
signal_integral <- rep(list(signal_integral, length = length(object)))
}
if(is(dose_points, "list")){
dose.points <- rep(dose_points, length = length(object))
}else{
dose_points <- rep(list(dose_points), length = length(object))
}
results_full <- lapply(1:length(object), function(x){
results <- try(analyse_Al2O3C_ITC(
object = object[[x]],
signal_integral = signal_integral[[x]],
dose_points = dose_points[[x]],
method_control = method_control,
verbose = verbose,
plot = plot,
main = ifelse("main"%in% names(list(...)), list(...)$main, paste0("ALQ
...
))
if(inherits(results, "try-error")){
return(NULL)
}else{
return(results)
}
})
return(merge_RLum(results_full))
}
if(class(object) != "RLum.Analysis"){
stop("[analyse_Al2O3C_ITC()] 'object' needs to be of type 'RLum.Analysis'", call. = FALSE)
}
if(!is.null(recordType)){
object <- get_RLum(object, recordType = recordType, drop = FALSE)
}
method_control_settings <- list(
mode = "extrapolation",
fit.method = "EXP"
)
if(!is.null(method_control)){
method_control_settings <- modifyList(x = method_control_settings, val = method_control)
}
dose_points <- rep(dose_points, times = length(object)/2)
if(is.null(signal_integral)){
signal_integral <- c(1:nrow(object[[1]][]))
}else{
if(min(signal_integral) < 1 | max(signal_integral) > nrow(object[[1]][])){
signal_integral <- c(1:nrow(object[[1]][]))
warning(
paste0(
"[analyse_Al2O3C_ITC()] Input for 'signal_integral' corrected to 1:", nrow(object[[1]][])
),
call. = FALSE
)
}
}
net_SIGNAL <- vapply(1:length(object[seq(1,length(object), by = 2)]), function(x){
temp_signal <- sum(object[seq(1,length(object), by = 2)][[x]][,2])
temp_background <- sum(object[seq(2,length(object), by = 2)][[x]][,2])
return(temp_signal - temp_background)
}, FUN.VALUE = vector(mode = "numeric", length = 1))
df <- data.frame(
DOSE = dose_points,
net_SIGNAL = net_SIGNAL,
net_SIGNAL.ERROR = 0,
net_SIGNAL_NORM = net_SIGNAL/max(net_SIGNAL),
net_SIGNAL_NORM.ERROR = 0
)
df_mean <- as.data.frame(data.table::rbindlist(lapply(unique(df$DOSE), function(x){
data.frame(
DOSE = x,
net_SIGNAL = mean(df[df$DOSE == x, "net_SIGNAL"]),
net_SIGNAL.ERROR = sd(df[df$DOSE == x, "net_SIGNAL"]),
net_SIGNAL_NORM = mean(df[df$DOSE == x, "net_SIGNAL_NORM"]),
net_SIGNAL_NORM.ERROR = sd(df[df$DOSE == x, "net_SIGNAL_NORM"])
)
})))
GC <- plot_GrowthCurve(
sample = df_mean,
mode = method_control_settings$mode,
output.plotExtended = FALSE,
output.plot = FALSE,
fit.method = method_control_settings$fit.method,
verbose = FALSE
)
if(verbose){
cat("\n[analyse_Al2O3C_ITC()]\n")
cat(paste0("\n Used fit:\t\t",method_control_settings$fit.method))
cat(paste0("\n Time correction value:\t", round(GC$De$De,3), " \u00B1 ", GC$De$De.Error))
cat("\n\n")
}
if(plot){
plot_settings <- list(
xlab = "Dose [s]",
ylab = "Integrated net GSL [a.u.]",
main = "Irradiation Time Correction",
xlim = c(-5, max(df$DOSE)),
ylim = c(0,max(df$net_SIGNAL)),
legend.pos = "right",
legend.text = "dose points",
mtext = ""
)
plot_settings <- modifyList(x = plot_settings, val = list(...))
plot(NA, NA,
xlim = plot_settings$xlim,
ylim = plot_settings$ylim,
xlab = plot_settings$xlab,
ylab = plot_settings$ylab,
main = plot_settings$main
)
abline(v = 0)
abline(h = 0)
points(x = df$DOSE, y = df$net_SIGNAL)
x <- seq(min(plot_settings$xlim), max(plot_settings$xlim), length.out = 100)
lines(
x = x,
y = eval(GC$Formula)
)
x <- 0
lines(x = c(-GC$De[1], -GC$De[1]), y = c(eval(GC$Formula), 0), lty = 2, col = "red")
shape::Arrows(
x0 = 0,
y0 = eval(GC$Formula),
x1 = as.numeric(-GC$De[1]),
y1 = eval(GC$Formula),
arr.type = "triangle",
arr.adj = -0.5,
col = 'red',
cex = par()$cex
)
text(
x = -GC$De[1] / 2,
y = eval(GC$Formula),
pos = 3,
labels = paste(round(GC$De[1],3), "\u00B1", GC$De[2]),
col = 'red',
cex = 0.8
)
axis(
side = 1,
at = axTicks(side = 1),
labels = paste0("(",(axTicks(side = 1) + round(as.numeric(GC$De[1]),2)), ")"),
line = 1,
col.axis = "red",
lwd.ticks = 0,
lwd = 0,
cex.axis = 0.9
)
legend(
plot_settings$legend.pos,
bty = "n",
pch = 1,
legend = plot_settings$legend.text
)
mtext(side = 3, text = plot_settings$mtext)
}
return(set_RLum(
class = "RLum.Results",
data = list(
data = data.frame(
VALUE = as.numeric(GC$De$De),
VALUE_ERROR = as.numeric(sd(GC$De.MC))
),
table = df,
table_mean = df_mean,
fit = GC$Fit
),
info = list(call = sys.call())
))
}
|
strip_ctl <- function(x, ctl='all', warn=getOption('fansi.warn', TRUE), strip) {
if(!missing(strip)) {
message("Parameter `strip` has been deprecated; use `ctl` instead.")
ctl <- strip
}
VAL_IN_ENV(x=x, ctl=ctl, warn=warn, warn.mask=get_warn_worst())
if(length(ctl)) .Call(FANSI_strip_csi, x, CTL.INT, WARN.INT)
else x
}
strip_sgr <- function(x, warn=getOption('fansi.warn', TRUE)) {
VAL_IN_ENV(x=x, warn=warn, warn.mask=get_warn_worst())
ctl.int <- match(c("sgr", "url"), VALID.CTL)
.Call(FANSI_strip_csi, x, ctl.int, WARN.INT)
}
has_ctl <- function(x, ctl='all', warn=getOption('fansi.warn', TRUE), which) {
if(!missing(which)) {
message("Parameter `which` has been deprecated; use `ctl` instead.")
ctl <- which
}
VAL_IN_ENV(x=x, ctl=ctl, warn=warn, warn.mask=get_warn_mangled())
if(length(CTL.INT)) {
.Call(FANSI_has_csi, x, CTL.INT, WARN.INT)
} else rep(FALSE, length(x))
}
has_sgr <- function(x, warn=getOption('fansi.warn', TRUE))
has_ctl(x, ctl=c("sgr", "url"), warn=warn)
state_at_end <- function(
x,
warn=getOption('fansi.warn', TRUE),
term.cap=getOption('fansi.term.cap', dflt_term_cap()),
normalize=getOption('fansi.normalize', FALSE),
carry=getOption('fansi.carry', FALSE)
) {
VAL_IN_ENV(x=x, ctl='sgr', warn=warn, term.cap=term.cap, carry=carry)
.Call(
FANSI_state_at_end,
x,
WARN.INT,
TERM.CAP.INT,
CTL.INT,
normalize,
carry,
"x",
TRUE
)
}
close_state <- function(
x,
warn=getOption('fansi.warn', TRUE),
normalize=getOption('fansi.normalize', FALSE)
) {
VAL_IN_ENV(x=x, warn=warn, normalize=normalize)
.Call(FANSI_close_state, x, WARN.INT, 1L, normalize)
}
process <- function(x, ctl="all")
.Call(
FANSI_process, enc_to_utf8(x), 1L, match(ctl, VALID.CTL)
)
|
Kdhat <-
function(X, r = NULL, ReferenceType, NeighborType = ReferenceType, Weighted = FALSE,
Original = TRUE, Approximate = ifelse(X$n < 10000, 0, 1), Adjust = 1,
MaxRange = "ThirdW", StartFromMinR = FALSE, CheckArguments = TRUE) {
if (CheckArguments) {
CheckdbmssArguments()
}
n <- 512
if (ReferenceType == "") {
IsReferenceType <- IsNeighborType <- rep(TRUE, X$n)
Y <- X
} else {
IsReferenceType <- X$marks$PointType==ReferenceType
IsNeighborType <- X$marks$PointType==NeighborType
if (inherits(X, "Dtable")) {
Y <- Dtable(X$Dmatrix[IsReferenceType | IsNeighborType, IsReferenceType | IsNeighborType],
PointType = X$marks$PointType[IsReferenceType | IsNeighborType],
PointWeight = X$marks$PointWeight[IsReferenceType | IsNeighborType])
diag(Y$Dmatrix) <- NA
} else {
Y <- X[IsReferenceType | IsNeighborType]
}
IsReferenceType <- Y$marks$PointType==ReferenceType
IsNeighborType <- Y$marks$PointType==NeighborType
}
if(is.null(r)) {
Diameter <- 0
if (inherits(X, "Dtable")) {
Diameter <- max(X$Dmatrix)
} else {
Diameter <- diameter(X$win)
}
rmax <- switch(MaxRange,
HalfW = Diameter/2,
ThirdW = Diameter/3,
QuarterW = Diameter/4)
if(is.null(rmax)) rmax <- Diameter/3
} else {
rmax <- max(r)
}
if (Approximate & !inherits(X, "Dtable")) {
rseq <- seq(from=0, to=rmax*2, length.out=2048*Approximate)
Nr <- length(rseq)
NeighborWeight <- matrix(0.0, nrow=1, ncol=Nr+1)
if (Weighted) {
Weight <- Y$marks$PointWeight
} else {
Weight <- rep(1, Y$n)
}
CountNbdKd(rseq, Y$x, Y$y, Weight, NeighborWeight, IsReferenceType, IsNeighborType)
rseq <- c(0, (rseq[2:Nr]+rseq[1:Nr-1])/2)
if (Original) {
bw <- stats::bw.nrd0(rseq[NeighborWeight[-length(NeighborWeight)]>0]) * Adjust
} else {
bw <- stats::bw.SJ(rseq[NeighborWeight[-length(NeighborWeight)]>0]) * Adjust
}
rseq <- c(rseq, rmax*2 + 4*bw)
Reflected <- which(rseq <= 4*bw)[-1]
rseq <- c(rseq, -rseq[Reflected])
NeighborWeight <- c(NeighborWeight, NeighborWeight[Reflected])
SumNeighborWeight <- sum(NeighborWeight)
Density <- stats::density(rseq, weight=NeighborWeight/SumNeighborWeight, from=0, to=rmax, bw=bw, n=n)
Mirrored <- stats::density(rseq, weight=NeighborWeight/SumNeighborWeight, to=0, bw=bw)
Density$y <- Density$y / (1 - mean(Mirrored$y)*diff(range(Mirrored$x)))
} else {
if (inherits(X, "Dtable")) {
Dist <- as.vector(Y$Dmatrix[IsReferenceType, IsNeighborType])
if (Weighted) {
Weight <- Y$marks$PointWeight %*% t(Y$marks$PointWeight)
Weight <- as.vector(Weight[IsReferenceType, IsNeighborType])
Weight <- Weight[!is.na(Dist)]
}
Dist <- Dist[!is.na(Dist)]
} else {
if (ReferenceType == NeighborType) {
NbDist <- sum(IsReferenceType)*(sum(IsReferenceType)-1)/2
} else {
NbDist <- sum(IsReferenceType)*sum(IsNeighborType)
}
Dist <- vector(mode="double", length=NbDist)
if (Weighted) {
Weight <- vector(mode="double", length=NbDist)
} else {
Weight <- 1
}
DistKd(Y$x, Y$y, Y$marks$PointWeight, Weight, Dist, IsReferenceType, IsNeighborType)
}
rmin <- ifelse(StartFromMinR, min(Dist), 0)
if(is.null(r)) {
if (MaxRange == "DO2005") rmax <- stats::median(Dist)
}
if (Original) {
bw <- stats::bw.nrd0(Dist[Dist<=rmax*2]) * Adjust
} else {
bw <- stats::bw.SJ(Dist[Dist<=rmax*2]) * Adjust
}
Reflected <- which(Dist <= rmin + 4*bw)
Dist <- c(Dist, 2*rmin -Dist[Reflected])
if (Weighted) Weight <- c(Weight, Weight[Reflected])
nDensity <- min(max(n, max(Dist)/rmax*128), 4096)
if (Weighted) {
Density <- stats::density(Dist, weights=Weight/sum(Weight), from=rmin, to=rmax, bw=bw, n=nDensity)
Mirrored <- stats::density(Dist, weights=Weight/sum(Weight), to=rmin, bw=bw)
} else {
Density <- stats::density(Dist, from=rmin, to=rmax, bw=bw, n=nDensity)
Mirrored <- stats::density(Dist, to=rmin, bw=bw)
}
Density$y <- Density$y / (1- mean(Mirrored$y)*diff(range(Mirrored$x)))
}
if(is.null(r)) {
r <- Density$x
Kd <- Density$y
} else {
Kd <- stats::approx(Density$x, Density$y, xout=r)$y
}
KdEstimate <- data.frame(r, Kd)
colnames(KdEstimate) <- c("r", "Kd")
Kd <- fv(KdEstimate, argu="r", ylab=quote(Kd(r)), valu="Kd", fmla= ". ~ r",
alim=c(0, max(r)), labl=c("r", paste("hat(%s)(r)", sep="")),
desc=c("distance argument r", "Estimated %s"), unitname=X$window$unit,
fname="Kd")
fvnames(Kd, ".") <- "Kd"
return (Kd)
}
|
context("makeDataFrame")
test_that("makeDataFrame", {
df1 = makeDataFrame(0, 0)
df2 = data.frame()
expect_equal(df1, df2)
df1 = makeDataFrame(3, 0)
df2 = data.frame(matrix(nrow = 3, ncol = 0))
expect_equal(df1, df2)
df1 = makeDataFrame(0, 2, "character")
df2 = data.frame(setColNames(matrix("a", nrow = 0, ncol = 2), c("V1", "V2")), stringsAsFactors = FALSE)
expect_equal(df1, df2)
df1 = makeDataFrame(3, 1, "integer")
df2 = data.frame(V1 = integer(3))
expect_equal(df1, df2)
df1 = makeDataFrame(3, 2, "integer")
df2 = as.data.frame(matrix(0L, 3, 2))
expect_equal(df1, df2)
df1 = makeDataFrame(3, 2, init = "bb")
df2 = as.data.frame(matrix("bb", 3, 2), stringsAsFactors = FALSE)
expect_equal(df1, df2)
df1 = makeDataFrame(3, 2, c("numeric", "integer"))
df2 = data.frame(V1 = numeric(3), V2 = integer(3), stringsAsFactors = FALSE)
expect_equal(df1, df2)
df1 = makeDataFrame(1, 2, "integer", row.names = c("r1"), col.names = c("c1", "c2"))
df2 = setRowNames(data.frame(c1 = 0, c2 = 0), "r1")
expect_equal(df1, df2)
df1 = makeDataFrame(1, 2, "integer", row.names = 1L, col.names = c("c1", "c2"))
df2 = setRowNames(data.frame(c1 = 0, c2 = 0), 1L)
expect_equal(df1, df2)
df1 = makeDataFrame(1, 2, "integer", row.names = NULL, col.names = 1:2)
df2 = setColNames(data.frame(c1 = 0, c2 = 0), 1:2)
expect_equal(df1, df2)
})
|
OU <- function(N, ...) UseMethod("OU")
OU.default <- function(N =100,M=1,x0=2,t0=0,T=1,Dt=NULL,mu=4,sigma=0.2,...)
{
X <- HWV(N,M,x0,t0,T,Dt,mu,theta=0,sigma)
return(X)
}
|
ev.combo <- function(beta, se.beta, beta0 = 0, ci = 99, H0 = c(0, 0),
scale = FALSE, H.priors = rep(1/3, 3), se.mult = 1,
adjust = FALSE, epsilon = 1e-6, adj.factor = 0.0001,
... ) {
if(length(beta) != length(se.beta)) {
stop("beta and se.beta must be the same length.")
}
if(length(H.priors) != 3 || sum(H.priors) != 1 ) {
stop("H.priors must have 3 values that sum to one.")
}
n.studies <- length(beta)
se0 <- numeric(n.studies)
post.b <- numeric(n.studies)
post.se <- numeric(n.studies)
res.uni <- matrix(NA, nrow = n.studies, ncol = 3)
colnames(res.uni) <- c("H<", "H0", "H>")
res <- matrix(NA, nrow = n.studies + 1, ncol = 3)
res[1,] <- H.priors
colnames(res) <- c("H<", "H0", "H>")
for (i in 1:n.studies) {
tmp.uni <- pph(beta = beta[i], se.beta = se.beta[i], beta0 = beta0,
ci = ci, H0 = H0, H.priors = rep(1/3, 3),
se.mult = se.mult, adjust = adjust, epsilon = epsilon,
adj.factor = adj.factor, scale=scale)
tmp <- pph(beta = beta[i], se.beta = se.beta[i], beta0 = beta0,
ci = ci, H0 = H0, H.priors = res[i,],
se.mult = se.mult, adjust = adjust, epsilon = epsilon,
adj.factor = adj.factor, scale=scale)
se0[i] <- tmp$se0
post.b[i] <- tmp$post.b
post.se[i] <- tmp$post.se
res.uni[i, ] <- tmp.uni$pphs
res[i+1,] <- tmp$pphs
}
if (scale) {
beta <- beta/se.beta
se.beta <- se.beta/se.beta
}
return(
structure(list(N=n.studies, beta = beta, se.beta = se.beta,
beta0 = beta0, ci = ci, se0 = se0,
post.b = post.b, post.se = post.se, H.priors = H.priors,
pph.uniform = res.uni, pphs = res),
class = "EV")
)
}
|
write_fwf_blaise_with_model = function(df,
output_data,
input_model,
output_model = NULL,
decimal.mark = '.',
digits = getOption('digits'),
justify = 'right',
max.distance = 0L){
if (tools::file_ext(output_data) == ''){
output_data = paste0(output_data, '.asc')
}
model = withCallingHandlers(
read_model(input_model),
integer_size_warning = function(w) invokeRestart('use_value')
)
df = convert_df(df, model, max.distance = max.distance)
df = write_data(df, model, file = output_data, decimal.mark, justify = justify)
if(!is.null(output_model)) write_datamodel(model, output_model)
return(invisible(df))
}
|
copgHsAT <- function(p1, p2, teta, BivD, Ln = FALSE, par2 = NULL,
min.dn, min.pr, max.pr){
c.copula.be2 <- c.copula2.be1be2 <- 1
if(BivD %in% c("C90","J90","G90","GAL90") ) {
p1 <- 1 - p1
teta <- -teta
}
if(BivD %in% c("C180","J180","G180","GAL180") ) {
p1 <- 1 - p1
p2 <- 1 - p2
}
if(BivD %in% c("C270","J270","G270","GAL270") ) {
p2 <- 1 - p2
teta <- -teta
}
if(Ln == FALSE){
if(BivD == "PL"){
c.copula.be2 <- (teta - (0.5 * ((2 * ((p1 + p2) * (teta - 1) + 1) - 4 * (p1 *
teta)) * (teta - 1)/sqrt(((p1 + p2) * (teta - 1) + 1)^2 -
4 * (p1 * p2 * teta * (teta - 1)))) + 1))/(2 * (teta - 1))
}
if(BivD == "HO"){
c.copula.be2 <- (-log(p2))^(1/teta - 1) * ((-log(p1))^(1/teta) + (-log(p2))^(1/teta))^(teta -
1) * exp(-((-log(p1))^(1/teta) + (-log(p2))^(1/teta))^teta)/p2
}
if(BivD == "AMH"){
c.copula.be2 <- p1 * (1 - p2 * teta * (1 - p1)/(1 - teta * (1 - p1) * (1 - p2)))/(1 -
teta * (1 - p1) * (1 - p2))
}
if(BivD == "FGM"){
c.copula.be2 <- p1 * (1 + teta * (1 - 2 * p2) * (1 - p1))
}
if(BivD == "N"){
c.copula.be2 <- pnorm( (qnorm(p1) - teta*qnorm(p2))/sqrt(1 - teta^2) )
}
if(BivD == "T"){
c.copula.be2 <- BiCopHfunc2(p1, p2, family = 2, par = teta, par2 = par2)
}
if(BivD == "F"){
c.copula.be2 <- (exp(teta)* (-1 + exp(p1* teta)))/(-exp((p1 + p2)* teta) +
exp(teta)* (-1 + exp(p2* teta) + exp(p1* teta)))
}
if(BivD %in% c("C0","C90","C180","C270") ){
c.copula.be2 <- (p1^(-teta) + p2^(-teta) - 1)^((-1/teta) - 1) * ((-1/teta) * (p2^((-teta) - 1) * (-teta)))
}
if(BivD %in% c("GAL0","GAL90","GAL180","GAL270") ){
c.copula.be2 <- p1*(1-1/((-log(p2))^(1+teta)*(1/(-log(p1))^teta+
1/(-log(p2))^teta)^(1+1/teta)))*exp((1/(-log(p1))^teta+
1/(-log(p2))^teta)^-(1/teta))
}
if(BivD %in% c("G0","G90","G180","G270") ){
c.copula.be2 <- (exp(-((-log(p2))^teta + (-log(p1))^teta)^((1/teta)))* (-log(p2))^(-1 +
teta)* ((-log(p2))^teta + (-log(p1))^teta)^(-1 + 1/teta))/p2
}
if(BivD %in% c("J0","J90","J180","J270") ){
c.copula.be2 <- ((1 - p1)^teta + (1 - p2)^teta - (1 - p1)^teta * (1 - p2)^teta)^((1/teta) -
1) * ((1/teta) * ((1 - p2)^(teta - 1) * teta - (1 - p1)^teta *
((1 - p2)^(teta - 1) * teta)))
}
if(BivD %in% c("C90","J90","G90","GAL90") ) c.copula.be2 <- 1 - c.copula.be2
if(BivD %in% c("C180","J180","G180","GAL180") ) c.copula.be2 <- 1 - c.copula.be2
c.copula.be2 <- mm(c.copula.be2, min.pr = min.pr, max.pr = max.pr)
}
if(Ln == TRUE){
if(BivD == "HO"){
c.copula2.be1be2 <- ((-log(p1))^(1/teta - 1) * (-log(p2))^(1/teta - 1) * ((-log(p1))^(1/teta) +
(-log(p2))^(1/teta))^(2 * (teta - 1)) - (-log(p1))^(1/teta -
1) * (-log(p2))^(1/teta - 1) * ((-log(p1))^(1/teta) + (-log(p2))^(1/teta))^(teta -
2) * (teta - 1)/teta) * exp(-((-log(p1))^(1/teta) + (-log(p2))^(1/teta))^teta)/(p1 *
p2)
}
if(BivD == "PL"){
c.copula2.be1be2 <- -(((2 * (teta - 1) - 4 * teta)/sqrt(((p1 + p2) * (teta - 1) +
1)^2 - 4 * (p1 * p2 * teta * (teta - 1))) - 0.5 * ((2 * ((p1 +
