code
stringlengths
1
13.8M
ConvertPed=function(ped,persons=NULL){ if(is.null(persons)) persons=ped[,1] if(class(ped)!="data.frame") stop("First argument, ped, should be a data.frame.") if(dim(ped)[1]!=length(unique(persons))) stop("Number of rows in ped should equal number of persons.") ped[ped==0]=NA gender=c("male","female") ped2=pedigree(id=persons[ped[,1]], dadid=persons[ped[,2]], momid=persons[ped[,3]],sex=gender[ped[,4]]) if(dim(ped)[2]>5) { datamatrix=ped[,-(1:5)] rownames(datamatrix)=persons } else datamatrix=NULL list(ped=ped2,datamatrix=datamatrix) }
.onLoad <- function(libname, pkgname) { env_pat <- Sys.getenv("OSF_PAT") if (nzchar(env_pat)) options(osfr.pat = env_pat) env_log <- Sys.getenv("OSF_LOG") if (nzchar(env_log)) { if (requireNamespace("logger", quietly = TRUE)) { options(osfr.log = env_log) logger::log_appender(logger::appender_file(env_log), namespace = "osfr") logger::log_formatter(logger::formatter_sprintf, namespace = "osfr") } } if (requireNamespace("dplyr", quietly = TRUE)) { register_s3_method("dplyr", "arrange", "osf_tbl") register_s3_method("dplyr", "filter", "osf_tbl") register_s3_method("dplyr", "mutate", "osf_tbl") register_s3_method("dplyr", "rename", "osf_tbl") register_s3_method("dplyr", "select", "osf_tbl") register_s3_method("dplyr", "slice", "osf_tbl") } invisible() } .onAttach <- function(libname, pkgname) { if (!is.null(getOption("osfr.pat"))) { packageStartupMessage("Automatically registered OSF personal access token") } if (is.null(getOption("osfr.log")) && nzchar(Sys.getenv("OSF_LOG"))) { packageStartupMessage( "<Logging NOT enabled: please install the logger package>" ) } if (!is.null(getOption("osfr.log"))) { packageStartupMessage( sprintf("<Logging enabled: %s>", getOption("osfr.log")) ) } server <- Sys.getenv("OSF_SERVER") if (nzchar(server)) { packageStartupMessage( sprintf("<Testing server enabled: %s.osf.io>", tolower(server)) ) } }
sf_fram <- function() { path_to_shp <- system.file("extdata","francemetro_2018.shp", package = "oceanis") fram <- st_read(dsn = path_to_shp, quiet = TRUE) names(fram) <- c("CODE","LIBGEO","SURF","geometry") return(fram) }
coef.DMR <- function(object, df = NULL, ...){ if(is.null(df)){ out <- object$beta colnames(out) <- paste("df", object$df, sep = "") return(out) } if(class(df) != "numeric" & class(df) != "integer"){ stop("Error: wrong input type, df should have type numeric") } out <- object$beta[,ncol(object$beta) - df + 1] return(out) }
AFparfrailty <- function(object, data, exposure, times, clusterid){ call <- match.call() formula <- object$formula npar <- length(object$est) rownames(data) <- 1:nrow(data) m <- model.frame(formula, data = data) complete <- as.numeric(rownames(m)) data <- data[complete, ] rr <- rownames(attr(terms(formula), "factors"))[1] temp <- gregexpr(", ", rr)[[1]] if(length(temp == 1)){ outcome <- substr(rr, temp[1] + 2, nchar(rr) - 1) } if(length(temp) == 2){ outcome <- substr(rr, temp[2] + 2, nchar(rr) - 1) } Y <- model.extract(frame = m, "response") if(ncol(Y) == 2){ endvar <- Y[, 1] eventvar <- Y[, 2] } if(ncol(Y) == 3){ endvar <- Y[, 2] eventvar <- Y[, 3] } logalpha <- object$est[1] alpha <- exp(logalpha) logeta <- object$est[2] eta <- exp(logeta) logphi <- object$est[3] phi <- exp(logphi) beta <- object$est[(3 + 1):npar] if(missing(times)){ times <- endvar[eventvar == 1] } times <- sort(times) n <- nrow(data) n.cases <- sum(eventvar) n.cluster <- object$ncluster data0 <- data data0[, exposure] <- 0 design <- model.matrix(object = formula, data = data)[, -1, drop=FALSE] design0 <- model.matrix(object = formula, data = data0)[, -1, drop=FALSE] clusters <- data[, clusterid] predX <- design %*% beta pred0 <- design0 %*% beta S.est <- vector(length = length(times)) S0.est <- vector(length = length(times)) AF.var <- vector(length = length(times)) S.var <- vector(length = length(times)) S0.var <- vector(length = length(times)) for (i in 1:length(times)){ t <- times[i] H0t <- (t / alpha) ^ eta temp <- 1 + phi * H0t * exp(predX) temp0 <- 1 + phi * H0t * exp(pred0) surv <- temp ^ ( - 1 / phi) surv0 <- temp0 ^ ( - 1 / phi) S.est[i] <- mean(surv, na.rm = TRUE) S0.est[i] <- mean(surv0, na.rm = TRUE) sres <- surv - S.est[i] sres0 <- surv0 - S0.est[i] Scores.S <- cbind(sres, sres0) Scores.S <- aggr(x = Scores.S, clusters = clusters) coefres <- object$score res <- cbind(Scores.S, coefres) meat <- var(res, na.rm = TRUE) dS.dlogalpha <- sum(H0t * eta * exp(predX) / temp ^ (1 / phi + 1)) / n.cluster dS.dlogeta <- sum(-H0t * exp(predX) * log(t / alpha) * eta / temp ^ (1 / phi + 1)) / n.cluster dS.dlogphi <- sum(log(temp) / (phi * temp ^ (1 / phi)) - H0t * exp(predX) / temp ^ (1 / phi + 1)) / n.cluster dS.dbeta <- colSums(-H0t * as.vector(exp(predX)) * design / as.vector(temp) ^ (1 / phi + 1)) / n.cluster dS0.dlogalpha <- sum(H0t * eta * exp(pred0) / temp0 ^ (1 / phi + 1)) / n.cluster dS0.dlogeta <- sum( - H0t * exp(pred0) * log(t / alpha) * eta / temp0 ^ (1 / phi + 1)) /n.cluster dS0.dlogphi <- sum(log(temp0) / (phi * temp0 ^ (1 / phi)) - H0t * exp(pred0) / temp0 ^ (1 / phi + 1)) / n.cluster dS0.dbeta <- colSums(-H0t * as.vector(exp(pred0)) * design0 / as.vector(temp0) ^ (1 / phi + 1)) / n.cluster S.hessian <- cbind(-diag(2) * n / n.cluster, rbind(dS.dlogalpha, dS0.dlogalpha), rbind(dS.dlogeta, dS0.dlogeta), rbind(dS.dlogphi, dS0.dlogphi), rbind(dS.dbeta, dS0.dbeta)) par.hessian <- cbind(matrix(0, nrow = npar, ncol = 2), -solve(object$vcov) / n.cluster) bread <- rbind(S.hessian, par.hessian) sandwich <- (solve(bread) %*% meat %*% t(solve(bread)) / n.cluster)[1:2, 1:2] gradient <- as.matrix(c( - (1 - S0.est[i]) / (1 - S.est[i]) ^ 2, 1 / (1 - S.est[i])), nrow = 2, ncol = 1) AF.var[i] <- t(gradient) %*% sandwich %*% gradient S.var[i] <- sandwich[1, 1] S0.var[i] <- sandwich[2, 2] } AF.est <- 1 - (1 - S0.est) / (1 - S.est) out <- c(list(AF.est = AF.est, AF.var = AF.var, S.est = S.est, S0.est = S0.est, S.var = S.var, S0.var = S0.var, objectcall = object$call, call = call, exposure = exposure, outcome = outcome, object = object, sandwich = sandwich, gradient = gradient, formula = formula, n = n, n.cases = n.cases, n.cluster = n.cluster, times = times)) class(out) <- "AF" return(out) }
test_that("we can catch invalid lambda configs", { expect_true(validate_lambda_config(basic_lambda_config())) expected_error <- paste0( "The Lambda runtime configuration should be provided by the ", "lambda_config function." ) expect_error( validate_lambda_config(list()), expected_error ) }) test_that("Defaults in setup are considered after environment variables ", { expect_error( get_lambda_environment_variable("doesntexist"), "doesntexist environment variable is not set" ) expect_equal( get_lambda_environment_variable("doesntexist", default = "red panda"), "red panda" ) expect_equal( withr::with_envvar( c("doesntexist" = "giraffe"), get_lambda_environment_variable("doesntexist", default = "red panda") ), "giraffe" ) }) test_that("Lambda config retrieved from environment variable", { config <- withr::with_envvar( c( "AWS_LAMBDA_RUNTIME_API" = "red_panda", "LAMBDA_TASK_ROOT" = "giraffe", "_HANDLER" = "sqrt" ), lambda_config() ) expect_s3_class(config, "lambda_config") expect_equal(config$runtime_api, "red_panda") expect_equal(config$task_root, "giraffe") expect_equal(config$handler, sqrt) }) test_that("handler can be set directly without env var", { config <- basic_lambda_config(direct_handler = sqrt) expect_equal(config$handler, sqrt) }) test_that("lambda config can record if Base64 is to be used for decoding", { default_config <- basic_lambda_config() no_base64_config <- basic_lambda_config(decode_base64 = FALSE) base64_config <- basic_lambda_config(decode_base64 = TRUE) expect_true(default_config$decode_base64) expect_false(no_base64_config$decode_base64) expect_true(base64_config$decode_base64) }) test_that("outright error when runtime_api not provided", { expected_error <- paste( "AWS_LAMBDA_RUNTIME_API environment variable is not set. This environment", "variable is set by AWS when Lambda is instantiated. It will not appear", "when running local tests." ) expect_error( basic_lambda_config(runtime_api = ""), expected_error ) }) test_that("initialisation error recorded when handler undefined", { error_received <- trigger_initialisation_error( expected_error = paste0( "The _HANDLER environment variable is undefined.\n", "This environment variable is configured by AWS Lambda based\n", "the value configured either as the Dockerfile CMD or in the\n", "AWS Lambda console (which will always take priority).\n", "Alternatively, pass a function to the `handler` argument\n", "of `lambda_config`, although note that `lambda_config` will\n", "always defer to the environment variables if available." ), task_root = "giraffe", handler = "" ) expect_true(error_received) }) test_that("undefined handlers are caught", { handler_character <- "undefined_handler" expected_error <- paste0( handler_character, ", as defined by the _HANDLER environment\n", "variable, can't be found. Check that this exists in the", "environment passed to `lambda_config` (defaults to the parent\n", "frame)" ) error_received <- trigger_initialisation_error( expected_error = expected_error, task_root = "giraffe", handler = handler_character ) expect_true(error_received) }) test_that("non-function handlers provided by env var are caught", { error_received <- trigger_initialisation_error( expected_error = "mtcars is not a function", task_root = "giraffe", handler = "mtcars" ) expect_true(error_received) }) test_that("non-function handlers provided directly are caught", { error_received <- trigger_initialisation_error( expected_error = "The handler function is not a function", task_root = "giraffe", direct_handler = mtcars ) expect_true(error_received) }) test_that("handler can be a custom function", { plus_one <- function(x) x + 1 config <- basic_lambda_config(handler = "plus_one") expect_equal(config$handler(1), 2) }) test_that("can recognise context argument in function formals", { doesnt_accept_context <- function() {} expect_false(function_accepts_context(doesnt_accept_context)) accepts_context <- function(context) {} expect_true(function_accepts_context(accepts_context)) }) test_that("context argument recognised in handler formals", { no_context <- function() {} no_context_config <- basic_lambda_config(handler = "no_context") expect_false(no_context_config$pass_context_argument) yes_context <- function(context) {} yes_context_config <- basic_lambda_config(handler = "yes_context") expect_true(yes_context_config$pass_context_argument) }) test_that("non function custom deserialisers are caught", { error_received <- trigger_initialisation_error( expected_error = "custom deserialiser is not a function", deserialiser = mtcars ) expect_true(error_received) }) test_that("non function custom serialisers are caught", { error_received <- trigger_initialisation_error( expected_error = "custom serialiser is not a function", serialiser = mtcars ) expect_true(error_received) })
article_index <- function(package) { if (is.null(package)) { getOption("downlit.article_index") } else if (devtools_loaded(package)) { article_index_source(package) } else { article_index_remote(package) } } article_index_source <- function(package) { path <- file.path(find.package(package), "vignettes") if (!file.exists(path)) { return(character()) } vig_path <- dir(path, pattern = "\\.[rR]md$", recursive = TRUE) out_path <- gsub("\\.[rR]md$", ".html", vig_path) vig_name <- gsub("\\.[rR]md$", "", basename(vig_path)) set_names(out_path, vig_name) } article_index_remote <- function(package) { metadata <- remote_metadata(package) if (!is.null(metadata) && !is.null(metadata$articles)) { return(metadata$articles) } path <- system.file("Meta", "vignette.rds", package = package) if (path == "") { return(character()) } meta <- readRDS(path) name <- tools::file_path_sans_ext(meta$File) set_names(meta$PDF, name) } find_article <- function(package, name) { index <- article_index(package) if (has_name(index, name)) { index[[name]] } else { NULL } }
FryObjective <- function(object.data, n.pass = 15, pie.step = 12, expansion = 1.5, pie.pts = 1, section.name, ave.piepts = FALSE, norm = TRUE){ EllipFit <- function(dat, npts = 180){ D1 <- cbind(dat$x * dat$x, dat$x * dat$y, dat$y * dat$y) D2 <- cbind(dat$x, dat$y, 1) S1 <- t(D1) %*% D1 S2 <- t(D1) %*% D2 S3 <- t(D2) %*% D2 T <- -solve(S3) %*% t(S2) M <- S1 + S2 %*% T M <- rbind(M[3,] / 2, -M[2,], M[1,] / 2) evec <- eigen(M)$vec cond <- 4 * evec[1,] * evec[3,] - evec[2,]^2 a1 <- evec[, which(cond > 0)] f <- c(a1, T %*% a1) a <- sqrt((2 * (f[1] * (.5 *f[5])^2 + f[3] * (.5 * f[4])^2 + f[6] * (.5 * f[2])^2 - 2 * (.5 * f[2]) * (.5 * f[4]) * (.5 * f[5]) - f[1] * f[3] * f[6])) / (((.5 * f[2])^2 - f[1] * f[3]) * (sqrt((f[1] - f[3])^2 + 4 * (.5 * f[2])^2) - (f[1] + f[3])))) b <- sqrt((2 * (f[1] * (.5 *f[5])^2 + f[3] * (.5 * f[4])^2 + f[6] * (.5 * f[2])^2 - 2 * (.5 * f[2]) * (.5 * f[4]) * (.5 * f[5]) - f[1] * f[3] * f[6])) / (((.5 * f[2])^2 - f[1] * f[3]) * (-1 * sqrt((f[1] - f[3])^2 + 4 * (.5 * f[2])^2) - (f[1] + f[3])))) if(f[1] < f[3] & a > b){ angle <- .5 * atan(f[2] / (f[1] - f[3])) } if(f[1] > f[3] & a > b){ angle <- pi / 2 + .5 * atan(f[2] / (f[1] - f[3])) } if(f[1] < f[3] & a < b){ angle <- pi / 2 + .5 * atan(f[2] / (f[1] - f[3])) } if(f[1] > f[3] & a < b){ angle <- .5 * atan(f[2] / (f[1] - f[3])) } semi.maj <- ifelse(a > b, a, b) semi.min <- ifelse(b < a, b, a) tt <- seq(from = 0, to = 2 * pi, length = npts) sa <- sin(angle) ca <- cos(angle) ct <- cos(tt) st <- sin(tt) x <- semi.maj * ct * ca - semi.min * st * sa y <- semi.maj * ct * sa + semi.min * st * ca angle <- ifelse((angle * -1) < 0 , (angle * -1) + pi, (angle * -1)) my.ellipse <- list() my.ellipse[[1]] <- c(semi.maj, semi.min) my.ellipse[[2]] <- angle my.ellipse[[3]] <- data.frame(x, y) return(my.ellipse) } x.coords <- NULL y.coords <- NULL radii <- NULL object.data$radius <- sqrt(object.data$m.area / pi) for(j in 1:length(object.data$m.cx)){ x.coords <- c(x.coords, object.data$m.cx[j] - object.data$m.cx) y.coords <- c(y.coords, object.data$m.cy[j] - object.data$m.cy) radii <- c(radii, object.data$radius[j] + object.data$radius) } my.data <- data.frame(x.coords, y.coords, radii) my.data <- my.data[which(my.data$x.coords != 0 & my.data$y.coords != 0),] my.data$dist <- sqrt(my.data$x.coords^2 + my.data$y.coords^2) if(norm){ norm.dist <- my.data$dist / my.data$radii my.data$x.coords <- my.data$x.coords * (norm.dist / my.data$dist) * sqrt(mean(object.data$m.area)/pi) my.data$y.coords <- my.data$y.coords * (norm.dist / my.data$dist) * sqrt(mean(object.data$m.area)/pi) my.data$dist <- norm.dist * sqrt(mean(object.data$m.area)/pi) } my.data <- my.data[order(my.data$dist),] my.data$angle <- rep(NA, times = length(my.data$x.coords)) idx <- which(my.data$x.coords > 0 & my.data$y.coords <= 0) my.data[idx,]$angle <- abs(atan(my.data[idx,]$y.coords / my.data[idx,]$x.coords)) * (180 / pi) idx <- which(my.data$x.coords <= 0 & my.data$y.coords < 0) my.data[idx,]$angle <- abs(atan(my.data[idx,]$x.coords / my.data[idx,]$y.coords)) * (180 / pi) + 90 idx <- which(my.data$x.coords < 0 & my.data$y.coords >= 0) my.data[idx,]$angle <- abs(atan(my.data[idx,]$y.coords / my.data[idx,]$x.coords)) * (180 / pi) + 180 idx <- which(my.data$x.coords >= 0 & my.data$y.coords > 0) my.data[idx,]$angle <- abs(atan(my.data[idx,]$x.coords / my.data[idx,]$y.coords)) * (180 / pi) + 270 for(k in 1:n.pass){ x.coord <- vector() y.coord <- vector() min.point <- vector() if(k == 1){ wedges <- seq(from = 0, to = 360, by = pie.step) wedges <- wedges[-length(wedges)] } for(j in 1:length(wedges)){ if(j == 1){ temp.data <- my.data[which(my.data$angle <= wedges[j] | my.data$angle > wedges[length(wedges)]),] } else{ temp.data <- my.data[which(my.data$angle <= wedges[j] & my.data$angle > wedges[j - 1]),] } if(ave.piepts){ x.coord <- c(x.coord, mean(temp.data$x.coords[1:(pie.pts)], na.rm = TRUE)) y.coord <- c(y.coord, mean(temp.data$y.coords[1:(pie.pts)], na.rm = TRUE)) } else{ x.coord <- c(x.coord, temp.data$x.coords[1:(pie.pts)]) y.coord <- c(y.coord, temp.data$y.coords[1:(pie.pts)]) } min.point <- c(min.point, temp.data$dist[1]) } dat <- data.frame(x = x.coord, y = y.coord) dat <- dat[complete.cases(dat),] dat <- EllipFit(dat = dat, npts = length(wedges) + 1) node.data <- dat[[3]] node.data$angle <- rep(NA, times = length(node.data$x)) idx <- which(node.data$x > 0 & node.data$y <= 0) node.data[idx,]$angle <- abs(atan(node.data[idx,]$y / node.data[idx,]$x)) * (180 / pi) idx <- which(node.data$x <= 0 & node.data$y < 0) node.data[idx,]$angle <- abs(atan(node.data[idx,]$x / node.data[idx,]$y)) * (180 / pi) + 90 idx <- which(node.data$x < 0 & node.data$y >= 0) node.data[idx,]$angle <- abs(atan(node.data[idx,]$y / node.data[idx,]$x)) * (180 / pi) + 180 idx <- which(node.data$x >= 0 & node.data$y > 0) node.data[idx,]$angle <- abs(atan(node.data[idx,]$x / node.data[idx,]$y)) * (180 / pi) + 270 wedges <- sort(node.data$angle) wedges <- wedges[-length(wedges)] } fry.data <- new("FRY") fry.data@rsAxes <- c(2 * dat[[1]][1], 2 * dat[[1]][2]) fry.data@strainRatio <- dat[[1]][1] / dat[[1]][2] fry.data@meanObjectArea <- dat[[1]][1] * dat[[1]][2] * pi fry.data@vectorMean <- dat[[2]] * (180 / pi) fry.data@sectionName <- section.name fry.data@sampleSize <- length(object.data$m.cx) fry.data@fryParams <- my.data fry.data@voidScale <- expansion * max(min.point, na.rm = TRUE) return(fry.data) }
plot.lts <- function(x, ylim = NULL, xlim = NULL, ci = T, col = 1, ylab = NULL, xlab = "Time", add = F, ...){ object <- x att <- attributes(object) if(is.null(ylab)){ ylab <- switch(att$type, surv = "Survival probability", hazard = "Hazard", cumhaz = "Cumulative hazard", loghaz = "Log-hazard", fail = "Distribution") } ci <- ci & att$var.type == "ci" if(length(col) == 1){ col <- rep(col, length(object)) } if(is.null(ylim)){ if(ci){ ylim <- range(unlist(lapply(object, function(x) x[, c("lower", "upper")]))) }else{ ylim <- range(unlist(lapply(object, function(x) x[, "Estimate"]))) } } for(i in 1:length(object)){ if(i == 1 & !add){ plot(Estimate ~ att$time, data = object[[i]], ylim = ylim, xlim = xlim, type = "l", col = col[i], xlab = xlab, ylab = ylab, ...) }else{ lines(Estimate ~ att$time, data = object[[i]], col = col[i], ...) } if(ci){ lines(lower ~ att$time, data = object[[i]], lty = 2, col = col[i], ...) lines(upper ~ att$time, data = object[[i]], lty = 2, col = col[i], ...) } } }