p2) * (teta - 1) + 1) - 4 * (p1 * teta)) * (2 * ((p1 + p2) *
(teta - 1) + 1) - 4 * (p2 * teta)) * (teta - 1)/(((p1 + p2) *
(teta - 1) + 1)^2 - 4 * (p1 * p2 * teta * (teta - 1)))^1.5))/4)
}
if(BivD == "AMH"){
c.copula2.be1be2 <- (1 - teta * (p1 * (1 - p2 * (2 + 2 * (teta * (1 - p1) * (1 -
p2)/(1 - teta * (1 - p1) * (1 - p2))))) + p2 * (1 - p1))/(1 -
teta * (1 - p1) * (1 - p2)))/(1 - teta * (1 - p1) * (1 -
p2))
}
if(BivD == "FGM"){
c.copula2.be1be2 <- 1 + teta * (1 - 2 * p1) * (1 - 2 * p2)
}
if(BivD == "N"){
c.copula2.be1be2 <- 1/sqrt(1 - teta^2)*exp( - (teta^2*( qnorm(p1)^2 + qnorm(p2)^2 ) - 2*teta*qnorm(p1)*qnorm(p2) ) / (2*(1 - teta^2)) )
}
if(BivD == "T"){
c.copula2.be1be2 <- BiCopPDF(p1, p2, family = 2, teta, par2)
}
if(BivD == "F"){
c.copula2.be1be2 <- (exp((1 + p1 + p2)* teta)* (-1 + exp(teta))* teta)/(exp((p1 + p2)* teta) -
exp(teta)* (-1 + exp(p1* teta) + exp(p2* teta)))^2
}
if(BivD %in% c("C0","C90","C180","C270") ){
c.copula2.be1be2 <- p1^(-1 - teta)* p2^(-1 - teta)* (-1 + p1^-teta + p2^-teta)^(-2 - 1/
teta) *(1 + teta)
}
if(BivD %in% c("GAL0","GAL90","GAL180","GAL270") ){
c.copula2.be1be2 <- (1+teta*(-log(p2))^(1+teta)*(1+1/teta)*
(1/(-log(p1))^teta+1/(-log(p2))^teta)^(1/teta)/((-log(p1))^(1+
teta)*((-log(p2))^(1+teta)*(1/(-log(p1))^teta+1/(-log(p2))^teta)^(1+
1/teta))^2)-((1-1/((-log(p2))^(1+teta)*(1/(-log(p1))^teta+
1/(-log(p2))^teta)^(1+1/teta)))/((-log(p1))^(1+teta)*
(1/(-log(p1))^teta+1/(-log(p2))^teta)^(1+1/teta))+1/((-log(p2))^(1+
teta)*(1/(-log(p1))^teta+1/(-log(p2))^teta)^(1+1/teta))))*
exp((1/(-log(p1))^teta+1/(-log(p2))^teta)^-(1/teta))
}
if(BivD %in% c("G0","G90","G180","G270") ){
c.copula2.be1be2 <- (exp(-((-log(p1))^teta + (-log(p2))^teta)^((1/teta)))* (-log(p1))^(-1 +
teta) *(-1 + teta + ((-log(p1))^teta + (-log(p2))^teta)^(1/
teta))* ((-log(p1))^teta + (-log(p2))^teta)^(-2 + 1/
teta)* (-log(p2))^(-1 + teta))/(p1 *p2)
}
if(BivD %in% c("J0","J90","J180","J270") ){
c.copula2.be1be2 <- (1 - p1)^(-1 +
teta)* ((1 - p1)^teta - (-1 + (1 - p1)^teta)* (1 - p2)^teta)^(-2 + 1/
teta) *(1 - p2)^(-1 +
teta)* (-(-1 + (1 - p1)^teta)* (-1 + (1 - p2)^teta) + teta)
}
c.copula2.be1be2 <- ifelse(c.copula2.be1be2 < min.dn, min.dn, c.copula2.be1be2)
}
list(c.copula.be2 = ifef(c.copula.be2), c.copula2.be1be2 = ifef(c.copula2.be1be2))
}
|
options(width=70)
library(hsdar)
data(spectral_data)
spectral_data
str(spectral_data)
spectra <- spectra(spectral_data)
str(spectra)
wavelength <- wavelength(spectral_data)
newSpeclib <- speclib(spectra, wavelength)
str(newSpeclib)
ids <- idSpeclib(spectral_data)
idSpeclib(newSpeclib) <- as.character(ids)
SI <- SI(spectral_data)
head(SI)
SI(newSpeclib) <- SI
str(newSpeclib)
parameter <- data.frame(N = c(rep.int(seq(0.5, 1.4, 0.1), 6)),
LAI = c(rep.int(0.5, 10), rep.int(1, 10),
rep.int(1.5, 10), rep.int(2, 10),
rep.int(2.5, 10), rep.int(3, 10)))
spectra <- PROSAIL(parameterList = parameter)
rows <- round(nspectra(spectra)/10, 0)
cols <- ceiling(nspectra(spectra)/rows)
grd <- SpatialGrid(GridTopology(cellcentre.offset = c(1,1,1),
cellsize = c(1,1,1),
cells.dim = c(cols, rows, 1)))
x <- SpatialPixelsDataFrame(grd,
data = as.data.frame(spectra(spectra)))
writeGDAL(x, fname = "example_in.tif", drivername = "GTiff")
infile <- "example_in.tif"
wavelength <- wavelength(spectra)
ra <- speclib(infile, wavelength)
tr <- blockSize(ra)
outfile <- "example_result.tif"
n_veg <- as.numeric(length(vegindex()))
res <- writeStart(ra, outfile, overwrite = TRUE, nl = n_veg)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
v <- as.matrix(vegindex(v, index=vegindex()))
res <- writeValues(res, v, tr$row[i])
}
res <- writeStop(res)
LAI <- SI(spectra)$LAI
SI_file <- "example_SI.tif"
SI_raster <- setValues(raster(infile), LAI)
SI_raster <- writeRaster(SI_raster, SI_file)
outfile <- "example_result_ndvi.tif"
SI(ra) <- raster(SI_file)
names(SI(ra)) <- "LAI"
res <- writeStart(ra, outfile, overwrite = TRUE, nl = 1)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
LAI <- SI(v)$LAI
v <- as.matrix(vegindex(v, index="NDVI"))
v[LAI <= 1] <- NA
res <- writeValues(res, v, tr$row[i])
}
res <- writeStop(res)
plot(raster("example_result_ndvi.tif"))
par(mfrow = c(2,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(spectral_data, main = "Default Plot", ylim = c(0, 70))
plot(spectral_data, FUN = 1, main = "First spectrum of Speclib", ylim = c(0, 70))
plot(spectral_data, FUN = "median", main = "Median spectrum", ylim = c(0, 70))
plot(spectral_data, FUN = "mean", main = "Mean spectrum", ylim = c(0, 70))
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectral_data, FUN = 1, col = "red")
plot(spectral_data, FUN = 2, col = "blue", new = FALSE)
plot(spectral_data, FUN = 3, col = "orange", new = FALSE)
spectrum1 <- PROSPECT(N = 1.3, Cab = 30, Car = 10, Cbrown = 0,
Cw = 0.01, Cm = 0.01)
spectrum2 <- PROSPECT(N = 1.3, Cab = 60, Car = 10, Cbrown = 0,
Cw = 0.01, Cm = 0.01)
plot(spectrum1, col = "darkorange4", ylim = c(0,0.5),
subset = c(400, 800))
plot(spectrum2, col = "darkgreen", new = FALSE)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectrum1, col = "darkorange4", ylim = c(0,0.5),
subset = c(400, 800))
plot(spectrum2, col = "darkgreen", new = FALSE)
parameter <- data.frame(tts = seq(15, 85, 0.5))
head(parameter)
spectra <- PROSAIL(parameterList = parameter)
spectra
summary(SI(spectra))
colours <- colorRamp(c("darkorange4", "yellow"))
plot(spectra[1,], ylim = c(0, 0.3),
col = rgb(colours(SI(spectra)$tts[1]/85),
maxColorValue = 255))
for (i in 2:nspectra(spectra))
plot(spectra[i,], new = FALSE,
col = rgb(colours(SI(spectra)$tts[i]/85),
maxColorValue = 255))
par(mar = c(4,4,0.1,0.1), cex = 0.75)
colours <- colorRamp(c("darkorange4", "yellow"))
plot(spectra[1,], ylim = c(0, 0.3),
col = rgb(colours(SI(spectra)$tts[1]/85),
maxColorValue = 255))
for (i in 2:nspectra(spectra))
plot(spectra[i,], new = FALSE,
col = rgb(colours(SI(spectra)$tts[i]/85),
maxColorValue = 255))
parameter <- data.frame(LAI = rep.int(c(1,2,3),5),
TypeLidf = 1,
lidfa = c(rep.int(1,3), rep.int(-1,3),
rep.int(0,6), rep.int(-0.35,3)),
lidfb = c(rep.int(0,6), rep.int(-1,3),
rep.int(1,3), rep.int(-0.15,3)))
parameter
spectra <- PROSAIL(parameterList = parameter)
spectra
colours <- c("darkblue", "red", "darkgreen")
LIDF_type <- as.factor(c(rep.int("Planophile", 3),
rep.int("Erectophile", 3),
rep.int("Plagiophile", 3),
rep.int("Extremophile", 3),
rep.int("Spherical", 3)))
plot(spectra[1,], ylim = c(0, 0.5),
col = colours[SI(spectra)$LAI[1]],
lty = which(levels(LIDF_type) == LIDF_type[1]))
for (i in 2:nspectra(spectra))
plot(spectra[i,], new= FALSE,
col = colours[SI(spectra)$LAI[i]],
lty = which(levels(LIDF_type) == LIDF_type[i]))
legend("topright",
legend = c(paste("LAI =", c(1:3)), "", levels(LIDF_type)),
col = c(colours, rep.int("black", 1 + length(levels(LIDF_type)))),
lty = c(rep.int(1, 3), 0, 1:length(levels(LIDF_type))))
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectra[1,], ylim = c(0, 0.5),
col = colours[SI(spectra)$LAI[1]],
lty = which(levels(LIDF_type) == LIDF_type[1]))
for (i in 2:nspectra(spectra))
plot(spectra[i,], new= FALSE,
col = colours[SI(spectra)$LAI[i]],
lty = which(levels(LIDF_type) == LIDF_type[i]))
legend("topright",
legend = c(paste("LAI =", c(1:3)), "", levels(LIDF_type)),
col = c(colours, rep.int("black", 1 + length(levels(LIDF_type)))),
lty = c(rep.int(1, 3), 0, 1:length(levels(LIDF_type))))
names(SI(spectral_data))
sp_spring <- subset(spectral_data, season == "spring")
sp_summer <- subset(spectral_data, season == "summer")
plot(sp_spring, FUN = "mean", col = "darkgreen", ylim = c(0,70))
plot(sp_summer, FUN = "mean", col = "darkred", new = FALSE)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(sp_spring, FUN = "mean", col = "darkgreen", ylim = c(0,70))
plot(sp_summer, FUN = "mean", col = "darkred", new = FALSE)
spectral_data_masked <- spectral_data
mask(spectral_data_masked) <- c(1040,1060,1300,1450)
par(mfrow = c(1,2))
plot(spectral_data, FUN = 1)
plot(spectral_data_masked, FUN = 1)
par(mfrow=c(1,2), mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectral_data, FUN = 1)
plot(spectral_data_masked, FUN = 1)
spectral_data_interpolated <- interpolate.mask(spectral_data_masked)
plot(spectral_data_interpolated, FUN = 1)
par(mar = c(4,4,0,0.1), cex = 0.75)
plot(spectral_data_interpolated, FUN = 1)
spectral_data <- spectral_data_masked
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectral_data, FUN = 1, subset = c(1200,1300))
sgolay <- noiseFiltering(spectral_data, method = "sgolay", n = 25)
lowess <- noiseFiltering(spectral_data, method = "lowess", f = .01)
meanflt <- noiseFiltering(spectral_data, method = "mean", p = 5)
spline <- noiseFiltering(spectral_data, method = "spline",
n = round(nbands(spectral_data)/10, 0))
par(mfrow=c(2,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(sgolay, FUN = 1, subset = c(1200,1300), col = "red",
main = "Savitzky-Golay-Filter")
plot(spectral_data, FUN = 1, new = FALSE)
plot(lowess, FUN = 1, subset = c(1200,1300), col = "red",
main = "Lowess-Filter")
plot(spectral_data, FUN = 1, new = FALSE)
plot(meanflt, FUN = 1, subset = c(1200,1300), col = "red",
main = "Mean-filter")
plot(spectral_data, FUN = 1, new = FALSE)
plot(spline, FUN = 1, subset = c(1200,1300), col = "red",
main = "Spline-Filter")
plot(spectral_data, FUN = 1, new = FALSE)
spectral_data_1deriv <- derivative.speclib(spectral_data, m = 1)
spectral_data_2deriv <- derivative.speclib(spectral_data, m = 2)
redEdgePart <- wavelength(spectral_data_2deriv) >= 600 &
wavelength(spectral_data_2deriv) <= 800
spectral_data_1deriv <- spectral_data_1deriv[,redEdgePart]
spectral_data_2deriv <- spectral_data_2deriv[,redEdgePart]
par(mfrow=c(1,2))
plot(spectral_data_1deriv, FUN = 1, xlim = c(600,800),
main = "First derivation")
plot(spectral_data_2deriv, FUN = 1, xlim = c(600,800),
main = "Second Derivation")
par(mfrow = c(1,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(spectral_data_1deriv, FUN = 1, xlim = c(600,800),
main = "First derivation")
plot(spectral_data_2deriv, FUN = 1, xlim = c(600,800),
main = "Second Derivation")
spectral_data_1deriv <- derivative.speclib(noiseFiltering(
spectral_data, method = "sgolay", n = 35), m = 1)
spectral_data_2deriv <- derivative.speclib(noiseFiltering(
spectral_data, method = "sgolay", n = 35), m = 2)
par(mfrow=c(1,2))
plot(spectral_data_1deriv, FUN = 1, xlim = c(600,800),
main = "First derivation")
plot(spectral_data_2deriv, FUN = 1, xlim = c(600,800),
main = "Second Derivation")
spectral_data_1deriv <- spectral_data_1deriv[,redEdgePart]
spectral_data_2deriv <- spectral_data_2deriv[,redEdgePart]
par(mfrow = c(1,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(spectral_data_1deriv, FUN = 1, xlim = c(600,800),
main = "First derivation")
plot(spectral_data_2deriv, FUN = 1, xlim = c(600,800),
main = "Second Derivation")
get.sensor.characteristics(0)
spectral_data_resampled <- spectralResampling(spectral_data,
"WorldView2-8")
spectral_data_resampled
wavelength(spectral_data_resampled)
plot(spectral_data_resampled)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(spectral_data_resampled)
parameter <- data.frame(N = c(0.5,1),LAI = 0.5,Car=3)
spectra <- PROSAIL(parameterList = parameter)
str(transformSpeclib)
ch_cline <- transformSpeclib(spectra,
method = "ch", out = "raw")
ch_bd <- transformSpeclib(spectra,
method = "ch", out = "bd")
sh_cline <- transformSpeclib(spectra,
method = "sh", out = "raw")
sh_bd <- transformSpeclib(spectra,
method = "sh", out = "bd")
par(mfrow=c(2,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(ch_cline, ispec = 1, numeratepoints = FALSE,
main = "Convex hull - Continuum line")
plot(ch_bd, ispec = 1, main = "Convex hull - Band depth")
plot(sh_cline, ispec = 1, numeratepoints = FALSE,
main = "Segmented hull - Continuum line")
plot(sh_bd, ispec = 1, main = "Segmented hull - Band depth")
par(mfrow=c(1,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(sh_cline, ispec = 1, main = "Continuum line, Spectrum 1",
xlim = c(500,800))
plot(sh_cline, ispec = 2, main = "Continuum line, Spectrum 2",
xlim = c(500,800))
str(deletecp)
getcp(sh_cline, 1, subset = c(500, 600))
sh_cline <- deletecp(sh_cline, 1,
c(530:600))
getcp(sh_cline, 1, subset = c(500, 600))
checkhull(sh_cline, 1)$error
sh_cline <- addcp(sh_cline, 1, c(2487:2498))
checkhull(sh_cline, 1)$error
sh_clineUpdate <- makehull(sh_cline, 1)
sh_bd <- updatecl(sh_bd, sh_clineUpdate)
par(mfrow=c(1,2), mar = c(4,4,3,0.1), cex = 0.75)
plot(sh_cline, ispec = 1, main = "Updated Segmented hull",
xlim = c(300,800))
plot(sh_bd[1,], main="Updated hull - Band depth",
xlim = c(300,800))
featureSelection <- specfeat(sh_bd, c(450,600, 1500, 2000))
plot(featureSelection, fnumber= 1:4)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(featureSelection, fnumber=1:4)
featuresCut <- cut_specfeat(featureSelection, fnumber = c(1,2),
limits = c(c(310, 525), c(530, 800)))
plot(featuresCut, 1:2)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(featuresCut, fnumber= 1:2)
featureProp <- feature_properties(featureSelection)
head(SI(featureProp))
data(spectral_data)
ndvi <- vegindex(spectral_data, "NDVI")
ndvi
avl <- vegindex()
vi <- vegindex(spectral_data, index = avl)
data(spectral_data)
rd <- rededge(spectral_data)
D2 <- derivative.speclib(spectral_data[1,],method="sgolay",m=2, n=33)
par(mfrow=c(1,2), mar = c(4,4,0.4,.4))
plot(D2,xlim=c(500,900),ylim=c(-0.03,0.03),ylab="Second derivation")
points(rd[1,4],get_reflectance(D2,rd[1,4]))
points(rd[1,6],get_reflectance(D2,rd[1,6]))
text(c(rd$lp[1],rd$ls[1]),c(get_reflectance(D2,rd$lp[1]),get_reflectance(D2,rd$ls[1])),
labels=c("lp","ls"), cex= 0.8,pos=3)
plot(spectral_data[1,],xlim=c(500,900),ylim=c(0,50))
points(matrix(c(rd$l0[1],rd$R0[1],rd$lp[1],rd$Rp[1],rd$ls[1],rd$Rs[1]),
nrow=3,byrow = TRUE))
text(c(rd$l0[1],rd$lp[1],rd$ls[1]),c(rd$R0[1],rd$Rp[1],rd$Rs[1]),
labels=c("l0/R0","lp/Rp","ls/Rs"), cex= 0.8, offset =0.5,pos=2)
data(spectral_data)
rd <- rededge(spectral_data)
par(mar = c(4,4,0.1,0.1), cex = 0.75)
boxplot(rd$R0 ~ SI(spectral_data)$season, ylab = "R0")
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)
str(nri)
nri_WV <- nri(spec_WV, recursive = TRUE)
nri_WV
nri_WV$nri[,,1]
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)
chlorophyll <- SI(spec_WV)$chlorophyll
cortestnri <- cor.test(nri_WV, chlorophyll)
cortestnri
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(cortestnri, coefficient = "p.value")
par(mar = c(4,4,0.1,0.1), cex = 0.75)
plot(cortestnri, coefficient = "p.value", range = c(0,0.01))
str(lm.nri)
lmnri <- lm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)
lmnri
str(nri_best_performance)
nribest <- nri_best_performance(lmnri, n = 1)
nribest
getNRI(nri_WV, nribest)
par(mar = c(4,4,3,0.1), cex = 0.75)
plot(lmnri, coefficient = "r.squared", main = "R squared")
par(mar = c(4,4,3,0.1), cex = 0.75)
plot(lmnri, coefficient = "r.squared", main = "R squared",
constraint = "p.value<0.01")
parameter <- data.frame(LAI = seq(0, 1, 0.01))
spectral_data <- PROSAIL(parameterList = parameter)
spectral_data_qb <- spectralResampling(spectral_data, "Quickbird")
grass_spectra_qb <- speclib(spectra = matrix(c(3.190627, 5.137504, 5.797486, 29.68515), nrow = 1), wavelength = c(485, 560, 660, 830))
limestone_qb <- speclib(spectra = matrix(c(16.93489, 18.97302, 21.407, 23.98981), nrow = 1), wavelength = c(485, 560, 660, 830))
em <- speclib(spectra = rbind(spectra(grass_spectra_qb),
spectra(limestone_qb))/100,
wavelength = wavelength(limestone_qb))
unmix_res <- unmix(spectral_data_qb, em)
str(unmix_res)
plot(unmix_res$fractions[1,] ~ SI(spectral_data_qb)$LAI,
type = "l", xlab = "LAI",
ylab = "Unmixed fraction of vegetation")
par(mar = c(4,4,0,0.1), cex = 0.75)
plot(unmix_res$fractions[1,] ~ SI(spectral_data_qb)$LAI, type = "l",
xlab = "LAI", ylab = "Unmixed fraction of vegetation")
|
get_regional_data <- function(country, level = "1", totals = FALSE,
localise = TRUE, steps = FALSE,
class = FALSE, verbose = TRUE, regions,
include_level_2_regions = deprecated(),
localise_regions = deprecated(),
...) {
if (is_present(include_level_2_regions)) {
deprecate_warn(
"0.9.0",
"covidregionaldata::get_regional_data(include_level_2_regions = )", "covidregionaldata::get_regional_data(level = )"
)
if (include_level_2_regions) {
level <- "1"
} else {
level <- "2"
}
}
if (is_present(localise_regions)) {
deprecate_warn(
"0.9.0",
"covidregionaldata::get_regional_data(localise_regions = )", "covidregionaldata::get_regional_data(localise = )"
)
localise <- localise_regions
}
region_class <- initialise_dataclass(
class = country, level = level, regions = regions,
totals = totals, localise = localise,
verbose = verbose, steps = steps, get = TRUE,
type = "regional", ...
)
return(
return_data(region_class, class = class)
)
}
|
cgm<-function(A, b, x=NULL, iter=500, tol=1e-7){
nROW<-nrow(A)
if(is.null(x)) x<-matrix(rep(0, each=nROW), nrow = nROW, byrow=T)
conv<-NULL
xini<-x
SearchDirection<-0
Beta<-0
for(i in 1:iter){
xold<-x
residual<-b-A%*%x
if(i>1){
Beta<--1L*(t(residual)%*%A%*%SearchDirection)/(t(SearchDirection)%*%A%*%SearchDirection)
}
SearchDirection<-residual + matrix(rep(Beta, each=nROW), nrow = nROW, byrow=T)*SearchDirection
alphaParameter<-(t(SearchDirection)%*%residual)
if(alphaParameter==0 & i>1){
return(list("x"=x, "xini"=xini, "itr.conv"=i, "conv"=conv))
}
alpha=alphaParameter/(t(SearchDirection)%*%A%*%SearchDirection)
x<-x+matrix(rep(alpha, each=nROW), nrow = nROW, byrow=T)*SearchDirection
dx<-sqrt(t(x-xold)%*%(x-xold))
conv<-c(conv, dx)
if(dx<=tol){
return(list("optimal"=x, "initial"=xini, "itr.conv"=i, "conv"=conv))
}
}
print("Optimization Failed to Converge...")
return(list("x"=x, "xini"=xini, "itr.conv"=i, "conv"=conv))
}
|
plot.interpolation.cv<-function(x, type="stations",...) {
type = match.arg(type, c("stations", "dates"))
if(type =="stations") {
stationsdf = x$stations
par(mfrow=c(3,4), mar=c(4,4,2,2))
if(sum(!is.na(stationsdf$MinTemperature.Bias))>0) {
hist(stationsdf$`MinTemperature.Bias`, xlab="Min. temp. bias (degrees C)", main="",...)
abline(v=mean(stationsdf$`MinTemperature.Bias`, na.rm=TRUE), col="gray", lwd=2)
abline(v=0, col="red", lwd=2)
}
if(sum(!is.na(stationsdf$MinTemperature.MAE))>0) {
hist(stationsdf$`MinTemperature.MAE`, xlab="Min. temp. MAE (degrees C)", main="",...)
abline(v=mean(stationsdf$`MinTemperature.MAE`, na.rm=TRUE), col="gray", lwd=2)
}
if(sum(!is.na(stationsdf$MaxTemperature.Bias))>0) {
hist(stationsdf$`MaxTemperature.Bias`, xlab="Max. temp. bias (degrees C)", main="",...)
abline(v=mean(stationsdf$`MaxTemperature.Bias`, na.rm=TRUE), col="gray", lwd=2)
abline(v=0, col="red", lwd=2)
}
if(sum(!is.na(stationsdf$MaxTemperature.MAE))>0) {
hist(stationsdf$`MaxTemperature.MAE`, xlab="Max. temp. MAE (degrees C)", main="")
abline(v=mean(stationsdf$`MaxTemperature.MAE`, na.rm=TRUE), col="gray", lwd=2)
}
if(sum(!is.na(stationsdf$TotalPrec.Pred))>0) {
hist(stationsdf$TotalPrec.Pred - stationsdf$TotalPrec.Obs, xlab="Error in total precipitation (mm)", main="",...)
abline(v=mean(stationsdf$TotalPrec.Pred - stationsdf$TotalPrec.Obs, na.rm=TRUE), col="gray", lwd=2)
abline(v=0, col="red", lwd=2)
}
if(sum(!is.na(stationsdf$PrecFreq.Pred))>0) {
hist(stationsdf$PrecFreq.Pred - stationsdf$PrecFreq.Obs, xlab="Error in proportion of rainy days (%)", main="",...)
abline(v=mean(stationsdf$PrecFreq.Pred - stationsdf$PrecFreq.Ob, na.rm=TRUE), col="gray", lwd=2)
abline(v=0, col="red", lwd=2)
}
if(sum(!is.na(stationsdf$RelativeHumidity.Bias))>0) {
hist(stationsdf$`RelativeHumidity.Bias`, xlab= "RelativeHumidity Bias (%)", main="",...)
abline(v=mean(stationsdf$`RelativeHumidity.Bias`, na.rm=TRUE), col="gray", lwd=2)
abline(v=0, col="red", lwd=2)
}
if(sum(!is.na(stationsdf$RelativeHumidity.MAE))>0) {
hist(stationsdf$`RelativeHumidity.MAE`, xlab= "RelativeHumidity MAE (%)", main="",...)
abline(v=mean(stationsdf$`RelativeHumidity.MAE`, na.rm=TRUE), col="gray", lwd=2)
}
if(sum(!is.na(stationsdf$Radiation.Bias))>0) {
hist(stationsdf$`Radiation.Bias`, xlab= "Radiation Bias (MJ/m2)", main="",...)
abline(v=mean(stationsdf$`Radiation.Bias`, na.rm=TRUE), col="gray", lwd=2)
}
if(sum(!is.na(stationsdf$Radiation.MAE))>0) {
abline(v=0, col="red", lwd=2)
hist(stationsdf$`Radiation.MAE`, xlab= "Radiation MAE (MJ/m2)", main="",...)
abline(v=mean(stationsdf$`Radiation.MAE`, na.rm=TRUE), col="gray", lwd=2)
}
} else if(type=="dates") {
datesdf = x$dates
par(mfrow=c(5,2), mar=c(4,4,2,2))
if(sum(!is.na(datesdf$`MinTemperature.Bias`))>0) {
plot(datesdf$`MinTemperature.Bias`, type="l", ylab="Min. temp. bias (degrees C)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`MinTemperature.MAE`))>0) {
plot(datesdf$`MinTemperature.MAE`, type="l", ylab="Min. temp. MAE (degrees C)", xlab="day", main="",...)
}
if(sum(!is.na(datesdf$`MaxTemperature.Bias`))>0) {
plot(datesdf$`MaxTemperature.Bias`, type="l", ylab="Max. temp. bias (degrees C)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`MaxTemperature.MAE`))>0) {
plot(datesdf$`MaxTemperature.MAE`, type="l", ylab="Max. temp. MAE (degrees C)", xlab="day", main="",...)
}
if(sum(!is.na(datesdf$`TotalPrec.Pred`))>0) {
plot(datesdf$TotalPrec.Pred - datesdf$TotalPrec.Obs, type="l", ylab="Error in daily total precipitation (mm)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`PrecFreq.Pred`))>0) {
plot(datesdf$PrecFreq.Pred - datesdf$PrecFreq.Obs, type="l", ylab="Error in frequency of wet stations (%)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`RelativeHumidity.Bias`))>0) {
plot(datesdf$`RelativeHumidity.Bias`, type="l", ylab="RelativeHumidity bias (%)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`RelativeHumidity.MAE`))>0) {
plot(datesdf$`RelativeHumidity.MAE`, type="l", ylab="RelativeHumidity MAE (%)", xlab="day", main="",...)
}
if(sum(!is.na(datesdf$`Radiation.Bias`))>0) {
plot(datesdf$`Radiation.Bias`, type="l", ylab="Radiation bias (MJ/m2)", xlab="day", main="",...)
abline(h=0, col="red", lwd=1.5)
}
if(sum(!is.na(datesdf$`Radiation.MAE`))>0) {
plot(datesdf$`Radiation.MAE`, type="l", ylab="Radiation MAE (MJ/m2)", xlab="day", main="",...)
}
}
}
|
rangebreak.linear <- function(species.1, species.2, env, type, f = NULL, nreps = 99, nback = 1000, bg.source = "default", low.memory = FALSE, rep.dir = NA, verbose = FALSE, clamp = TRUE, ...){
species.1 <- check.bg(species.1, env, nback = nback, bg.source = bg.source, verbose = verbose)
species.2 <- check.bg(species.2, env, nback = nback, bg.source = bg.source, verbose = verbose)
rangebreak.linear.precheck(species.1, species.2, env, type, f, nreps)
replicate.models <- list()
if(low.memory == TRUE){
if(is.na(rep.dir)){
rep.dir <- getwd()
}
if(substr(rep.dir, nchar(rep.dir), nchar(rep.dir)) != "/"){
rep.dir <- paste0(rep.dir, "/")
}
if(!dir.exists(rep.dir)){
stop(paste("Specified directory for storing replicates cannot be found!\n\n", getwd()))
}
}
species.1$background.points <- rbind(species.1$background.points, species.2$background.points)
species.2$background.points <- rbind(species.1$background.points, species.2$background.points)
combined.presence.points <- rbind(species.1$presence.points, species.2$presence.points)
if(clamp == TRUE){
this.df <- as.data.frame(extract(env, combined.presence.points))
env <- clamp.env(this.df, env)
}
message("\nBuilding empirical models...\n")
if(type == "glm"){
empirical.species.1.model <- enmtools.glm(species.1, env, f, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.glm(species.2, env, f, clamp = FALSE, ...)
}
if(type == "gam"){
empirical.species.1.model <- enmtools.gam(species.1, env, f, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.gam(species.2, env, f, clamp = FALSE, ...)
}
if(type == "mx"){
empirical.species.1.model <- enmtools.maxent(species.1, env, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.maxent(species.2, env, clamp = FALSE, ...)
}
if(type == "bc"){
empirical.species.1.model <- enmtools.bc(species.1, env, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.bc(species.2, env, clamp = FALSE, ...)
}
if(type == "dm"){
empirical.species.1.model <- enmtools.dm(species.1, env, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.dm(species.2, env, clamp = FALSE, ...)
}
if(type == "rf"){
empirical.species.1.model <- enmtools.rf(species.1, env, clamp = FALSE, ...)
empirical.species.2.model <- enmtools.rf(species.2, env, clamp = FALSE, ...)
}
empirical.overlap <- c(unlist(raster.overlap(empirical.species.1.model, empirical.species.2.model)),
unlist(env.overlap(empirical.species.1.model, empirical.species.2.model, env = env)[1:3]))
reps.overlap <- empirical.overlap
lines.df <- data.frame(slope = rep(NA, nreps), intercept = rep(NA, nreps))
message("\nBuilding replicate models...\n")
if (requireNamespace("progress", quietly = TRUE)) {
pb <- progress::progress_bar$new(
format = " [:bar] :percent eta: :eta",
total = nreps, clear = FALSE, width= 60)
}
for(i in 1:nreps){
if(verbose == TRUE){message(paste("\nReplicate", i, "...\n"))}
if (requireNamespace("progress", quietly = TRUE)) {
pb$tick()
}
rep.species.1 <- species.1
rep.species.2 <- species.2
angle <- runif(1, min=0, max=pi)
slope <- sin(angle)/cos(angle)
part.points <- cbind(combined.presence.points, combined.presence.points[,2] - slope * combined.presence.points[,1])
if(rbinom(1,1,0.5) == 0){
part.points <- part.points[order(part.points[,3]),]
} else {
part.points <- part.points[order(part.points[,3], decreasing = TRUE),]
}
intercept <- mean(c(part.points[nrow(species.1$presence.points), 3],
part.points[nrow(species.2$presence.points), 3]))
rep.species.1$presence.points <- part.points[1:nrow(species.1$presence.points), 1:2]
rep.species.2$presence.points <- part.points[(nrow(species.1$presence.points) + 1):nrow(part.points), 1:2]
lines.df[i,] <- c(slope, intercept)
if(type == "glm"){
rep.species.1.model <- enmtools.glm(rep.species.1, env, f, clamp = FALSE, ...)
rep.species.2.model <- enmtools.glm(rep.species.2, env, f, clamp = FALSE, ...)
}
if(type == "gam"){
rep.species.1.model <- enmtools.gam(rep.species.1, env, f, clamp = FALSE, ...)
rep.species.2.model <- enmtools.gam(rep.species.2, env, f, clamp = FALSE, ...)
}
if(type == "mx"){
rep.species.1.model <- enmtools.maxent(rep.species.1, env, clamp = FALSE, ...)
rep.species.2.model <- enmtools.maxent(rep.species.2, env, clamp = FALSE, ...)
}
if(type == "bc"){
rep.species.1.model <- enmtools.bc(rep.species.1, env, clamp = FALSE, ...)
rep.species.2.model <- enmtools.bc(rep.species.2, env, clamp = FALSE, ...)
}
if(type == "dm"){
rep.species.1.model <- enmtools.dm(rep.species.1, env, clamp = FALSE, ...)
rep.species.2.model <- enmtools.dm(rep.species.2, env, clamp = FALSE, ...)
}
if(type == "rf"){
rep.species.1.model <- enmtools.rf(rep.species.1, env, clamp = FALSE, ...)
rep.species.2.model <- enmtools.rf(rep.species.2, env, clamp = FALSE, ...)
}
if(low.memory == TRUE){
path.1 <- paste0(rep.dir, species.1$species.name, ".rep.", i, ".Rda")
path.2 <- paste0(rep.dir, species.2$species.name, ".rep.", i, ".Rda")
save(rep.species.1.model, file = path.1)
save(rep.species.2.model, file = path.2)
replicate.models[[paste0(species.1$species.name, ".rep.", i)]] <- path.1
replicate.models[[paste0(species.2$species.name, ".rep.", i)]] <- path.2
} else {
replicate.models[[paste0(species.1$species.name, ".rep.", i)]] <- rep.species.1.model
replicate.models[[paste0(species.2$species.name, ".rep.", i)]] <- rep.species.2.model
}
reps.overlap <- rbind(reps.overlap, c(unlist(raster.overlap(rep.species.1.model, rep.species.2.model)),
unlist(env.overlap(rep.species.1.model, rep.species.2.model, env = env)[1:3])))
}
rownames(reps.overlap) <- c("empirical", paste("rep", 1:nreps))
p.values <- apply(reps.overlap, 2, function(x) min(rank(x)[1], rank(-x)[1])/length(x))
d.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"D"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"D"], linetype = "longdash") +
xlim(-.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("D") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
i.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"I"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"I"], linetype = "longdash") +
xlim(-.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("I") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
cor.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"rank.cor"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"rank.cor"], linetype = "longdash") +
xlim(-1.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("Rank Correlation") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
env.d.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"env.D"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"env.D"], linetype = "longdash") +
xlim(-.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("D, Environmental Space") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
env.i.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"env.I"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"env.I"], linetype = "longdash") +
xlim(-.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("I, Environmental Space") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
env.cor.plot <- qplot(reps.overlap[2:nrow(reps.overlap),"env.cor"], geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = reps.overlap[1,"env.cor"], linetype = "longdash") +
xlim(-1.05,1.05) + guides(fill = FALSE, alpha = FALSE) + xlab("Rank Correlation, Environmental Space") +
ggtitle(paste("Rangebreak test:\n", species.1$species.name, "vs.", species.2$species.name))
output <- list(description = paste("\n\nLinear rangebreak test", species.1$species.name, "vs.", species.2$species.name),
reps.overlap = reps.overlap,
p.values = p.values,
empirical.species.1.model = empirical.species.1.model,
empirical.species.2.model = empirical.species.2.model,
replicate.models = replicate.models,
lines.df = lines.df,
d.plot = d.plot,
i.plot = i.plot,
cor.plot = cor.plot,
env.d.plot = env.d.plot,
env.i.plot = env.i.plot,
env.cor.plot = env.cor.plot)
class(output) <- "enmtools.rangebreak.linear"
return(output)
}
rangebreak.linear.precheck <- function(species.1, species.2, env, type, f, nreps){
if(!inherits(species.1, "enmtools.species")){
stop("Species.1 is not an enmtools.species object!")
}
if(!inherits(species.2, "enmtools.species")){
stop("Species.2 is not an enmtools.species object!")
}
if(!inherits(env, c("raster", "RasterLayer", "RasterStack", "RasterBrick"))){
stop("Environmental layers are not a RasterLayer or RasterStack object!")
}
if(type == "glm"){
if(!is.null(f)){
if(!inherits(f, "formula")){
stop("Type is set to GLM and f is not a formula object!")
}
}
}
if(type == "gam"){
if(!is.null(f)){
if(!inherits(f, "formula")){
stop("Type is set to GAM and f is not a formula object!")
}
}
}
if(!type %in% c("glm", "mx", "bc", "dm", "gam", "rf")){
stop(paste("Model type", type, "not understood! Select either bc, dm, mx, gam, rf, or glm."))
}
check.species(species.1)
if(!inherits(species.1$presence.points, "data.frame")){
stop("Species 1 presence.points do not appear to be an object of class data.frame")
}
if(!inherits(species.1$background.points, "data.frame")){
stop("Species 1 background.points do not appear to be an object of class data.frame")
}
check.species(species.2)
if(!inherits(species.2$presence.points, "data.frame")){
stop("Species 2 presence.points do not appear to be an object of class data.frame")
}
if(!inherits(species.2$background.points, "data.frame")){
stop("Species 2 background.points do not appear to be an object of class data.frame")
}
if(any(!colnames(species.1$background.points) %in% colnames(species.2$background.points))){
stop("Column names for species background points do not match!")
}
if(any(!colnames(species.1$presence.points) %in% colnames(species.2$presence.points))){
stop("Column names for species presence points do not match!")
}
if(is.na(species.1$species.name)){
stop("Species 1 does not have a species.name set!")
}
if(is.na(species.2$species.name)){
stop("Species 2 does not have a species.name set!")
}
}
summary.enmtools.rangebreak.linear <- function(object, ...){
cat(paste("\n\n", object$description))
cat("\n\nrangebreak test p-values:\n")
print(object$p.values)
cat("\n\nReplicates:\n")
print(kable(head(object$reps.overlap)))
plot(object)
}
print.enmtools.rangebreak.linear <- function(x, ...){
summary(x)
}
plot.enmtools.rangebreak.linear <- function(x, ...){
x.raster <- x$empirical.species.1.model$suitability
x.raster[!is.na(x.raster)] <- 1
raster::plot(x.raster)
for(i in 1:nrow(x$lines.df)){
abline(x$lines.df[i,2], x$lines.df[i,1])
}
grid.arrange(x$d.plot, x$env.d.plot,
x$i.plot, x$env.i.plot,
x$cor.plot, x$env.cor.plot, ncol = 2) +
theme(plot.title = element_text(hjust = 0.5))
}
|
hexen<-function(center_x,center_y,radii,cols,border=FALSE,asp=1){
x<-as.vector(t(outer(radii,tri_x)+center_x))
y<-as.vector(t(outer(radii*asp,tri_y)+center_y))
polygon(x,y,col=as.vector(t(cols)),border=if(border) NA else as.vector(t(cols)))
invisible(list(x=x,y=y,col=as.vector(t(cols))))
}
sainte_lague= function(votes, nseats){
nparties<-length(votes)
denominators=2*(1:nseats)-1
quotients = outer(votes, denominators, "/")
last = sort(quotients,decreasing=TRUE)[nseats]
clear<-rowSums(quotients>last)
borderline<-rowSums(quotients==last)
borderline[sample(which(borderline>0),sum(borderline)-(nseats-sum(clear)))]<-0
total<-clear+borderline
error<- votes- sum(votes)*total/6
rval<-rep(1:nparties,clear+borderline)
attr(rval,"error")<-error
rval
}
hextri<-function(x, ...){ UseMethod("hextri")}
hextri.formula<-function(x, data=parent.frame(), class,colours,nbins=10,border=TRUE, diffuse=FALSE,
style=c("alpha","size"),weights=NULL,sorted=!diffuse,xlab=NULL, ylab=NULL,...){
if ((length(x)!=3) || length(x[[3]])>2)
stop("formula must have one LHS and one RHS term")
m<-match.call(expand.dots=FALSE)
m$formula<-m$x
m$x<-m$colours<-m$nbins<-m$border<-m$diffuse<-m$style<-m$sorted<-m$"..."<-NULL
m[[1]]<-as.name("model.frame")
mf<-eval.parent(m)
.y<-mf[[1]]
.x<-mf[[2]]
class<-mf[["(class)"]]
wt<-mf[["(weights)"]]
labels<-sapply(attr(terms(x),"variables"), deparse)[-1]
if (is.null(ylab)) ylab<-labels[1]
if (is.null(xlab)) xlab<-labels[2]
hextri(.x,.y,class=class,weights=wt, colours=colours, nbins=nbins,
border=border, diffuse=diffuse, style=style, sorted=sorted,
xlab=xlab,ylab=ylab,...)
}
hextri.default<-function(x,y,class,colours,nbins=10,border=TRUE, diffuse=FALSE,
style=c("alpha","size"),weights=NULL,sorted=!diffuse,...){
style<-match.arg(style)
if(!diffuse){
switch(style,
size=hexclass(x,y,class,colours,nbins=nbins,border=border,weights=weights,sorted=sorted,...),
alpha=hexclass1(x,y,class,colours,nbins=nbins,border=border,weights=weights,sorted=sorted,...)
)
} else {
switch(style,
size=hexclass_diffuse(x,y,class,colours,nbins=nbins,border=border,weights=weights,sorted=sorted,...),
alpha=hexclass1_diffuse(x,y,class,colours,nbins=nbins,border=border,weights=weights,sorted=sorted,...)
)
}
}
hexclass<-function(x,y,class,colours,nbins=10,border=FALSE,weights=NULL,sorted,...){
plot(x,y,type="n",...)
pin<-par("pin")
h<-hexbin(x,y,IDs=TRUE,xbins=nbins,shape=pin[2]/pin[1])
centers<-hcell2xy(h)
asp<-(diff(h@ybnds)/diff(h@xbnds))/h@shape
if (is.null(weights))
tab<-table(h@cID,class)
else
tab<-xtabs(weights~h@cID+class)
allocations<-apply(tab,1,sainte_lague,6)
if(!sorted) allocations<-apply(allocations,1,sample)
full_radius<-diff(h@xbnds)/h@xbins/sqrt(3)
radii<-full_radius*sqrt(h@count/max(h@count))
col_matrix<-matrix(colours[t(allocations)],nrow=ncol(allocations))
hexen(centers$x,centers$y,radii, col_matrix,border=border,asp=asp)
}
hexclass1<-function(x,y,class,colours,nbins=10,border=FALSE,weights=NULL,sorted,...){
plot(x,y,type="n",...)
pin<-par("pin")
h<-hexbin(x,y,IDs=TRUE,xbins=nbins,shape=pin[2]/pin[1])
centers<-hcell2xy(h)
asp<-(diff(h@ybnds)/diff(h@xbnds))/h@shape
if (is.null(weights))
tab<-table(h@cID,class)
else
tab<-xtabs(weights~h@cID+class)
allocations<-apply(tab,1,sainte_lague,6)
if(!sorted) allocations<-apply(allocations,1,sample)
full_radius<-diff(h@xbnds)/h@xbins/sqrt(3)
alpha<-rowSums(tab)/max(rowSums(tab))
all_colours<-colours[t(allocations)]
rgb<-col2rgb(all_colours)
alpha_colours<-rgb(rgb[1,],rgb[2,],rgb[3,],255*alpha,max=255)
col_matrix<-matrix(alpha_colours,nrow=ncol(allocations))
hexen(centers$x,centers$y,rep(0.95*full_radius,length(centers$x)), col_matrix,border=border,asp=asp)
}
hexclass_diffuse<-function(x,y,class,colours,nbins=10,border=FALSE,weights=NULL,sorted,...){
plot(x,y,type="n",...)
pin<-par("pin")
h<-hexbin(x,y,IDs=TRUE,xbins=nbins,shape=pin[2]/pin[1])
centers<-hcell2xy(h)
asp<-(diff(h@ybnds)/diff(h@xbnds))/h@shape
if (is.null(weights))
tab<-table(h@cID,class)
else
tab<-xtabs(weights~h@cID+class)
allocations<-diffuse(h,tab,sorted)
full_radius<-diff(h@xbnds)/h@xbins/sqrt(3)
radii<-full_radius*sqrt(h@count/max(h@count))
col_matrix<-matrix(colours[t(allocations)],nrow=ncol(allocations))
hexen(centers$x,centers$y,radii, col_matrix,border=border,asp=asp)
}
hexclass1_diffuse<-function(x,y,class,colours,nbins=10,border=FALSE,weights=NULL,sorted,...){
plot(x,y,type="n",...)
pin<-par("pin")
h<-hexbin(x,y,IDs=TRUE,xbins=nbins,shape=pin[2]/pin[1])
centers<-hcell2xy(h)
asp<-(diff(h@ybnds)/diff(h@xbnds))/h@shape
if (is.null(weights))
tab<-table(h@cID,class)
else
tab<-xtabs(weights~h@cID+class)
allocations<-diffuse(h,tab,sorted)
full_radius<-diff(h@xbnds)/h@xbins/sqrt(3)
alpha<-rowSums(tab)/max(rowSums(tab))
all_colours<-colours[t(allocations)]
rgb<-col2rgb(all_colours)
alpha_colours<-rgb(rgb[1,],rgb[2,],rgb[3,],255*alpha,max=255)
col_matrix<-matrix(alpha_colours,nrow=ncol(allocations))
hexen(centers$x,centers$y,rep(0.95*full_radius,length(centers$x)), col_matrix,border=border,asp=asp)
}
|
'_PACKAGE'
localDensity <- function(distance, dc, gaussian = FALSE) {
if (gaussian) {
res <- gaussianLocalDensity(distance, attr(distance, "Size"), dc)
} else {
res <- nonGaussianLocalDensity(distance, attr(distance, "Size"), dc)
}
if (is.null(attr(distance, 'Labels'))) {
names(res) <- NULL
} else {
names(res) <- attr(distance, 'Labels')
}
res
}
distanceToPeak <- function(distance, rho) {
res <- distanceToPeakCpp(distance, rho);
names(res) <- names(rho)
res
}
estimateDc <- function(distance, neighborRateLow = 0.01, neighborRateHigh = 0.02) {
size <- attr(distance, 'Size')
if (size > 448) {
distance <- distance[sample.int(length(distance), 100128)]
size <- 448
}
low <- min(distance)
high <- max(distance)
dc <- 0
while (TRUE) {
dc <- (low + high) / 2
neighborRate <- (((sum(distance < dc) * 2 + (if (0 <= dc) size)) / size - 1)) / size
if (neighborRate >= neighborRateLow && neighborRate <= neighborRateHigh) break
if (neighborRate < neighborRateLow) {
low <- dc
} else {
high <- dc
}
}
cat('Distance cutoff calculated to', dc, '\n')
dc
}
densityClust <- function(distance, dc, gaussian=FALSE, verbose = FALSE, ...) {
if (class(distance) %in% c('data.frame', 'matrix')) {
dp_knn_args <- list(mat = distance, verbose = verbose, ...)