plotSlopes <- function(model, plotx, ...) UseMethod("plotSlopes") plotSlopes.lm <- function (model, plotx, modx = NULL, n = 3, modxVals = NULL , plotxRange = NULL, interval = c("none", "confidence", "prediction"), plotPoints = TRUE, legendPct = TRUE, legendArgs, llwd = 2, opacity = 100, ..., col = c("black", "blue", "darkgreen", "red", "orange", "purple", "green3"), type = c("response", "link"), gridArgs, width = 0.2) { if (missing(model)) stop("plotSlopes requires a fitted regression model.") if (missing(plotx)) stop("plotSlopes: plotx argument is required") else if(!is.character(plotx)) plotx <-as.character(substitute(plotx)) cl <- match.call() dotargs <- list(...) dotnames <- names(dotargs) level <- if (!is.null(dotargs[["level"]])) dotargs[["level"]] else 0.95 mm <- model.data(model) plotxVar <- mm[, plotx] ylab <- as.character(terms(model)[[2]]) interval <- match.arg(interval) type <- match.arg(type) if (!missing(modx)) { zzz <- as.character(substitute(modx)) if(!is.character(modx)) modx <- as.character(substitute(modx)) } depName <- as.character(terms(model)[[2]]) depVar <- mm[[depName]] if(is.null(plotxRange)){ if (is.numeric(plotxVar)){ plotxRange <- range(plotxVar, na.rm = TRUE) } } if (is.factor(plotxVar)){ plotxVals <- levels(droplevels(plotxVar)) } else { plotxVals <- plotSeq(plotxRange, length.out = 40) } if (!(missing(modx) || is.null(modx))) { if((missing(modxVals) || is.null(modxVals)) || (length(modxVals) == 1 && is.character(modxVals))) { modxVar <- mm[, modx] if (is.factor(modxVar)) { n <- ifelse(missing(n), nlevels(modxVar), n) modxVar <- droplevels(modxVar) modxVals <- getFocal(modxVar, xvals = modxVals, n, pct = legendPct) } else { modxVals <- getFocal(modxVar, xvals = modxVals, n, pct = legendPct) } } } predVals <- list(plotxVals) names(predVals) <- plotx if(!is.null(modx)) { if(is.null(modxVals)) modxVals <- "table" TEXT <- paste0("predVals[[\"", modx, "\"]] <- modxVals") eval(parse(text = TEXT)) } parms.pred <- list(model, predVals = predVals, type = type, interval = interval) validForPredict <- c("se.fit", "dispersion", "terms", "na.action", "level", "pred.var", "weights") dotsForPredict <- dotnames[dotnames %in% validForPredict] if (length(dotsForPredict) > 0) { parms.pred <- modifyList(parms.pred, dotargs[dotsForPredict]) dotargs[[dotsForPredict]] <- NULL } newdf <- do.call("predictOMatic", parms.pred) plotyRange <- if(is.numeric(depVar)){ magRange(depVar, mult = c(1, 1.2)) } else { stop(paste("plotSlopes: use plotCurves if this is a glm (logit, probit, count)")) } if(is.numeric(plotxVals)){ parms <- list(newdf = newdf, olddf = mm, plotx = plotx, modx = modx, modxVals = modxVals, depName = depName, interval = interval, level = level, plotPoints = plotPoints, col = col, opacity = opacity, xlim = plotxRange, ylim = plotyRange, ylab = ylab, llwd = llwd) if(!missing(legendArgs) && !is.null(legendArgs)) parms[["legendArgs"]] <- legendArgs parms <- modifyList(parms, dotargs) plotret <- do.call("plotFancy", parms) } else { plotyRange <- magRange(range(c(newdf[["fit"]], if(!is.null(newdf[["lwr"]])) min(newdf[["lwr"]])), if(!is.null(newdf[["upr"]])) max(newdf[["upr"]])), 1.25) parms <- list(newdf, olddf = mm, plotx = plotx, modx = modx, modxVals = modxVals, depName = depName, xlim = plotxRange, interval = interval, level = level, xlab = plotx, ylab = ylab, ylim = plotyRange, main = "", col = col, width = width) if(!missing(legendArgs) && !is.null(legendArgs)) parms[["legendArgs"]] <- legendArgs if(!missing(gridArgs) && !is.null(gridArgs)) parms[["gridArgs"]] <- gridArgs parms <- modifyList(parms, dotargs) plotret <- do.call("plotFancyCategories", parms) } z <- list(call = cl, newdata = newdf, modxVals = modxVals, col = plotret$col, lty = plotret$lty, fancy = plotret) class(z) <- c("plotSlopes", "rockchalk") invisible(z) } NULL plotFancy <- function(newdf, olddf, plotx, modx, modxVals, interval, plotPoints, legendArgs, col = NULL, llwd = 2, opacity, ...) { dotargs <- list(...) ylab <- dotargs[["depName"]] if (!is.null(dotargs[["ylab"]])) ylab <- dotargs[["ylab"]] if (!is.null(dotargs[["level"]])) { level <- dotargs[["level"]] dotargs[["level"]] <- NULL } else { level <- 0.95 } newdf <- if(is.null(modx)) newdf[order(newdf[[plotx]]), ] else newdf[order(newdf[[plotx]], newdf[[modx]]), ] modxVar <- if(is.null(modx)) rep(1, NROW(olddf)) else olddf[ , modx] if(is.factor(modxVar)) modxVar <- droplevels(modxVar) plotxVar <- olddf[ , plotx] depVar <- olddf[ , 1] if (missing(modx) || is.null(modx)) { modxVals <- 1 lmx <- 1 } else { lmx <- length(modxVals) } if (is.factor(modxVar)) { modxLevels <- levels(modxVar) } else { modxLevels <- modxVals if (is.null(names(modxVals))) names(modxVals) <- modxVals } if (is.null(col)) { if (is.factor(modxVar)) { col <- seq_along(modxLevels) names(col) <- modxLevels } else { col <- 1:lmx names(col) <- names(modxVals) } } else { if (is.null(names(col))){ col <- rep(col, length.out = length(modxLevels)) if (is.factor(modxVar)) names(col) <- modxLevels else names(col) <- names(modxVals) } else if (length(col) < lmx) { stop("plotFancy: named color vector does not match data.") } else if (length(col) >= length(modxLevels)) { col <- rep(col, length.out = length(modxLevels)) if (is.null(names(col))) { names(col) <- names(modxLevels[1:length(col)]) } } } col <- if (is.factor(modxVar)) col[names(col) %in% modxVals] else col[1:length(modxVals)] modxLevels <- modxLevels[modxLevels %in% modxVals] if (length(modxLevels) != length(modxVals)) {stop("goof")} if (length(llwd) < length(col)) { llwd <- rep(llwd, length.out = length(col)) } names(llwd) <- names(col) lty <- seq_along(col) if (!is.null(dotargs[["lty"]])) { lty <- rep(dotargs[["lty"]], length.out = lmx) dotargs[["lty"]] <- NULL } names(lty) <- names(col) parms <- list(x = plotxVar, y = depVar, xlab = plotx, ylab = ylab, type = "n") dots.plot <- dotargs[names(dotargs)[names(dotargs) %in% c(names(par()), formalArgs(plot.default))]] parms <- modifyList(parms, dots.plot) do.call("plot", parms) iCol <- col2rgb(col) bCol <- mapply(rgb, red = iCol[1,], green = iCol[2,], blue = iCol[3,], alpha = opacity, maxColorValue = 255) sCol <- mapply(rgb, red = iCol[1,], green = iCol[2,], blue = iCol[3,], alpha = opacity/3, maxColorValue = 255) if (interval != "none") { for (j in modxVals) { k <- match(j, modxVals) if (is.factor(modxVar)) i <- j else i <- k if (missing(modx) || is.null(modx)) { pdat <- newdf } else { pdat <- newdf[newdf[ , modx] %in% j, ] } parms <- list(x = c(pdat[, plotx], pdat[NROW(pdat):1 , plotx]), y = c(pdat$lwr, pdat$upr[NROW(pdat):1]), lty = lty[i]) dots.plot <- dotargs[names(dotargs)[names(dotargs) %in% c(names(par()), formalArgs(polygon))]] parms <- if(!is.null(dots.plot)) modifyList(parms, dots.plot) parms <- modifyList(parms, list(border = bCol[i], col = sCol[i], lwd = 0.3* llwd[k])) do.call("polygon", parms) } } for (j in modxVals) { if (is.factor(modxVar)) i <- j else i <- match(j, modxVals) if (missing(modx) || is.null(modx)) { pdat <- newdf } else { pdat <- newdf[newdf[ , modx] %in% j, ] } parms <- list(x = pdat[, plotx], y = pdat$fit, lty = lty[i]) dots.plot <- dotargs[names(dotargs)[names(dotargs) %in% c(names(par()), formalArgs(lines))]] parms <- if(!is.null(dots.plot)) modifyList(parms, dots.plot) parms <- modifyList(parms, list(col = col[i], lwd = llwd[i])) do.call("lines", parms) } if (plotPoints) { parms <- list(xlab = plotx, ylab = ylab, cex = 0.6, lwd = 0.75) if (is.factor(modxVar)) { parms[["col"]] <- col[as.vector(modxVar[modxVar %in% modxVals])] parms[["x"]] <- plotxVar[modxVar %in% modxVals] parms[["y"]] <- depVar[modxVar %in% modxVals] } else { parms[["col"]] <- 1 parms[["x"]] <- plotxVar parms[["y"]] <- depVar } dots.plot <- dotargs[names(dotargs)[names(dotargs) %in% c(names(par()), formalArgs(points))]] parms <- if(!is.null(dots.plot)) modifyList(parms, dots.plot) do.call("points", parms) } if (!missing(legendArgs) && is.character(legendArgs) && (legendArgs == "none")) { } else if (!is.null(modx)){ if (is.factor(modxVar)){ col <- col[as.vector(modxVals)] lty <- lty[as.vector(modxVals)] llwd <- llwd[as.vector(modxVals)] } else { col <- col[names(modxVals)] lty <- lty[names(modxVals)] llwd <- llwd[names(modxVals)] } titl <- paste("Moderator:", modx) if (is.null(names(modxVals))) { legnd <- paste(modxVals, sep = "") } else { legnd <- paste(names(modxVals), sep = "") } legend.parms <- list(x = "topleft", legend = legnd, lty = lty, col = col, lwd = llwd, bg = "white", title = titl) if(!missing(legendArgs) && !is.null(legendArgs)) legend.parms <- modifyList(legend.parms, legendArgs) do.call(legend, legend.parms) } else { legend.parms <- list() legend.parms[["x"]] <- "topleft" legend.parms[["title"]] <- "Regression analysis" legnd <- c("Predicted values") col <- col[1] lty <- lty[1] llwd <- llwd[1] if (interval != "none") { legnd[2] <- paste(level, interval, "interval") col <- c(col, 0) lty <- c(lty, 0) llwd <- c(llwd, 0) } legend.parms[["legend"]] <- legnd legend.parms[["col"]] <- col legend.parms[["lty"]] <- lty legend.parms[["lwd"]] <- llwd if(!missing(legendArgs) && !is.null(legendArgs)) legend.parms <- modifyList(legend.parms, legendArgs) do.call(legend, legend.parms) } invisible(list(col = col, lty = lty, lwd = llwd)) } NULL se.bars <- function(x, y, lwr, upr, width = 0.20, col, opacity = 120, lwd = 1, lty = 1) { h <- min(1, 2.5 * width) q <- min(1, width) d <- 0.5 * width iCol <- col2rgb(col) bCol <- mapply(rgb, red = iCol[1,], green = iCol[2,], blue = iCol[3,], alpha = .8 * opacity, maxColorValue = 255) sCol <- mapply(rgb, red = iCol[1,], green = iCol[2,], blue = iCol[3,], alpha = opacity/3, maxColorValue = 255) lCol <- mapply(rgb, red = iCol[1,], green = iCol[2,], blue = iCol[3,], alpha = min(255, 2*opacity), maxColorValue = 255) if (!is.null(lwr)){ polygon(c(x-d, x+d, x+d, x-d), c(rep(lwr, 2), rep(upr, 2)), col = sCol, border = bCol) lines(c(x, x), c(lwr, upr), col = lCol, cex=0.5, lwd = lwd, lty = lty, lend = 1, ljoin = 1) lines(c(x, x) + c(-q, q), c(lwr, lwr), col = lCol, lwd = lwd, lty = lty, lend = 1, ljoin = 1, lmitre = 2) lines(c(x, x) + c(-q, q), c(upr, upr), col = lCol, lwd = lwd, lty = lty, lend = 1, ljoin = 1, lmitre = 2) } lines(c(x, x) + c(-h, h), c(y, y), col = lCol, lwd = lwd + 1) NULL } NULL plotFancyCategories <- function(newdf, olddf, plotx, modx=NULL, modxVals, xlab, xlim, ylab, ylim, col = c("black", "blue", "darkgreen", "red", "orange", "purple", "green3"), opacity = 120, main, space=c(0,1), width = 0.2, llwd = 1, offset=0, ..., gridArgs = list(lwd = 0.3, lty = 5), legendArgs) { call.orig <- match.call() dotargs <- list(...) dotnames <- names(dotargs) lty <- if("lty" %in% dotnames) dotargs[["lty"]] else 1 interval <- if("interval" %in% dotnames) dotargs[["interval"]] else "none" plotxval <- newdf[[plotx]] plotxVals <- levels(plotxval) if(is.null(modx)){ modxVals <- 1 } if(!is.null(modx)){ if(is.null(names(modxVals))) names(modxVals) <- as.character(modxVals) if(is.factor(modxVals)){ modxVal.names <- names(modxVals) names(modxVal.names) <- modxVals modxVal.names <- modxVal.names[levels(newdf[[modx]])] modxVals <- names(modxVal.names) names(modxVals) <- modxVal.names modx.levels <- modxVals } else { modx.levels <- modxVals } } newdf <- if(is.null(modx)) newdf[order(newdf[[plotx]]), ] else newdf[order(newdf[[plotx]], newdf[[modx]]), ] if(!is.null(modx) && is.factor(modxVals) && any(levels(newdf[[modx]]) != modxVals) )stop("levels fail") if(missing(ylim)){ ylim <- magRange(range(c(newdf[["fit"]], if(!is.null(newdf[["lwr"]])) min(newdf[["lwr"]])), if(!is.null(newdf[["upr"]])) max(newdf[["upr"]])), 1.25) } if(missing(xlim) || is.null(xlim)){ xlim <- range(seq_along(plotxVals)) + c(-0.5, 0.5) } if(missing(xlab) || is.null(xlab)){ xlab <- plotx } if(missing(ylab) || is.null(ylab)){ ylab <- attr(mm, "terms")[[2]] } if(missing(main)){ main <- "rockchalk discrete predictor plot" } lnc <- if(is.null(modx)) plotxVals else modx.levels xname <- if(is.null(modx)) plotx else modx lwd <- rep(llwd, length.out = length(lnc)) names(lwd) <- lnc lty <- rep(lty, length.out = length(lnc)) names(lty) <- lnc if(!is.null(names(col))){ if (any(!lnc %in% names(col))) stop("names in color vector incorrect") } if(missing(col) || is.null(col) || length(col) < length(lnc)) col <- col col <- rep(col, length.out = length(lnc)) names(col) <- lnc newdf$col <- col[as.character(newdf[[xname]])] width <- if(length(width) > 0 && length(width) < length(lnc)) rep(width, length.out = length(lnc)) names(width) <- lnc newdf$lwd <- lwd[as.character(newdf[[xname]])] newdf$lty <- lty[as.character(newdf[[xname]])] if(is.null(modx)){ newdf$width <- width[as.character(newdf[[plotx]])] } else { newdf$width <- width[as.character(newdf[[modx]])] } NR <- if(is.null(modx)) 1 else length(unique(newdf[[modx]])) NC <- length(unique(newdf[[plotx]])) width.internal <- 1 space <- space * mean(width.internal) if (length(space) == 2) { space <- rep.int(c(space[2L], rep.int(space[1L], NR - 1)), NC) } width.internal <- rep_len(width.internal, NR) offset <- rep_len(as.vector(offset), length(width.internal)) delta <- width.internal/2 w.r <- cumsum(space + width.internal) w.m <- w.r - delta w.l <- w.m - delta newdf$w.m <- w.m newdf$w.r <- w.r newdf$w.l <- w.l xlim <- c(min(w.l), max(w.r)) plot(1, 0, type = "n", xlim = xlim, ylim = ylim, main = main, xaxt = "n", xlab = xlab, ylab = ylab) if (is.null(modx)) { axis(1, at = newdf$w.m, labels = newdf[[plotx]]) }else{ xloc <- aggregate(newdf$w.m, by = list(plotx = newdf[[plotx]]), mean) axis(1, at = xloc[ , "x"], labels = xloc[ , "plotx"]) } for(mm in 1:(NROW(newdf))){ se.bars(newdf[mm , "w.m"], newdf[mm, "fit"], newdf[mm , "lwr"], newdf[mm , "upr"], col = newdf[mm , "col"], width = newdf[mm , "width"], lty = newdf[mm, "lty"]) } if((is.character(gridArgs) && gridArgs == "none") || interval == "none"){ } else { gridlwd <- rep(gridArgs[["lwd"]], length.out = length(lnc)) gridlty <- rep(gridArgs[["lty"]], length.out = length(lnc)) if(is.null(modx)){ rownames(newdf) <- newdf[[plotx]] plotxList <- list(newdf) names(plotxList) <- plotx } else { plotxList <- split(newdf, f = newdf[ , plotx], drop = TRUE) for(i in names(plotxList)) rownames(plotxList[[i]]) <- plotxList[[i]][[xname]] } if(length(plotxList) > 1) { for(i in 1:(length(plotxList) - 1)){ set1 <- plotxList[[i]] set2 <- plotxList[[i+1]] arrows(set1[["w.m"]], set1[["fit"]], set2[["w.l"]] + 0.3 * (1 - width), set1[["fit"]], col = col, lwd = gridlwd, lty = gridlty, length = 0.1) } } } if(!missing(legendArgs) && is.character(legendArgs) && legendArgs == "none") { } else if (!is.null(modx)){ legend.parms <- list(x = "bottomleft", fill = col[as.character(lnc)], col = col[as.character(lnc)], border = NA, bty = "n") if(length(unique(lty)) > 1){ legend.parms[["lty"]] <- lty[as.character(lnc)] legend.parms[["lwd"]] <- lwd[as.character(lnc)] } if(any(modxVals != lnc)){ stop("plotFancyCategories: fatal error") } if (is.null(names(modxVals))) { legend.parms[["title"]] <- paste("Moderator:", modx) legend.parms[["legend"]] <- modxVals } else { legend.parms[["title"]] <- paste("Moderator:", modx) legend.parms[["legend"]] <- names(modxVals) } if(!missing(legendArgs) && !is.null(legendArgs)) legend.parms <- modifyList(legend.parms, legendArgs) do.call(legend, legend.parms) } else { if(!missing(legendArgs) && !is.null(legendArgs)) do.call(legend, legendArgs) } invisible(list(newdf = newdf, col = col, lwd = lwd, call.orig=call.orig)) } NULL
library(simmer) t <- trajectory(verbose=T) %>% renege_in(1) %>% seize("dummy", 1) %>% renege_abort() %>% timeout(2) %>% release("dummy", 1) env <- simmer(verbose=TRUE) %>% add_resource("dummy", 1) %>% add_generator("arrival", t, at(0, 0)) %>% run() get_mon_arrivals(env, per_resource=TRUE) get_mon_arrivals(env, per_resource=FALSE) get_mon_resources(env)
GetCovSurface = function(Ly, Lt, optns = list()){ CheckData(Ly,Lt) inputData <- HandleNumericsAndNAN(Ly,Lt); Ly <- inputData$Ly; Lt <- inputData$Lt; optns = SetOptions(Ly, Lt, optns); numOfCurves = length(Ly); CheckOptions(Lt, optns,numOfCurves) if ( optns$usergrid == FALSE & optns$useBinnedData != 'OFF'){ BinnedDataset <- GetBinnedDataset(Ly,Lt,optns) Ly = BinnedDataset$newy; Lt = BinnedDataset$newt; optns[['nRegGrid']] <- min(optns[['nRegGrid']], BinnedDataset[['numBins']]) inputData$Ly <- Ly inputData$Lt <- Lt } obsGrid = sort(unique( c(unlist(Lt)))); regGrid = seq(min(obsGrid), max(obsGrid),length.out = optns$nRegGrid); outPercent <- optns$outPercent buff <- .Machine$double.eps * max(abs(obsGrid)) * 10 rangeGrid <- range(regGrid) minGrid <- rangeGrid[1] maxGrid <- rangeGrid[2] cutRegGrid <- regGrid[regGrid > minGrid + diff(rangeGrid) * outPercent[1] - buff & regGrid < minGrid + diff(rangeGrid) * outPercent[2] + buff] ymat <- List2Mat(Ly, Lt) firsttsMu <- Sys.time() userMu <- optns$userMu if ( is.list(userMu) && (length(userMu$mu) == length(userMu$t))){ smcObj <- GetUserMeanCurve(optns, obsGrid, regGrid, buff) smcObj$muDense = ConvertSupport(obsGrid, regGrid, mu = smcObj$mu) } else if (optns$methodMuCovEst == 'smooth') { smcObj = GetSmoothedMeanCurve(Ly, Lt, obsGrid, regGrid, optns) } else if (optns$methodMuCovEst == 'cross-sectional') { smcObj = GetMeanDense(ymat, obsGrid, optns) } mu <- smcObj$mu lasttsMu <- Sys.time() firsttsCov <- Sys.time() if (!is.null(optns$userCov) && optns$methodMuCovEst != 'smooth') { scsObj <- GetUserCov(optns, obsGrid, cutRegGrid, buff, ymat) } else if (optns$methodMuCovEst == 'smooth') { scsObj = GetSmoothedCovarSurface(Ly, Lt, mu, obsGrid, regGrid, optns, optns$useBinnedCov) } else if (optns$methodMuCovEst == 'cross-sectional') { scsObj = GetCovDense(ymat, mu, optns) if (length(obsGrid) != length(cutRegGrid) || !identical(obsGrid, cutRegGrid)) { scsObj$smoothCov = ConvertSupport(obsGrid, cutRegGrid, Cov = scsObj$smoothCov) } scsObj$outGrid <- cutRegGrid } sigma2 <- scsObj[['sigma2']] bwCov = scsObj$bwCov workGrid <- scsObj$outGrid ret <- list(cov = scsObj$smoothCov, sigma2 = scsObj$sigma2, workGrid = workGrid, bwCov = bwCov, optns = optns) if(optns$plot == TRUE){ plot3D::persp3D(x = workGrid, y = workGrid, z = ret$cov, col = colorRampPalette( c('blue','red') )(50)) } return(ret) }
NULL cognitosync_bulk_publish <- function(IdentityPoolId) { op <- new_operation( name = "BulkPublish", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/bulkpublish", paginator = list() ) input <- .cognitosync$bulk_publish_input(IdentityPoolId = IdentityPoolId) output <- .cognitosync$bulk_publish_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$bulk_publish <- cognitosync_bulk_publish cognitosync_delete_dataset <- function(IdentityPoolId, IdentityId, DatasetName) { op <- new_operation( name = "DeleteDataset", http_method = "DELETE", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}", paginator = list() ) input <- .cognitosync$delete_dataset_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName) output <- .cognitosync$delete_dataset_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$delete_dataset <- cognitosync_delete_dataset cognitosync_describe_dataset <- function(IdentityPoolId, IdentityId, DatasetName) { op <- new_operation( name = "DescribeDataset", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}", paginator = list() ) input <- .cognitosync$describe_dataset_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName) output <- .cognitosync$describe_dataset_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$describe_dataset <- cognitosync_describe_dataset cognitosync_describe_identity_pool_usage <- function(IdentityPoolId) { op <- new_operation( name = "DescribeIdentityPoolUsage", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}", paginator = list() ) input <- .cognitosync$describe_identity_pool_usage_input(IdentityPoolId = IdentityPoolId) output <- .cognitosync$describe_identity_pool_usage_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$describe_identity_pool_usage <- cognitosync_describe_identity_pool_usage cognitosync_describe_identity_usage <- function(IdentityPoolId, IdentityId) { op <- new_operation( name = "DescribeIdentityUsage", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}", paginator = list() ) input <- .cognitosync$describe_identity_usage_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId) output <- .cognitosync$describe_identity_usage_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$describe_identity_usage <- cognitosync_describe_identity_usage cognitosync_get_bulk_publish_details <- function(IdentityPoolId) { op <- new_operation( name = "GetBulkPublishDetails", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/getBulkPublishDetails", paginator = list() ) input <- .cognitosync$get_bulk_publish_details_input(IdentityPoolId = IdentityPoolId) output <- .cognitosync$get_bulk_publish_details_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$get_bulk_publish_details <- cognitosync_get_bulk_publish_details cognitosync_get_cognito_events <- function(IdentityPoolId) { op <- new_operation( name = "GetCognitoEvents", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/events", paginator = list() ) input <- .cognitosync$get_cognito_events_input(IdentityPoolId = IdentityPoolId) output <- .cognitosync$get_cognito_events_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$get_cognito_events <- cognitosync_get_cognito_events cognitosync_get_identity_pool_configuration <- function(IdentityPoolId) { op <- new_operation( name = "GetIdentityPoolConfiguration", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/configuration", paginator = list() ) input <- .cognitosync$get_identity_pool_configuration_input(IdentityPoolId = IdentityPoolId) output <- .cognitosync$get_identity_pool_configuration_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$get_identity_pool_configuration <- cognitosync_get_identity_pool_configuration cognitosync_list_datasets <- function(IdentityPoolId, IdentityId, NextToken = NULL, MaxResults = NULL) { op <- new_operation( name = "ListDatasets", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets", paginator = list() ) input <- .cognitosync$list_datasets_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, NextToken = NextToken, MaxResults = MaxResults) output <- .cognitosync$list_datasets_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$list_datasets <- cognitosync_list_datasets cognitosync_list_identity_pool_usage <- function(NextToken = NULL, MaxResults = NULL) { op <- new_operation( name = "ListIdentityPoolUsage", http_method = "GET", http_path = "/identitypools", paginator = list() ) input <- .cognitosync$list_identity_pool_usage_input(NextToken = NextToken, MaxResults = MaxResults) output <- .cognitosync$list_identity_pool_usage_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$list_identity_pool_usage <- cognitosync_list_identity_pool_usage cognitosync_list_records <- function(IdentityPoolId, IdentityId, DatasetName, LastSyncCount = NULL, NextToken = NULL, MaxResults = NULL, SyncSessionToken = NULL) { op <- new_operation( name = "ListRecords", http_method = "GET", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}/records", paginator = list() ) input <- .cognitosync$list_records_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName, LastSyncCount = LastSyncCount, NextToken = NextToken, MaxResults = MaxResults, SyncSessionToken = SyncSessionToken) output <- .cognitosync$list_records_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$list_records <- cognitosync_list_records cognitosync_register_device <- function(IdentityPoolId, IdentityId, Platform, Token) { op <- new_operation( name = "RegisterDevice", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/identity/{IdentityId}/device", paginator = list() ) input <- .cognitosync$register_device_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, Platform = Platform, Token = Token) output <- .cognitosync$register_device_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$register_device <- cognitosync_register_device cognitosync_set_cognito_events <- function(IdentityPoolId, Events) { op <- new_operation( name = "SetCognitoEvents", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/events", paginator = list() ) input <- .cognitosync$set_cognito_events_input(IdentityPoolId = IdentityPoolId, Events = Events) output <- .cognitosync$set_cognito_events_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$set_cognito_events <- cognitosync_set_cognito_events cognitosync_set_identity_pool_configuration <- function(IdentityPoolId, PushSync = NULL, CognitoStreams = NULL) { op <- new_operation( name = "SetIdentityPoolConfiguration", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/configuration", paginator = list() ) input <- .cognitosync$set_identity_pool_configuration_input(IdentityPoolId = IdentityPoolId, PushSync = PushSync, CognitoStreams = CognitoStreams) output <- .cognitosync$set_identity_pool_configuration_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$set_identity_pool_configuration <- cognitosync_set_identity_pool_configuration cognitosync_subscribe_to_dataset <- function(IdentityPoolId, IdentityId, DatasetName, DeviceId) { op <- new_operation( name = "SubscribeToDataset", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}/subscriptions/{DeviceId}", paginator = list() ) input <- .cognitosync$subscribe_to_dataset_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName, DeviceId = DeviceId) output <- .cognitosync$subscribe_to_dataset_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$subscribe_to_dataset <- cognitosync_subscribe_to_dataset cognitosync_unsubscribe_from_dataset <- function(IdentityPoolId, IdentityId, DatasetName, DeviceId) { op <- new_operation( name = "UnsubscribeFromDataset", http_method = "DELETE", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}/subscriptions/{DeviceId}", paginator = list() ) input <- .cognitosync$unsubscribe_from_dataset_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName, DeviceId = DeviceId) output <- .cognitosync$unsubscribe_from_dataset_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$unsubscribe_from_dataset <- cognitosync_unsubscribe_from_dataset cognitosync_update_records <- function(IdentityPoolId, IdentityId, DatasetName, DeviceId = NULL, RecordPatches = NULL, SyncSessionToken, ClientContext = NULL) { op <- new_operation( name = "UpdateRecords", http_method = "POST", http_path = "/identitypools/{IdentityPoolId}/identities/{IdentityId}/datasets/{DatasetName}", paginator = list() ) input <- .cognitosync$update_records_input(IdentityPoolId = IdentityPoolId, IdentityId = IdentityId, DatasetName = DatasetName, DeviceId = DeviceId, RecordPatches = RecordPatches, SyncSessionToken = SyncSessionToken, ClientContext = ClientContext) output <- .cognitosync$update_records_output() config <- get_config() svc <- .cognitosync$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .cognitosync$operations$update_records <- cognitosync_update_records
diff_SNP <- function(snpDf, sampleGroup, method = min) { snpDf[!is.na(snpDf)] <- "mutation" snpDf[is.na(snpDf)] <- "wild" sampleGroup <- sampleGroup[!is.na(sampleGroup)] type1 <- which(sampleGroup == names(table(sampleGroup))[1]) type2 <- which(sampleGroup == names(table(sampleGroup))[2]) pvalue <- rep(0, nrow(snpDf)) estimate <- rep(0, nrow(snpDf)) for(i in seq_len(nrow(snpDf))) { type1_freq <- table(as.character(snpDf[i, type1])) type2_freq <- table(as.character(snpDf[i, type2])) df <- data.frame(type1 = as.numeric(type1_freq[c("wild", "mutation")]), type2 = as.numeric(type2_freq[c("wild", "mutation")])) df[is.na(df)] <- 0 fish <- stats::fisher.test(df) pvalue[i] <- fish$p.value estimate[i] <- fish$estimate } names(pvalue) <- names(estimate) <- sub("_.*", "", rownames(snpDf)) pvalue <- stats::aggregate(pvalue, by = list(names(pvalue)), FUN = method) estimate <- stats::aggregate(estimate, by = list(names(estimate)), FUN = mean) return(data.frame(gene = pvalue[,1], pvalue = pvalue[, 2], estimate = estimate[, 2])) } diff_SNP_tcga <- function(snpData, sampleType) { Tumor_Sample_Barcode <- Variant_Classification <- NULL snpName <- paste(snpData$Hugo_Symbol, snpData$Start_Position, sep = "_") snpData <- snpData[, c("Variant_Classification", "Tumor_Sample_Barcode")] snpData$snp <- snpName snpData <- tidyr::spread(snpData, Tumor_Sample_Barcode, Variant_Classification) snpData <- as.data.frame(snpData) i <- match(colnames(snpData), names(sampleType)) sampleType <- sampleType[i] rownames(snpData) <- snpData$snp snpData <- snpData[, -1] pvalue <- diff_SNP(snpDf = snpData, sampleGroup = sampleType) return(pvalue) }
service_line_augment <- function(.data, .dx_col, .px_col, .drg_col){ dx_col <- rlang::enquo(.dx_col) px_col <- rlang::enquo(.px_col) drg_col <- rlang::enquo(.drg_col) if(!is.data.frame(.data)){ stop(call. = FALSE, ".data must be supplied.") } if(rlang::quo_is_missing(dx_col) | rlang::quo_is_missing(px_col) | rlang::quo_is_missing(drg_col)){ stop(call. = FALSE, "The columns .dx_col, .px_col and .drg_col must be supplied.") } data <- tibble::as_tibble(.data) data <- data %>% dplyr::select( {{dx_col}}, {{px_col}}, {{drg_col}}, dplyr::everything() ) service_line <- healthyR::service_line_vec( .data = data, .dx_col = {{dx_col}}, .px_col = {{px_col}}, .drg_col = {{drg_col}} ) data <- cbind(data, service_line) %>% tibble::as_tibble() %>% dplyr::mutate( dplyr::across( .cols = tidyselect::vars_select_helpers$where(is.character), .fns = stringr::str_squish ) ) return(data) }
library(gasfluxes) context("fitting checks") test_that("linear regression gives expected result", { t <- c(0, 1/3, 2/3, 1) C <- c(320, 341, 352, 359) fit <- lin.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 11.52, f0.se = 2.02849698052524, f0.p = 0.0296345042190038, C0 = 323.8, AIC = 27.5179162394956, AICc = Inf, RSE = 5.03984126734168, r = 0.970365495780996, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "C0", "AIC", "AICc", "RSE", "r","diagnostics")), tolerance = 1e-5) C <- 320 + 0:3 * 10 expect_equal(lin.fit(t, C, 1, 0.3, "a", verbose = FALSE)$diagnostics, "essentially perfect fit: summary may be unreliable") }) test_that("robust linear regression gives expected result", { skip_on_cran() t <- c(0, 1/3, 2/3, 1) C <- c(320, 341, 352, 359) fit <- rlin.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 11.52, f0.se = 2.02849698052524, f0.p = 0.0296345042190038, C0 = 323.8, weights = c(1, 1, 1, 1), diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "C0", "weights", "diagnostics")), tolerance = 1e-5) C[2] <- 400 fit <- rlin.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 10.3651999807438, f0.se = 7.74617801784988, f0.p = 0.283145377159807, C0 = 328.932444530028, weights = c(1, 0.224712479154538, 1, 1), diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "C0", "weights", "diagnostics")), tolerance = 1e-5) C <- 320 + 0:3 * 10 fit <- rlin.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 9, f0.se = 5.05560019475045e-16, f0.p = 3.15544362088405e-33, C0 = 320, weights = c(1, 1, 1, 1), diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "C0", "weights", "diagnostics"))) }) test_that("orig. HMR regression gives expected result", { t <- c(0, 1/3, 2/3, 1) C <- c(320, 341, 352, 359) fit <- HMR.orig(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 24.5726525375334, f0.se = 0.269619840794467, f0.p = 0.000120370813714629, kappa = 1.7420647314171, phi = 367.070131017252, AIC = 7.55291777918452, AICc = -32.4470822208155, RSE = 0.457638077871523, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics"))) C[2] <- 400 fit <- HMR.orig(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 0, f0.se = NA_real_, f0.p = NA_real_, kappa = NA_real_, phi = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics"))) C <- 320 + 0:3 * 10 fit <- HMR.orig(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 9, f0.se = 0, f0.p = 0, kappa = NA_real_, phi = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics"))) }) test_that("HMR regression gives expected result", { skip_on_cran() t <- c(0, 1/3, 2/3, 1) C <- c(320, 341, 352, 359) fit <- HMR.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 24.5729190601842, f0.se = 1.09217335198933, f0.p = 0.0282767319678857, kappa = 1.74209652356821, phi = 367.069739676469, AIC = 7.55291751354392, AICc = -32.4470824864561, RSE = 0.457638062675616, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics"))) expect_equal(fit["f0"], HMR.orig(t, C, 1, 0.3, "a", verbose = FALSE)["f0"], tolerance = 1e-4) C[2] <- 400 fit <- HMR.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = NA_real_, f0.se = NA_real_, f0.p = NA_real_, kappa = NA_real_, phi = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = "Missing value or an infinity produced when evaluating the model"), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics" ))) C <- 320 + 0:3 * 10 fit <- HMR.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = NA_real_, f0.se = NA_real_, f0.p = NA_real_, kappa = NA_real_, phi = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = "element (3, 3) is zero, so the inverse cannot be computed"), .Names = c("f0", "f0.se", "f0.p", "kappa", "phi", "AIC", "AICc", "RSE", "diagnostics" ))) }) test_that("NDFE regression gives expected result", { skip_on_cran() t <- c(0, 1/3, 2/3, 1) C <- c(320, 341, 352, 359) fit <- NDFE.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = 108.747818996036, f0.se = 62.9208765449726, f0.p = 0.333927030887926, tau = 0.0111016600093449, C0 = 319.992148880558, AIC = 10.7342239838649, AICc = -29.2657760161351, RSE = 0.681122330960559, diagnostics = ""), .Names = c("f0", "f0.se", "f0.p", "tau", "C0", "AIC", "AICc", "RSE", "diagnostics")), tolerance = 1e-5) C[2] <- 400 fit <- NDFE.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = NA_real_, f0.se = NA_real_, f0.p = NA_real_, tau = NA_real_, C0 = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = "Missing value or an infinity produced when evaluating the model"), .Names = c("f0", "f0.se", "f0.p", "tau", "C0", "AIC", "AICc", "RSE", "diagnostics" ))) C <- 320 + 0:3 * 10 fit <- NDFE.fit(t, C, 1, 0.3, "a", verbose = FALSE) expect_equal(fit, structure(list(f0 = NA_real_, f0.se = NA_real_, f0.p = NA_real_, tau = NA_real_, C0 = NA_real_, AIC = NA_real_, AICc = NA_real_, RSE = NA_real_, diagnostics = "step factor 5.82077e-11 reduced below 'minFactor' of 1e-10"), .Names = c("f0", "f0.se", "f0.p", "tau", "C0", "AIC", "AICc", "RSE", "diagnostics" ))) })
partition_gen <- function(N, K) { a <- sample(1:K, N, replace = TRUE) P <- matrix(0, nrow = N, ncol = K) for (i in 1:K) { ind <- which(a == i) av <- rep(0, N) av[ind] <- 1 P[, i] <- av } count_in_proto <- apply(P, 2, sum) if(all(count_in_proto > 0)) { P <- P } else if(0 %in% count_in_proto) { empty_protos <- which(count_in_proto == 0) empties <- length(empty_protos) for(i in 1:empties) { count_in_proto <- colSums(P) max_count <- which.max(count_in_proto) empty_protos <- which(count_in_proto == 0) rows_to_change <- which(P[, max_count] == 1) dummy_v <- rep(0, ncol(P)) dummy_v[empty_protos[1]] <- 1 P[rows_to_change[1],] <- dummy_v } } P1 <- format_partition(P) return(P1) }
test_that("dfm_sample works as expected", { mt <- dfm(tokens(data_corpus_inaugural[1:10]), verbose = FALSE) expect_equal(ndoc(dfm_sample(mt, size = 5)), 5) expect_equal(ndoc(dfm_sample(mt, size = 15, replace = TRUE)), 15) expect_error(dfm_sample(mt, size = 20), "size cannot exceed the number of items") expect_error(dfm_sample(data_corpus_inaugural[1:10]), "dfm_sample() only works on dfm objects.", fixed = TRUE) }) test_that("dfm_sample default size arguments work as expected", { suppressWarnings(RNGversion("3.5.3")) dfmat <- dfm(tokens(c("a b c c d", "a a c c d d d"))) mat1 <- matrix(rep(c(1, 1, 2, 1), 2), byrow = TRUE, nrow = 2, dimnames = list(docs = c("text1.1", "text1.2"), features = letters[1:4])) mat2 <- matrix(c(1, 1, 2, 1, 0, 0, 2, 2), byrow = TRUE, nrow = 2, dimnames = list(docs = c("text1", "text2"), features = c("b", "b", "c", "a"))) expect_identical({ set.seed(100) as.matrix(dfm_sample(dfmat, replace = TRUE)) }, mat1) })
set.as<-function(base,target,type='downstream') { if(missing(base)){stop('base object is missing, with no default value!')} if(missing(target)){stop('target object is missing, with no default value!')} if(!any(class(base)==c("createAquifer","createRiver","createReservoir","createDiversion","createJunction","createDemandSite"))) { stop("base object is wrongly specified!") } if(!any(class(target)==c("createAquifer","createRiver","createReservoir","createDiversion","createJunction","createDemandSite"))) { stop("base object is wrongly specified!") } if(type=='supplier') { if(!any(class(base)==c("createAquifer","createRiver","createReservoir","createDiversion"))) { stop("base object must be from a water resources class type!") } if(!class(target)=="createDemandSite") { stop("base object must be from a demand site class type!") } } if(!any(type==c('downstream','supplier','leakageObject','divertObject'))) { stop('type is wrongly specified!') } if(type=='downstream') {target$operation$downstream <-base$operation$label} if(type=='supplier') {target$operation$suppliers <-c(target$operation$suppliers,base$operation$label)} if(type=='leakageObject'){target$operation$leakageObject<-base$operation$label} if(type=='divertObject') {target$operation$divertObject <-base$operation$label} return(target) }
comma_sep_string_to_numbers <- function(string) { output <- stats::na.omit( as.numeric( unlist( strsplit( gsub(" ", "", string), "," ) ) ) ) return(output) }
function.PrevalenceMatching <- function(data, marker, status, tag.healthy = 0, direction = c("<", ">"), control = control.cutpoints(), pop.prev, ci.fit = FALSE, conf.level = 0.95, measures.acc) { sample.prev <- calculate.sample.prev(data, status, tag.healthy) predicted.prev <- measures.acc$Se[,1]*sample.prev+(1-measures.acc$Sp[,1])*(1-sample.prev) difference <- abs(sample.prev-predicted.prev) cPrevalenceMatching <- measures.acc$cutoffs[which(round(difference,10)==round(min(difference, na.rm = TRUE),10))] optimal.difference <- min(difference,na.rm=TRUE) optimal.cutoff <- obtain.optimal.measures(cPrevalenceMatching, measures.acc) res <- list(measures.acc = measures.acc, optimal.cutoff = optimal.cutoff, criterion = difference, optimal.criterion = optimal.difference) res }
"Stream" stream <- function(index = 0, api = "ANY") { new(Stream, index = index, api = api) } isStream <- function(object) { inherits(object, "Rcpp_Stream") & tryCatch(object$isOpened(), error = function(e) FALSE) } dim.Rcpp_Stream <- function(x) { x$dim() } nrow.Rcpp_Stream <- function(x) { x$nrow() } ncol.Rcpp_Stream <- function(x) { x$ncol() } release.Rcpp_Stream <- function(x) { if (!isStream(x)) stop("This is not a Stream object.") x$release() if (!x$isOpened()) { tmp <- deparse(substitute(x)) rm(list = tmp, envir = parent.frame(1)) message("Stream released successfully. \n") } else { message("An error occured while trying to release the stream. \n") } } readNext.Rcpp_Stream <- function(x, target = "new") { if (!isStream(x)) stop("This is not a Stream object.") if (isImage(target)) { x$readNext(target) } else if (target == "new") { out <- zeros(nrow(x), ncol(x), 3) x$readNext(out) out } else { stop("Invalid target.") } } setProp.Rcpp_Stream <- function(x, property, value) { if (!isStream(x)) stop("This is not a Stream object.") x$set(property, value) } getProp.Rcpp_Stream <- function(x, property) { if (!isStream(x)) stop("This is not a Stream object.") x$get(property) } timelapse <- function(x, outputFolder, interval = 1, duration = Inf, format = "png") { if (!isStream(x)) stop("This is not a Stream object.") outputFolder <- suppressWarnings(normalizePath(outputFolder)) if (!file.exists(outputFolder)) { message("The output folder does not exist. It will be created.") dir.create(outputFolder) } counter <- 0 start <- .now() end <- start + duration * 1000 while (.now() < end) { img <- readNext(x) img$write(paste0(outputFolder, "/", counter, ".", format)) counter <- counter + 1 print(paste0("Last picture taken at: ", Sys.time())) Sys.sleep(((start + counter * interval * 1000) - .now()) / 1000) } NULL }
women plot(women) plot(women, type='p', pch=18, col='red') plot(women, type='l') plot(women, type='b') plot(women, type='b', pch=18, lty=2, col=2) plot(women, xlim=c(30,100), ylim=c(min(women$weight)-10, 200), pch=10) plot(x=women$weight, y=women$height, pch=15, xlab='Weight', ylab='Height', col='red', cex=2, type='b') title(main='Main Title', sub='Sub Title') plot(women) abline(lm(women$weight ~ women$height), col='red', lty=2, lwd=4) boxplot(women$height) abline(h=c(58, 62,65,68,72)) summary(women) quantile(women$height) quantile(women$height, seq(0,1,.1)) quantile(women$height, seq(0,1,.01)) stem(women$height) boxplot(women$height, col='green') abline(h=quantile(women$height)) text(1+.2, quantile(women$height), labels=c('min','1Q','median','3Q','max')) hist(women$height) hist(women$height, breaks=10) hist(women$height, breaks=5, col=1:5) (x = rnorm(100,50,10)) hist(x) hist(x, freq=F, col=1:5) lines(density(x)) plot(density(x), col='red') gender= sample(c('Male','Female'), size=30, replace=T, prob=c(.6,.4)) table(gender) pie(table(gender)) x = c(10,20,40,50) pie(x) xlabels = c('A','B','C','D') x/sum(x) (labels2 = paste(xlabels, round(x/sum(x),2) * 100 , sep='-')) pie(x, labels=labels2) x barplot(x,col=1:4) barplot(x,col=1:4, horiz = T) pairs(women) cor(women$height,women$weight) cov(women$height, women$weight) head(mtcars) cor(mtcars) names(mtcars) pairs(mtcars) pairs(mtcars[1:4]) options(digits=4) pairs(mtcars[c('mpg', 'wt','hp')])