res <- do.call(densityClust.knn, dp_knn_args)
} else {
if (missing(dc)) {
if (verbose) message('Calculating the distance cutoff')
dc <- estimateDc(distance)
}
if (verbose) message('Calculating the local density for each sample based on distance cutoff')
rho <- localDensity(distance, dc, gaussian = gaussian)
if (verbose) message('Calculating the minimal distance of a sample to another sample with higher density')
delta <- distanceToPeak(distance, rho)
if (verbose) message('Returning result...')
res <- list(
rho = rho,
delta = delta,
distance = distance,
dc = dc,
threshold = c(rho = NA, delta = NA),
peaks = NA,
clusters = NA,
halo = NA,
knn_graph = NA,
nearest_higher_density_neighbor = NA,
nn.index = NA,
nn.dist = NA
)
class(res) <- 'densityCluster'
}
res
}
plot.densityCluster <- function(x, ...) {
plot(x$rho, x$delta, main = 'Decision graph', xlab = expression(rho),
ylab = expression(delta))
if (!is.na(x$peaks[1])) {
points(x$rho[x$peaks], x$delta[x$peaks], col = 2:(1 + length(x$peaks)),
pch = 19)
}
}
plotMDS <- function(x, ...) {
UseMethod('plotMDS')
}
plotMDS.densityCluster <- function(x, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
mds <- cmdscale(dist(x$distance))
} else {
mds <- cmdscale(x$distance)
}
plot(mds[,1], mds[,2], xlab = '', ylab = '', main = 'MDS plot of observations')
if (!is.na(x$peaks[1])) {
for (i in 1:length(x$peaks)) {
ind <- which(x$clusters == i)
points(mds[ind, 1], mds[ind, 2], col = i + 1, pch = ifelse(x$halo[ind], 1, 19))
}
legend('topright', legend = c('core', 'halo'), pch = c(19, 1), horiz = TRUE)
}
}
plotTSNE <- function(x, ...) {
UseMethod('plotTSNE')
}
plotTSNE.densityCluster <- function(x, max_components = 2, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
data <- as.matrix(dist(x$distance))
} else {
data <- as.matrix(x$distance)
}
dup_id <- which(duplicated(data))
if (length(dup_id) > 0) {
data[dup_id, ] <- data[dup_id, ] + rnorm(length(dup_id) * ncol(data), sd = 1e-10)
}
tsne_res <- Rtsne::Rtsne(as.matrix(data), dims = max_components,
pca = T)
tsne_data <- tsne_res$Y[, 1:max_components]
plot(tsne_data[,1], tsne_data[,2], xlab = '', ylab = '', main = 'tSNE plot of observations')
if (!is.na(x$peaks[1])) {
for (i in 1:length(x$peaks)) {
ind <- which(x$clusters == i)
points(tsne_data[ind, 1], tsne_data[ind, 2], col = i + 1, pch = ifelse(x$halo[ind], 1, 19))
}
legend('topright', legend = c('core', 'halo'), pch = c(19, 1), horiz = TRUE)
}
}
print.densityCluster <- function(x, ...) {
if (is.na(x$peaks[1])) {
cat('A densityCluster object with no clusters defined\n\n')
cat('Number of observations:', length(x$rho), '\n')
} else {
cat('A densityCluster object with', length(x$peaks), 'clusters defined\n\n')
cat('Number of observations:', length(x$rho), '\n')
cat('Observations in core: ', sum(!x$halo), '\n\n')
cat('Parameters:\n')
cat('dc (distance cutoff) rho threshold delta threshold\n')
cat(formatC(x$dc, width = -22), formatC(x$threshold[1], width = -22), x$threshold[2])
}
}
findClusters <- function(x, ...) {
UseMethod("findClusters")
}
findClusters.densityCluster <- function(x, rho, delta, plot = FALSE, peaks = NULL, verbose = FALSE, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
peak_ind <- which(x$rho > rho & x$delta > delta)
x$peaks <- peak_ind
runOrder <- order(x$rho, decreasing = TRUE)
cluster <- rep(NA, length(x$rho))
for (i in x$peaks) {
cluster[i] <- match(i, x$peaks)
}
for (ind in setdiff(runOrder, x$peaks)) {
target_lower_density_samples <- which(x$nearest_higher_density_neighbor == ind)
cluster[ind] <- cluster[x$nearest_higher_density_neighbor[ind]]
}
potential_duplicates <- which(is.na(cluster))
for (ind in potential_duplicates) {
res <- as.integer(names(which.max(table(cluster[x$nn.index[ind, ]]))))
if (length(res) > 0) {
cluster[ind] <- res
} else {
message('try to increase the number of kNN (through argument k) at step of densityClust.')
cluster[ind] <- NA
}
}
x$clusters <- factor(cluster)
border <- rep(0, length(x$peaks))
if (verbose) message('Identifying core and halo for each cluster')
for (i in 1:length(x$peaks)) {
if (verbose) message('the current index of the peak is ', i)
connect_samples_ind <- intersect(unique(x$nn.index[cluster == i, ]), which(cluster != i))
averageRho <- outer(x$rho[cluster == i], x$rho[connect_samples_ind], '+') / 2
if (any(connect_samples_ind)) border[i] <- max(averageRho[connect_samples_ind])
}
x$halo <- x$rho < border[cluster]
x$threshold['rho'] <- rho
x$threshold['delta'] <- delta
}
else {
if (!is.null(peaks)) {
if (verbose) message('peaks are provided, clustering will be performed based on them')
x$peaks <- peaks
} else {
if (missing(rho) || missing(delta)) {
x$peaks <- NA
plot(x)
cat('Click on plot to select thresholds\n')
threshold <- locator(1)
if (missing(rho)) rho <- threshold$x
if (missing(delta)) delta <- threshold$y
plot = TRUE
}
x$peaks <- which(x$rho > rho & x$delta > delta)
x$threshold['rho'] <- rho
x$threshold['delta'] <- delta
}
if (plot) {
plot(x)
}
runOrder <- order(x$rho, decreasing = TRUE)
cluster <- rep(NA, length(x$rho))
if (verbose) message('Assigning each sample to a cluster based on its nearest density peak')
for (i in runOrder) {
if ((i %% round(length(runOrder) / 25)) == 0) {
if (verbose) message(paste('the runOrder index is', i))
}
if (i %in% x$peaks) {
cluster[i] <- match(i, x$peaks)
} else {
higherDensity <- which(x$rho > x$rho[i])
cluster[i] <- cluster[higherDensity[which.min(findDistValueByRowColInd(x$distance, attr(x$distance, 'Size'), i, higherDensity))]]
}
}
x$clusters <- cluster
border <- rep(0, length(x$peaks))
if (verbose) message('Identifying core and halo for each cluster')
for (i in 1:length(x$peaks)) {
if (verbose) message('the current index of the peak is ', i)
averageRho <- outer(x$rho[cluster == i], x$rho[cluster != i], '+')/2
index <- findDistValueByRowColInd(x$distance, attr(x$distance, 'Size'), which(cluster == i), which(cluster != i)) <= x$dc
if (any(index)) border[i] <- max(averageRho[index])
}
x$halo <- x$rho < border[cluster]
}
x$halo <- x$rho < border[cluster]
gamma <- x$rho * x$delta
pk.ordr <- order(gamma[x$peaks], decreasing = TRUE)
x$peaks <- x$peaks[pk.ordr]
x$clusters <- match(x$clusters, pk.ordr)
x
}
clusters <- function(x, ...) {
UseMethod("clusters")
}
clusters.densityCluster <- function(x, as.list = FALSE, halo.rm = TRUE, ...) {
if (!clustered(x)) stop('x must be clustered prior to cluster extraction')
res <- x$clusters
if (halo.rm) {
res[x$halo] <- NA
}
if (as.list) {
res <- split(1:length(res), res)
}
res
}
clustered <- function(x) {
UseMethod("clustered")
}
clustered.densityCluster <- function(x) {
!any(is.na(x$peaks[1]), is.na(x$clusters[1]), is.na(x$halo[1]))
}
labels.densityCluster <- function(object, ...) {
labels(object$distance)
}
densityClust.knn <- function(mat, k = NULL, verbose = F, ...) {
if (is.null(k)) {
k <- round(sqrt(nrow(mat)) / 2)
k <- max(10, k)
}
if (verbose) message('Finding kNN using FNN with ', k, ' neighbors')
dx <- get.knn(mat, k = k, ...)
nn.index <- dx$nn.index
nn.dist <- dx$nn.dist
N <- nrow(nn.index)
knn_graph <- NULL
if (verbose) message('Calculating the local density for each sample based on kNNs ...')
rho <- apply(nn.dist, 1, function(x) {
exp(-mean(x))
})
if (verbose) message('Calculating the minimal distance of a sample to another sample with higher density ...')
rho_order <- order(rho)
delta <- vector(mode = 'integer', length = N)
nearest_higher_density_neighbor <- vector(mode = 'integer', length = N)
delta_neighbor_tmp <- smallest_dist_rho_order_coords(rho[rho_order], as.matrix(mat[rho_order, ]))
delta[rho_order] <- delta_neighbor_tmp$smallest_dist
nearest_higher_density_neighbor[rho_order] <- rho_order[delta_neighbor_tmp$nearest_higher_density_sample + 1]
if (verbose) message('Returning result...')
res <- list(
rho = rho,
delta = delta,
distance = mat,
dc = NULL,
threshold = c(rho = NA, delta = NA),
peaks = NA,
clusters = NA,
halo = NA,
knn_graph = knn_graph,
nearest_higher_density_neighbor = nearest_higher_density_neighbor,
nn.index = nn.index,
nn.dist = nn.dist
)
class(res) <- 'densityCluster'
res
}
|
set.seed(1235)
N = 10000
k = 2
X = matrix(rnorm(N * k), ncol = k)
lp = -.5 + .2 * X[, 1] + .1 * X[, 2]
y = rbinom(N, size = 1, prob = plogis(lp))
dfXy = data.frame(X, y)
logreg_ML = function(par, X, y) {
beta = par
N = nrow(X)
LP = X %*% beta
mu = plogis(LP)
L = dbinom(y, size = 1, prob = mu, log = TRUE)
-sum(L)
}
logreg_exp = function(par, X, y) {
beta = par
LP = X %*% beta
L = sum(exp(-ifelse(y, 1, -1) * .5 * LP))
}
X = cbind(1, X)
init = rep(0, ncol(X))
names(init) = c('intercept', 'b1', 'b2')
optlmML = optim(
par = init,
fn = logreg_ML,
X = X,
y = y,
control = list(reltol = 1e-8)
)
optglmClass = optim(
par = init,
fn = logreg_exp,
X = X,
y = y,
control = list(reltol = 1e-15)
)
pars_ML = optlmML$par
pars_exp = optglmClass$par
modglm = glm(y ~ ., dfXy, family = binomial)
rbind(
pars_ML,
pars_exp,
pars_GLM = coef(modglm)
)
|
context("Get parent station")
data_path <- system.file("extdata/ggl_gtfs.zip", package = "gtfstools")
gtfs <- read_gtfs(data_path)
test_that("raises errors due to incorrect input types/value", {
no_class_gtfs <- unclass(gtfs)
expect_error(get_parent_station(no_class_gtfs))
expect_error(get_parent_station(gtfs, as.factor("N1")))
})
test_that("raises errors if reqrd fields do not exist or have the right type", {
no_stops_gtfs <- copy_gtfs_without_file(gtfs, "stops")
no_stp_id_gtfs <- copy_gtfs_without_field(gtfs, "stops", "stop_id")
no_prt_st_gtfs <- copy_gtfs_without_field(gtfs, "stops", "parent_station")
wrong_stp_id_gtfs <- copy_gtfs_diff_field_class(
gtfs,
"stops",
"stop_id",
"factor"
)
wrong_prt_st_gtfs <- copy_gtfs_diff_field_class(
gtfs,
"stops",
"parent_station",
"factor"
)
expect_error(get_parent_station(no_stops_gtfs, "N1"))
expect_error(get_parent_station(no_stp_id_gtfs, "N1"))
expect_error(get_parent_station(no_prt_st_gtfs, "N1"))
expect_error(get_parent_station(wrong_stp_id_gtfs, "N1"))
expect_error(get_parent_station(wrong_prt_st_gtfs, "N1"))
})
test_that("raises warnings if a non_existent stop_id is passed", {
expect_warning(get_parent_station(gtfs, c("N1", "ola")))
expect_warning(get_parent_station(gtfs, "ola"))
})
test_that("outputs a data.table with adequate columns' classes", {
parents <- get_parent_station(gtfs, "N1")
expect_s3_class(parents, "data.table")
expect_vector(parents$stop_id, character(0))
expect_vector(parents$parent_station, character(0))
expect_warning(parents <- get_parent_station(gtfs, "ola"))
expect_s3_class(parents, "data.table")
expect_vector(parents$stop_id, character(0))
expect_vector(parents$parent_station, character(0))
})
test_that("returns parents correctly", {
parents <- get_parent_station(gtfs, "F12")
expect_identical(
parents,
data.table::data.table(stop_id = "F12", parent_station = "")
)
parents <- get_parent_station(gtfs, "B1")
expect_identical(
parents,
data.table::data.table(
stop_id = c("B1", "F12S", "F12"),
parent_station = c("F12S", "F12", "")
)
)
expect_warning(parents <- get_parent_station(gtfs, "ola"))
expect_identical(
parents,
data.table::data.table(
stop_id = character(0),
parent_station = character(0)
)
)
})
test_that("doesn't change original gtfs", {
original_gtfs <- read_gtfs(data_path)
gtfs <- read_gtfs(data_path)
expect_identical(original_gtfs, gtfs)
parents <- get_parent_station(gtfs, "B1")
expect_identical(original_gtfs, gtfs)
})
test_that("unlisted parent_stations do not introduce NAs", {
ber_path <- system.file("extdata/ber_gtfs.zip", package = "gtfstools")
ber_gtfs <- read_gtfs(ber_path)
ber_shapes <- c("14", "2")
smaller_ber <- filter_by_shape_id(ber_gtfs, ber_shapes)
parents <- get_parent_station(ber_gtfs, smaller_ber$stop_times$stop_id)
expect_false(any(is.na(parents$stop_id)))
expect_false(any(is.na(parents$parent_station)))
})
|
dbplyr_compatible <- function(function_name) {
if (utils::packageVersion('dplyr') >= '0.5.0.9004') {
if (!requireNamespace('dbplyr', quietly=TRUE)) {
stop(function_name, ' requires the dbplyr package, please install it ',
'first and try again'
)
}
f <- utils::getFromNamespace(function_name, 'dbplyr')
} else {
f <- utils::getFromNamespace(function_name, 'dplyr')
}
return(f)
}
|
context("test scan_test related functions")
data(nydf)
cases = floor(nydf$cases)
pop = nydf$pop
ty = sum(cases)
tpop = sum(pop)
ex = ty / tpop * pop
zone = c(52, 50, 53, 38, 49, 48, 15, 39, 37, 1, 16, 44,
47, 40, 14, 2, 51, 13, 43, 45, 17, 55, 11, 3,
12, 46, 36, 35, 54, 10, 5)
yin = sum(cases[zone])
ein = sum(ex[zone])
yout = ty - yin
eout = ty - ein
t1 = scan.stat(yin = yin, ty = ty, ein = ein)
t1_ = scan_stat(yin = yin, ty = ty, ein = ein)
t2 = stat.poisson(yin = yin, yout = yout, ein = ein, eout = eout)
t2_ = stat_poisson(yin = yin, yout = yout, ein = ein, eout = eout)
zone = c(1, 2, 3, 12, 13, 14, 15, 35, 47, 49)
yin = sum(cases[zone])
popin = sum(pop[zone])
yout = ty - yin
popout = tpop - popin
t3 = scan.stat(yin = yin, ty = ty, popin = popin, tpop = tpop,
type = "binomial")
t3_ = scan_stat(yin = yin, ty = ty, popin = popin, tpop = tpop,
type = "binomial")
t4 = stat.binom(yin = yin, yout = yout, ty = ty,
popin = popin, popout = popout, tpop = tpop)
t4_ = stat_binom(yin = yin, yout = yout, ty = ty,
popin = popin, popout = popout, tpop = tpop)
test_that("check accuracy for scan_test for NY data", {
expect_equal(round(t1, 6), 14.780276)
expect_equal(round(t2, 6), 14.780276)
expect_equal(round(t3, 5), 8.47836)
expect_equal(round(t4, 5), 8.47836)
expect_equal(t1, t1_)
expect_equal(t2, t2_)
expect_equal(t3, t3_)
expect_equal(t4, t4_)
})
|
setup_grass_environment <- function(dem, gisBase, epsg = NULL, sites = NULL, ...){
if(!is.null(sites))
message(writeLines(strwrap("'sites' is no longer a parameter of setup_grass_environment (see help).\n
The function will still execute normally. Please update your code.",
width = 80)))
if(!is.null(epsg))
message(writeLines(strwrap("'epsg' is no longer a parameter of setup_grass_environment (see help).\n
The function will still execute normally. Please update your code.",
width = 80)))
use_sp()
dem_grid <- rgdal::readGDAL(dem, silent = TRUE)
initGRASS(gisBase = gisBase,
SG = dem_grid,
mapset = "PERMANENT",
...)
execGRASS("g.proj", flags = c("c", "quiet"),
parameters = list(
georef = dem
))
}
grass_v.to.db <- function(map, option, type = "line", columns, format){
execGRASS("v.db.addcolumn", flags = "quiet",
parameters = list(
map = map,
columns = paste0(paste(columns, format), collapse = ",")
))
check <- try(execGRASS("v.to.db", flags = c("quiet"),
parameters = list(
map = map,
option = option,
type = type,
columns = paste(columns, collapse = ",")
), ignore.stderr = TRUE), silent = TRUE)
if(class(check) == "try-error"){
execGRASS("v.db.dropcolumn", flags = "quiet",
parameters = list(
map = map,
columns = paste0(columns, collapse = ",")
))
execGRASS("v.to.db", flags = c("quiet"),
parameters = list(
map = map,
option = option,
type = type,
columns = paste(columns, collapse = ",")
), ignore.stderr = TRUE)
}
}
|
as.mxMatrix <- function(x, name, ...) {
if (!is.matrix(x)) {
x <- as.matrix(x)
}
nRow <- nrow(x)
nCol <- ncol(x)
if (missing(name)) {
name <- as.character(match.call())[2]
if (grepl("$", name, fixed=TRUE)) {
name <- strsplit(name, "$", fixed=TRUE)[[1]][2]
}
}
values <- suppressWarnings(as.numeric(x))
free <- is.na(values)
freePara1 <- x[free]
if (length(freePara1)>0) {
freePara2 <- strsplit(freePara1, "*", fixed=TRUE)
values[free] <- suppressWarnings(sapply(freePara2, function(x){ as.numeric(x[1])}))
labels <- matrix(NA, ncol=nCol, nrow=nRow)
labels[free] <- sapply(freePara2, function(x){ x[2]})
free[grep("data.", labels)] <- FALSE
free[grep("\\[|,|\\]", labels)] <- FALSE
x_pos <- grep("@", x, fixed=TRUE)
if (length(x_pos)>0) {
x_at <- strsplit(x=x[x_pos], split="@", fixed=TRUE)
for (i in seq_along(x_at)) {
values[x_pos[i]] <- as.numeric(x_at[[i]][1])
labels[x_pos[i]] <- x_at[[i]][2]
free[x_pos[i]] <- FALSE
}
}
out <- mxMatrix(type = "Full", nrow=nRow, ncol=nCol, values=values, free=free,
name=name, labels=labels, ...)
} else {
out <- mxMatrix(type = "Full", nrow=nRow, ncol=nCol, values=values, free=free,
name=name, ...)