"linloglines" <- function (x, mu, alpha) { if(alpha != 0) { for (i in 1:length(x)) { if ((x[i] - mu)/alpha >= 1) x[i] <- alpha + (alpha * log10((x[i] - mu)/alpha)) else if ((x[i] - mu)/alpha < -1) x[i] <- -alpha - (alpha * log10((mu - x[i])/alpha)) else x[i] <- x[i] - mu } } else for (i in 1:length(x)) x[i] <- x[i] - mu x }
test_that("test die: constructor", { d <- Die$new("Blue") expect_equal(d$getColor(), "Blue") expect_equal(d$getValue(), 0) }) test_that("test die: roll", { d <- Die$new("Blue") set.seed(1) expect_equal(d$roll(), 1) expect_equal(d$getValue(), 1) })
mjs_labs <- function(mjs, x_label=NULL, y_label=NULL) { mjs$x$x_label <- x_label mjs$x$y_label <- y_label mjs }
give.init.Gspline <- function(prior, init, mcmc.par, dim) { thispackage = "bayesSurv" if(length(prior) == 0) inprior <- "arnost" else inprior <- names(prior) if(length(init) == 0) ininit <- "arnost" else ininit <- names(init) if(length(mcmc.par) == 0) inmcmc.par <- "arnost" else inmcmc.par <- names(mcmc.par) if (dim <= 0 | dim > 2) stop("Dimension must be either 1 or 2") tmp <- match("specification", inprior, nomatch=NA) if(is.na(tmp)) prior$specification <- 2 if (is.na(prior$specification)) prior$specification <- 2 prior$specification <- prior$specification[1] if (prior$specification != 1 && prior$specification != 2) stop("Incorrect prior$specification given") tmp <- match("K", inprior, nomatch=NA) if(is.na(tmp)) prior$K <- rep(15, dim) prior$K <- prior$K[1:dim] if (sum(is.na(prior$K))) stop("Incorrect prior$K given") tmp <- match("izero", inprior, nomatch=NA) if(is.na(tmp)) prior$izero <- rep(0, dim) prior$izero <- prior$izero[1:dim] if (sum(is.na(prior$izero))) stop("Incorrect prior$izero given") if (sum(prior$izero < -prior$K) + sum(prior$izero > prior$K)) stop("Incorrect (out of range) prior$izero given") tmp <- match("neighbor.system", inprior, nomatch=NA) if(is.na(tmp)) prior$neighbor.system <- ifelse(dim==1, "uniCAR", "eight.neighbors") neighbor.system <- pmatch(prior$neighbor.system, table=c("uniCAR", "eight.neighbors", "twelve.neighbors"), nomatch=0) - 1 neighbor.system <- neighbor.system[1] if (neighbor.system == -1) stop("Incorrect prior$neighbor.system") if (dim == 1 & neighbor.system != 0) stop("Neighbor system must be 'uniCAR' for univariate data") tmp <- match("order", inprior, nomatch=NA) if(is.na(tmp)) prior$order <- 3 if (neighbor.system == 1) prior$order <- 2 else if (neighbor.system == 2) prior$order <- 3 prior$order <- prior$order[1] if (is.na(prior$order)) stop("Incorrect prior$order given") if (prior$order > 3) stop("Order of CAR higher than 3 is not implemented") tmp <- match("equal.lambda", inprior, nomatch=NA) if(is.na(tmp)) prior$equal.lambda <- TRUE if (dim == 1) prior$equal.lambda <- TRUE if (neighbor.system > 0) prior$equal.lambda <- TRUE prior$equal.lambda <- prior$equal.lambda[1] if (is.na(prior$equal.lambda)) stop("Incorrect prior$equal.lambda given") equal.lambda <- as.numeric(prior$equal.lambda) tmp <- match("prior.lambda", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$prior.lambda must be given") if (prior$equal.lambda){ prior$prior.lambda <- rep(prior$prior.lambda[1], dim) } else{ prior$prior.lambda <- prior$prior.lambda[1:dim] } if (sum(is.na(prior$prior.lambda))) stop("Incorrect prior$prior.lambda given") prior.lambda <- apply(matrix(prior$prior.lambda, ncol=1), 1, pmatch, table=c("fixed", "gamma", "sduniform")) - 1 if (sum(prior.lambda == -1)) stop("Incorrect prior$prior.lambda given") rate.lambda <- rep(0, dim) shape.lambda <- rep(0, dim) if (sum(prior.lambda > 0)){ if (is.null(prior$rate.lambda)) stop("Either rate for gamma prior or upper limit of uniform prior for lambda was not given") if (prior$equal.lambda) rate.lambda <- rep(prior$rate.lambda[1], dim) else rate.lambda <- prior$rate.lambda[1:dim] if (sum(is.na(rate.lambda[prior.lambda > 0]))) stop("Incorrect prior$rate.lambda given") if (sum(rate.lambda[prior.lambda > 0] <= 0)) stop("prior$rate.lambda must be positive") rate.lambda[prior.lambda == 0] <- 0 } if (sum(prior.lambda == 1)){ if (is.null(prior$shape.lambda)) stop("Shape for gamma prior for lambda was not given") if (prior$equal.lambda) shape.lambda <- rep(prior$shape.lambda[1], dim) else shape.lambda <- prior$shape.lambda[1:dim] if (sum(is.na(shape.lambda[prior.lambda == 1]))) stop("Incorrect prior$shape.lambda given") if (sum(shape.lambda[prior.lambda == 1] <= 0)) stop("prior$shape.lambda must be positive") shape.lambda[prior.lambda != 1] <- 0 } parms.lambda <- as.vector(rbind(shape.lambda, rate.lambda)) prior$shape.lambda <- shape.lambda prior$rate.lambda <- rate.lambda if (prior$specification == 2){ prior$prior.sigma <- rep("fixed", dim) inprior <- names(prior) } tmp <- match("prior.sigma", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$prior.sigma must be given") prior$prior.sigma <- prior$prior.sigma[1:dim] if (sum(is.na(prior$prior.sigma))) stop("Incorrect prior$prior.sigma given") prior.sigma <- apply(matrix(prior$prior.sigma, ncol=1), 1, pmatch, table=c("fixed", "gamma", "sduniform")) - 1 if (sum(prior.sigma == -1)) stop("Incorrect prior$prior.sigma given") rate.sigma <- rep(0, dim) shape.sigma <- rep(0, dim) if (sum(prior.sigma > 0)){ if (is.null(prior$rate.sigma)) stop("Either rate for gamma prior or upper limit of uniform prior for sigma was not given") rate.sigma <- prior$rate.sigma[1:dim] if (sum(is.na(rate.sigma[prior.sigma > 0]))) stop("Incorrect prior$rate.sigma given") if (sum(rate.sigma[prior.sigma > 0] <= 0)) stop("prior$rate.sigma must be positive") rate.sigma[prior.sigma == 0] <- 0 } if (sum(prior.sigma == 1)){ if (is.null(prior$shape.sigma)) stop("Shape for gamma prior for sigma was not given") shape.sigma <- prior$shape.sigma[1:dim] if (sum(is.na(shape.sigma[prior.sigma == 1]))) stop("Incorrect prior$shape.sigma given") if (sum(shape.sigma[prior.sigma == 1] <= 0)) stop("prior$shape.sigma must be positive") shape.sigma[prior.sigma != 1] <- 0 } parms.sigma <- as.vector(rbind(shape.sigma, rate.sigma)) prior$shape.sigma <- shape.sigma prior$rate.sigma <- rate.sigma tmp <- match("k.overrelax.sigma", inmcmc.par, nomatch=NA) if (!is.na(tmp) & length(mcmc.par$k.overrelax.sigma) == 1) mcmc.par$k.overrelax.sigma <- rep(mcmc.par$k.overrelax.sigma[1], dim) if(is.na(tmp)) mcmc.par$k.overrelax.sigma <- rep(1, dim) mcmc.par$k.overrelax.sigma <- mcmc.par$k.overrelax.sigma[1:dim] if (sum(is.na(mcmc.par$k.overrelax.sigma))) stop("Incorrect mcmc.par$k.overrelax.sigma given") if (sum(mcmc.par$k.overrelax.sigma <= 0)) stop("Incorrect mcmc.par$k.overrelax.sigma given (must be all positive)") if (prior$specification == 2){ prior$prior.gamma <- rep("fixed", dim) inprior <- names(prior) } tmp <- match("prior.gamma", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$prior.gamma must be given") prior$prior.gamma <- prior$prior.gamma[1:dim] if (sum(is.na(prior$prior.gamma))) stop("Incorrect prior$prior.gamma given") prior.gamma <- apply(matrix(prior$prior.gamma, ncol=1), 1, pmatch, table=c("fixed", "normal")) - 1 if (sum(prior.gamma == -1)) stop("Incorrect prior$prior.gamma given") mean.gamma <- rep(0, dim) var.gamma <- rep(0, dim) if (sum(prior.gamma > 0)){ tmp <- match("mean.gamma", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$mean.gamma must be given") tmp <- match("var.gamma", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$var.gamma must be given") mean.gamma <- prior$mean.gamma[1:dim] var.gamma <- prior$var.gamma[1:dim] if (sum(is.na(mean.gamma[prior.gamma > 0]))) stop("Incorrect prior$mean.gamma given") if (sum(is.na(var.gamma[prior.gamma > 0]))) stop("Incorrect prior$var.gamma given") mean.gamma[prior.gamma == 0] <- 0 var.gamma[prior.gamma == 0] <- 0 } parms.gamma <- as.vector(rbind(mean.gamma, var.gamma)) prior$mean.gamma <- mean.gamma prior$var.gamma <- var.gamma if (prior$specification == 1){ prior$prior.scale <- rep("fixed", dim) inprior <- names(prior) } tmp <- match("prior.scale", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$prior.scale must be given") prior$prior.scale <- prior$prior.scale[1:dim] if (sum(is.na(prior$prior.scale))) stop("Incorrect prior$prior.scale given") prior.scale <- apply(matrix(prior$prior.scale, ncol=1), 1, pmatch, table=c("fixed", "gamma", "sduniform")) - 1 if (sum(prior.scale == -1)) stop("Incorrect prior$prior.scale given") rate.scale <- rep(0, dim) shape.scale <- rep(0, dim) if (sum(prior.scale > 0)){ tmp <- match("rate.scale", inprior, nomatch=NA) if(is.na(tmp)) stop("Either rate for gamma prior or upper limit of uniform prior for scale was not given") rate.scale <- prior$rate.scale[1:dim] if (sum(is.na(rate.scale[prior.scale > 0]))) stop("Incorrect prior$rate.scale given") if (sum(rate.scale[prior.scale > 0] <= 0)) stop("prior$rate.scale must be positive") rate.scale[prior.scale == 0] <- 0 } if (sum(prior.scale == 1)){ tmp <- match("shape.scale", inprior, nomatch=NA) if(is.na(tmp)) stop("Shape for gamma prior for scale was not given") shape.scale <- prior$shape.scale[1:dim] if (sum(is.na(shape.scale[prior.scale == 1]))) stop("Incorrect prior$shape.scale given") if (sum(shape.scale[prior.scale == 1] <= 0)) stop("prior$shape.scale must be positive") shape.scale[prior.scale != 1] <- 0 } parms.scale <- as.vector(rbind(shape.scale, rate.scale)) prior$shape.scale <- shape.scale prior$rate.scale <- rate.scale tmp <- match("k.overrelax.scale", inmcmc.par, nomatch=NA) if (!is.na(tmp) & length(mcmc.par$k.overrelax.scale) == 1) mcmc.par$k.overrelax.scale <- rep(mcmc.par$k.overrelax.scale[1], dim) if(is.na(tmp)) mcmc.par$k.overrelax.scale <- rep(1, dim) mcmc.par$k.overrelax.scale <- mcmc.par$k.overrelax.scale[1:dim] if (sum(is.na(mcmc.par$k.overrelax.scale))) stop("Incorrect mcmc.par$k.overrelax.scale given") if (sum(mcmc.par$k.overrelax.scale <= 0)) stop("Incorrect mcmc.par$k.overrelax.scale given (must be all positive)") if (prior$specification == 1){ prior$prior.intercept <- rep("fixed", dim) inprior <- names(prior) } tmp <- match("prior.intercept", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$prior.intercept must be given") prior$prior.intercept <- prior$prior.intercept[1:dim] if (sum(is.na(prior$prior.intercept))) stop("Incorrect prior$prior.intercept given") prior.intercept <- apply(matrix(prior$prior.intercept, ncol=1), 1, pmatch, table=c("fixed", "normal")) - 1 if (sum(prior.intercept == -1)) stop("Incorrect prior$prior.intercept given") mean.intercept <- rep(0, dim) var.intercept <- rep(0, dim) if (sum(prior.intercept > 0)){ tmp <- match("mean.intercept", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$mean.intercept must be given") tmp <- match("var.intercept", inprior, nomatch=NA) if(is.na(tmp)) stop("prior$var.intercept must be given") mean.intercept <- prior$mean.intercept[1:dim] var.intercept <- prior$var.intercept[1:dim] if (sum(is.na(mean.intercept[prior.intercept > 0]))) stop("Incorrect prior$mean.intercept given") if (sum(is.na(var.intercept[prior.intercept > 0]))) stop("Incorrect prior$var.intercept given") mean.intercept[prior.intercept == 0] <- 0 var.intercept[prior.intercept == 0] <- 0 } parms.intercept <- as.vector(rbind(mean.intercept, var.intercept)) prior$mean.intercept <- mean.intercept prior$var.intercept <- var.intercept tmp <- match("c4delta", inprior, nomatch=NA) if(is.na(tmp)) prior$c4delta <- rep(1.5, dim) prior$c4delta <- prior$c4delta[1:dim] if (sum(is.na(prior$c4delta))) stop("Incorrect prior$c4delta given") if (sum(prior$c4delta <= 0)) stop("prior$c4delta must be positive") tmp <- match("type.update.a", inmcmc.par, nomatch=NA) if(is.na(tmp)){ if (dim == 1) mcmc.par$type.update.a <- "slice" else mcmc.par$type.update.a <- "slice" } tmp <- match("k.overrelax.a", inmcmc.par, nomatch=NA) if(is.na(tmp)) mcmc.par$k.overrelax.a <- 1 mcmc.par$type.update.a <- mcmc.par$type.update.a[1] mcmc.par$k.overrelax.a <- mcmc.par$k.overrelax.a[1] if (is.na(mcmc.par$type.update.a)) stop("Incorrect mcmc.par$type.update.a given") if (is.na(mcmc.par$k.overrelax.a)) stop("Incorrect mcmc.par$k.overrelax.a given") type.update.a <- pmatch(mcmc.par$type.update.a, table=c("slice", "ars.quantile", "ars.mode", "block"), nomatch=0) - 1 if (type.update.a == -1) stop("Incorrect mcmc.par$type.update.a given") if (type.update.a == 0){ if (mcmc.par$k.overrelax.a <= 0) stop("Incorrect mcmc.par$k.overrelax.a given (must be positive)") } else{ mcmc.par$k.overrelax.a <- 1 } tmp <- match("iter", ininit, nomatch=NA) if(is.na(tmp)) init$iter <- 0 if (is.na(init$iter)) init$iter <- 0 else init$iter <- init$iter[1] tmp <- match("lambda", ininit, nomatch=NA) if(is.na(tmp)) stop("Initial lambda must be given") if (prior$equal.lambda) init$lambda <- rep(init$lambda[1], dim) else init$lambda <- init$lambda[1:dim] if (sum(is.na(init$lambda))) stop("Incorrect init$lambda given") if (sum(init$lambda <= 0)) stop("init$lambda must be positive") tmp <- match("sigma", ininit, nomatch=NA) if(is.na(tmp)){ if (prior$specification == 2) init$sigma <- rep(0.2, dim) else stop("Initial sigma (basis std. deviation) must be given") } init$sigma <- init$sigma[1:dim] if (sum(is.na(init$sigma))) stop("Incorrect init$sigma given") if (sum(init$sigma <= 0)) stop("init$sigma must be positive") tmp <- match("gamma", ininit, nomatch=NA) if(is.na(tmp)){ if (prior$specification == 2) init$gamma <- rep(0, dim) else stop("Initial gamma must be given") } init$gamma <- init$gamma[1:dim] if (sum(is.na(init$gamma))) stop("Incorrect init$gamma given") tmp <- match("scale", ininit, nomatch=NA) if(is.na(tmp)){ if (prior$specification == 1) init$scale <- rep(1, dim) else stop("Initial scale must be given") } if (prior$specification == 1) init$scale <- rep(1, dim) init$scale <- init$scale[1:dim] if (sum(is.na(init$scale))) stop("Incorrect init$scale given") if (sum(init$scale <= 0)) stop("init$scale must be positive") tmp <- match("intercept", ininit, nomatch=NA) if(is.na(tmp)){ if (prior$specification == 1) init$intercept <- rep(0, dim) else stop("Initial intercept must be given") } if (prior$specification == 1) init$intercept <- rep(0, dim) init$intercept <- init$intercept[1:dim] if (sum(is.na(init$intercept))) stop("Incorrect init$intercept given") aconstraint <- "reference" aconstraint <- pmatch(aconstraint, table=c("mean", "reference"), nomatch=0)-1 if (aconstraint < 0) stop("Unimplemented identifiability constraint for a coefficients") tmp <- match("a", ininit, nomatch=NA) if(is.na(tmp) | (!is.na(tmp) & !length(init$a))){ acoef <- list() for (j in 1:dim){ if (prior$K[j] == 0){ acoef[[j]] <- 0 }else{ delta <- prior$c4delta[j] * init$sigma[j] range <- delta * 2 * prior$K[j] delta2 <- (8/range) * delta knots <- seq(-prior$K[j], prior$K[j], by = 1) * delta2 sdspline <- delta2 / prior$c4delta[j] if (sdspline >= 0.95) sdspline <- 0.95 minp <- minPenalty(knots = knots, sdspline = sdspline, difforder = 3, info = FALSE) if (minp$fail) stop("Unable to guess initial 'a' coefficients, give your own") acoef[[j]] <- minp$spline[, "a coef."] if (aconstraint == "mean"){ acoef[[j]] <- as.vector(acoef[[j]] - mean(acoef[[j]])) } else{ acoef[[j]] <- as.vector(acoef[[j]] - acoef[[j]][prior$izero[j] + prior$K[j] + 1]) } } } if (dim == 1){ init$a <- acoef[[1]] } else{ if (dim == 2){ init$a <- outer(acoef[[1]], acoef[[2]], "+") } else { stop("Unimplemented dimension appeared in bayesHistogram.priorInit()") } } } total.length <- ifelse(dim == 1, 2*prior$K[1] + 1, (2*prior$K[1] + 1)*(2*prior$K[2] + 1)) init$a <- init$a[1:total.length] if (sum(is.na(init$a))) stop("Incorrect init$a given") total.izero <- ifelse(dim == 1, prior$izero[1] + prior$K[1] + 1, (prior$izero[2]+prior$K[2])*(2*prior$K[1]+1) + prior$izero[1]+prior$K[1]+1) acoef <- as.vector(init$a) if (dim == 2) init$a <- matrix(init$a, nrow=2*prior$K[1] + 1, ncol=2*prior$K[2] + 1) Gparmi <- c(dim, neighbor.system, equal.lambda, prior$K, prior$izero, prior$order, prior.lambda, prior.gamma, prior.sigma, prior.intercept, prior.scale, type.update.a, mcmc.par$k.overrelax.a, mcmc.par$k.overrelax.sigma, mcmc.par$k.overrelax.scale, aconstraint) names(Gparmi) <- c("dim", "neighbor.system", "equal.lambda", paste("K", 1:dim, sep=""), paste("izeroR", 1:dim, sep=""), "order", paste("prior.for.lambda", 1:dim, sep=""), paste("prior.for.gamma", 1:dim, sep=""), paste("prior.for.sigma", 1:dim, sep=""), paste("prior.for.intercept", 1:dim, sep=""), paste("prior.for.scale", 1:dim, sep=""), "type.update.a", "k.overrelax.a", paste("k.overrelax.sigma", 1:dim, sep=""), paste("k.overrelax.scale", 1:dim, sep=""), "aconstraint") Gparmd <- c(acoef, init$lambda, init$gamma, init$sigma, init$intercept, init$scale, prior$c4delta, parms.lambda, parms.gamma, parms.sigma, parms.intercept, parms.scale) names(Gparmd) <- c(paste("a", 1:total.length, sep=""), paste("lambda", 1:dim, sep=""), paste("gamma", 1:dim, sep=""), paste("sigma", 1:dim, sep=""), paste("intercept", 1:dim, sep=""), paste("scale", 1:dim, sep=""), paste("c4delta", 1:dim, sep=""), paste(c("shape.lambda", "rate.lambda"), rep(1:dim, rep(2, dim)), sep=""), paste(c("mean.gamma", "var.gamma"), rep(1:dim, rep(2, dim)), sep=""), paste(c("shape.sigma", "rate.sigma"), rep(1:dim, rep(2, dim)), sep=""), paste(c("mean.intercept", "var.intercept"), rep(1:dim, rep(2, dim)), sep=""), paste(c("shape.scale", "rate.scale"), rep(1:dim, rep(2, dim)), sep="")) toreturn <- list(Gparmi = Gparmi, Gparmd = Gparmd, specification=prior$specification) attr(toreturn, "init") <- init attr(toreturn, "prior") <- prior attr(toreturn, "mcmc.par") <- mcmc.par return(toreturn) }
context("Test bandit4arm2_kalman_filter") library(hBayesDM) test_that("Test bandit4arm2_kalman_filter", { skip_on_cran() expect_output(bandit4arm2_kalman_filter( data = "example", niter = 10, nwarmup = 5, nchain = 1, ncore = 1)) })
test.print <- function() { NA }
funnel.default <- function(x, vi, sei, ni, subset, yaxis="sei", xlim, ylim, xlab, ylab, steps=5, at, atransf, targs, digits, level=95, back="lightgray", shade="white", hlines="white", refline=0, lty=3, pch, col, bg, label=FALSE, offset=0.4, legend=FALSE, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(subset)) subset <- NULL yaxis <- match.arg(yaxis, c("sei", "vi", "seinv", "vinv", "ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi")) if (missing(atransf)) atransf <- FALSE atransf.char <- deparse(atransf) if (missing(pch)) pch <- 19 yi <- x k <- length(yi) if (missing(ni)) ni <- NULL if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (is.null(ni) && !is.null(attr(yi, "ni"))) ni <- attr(yi, "ni") if (!is.null(ni) && length(ni) != k) stop(mstyle$stop("Sample size information not of same length as data.")) if (is.null(ni)) stop(mstyle$stop("No sample size information available.")) } if (missing(vi)) vi <- NULL if (is.function(vi)) stop(mstyle$stop("Cannot find variable specified for 'vi' argument."), call.=FALSE) if (missing(sei)) sei <- NULL if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (is.null(sei)) { if (!is.null(vi)) sei <- sqrt(vi) } if (is.element(yaxis, c("sei", "vi", "seinv", "vinv", "wi"))) { if (is.null(vi)) stop(mstyle$stop("Must specify 'vi' or 'sei' argument.")) if (length(vi) != k) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') is not the same.")) } if (!is.null(vi)) vi[vi < 0] <- 0 if (!is.null(sei)) sei[sei < 0] <- 0 slab <- attr(yi, "slab") if (is.null(slab) || length(slab) != k) slab <- seq_along(yi) if (missing(ylab)) { if (yaxis == "sei") ylab <- "Standard Error" if (yaxis == "vi") ylab <- "Variance" if (yaxis == "seinv") ylab <- "Inverse Standard Error" if (yaxis == "vinv") ylab <- "Inverse Variance" if (yaxis == "ni") ylab <- "Sample Size" if (yaxis == "ninv") ylab <- "Inverse Sample Size" if (yaxis == "sqrtni") ylab <- "Square Root Sample Size" if (yaxis == "sqrtninv") ylab <- "Inverse Square Root Sample Size" if (yaxis == "lni") ylab <- "Log Sample Size" if (yaxis == "wi") ylab <- "Weight (in %)" } if (missing(at)) at <- NULL if (missing(targs)) targs <- NULL if (missing(digits)) { if (yaxis == "sei") digits <- c(2L,3L) if (yaxis == "vi") digits <- c(2L,3L) if (yaxis == "seinv") digits <- c(2L,3L) if (yaxis == "vinv") digits <- c(2L,3L) if (yaxis == "ni") digits <- c(2L,0L) if (yaxis == "ninv") digits <- c(2L,3L) if (yaxis == "sqrtni") digits <- c(2L,3L) if (yaxis == "sqrtninv") digits <- c(2L,3L) if (yaxis == "lni") digits <- c(2L,3L) if (yaxis == "wi") digits <- c(2L,2L) } else { if (length(digits) == 1L) digits <- c(digits,digits) } if (length(lty) == 1L) lty <- rep(lty, 2L) if (length(pch) == 1L) { pch.vec <- FALSE pch <- rep(pch, k) } else { pch.vec <- TRUE } if (length(pch) != k) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the number of outcomes (", k, ")."))) if (missing(col)) col <- "black" if (length(col) == 1L) { col.vec <- FALSE col <- rep(col, k) } else { col.vec <- TRUE } if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the number of outcomes (", k, ")."))) if (missing(bg)) bg <- "white" if (length(bg) == 1L) { bg.vec <- FALSE bg <- rep(bg, k) } else { bg.vec <- TRUE } if (length(bg) != k) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the number of outcomes (", k, ")."))) if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) ddd <- list(...) if (!is.null(ddd$transf)) warning("Function does not have a 'transf' argument (use 'atransf' instead).", call.=FALSE) lplot <- function(..., refline2, level2, lty2, transf, ci.res) plot(...) labline <- function(..., refline2, level2, lty2, transf, ci.res) abline(...) lsegments <- function(..., refline2, level2, lty2, transf, ci.res) segments(...) laxis <- function(..., refline2, level2, lty2, transf, ci.res) axis(...) lpolygon <- function(..., refline2, level2, lty2, transf, ci.res) polygon(...) llines <- function(..., refline2, level2, lty2, transf, ci.res) lines(...) lpoints <- function(..., refline2, level2, lty2, transf, ci.res) points(...) lrect <- function(..., refline2, level2, lty2, transf, ci.res) rect(...) ltext <- function(..., refline2, level2, lty2, transf, ci.res) text(...) if (!is.null(ddd$refline2)) { refline2 <- ddd$refline2 } else { refline2 <- NULL } if (!is.null(ddd$level2)) { level2 <- ddd$level2 } else { level2 <- 95 } if (!is.null(ddd$lty2)) { lty2 <- ddd$lty2 } else { lty2 <- 3 } if (!is.null(ddd$ci.res)) { ci.res <- ddd$ci.res } else { ci.res <- 1000 } if (!is.null(subset)) { subset <- .setnafalse(subset, k=length(yi)) yi <- yi[subset] vi <- vi[subset] sei <- sei[subset] ni <- ni[subset] slab <- slab[subset] pch <- pch[subset] col <- col[subset] bg <- bg[subset] } has.na <- is.na(yi) | (if (is.element(yaxis, c("vi", "vinv"))) is.na(vi) else FALSE) | (if (is.element(yaxis, c("sei", "seinv"))) is.na(vi) else FALSE) | (if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni"))) is.na(ni) else FALSE) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] sei <- sei[not.na] ni <- ni[not.na] slab <- slab[not.na] pch <- pch[not.na] col <- col[not.na] bg <- bg[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } if (missing(xlab)) xlab <- .setlab(attr(yi, "measure"), transf.char="FALSE", atransf.char, gentype=1) if (length(yi) < 2L) stop(mstyle$stop("Plotting terminated since k < 2.")) if (yaxis == "wi") { if (any(vi <= 0)) stop(mstyle$stop("Cannot plot weights when there are non-positive sampling variances in the data.")) weights <- 1/vi weights <- weights / sum(weights) * 100 } if (missing(ylim)) { if (yaxis == "sei") ylim <- c(max(sei), 0) if (yaxis == "vi") ylim <- c(max(vi), 0) if (yaxis == "seinv") ylim <- c(min(1/sei), max(1/sei)) if (yaxis == "vinv") ylim <- c(min(1/vi), max(1/vi)) if (yaxis == "ni") ylim <- c(min(ni), max(ni)) if (yaxis == "ninv") ylim <- c(max(1/ni), min(1/ni)) if (yaxis == "sqrtni") ylim <- c(min(sqrt(ni)), max(sqrt(ni))) if (yaxis == "sqrtninv") ylim <- c(max(1/sqrt(ni)), min(1/sqrt(ni))) if (yaxis == "lni") ylim <- c(min(log(ni)), max(log(ni))) if (yaxis == "wi") ylim <- c(min(weights), max(weights)) if (any(is.infinite(ylim))) stop(mstyle$stop("Setting 'ylim' automatically not possible (must set y-axis limits manually).")) } else { if (is.element(yaxis, c("sei", "vi", "ninv", "sqrtninv"))) ylim <- c(max(ylim), min(ylim)) if (is.element(yaxis, c("seinv", "vinv", "ni", "sqrtni", "lni", "wi"))) ylim <- c(min(ylim), max(ylim)) if (is.element(yaxis, c("sei", "vi", "ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } if (is.element(yaxis, c("seinv", "vinv"))) { if (ylim[1] <= 0 || ylim[2] <= 0) stop(mstyle$stop("Both y-axis limits must be > 0.")) } if (is.element(yaxis, c("wi"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } } if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { level <- ifelse(level == 0, 1, ifelse(level >= 1, (100-level)/100, ifelse(level > .5, 1-level, level))) level2 <- ifelse(level2 == 0, 1, ifelse(level2 >= 1, (100-level2)/100, ifelse(level2 > .5, 1-level2, level2))) level.min <- min(level) lvals <- length(level) if (yaxis == "sei") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2) } if (yaxis == "vi") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]) } if (yaxis == "seinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2) } if (yaxis == "vinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]) } if (missing(xlim)) { xlim <- c(min(x.lb.bot,min(yi)), max(x.ub.bot,max(yi))) rxlim <- xlim[2] - xlim[1] xlim[1] <- xlim[1] - (rxlim * 0.10) xlim[2] <- xlim[2] + (rxlim * 0.10) } else { xlim <- sort(xlim) } } if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) { if (missing(xlim)) { xlim <- c(min(yi), max(yi)) rxlim <- xlim[2] - xlim[1] xlim[1] <- xlim[1] - (rxlim * 0.10) xlim[2] <- xlim[2] + (rxlim * 0.10) } else { xlim <- sort(xlim) } } if (!is.null(at)) { xlim[1] <- min(c(xlim[1], at), na.rm=TRUE) xlim[2] <- max(c(xlim[2], at), na.rm=TRUE) } lplot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, xaxt="n", yaxt="n", bty="n", ...) par.usr <- par("usr") lrect(par.usr[1], par.usr[3], par.usr[2], par.usr[4], col=back, border=NA, ...) laxis(side=2, at=seq(from=ylim[1], to=ylim[2], length.out=steps), labels=formatC(seq(from=ylim[1], to=ylim[2], length.out=steps), digits=digits[[2]], format="f", drop0trailing=is.integer(digits[[2]])), ...) labline(h=seq(from=ylim[1], to=ylim[2], length.out=steps), col=hlines, ...) if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { if (yaxis == "sei") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "vi") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "seinv") { rylim <- ylim[2] - ylim[1] ylim[2] <- ylim[2] + (rylim * 0.10) } if (yaxis == "vinv") { rylim <- ylim[2] - ylim[1] ylim[2] <- ylim[2] + (rylim * 0.10) } yi.vals <- seq(from=ylim[1], to=ylim[2], length.out=ci.res) if (yaxis == "sei") vi.vals <- yi.vals^2 if (yaxis == "vi") vi.vals <- yi.vals if (yaxis == "seinv") vi.vals <- 1/yi.vals^2 if (yaxis == "vinv") vi.vals <- 1/yi.vals for (m in lvals:1) { ci.left <- refline - qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals) ci.right <- refline + qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals) lpolygon(c(ci.left,ci.right[ci.res:1]), c(yi.vals,yi.vals[ci.res:1]), border=NA, col=shade[m], ...) llines(ci.left, yi.vals, lty=lty[1], ...) llines(ci.right, yi.vals, lty=lty[1], ...) } if (!is.null(refline2)) { ci.left <- refline2 - qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals) ci.right <- refline2 + qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals) llines(ci.left, yi.vals, lty=lty2, ...) llines(ci.right, yi.vals, lty=lty2, ...) } } if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) lsegments(refline, ylim[1], refline, ylim[2], lty=lty[2], ...) if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) labline(v=refline, lty=lty[2], ...) xaxis.vals <- yi if (yaxis == "sei") yaxis.vals <- sei if (yaxis == "vi") yaxis.vals <- vi if (yaxis == "seinv") yaxis.vals <- 1/sei if (yaxis == "vinv") yaxis.vals <- 1/vi if (yaxis == "ni") yaxis.vals <- ni if (yaxis == "ninv") yaxis.vals <- 1/ni if (yaxis == "sqrtni") yaxis.vals <- sqrt(ni) if (yaxis == "sqrtninv") yaxis.vals <- 1/sqrt(ni) if (yaxis == "lni") yaxis.vals <- log(ni) if (yaxis == "wi") yaxis.vals <- weights lpoints(x=xaxis.vals, y=yaxis.vals, pch=pch, col=col, bg=bg, ...) box(bty="l") if (is.null(at)) { at <- axTicks(side=1) } else { at <- at[at > par("usr")[1]] at <- at[at < par("usr")[2]] } at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- formatC(sapply(at.lab, atransf), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } else { at.lab <- formatC(sapply(at.lab, atransf, targs), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } } else { at.lab <- formatC(at.lab, digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } laxis(side=1, at=at, labels=at.lab, ...) k <- length(yi) if (is.numeric(label) || is.character(label) || .isTRUE(label)) { if (is.numeric(label)) { label <- round(label) if (label < 0) label <- 0 if (label > k) label <- k label <- order(abs(yi - refline), decreasing=TRUE)[seq_len(label)] } else if ((is.character(label) && label == "all") || .isTRUE(label)) { label <- seq_len(k) } else if ((is.character(label) && label == "out")) { if (!is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { label <- seq_len(k) } else { label <- which(abs(yi - refline) / sqrt(vi) >= qnorm(level.min/2, lower.tail=FALSE)) } } else { label <- NULL } for (i in label) ltext(yi[i], yaxis.vals[i], slab[i], pos=ifelse(yi[i]-refline >= 0, 4, 2), offset=offset, ...) } if (is.logical(legend) && isTRUE(legend)) lpos <- "topright" if (is.character(legend)) { lpos <- legend legend <- TRUE } if (legend && !is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { legend <- FALSE warning(mstyle$warning("Argument 'legend' only applicable if 'yaxis' is 'sei', 'vi', 'seinv', or 'vinv'."), call.=FALSE) } if (legend) { level <- c(level, 0) lvals <- length(level) add.studies <- !pch.vec && !col.vec && !bg.vec scipen <- options(scipen=100) lchars <- max(nchar(level))-2 options(scipen=scipen$scipen) pval1 <- NULL pval2 <- NULL phantom <- NULL ltxt <- sapply(seq_len(lvals), function(i) { if (i == 1) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=.fcf(level[i], lchars), pval2=.fcf(1, lchars))))) if (i > 1 && i < lvals) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=.fcf(level[i], lchars), pval2=.fcf(level[i-1], lchars))))) if (i == lvals) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=.fcf(0, lchars), pval2=.fcf(level[i-1], lchars))))) }) pch.l <- rep(22, lvals) col.l <- rep("black", lvals) pt.cex <- rep(2, lvals) pt.bg <- c(shade, back) if (add.studies) { ltxt <- c(ltxt, expression(plain(Studies))) pch.l <- c(pch.l, pch[1]) col.l <- c(col.l, col[1]) pt.cex <- c(pt.cex, 1) pt.bg <- c(pt.bg, bg[1]) } legend(lpos, inset=.01, bg="white", pch=pch.l, col=col.l, pt.cex=pt.cex, pt.bg=pt.bg, legend=ltxt) } sav <- data.frame(x=xaxis.vals, y=yaxis.vals, slab=slab, stringsAsFactors=FALSE) invisible(sav) }
rm(list=ls()) library(tidyverse) library(curl) library(paletteer) library(extrafont) library(ragg) theme_custom <- function() { theme_classic() %+replace% theme(plot.title.position="plot", plot.caption.position="plot", strip.background=element_blank(), strip.text=element_text(face="bold", size=rel(1)), plot.title=element_text(face="bold", size=rel(1.5), hjust=0, margin=margin(0,0,5.5,0)), text=element_text(family="Lato")) } temp <- tempfile() url <- "https://api.coronavirus.data.gov.uk/v2/data?areaType=region&metric=vaccinationsAgeDemographics&format=csv" temp <- curl_download(url=url, destfile=temp, quiet=FALSE, mode="wb") data <- read.csv(temp) %>% select(areaName, date, age, cumVaccinationFirstDoseUptakeByVaccinationDatePercentage) %>% rename("uptake"="cumVaccinationFirstDoseUptakeByVaccinationDatePercentage") %>% filter(age=="12_15" & date>as.Date("2021-08-01")) %>% mutate(date=as.Date(date)) agg_tiff("Outputs/COVIDVaxUptake1215xReg.tiff", units="in", width=8, height=6, res=500) ggplot(data, aes(x=date, y=uptake/100, colour=areaName))+ geom_line()+ scale_x_date(name="")+ scale_y_continuous(name="First dose coverage", labels=label_percent(accuracy=1))+ scale_colour_paletteer_d("LaCroixColoR::paired", name="")+ theme_custom()+ labs(title="There is big regional variation in 12-15 COVID vaccination rates", subtitle="Vaccine uptake among 12-15 year-olds in England by region", caption="Data from coronavirus.data.gov.uk | Plot by @VictimOfMaths") dev.off()
sleep <- march.dataset.loadFromDataFrame(sleep_df, MARGIN = 2, weights = NA, missingDataRep = NA) sleep.5 <- march.dataset.loadFromDataFrame(sleep_df[,1:5], MARGIN = 2 , weights = NA, missingDataRep = NA) weighting <- rep(1.5,1000) weighting[501:1000] <- rep(0.5,500) sleep.w <- march.dataset.loadFromDataFrame(sleep_df, MARGIN = 2, weights = weighting, missingDataRep = NA) covariates.sex<-rbind(matrix(1,500,7),matrix(1,500,7)) covariates.age<-rbind(matrix(1,250,7), matrix(2,250,7), matrix(1,250,7), matrix(2,250,7)) covariates<-array(0,c(1000,7,2)) covariates[ , ,1]<-covariates.sex covariates[ , ,2]<-covariates.age sleep.covariates<-march.dataset.loadFromDataFrame(sleep_df,covariates=covariates)
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(scales) library(lubridate) library(stringr) library(ggrepel) library(zoo) library(lemon) library(Hmisc) library(readxl) library(tidyverse) folder_name <- "0175_absolute_price_movement" out_path <- paste0(exportdir, folder_name) dir.create(file.path(paste0(out_path)), showWarnings = FALSE) dow <- read_excel(paste0(importdir, "0172_daily_dow/Dow daily 2020.xlsx"), col_names = c("date", "index")) %>% mutate(date = as.Date(date), mt = month(date), yr = year(date)) %>% arrange(date) %>% mutate(prior_index =lag(index), ret = index/prior_index - 1) %>% drop_na() min_dates <- dow %>% group_by(yr, mt) %>% summarise(min_date = min(date)) %>% ungroup() %>% rename(date = min_date) %>% inner_join(dow) %>% rename(min_index = prior_index) %>% select(yr, mt, min_index) min_max <- dow %>% group_by(yr, mt) %>% summarise(max_date = max(date)) %>% ungroup() %>% rename(date = max_date) %>% inner_join(dow) %>% rename(max_index = index) %>% select(yr, mt, max_index) %>% left_join(min_dates) %>% mutate(mt_ret = max_index/min_index - 1) %>% arrange(mt_ret) summary <- dow %>% group_by(yr, mt) %>% summarise(abs_ret = sum(abs(ret), na.rm = TRUE), n_days = n(), avg_abs_ret = abs_ret/n_days) %>% ungroup() %>% arrange(-abs_ret) to_plot <- summary %>% mutate(date = as.Date( paste0( yr, "-", mt, "-01" ) )) excel_out <- to_plot %>% arrange(date) %>% select(date, avg_abs_ret) export_to_excel(excel_out, outfile = paste0(out_path, "/avg_abs_monthly_change_dow.xlsx"), sheetname = "dow_avg_month", new_file = 1, fancy_formatting = 0) mean_ret <- mean(summary$abs_ret) source_string <- str_wrap("Source: Bloomberg (OfDollarsAndData.com)", width = 85) note_string <- str_wrap(paste0("Note: Dow price data does not include dividends. ", "The average cumulative absolute percentage change in a given month is ", round(100*mean_ret, 1), "%."), width = 85) file_path <- paste0(out_path, "/dow_abs_ret_by_month.jpeg") plot <- ggplot(to_plot, aes(x=date, y=abs_ret)) + geom_bar(stat = "identity", width = 31) + scale_y_continuous(label = percent_format(accuracy = 1)) + of_dollars_and_data_theme + ggtitle(paste0("Dow Cumulative Absolute Percentage Change\nby Month")) + labs(x = "Date" , y = "Cumulative Absolute Percentage Change", caption = paste0("\n", source_string, "\n", note_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- dow %>% filter(yr == 2020, mt == 3) file_path <- paste0(out_path, "/dow_2020_03_breaks.jpeg") note_string <- str_wrap(paste0("Note: Dow price data does not include dividends. "), width = 85) plot <- ggplot(to_plot, aes(x=date, y=ret)) + geom_bar(stat = "identity", width = 1, fill = chart_standard_color) + scale_y_continuous(label = percent_format(accuracy = 1), limits = c(-0.15, 0.15), breaks = seq(-0.15, 0.15, 0.05)) + of_dollars_and_data_theme + ggtitle(paste0("Dow Daily Percentage Change\nMarch 2020")) + labs(x = "Date" , y = "Daily Percentage Change", caption = paste0("\n", source_string, "\n", note_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") jan_2020 <- dow %>% filter(yr == 2020, mt == 1) %>% mutate(label = "Jan 2020") to_plot <- to_plot %>% mutate(label = "Mar 2020") %>% bind_rows(jan_2020) file_path <- paste0(out_path, "/dow_2020_01_compare.jpeg") note_string <- str_wrap(paste0("Note: Dow price data does not include dividends. "), width = 85) plot <- ggplot(to_plot, aes(x=date, y=ret)) + geom_bar(stat = "identity", width = 1, fill = chart_standard_color) + facet_rep_wrap(label ~ ., scales = "free_x", repeat.tick.labels = c("left", "bottom")) + scale_y_continuous(label = percent_format(accuracy = 1), limits = c(-0.15, 0.15), breaks = seq(-0.15, 0.15, 0.05)) + of_dollars_and_data_theme + ggtitle(paste0("Dow Daily Percentage Change")) + labs(x = "Date" , y = "Daily Percentage Change", caption = paste0("\n", source_string, "\n", note_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm")
context("niche overlap and species fitness functions") data("neigh_list") data <- neigh_list for(i in 1:length(data)){ data[[i]] <- data[[i]][,2:length(data[[i]])] } focal_column <- names(data) data("salinity_list") salinity <- salinity_list for(i in 1:length(salinity)){ salinity[[i]] <- as.matrix(salinity[[i]][,2:length(salinity[[i]])]) colnames(salinity[[i]]) <- "salinity" } model_families <- c("BH","LV","RK","LW") covariates <- salinity optimization_method <- "nlminb" alpha_form <- "pairwise" lambda_cov_form <- "none" alpha_cov_form <- "none" initial_values = list(lambda = 1, alpha_intra = 0.1, alpha_inter = 0.1, lambda_cov = 0.1, alpha_cov = 0.1) lower_bounds = list(lambda = 0, alpha_intra = 0.01, alpha_inter = 0, lambda_cov = -1, alpha_cov = -1) upper_bounds = list(lambda = 100, alpha_intra = 1, alpha_inter = 1, lambda_cov = 1, alpha_cov = 1) initial_values_er = list(lambda = 1,effect = 0.01,response = 0.01) lower_bounds_er = list(lambda = 0,effect = 0,response = 0) upper_bounds_er = list(lambda = 100,effect = 1,response = 1) fixed_terms <- NULL bootstrap_samples <- 3 sp1.fit <- cxr::cxr_pm_fit(data = data[[1]], focal_column = focal_column[1], model_family = model_families[1], covariates = covariates[[1]], optimization_method = optimization_method, alpha_form = alpha_form, lambda_cov_form = lambda_cov_form, alpha_cov_form = alpha_cov_form, initial_values = initial_values, lower_bounds = lower_bounds, upper_bounds = upper_bounds, fixed_terms = fixed_terms, bootstrap_samples = bootstrap_samples) sp2.fit <- cxr::cxr_pm_fit(data = data[[2]], focal_column = focal_column[2], model_family = model_families[1], covariates = covariates[[2]], optimization_method = optimization_method, alpha_form = alpha_form, lambda_cov_form = lambda_cov_form, alpha_cov_form = alpha_cov_form, initial_values = initial_values, lower_bounds = lower_bounds, upper_bounds = upper_bounds, fixed_terms = fixed_terms, bootstrap_samples = bootstrap_samples) cxr_multifit <- cxr_pm_multifit(data = data, model_family = model_families[1], focal_column = focal_column, covariates = covariates, optimization_method = optimization_method, alpha_form = alpha_form, lambda_cov_form = lambda_cov_form, alpha_cov_form = alpha_cov_form, initial_values = initial_values, lower_bounds = lower_bounds, upper_bounds = upper_bounds, fixed_terms = fixed_terms, bootstrap_samples = bootstrap_samples) posmatrix <- matrix(c(runif(1,0.5,1),runif(2,0,0.5),runif(1,0.5,1)),nrow = 2) poslambdas <- runif(2,1,10) model_family <- "BH" test_that("niche overlaps are correctly calculated", { expect_s3_class(niche_overlap(cxr_multifit = cxr_multifit),"data.frame") expect_length(niche_overlap(cxr_sp1 = sp1.fit,cxr_sp2 = sp2.fit),2) expect_length(niche_overlap(pair_matrix = posmatrix),2) }) test_that("average fitness differenes are correctly calculated", { expect_s3_class(avg_fitness_diff(cxr_multifit = cxr_multifit),"data.frame") expect_s3_class(avg_fitness_diff(cxr_sp1 = sp1.fit, cxr_sp2 = sp2.fit),"data.frame") expect_s3_class(avg_fitness_diff(pair_lambdas = poslambdas, pair_matrix = posmatrix, model_family = model_family),"data.frame") }) test_that("competitive ability is correctly calculated", { expect_s3_class(competitive_ability(cxr_multifit = cxr_multifit),"data.frame") expect_s3_class(competitive_ability(cxr_sp1 = sp1.fit, cxr_sp2 = sp2.fit),"data.frame") expect_s3_class(competitive_ability(lambda = poslambdas[1], pair_matrix = posmatrix, model_family = model_family),"data.frame") }) data("neigh_list") example_sp <- c(1,5,6) n.obs <- 250 data <- neigh_list[example_sp] optimization_method <- "nlminb" fixed_terms <- NULL model_families <- c("BH","LV","RK","LW") bootstrap_samples <- 0 for(i in 1:length(data)){ data[[i]] <- data[[i]][1:n.obs,c(2,example_sp+2)] } initial_values_er = list(lambda = 1, effect = 1, response = 1) lower_bounds_er = list(lambda = 0, effect = 0, response = 0) upper_bounds_er = list(lambda = 100, effect = 10, response = 10) iv_LV <- list(lambda = 1, effect = 0, response = 0) lb_LV = list(lambda = 0, effect = -1, response = -1) ub_LV = list(lambda = 100, effect = 1, response = 1) test_that("species fitness are correctly calculated", { skip_on_cran() for(i.model in 1:length(model_families)){ if(model_families[i.model] == "LV"){ iv <- iv_LV lb <- lb_LV ub <- ub_LV }else{ iv <- initial_values_er lb <- lower_bounds_er ub <- upper_bounds_er } er.fit <- cxr::cxr_er_fit(data = data, model_family = model_families[i.model], optimization_method = optimization_method, initial_values = iv, lower_bounds = lb, upper_bounds = ub, fixed_terms = fixed_terms, bootstrap_samples = bootstrap_samples) spfitness <- cxr::species_fitness(er.fit) expect_length(spfitness,length(data)) } })