}
if (!is.null(dimnames(x))) {
if (!is.null(rownames(x))) {
if (rownames(x)[1] != "1") {
dim.names <- lapply(dimnames(x), make.names)
dimnames(out@values) <- dimnames(out@labels) <- dimnames(out@free) <- dim.names
}
}
}
out
}
as.symMatrix <- function(x) {
if (is.list(x)) {
for (i in seq_along(x)) {
x[[i]][] <- vapply(x[[i]], function(z) gsub(".*\\*", "", z), character(1))
}
} else {
x[] <- vapply(x, function(z) gsub(".*\\*", "", z), character(1))
}
x
}
as.mxAlgebra <- function(x, name="X") {
vars <- sort(all.vars(parse(text=x)))
Xvars <- create.mxMatrix(paste0("0*", vars), ncol=1, nrow=length(vars))
Xvars@name <- paste0(name, "vars")
xrow <- nrow(x)
xcol <- ncol(x)
for (j in seq_len(xcol))
for (i in seq_len(xrow)) {
Xij <- paste0(name,i,"_",j, " <- mxAlgebra(",x[i,j], ", name='",name,i,"_",j,"')")
eval(parse(text=Xij))
}
Xmat <- outer(seq_len(xrow), seq_len(xcol), function(x, y) paste0(name,x,"_",y))
Xmat <- paste0("cbind(", apply(Xmat, 1, paste0, collapse=", "), ")")
Xmatrix <- paste0(name, " <- mxAlgebra(rbind(", paste0(Xmat, collapse=", "), "), name='", name,"')")
eval(parse(text=Xmatrix))
Xlist <- outer(seq_len(xrow), seq_len(xcol), function(x,y) paste0(name,x,"_",y))
Xnames <- c(name, Xvars@name, Xlist)
Xlist <- paste0("list(", paste0(Xlist, "=", Xlist, collapse=", "), ")")
Xlist <- eval(parse(text=Xlist))
out <- paste0("out <- list(", name, "=", name, ", names=Xnames, ", name,
"vars=Xvars, ", name, "list=Xlist",")" )
eval(parse(text=out))
out
}
|
a_full=function(r0){
val=(r0<0.7)*a(r0)+(r0>=0.7)*(r0<=0.997)*a_medium(r0)+(r0>0.997)*exp(2.877)/sqrt(252)/(1-r0)^0.163
return(val)
}
f_full=function(x){
return(ifelse(x<3,f(x),f(3)))
}
b=function(r0,N){
r0Nalpha=r0*N^.42
return(exp(f_full(r0Nalpha))*r0^1.6)
}
theta=function(r0,N,nu,nu_fixed){
myEstimate=a_full(abs(r0))-b(abs(r0),N)*nu^(-1.5)
myEstimate=myEstimate * (sign(myEstimate)>0)
myEstimate=myEstimate * sign(r0)
if(nu_fixed){
myEstimate=myEstimate*(1-(exp(3.7726-6.2661*log(nu))-exp(-0.36538*nu-1.58686)))*(1-0.009248)
}else{
myEstimate=myEstimate*((1-(exp(4.4635-6.9240*log(nu))-exp(-0.18441*nu-3.18909)))*(1+exp(-log(nu)*3.2+0.9)-0.009248))
}
return(myEstimate)
}
Test.N = function(x) {
x=x[is.finite(x)]
n = length(x)
q1 = quantile(x,0.2 )
q2 = quantile(x,0.8 )
low = x [ x <= q1 ]
med = x [ x > q1 & x < q2 ]
high = x [ x >= q2 ]
N = var(low)+var(high)-2*var(med)
N = N*sqrt(n)/(var(x)*1.8)
return(N)
}
estimateSNR=function(x,numPerm=NA,nu=NA,quantiles=c(0.05,0.95)){
if(is.na(nu))
nu_fixed=FALSE
else
nu_fixed=TRUE
if(length(x)<1){
return(NULL)
}
x=x[is.finite(x)]
N=length(x)
if(N<1){
return(NULL)
}
if(!is.finite(numPerm)){
numPerm=min(100,ceiling(3*log(N)))
}
x=as.numeric(x)
if(is.na(nu) || nu<0 ){
if(abs(Test.N(x))<3){
nu=1e13
}else{
myfit=tryCatch(ghyp::fit.tuv(x,silent=TRUE,nu=6),error=function(e){return(NA)})
if(!class(myfit)=="mle.ghyp"){
nu=1e13
}else{
nu=coef(myfit)$nu
}
}
}
R0bar_res=computeR0bar(x,numPerm = numPerm)
R0bar=R0bar_res$mean
if(abs(R0bar)<1){
R0bar=0
return(list(nu=nu,SNR=0,R0bar=0,N=length(x)))
}
SNR=theta(R0bar/N,N,nu,nu_fixed)
SNR_q1=theta(R0bar_res$q1/N,N,nu,nu_fixed)
SNR_q2=theta(R0bar_res$q2/N,N,nu,nu_fixed)
return(list(SNR=SNR,SNR.ci=c(SNR_q1,SNR_q2),nu=nu,R0bar=R0bar,N=length(x)))
}
.onUnload <- function (libpath) {
library.dynam.unload("sharpeRratio", libpath)
}
|
"data123"
|
gjam <- function(formula, xdata, ydata, modelList){
.gjam(formula, xdata, ydata, modelList)
}
|
sampling.robustness <- function(df, subsampling = c(5, 10, 20, 30, 40, 50), metric = "met.strength",
assoc.indices = FALSE, actor, receiver, scan, id, index = "sri",progress = TRUE, ...) {
op <- par(no.readonly = TRUE)
on.exit(par(op))
par(bg = "gray63")
percent <- (subsampling * nrow(df)) / 100
if (!assoc.indices) {
if(is.null(actor) | is.null(receiver)){stop("Arguments 'actor' and 'receiver' cannot be NULL.")}
col.actor <- df.col.findId(df, actor)
col.receiver <- df.col.findId(df, receiver)
M <- df.to.mat(df, actor = col.actor, receiver = col.receiver)
met <- do.call(metric, list(M = M, ...))
names <- colnames(M)
result <- rep(list(met), length(subsampling) + 1)
for (a in 1:length(subsampling)) {
if(progress){cat(" Processing bootstrap : ", a, "\r")}
tmp <- df[-sample(1:nrow(df), percent[a], replace = FALSE), ]
M <- df.to.mat(tmp, actor = col.actor, receiver = col.receiver)
result[[a + 1]] <- do.call(metric, list(M = M))
}
}
else {
if(is.null(scan) | is.null(id)){stop("Arguments 'scan' and 'id' cannot be NULL.")}
col.scan <- df.col.findId(df, scan)
col.id <- df.col.findId(df, id)
gbi <- df.to.gbi(df, scan = col.scan, id = col.id)
M <- assoc.indices(gbi, index)
met <- do.call(metric, list(M = M, ...))
names <- colnames(M)
result <- rep(list(met), length(subsampling) + 1)
for (a in 1:length(subsampling)) {
if(progress){cat(" Processing bootstrap : ", a, "\r")}
tmp <- df[-sample(1:nrow(df), percent[a], replace = FALSE), ]
gbi <- df.to.gbi(tmp, scan = col.scan, id = col.id)
M <- assoc.indices(gbi, index)
result[[a + 1]] <- do.call(metric, list(M = M, ...))
}
}
if (length(met) > 1){
result <- do.call(rbind, lapply(result, "[", names))
boxplot(result[-1, ], ylim=c(min(result, na.rm = TRUE), max(result, na.rm = TRUE)))
stripchart(result[1, ]~c(1:ncol(result)),
vertical = T,
method = "jitter", pch = 21,
col = "white", bg = "white", add = TRUE
)
attr(result, "ANT") <- "Bootsraping deletions"
return <- list("metrics" = result, "summary" = summary(result[-1, ]))
}
else{
result <- unlist(result)
boxplot(result[-1], ylim=c(min(result, na.rm = TRUE), max(result, na.rm = TRUE)))
stripchart(result[1],
vertical = T,
method = "jitter", pch = 21,
col = "white", bg = "white", add = TRUE
)
attr(result, "ANT") <- "Bootsrapping deletions"
return <- list("metrics" = result, "summary" = summary(result[-1]))
}
}
|
context("gnr_resolve")
test_that("gnr_resolve returns the correct value", {
skip_on_cran()
tmp <- gnr_resolve(c("Helianthus annuus", "Homo sapiens"))
expect_equal(NCOL(tmp), 5)
expect_is(tmp, "data.frame")
expect_is(tmp$matched_name, "character")
})
test_that("best_match_only works correctly", {
skip_on_cran()
x <- 'Aconitum degeni subsp. paniculatum'
a <- gnr_resolve(x, best_match_only = TRUE)
b <- gnr_resolve(x, best_match_only = FALSE)
expect_is(a, "data.frame")
expect_is(b, "data.frame")
expect_equal(NROW(a), 0)
expect_equal(attributes(a)$not_known, x)
expect_named(attributes(a), c("names", "row.names", "class", "not_known"))
expect_is(b$data_source_title, "character")
cc <- gnr_resolve(c("Homo sapiens", "Helianthus annuus"), best_match_only = TRUE)
expect_identical(cc$user_supplied_name, c("Homo sapiens", "Helianthus annuus"))
})
test_that("canonical works correctly", {
skip_on_cran()
x <- gnr_resolve("Metzgeria", data_source_ids = c(12), canonical = TRUE)
y <- "Helianthus annuus"
w <- gnr_resolve(y, canonical = TRUE)
z <- gnr_resolve(y, canonical = FALSE)
expect_is(w, "data.frame")
expect_is(z, "data.frame")
expect_named(w, c("user_supplied_name", "submitted_name", "data_source_title", "score", "matched_name2"))
expect_named(z, c("user_supplied_name", "submitted_name", "matched_name", "data_source_title", "score"))
expect_equal(NROW(x), 1)
expect_true(is.na(x$matched_name2[2]))
})
test_that("fields parameter works correctly", {
skip_on_cran()
tmp1 <- gnr_resolve(c("Asteraceae", "Plantae"), fields = 'all')
tmp2 <- gnr_resolve(c("Asteraceae", "Plantae"), fields = 'minimal')
expect_is(tmp1, "data.frame")
expect_is(tmp1$matched_name, "character")
expect_true(any(grepl("Asteraceae", tmp1$matched_name)))
expect_is(tmp2, "data.frame")
expect_is(tmp2$matched_name, "character")
expect_true(any(grepl("Asteraceae", tmp2$matched_name)))
expect_false(identical(tmp1$matched_name, tmp2$matched_name))
expect_lt(NCOL(tmp2), NCOL(tmp1))
})
test_that("works correctly when no data found for preferred data source", {
skip_on_cran()
aa <- gnr_resolve("Scabiosa triandra", preferred_data_sources = c(21,24),
best_match_only = TRUE)
expect_is(aa, "data.frame")
expect_equal(NROW(aa), 0)
expect_equal(length(attributes(aa)$not_known), 1)
})
|
.multinomialCoef <- function(x)
{
n <- nrow(x)
numerator <- factorial(ncol(x))
coef <- numeric(n)
for (i in seq_len(n))
coef[i] <- numerator/prod(factorial(tabulate(x[i, ])))
coef
}
proba.genotype <- function(alleles = c("1", "2"), p, ploidy = 2)
{
o <- .sort.alleles(alleles, index.only = TRUE)
alleles <- alleles[o]
p <- if (missing(p)) rep(1/length(alleles), length(alleles)) else p[o]
geno <- expand.genotype(length(alleles), ploidy = ploidy, matrix = TRUE)
P <- .multinomialCoef(geno) * apply(geno, 1, function(i) prod(p[i]))
names(P) <- apply(matrix(alleles[geno], ncol = ploidy), 1, paste, collapse = "/")
P
}
expand.genotype <- function(n, alleles = NULL, ploidy = 2, matrix = FALSE)
{
if (!is.null(alleles)) {
alleles <- .sort.alleles(alleles)
n <- length(alleles)
}
ans <- matrix(0L, 0L, ploidy)
foo <- function(i, a) {
for (x in a:n) {
g[i] <<- x
if (i < ploidy) foo(i + 1L, x) else ans <<- rbind(ans, g)
}
}
g <- integer(ploidy)
foo(1L, 1L)
dimnames(ans) <- NULL
if (is.character(alleles))
ans <- matrix(alleles[ans], ncol = ploidy)
if (!matrix)
ans <- apply(ans, 1, paste, collapse = "/")
ans
}
hw.test <- function (x, B = 1000, ...) UseMethod("hw.test")
hw.test.loci <- function(x, B = 1000, ...)
{
test.polyploid <- function(x, ploidy) {
if (ploidy < 2) return(rep(NA_real_, 3))
nms <- names(x$allele)
all.prop <- x$allele/sum(x$allele)
E <- proba.genotype(nms, all.prop, ploidy = ploidy)
O <- E
O[] <- 0
O[names(x$genotype)] <- x$genotype
E <- sum(O) * E
chi2 <- sum((O - E)^2/E)
DF <- length(E) - length(nms)
c(chi2, DF, 1 - pchisq(chi2, DF))
}
y <- summary.loci(x)
ploidy <- .checkPloidy(x)
if (any(del <- !ploidy)) {
msg <- if (sum(del) == 1) "The following locus was ignored: " else "The following loci were ignored: "
msg <- paste(msg, names(y)[del], "\n(not the same ploidy for all individuals, or too many missing data)", sep = "")
warning(msg)
}
ans <- t(mapply(test.polyploid, y, ploidy = ploidy))
dimnames(ans) <- list(names(y), c("chi^2", "df", "Pr(chi^2 >)"))
if (B) {
LN2 <- log(2)
test.mc <- function(x, ploidy) {
if (ploidy != 2) {
warning("Monte Carlo test available only if all individuals are diploid")
return(NA_real_)
}
n <- sum(x$genotype)
Nall <- length(x$allele)
all.geno <- expand.genotype(Nall)
Ngeno <- length(all.geno)
p <- numeric(B)
ma <- unlist(mapply(rep, 1:Nall, x$allele))
homoz.nms <- paste(1:Nall, 1:Nall, sep = "/")
for (k in 1:B) {
m <- sample(ma)
dim(m) <- c(n, 2)
o <- m[, 1] > m[, 2]
m[o, 1:2] <- m[o, 2:1]
s <- factor(paste(m[, 1], m[, 2], sep = "/"), levels = all.geno)
f <- tabulate(s, Ngeno)
p[k] <- -sum(lfactorial(f)) + LN2 * sum(f[-match(homoz.nms, all.geno)])
}
h <- unlist(lapply(strsplit(names(x$genotype), "/"),
function(x) length(unique(x)))) == 1
p0 <- -sum(lfactorial(x$genotype)) + LN2*sum(x$genotype[!h])
sum(p <= p0)/B
}
ans <- cbind(ans, "Pr.exact" = mapply(test.mc, y, ploidy))
}
ans
}
hw.test.genind <- function(x, B = 1000, ...){
x <- as.loci(x)
hw.test.loci(x = x, B = B, ...)
}
|
print.summary.BANOVA.Bernoulli <-
function(x, ...){
cat('Call:\n')
print(x$call)
cat('\nConvergence diagnostics:\n')
print(x$conv)
print(x$anova.table)
cat('\nTable of p-values (Multidimensional): \n')
print(x$pvalue.table)
cat('\nTable of coefficients: \n')
printCoefmat(x$coef.table)
cat('\nTable of predictions: \n')
table.predictions(x$full_object)
}
|
NULL
if (getRversion() >= "2.15.1") utils::globalVariables(c("."))
|
launch_ggedit <- function(p, output, rstudio, ...) {
assign(x = ".p", envir = .ggeditEnv, value = p)
assign(x = ".output", envir = .ggeditEnv, value = output)
on.exit({
assign(x = ".p", envir = .ggeditEnv, value = NULL)
}, add = T)
shiny::runApp(appDir = system.file("application", package = "ggedit"), ...)
}
|
export_qgis_ronds_classes <-
function(map,cheminDossier,nomFichier,titre1="",titre2="",source="")
{
sortie <- nomFichier
rep_sortie <- cheminDossier
files <- paste0(rep_sortie,"/",sortie,".qgs")
list_fonds <- extract_fond_leaflet_ronds_classes(map)
if(is.null(list_fonds)) stop(simpleError("La legende des ronds ou des classes n'a pas ete creee. Veuillez svp utiliser les fonctions add_legende_ronds(map) et add_legende_classes(map) pour ajouter une legende a votre carte."))
dir.create(paste0(rep_sortie,"/layers"),showWarnings = F)
for(i in 1:length(list_fonds[[1]]))
{
suppressWarnings(st_write(list_fonds[[1]][[i]], paste0(rep_sortie,"/layers/",list_fonds[[2]][[i]],".shp"), delete_dsn = TRUE, quiet = TRUE))
}
annee <- format(Sys.time(), format = "%Y")
l <- c()
if(any(list_fonds[[2]] %in% "fond_ronds_leg")) l <- c(l,"fond_ronds_leg")
if(any(list_fonds[[2]] %in% "fond_ronds_classes_carte")) l <- c(l,"fond_ronds_classes_carte")
if(any(list_fonds[[2]] %in% "fond_ronds_classes_elargi_carte")) l <- c(l,"fond_ronds_classes_elargi_carte")
if(any(list_fonds[[2]] %in% "fond_maille")) l <- c(l,"fond_maille")
if(any(list_fonds[[2]] %in% "fond_maille_elargi")) l <- c(l,"fond_maille_elargi")
if(any(list_fonds[[2]] %in% "fond_france")) l <- c(l,"fond_france")
if(any(list_fonds[[2]] %in% "fond_pays"))l <- c(l,"fond_pays")
if(any(list_fonds[[2]] %in% "fond_etranger"))l <- c(l,"fond_etranger")
if(any(list_fonds[[2]] %in% "fond_territoire")) l <- c(l,"fond_territoire")
if(any(list_fonds[[2]] %in% "fond_departement")) l <- c(l,"fond_departement")
if(any(list_fonds[[2]] %in% "fond_region")) l <- c(l,"fond_region")
if(is.null(titre1)) titre1 <- list_fonds[[3]]
if(is.null(source)) source <- list_fonds[[4]]
titre_leg <- list_fonds[[6]]
table_classe <- list_fonds[[5]]
variable_a_representer <- list_fonds[[7]]
export_projet_qgis_ronds_classes(l,rep_sortie,sortie,titre1,titre2,source,titre_leg,table_classe,variable_a_representer,annee)
message(simpleMessage(paste0("[INFO] Le projet .qgs se trouve dans ",files)))
}
|
ff_draftpicks.mfl_conn <- function(conn, ...) {
future_picks <- .mfl_futurepicks(conn)
current_picks <- .mfl_currentpicks(conn)
dplyr::bind_rows(current_picks, future_picks) %>%
dplyr::left_join(
dplyr::select(
ff_franchises(conn),
dplyr::any_of(c("franchise_id", "franchise_name", "division", "division_name"))
),
by = c("franchise_id")
) %>%
dplyr::select(
dplyr::any_of(c(
"season", "division", "division_name",
"franchise_id", "franchise_name", "round",
"pick", "original_franchise_id"
))
)
}
.mfl_futurepicks <- function(conn) {
future_picks <- mfl_getendpoint(conn, "futureDraftPicks") %>%
purrr::pluck("content", "futureDraftPicks", "franchise")
if (length(future_picks) == 0) {
return(NULL)
}
future_picks %>%
tibble::tibble() %>%
tidyr::hoist(1, "futureDraftPick" = "futureDraftPick", "franchise_id" = "id") %>%
tidyr::unnest_longer("futureDraftPick") %>%
tidyr::hoist("futureDraftPick", "season" = "year", "round" = "round", "original_franchise_id" = "originalPickFor") %>%
dplyr::mutate_at(c("season", "round"), as.numeric)
}
.mfl_currentpicks <- function(conn) {
raw_draftresults <- mfl_getendpoint(conn, "draftResults") %>%
purrr::pluck("content", "draftResults", "draftUnit")
if (!is.null(raw_draftresults$unit) && raw_draftresults$unit == "LEAGUE") {
df_draftresults <- .mfl_parse_draftunit(raw_draftresults)
if (is.null(df_draftresults)) {
return(NULL)
}
df_draftresults <- df_draftresults %>%
dplyr::filter(.data$player_id == "") %>%
dplyr::select("franchise_id", "round", "pick") %>%
dplyr::mutate(season = conn$season) %>%
dplyr::mutate_at(c("season", "round", "pick"), as.numeric)
return(df_draftresults)
} else {
df_draftresults <- purrr::map_df(raw_draftresults, .mfl_parse_draftunit)
if (is.null(df_draftresults)) {
return(NULL)
}
df_draftresults <- df_draftresults %>%
dplyr::filter(.data$player_id == "") %>%
dplyr::select("franchise_id", "round", "pick") %>%
dplyr::mutate(season = conn$season) %>%
dplyr::mutate_at(c("season", "round", "pick"), as.numeric)
return(df_draftresults)
}
}
|
test_that("point_from_distance doesn't care about classes", {
expect_error(point_from_distance(c(
lat = 44.05003,
lng = -74.01164
), 100, 90), NA)
})
|
options(prompt = "R> ", continue = "+ ", width = 70, useFancyQuotes = FALSE)
library(dirichletprocess)
|
gexp.fe_rcbd <- function(x,
...)
{
ifelse(is.null(x$fe),
fe <- list(f1 = rep(1,
3),
f2 = rep(1,
2)),
fe <- x$fe)
ifelse(is.null(x$blke),
blke <- rep(1,
3),
blke <- x$blke)
factors <- list(r = 1:x$r)
contrast <- list()
ifelse(is.null(x$blkl),
{
factors$Block <- factor(1:dim(as.matrix(blke))[1])
contrast[["Block"]] <- diag(dim(as.matrix(blke))[1])
},
{
factors[[names(x$blkl)]] <- factor(unlist(x$blkl))
contrast[[names(x$blkl)]] <- diag(dim(as.matrix(blke))[1])
})
intee <- makeInteraction(mu = x$mu,
fe = fe,
inte = x$inte)
treatments <- makeTreatments(fl = x$fl,
fe = fe,
quali = x$qualiquanti$quali,
quanti = x$qualiquanti$quanti,
posquanti = x$qualiquanti$posquanti)
contrasttreatments <- makeContrasts(factors = treatments,
quali = x$qualiquanti$quali,
quanti = x$qualiquanti$quanti,
posquanti = x$qualiquanti$posquanti)
contrast <- c(contrast,
contrasttreatments)
if(!is.null(x$contrasts)){
contrast[names(x$contrasts)] <- x$contrasts
contrasts <- contrast
}else{
contrasts <- contrast
}
factors <- c(factors,
treatments)
cformula <- paste('~',
names(factors)[2],
'+',
paste(names(treatments),
collapse = '*'))
dados <- expand.grid(factors,
KEEP.OUT.ATTRS = FALSE)
XB <- makeXBeta(cformula,
dados,
mu = x$mu,
fe = fe,
blke = blke,
rowe = x$rowe,
cole = x$cole,
inte = intee,
contrasts = contrasts)
Z <- NULL
if(is.null(x$err)){
e <- mvtnorm::rmvnorm(n = dim(XB$XB)[1],
sigma = diag(length(x$mu)))
}else{
if(!is.matrix(x$err))
stop("This argument must be a matrix n x 1 univariate or n x p multivariate!")
e <- x$err
}
yl <- XB$XB + e
colnames(yl) <- paste('Y',
1:dim(yl)[2],
sep = '')
Y <- round(yl,
x$round)
if(!x$qualiquanti$quali){
dados <- lapply(dados,
function(x) if(is.ordered(factor(x))) as.numeric(as.character(x)) else x)
dados <- as.data.frame(dados)
}
dados <- cbind(dados,
Y)
res <- list(X = XB$X,
Z = Z,
Y = Y,
dfm = dados)
class(res) <- c(paste('gexp',
class(x),
sep = '.'),
'gexp',
'list')
return(res)
}
|
httr_dr <- function() {
check_for_nss()
}
check_for_nss <- function() {
if (!grepl("^NSS", curl::curl_version()$ssl_version)) return()
warning('
------------------------------------------------------------------------
Your installed RCurl is linked to the NSS library (`libcurl4-nss-dev`)
which is likely to cause issues.
To resolve the problem:
1. Quit R.
2. Install OpenSSL (`apt-get install libcurl4-openssl-dev`) or
GnuTLS (`apt-get install libcurl4-gnutls-dev`) variants of libCurl.