library(uwot) context("PCA") iris10prcomp <- prcomp(iris10, retx = TRUE, center = TRUE, scale. = FALSE) test_that("PCA initialization", { iris10_pca_scores <- pca_init(iris10, ndim = 2) suppressWarnings(iris10_irlba_scores <- irlba_scores(iris10, ncol = 2)) expect_equal(abs(iris10prcomp$x[, 1:2]), abs(iris10_pca_scores), check.attributes = FALSE ) expect_equal(abs(iris10prcomp$x[, 1:2]), abs(iris10_irlba_scores), check.attributes = FALSE ) suppressWarnings(iris10_svdr_scores <- irlba_svdr_scores(iris10, ncol = 2)) expect_equal(abs(iris10prcomp$x[, 1:2]), abs(iris10_svdr_scores), check.attributes = FALSE ) }) test_that("1 component initialization works", { expect_ok_matrix(pca_init(iris10, ndim = 1), nc = 1) }) test_that("PCA returns model data", { iris10_pca_scores <- pca_init(iris10, ndim = 2, ret_extra = TRUE) expect_equal(abs(iris10prcomp$x[, 1:2]), abs(iris10_pca_scores$scores), check.attributes = FALSE ) expect_equal(abs(iris10prcomp$rotation[, 1:2]), abs(iris10_pca_scores$rotation), check.attributes = FALSE ) expect_equal(abs(iris10prcomp$center), abs(iris10_pca_scores$center), check.attributes = FALSE ) suppressWarnings(iris10_irlba_scores <- irlba_scores(iris10, ncol = 2, ret_extra = TRUE )) expect_equal(abs(iris10prcomp$x[, 1:2]), abs(iris10_irlba_scores$scores), check.attributes = FALSE ) expect_equal(abs(iris10prcomp$rotation[, 1:2]), abs(iris10_irlba_scores$rotation), check.attributes = FALSE ) expect_equal(abs(iris10prcomp$center), abs(iris10_irlba_scores$center), check.attributes = FALSE ) })
pimplot <- function(data = NULL, results, outcome, incl.tt=NULL, ttrows= c(), necessity=FALSE, sol=1, all_labels=FALSE, markers = TRUE, labcol="black", jitter = FALSE, font = "sans", fontface = "italic", fontsize = 3, crisp = FALSE, consH = FALSE, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) if (!necessity){ data <- results$tt$initial.data if (is.null(incl.tt)) { if (length(ttrows)>0){ oldtt <- results$tt$tt newtt <- oldtt[ttrows, ] P <- as.data.frame(results$tt$minmat) P <- P[colnames(P)%in%rownames(newtt)] if (results$options$neg.out | length(grep("~",results$call$outcome)) > 0) { neg.out = TRUE P$out <- results$tt$recoded.data[,outcome] } else { neg.out = FALSE P$out <- results$tt$recoded.data[,outcome] } n_c <- ncol(P)-1 par(ask=F) aux.plot <- function(i) { if (all_labels) {fil <- rownames(P)} else {fil <- rownames(P) fil[with(P, !(P[i] > 0.5))] <- ""} if (!neg.out){ xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=paste("Row ", colnames(P)[i]), ylab=outcome, main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} else {xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=paste("Row ", colnames(P)[i]), ylab=paste("~",outcome), main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} } for (i in 1:n_c) { print(aux.plot(i)) } } else { P <- pimdata(results=results, outcome=outcome, sol=sol) n_c <- ncol(P)-1 par(ask=F) if (results$options$neg.out | length(grep("~",results$call$outcome)) > 0) { neg.out = TRUE } else { neg.out = FALSE } aux.plot <- function(i) { if (all_labels) {fil <- rownames(P)} else { fil <- rownames(P) fil[with(P, !(P[i] > 0.5))] <- "" if (i==n_c) { fil <- rownames(P) fil[with(P, !(P[i] < 0.5))] <- "" }} if (!neg.out){ xy.plot(P[,i, drop=FALSE], "out", data = P, xlab=colnames(P[i]), ylab=outcome, main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} else {xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=colnames(P)[i], ylab=paste("~",outcome), main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} } for (i in 1:n_c) { print(aux.plot(i)) }}} else { oldtt <- results$tt$tt suppressWarnings(oldtt$incl <- as.numeric(oldtt$incl)) if (length(incl.tt)>1) {paste("You introduced more than one inclusion cut for Truth Table rows. Please introduce only one!")} else { newtt <- oldtt[ which(oldtt$incl>incl.tt), ] P <- as.data.frame(results$tt$minmat) P <- P[colnames(P)%in%rownames(newtt)] if (results$options$neg.out | length(grep("~",results$call$outcome)) > 0) { neg.out = TRUE P$out <- results$tt$recoded.data[,outcome] } else { neg.out = FALSE P$out <- results$tt$recoded.data[,outcome] } n_c <- ncol(P)-1 par(ask=F) aux.plot <- function(i) { if (all_labels) {fil <- rownames(P)} else {fil <- rownames(P) fil[with(P, !(P[i] > 0.5))] <- ""} if (!neg.out){ xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=paste("Row ", colnames(P)[i]), ylab=outcome, main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} else {xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=paste("Row ", colnames(P)[i]), ylab=paste("~",outcome), main="Sufficiency Plot", labcol=labcol, jitter = jitter, consH = consH, font = font, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out < 0.5 & P[,i, drop=FALSE]>0.5), 9, 19)})} } for (i in 1:n_c) { print(aux.plot(i)) }} } } else { if (is.null(data)) stop ("For analyses of necessity you need to provide the name of the dataframe!") P <- results$coms if (results$options$neg.out) { neg.out = TRUE P$out <- 1-data[, outcome] } else { neg.out = FALSE P$out <- data[, outcome] } n_c <- ncol(P)-1 par(ask=F) aux.plot <- function(i) { if (all_labels) {fil <- rownames(P)} else {fil <- rownames(P) fil[with(P, !(P[,'out'] > 0.5))] <- ""} if (!neg.out){ xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=colnames(P)[i], ylab=outcome, necessity = TRUE, main="Necessity Plot", labcol=labcol, jitter = jitter, font = font, consH = consH, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out > 0.5 & P[,i, drop=FALSE]<0.5), 9, 19)}) } else {xy.plot(P[,i, drop=FALSE], 'out', data = P, xlab=colnames(P)[i], ylab=paste("~",outcome), necessity = TRUE, main="Necessity Plot", labcol=labcol, jitter = jitter, font = font, consH = consH, fontface = fontface, fontsize = fontsize, labs = fil, crisp = crisp, shape = if (markers == FALSE){19} else{ifelse((P$out > 0.5 & P[,i, drop=FALSE]<0.5), 9, 19)})} } for (i in 1:n_c) { print(aux.plot(i)) } } }
p.det <- function(dpformula, dplink, dppars, dpdata){ fm <- dpformula modframe <- model.frame(fm, data=dpdata, drop.unused.levels=FALSE) dat <- model.matrix(fm, data=modframe) offsetval <- model.offset(modframe) if (length(dppars)>1){ lpred <- dat %*% dppars }else{ lpred <- dat * dppars } if(!is.null(offsetval)){ lpred <- lpred+offsetval } p <- switch(dplink, loglog = exp(-exp(lpred)), cloglog = 1-exp(-exp(lpred)), logit = exp(lpred)/(1+exp(lpred)) ) return(as.vector(p)) }
X <- allSitePattern(5) tree <- read.tree(text = "((t1:0.3,t2:0.3):0.1,(t3:0.3,t4:0.3):0.1,t5:0.5);") tree2 <- read.tree(text = "((t1:0.3,t3:0.3):0.1,(t2:0.3,t4:0.3):0.1,t5:0.5);") fit0 <- pml(tree, X, k=4) fit1 <- update(fit0, rate=.5) fit2 <- update(fit0, rate=2) weights0 <- 1000*exp(fit0$siteLik) weights1 <- 1000*exp(fit1$siteLik) weights2 <- 1000*exp(fit2$siteLik) W <- cbind(weights0, weights1, weights2) colnames(W) <- c("g1", "g2", "g3") sp <- pmlPart(edge ~ rate, fit0, weight=W, control = pml.control(trace=0)) expect_equal( sp$fits[[1]]$rate / sp$fits[[2]]$rate , 2, tolerance = 1e-5) expect_equal( sp$fits[[1]]$rate / sp$fits[[3]]$rate , 0.5, tolerance = 1e-5) Q <- c(6:1) fit0 <- pml(tree, X, k=4) fit1 <- pml(tree, X, k=4, Q=Q) weights1 <- 1000*exp(fit1$siteLik) Y <- X attr(Y, "weight") <- weights1 fit1 <- pml(tree, Y, k=4, Q=Q) weights0 <- weights1 weights2 <- weights1 W <- cbind(weights0, weights1, weights2) colnames(W) <- c("g1", "g2", "g3") sp <- pmlPart(edge + Q ~ ., fit0, weight=W, control = pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(Q, sp$fits[[1]]$Q, tolerance=5e-4) sp <- pmlPart( ~ Q, fit0, weight=W, control = pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(Q, sp$fits[[1]]$Q, tolerance=5e-4) bf <- (1:4)/10 fit0 <- pml(tree, X, k=4) fit1 <- pml(tree, X, k=4, bf=bf) weights1 <- 1000*exp(fit1$siteLik) Y <- X attr(Y, "weight") <- weights1 fit1 <- pml(tree, Y, k=4, bf=bf) weights0 <- weights1 weights2 <- weights1 W <- cbind(weights0, weights1, weights2) colnames(W) <- c("g1", "g2", "g3") sp <- pmlPart(edge + bf ~ ., fit0, weight=W, control = pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(bf, sp$fits[[1]]$bf, tolerance=5e-4) sp <- pmlPart( ~ bf, fit0, weight=W, control = pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(bf, sp$fits[[1]]$bf, tolerance=5e-4) shape <- 2 fit0 <- pml(tree, X, k=4) fit1 <- pml(tree, X, k=4, shape=shape) weights1 <- 1000*exp(fit1$siteLik) Y <- X attr(Y, "weight") <- weights1 fit1 <- pml(tree, Y, k=4, shape=shape) weights0 <- weights1 weights2 <- weights1 W <- cbind(weights0, weights1, weights2) colnames(W) <- c("g1", "g2", "g3") sp <- pmlPart(edge + shape ~ ., fit0, weight=W, control=pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(shape, sp$fits[[1]]$shape, tolerance=5e-3) sp <- pmlPart( ~ shape, fit0, weight=W, control=pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(shape, sp$fits[[1]]$shape, tolerance=5e-4) inv <- .2 fit0 <- pml(tree, X, k=4) fit1 <- pml(tree, X, k=4, inv=inv) weights1 <- 1000*exp(fit1$siteLik) Y <- X attr(Y, "weight") <- weights1 fit1 <- pml(tree, Y, k=4, inv=inv) weights0 <- weights1 weights2 <- weights1 W <- cbind(weights0, weights1, weights2) colnames(W) <- c("g1", "g2", "g3") sp <- pmlPart(edge + inv ~ ., fit0, weight=W, control=pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(inv, sp$fits[[1]]$inv, tolerance=5e-5) sp <- pmlPart( ~ inv, fit0, weight=W, control = pml.control(trace=0)) expect_equal(logLik(sp)[1], logLik(fit1)[1]*3, tolerance=5e-4 ) expect_equal(inv, sp$fits[[1]]$inv, tolerance=5e-5) Z <- X fit0 <- pml(tree, X, k=4) weights0 <- 1000*exp(fit0$siteLik) weights1 <- 1000*exp(update(fit0, rate=.5)$siteLik) weights2 <- 1000*exp(update(fit0, tree=tree2)$siteLik) attr(Z, "weight") <- weights0 + weights1 + weights2 W <- cbind(weights0, weights1, weights2) fit_Z <- update(fit0, data=Z) fit_Z <- optim.pml(fit_Z, model="GTR", rearrangement="NNI", optGamma=TRUE, optInv=TRUE, control=pml.control(trace=0)) sp <- pmlPart(edge + bf + Q + shape + inv + nni ~ ., fit_Z, weight=W, control = pml.control(trace=0)) expect_equal(sp$logLik[[1]], fit_Z$logLik, tolerance = 1e-5)
date_Input <- function(inputId, label, hint_label = NULL, error = FALSE, error_message = NULL, day = NULL, month = NULL, year = NULL){ value <- shiny::restoreInput(id = inputId, default = FALSE) govDate <- shiny::tags$div(class="govuk-form-group", id=paste0(inputId,"div"), shiny::tags$fieldset(class="govuk-fieldset", shiny::tags$label(shiny::HTML(label), class="govuk-label"), if (error == TRUE){ shinyjs::hidden( shiny::tags$span( error_message, id = paste0(inputId,"error"), class = "govuk-error-message", shiny::tags$span("Error:", class = "govuk-visually-hidden") ) ) }, shiny::tags$span(hint_label, class="govuk-hint"), shiny::tags$div(class="govuk-date-input", id = inputId, shiny::tags$div(class="govuk-date-input__item", shiny::tags$div(class="govuk-form-group", shiny::tags$label( "Day", class="govuk-label govuk-date-input__label"), shiny::tags$input( class=paste("govuk-input govuk-date-input__input", " govuk-input--width-2"), id=paste0(inputId,"_day"), name=inputId, type="number", pattern="[0-9]*", value = day) ) ), shiny::tags$div(class="govuk-date-input__item", shiny::tags$div(class="govuk-form-group", shiny::tags$label( "Month", class="govuk-label govuk-date-input__label"), shiny::tags$input(class=paste("govuk-input govuk-date-input__input", "govuk-input--width-2"), id=paste0(inputId,"_month"), name=inputId, type="number", pattern="[0-9]*", value = month) ) ), shiny::tags$div(class="govuk-date-input__item", shiny::tags$div(class="govuk-form-group", shiny::tags$label( "Year", class="govuk-label govuk-date-input__label"), shiny::tags$input(class=paste("govuk-input govuk-date-input__input", "govuk-input--width-4"), id=paste0(inputId,"_year"), name=inputId, type="number", pattern="[0-9]*", value = year) ) ) ) ) ) attachDependency(govDate, "date") }
`tukey.test` <- function(data, alpha=0.05, critical.value=NA) { a<-nrow(data) b<-ncol(data) d.f1=1 d.f2=(a-1)*(b-1)-1 if (is.na(critical.value)) critical.value=qf(1-alpha,df1=d.f1,df2=d.f2) yMEAN<-mean(data) A.hat<-apply(data,1,mean)-yMEAN B.hat<-apply(data,2,mean)-yMEAN ss.col<-a*sum(B.hat^2) ss.row<-b*sum(A.hat^2) ss.tukey<-((sum(A.hat*(data%*%B.hat)/(ss.col/a)))^2)/(ss.row/b)*(ss.col/a) test.stat=ss.tukey*((a-1)*(b-1)-1)/(sum(apply(data^2,1,sum))-a*b*yMEAN^2-ss.row-ss.col-ss.tukey) out<-list(result=test.stat>critical.value,stat=test.stat,critical.value=critical.value,alpha=alpha,name="Tukey test") class(out)<-"aTest" return(out) }
stepFit <- function(y, q = NULL, alpha = NULL, x = 1:length(y), x0 = 2 * x[1] - x[2], family = NULL, intervalSystem = NULL, lengths = NULL, confband = FALSE, jumpint = confband, ...) { if (missing(y)) { stop("argument 'y' must be given") } .RemoveAdditionalArgsPF <- function(family, y, n, ..., penalty, alpha, stat, r, weights, options, seed, rand.gen, messages) .parametricFamily(family = family, y = y, n = n, ...) data <- .RemoveAdditionalArgsPF(family = family, y = y, n = length(y), ...) intervalSystem <- .intervalSystem(intervalSystem = intervalSystem, lengths = lengths, data = data) if (length(x) != data$n) { stop("x and y must have the same length") } if (!is.numeric(x) || !all(is.finite(x))) { stop("x must be a finite numeric vector") } if (any(x[-1] - x[-data$n] <= 0)) { stop("x must be an increasing sequence") } if (!is.numeric(x0) || length(x0) != 1 || !is.finite(x0) || x0 >= x[1]) { stop("x0 must be a single finite numeric smaller than x[1]") } .RemoveAdditionalArgsCV <- function(q, alpha, data, output, intervalSystem, ..., nq, sd, covariances, correlations, filter) .critVal(q = q, alpha = alpha, data = data, output = output, intervalSystem = intervalSystem, ...) q <- .RemoveAdditionalArgsCV(q = q, alpha = alpha, data = data, output = "vector", intervalSystem = intervalSystem, ...) criticalValues <- rep(Inf, data$n) criticalValues[intervalSystem$lengths] <- q if (length(confband) != 1 || !is.logical(confband) || is.na(confband)) { stop("confband must be a single logical (not NA)") } if (length(jumpint) != 1 || !is.logical(jumpint) || is.na(jumpint)) { stop("jumpint must be a single logical (not NA)") } if (confband) { jumpint <- TRUE ret <- .callRoutines(observations = data$y, routineType = 5L, argumentsListRoutine = list(q = criticalValues), dataType = data$type, argumentsListData = data$argumentsList, intervalSystemType = intervalSystem$type, argumentsListIntervalSystem = intervalSystem$argumentsList) } else { if (jumpint) { ret <- .callRoutines(observations = data$y, routineType = 4L, argumentsListRoutine = list(q = criticalValues), dataType = data$type, argumentsListData = data$argumentsList, intervalSystemType = intervalSystem$type, argumentsListIntervalSystem = intervalSystem$argumentsList) } else { if (intervalSystem$type < 10L) { ret <- .callRoutines(observations = data$y, routineType = 3L, argumentsListRoutine = list(q = criticalValues), dataType = data$type, argumentsListData = data$argumentsList, intervalSystemType = intervalSystem$type, argumentsListIntervalSystem = intervalSystem$argumentsList) } else { ret <- .callRoutines(observations = data$y, routineType = 4L, argumentsListRoutine = list(q = criticalValues), dataType = data$type, argumentsListData = data$argumentsList, intervalSystemType = intervalSystem$type, argumentsListIntervalSystem = intervalSystem$argumentsList) } } } fit <- stepfit(cost = attr(ret, "cost"), family = data$family, value = ret$value, param = data$argumentsListData, x0 = x0, leftEnd = x[ret$leftIndex], rightEnd = x[ret$rightIndex], leftIndex = ret$leftIndex, rightIndex = ret$rightIndex) if (jumpint) { fit$leftEndLeftBound <- x[c(1L, ret$leftConfInt)] fit$leftEndRightBound <- x[c(1L, ret$rightConfInt)] fit$rightEndLeftBound <- x[c(ret$leftConfInt - 1L, data$n)] fit$rightEndRightBound <- x[c(ret$rightConfInt - 1L, data$n)] fit$leftIndexLeftBound <- c(1L, ret$leftConfInt) fit$leftIndexRightBound <- c(1L, ret$rightConfInt) fit$rightIndexLeftBound <- c(ret$leftConfInt - 1L, data$n) fit$rightIndexRightBound <- c(ret$rightConfInt - 1L, data$n) } if (confband) { band <- data.frame(x = x, lower = ret$lowerBand, upper = ret$upperBand) attr(band, "x0") <- x0 class(band) <- c("confband", class(band)) attr(fit, "confband") <- band } fit } "stepfit" <- function(cost, family, value, param = NULL, leftEnd, rightEnd, x0, leftIndex = leftEnd, rightIndex = rightEnd) { ret <- stepblock(value, leftEnd, rightEnd, x0) ret$leftIndex <- leftIndex ret$rightIndex <- rightIndex attr(ret, "cost") <- cost attr(ret, "family") <- family attr(ret, "param") <- param class(ret) <- c("stepfit", class(ret)) ret } "print.stepfit" <- function(x, ...) { cat("\n") cat("Fitted step function of family", attr(x, "family"), "containing", nrow(x), "blocks\n\n") cat("domain: (", attr(x, "x0"), ",", x$rightEnd[nrow(x)], "]\n") cat("range: [", min(x$value), ",", max(x$value), "]\n") cat("cost:", attr(x, "cost"), "\n") if(!is.null(attr(x, "param"))) { cat("parameter:\n") print(attr(x, "param")) } cat("\n") } "[.stepfit" <- function (x, i, j, drop = if(missing(i)) TRUE else if(missing(j)) FALSE else length(j) == 1, refit = FALSE) { ret <- NextMethod("[.") if(!identical(refit, FALSE)) { if(missing(i)) i <- 1:nrow(x) ret$value <- switch(attr(x, "family"), gauss = diff(c(0, ret$cumSum)) / diff(c(attr(ret, "x0"), ret$rightIndex)), gaussKern = if(nrow(ret) == 1 ) diff(c(0, ret$cumSum)) / diff(c(attr(ret, "x0"), ret$rightIndex)) else { param <- attr(x, "param") r <- ret$rightIndex ir <- r[-length(r)] n <- r[length(r)] kl <- length(param$kern) kj <- param$jump s <- param$step d <- c(ir - kj, n) - c(0, ir + kl - kj) + c(rep(sum((1 - s)^2), length(r) - 1), 0) + c(0, rep(sum(s^2), length(r) - 1)) ld <- length(d) sd <- sum( s * ( 1 - s ) ) XX <- diag(d) XX[cbind(1:(ld-1), 2:ld)] <- sd XX[cbind(2:ld, 1:(ld-1))] <- sd dif <- diff(c(0, ret$rightIndex)) close <- min(dif) <= kl Xy <- c(0, ret$lXy[-nrow(ret)]) + ret$rcXy - c(0, ret$lcXy[-nrow(ret)]) + ret$rXy if(identical(refit, TRUE) | !close) { if(close) warning("jumps closer than filter length") } else { ss <- c(0, s, 1) revss <- c(1, rev(s), 0) for(i in which(dif < kl)) { if(i > 1 & i < n) { neigh <- which(r + kj > r[i-1] & c(0, ir) <= r[i] + kl - kj ) neighn <- length(neigh) neighi <- max(r[neigh[1]] - kj + 1, 1):min(r[neigh[neighn] - 1] + kl - kj, n) tX <- outer(1:neighn, neighi, function(k,ind) { revss[pmin(pmax(c(0,r)[neigh[k]] + kl - kj + 1 - ind, 0), kl + 1) + 1] - ss[pmin(pmax(ind + kj - r[neigh[k]], 0), kl + 1) + 1] }) iXX <- tX %*% t(tX) XX[neigh[neigh <= i],neigh[neigh >= i]] <- iXX[which(neigh <= i),which(neigh >= i)] XX[neigh[neigh >= i],neigh[neigh <= i]] <- iXX[which(neigh >= i),which(neigh <= i)] Xy[i] <- tX[which(neigh == i),] %*% refit[neighi] } } } ret$value <- as.numeric(solve(XX, Xy)) }, poisson = diff(c(0, ret$cumSum)) / diff(c(attr(ret, "x0"), ret$rightIndex)), binomial = diff(c(0, ret$cumSum)) / diff(c(attr(ret, "x0"), ret$rightIndex)) / attr(ret, "param") ) class(ret) <- class(x) } ret } "plot.stepfit" <- function(x, dataspace = TRUE, ...) { if(attr(x, "family") == "binomial" && dataspace) { x$value <- x$value * attr(x, "param") } NextMethod() } "lines.stepfit" <- function(x, dataspace = TRUE, ...) { if(attr(x, "family") == "binomial" && dataspace) { x$value <- x$value * attr(x, "param") } NextMethod() } "fitted.stepfit" <- function(object, ...) { if(attr(object, "family") == "gaussKern" && nrow(object) > 1) { k <- attr(object, "param")$kern l <- length(k) j <- attr(object, "param")$jump ret <- rep(object$value, object$rightIndex - object$leftIndex + 1 + c(l - j - 1, rep(0, length(object$rightIndex) - 2), j)) convolve(ret, rev(k), conj = TRUE, type = "filter") } else if(attr(object, "family") == "binomial") { rep(object$value * attr(object, "param"), object$rightIndex - object$leftIndex + 1) } else { rep(object$value, object$rightIndex - object$leftIndex + 1) } } "residuals.stepfit" <- function(object, y, ...) { fit <- fitted(object) if(length(fit) != length(y)) stop("data and fit differ in length") switch(attr(object, "family"), binomial = { y - attr(object, "param") * fit }, gaussvar = { ifelse(fit == 0, ifelse(y^2 == 0, 0, Inf), log(y^2 / fit)) }, { y - fit } ) } "logLik.stepfit" <- function(object, df = NULL, nobs = object$rightIndex[nrow(object)], ...) { family <- switch(attr(object, "family"), gaussKern = "gauss", attr(object, "family") ) ret <- switch(family, gauss = { if(is.null(df)) df <- nrow(object) + 1 -nobs / 2 * (1 + log(2 * pi * attr(object, "cost") / nobs)) }, { if(is.null(df)) df <- nrow(object) attr(object, "cost") } ) attr(ret, "df") <- df attr(ret, "nobs") <- nobs class(ret) <- "logLik" ret }