3. Restart R.
4. Reinstall RCurl: `install.packages("RCurl")`.
------------------------------------------------------------------------
', call. = FALSE)
}
|
options( width=200, max.print=10000 )
XRes <- readRDS("RDS/CM.rds")
XRes <- as.matrix(XRes$CI)
print(XRes)
pdf(file="Plots/contour.pdf", height=5, width=6.8)
par(mar=c(4,5,0.5,0.5),cex.axis=1.2,cex.lab=1.4)
filled.contour( x = -10:10,
y = -10:10,
z = matrix(XRes[,"Difference"],21,21, byrow=TRUE),
xlab = expression(paste(alpha, " (Placebo)")),
ylab = expression(paste(alpha, " (Active)")),
nlevels = 8,
color.palette = colorRampPalette(c( "
plot.axis = ( points( XRes[ sign(XRes[,"lb7"]) == sign(XRes[,"ub7"]), c(1,2)], pch=15, cex=0.6, col = c("
)
dev.off()
|
context("fgeo_topography")
describe("fgeo_topography", {
elev_ls <- fgeo.x::elevation
gridsize <- 20
topo <- fgeo_topography(elev_ls, gridsize = gridsize)
it("Outputs the expected data structure", {
expect_is(topo, "tbl_df")
expect_is(topo, "fgeo_topography")
expect_named(topo, c("gx", "gy", "meanelev", "convex", "slope"))
n_plot_row <- elev_ls$xdim / gridsize
n_plot_col <- elev_ls$ydim / gridsize
n_quadrats <- n_plot_row * n_plot_col
expect_equal(nrow(topo), n_quadrats)
})
it("Works with both elevation list and dataframe", {
expect_silent(topo)
expect_silent(
out_df <- fgeo_topography(
elev_ls$col, gridsize,
xdim = elev_ls$xdim, ydim = elev_ls$ydim
)
)
expect_identical(topo, out_df)
})
it("errs with informative message", {
expect_error(fgeo_topography(1), "Can't deal with.*numeric")
expect_error(fgeo_topography(elev_ls), "gridsize.*is missing")
expect_error(fgeo_topography(elev_ls$col), "gridsize.*is missing")
expect_error(fgeo_topography(elev_ls$col, gridsize), "xdim.*can't be `NULL`")
})
it("works with elevation list and dataframe with x and y, or gx and gy", {
elev_ls2 <- elev_ls
elev_ls2[[1]] <- setNames(elev_ls2[[1]], c("gx", "gy", "elev"))
topo2 <- fgeo_topography(elev_ls2, gridsize = gridsize)
expect_silent(topo2)
expect_identical(topo2, topo)
expect_silent(
out_df <- fgeo_topography(
elev_ls2$col, gridsize,
xdim = elev_ls2$xdim, ydim = elev_ls2$ydim
)
)
expect_identical(topo2, out_df)
})
})
describe("fgeo_topography()", {
it("returns known output", {
skip_if_not_installed("bciex")
expect_known <- function(object, file, update = FALSE) {
testthat::expect_known_output(object, file, update = update, print = TRUE)
}
elev_luq <- fgeo.x::elevation
luq <- fgeo_topography(elev_luq, gridsize = 20)
expect_known(head(luq), "ref-fgeo_topography_luq_head")
expect_known(tail(luq), "ref-fgeo_topography_luq_tail")
elev_bci <- bciex::bci_elevation
bci <- fgeo_topography(elev_bci, gridsize = 20, xdim = 1000, ydim = 500)
expect_known(head(bci), "ref-fgeo_topography_bci_head")
expect_known(tail(bci), "ref-fgeo_topography_bci_tail")
})
})
describe("fgeo_topography()", {
it("`edgecorrect` works with elevaiton data finer than gridsize / 2 (
degrade_elev <- function(elev_ls, gridsize) {
elev_ls$col <- elev_ls$col %>%
dplyr::filter(x %% gridsize == 0) %>%
dplyr::filter(y %% gridsize == 0)
elev_ls
}
luq_elev <- fgeo.x::elevation
msg <- "No elevation data found at `gridsize / 2`"
expect_warning(
expect_error(fgeo_topography(degrade_elev(luq_elev, 20), gridsize = 20)),
msg
)
no_warning <- NA
expect_warning(
fgeo_topography(degrade_elev(luq_elev, 10), gridsize = 20), no_warning
)
tian_tong_elev <- readr::read_csv(test_path("test-data-tian_tong_elev.csv"))
expect_warning(
expect_error(
fgeo_topography(tian_tong_elev, gridsize = 20, xdim = 500, ydim = 400)
),
msg
)
})
})
context("allquadratslopes")
elev <- fgeo.x::elevation
test_that("works with simple input", {
result <- allquadratslopes(
elev = elev,
gridsize = 20,
plotdim = c(1000, 500),
edgecorrect = TRUE
)
expect_is(result, "data.frame")
expect_named(result, c("meanelev", "convex", "slope"))
})
test_that("warns if input to eleve is unexpected", {
names(elev)[[1]] <- "data"
expect_error(
expect_warning(
allquadratslopes(
elev = elev,
gridsize = 20,
plotdim = c(1000, 500),
edgecorrect = TRUE
),
"must.*named.*col"
)
)
})
context("calcslope")
test_that("errs with informative message", {
gridsize <- 20
expect_error(calcslope(1:3, gridsize), NA)
expect_error(calcslope(1:2, gridsize), "must be of length 3")
expect_error(calcslope(1, gridsize), "must be of length 3")
expect_error(calcslope(1:4, gridsize), "must be of length 3")
})
test_that("with z == 0 returns 0", {
expect_equal(calcslope(c(0, 0, 0), 20), 0)
expect_equal(calcslope(c(1, 1, 1), 20), 0)
})
context("warn_if_no_data_falls_on_half_gridsize")
test_that("does what it promises", {
col <- tibble::tribble(
~x, ~y, ~elev,
0, 0, 0,
15, 15, 0,
)
expect_warning(
warn_if_no_data_falls_on_half_gridsize(
list(col = col),
gridsize = 20, edgecorrect = TRUE
),
"elevation.*too coarse"
)
})
|
context("sim_base")
test_that("base_add_id", {
data(diamonds, envir=environment(), package = "ggplot2")
diamonds <- diamonds[1:1000, ]
diamonds["clusterVariable"] <- 1:nrow(diamonds)
setup <- sim_base(base_add_id(data = diamonds, "clusterVariable"))
dat <- sim(setup %>% sim_gen_e())[[1]]
expect_equal(nrow(dat), 1000)
expect_equal(names(dat), c(c("idD", "idU"), names(diamonds), c("e", "idR", "simName")))
})
test_that("sim_base return setup with simName", {
setup <- sim_base()
expect_equal(length(setup@simName), 1)
})
|
testthat::context("Testing inconsistency.functions")
network <- mbnma.network(dataset)
noplac.df <- network$data.ab[network$data.ab$narm>2 & network$data.ab$agent!=1,]
net.noplac <- mbnma.network(noplac.df)
testthat::test_that(paste0("test.inconsistency.loops for: ", datanam), {
expect_error(inconsistency.loops(network$data.ab, incldr = TRUE), NA)
comps <- inconsistency.loops(network$data.ab, incldr = TRUE)
expect_equal(any(grepl("drparams", comps$path)), TRUE)
if (!datanam %in% c("osteopain_2wkabs", "GoutSUA_2wkCFB")) {
compsnodr <- inconsistency.loops(network$data.ab, incldr = FALSE)
expect_equal(nrow(compsnodr)<nrow(comps), TRUE)
incon <- inconsistency.loops(network$data.ab)
expect_identical(names(incon), c("t1", "t2", "path"))
}
if (datanam=="HF2PPITT") {
expect_equal(nrow(inconsistency.loops(network$data.ab)), 4)
expect_equal(nrow(inconsistency.loops(net.noplac$data.ab)), 8)
}
})
testthat::test_that(paste0("test.nma.nodesplit for: ", datanam), {
if (all(c("y", "se") %in% names(dataset))) {
like <- "normal"
link <- "identity"
} else if (all(c("r", "N") %in% names(dataset))) {
like <- "binomial"
link <- "logit"
}
if (!datanam %in% c("osteopain_2wkabs", "GoutSUA_2wkCFB")) {
split <- nma.nodesplit(network, likelihood = like, link=link,
method="common", n.iter=1000)
expect_equal(nrow(inconsistency.loops(network$data.ab)), length(split))
expect_equal(class(split), "nodesplit")
expect_identical(names(split[[1]]), c("comparison",
"direct", "indirect", "nma",
"overlap matrix", "p.values", "quantiles",
"forest.plot", "density.plot",
"direct.model", "indirect.model", "nma.model"))
expect_equal(is.numeric(split[[1]]$p.values), TRUE)
expect_equal(is.numeric(split[[1]]$indirect), TRUE)
expect_equal(is.numeric(split[[1]]$direct), TRUE)
expect_equal(length(split[[1]]$comparison), 2)
expect_identical(class(split[[1]]$forest.plot), c("gg", "ggplot"))
expect_identical(class(split[[1]]$density.plot), c("gg", "ggplot"))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
comps <- inconsistency.loops(network$data.ab, incldr = FALSE)
compsi <- c(comps$t1[1], comps$t2[1])
split <- nma.nodesplit(network, likelihood = "binomial", link="logit",
method="random", n.iter=1000, drop.discon = TRUE,
comparisons = rbind(compsi))
expect_equal(1, length(split))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
expect_error(nma.nodesplit(network, likelihood = "binomial", link="logit",
method="random", n.iter=1000, drop.discon = FALSE,
comparisons = rbind(c("badger","rizatriptan_0.5"))),
"Treatment names given")
}
if (datanam=="HF2PPITT") {
split <- nma.nodesplit(net.noplac, likelihood = "binomial", link="logit",
method="random", n.iter=1000, drop.discon = TRUE)
expect_equal(nrow(inconsistency.loops(net.noplac$data.ab)), length(split))
expect_equal(class(split), "nodesplit")
expect_identical(names(split[[1]]), c("comparison",
"direct", "indirect", "nma",
"overlap matrix", "p.values", "quantiles",
"forest.plot", "density.plot",
"direct.model", "indirect.model", "nma.model"))
expect_equal(is.numeric(split[[1]]$p.values), TRUE)
expect_equal(is.numeric(split[[2]]$indirect), TRUE)
expect_equal(is.numeric(split[[3]]$direct), TRUE)
expect_equal(length(split[[4]]$comparison), 2)
expect_identical(class(split[[1]]$forest.plot), c("gg", "ggplot"))
expect_identical(class(split[[2]]$density.plot), c("gg", "ggplot"))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
}
if (datanam=="HF2PPITT") {
expect_error(nma.nodesplit(network, likelihood = "binomial", link="logit",
method="random", n.iter=1000, drop.discon = FALSE,
comparisons = rbind(c("sumatriptan_0.5","rizatriptan_0.5"),
c("zolmitriptan_4", "eletriptan_1"),
c("naratriptan_2", "Placebo_0"))))
}
})
testthat::test_that("test.mbnma.nodesplit", {
if (all(c("y", "se") %in% names(dataset))) {
like <- "normal"
link <- "identity"
} else if (all(c("r", "N") %in% names(dataset))) {
like <- "binomial"
link <- "logit"
}
comps <- inconsistency.loops(network$data.ab, incldr = TRUE)
split <- mbnma.nodesplit(network, fun="rcs", knots=3, likelihood = like, link=link,
method="common", n.iter=1000)
expect_equal(nrow(comps), length(split))
if (!datanam %in% c("osteopain_2wkabs", "GoutSUA_2wkCFB")) {
expect_equal(nrow(inconsistency.loops(network$data.ab, incldr = FALSE))==length(split), FALSE)
}
expect_equal(class(split), "nodesplit")
expect_identical(names(split[[1]]), c("comparison",
"direct", "indirect", "mbnma",
"overlap matrix", "p.values", "quantiles",
"forest.plot", "density.plot",
"split.model", "mbnma.model"))
expect_equal(is.numeric(split[[1]]$p.values), TRUE)
expect_equal(is.numeric(split[[2]]$indirect), TRUE)
expect_equal(is.numeric(split[[3]]$direct), TRUE)
expect_equal(length(split[[4]]$comparison), 2)
expect_identical(class(split[[1]]$forest.plot), c("gg", "ggplot"))
expect_identical(class(split[[2]]$density.plot), c("gg", "ggplot"))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
comps.noplac <- inconsistency.loops(net.noplac$data.ab, incldr = TRUE)
split <- mbnma.nodesplit(net.noplac, fun="exponential", likelihood = like, link=link,
method="random", n.iter=1000)
expect_equal(nrow(comps.noplac), length(split))
expect_equal(class(split), "nodesplit")
expect_identical(names(split[[1]]), c("comparison",
"direct", "indirect", "mbnma",
"overlap matrix", "p.values", "quantiles",
"forest.plot", "density.plot",
"split.model", "mbnma.model"))
expect_equal(is.numeric(split[[1]]$p.values), TRUE)
expect_equal(is.numeric(split[[2]]$indirect), TRUE)
expect_equal(is.numeric(split[[3]]$direct), TRUE)
expect_equal(length(split[[4]]$comparison), 2)
expect_identical(class(split[[1]]$forest.plot), c("gg", "ggplot"))
expect_identical(class(split[[2]]$density.plot), c("gg", "ggplot"))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
split <- mbnma.nodesplit(net.noplac, fun="user", user.fun= ~beta.1 * dose + beta.2 * (dose^2),
likelihood = like, link=link,
method="random", n.iter=1000,
comparisons = rbind(comps.noplac[1,], comps.noplac[3,]))
expect_equal(2, length(split))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
comps <- inconsistency.loops(network$data.ab, incldr = TRUE)
split <- mbnma.nodesplit(network, fun="emax",
method="random", n.iter=1000,
comparisons = rbind(c(network$treatment[comps$t1[2]], network$treatment[comps$t2[2]])))
expect_equal(1, length(split))
expect_error(print(split), NA)
expect_equal(class(summary(split)), "data.frame")
expect_error(mbnma.nodesplit(network, fum="linear",
method="random", n.iter=1000,
comparisons = rbind(c("badger","rizatriptan_0.5"))),
"Treatment names given")
if (datanam=="HF2PPITT") {
expect_error(mbnma.nodesplit(network, fun="emax",
method="random", n.iter=1000,
comparisons = rbind(c("sumatriptan_0.5","rizatriptan_0.5"),
c("zolmitriptan_4", "eletriptan_1"),
c("naratriptan_2", "Placebo_0"))))
} else {
expect_error(mbnma.nodesplit(network, fun="emax",
method="random", n.iter=1000,
comparisons = rbind(c("sumatriptan_0.5","rizatriptan_0.5"),
c("zolmitriptan_4", "eletriptan_1"),
c("naratriptan_2", "Placebo_0"))),
"Treatment names given")
}
})
|
resolve_read <- function(handle, data_product, component = NA) {
endpoint <- handle$yaml$run_metadata$local_data_registry_url
read <- handle$yaml$read
if (!all(is.null(names(read))))
read <- list(read)
index <- lapply(read, function(x) x$data_product == data_product) %>%
unlist() %>%
which()
if (length(index) == 0)
usethis::ui_stop(paste(usethis::ui_field(data_product),
"not found in config file"))
if (length(index) > 1)
usethis::ui_stop("Multiple entries found in config file")
this_read <- read[[index]]
alias <- this_read$use
if (any(names(alias) == "data_product")) {
data_product <- this_read$use$data_product
} else {
data_product <- this_read$data_product
}
if (any(names(alias) == "component")) {
component <- alias$component
} else {
component <- component
}
if (any(names(alias) == "version")) {
version <- this_read$use$version
} else {
version <- this_read$version
}
if (any(names(alias) == "namespace")) {
namespace <- alias$namespace
} else {
namespace <- handle$yaml$run_metadata$default_input_namespace
}
namespace_id <- get_id("namespace", list(name = namespace))
if (is.null(namespace_id))
usethis::ui_stop(paste("default_input_namespace",
usethis::ui_field(namespace),
"not present in data registry"))
assertthat::assert_that(length(namespace_id) == 1)
this_entry <- get_entry("data_product",
list(name = data_product,
version = version,
namespace = namespace_id),
endpoint = endpoint)
if (is.null(this_entry))
usethis::ui_stop(paste0(usethis::ui_field(namespace), ":",
usethis::ui_field(data_product), "@v.",
usethis::ui_field(version), " ",
"missing from data registry"))
assertthat::assert_that(length(this_entry) == 1)
this_object <- get_entity(this_entry[[1]]$object)
this_object_id <- extract_id(this_object$url, endpoint = endpoint)
this_location <- get_entity(this_object$storage_location)
this_path <- this_location$path
this_root <- get_entity(this_location$storage_root)$root
if (grepl("^file://", this_root))
this_root <- gsub("^file://", "", this_root)
if (is.na(component)) {
component_url <- get_url("object_component",
list(object = this_object_id,
whole_object = TRUE),
endpoint = endpoint)
} else {
component_url <- get_url("object_component",
list(object = this_object_id,
name = component),
endpoint = endpoint)
}
assertthat::assert_that(length(component_url) == 1)
list(data_product = data_product,
component = component,
component_url = component_url,
version = version,
namespace = namespace,
path = paste0(this_root, this_path))
}
|
wield <- function(simulation, force, ..., name, include = TRUE) {
stopifnot(is.simulation(simulation))
stopifnot(is.force(force))
include <- enquo(include)
universe(simulation) <- add_force(
universe(simulation),
name = name,
train_force(force, particles(simulation), ..., include = include)
)
simulation
}
rewield <- function(simulation, name, ...) {
stopifnot(is.simulation(simulation))
universe(simulation) <- modify_force(
universe(simulation),
name = name,
retrain_force(get_force(universe(simulation), name), particles(simulation), ...)
)
simulation
}
unwield <- function(simulation, name) {
stopifnot(is.simulation(simulation))
universe(simulation) <- remove_force(universe(simulation), name)
simulation
}
|
calculate_risk_measures <- function(data, wgt, varpool, tau1, tau2) {
el_emam_risk_measures <- function(data, tau1, tau2)
return(list(pRa=mean(data$.cell_count < 1/tau1),
pRb=1/min(data$.cell_count),
pRc=length(unique(data$.cell_ID))/nrow(data),
jRa=mean(data$.mu_argus > tau2),
jRb=max(data$.mu_argus),
jRc=mean(data$.mu_argus)))
stopifnot(!missing(wgt) &&
!is.null(wgt) &&
inherits(wgt, "character") &&
length(wgt) == 1 &&
wgt %in% names(data))
data <- add_mu_argus_and_statistics(data, wgt, varpool)
return(list(data=data,
mu_argus_summary=summarize_mu_argus(data, wgt),
el_emam_measures=el_emam_risk_measures(data, tau1, tau2)))
}
calculate_risk_measures_unweighted <- function(data, varpool, tau1) {
el_emam_risk_measures <- function(data)
return(list(pRa=mean(data$.cell_count < 1/tau1),
pRb=1/min(data$.cell_count),
pRc=length(unique(data$.cell_ID))/nrow(data)))
add_cell_count <- function(data_with_cell_ID) {
stopifnot(nrow(data_with_cell_ID) > 0)
ids <- data_with_cell_ID$.cell_ID
tmp <- data_with_cell_ID[,".cell_ID",drop=FALSE]
tbl <- aggregate(tmp, by=list(.cell_ID=ids), FUN=length)
names(tbl) <- c(".cell_ID", ".cell_count")
return(merge(data_with_cell_ID, tbl))
}
data <- add_cell_count(add_cell_ID(data, varpool))
return(list(data=data,
el_emam_measures=el_emam_risk_measures(data)))
}
add_mu_argus_and_statistics <- function(data, wgt, varpool) {
get_mu_argus_term <- Vectorize(function(n, f_k, pi_k){
return(factorial(n)*((1-pi_k)^n)/prod(f_k + 1:n))
}, vectorize.args="n")
get_score <- function(f_k, pi_k) {
if(isTRUE(all.equal(pi_k, 1)))
return(1/f_k)
if(f_k == 1)
return(-log(pi_k)*pi_k/(1 - pi_k))
else if(f_k == 2)
return((pi_k*log(pi_k) + 1 - pi_k)*pi_k/((1 - pi_k)^2))
else if(f_k == 3)
return(((1 - pi_k)*(3*(1 - pi_k) - 2) - 2*pi_k*pi_k*log(pi_k))*pi_k/
(2*((1-pi_k)^3)))
else
return((1 + sum(get_mu_argus_term(1:7, f_k, pi_k)))*pi_k/f_k)
}
data <- add_cell_ID(data, varpool)
data <- add_statistics_per_cell(data, wgt)
data$.mu_argus <- mapply(get_score, data$.cell_count, data$.pi_k)
return(data)
}
summarize_mu_argus <- function(data, wgt) {
max_counts <- c(1:3, Inf)
n <- nrow(data)
summarize_subset <- function(max_count) {
dat <- data[data$.cell_count <= max_count,]
sum_mu_argus <- sum(dat$.mu_argus)
return(data.frame(num_cases=nrow(dat),
total_mu_argus=sum_mu_argus,
mean_mu_argus=mean(dat$.mu_argus),
total_mu_over_total_obs=sum_mu_argus/n,
total_mu_over_sum_wts=sum_mu_argus/sum(data[,wgt])))
}
tbl <- do.call(rbind, lapply(max_counts, summarize_subset))
tbl <- cbind(data.frame(max_count=max_counts), tbl)
tbl <- tbl[1:(which(tbl$num_cases == tbl$num_cases[4])[1]),]
return(tbl)
}
add_statistics_per_cell <- function(data_with_cell_ID, wgt) {
ids <- data_with_cell_ID$.cell_ID
tmpdat <- data_with_cell_ID[,wgt,drop=FALSE]
tbl <- aggregate(tmpdat, by=list(.cell_ID=ids), FUN=sum)
names(tbl) <- c(".cell_ID", ".sum_weights")
data <- merge(data_with_cell_ID, tbl)
tbl <- aggregate(tmpdat, by=list(.cell_ID=ids), FUN=length)
names(tbl) <- c(".cell_ID", ".cell_count")
data <- merge(data, tbl)
data$.pi_k <- data$.cell_count/data$.sum_weights
return(data)
}
|
"pois.approx" <-
function(x, pt = 1, conf.level = .95) {
Z <- qnorm(0.5*(1 + conf.level))
SE.R <- sqrt(x/pt^2)
lower <- x/pt - Z*SE.R
upper <- x/pt + Z*SE.R
data.frame(x = x,
pt = pt,
rate = x/pt,
lower = lower,
upper = upper,
conf.level = conf.level
)
}
|
rgk = function(n, A, B, g, k, c=0.8){
z2gk(stats::rnorm(n), A, B, g, k, c)
}
|
calc_creat_neo <- function (
pma = NULL,
digits = 1
) {
if(is.null(pma)) {
stop("PMA required required.")
}
if(any(pma < 25)) {
stop("PMA < 25 not supported by this equation!")
}
if(any(pma > 42)) {
stop("PMA >42 not supported by this equation!")
}
scr <- 166.48 - 2.849 * pma
return(list(
value = round(scr, digits),
unit = "micromol/L"
))
}
|
nca.read.sim <- function(simFile="nca_simulation.1.npctab.dta",
MDV.rm=FALSE){
sim <- read.table(simFile, skip=1, header=T, fill=T, as.is=T)
sim <- as.data.frame(apply(sim,2,function(x) suppressWarnings(as.numeric(x))))
Nro <- min(which(is.na(sim[,1])))-1
sim <- sim[!is.na(sim[,1]),]
sim$NSUB <- rep(1:(nrow(sim)/Nro),each=Nro)
if(MDV.rm){
if(any(colnames(sim)=='MDV')){sim <- sim[sim[,'MDV']==0,]
}else{cat('\nWarning MDV data item not listed in header,
Could not remove dose events!')}
}
assign("nmdf", sim)
return(nmdf)
}
|
uci_quit <- function(engine){
uci_cmd(engine,"quit")
rslt <- uci_read(engine)$temp
engine$pipe$kill()
return(rslt)
}
|
nlxb <- function(formula, start, trace = FALSE, data=NULL, lower = -Inf,
upper = Inf, masked = NULL, weights=NULL, control=list()) {
pnames <- names(start)
start <- as.numeric(start)
names(start) <- pnames
npar <- length(start)
if (length(lower) == 1)
lower <- rep(lower, npar)
if (length(upper) == 1)
upper <- rep(upper, npar)
if (length(lower) != npar)
stop("Wrong length: lower")
if (length(upper) != npar)
stop("Wrong length: upper")
if (any(start < lower) || any(start > upper))
stop("Infeasible start")
if (trace) {
cat("formula: ")
print(formula)
cat("lower:")
print(lower)
cat("upper:")
print(upper)
}
ctrl <- list(watch = FALSE, phi = 1, lamda = 1e-04, offset = 100,
laminc = 10, lamdec = 4, femax = 10000, jemax = 5000, rofftest = TRUE,
smallsstest = TRUE)
ncontrol <- names(control)
nctrl <- names(ctrl)
for (onename in ncontrol) {
if (!(onename %in% nctrl)) {
if (trace) cat("control ", onename, " is not in default set\n")
stop(onename," is not a control for nlxb")
}
ctrl[onename] <- control[onename]
}
if (trace) print(ctrl)
phiroot <- sqrt(ctrl$phi)
vn <- all.vars(formula)
pnum <- start
pnames <- names(pnum)
bdmsk <- rep(1, npar)
maskidx <- union(which(lower==upper), which(pnames %in% masked))
if (length(maskidx) > 0 && trace) {
cat("The following parameters are masked:")
print(pnames[maskidx])
}
bdmsk[maskidx] <- 0
if (trace) {
cat("Finished masks check\n")
parpos <- match(pnames, vn)
datvar <- vn[-parpos]
cat("datvar:")
print(datvar)
for (i in 1:length(datvar)) {
dvn <- datvar[[i]]
cat("Data variable ", dvn, ":")
if (is.null(data)) {
print(eval(parse(text = dvn)))
} else {
print(with(data, eval(parse(text = dvn))))
}
}
}
trjfn<-model2rjfun(formula, pnum, data=data)
if (trace) {
cat("trjfn:\n")
print(trjfn)
}
resfb <- nlfb(start=pnum, resfn=trjfn, jacfn=trjfn, trace=trace,
data=data, lower=lower, upper=upper, maskidx=maskidx,
weights=weights, control=ctrl)
resfb$formula <- formula
pnum <- as.vector(resfb$coefficients)
names(pnum) <- pnames
result <- resfb
class(result) <- "nlsr"
result
}
|
`%||%` <- function(lhs, rhs) {
if (!is.null(lhs) && length(lhs) > 0) lhs else rhs
}
polite_fetch_rtxt <- memoise::memoise(function(..., user_agent, delay, verbose){
rt <- robotstxt::robotstxt(...)
delay_df <- rt$crawl_delay
crawldelays <- as.numeric(delay_df[with(delay_df, useragent==user_agent), "value"]) %||%
as.numeric(delay_df[with(delay_df, useragent=="*"), "value"]) %||% 0
rt$delay_rate <- max(crawldelays, delay, 1)
if(verbose){
message("Bowing to: ", rt$domain)
message("There's ", nrow(delay_df), " crawl delay rule(s) defined for this host.")
message("Your rate will be set to 1 request every ", rt$delay_rate, " second(s).")}
rt
})
check_rtxt <-function(url, delay, user_agent, force, verbose){
url_parsed <- httr::parse_url(url)
host_url <- paste0(url_parsed$scheme, "://", url_parsed$hostname)
rt <- polite_fetch_rtxt(host_url, force=force, user_agent=user_agent, delay=delay, verbose=verbose)
is_scrapable <- rt$check(paths=url_parsed$path, bot=user_agent)
if(is_scrapable)
Sys.sleep(rt$delay_rate)
else
warning("robots.txt says this path is NOT scrapable for your user agent!", call. = FALSE)
is_scrapable
}
polite_read_html <- memoise::memoise(
function(url, ...,
delay = 5,
user_agent=paste0("polite ", getOption("HTTPUserAgent"), "bot"),
force = FALSE,
verbose=FALSE){
if(!check_rtxt(url, delay, user_agent, force, verbose)){
return(NULL)
}
old_ua <- getOption("HTTPUserAgent")
options("HTTPUserAgent"= user_agent)
if(verbose) message("Scraping: ", url)
res <- httr::GET(url, ...)
options("HTTPUserAgent"= old_ua)
httr::content(res)
})
guess_basename <- function(x) {
destfile <- basename(x)
if(tools::file_ext(destfile)==""){
hh <- httr::HEAD(x)
cds <- httr::headers(hh)$`content-disposition`
destfile <- gsub('.*filename=', '', gsub('\\\"','', cds))
}
destfile %||% basename(x)
}
polite_download_file <- memoise::memoise(
function(url, destfile=guess_basename(url), ...,
quiet=!verbose, mode = "wb", path="downloads/",
user_agent=paste0("polite ", getOption("HTTPUserAgent")),
delay = 5, force = FALSE, overwrite=FALSE, verbose=FALSE){
if(!check_rtxt(url, delay, user_agent, force, verbose)) return(NULL)
if(!dir.exists(path)) dir.create(path)
destfile <- paste0(path, destfile)
if(file.exists(destfile) && !overwrite){
message("File ", destfile, " already exists!")
return(destfile)
}
old_ua <- getOption("HTTPUserAgent")
options("HTTPUserAgent"= user_agent)
if(verbose) message("Scraping: ", url)
utils::download.file(url=url, destfile=destfile, quiet=quiet, mode=mode, ...)
options("HTTPUserAgent"= old_ua)
destfile
})
|
pkgconfig_dummy <- function() {
pkgconfig::get_config()
}
|
DBSMOTE =function(X,target,dupSize=0,MinPts=NULL,eps=NULL)
{
ncD=ncol(X)
n_target=table(target)
classP=names(which.min(n_target))
P_set=subset(X,target==names(which.min(n_target)))[sample(min(n_target)),]
N_set=subset(X,target!=names(which.min(n_target)))
P_class=rep(names(which.min(n_target)),nrow(P_set))
N_class=target[target!=names(which.min(n_target))]
sizeP=nrow(P_set)
sizeN=nrow(N_set)
set.seed(ceiling(runif(1)*10000))
if(is.null(MinPts))
{
MinPts=2+ceiling(log(sizeP,10))-1
}
if(is.null(eps))
{
FNN::get.knn(P_set, k=MinPts+1, algorithm="kd_tree")->Pknn
quantile(Pknn$nn.dist[,MinPts+1],0.75)->eps
}
ds <- dbscan::dbscan(P_set,eps,MinPts)
size_Pgen = nrow(P_set[ds$cluster!=0,])
Outcast = P_set[ds$cluster==0,]
sum_dup=n_dup_max(sizeP+sizeN,size_Pgen,sizeN,dupSize)
clus=sort(unique(ds$cluster)[unique(ds$cluster)>0])
syn_dat=NULL
for(i in clus)
{
Vert_Cl=which(ds$cluster==i)
Adj_m_Cl=matrix(0,length(Vert_Cl),length(Vert_Cl))
colnames(Adj_m_Cl)=Vert_Cl
rownames(Adj_m_Cl)=Vert_Cl
as.matrix(dist(P_set[Vert_Cl,]))->distP
NNq=rowSums(distP<=eps)
for(j in 1:length(Vert_Cl))
{
if(length(Vert_Cl)>=MinPts+1)
{
Adj_m_Cl[j,]=(distP[j,]<=eps&distP[j,]>0)*(NNq>=MinPts)
}
else
{
Adj_m_Cl[j,]=(distP[j,]<=eps&distP[j,]>0)
}
}
Centroid=colMeans(P_set[Vert_Cl,])
pDCinxD=order(as.matrix(dist(rbind(P_set[Vert_Cl,],Centroid)))[,length(Vert_Cl)+1])[2]
pseudo_Cen=P_set[Vert_Cl[pDCinxD],]
igraph::graph.adjacency(Adj_m_Cl)->graph_clus
igraph::get.shortest.paths(graph_clus, pDCinxD, mode = "all", weights = subset(as.vector(t(distP*Adj_m_Cl)),as.vector(t(distP*Adj_m_Cl))>0))->short_Path
syn_dat_cl=NULL
for(j in 1:length(Vert_Cl))
{
path=short_Path$vpath[[j]]
if(length(path)>1)
{
print(length(path))
rand_edge=ceiling(runif(sum_dup)*(length(path)-1))
g = runif(sum_dup)
P_i=P_set[Vert_Cl[path[rand_edge]],]
Q_i= P_set[Vert_Cl[path[rand_edge+1]],]
syn_i = P_i + g*(Q_i - P_i)
syn_dat_cl = rbind(syn_dat_cl,syn_i)
}
}
syn_dat=rbind(syn_dat,syn_dat_cl)
}
P_set[,ncD+1] = P_class
colnames(P_set)=c(colnames(X),"class")
N_set[,ncD+1] = N_class
colnames(N_set)=c(colnames(X),"class")
rownames(syn_dat)= NULL
syn_dat = data.frame(syn_dat)
syn_dat[,ncD+1] = rep(names(which.min(n_target)),nrow(syn_dat))
colnames(syn_dat)=c(colnames(X),"class")
NewD=rbind(P_set,syn_dat,N_set)
rownames(NewD) = NULL
rownames(Outcast) <- c()
new_target_out=rep(classP,nrow(as.matrix(Outcast)))
Outcast_df=data.frame(Outcast)
Outcast_df[,ncD+1]=new_target_out
colnames(Outcast_df)=c(colnames(X),"class")
D_result = list(data = NewD, syn_data = syn_dat, orig_N = N_set, orig_P = P_set, K = NULL, K_all = NULL, dup_size = sum_dup, outcast = Outcast_df, eps=eps, method = "DBSMOTE")
class(D_result) = "gen_data"
print("DBSMOTE is Done")
return(D_result)
}
|
post_destroy <- function(destroy_id, token = NULL) {
stopifnot(is.character(destroy_id) && length(destroy_id) == 1)
query <- sprintf("/1.1/statuses/destroy/%s", destroy_id)
r <- TWIT_post(token, query)
message("Your tweet has been deleted!")
return(invisible(r))
}
|
apsim_version <- function(which = c("all","inuse"), verbose = TRUE){
fevc <- function(x) as.numeric(sub("r","",strsplit(x, "-", fixed = TRUE)[[1]][2]))
which <- match.arg(which)
tmp.dat <- data.frame(APSIM = c("Classic", "Next Generation"))
if(verbose) cat("OS:",Sys.info()[["sysname"]],"\n")
if(.Platform$OS.type == "unix"){
if(grepl("Darwin", Sys.info()[["sysname"]])){
laf <- list.files("/Applications/")
find.apsim <- grep("APSIM",laf, ignore.case = TRUE)
if(length(find.apsim) == 0) warning("APSIM-X not found")
apsimx.versions <- laf[find.apsim]
if(length(find.apsim) > 0){
tmp.mat <- matrix(NA, nrow = 2, ncol = length(find.apsim))
tmp.mat[2,seq_along(find.apsim)] <- rev(apsimx.versions)
ans <- data.frame(tmp.dat, as.data.frame(tmp.mat))
names(ans) <- c("APSIM",paste0("Version.",seq_along(find.apsim)))
}
}
if(grepl("Linux", Sys.info()[["sysname"]])){
laf <- list.files("/usr/local/lib")
find.apsim <- grep("apsim", laf, ignore.case = TRUE)
if(length(find.apsim) == 0) warning("APSIM-X not found")
apsimx.version <- paste0("/usr/local/lib/apsim/",list.files("/usr/local/lib/apsim"))
tmp.mat <- matrix(NA, nrow = 2, ncol = length(find.apsim))
tmp.mat[2,length(find.apsim)] <- list.files("/usr/local/lib/apsim")
ans <- data.frame(tmp.dat, as.data.frame(tmp.mat))
names(ans) <- c("APSIM","Version")
}
}
if(.Platform$OS.type == "windows"){
st1 <- "C:/PROGRA~1/"
lafx <- list.files(st1)
find.apsimx <- grep("APSIM",lafx)
st2 <- "C:/PROGRA~2/"
laf <- list.files(st2)
find.apsim <- grep("APSIM",laf, ignore.case = TRUE)
if(length(find.apsim) == 0 && length(find.apsimx) == 0)
warning("Could not find APSIM or APSIM-X")
ncols <- max(c(length(find.apsim),length(find.apsimx)))
if(length(find.apsimx) > 0){
apsimx.versions <- lafx[find.apsimx]
tmp.matx <- matrix(NA, nrow = 1, ncol = ncols)
tmp.matx[1,seq_along(find.apsimx)] <- rev(apsimx.versions)
}else{
tmp.matx <- matrix(NA, nrow = 1, ncol = ncols)
}
if(length(find.apsim) > 0){
apsim.versions <- laf[find.apsim]
apsim.versions <- apsim.versions[order(sapply(apsim.versions, fevc), decreasing = TRUE)]
tmp.matc <- matrix(NA, nrow = 1, ncol = ncols)
tmp.matc[1,seq_along(find.apsim)] <- apsim.versions
}else{
tmp.matc <- matrix(NA, nrow = 1, ncol = ncols)
}
ans <- data.frame(tmp.dat, as.data.frame(rbind(tmp.matc,tmp.matx)))
names(ans) <- c("APSIM",paste0("Version.",1:ncols))
}
if(which == "all"){
if(verbose)
print(knitr::kable(ans))
}
if(which == "inuse"){
if(.Platform$OS.type == "unix"){
if(length(find.apsim) == 1){
if(grepl("Darwin", Sys.info()[["sysname"]])) ans <- laf[find.apsim]
if(grepl("Linux", Sys.info()[["sysname"]])) ans <- paste0("apsim", list.files("/usr/local/lib/apsim"))
}
if(length(find.apsim) > 1){
len.fa <- length(find.apsim)
fa.dt <- sapply(laf[find.apsim],.favd, simplify = FALSE)[[len.fa]]
if(verbose) cat("APSIM-X version date:",as.character(fa.dt))
newest.version <- laf[find.apsim][len.fa]
ans <- newest.version
}
if(!is.na(apsimx::apsimx.options$exe.path)){
ans <- apsimx::apsimx.options$exe.path
}
}
if(.Platform$OS.type == "windows"){
ansc <- NA
ansx <- NA
if(length(find.apsim) == 1){
ansc <- laf[find.apsim]
}
if(length(find.apsim) > 1){
apsim.versions <- sapply(laf[find.apsim],fevc)
newest.version <- sort(apsim.versions, decreasing = TRUE)[1]
ansc <- names(newest.version)
}
if(!is.na(apsimx::apsim.options$exe.path)){
ansc <- apsimx::apsim.options$exe.path
}
if(length(find.apsimx) == 1){
ansx <- lafx[find.apsimx]
}
if(length(find.apsimx) > 1){
apsimx.versions <- lafx[find.apsimx]
len.fa <- length(find.apsimx)
newest.version <- lafx[find.apsimx][len.fa]
ansx <- newest.version
}
if(!is.na(apsimx::apsimx.options$exe.path)){
ansx <- apsimx::apsimx.options$exe.path
}
ans <- data.frame(Classic = ansc, NextGeneration = ansx)
}
if(verbose) print(knitr::kable(ans))
}
invisible(ans)
}
|
if (Sys.getenv("POSTGRES_USER") != "" & Sys.getenv("POSTGRES_HOST") != "" & Sys.getenv("POSTGRES_DATABASE") != "") {
stopifnot(require(RPostgreSQL))
stopifnot(require(datasets))
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv,
user=Sys.getenv("POSTGRES_USER"),
password=Sys.getenv("POSTGRES_PASSWD"),
host=Sys.getenv("POSTGRES_HOST"),
dbname=Sys.getenv("POSTGRES_DATABASE"),
port=ifelse((p<-Sys.getenv("POSTGRES_PORT"))!="", p, 5432))
if (dbExistsTable(con, "rockdata")) {
print("Removing rockdata\n")
dbRemoveTable(con, "rockdata")
}
dbWriteTable(con, "rockdata", rock)
res <- dbGetQuery(con, "select area as ar, peri as pe, shape as sh, perm as pr from rockdata limit 10")
print(res)
if (dbExistsTable(con, "rockdata")) {
print("Removing rockdata\n")
dbRemoveTable(con, "rockdata")
}
dbDisconnect(con)
}
|
assess_covr_coverage <- function(x, ...) {
UseMethod("assess_covr_coverage")
}
attributes(assess_covr_coverage)$column_name <- "covr_coverage"
attributes(assess_covr_coverage)$label <- "Package unit test coverage"
assess_covr_coverage.default <- function(x, ...) {
as_pkg_metric_na(pkg_metric(class = "pkg_metric_covr_coverage"))
}
assess_covr_coverage.pkg_source <- function(x, ...) {
pkg_metric_eval(class = "pkg_metric_covr_coverage", {
covr::coverage_to_list(x$covr_coverage)
})
}
metric_score.pkg_metric_covr_coverage <- function(x, ...) {
x$totalcoverage / 100
}
attributes(metric_score.pkg_metric_covr_coverage)$label <-
"The fraction of lines of code which are covered by a unit test."
|
library("aroma.affymetrix")
ovars <- ls(all.names=TRUE)
oplan <- future::plan()
message("*** RmaBackgroundCorrection ...")
dataSet <- "GSE9890"
chipType <- "HG-U133_Plus_2"
csR <- AffymetrixCelSet$byName(dataSet, chipType=chipType)
csR <- csR[1:3]
print(csR)
cdf <- getCdf(csR)
acs <- getAromaCellSequenceFile(cdf)
print(acs)
strategies <- future:::supportedStrategies()
strategies <- setdiff(strategies, "multiprocess")
if (require("future.BatchJobs")) {
strategies <- c(strategies, "batchjobs_local")
if (any(grepl("PBS_", names(Sys.getenv())))) {
strategies <- c(strategies, "batchjobs_torque")
}
}
if (require("future.batchtools")) {
strategies <- c(strategies, "batchtools_local")
if (any(grepl("PBS_", names(Sys.getenv())))) {
strategies <- c(strategies, "batchtools_torque")
}
}
checksum <- NULL
for (strategy in strategies) {
message(sprintf("*** Using %s futures ...", sQuote(strategy)))
future::plan(strategy)
tags <- c("*", strategy)
message("- RmaBackgroundCorrection() ...")
bg <- RmaBackgroundCorrection(csR, tags=tags)
print(bg)
csB <- process(bg, verbose=verbose)
print(csB)
csBz <- getChecksumFileSet(csB)
print(csBz[[1]])
checksumT <- readChecksum(csBz[[1]])
if (is.null(checksum)) checksum <- checksumT
stopifnot(identical(checksumT, checksum))
message("- RmaBackgroundCorrection() ... DONE")
message("- NormExpBackgroundCorrection() ...")
bg <- NormExpBackgroundCorrection(csR, tags=tags)
print(bg)
csB <- process(bg, verbose=verbose)
print(csB)
csBz <- getChecksumFileSet(csB)
print(csBz[[1]])
checksumT <- readChecksum(csBz[[1]])
if (is.null(checksum)) checksum <- checksumT
stopifnot(identical(checksumT, checksum))
message("- NormExpBackgroundCorrection() ... DONE")
message(sprintf("*** Using %s futures ... DONE", sQuote(strategy)))
}
message("*** RmaBackgroundCorrection ... DONE")
future::plan(oplan)
rm(list=setdiff(ls(all.names=TRUE), ovars))
|
signup <- function(username, email, save = TRUE) {
if (missing(username)) username <- verify("username")
if (missing(email)) stop("Must specify a valid email")
bod <- list(
un = username,
email = email,
platform = "R",
version = as.character(get_package_version("plotly"))
)
base_url <- file.path(get_domain(), "apimkacct")
resp <- httr::RETRY(
verb = "POST",
base_url,
body = bod,
times = 5,
terminate_on = c(400, 401, 403, 404),
terminate_on_success = TRUE
)
con <- process(append_class(resp, "signup"))
if (save) {
cat_profile("username", con$un)
cat_profile("api_key", con$api_key)
}
Sys.setenv("plotly_username" = con$un)
Sys.setenv("plotly_api_key" = con$api_key)
invisible(con)
}
|
corrRancomp <-
function(model) {
e = residuals(model)
e * (sigma(model) / sqrt(weights(model))) / sqrt(mean(e ^ 2))
}
|
Var.e=function(y,S){
df=fdata.trace(S)
if (is.vector(y)) {
n=length(y)
y.est=S%*%y
se=sum((y-y.est)^2,na.rm=TRUE)/(n-df)
var.e=se*diag(ncol(S))
}
else {
if (!is.fdata(y)) y<-fdata(y)
y<-y[["data"]]
n=ncol(S)
y.est<-t(S%*%t(y))
var.e<-t(y-y.est)%*%(y-y.est)/(n-df)
}
return(var.e)
}
|
library(hamcrest)
expected <- c(0x1.199999999999ap+0 + 0x0p+0i, 0x1.0f4f8d60d3eb4p+0 + 0x0p+0i,
0x1.e666666666667p-1 + -0x1p-56i, 0x1.999999999999ap-1 + 0x1.76cf5d0b09952p-57i,
0x1.4cccccccccccdp-1 + 0x1.8p-55i, 0x1.149418718b5cep-1 + 0x1.8p-54i,
0x1p-1 + 0x0p+0i, 0x1.149418718b5cdp-1 + 0x0p+0i, 0x1.4cccccccccccdp-1 + 0x1p-56i,
0x1.999999999999ap-1 + -0x1.76cf5d0b09952p-57i, 0x1.e666666666667p-1 + -0x1.8p-55i,
0x1.0f4f8d60d3eb3p+0 + -0x1.8p-54i)
assertThat(stats:::fft(inverse=TRUE,z=c(0.8+0i, 0.15+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i,
0+0i, 0+0i, 0.15+0i))
, identicalTo( expected, tol = 1e-6 ) )
|
library(testthat)
context("trivial")
library(PeakSegJoint)
count <-
as.integer(c(rep(c(0, 1), each=5),
rep(c(10, 11), each=10),
rep(c(0, 1), each=5)))
test_that("with 1 sample we refine peaks" , {
chromEnd <- seq_along(count)
profiles <-
data.frame(chromStart=chromEnd-1L,
chromEnd,
sample.id="sample1",
count)
fit <- PeakSegJointHeuristic(profiles)
converted <- ConvertModelList(fit)
peak <- converted$peaks
expect_equal(peak$chromStart, 10)
expect_equal(peak$chromEnd, 30)
})
test_that("chromEnd <= chromStart is an error", {
bad <- data.frame(chromStart=as.integer(c(0, 100)),
chromEnd=as.integer(c(100, 50)),
count=0L,
sample.id="foo")
expect_error({
PeakSegJointHeuristic(bad)
}, "chromStart not less than chromEnd")
})
test_that("chromStart[i] < chromEnd[i-1] is an error", {
bad <- data.frame(chromStart=as.integer(c(0, 100)),
chromEnd=as.integer(c(150, 200)),
count=0L,
sample.id="foo")
expect_error({
PeakSegJointHeuristic(bad)
}, "chromStart before previous chromEnd", fixed=TRUE)
})
empty <-
data.frame(sample.id=character(),
chrom=character(),
chromStart=integer(),
chromEnd=integer(),
count=integer())
test_that("no computable models error for empty coverage data", {
expect_error({
fit <- PeakSegJointSeveral(empty)
}, "No computable models")
})
test_that("no coverage error for empty coverage data", {
expect_error({
fit <- PeakSegJointHeuristic(empty)
}, "no coverage data")
})
|
efron.petrosian <-
function(X, U=NA, V=NA, wt=NA, error=NA,
nmaxit=NA , boot=TRUE, B=NA, alpha=NA,
display.F=FALSE, display.S=FALSE){
trunc <- "both"
if (all(is.na(U)) == TRUE & !all(is.na(V)) == TRUE) {
trunc <- "right"
cat("case U=NA","\n")
cat("warning: data on one truncation limit are missing; the result is based on an iterative algorithm, but an explicit-form NPMLE (Lynden-Bell estimator) exists","\n")
if (any(is.na(V)) == TRUE | any(is.na(X)) == TRUE) {
navec <- c(which(is.na(X)), which(is.na(V)))
X <- X[-navec]
V <- V[-navec]
}
}
if (all(is.na(V)) == TRUE & !all(is.na(U)) == TRUE) {
trunc <- "left"
cat("case V=NA","\n")
cat("warning: data on one truncation limit are missing; the result is based on an iterative algorithm, but an explicit-form NPMLE (Lynden-Bell estimator) exists","\n")
if (any(is.na(U)) == TRUE | any(is.na(X)) == TRUE) {
navec <- c(which(is.na(X)), which(is.na(U)))
X <- X[-navec]
U <- U[-navec]
}
}
if (all(is.na(V)) == TRUE & all(is.na(U)) == TRUE) {
cat("case U=NA and V=NA","\n")
stop("warning: data on at least one truncation limit (left or right) is required","\n")
}
if (trunc == "both") {
if (any(is.na(U)) == TRUE |
any(is.na(V)) == TRUE | any(is.na(X)) == TRUE) {
navec <- c(which(is.na(X)), which(is.na(U)), which(is.na(V)))
X <- X[-navec]
U <- U[-navec]
V <- V[-navec]
}
}
if (is.na(wt) == TRUE)
wt <- rep(1 / length(X), times = length(X))
D <- cbind(X, U, V)
if (all(is.na(V)) == TRUE)
D[, 3] <- rep(max(D[, 1]) + 1, length(X))
if (all(is.na(U)) == TRUE) {
D[, 2] <- rep(min(D[, 1]) - 1, length(X))
D[, 1] <- D[, 1]
D[, 3] <- D[, 3]
}
C<- matrix(0, nrow = nrow(D), ncol = ncol(D))
EE <- matrix(0, nrow = nrow(D), ncol = ncol(D))
ord <- order(D[, 1], method = "auto")
C[, 1] <- sort(D[, 1], method = "auto")
C[, 2:ncol(D)] <-
D[ord, 2:ncol(D)]
T<-table(C[,2]<= C[,1]&C[,1]<=C[,3])
if(sum(T[names(T)=="TRUE"])!=length(X) |sum(T[names(T)=="TRUE"]==0)){
stop("Condition of double truncation is violated","\n")
}
if (is.na(error) == TRUE)
error <- 1e-6
au <- outer(C[, 1], C[, 2], ">=")
av <- outer(C[, 1], C[, 3], "<=")
auu <- outer(C[, 2], C[, 2], "<=") * 1L
J <- au * av
SC <- colSums(J)
ad <- length(which(SC == 1))
if (ad != 0) {
cat("Warning. Non-uniqueness or no existence of the NPMLE", "\n")
}
JI <- t(J)
f0 <- matrix(data = 1 / nrow(C),
ncol = 1,
nrow = nrow(C))
f <- f0
S0 <- 1
if (is.na(nmaxit) == TRUE)
nmaxit <- 100000
iter <- 0
while (S0 > error | iter > nmaxit) {
iter <- iter + 1
if (iter > nmaxit)
stop("Default number of iterations not enough for convergence")
F0<-JI%*%f
IF0<-1/F0
If1<-J%*%IF0
f<-1/If1
if(sum(f)!=1)f<-f/sum(f)
S0<-max(abs(f-f0))
f0<-f
}
F0<-JI%*%f
mult <- tabulate(match(C[,1],unique(C[,1])))
if(sum(mult)==length(unique(C[,1]))){
Fval <- (f*mult)}
if(sum(mult)>length(unique(C[,1]))){
weigth<-f[!duplicated(C[,1])]
Fval<- (weigth*mult)}
x<-unique(C[,1])
events<-sum(mult)
n.event<-mult
FF<-cumsum(Fval)
FFF<-cumsum(f)
Sob<-1-FF+Fval
Sob[Sob < 1e-12] <- 0
Sob0<-1-FFF+f
Sob0[Sob0<1e-12]<-0
if (boot==TRUE){
if (is.na(B)==TRUE) B<-500
B <- 500
if (B < 40) {
cat("Warning. Number of replicates less than 40", "\n")
cat("Confidence bands cannot be computed", "\n")
}
if(trunc=="both"|trunc=="left"){
if(!requireNamespace("foreach")){
install.packages("foreach")
}
if(!requireNamespace("doParallel")){
install.packages("doParallel")
}
cores=detectCores()
if (cores[1] > 1) cl <- makeCluster(cores[1]-1, type = "PSOCK")
else cl <- makeCluster(cores[1], type = "PSOCK")
registerDoParallel(cl)
final_boot <- foreach(i=1:B, .combine='rbind') %dopar% {
n_sampling_tries <- 0
M1b <- matrix(0, nrow = nrow(C), ncol = ncol(C))
M2b <- matrix(0, nrow = nrow(C), ncol = ncol(C))
M_IF0<-matrix(0,nrow=nrow(C))
M_IF01<-matrix(0,,nrow=nrow(C))
M_IF0Sob<-matrix(0,nrow=nrow(C))
ind<-seq(1,nrow(C),by=1)
indbb<-seq(1,nrow(C),by=1)
indbb1<-seq(1,nrow(C),by=1)
repeat{
indb <- sample(ind, nrow(C), replace = TRUE)
M1b <- C[indb,]
ord <- order(M1b[, 1], method = "auto")
M2b[, 1] <- sort(M1b[, 1], method = "auto")
M2b[, 2:ncol(M1b)] <- M1b[ord, 2:ncol(M1b)]
Aun<-unique(M2b)
Jb <- matrix(data = 0,ncol = nrow(M2b), nrow = nrow(M2b))
aub <- outer(M2b[, 1], M2b[, 2], ">=")
aubun <- outer(Aun[, 1], Aun[, 2], ">=")
avb <- outer(M2b[, 1], M2b[, 3], "<=")
avbun<-outer(Aun[, 1], Aun[, 3], "<=")
auub <- outer(M2b[, 2], M2b[, 2], "<=") * 1L
Jb <- aub * avb
Jbun<-aubun*avbun
SCb <-colSums(Jbun)
SCb2<-rowSums(Jbun)
adb <- length(which(SCb == 1))
adbb <- length(which(SCb2 == 1))
n_sampling_tries <- n_sampling_tries + 1
if (adb == 0 & adbb==0)
break
else
cat("Warning. Non-uniqueness or no existence of the NPMLE - New Round","\n")
}
JIb <- t(Jb)
f0b <- matrix(data = wt, ncol = 1, nrow = nrow(M2b))
f1b <- f0b
S0b <- 1
iterb <- 0
while (S0b > error | iterb > nmaxit) {
iterb <- iterb + 1
if (iterb > nmaxit)
stop("Default number of iterations not enough for convergence")
F0b<-JIb%*%f1b
IF0b<-1/F0b
If1b<-Jb%*%IF0b
f1b<-1/If1b
if(sum(f1b)!=1)f1b<-f1b/sum(f1b)
S0b<-max(abs(f1b-f0b))
f0b<-f1b
}
ff0b<-numeric(nrow(C))
for(i in 1:nrow(C)){
indbb1<-(C[,1]==C[i,1])
pos1<-min(which(indbb1==TRUE))
if(pos1==1){
ff0b[indbb1]<-sum(f1b[indbb1])
}
if(pos1>1){
ff0b[indbb1]<-sum(f1b[indbb1])
}
}
FF0b<-numeric(nrow(C))
for(i in 1:nrow(C)){
indbb<-(C[,1]==C[i,1])
pos<-min(which(indbb==TRUE))
if(pos==1){
FF0b[indbb]<-sum(f1b[indbb])}
if(pos>1){
FF0b[indbb]<-sum(f1b[indbb])+FF0b[pos-1]
}
}
Sobb <- 1 - FF0b + ff0b
Sobb[Sobb < 1e-12] <- 0
M_IF0 <- as.vector(FF0b)
M_IF01 <- as.vector(f1b)
M_IF0Sob <- as.vector(Sobb)
ordA <- order(M2b[, 2], method = "auto")
ord3 <- sort(M2b[, 2], method = "auto")
ordB <- order(M2b[, 3], method = "auto")
ord4 <- sort(M2b[, 3], method = "auto")
return(list( M_IF0, M_IF01, M_IF0Sob, n_sampling_tries))
}
stopCluster(cl)
n_sampling_tries <- 0
M_IF0 <- matrix(0, nrow = nrow(C), ncol = B)
M_IF01 <- matrix(0, nrow = nrow(C), ncol = B)
M_IF0Sob <- matrix(0, nrow = nrow(C), ncol = B)
stderror<-matrix(0, nrow = nrow(C), ncol = 1)
BootRepeat<-matrix(0,ncol=B)
for(b in 1:B){
M_IF0[,b]<-as.numeric(unlist(final_boot[b,1]))
M_IF01[,b]<-as.numeric(unlist(final_boot[b,2]))
M_IF0Sob[,b]<-as.numeric(unlist(final_boot[b,3]))
BootRepeat[,b]<-as.numeric((unlist(final_boot[b,4])))
}
stderror<-apply(M_IF0,1,sd)
M_IF0_sort<-matrix(0,nrow=nrow(C),ncol=B)
for(i in 1:nrow(M_IF0_sort)){
M_IF0_sort[i,]<-sort(M_IF0[i,])
}
if(is.na(alpha)==TRUE) alpha<-0.05
lowerF<-M_IF0_sort[,floor(alpha*B/2)]
upperF<-M_IF0_sort[,floor((1-alpha/2)*B)]
M_IF0_sort1<-matrix(0,nrow=nrow(C),ncol=B)
for(i in 1:nrow(M_IF0_sort1)){
M_IF0_sort1[i,]<-sort(M_IF0Sob[i,])
}
lowerS<-M_IF0_sort1[,floor(alpha*B/2)]
upperS<-M_IF0_sort1[,floor((1-alpha/2)*B)]
}
if(trunc=="right"){
if(!requireNamespace("foreach")){
install.packages("foreach")
}
if(!requireNamespace("doParallel")){
install.packages("doParallel")
}
cores=detectCores()
if (cores[1] > 1) cl <- makeCluster(cores[1]-1, type = "PSOCK")
else cl <- makeCluster(cores[1], type = "PSOCK")
registerDoParallel(cl)
final_boot <- foreach(i=1:B, .combine='rbind') %dopar% {
n_sampling_tries <- 0
M1b <- matrix(0, nrow = nrow(C), ncol = ncol(C))
M2b <- matrix(0, nrow = nrow(C), ncol = ncol(C))
M_IF0<-matrix(0,nrow=nrow(C))
M_IF01<-matrix(0,nrow=nrow(C))
M_IF0Sob<-matrix(0,nrow=nrow(C))
ind<-seq(1,nrow(C),by=1)
indbb<-seq(1,nrow(C),by=1)
indbbb<-seq(1,nrow(C),by=1)
repeat{
indb <- sample(ind, nrow(C), replace = TRUE)
M1b <- C[indb,]
ord <- order(M1b[, 1], method = "auto")
M2b[, 1] <- sort(M1b[, 1], method = "auto")
M2b[, 2:ncol(M1b)] <- M1b[ord, 2:ncol(M1b)]
Aun<-unique(M2b)
Jb <- matrix(data = 0,ncol = nrow(M2b), nrow = nrow(M2b))
aub <- outer(M2b[, 1], M2b[, 2], ">=")
aubun <- outer(Aun[, 1], Aun[, 2], ">=")
avb <- outer(M2b[, 1], M2b[, 3], "<=")
avbun<-outer(Aun[, 1], Aun[, 3], "<=")
auub <- outer(M2b[, 2], M2b[, 2], "<=") * 1L
Jb <- aub * avb
Jbun<-aubun*avbun
SCb <-colSums(Jbun)
SCb2<-rowSums(Jbun)
adb <- length(which(SCb == 1))
adbb <- length(which(SCb2 == 1))
n_sampling_tries <- n_sampling_tries + 1
if (adb == 0 & adbb==0)
break
else
cat("Warning. Non-uniqueness or no existence of the NPMLE - New Round","\n")
}
JIb <- t(Jb)
f0b <- matrix(data = wt, ncol = 1, nrow = nrow(M2b))
f1b <- f0b
S0b <- 1
iterb <- 0
while (S0b > error | iterb > nmaxit) {
iterb <- iterb + 1
if (iterb > nmaxit)
stop("Default number of iterations not enough for convergence")
F0b<-JIb%*%f1b
IF0b<-1/F0b
If1b<-Jb%*%IF0b
f1b<-1/If1b
if(sum(f1b)!=1)f1b<-f1b/sum(f1b)
S0b<-max(abs(f1b-f0b))
f0b<-f1b
}
FF0b<-numeric(nrow(C))
for(i in 1:nrow(C)){
indbb<-(C[,1]==C[i,1])
pos<-min(which(indbb==TRUE))
if(pos==1){
FF0b[indbb]<-sum(f1b[indbb])}
if(pos>1){
FF0b[indbb]<-sum(f1b[indbb])+FF0b[pos-1]
}
}
fb<-numeric(nrow(C))
for(i in 1:nrow(C)){
indbbb<-(C[,1]==C[i,1])
pos1<-min(which(indbbb==TRUE))
if(pos1==1){
fb[indbbb]<-sum(f1b[indbbb])}
if(pos1>1){
fb[indbbb]<-sum(f1b[indbbb])
}
}
Sobb<-1-FF0b+fb
Sobb[Sobb<1e-12]<-0
FF0b[FF0b<1e-12]<-0
M_IF0 <- as.vector(FF0b)
M_IF01 <- as.vector(f1b)
M_IF0Sob <- as.vector(Sobb)
ordA <- order(M2b[, 2], method = "auto")
ord3 <- sort(M2b[, 2], method = "auto")
ordB <- order(M2b[, 3], method = "auto")
ord4 <- sort(M2b[, 3], method = "auto")
return(list( M_IF0, M_IF01, M_IF0Sob,n_sampling_tries))
}
stopCluster(cl)
n_sampling_tries <- 0
M_IF0 <- matrix(0, nrow = nrow(C), ncol = B)
M_IF01 <- matrix(0, nrow = nrow(C), ncol = B)
M_IF0Sob <- matrix(0, nrow = nrow(C), ncol = B)
stderror<-matrix(0, nrow = nrow(C), ncol = 1)
BootRepeat<-matrix(0,ncol=B)
for(b in 1:B){
M_IF0[,b]<-as.numeric(unlist(final_boot[b,1]))
M_IF01[,b]<-as.numeric(unlist(final_boot[b,2]))
M_IF0Sob[,b]<-as.numeric(unlist(final_boot[b,3]))
BootRepeat[,b]<-as.numeric((unlist(final_boot[b,4])))
}
stderror<-apply(M_IF0,1,sd)
M_IF0_sort<-matrix(0,nrow=nrow(C),ncol=B)
for(i in 1:nrow(M_IF0_sort)){
M_IF0_sort[i,]<-sort(M_IF0[i,])
}
if(is.na(alpha)==TRUE) alpha<-0.05
lowerF<-M_IF0_sort[,floor(alpha*B/2)]
upperF<-M_IF0_sort[,floor((1-alpha/2)*B)]
M_IF0_sort1<-matrix(0,nrow=nrow(C),ncol=B)
for(i in 1:nrow(M_IF0_sort1)){
M_IF0_sort1[i,]<-sort(M_IF0Sob[i,])
}
lowerS<-M_IF0_sort1[,floor(alpha*B/2)]
upperS<-M_IF0_sort1[,floor((1-alpha/2)*B)]
}
}
if(boot==TRUE){
if(trunc=="both"|trunc=="left"){
x<-unique(C[,1])
if((display.F==TRUE)&(display.S==TRUE)){
dev.new()
par(mfrow=c(1,2))
plot(x,FF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FF[i],x[i+1],FF[i])
segments(x[i+1],FF[i],x[i+1],FF[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(C[,1][1],0,C[,1][1],upperF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],upperF[i],C[i+1,1],upperF[i], lty=3)
segments(C[i+1,1],upperF[i],C[i+1,1],upperF[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(C[,1][1],0,C[,1][1],lowerF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],lowerF[i],C[i+1,1],lowerF[i], lty=3)
segments(C[i+1,1],lowerF[i],C[i+1,1],lowerF[i+1],lty=3)
}
plot(x,Sob,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
for(i in 1:(length(x)-1)){
segments(x[i],Sob[i],x[i+1],Sob[i])
segments(x[i+1],Sob[i],x[i+1],Sob[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(upperS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],upperS[i],C[i+1,1],upperS[i], lty=3)
segments(C[i+1,1],upperS[i],C[i+1,1],upperS[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(lowerS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],lowerS[i],C[i+1,1],lowerS[i], lty=3)
segments(C[i+1,1],lowerS[i],C[i+1,1],lowerS[i+1],lty=3)
}
}
if((display.S==FALSE)&(display.F==TRUE)){
dev.new()
plot(x,FF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FF[i],x[i+1],FF[i])
segments(x[i+1],FF[i],x[i+1],FF[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(C[,1][1],0,C[,1][1],upperF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],upperF[i],C[i+1,1],upperF[i], lty=3)
segments(C[i+1,1],upperF[i],C[i+1,1],upperF[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(x),1,lty=3)
segments(C[,1][1],0,C[,1][1],lowerF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],lowerF[i],C[i+1,1],lowerF[i], lty=3)
segments(C[i+1,1],lowerF[i],C[i+1,1],lowerF[i+1],lty=3)
}
}
if((display.F==FALSE)&(display.S==TRUE)){
dev.new()
plot(x,Sob,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
for(i in 1:(length(x)-1)){
segments(x[i],Sob[i],x[i+1],Sob[i])
segments(x[i+1],Sob[i],x[i+1],Sob[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(upperS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],upperS[i],C[i+1,1],upperS[i], lty=3)
segments(C[i+1,1],upperS[i],C[i+1,1],upperS[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(lowerS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[i,1],lowerS[i],C[i+1,1],lowerS[i], lty=3)
segments(C[i+1,1],lowerS[i],C[i+1,1],lowerS[i+1],lty=3)
}
}
}
if(trunc=="right"){
if((display.F==TRUE)&(display.S==TRUE)){
x<-unique(C[,1])
dev.new()
par(mfrow=c(1,2))
plot(x,FF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FF[i],x[i+1],FF[i])
segments(x[i+1],FF[i],x[i+1],FF[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(max(C[,1]),1,max(C[,1]),max(upperF), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],upperF[i],C[,1][i+1],upperF[i], lty=3)
segments(C[,1][i+1],upperF[i],C[,1][i+1],upperF[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(max(C[,1]),1,max(C[,1]),max(lowerF), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],lowerF[i],C[,1][i+1],lowerF[i], lty=3)
segments(C[,1][i+1],lowerF[i],C[,1][i+1],lowerF[i+1],lty=3)
}
plot(x,Sob,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
for(i in 1:(length(x)-1)){
segments(x[i],Sob[i],x[i+1],Sob[i])
segments(x[i+1],Sob[i],x[i+1],Sob[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(upperS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],upperS[i],C[,1][i+1],upperS[i], lty=3)
segments(C[,1][i+1],upperS[i],C[,1][i+1],upperS[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(lowerS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],lowerS[i],C[,1][i+1],lowerS[i], lty=3)
segments(C[,1][i+1],lowerS[i],C[,1][i+1],lowerS[i+1],lty=3)
}
}
if((display.F==FALSE)&(display.S==TRUE)){
x<-unique(C[,1])
dev.new()
par(mfrow=c(1,1))
plot(x,Sob,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
for(i in 1:(length(x)-1)){
segments(x[i],Sob[i],x[i+1],Sob[i])
segments(x[i+1],Sob[i],x[i+1],Sob[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(upperS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],upperS[i],C[,1][i+1],upperS[i], lty=3)
segments(C[,1][i+1],upperS[i],C[,1][i+1],upperS[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),1,C[,1][1],1,lty=3)
segments(max(C[,1]),0,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),0,lty=3)
segments(max(C[,1]),0,max(C[,1]),min(lowerS), lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],lowerS[i],C[,1][i+1],lowerS[i], lty=3)
segments(C[,1][i+1],lowerS[i],C[,1][i+1],lowerS[i+1],lty=3)
}
}
if((display.F==TRUE)&(display.S==FALSE)){
x<-unique(C[,1])
dev.new()
par(mfrow=c(1,1))
plot(x,FF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FF[i],x[i+1],FF[i])
segments(x[i+1],FF[i],x[i+1],FF[i+1])
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(C[,1][1],0,C[,1][1],upperF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],upperF[i],C[,1][i+1],upperF[i], lty=3)
segments(C[,1][i+1],upperF[i],C[,1][i+1],upperF[i+1],lty=3)
}
segments(min(C[,1])-(max(C[,1])-min(C[,1]))/length(C[,1]),0,C[,1][1],0,lty=3)
segments(max(C[,1]),1,max(C[,1])+(max(C[,1])-min(C[,1]))/length(C[,1]),1,lty=3)
segments(C[,1][1],0,C[,1][1],lowerF[1], lty=3)
for(i in 1:(length(C[,1])-1)){
segments(C[,1][i],lowerF[i],C[,1][i+1],lowerF[i], lty=3)
segments(C[,1][i+1],lowerF[i],C[,1][i+1],lowerF[i+1],lty=3)
}
}
}
}
if (boot==FALSE|B<40){
if(trunc=="both"|trunc=="left"){
if((display.F==TRUE)&(display.S==TRUE)){
x<-C[,1]
dev.new()
par(mfrow=c(1,2))
plot(x,FFF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FFF[i],x[i+1],FFF[i])
segments(x[i+1],FFF[i],x[i+1],FFF[i+1])
}
plot(x,Sob0,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
segments(x0 = min(x),
x1 = min(x),
y0 = Sob0[1],
y1 = 1)
for(i in 1:(length(x)-1)){
segments(x[i],Sob0[i],x[i+1],Sob0[i])
segments(x[i+1],Sob0[i],x[i+1],Sob0[i+1])
}
}
if((display.S==FALSE)&(display.F==TRUE)){
x<-C[,1]
dev.new()
plot(x,FFF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FFF[i],x[i+1],FFF[i])
segments(x[i+1],FFF[i],x[i+1],FFF[i+1])
}
}
if((display.F==FALSE)&(display.S==TRUE)){
x<-C[,1]
dev.new()
plot(x,Sob0,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
segments(x0 = min(x),
x1 = min(x),
y0 = Sob0[1],
y1 = 1)
for(i in 1:(length(x)-1)){
segments(x[i],Sob0[i],x[i+1],Sob0[i])
segments(x[i+1],Sob0[i],x[i+1],Sob0[i+1])
}
}
}
if(trunc=="right"){
Sob0[Sob0<1e-12]<-0
FFF[FFF<1e-12]<-0
if((display.F==TRUE)&(display.S==TRUE)){
x<-C[,1]
dev.new()
par(mfrow=c(1,2))
plot(x,FFF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FFF[i],x[i+1],FFF[i])
segments(x[i+1],FFF[i],x[i+1],FFF[i+1])
}
plot(x,Sob0,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
segments(x0 = min(x),
x1 = min(x),
y0 = Sob0[1],
y1 = 1)
for(i in 1:(length(x)-1)){
segments(x[i],Sob0[i],x[i+1],Sob0[i])
segments(x[i+1],Sob0[i],x[i+1],Sob0[i+1])
}
}
if((display.F==FALSE)&(display.S==TRUE)){
x<-C[,1]
dev.new()
par(mfrow=c(1,1))
plot(x,Sob0,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="Survival", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),1,x[1],1)
segments(max(x),0,max(x)+(max(x)-min(x))/length(x),0)
segments(max(x),0,max(x),min(Sob0))
segments(x0 = min(x),
x1 = min(x),
y0 = Sob0[1],
y1 = 1)
for(i in 1:(length(x)-1)){
segments(x[i],Sob0[i],x[i+1],Sob0[i])
segments(x[i+1],Sob0[i],x[i+1],Sob0[i+1])
}
}
if((display.F==TRUE)&(display.S==FALSE)){
x<-C[,1]
dev.new()
par(mfrow=c(1,1))
plot(x,FFF,ylim=c(0,1),xlim=c(min(x)-(max(x)-min(x))/length(x),max(x)+(max(x)-min(x))/length(x)),type="n",main="CDF", xlab="X",ylab="")
segments(min(x)-(max(x)-min(x))/length(x),0,x[1],0)
segments(max(x),1,max(x)+(max(x)-min(x))/length(x),1)
segments(x[1],0,x[1],FFF[1])
for(i in 1:(length(x)-1)){
segments(x[i],FFF[i],x[i+1],FFF[i])
segments(x[i+1],FFF[i],x[i+1],FFF[i+1])
}
}
}
}
cat("n.iterations",iter,"\n")
cat("S0",S0,"\n")
cat("events",events,"\n")
if(boot==TRUE){
cat("B",B,"\n")
cat("alpha",alpha,"\n")
return(invisible(list(n.iterations=iter, events=events, B=B, alpha=alpha,time=C[,1], n.event=mult, density=round(as.vector(f),5), cumulative.df=round(FFF,5), survival=
round(as.vector(Sob0),5), truncation.probs=round(as.vector(F0),5), upper.df=round(upperF,5),lower.df=round(lowerF,5),upper.Sob=round(upperS,5),
lower.Sob=round(lowerS,5), sd.boot=round(stderror,5),boot.repeat=as.vector(BootRepeat))))
}
if(boot==FALSE){
return(invisible(list(n.iterations=iter, events=events, time=C[,1], n.event=mult, density=round(as.vector(f),5), cumulative.df=round(FFF,5), survival=
round(as.vector(Sob0),5), truncation.probs=round(as.vector(F0),5))))
}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.