test_that("adminlte_vars works", { vars <- adminlte_vars("light-blue" = " expect_is(vars, "list") expect_is(vars, "fresh_sass_vars") expect_is(vars, "adminlte_vars") expect_length(vars, 2) }) test_that("adminlte_color works", { vars <- adminlte_color(light_blue = " expect_is(vars, "list") expect_is(vars, "fresh_sass_vars") expect_is(vars, "adminlte_vars") expect_length(vars, 2) }) test_that("adminlte_sidebar works", { vars <- adminlte_sidebar(width = "400px", dark_bg = " expect_is(vars, "list") expect_is(vars, "fresh_sass_vars") expect_is(vars, "adminlte_vars") expect_length(vars, 2) }) test_that("adminlte_global works", { vars <- adminlte_global(content_bg = " expect_is(vars, "list") expect_is(vars, "fresh_sass_vars") expect_is(vars, "adminlte_vars") expect_length(vars, 1) })
if (require("testthat") && require("sjmisc") && require("haven")) { data(efc) x <- labelled( c(1:3, tagged_na("a", "z"), 4:1), c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"), "Not home" = tagged_na("z")) ) test_that("replace_na", { expect_true(sum(is.na(replace_na(efc$e42dep, value = 99))) == 0) }) test_that("replace_na", { expect_true(sum(is.na(replace_na(x, value = 99))) == 0) expect_true(sum(is.na(replace_na(x, value = 99, tagged.na = "a"))) == 1) expect_equal(names(attr(replace_na(x, value = 99, tagged.na = "a", na.label = "test"), "labels") == 99)[3], "test") }) }
knitr::opts_chunk$set(tidy = FALSE, message = FALSE) library(ggplot2) library(tidydr) library(tidydr) x <- dr(data = iris[,1:4], fun = prcomp) library(ggplot2) ggplot(x, aes(Dim1, Dim2), metadata=iris$Species) + geom_point(aes(color=.group)) autoplot(x, aes(color=Species), metadata = iris[, 5, drop=FALSE]) + theme_dr()
cloneRoot <- function(obj, verbose=FALSE) { data <- "NULL" mapping_str <- "aes()" if (!is.null(obj$data)) { data <- paste(utils::capture.output(dput(obj$data)), collapse = "\n") } if (!is.null(obj$mapping)) { mapping <- sapply(obj$mapping,rlang::quo_name) mapping_str <- sprintf("aes(%s)", paste0(sapply(names(mapping), function(y) paste(y, mapping[[y]], sep = "=")), collapse = ",")) } strout <- sprintf("ggplot(mapping=%s,data=%s)", mapping_str, data) if (verbose) { strout } else { eval(parse(text = strout)) } }
NULL flux.dome.graph3D <- function(A_fun,Etot_fun,add.reg=FALSE,B_fun=NULL, E_ini_fun=NULL,X_fun=1,marge_section=0.1,marge_top.dome=0.5) { n_poss <- 3 n_fun <- length(A_fun) correl_fun <- name.correl(TRUE,add.reg,B_fun) E_ini_fun <- E_ini_fun*Etot_fun/sum(E_ini_fun) if (n_fun!=n_poss) { stop("Available only for 3 enzymes.") } if (correl_fun!="Comp"&correl_fun!="CRPos"&correl_fun!="CRNeg") { stop("Flux dome exists only in case of competition.") } is.B.accurate(B_fun,n_fun,correl_fun) if (length(E_ini_fun)==0&correl_fun!="Comp") { stop("In case of regulation, initial point 'E_ini_fun' is needed.") } if (length(E_ini_fun)!=n_fun&correl_fun!="Comp") { stop("E_ini_fun and A_fun need to have the same length.") } max_max_e <- predict_th(A_fun,"Comp")$pred_e max_max_J <- flux(max_max_e*Etot_fun,A_fun,X_fun) if (correl_fun=="CRPos"|correl_fun=="CRNeg") { e0 <- E_ini_fun/sum(E_ini_fun) J0 <- flux(E_ini_fun,A_fun,X_fun) eq_th <- predict_th(A_fun,correl_fun,B_fun) J_th <- flux(eq_th$pred_e*Etot_fun,A_fun,X_fun) eq_eff <- predict_eff(E_ini_fun,B_fun,A_fun,correl_fun) J_eff <- flux(eq_eff$pred_E,A_fun,X_fun) borne_tau <- range_tau(E_ini_fun,B_fun) tau <- seq(min(borne_tau)+0.0001,max(borne_tau)-0.0001,by=0.01) E_test_ens <- t(sapply(tau,droite_E.CR,E_ini_fun,B_fun)) e_test <- E_test_ens/sum(E_ini_fun) J_test <- apply(E_test_ens,1,flux,A_fun,X_fun) } sph.radius <- 0.0125*(max_max_J*0.9) e_seq <- seq(0,1,by=0.01) J_dome <- matrix(nrow=length(e_seq),ncol=length(e_seq)) for (x1 in 1:length(e_seq)) { for (x2 in 1:length(e_seq)) { if ((1-e_seq[x1]-e_seq[x2])>=0) { E_vec <- c(e_seq[x1]*Etot_fun,e_seq[x2]*Etot_fun,(1-e_seq[x1]-e_seq[x2])*Etot_fun) J_dome[x1,x2] <- flux(E_vec,A_fun,X_fun) } else { J_dome[x1,x2] <- 0 } } } if (correl_fun=="CRPos"|correl_fun=="CRNeg") { w_plan <- matrix(0,ncol=4,nrow=4) borne_e <- t(sapply(range(tau), droite_e,E_ini_fun,B_fun)) w_plan[1:2,1:2] <- borne_e[,1:2] w_plan[3:4,1:2] <- borne_e[,1:2] w_plan[,3] <- rep(c(0,J_eff+marge_section),each=2) w_plan[,4] <- 1 w_plan <- t(w_plan) w_indices <- c(1,2,4,3) } else { w_plan <- NaN w_indices <- NaN } open3d() plot3d(0,0,0,zlim=c(0,max_max_J+marge_top.dome),xlim=c(0,1),ylim=c(0,1),xlab="Enzyme 1", ylab="Enzyme 2", zlab=" ") surface3d(e_seq,e_seq,J_dome,col='lightgrey',zlim=c(0,max_max_J+marge_top.dome),xlim=c(0,1),ylim=c(0,1)) shade3d(qmesh3d(w_plan,w_indices),col='oldlace') spheres3d(max_max_e[1], max_max_e[2], max_max_J, col="violet", point_antialias=TRUE, radius=sph.radius, size=18) if (correl_fun=="CRPos"|correl_fun=="CRNeg") { spheres3d(eq_th$pred_e[1], eq_th$pred_e[2], J_th, col="red", point_antialias=TRUE, radius=sph.radius, size=18) spheres3d(eq_eff$pred_e[1], eq_eff$pred_e[2], J_eff, col="yellow1", point_antialias=TRUE, radius=sph.radius, size=18) spheres3d(e0[1], e0[2], J0, col="black", point_antialias=TRUE, radius=sph.radius, size=18) } points3d(max_max_e[1], max_max_e[2], 0, col="violet", point_antialias=TRUE, size=10) if (correl_fun=="CRPos"|correl_fun=="CRNeg") { lines3d(e_test[,1], e_test[,2], 0, lwd=5, col="darkgreen") points3d(eq_th$pred_e[1], eq_th$pred_e[2], 0, col="red", point_antialias=TRUE, size=10) points3d(eq_eff$pred_e[1], eq_eff$pred_e[2], 0, col="yellow1", point_antialias=TRUE, size=10) points3d(e0[1], e0[2], 0, col="black", point_antialias=TRUE, size=10) } } flux.dome.projections <- function(A_fun,Etot_fun,add.reg=FALSE,B_fun=NULL, E_ini_fun=NULL,X_fun=1,nbniv=9,niv.palette=NULL,marge_section=0.1, posi.legend="topleft",new.window=FALSE,cex.pt=1.5,...) { n_poss <- 3 n_fun <- length(A_fun) correl_fun <- name.correl(TRUE,add.reg,B_fun) E_ini_fun <- E_ini_fun*Etot_fun/sum(E_ini_fun) if (n_fun!=n_poss) { stop("Available only for 3 enzymes.") } if (correl_fun!="Comp"&correl_fun!="CRPos"&correl_fun!="CRNeg") { stop("Flux dome exists only in case of competition.") } is.B.accurate(B_fun,n_fun,correl_fun) if (length(E_ini_fun)==0&add.reg==TRUE) { stop("In case of regulation, initial point 'E_ini_fun' is needed.") } if (length(E_ini_fun)!=n_fun&add.reg==TRUE) { stop("E_ini_fun and A_fun need to have the same length.") } max_max_e <- predict_th(A_fun,"Comp")$pred_e max_max_J <- flux(max_max_e*Etot_fun,A_fun,X_fun) if (correl_fun=="CRPos"|correl_fun=="CRNeg") { e0 <- E_ini_fun/sum(E_ini_fun) J0 <- flux(E_ini_fun,A_fun,X_fun) eq_th <- predict_th(A_fun,correl_fun,B_fun) J_th <- flux(eq_th$pred_e*Etot_fun,A_fun,X_fun) eq_eff <- predict_eff(E_ini_fun,B_fun,A_fun,correl_fun) J_eff <- flux(eq_eff$pred_E,A_fun,X_fun) borne_tau <- range_tau(E_ini_fun,B_fun) tau <- seq(min(borne_tau)+0.0001,max(borne_tau)-0.0001,by=0.01) E_test_ens <- t(sapply(tau,droite_E.CR,E_ini_fun,B_fun)) e_test <- E_test_ens/sum(E_ini_fun) J_test <- apply(E_test_ens,1,flux,A_fun,X_fun) } saut <- ceiling(max_max_J/nbniv) J_select <- seq(0.0001,max_max_J,by=saut) param.nbniv <- nbniv nbniv <- length(J_select) e_seq <- seq(0.01,1,by=0.01) e_curve1 <- vector("list",length=nbniv) for (k in 1:nbniv) { J_niv <- J_select[k] sol_niv <- NULL for (i in 1:n_fun) { if (i ==1) { j <- 2 ; l <- 3 } if (i==2) { j <- 3 ; l <- 1 } if (i==3) { j <- 1 ; l <- 2 } for (x in e_seq) { a <- A_fun[j]*A_fun[l]*(X_fun*Etot_fun/J_niv - 1/(A_fun[i]*x)) b <- A_fun[j]-A_fun[l]-a*(1-x) c <- A_fun[l]*(1-x) if (a!=0) { sol_2dg <- solv.2dg.polynom(a,b,c) if (all(sol_2dg>=0)&all((1-x-sol_2dg)>=0)) { sol_e <- matrix(0,nrow=length(sol_2dg),ncol=n_fun) sol_e[,i] <- x sol_e[,j] <- sol_2dg sol_e[,l] <- 1-x-sol_2dg sol_niv <- rbind(sol_niv,sol_e) } } } } e_curve1[[k]] <- sol_niv } col_niv <- NULL for (k in 1:nbniv) { matniv <- e_curve1[[k]] matniv <- cbind(matniv,k) col_niv <- rbind(col_niv,matniv) } col_niv <- as.data.frame(col_niv) colnames(col_niv) <- c("e1","e2","e3","color") if (is.null(niv.palette)) { niv.palette<-brewer.pal(nbniv,"Spectral") niv.palette<-rev(niv.palette) } if (length(niv.palette)<nbniv) { warning("Not enough colors for contour line.") niv.palette <- rep(niv.palette,ceiling(nbniv/length(niv.palette))) } if (new.window==TRUE) { dev.new() } tr_Jm <- triangle.plot(t(max_max_e),scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) if (add.reg==TRUE) { tr_test <- triangle.plot(e_test[,1:3],scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) tr_ini <- triangle.plot(t(e0),scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) tr_eff <- triangle.plot(t(eq_eff$pred_e),scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) if (correl_fun=="CRPos"|correl_fun=="RegPos") { tr_th <- triangle.plot(t(eq_th$pred_e),scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) } } if (new.window==TRUE) { dev.new() } tr_niv <- triangle.plot(col_niv[,1:3],scale=FALSE,show.position=FALSE,draw.line = FALSE,cpoint=0) for (k in 1:nbniv){ points(tr_niv[col_niv$color==k,],col=niv.palette[k],cex=0.3,pch=20,type='o',lwd=5) } points(tr_Jm,pch=21,bg='violet',cex=cex.pt) if (add.reg==TRUE) { points(tr_test,col=1,type='l',cex=cex.pt) points(tr_ini,col=1,pch=21,cex=cex.pt,bg="black") points(tr_eff,col=1,pch=21,cex=cex.pt,bg="yellow2") if (correl_fun=="CRPos") { points(tr_th,col=1,pch=21,cex=cex.pt,bg="firebrick1") } } if (!is.null(posi.legend)) { legend(posi.legend[1],posi.legend[2],legend=round(J_select),lwd=rep(5,nbniv),col=niv.palette,bty="n",cex=1.2) } if (add.reg==TRUE) { if (new.window==TRUE) { dev.new() } plot(x=tau,y=J_test,type='l',col=1,xlab="Tau",ylab="Flux",pch=20,ylim=c(0,J_eff+marge_section),...) points(0,J0,pch=21,cex=cex.pt,bg="black") abline(v=eq_eff$pred_tau,lty=2) points(eq_eff$pred_tau,J_eff,pch=21,cex=cex.pt,col=1,bg="yellow2") if (correl_fun=="CRPos") { abline(v=1) points(1,J_th,pch=21,cex=cex.pt,bg="firebrick1") } } }
library(grid) unitCheck <- function(u1, u2) { stopifnot(identical(as.character(u1), as.character(u2))) } simpleUnit <- unit(1:4, "npc") unitCheck(rep(simpleUnit, 2), unit(rep(1:4, 2), "npc")) unitCheck(rep(simpleUnit, each=2), unit(rep(1:4, each=2), "npc")) unitCheck(rep(simpleUnit, c(2, 1, 2, 1)), unit(rep(1:4, c(2, 1, 2, 1)), "npc")) unitCheck(rep(simpleUnit, each=2, len=4), unit(rep(1:4, each=2, len=4), "npc")) unitCheck(rep(simpleUnit, each=2, len=10), unit(rep(1:4, each=2, len=10), "npc")) unitCheck(rep(simpleUnit, each=2, times=3), unit(rep(1:4, each=2, times=3), "npc")) simpleUnitMixed <- unit(1:4, c("npc", "cm")) unitCheck(rep(simpleUnitMixed, 2), unit(rep(1:4, 2), c("npc", "cm"))) unitCheck(rep(simpleUnitMixed, each=2), unit(rep(1:4, each=2), rep(c("npc", "cm"), each=2))) unitCheck(rep(simpleUnitMixed, c(2, 1, 2, 1)), unit(rep(1:4, c(2, 1, 2, 1)), rep(c("npc", "cm"), c(2, 1)))) unitCheck(rep(simpleUnitMixed, each=2, len=4), unit(rep(1:4, each=2, len=4), rep(c("npc", "cm"), each=2, len=4))) unitCheck(rep(simpleUnitMixed, each=2, len=10), unit(rep(1:4, each=2, len=10), rep(c("npc", "cm"), each=2, len=10))) unitCheck(rep(simpleUnitMixed, each=2, times=3), unit(rep(1:4, each=2, times=3), rep(c("npc", "cm"), each=2, times=3))) units <- c("npc", "inch", "strwidth", "cm") dataL <- list(NULL, NULL, "test", NULL) unitWithData <- unit(1:4, units, data=dataL) unitCheck(rep(unitWithData, 2), unit(rep(1:4, 2), rep(units, 2), rep(dataL, 2))) unitCheck(rep(unitWithData, each=2), unit(rep(1:4, each=2), rep(units, each=2), rep(dataL, each=2))) unitCheck(rep(unitWithData, c(2, 1, 2, 1)), unit(rep(1:4, c(2, 1, 2, 1)), rep(units, c(2, 1, 2, 1)), rep(dataL, c(2, 1, 2, 1)))) unitCheck(rep(unitWithData, each=2, len=4), unit(rep(1:4, each=2, len=4), rep(units, each=2, len=4), rep(dataL, each=2, len=4))) unitCheck(rep(unitWithData, each=2, len=10), unit(rep(1:4, each=2, len=10), rep(units, each=2, len=10), rep(dataL, each=2, len=10))) unitCheck(rep(unitWithData, each=2, times=3), unit(rep(1:4, each=2, times=3), rep(units, each=2, times=3), rep(dataL, each=2, times=3))) unitArith <- unit(1, "npc") + unit(1:2, "inch") unitCheck(rep(unitArith, 2), unit(1, "npc") + unit(rep(1:2, 2), "inch")) unitCheck(rep(unitArith, each=2), unit(1, "npc") + unit(rep(1:2, each=2), "inch")) unitCheck(rep(unitArith, c(2, 1)), unit(1, "npc") + unit(rep(1:2, c(2 ,1)), "inch")) unitCheck(rep(unitArith, each=2, len=3), unit(1, "npc") + unit(rep(1:2, each=2, len=3), "inch")) unitCheck(rep(unitArith, each=2, len=5), unit(1, "npc") + unit(rep(1:2, each=2, len=5), "inch")) unitCheck(rep(unitArith, each=2, times=3), unit(1, "npc") + unit(rep(1:2, each=2, times=3), "inch")) arg1 <- unit(1, "npc") + unit(1:2, "inch") arg2 <- unit(3, "cm") unitList <- unit.c(arg1, arg2) unitCheck(rep(unitList, 2), unit.c(arg1, arg2, arg1, arg2)) unitCheck(rep(unitList, each=2), unit.c(rep(arg1, each=2), rep(arg2, 2))) unitCheck(rep(unitList, c(2, 1, 2)), unit.c(rep(arg1, c(2, 1)), rep(arg2, 2))) unitCheck(rep(unitList, each=2, len=4), rep(arg1, each=2)) unitCheck(rep(unitList, each=2, len=8), unit.c(rep(arg1, each=2), rep(arg2, 2), rep(arg1, each=2, len=2))) unitCheck(rep(unitList, each=2, times=3), unit.c(rep(arg1, each=2), rep(arg2, 2), rep(arg1, each=2), rep(arg2, 2), rep(arg1, each=2), rep(arg2, 2))) uaDiffLength <- unit(1:2, "npc") + unit(1:3, "npc") uaSameLength <- unit(c(1, 2, 1), "npc") + unit(1:3, "npc") unitCheck(rep(uaDiffLength, 2), rep(uaSameLength, 2)) x <- unit.c(unit(5,"mm"),unit(3,"npc")) rep(x, 2) rep(x, each=2) rep(x, c(2, 2)) x <- x - unit(1,"mm") rep(x, 2) rep(x, each=2) rep(x, c(2, 2)) x <- unit(1, "cm") stopifnot(length(unit.pmax(x)) == 1L, length(unit.pmin(x)) == 1L) a <- unit(1:3, c("cm", "in", "npc")) b <- a + unit(1, "npc") a[2] <- unit(2,"pt") b[2] <- unit(2,"npc") unitCheck(a, unit(1:3, c("cm", "pt", "npc"))) unitCheck(b, unit.c(unit(1, "cm") + unit(1, "npc"), unit(2, "npc"), unit(3, "npc") + unit(1, "npc"))) c <- unit(1:10, "mm") c[5:9] <- unit(9:5, "pt") unitCheck(c, unit(c(1:4, 9:5, 10), c(rep("mm", 4), rep("pt", 5), "mm"))) c[2:3] <- unit(1, "in") + unit(.5, "npc") unitCheck(c, unit.c(unit(1, "mm"), rep(unit(1, "in") + unit(.5, "npc"), 2), unit(4, "mm"), unit(9:5, "pt"), unit(10, "mm"))) c[6:8] <- stringWidth(c("a", "b")) unitCheck(c, unit.c(unit(1, "mm"), rep(unit(1, "in") + unit(.5, "npc"), 2), unit(4, "mm"), unit(9, "pt"), stringWidth(c("a", "b", "a")), unit(5, "pt"), unit(10, "mm")))
NULL mexp <- function(r = 0, truncation = 0, rate = 1, lower.tail = TRUE) { m <- mweibull(r = r, truncation = truncation, shape = 1, scale = 1 / rate, lower.tail = lower.tail) return(m) }
url <- paste0("https://warin.ca/datalake/iriR/iri_data.csv") path <- file.path(tempdir(), "temp.csv") if (httr::http_error(url)) { message("No Internet connection or the server is in maintenance mode.") return(NULL) } else { message("iriR: downloading remote dataset.") with(options(timeout = max(300, getOption("timeout"))),curl::curl_download(url, path)) } csv_file <- file.path(paste0(tempdir(), "/temp.csv")) IRI_data <- read.csv(csv_file) url <- paste0("https://warin.ca/datalake/iriR/iri_indicator.csv") path <- file.path(tempdir(), "temp.csv") if (httr::http_error(url)) { message("No Internet connection or the server is in maintenance mode.") return(NULL) } else { message("iriR: downloading remote dataset.") with(options(timeout = max(300, getOption("timeout"))),curl::curl_download(url, path)) } csv_file <- file.path(paste0(tempdir(), "/temp.csv")) IRI_indicator <- read.csv(csv_file) IRI_data <- reshape2::melt(IRI_data, id.vars = c("country", "country_code", "year", "rank", "company", "industrial.sector"), measure.vars = colnames(IRI_data)[7:ncol(IRI_data)], variable.name = "indicator_code", value.name = "value" ) base::names(IRI_data) = c("country_name", "country_code", "year", "rank", "company_name", "industry_name", "indicator_code", "value") iri_country <- base::unique(IRI_data[,2]) iri_year <- base::unique(IRI_data[,3]) iri_indicator <- base::unique(IRI_data[,7]) iri_company <- base::unique(IRI_data[,5]) iri_industry <- base::unique(IRI_data[,6]) iri_rank <- base::unique(IRI_data[,4]) irir_data <- function(country = iri_country, years = iri_year, indicators = iri_indicator, company = iri_company, industry = iri_industry, ranks = iri_rank) { country_code <- year <- indicator_code <- company_name <- industry_name <- rank <- NULL out <- dplyr::filter(IRI_data, country_code %in% country, year %in% years, indicator_code %in% indicators, company_name %in% company, industry_name %in% industry, rank %in% ranks) return(out) } irir_indicator <- function(indicators) { iri_indicators_natural_language <- IRI_indicator[, 1:3] if (missing(indicators)) { iri_indicators_natural_language } else { iri_indicators_natural_language[grep(indicators, iri_indicators_natural_language$indicator_name, ignore.case = TRUE), ] } } irir_country <- function(country) { iri_countries_natural_language <- unique(IRI_data[, 1:2]) if (missing(country)) { iri_countries_natural_language } else { iri_countries_natural_language[grep(country, iri_countries_natural_language$country_name, ignore.case = TRUE), ] } } irir_company <- function(company){ iri_company_natural_language <- unique(IRI_data$company_name) iri_company_natural_language <- as.data.frame(iri_company_natural_language) names(iri_company_natural_language)[1] <- "company_name" if (missing(company)) { iri_company_natural_language } else { iri_company_natural_language[grep(company, iri_company_natural_language$company_name, ignore.case = TRUE), ] } } irir_industry <- function(industry){ iri_industry_natural_language <- unique(IRI_data$industry_name) iri_industry_natural_language <- as.data.frame(iri_industry_natural_language) names(iri_industry_natural_language)[1] <- "industry_name" if (missing(industry)) { iri_industry_natural_language } else { iri_industry_natural_language[grep(industry, iri_industry_natural_language$industry_name, ignore.case = TRUE), ] } } irir_visual <- function(country = "CAN", chart = "bar_1", title = TRUE, years = as.numeric(max(IRI_data$year))){ year <- value <- country_code <- country_name <- n.company <- indicator_code <- RD.sales <- RD.usd <- NULL if(years > 2019 | years < 2004){ stop("no available data for the requested year") } if(chart == "bar_1"){ barchart1 <- IRI_data[, c("year", "company_name", "country_name", "country_code","indicator_code")] barchart1 <- dplyr::filter(barchart1, indicator_code == "RD.euro") barchart1 <- dplyr::filter(barchart1, year == years) barchart1$value <- 1 barchart1 <- stats::aggregate(value ~ year + country_name + country_code, barchart1, sum, na.rm=TRUE) barchart1 <- dplyr::arrange(barchart1, desc(value)) barchart1 <- dplyr::filter(barchart1, country_code==country | country_code==barchart1[1, 3] | country_code==barchart1[2,3] | country_code==barchart1[3, 3] | country_code==barchart1[4, 3] | country_code==barchart1[5, 3]) barchart1$country_name <- factor(barchart1$country_name, levels = unique(barchart1$country_name)[order(barchart1$value)]) if(title == TRUE){ ggplot2::ggplot(data = barchart1, aes(x = country_name, y = value, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("Number of leading companies in R&D for the most \nrepresented countries in", years)) + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_fill_uchicago() + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020) & European Commission.") + geom_text(aes(label=value), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } else { ggplot2::ggplot(data = barchart1, aes(x = country_name, y = value, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_fill_uchicago() + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020) & European Commission.") + geom_text(aes(label=value), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } } else if(chart == "bar_2"){ barchart2 <- IRI_data[, c("year", "company_name", "country_name", "country_code")] barchart2 <- dplyr::filter(barchart2, year == years) barchart2$value <- 1 barchart2 <- stats::aggregate(value ~ year + country_name + country_code, barchart2, sum, na.rm=TRUE) gdpWdi <- WDI::WDI(indicator = "NY.GDP.MKTP.CD", country = "all", start = years, end = years) gdpWdi <- gdpWdi[,-1] colnames(gdpWdi) <- c("country_name", "gdp", "year") barchart2 <- dplyr::left_join(barchart2, gdpWdi, by = c("country_name", "year")) barchart2$n.company <- (barchart2$value * 100e+9)/barchart2$gdp barchart2 <- barchart2[,c("year", "country_name", "country_code", "n.company")] barchart2 <- unique(barchart2) barchart2 <- dplyr::arrange(barchart2, desc(n.company)) barchart2 <- dplyr::filter(barchart2, country_code==country | country_code==barchart2[1, 3] | country_code==barchart2[2,3] | country_code==barchart2[3, 3] | country_code==barchart2[4, 3] | country_code==barchart2[5, 3]) barchart2$country_name <- factor(barchart2$country_name, levels = unique(barchart2$country_name)[order(barchart2$n.company)]) barchart2$n.company <- round(barchart2$n.company, digits = 0) if(title == TRUE){ ggplot2::ggplot(data = barchart2, aes(x = country_name, y = n.company, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("Number of leading companies in R&D per 100 billion $US of GDP \nfor the most represented countries in", years)) + ggplot2::theme_minimal() + ggsci::scale_fill_uchicago() + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020), European Commission & WDI.") + geom_text(aes(label=n.company), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } else { ggplot2::ggplot(data = barchart2, aes(x = country_name, y = n.company, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + ggsci::scale_fill_uchicago() + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020), European Commission & WDI.") + geom_text(aes(label=n.company), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } } else if (chart == "bar_3"){ barchart3 <- IRI_data[, c("year", "country_name", "country_code", "indicator_code", "value")] barchart3 <- dplyr::filter(barchart3, indicator_code == "RD.usd") barchart3 <- dplyr::filter(barchart3, year == years) barchart3 <- stats::aggregate(value ~ year + country_name + country_code, barchart3, sum, na.rm=TRUE) barchart3 <- dplyr::arrange(barchart3, desc(value)) barchart3 <- dplyr::filter(barchart3, country_code==country | country_code==barchart3[1, 3] | country_code==barchart3[2,3] | country_code==barchart3[3, 3] | country_code==barchart3[4, 3] | country_code==barchart3[5, 3]) barchart3$country_name <- factor(barchart3$country_name, levels = unique(barchart3$country_name)[order(barchart3$value)]) if(title == TRUE){ ggplot2::ggplot(data = barchart3, aes(x = country_name, y = value, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("R&D expenditures ($US) of the leading companies \nfor the most represented countries in", years)) + ggplot2::theme_minimal() + ggsci::scale_fill_uchicago() + ggplot2::scale_y_continuous(labels = scales::dollar) + ggplot2::theme(legend.position="none", axis.title.y = element_text(size = 12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020), European Commission & WDI.") + geom_text(aes(label=paste0("$", round(value/1000000000, digits = 0), " B")), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } else { ggplot2::ggplot(data = barchart3, aes(x = country_name, y = value, fill = country_name)) + ggplot2::geom_col() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + ggsci::scale_fill_uchicago() + ggplot2::scale_y_continuous(labels = scales::dollar) + ggplot2::theme(legend.position="none", axis.title.y = element_text(size = 12)) + ggplot2::labs(fill = "Countries", caption="Source: Warin (2020), European Commission & WDI.") + geom_text(aes(label=paste0("$", round(value/1000000000, digits = 0), " B")), vjust=-0.5, hjust = 0.5, colour = "black", size = 3.2, fontface = "bold") } } else if(chart == "line_1"){ linechart1 <- IRI_data[, c("year", "company_name", "country_name", "country_code","indicator_code")] linechart1 <- dplyr::filter(linechart1, indicator_code == "RD.euro") linechart1$value <- 1 linechart1 <- stats::aggregate(value ~ year + country_name + country_code, linechart1, sum, na.rm=TRUE) linechart1 <- dplyr::arrange(linechart1, desc(year), desc(value)) linechart1 <- dplyr::filter(linechart1, country_code==country | country_code==linechart1[1, 3] | country_code==linechart1[2,3] | country_code==linechart1[3, 3] | country_code==linechart1[4, 3] | country_code==linechart1[5, 3]) if(title == TRUE){ ggplot2::ggplot(data = linechart1, aes(x = year, y = value, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("Evolution as regards the number of leading companies \nin R&D for the most represented countries")) + ggplot2::theme_minimal() + guides(fill=FALSE) + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::theme(legend.position="right", plot.title = element_text(size=12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020) & European Commission.") } else { ggplot2::ggplot(data = linechart1, aes(x = year, y = value, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + guides(fill=FALSE) + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::theme(legend.position="right", plot.title = element_text(size=12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020) & European Commission.") } } else if(chart == "line_2"){ linechart2 <- IRI_data[, c("year", "company_name", "country_name", "country_code")] linechart2$value <- 1 linechart2 <- stats::aggregate(value ~ year + country_name + country_code, linechart2, sum, na.rm=TRUE) gdpWdi <- WDI::WDI(indicator = "NY.GDP.MKTP.CD", country = "all", start = min(IRI_data$year), end = max(IRI_data$year)) gdpWdi <- gdpWdi[,-1] colnames(gdpWdi) <- c("country_name", "gdp", "year") linechart2 <- dplyr::left_join(linechart2, gdpWdi, by = c("country_name", "year")) linechart2$n.company <- (linechart2$value * 100e+9)/linechart2$gdp linechart2 <- linechart2[,c("year", "country_name", "country_code", "n.company")] linechart2 <- unique(linechart2) linechart2 <- dplyr::arrange(linechart2, desc(year), desc(n.company)) linechart2 <- dplyr::filter(linechart2, country_code==country | country_code==linechart2[1, 3] | country_code==linechart2[2,3] | country_code==linechart2[3, 3] | country_code==linechart2[4, 3] | country_code==linechart2[5, 3]) if(title == TRUE){ ggplot2::ggplot(data = linechart2, aes(x = year, y = n.company, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("Evolution as regards the number of leading companies in R&D \nper 100 billion $US of GDP for the", max(IRI_data$year), "most represented countries")) + ggplot2::theme_minimal() + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::theme(legend.position="right", plot.title = element_text(size=12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020), European Commission & WDI.") } else { ggplot2::ggplot(data = linechart2, aes(x = year, y = n.company, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::theme(legend.position="right", plot.title = element_text(size=12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020), European Commission & WDI.") } } else if (chart == "line_3"){ linechart3 <- IRI_data[, c("year", "country_name", "country_code", "indicator_code", "value")] linechart3 <- dplyr::filter(linechart3, indicator_code == "RD.usd") linechart3 <- stats::aggregate(value ~ year + country_name + country_code, linechart3, sum, na.rm=TRUE) linechart3 <- dplyr::arrange(linechart3, desc(year), desc(value)) linechart3 <- dplyr::filter(linechart3, country_code==country | country_code==linechart3[1, 3] | country_code==linechart3[2,3] | country_code==linechart3[3, 3] | country_code==linechart3[4, 3] | country_code==linechart3[5, 3]) if(title == TRUE){ ggplot2::ggplot(data = linechart3, aes(x = year, y = value, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle(paste("Evolution as regards R&D expenditures of the leading \ncompanies for the", max(IRI_data$year), "most represented countries")) + ggplot2::theme_minimal() + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::scale_y_continuous(labels = scales::dollar) + ggplot2::theme(legend.position="right", axis.title.y = element_text(size = 12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020), European Commission & WDI.") } else { ggplot2::ggplot(data = linechart3, aes(x = year, y = value, color = country_name, shape = country_name)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + ggplot2::geom_point(size = 2, stroke = 1) + ggsci::scale_color_uchicago() + ggplot2::scale_y_continuous(labels = scales::dollar) + ggplot2::theme(legend.position="right", axis.title.y = element_text(size = 12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020), European Commission & WDI.") } } else if(chart == "line_4"){ linechart4 <- IRI_data[, c("year", "country_name", "country_code", "indicator_code", "value")] linechart4 <- dplyr::filter(linechart4, indicator_code == "RD.usd") linechart4 <- dplyr::filter(linechart4, country_code==country) linechart4A <- stats::aggregate(value ~ year + country_name + country_code, linechart4, sum, na.rm = TRUE) linechart4A$value <- linechart4A$value/1e+6 linechart4$n.company <- 1 linechart4B <- stats::aggregate(n.company ~ year + country_name + country_code, linechart4, sum, na.rm = TRUE) linechart4 <- dplyr::left_join(linechart4A, linechart4B, c("year", "country_name", "country_code")) linechart4 <- reshape2::melt(linechart4, id.vars= c("year","country_name", "country_code")) linechart4$variable <- gsub("RD.usd", "R&D (million $US)", linechart4$variable) linechart4$variable <- gsub("n.company", "Leading R&D companies", linechart4$variable) if(title == TRUE){ ggplot2::ggplot(data = linechart4, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("Evolution as regards the number of leading companies in R&D \n& the total of their R&D investments (in millions of $US)") + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.20) + ggplot2::theme(legend.position="none") + facet_grid(variable ~ ., scales = "free") + ggplot2::labs(caption="Source: Warin (2020) & European Commission.") } else{ ggplot2::ggplot(data = linechart4, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.20) + ggplot2::theme(legend.position="none") + facet_grid(variable ~ ., scales = "free") + ggplot2::labs(caption="Source: Warin (2020) & European Commission.") } } else if(chart == "line_5"){ linechart5 <- IRI_data[, c("year", "company_name", "country_name", "country_code", "indicator_code", "value")] linechart5 <- dplyr::filter(linechart5, indicator_code == "RD.usd") linechart5A <- dplyr::filter(linechart5, country_code==country) linechart5A <- stats::aggregate(value ~ year + country_name + country_code, linechart5A, sum, na.rm = TRUE) linechart5B <- stats::aggregate(value ~ year, linechart5, sum, na.rm = TRUE) linechart5 <- left_join(linechart5A, linechart5B, by = "year") linechart5$value <- linechart5$value.x /linechart5$value.y if(title == TRUE){ ggplot2::ggplot(data = linechart5, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + geom_smooth(span = 0.8) + ggplot2::ggtitle(paste("Evolution as regards the percentage of R&D investments made by \ncompanies in", unique(linechart5$country_name), "in the total R&D investments.")) + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.20) + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::scale_y_continuous(labels = scales::percent_format(accuracy=.1)) + ggplot2::labs(caption="Source: Warin (2020) & European Commission.") } else { ggplot2::ggplot(data = linechart5, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + geom_smooth(span = 0.8) + ggplot2::ggtitle("") + ggplot2::theme_minimal() + guides(fill=FALSE) + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.20) + ggplot2::theme(legend.position="none", plot.title = element_text(size=12)) + ggplot2::scale_y_continuous(labels = scales::percent_format(accuracy=.1)) + ggplot2::labs(caption="Source: Warin (2020) & European Commission.") } } else if (chart == "line_6"){ linechart6 <- IRI_data[, c("year", "company_name", "country_name", "country_code", "indicator_code", "value")] linechart6 <- dplyr::filter(linechart6, country_code==country) linechart6A <- dplyr::filter(linechart6, indicator_code == "RD.usd") linechart6B <- dplyr::filter(linechart6, indicator_code == "employees.qty") linechart6A <- stats::aggregate(value ~ year + country_name + country_code, linechart6A, sum, na.rm=FALSE) linechart6B <- stats::aggregate(value ~ year + country_name + country_code, linechart6B, sum, na.rm=FALSE) linechart6 <- left_join(linechart6A, linechart6B, by = c("country_name", "country_code", "year")) linechart6$value <- linechart6$value.x / linechart6$value.y if(title == TRUE){ ggplot2::ggplot(data = linechart6, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("Evolution as regards the R&D per employee in $US") + ggplot2::theme_minimal() + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.10) + ggplot2::theme(plot.title = element_text(size=12)) + ggplot2::labs(color = "Country", caption="Source: Warin(2020) & European Commission.") } else { ggplot2::ggplot(data = linechart6, aes(x = year, y = value, color = country)) + geom_line() + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("") + ggplot2::theme_minimal() + ggsci::scale_color_uchicago() + ggplot2::geom_point(shape = 19, size = 2, stroke = 1.10) + ggplot2::theme(plot.title = element_text(size=12)) + ggplot2::labs(color = "Country", caption="Source: Warin(2020) & European Commission.") } } else if(chart == "point_1"){ pointchart1 <- IRI_data[, c("year", "company_name", "country_name", "country_code", "indicator_code", "value")] pointchart1 <- dplyr::filter(pointchart1, year == years) pointchart1A <- dplyr::filter(pointchart1, indicator_code == "RD.usd") pointchart1B <- dplyr::filter(pointchart1, indicator_code == "sales.usd") pointchart1A <- stats::aggregate(value ~ year + country_name + country_code, pointchart1A, sum, na.rm=FALSE) pointchart1B <- stats::aggregate(value ~ year + country_name + country_code, pointchart1B, sum, na.rm=FALSE) names(pointchart1A)[4] <- "RD.usd" names(pointchart1B)[4] <- "sales.usd" pointchart1 <- left_join(pointchart1A, pointchart1B, by = c("year", "country_name", "country_code")) pointchart1$RD.sales <- pointchart1$sales.usd / pointchart1$RD.usd pointchart1 <- dplyr::arrange(pointchart1, desc(RD.sales)) pointchart1 <- dplyr::filter(pointchart1, country_code==country | country_code==pointchart1[1,3] | country_code==pointchart1[2,3] | country_code==pointchart1[3,3] | country_code==pointchart1[4,3] | country_code==pointchart1[5,3]) if(title == TRUE){ ggplot2::ggplot(data = pointchart1, aes(x = RD.usd, y = RD.sales, color = country_name, shape = country_name)) + ggplot2::geom_point() + ggplot2::ylab("Net sales/R&D investment") + ggplot2::xlab("Total R&D investments") + ggplot2::ggtitle(paste("Net sales/R&D investment ratio per total R&D investment \nfor the", max(IRI_data$year), "most represented countries")) + guides(fill=FALSE) + ggplot2::theme_minimal() + ggsci::scale_color_uchicago() + ggplot2::geom_point(size = 3, stroke = 1) + ggplot2::theme(plot.title = element_text(size=12)) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020) & European Commission.") } else { ggplot2::ggplot(data = pointchart1, aes(x = RD.usd, y = RD.sales, color = country_name, shape = country_name)) + ggplot2::geom_point() + ggplot2::ylab("Net sales/R&D investment") + ggplot2::xlab("Total R&D investments") + ggplot2::ggtitle("") + guides(fill=FALSE) + ggplot2::theme_minimal() + ggsci::scale_color_uchicago() + ggplot2::geom_point(size = 3, stroke = 1) + ggplot2::labs(shape = "Countries", color = "Countries", caption="Source: Warin (2020) & European Commission.") } } else{ stop("invalid arguments") } }
context("colours") test_that("check hex works", { expect_false(mapdeck:::isHexColour(' expect_false(mapdeck:::isHexColour(" expect_true(mapdeck:::isHexColour(" expect_true(mapdeck:::isHexColour(' expect_false(mapdeck:::isHexColour(' expect_true(mapdeck:::isHexColour(' expect_equal(mapdeck:::appendAlpha(" expect_equal(mapdeck:::appendAlpha(" expect_equal(mapdeck:::appendAlpha(" expect_equal(mapdeck:::appendAlpha(' expect_equal(mapdeck:::appendAlpha(' expect_equal(mapdeck:::appendAlpha(' })
db <- new.env(parent = emptyenv()) db$help <- NULL db$emailHelp <- NULL db$welcome <- NULL db$version <- NULL db$listAllSolvers <- NULL db$listCategories <- NULL db$solvers_in_category <- list() neos_get_db <- function(key) { db <- getNamespace("ROI.plugin.neos")$db if ( missing(key) ) return(db) db[[key]] } neos_set_db <- function(key, value) { db <- getNamespace("ROI.plugin.neos")$db db[[key]] <- value invisible(NULL) } neos_url <- function() "https://www.neos-server.org" neos_simple_call <- function(method) xmlrpc(neos_url(), method) neos_lazy_simple_call <- function(method) { if ( is.null(x <- neos_get_db(method)) ) { x <- xmlrpc(neos_url(), method) neos_set_db(method, x) } x } neos_help <- function() writeLines(neos_lazy_simple_call("help")) neos_emailHelp <- function() writeLines(neos_lazy_simple_call("emailHelp")) neos_welcome <- function() writeLines(neos_lazy_simple_call("welcome")) neos_version <- function() neos_lazy_simple_call("version") neos_ping <- function() neos_simple_call("ping") neos_ls_categories <- function() neos_lazy_simple_call("listCategories") neos_ls_solvers <- function(category = NULL) { if ( is.null(category) ) { neos_lazy_simple_call("listAllSolvers") } else { db <- getNamespace("ROI.plugin.neos")$db if ( !category %in% names(db$solvers_in_category) ) { params <- list(category = category) x <- xmlrpc(neos_url(), "listSolversInCategory", params = params) db$solvers_in_category[[category]] <- x } db$solvers_in_category[[category]] } } neos_queue <- function(verbose = TRUE) { queue <- neos_simple_call("printQueue") if (verbose) { writeLines(queue) invisible(queue) } else { queue } } neos_solver_template <- function(category, solver_name, input_method) { key <- paste(clean(c(category, solver_name, input_method)), collapse = ":") if ( is.null(neos_get_db(key)) ) { params <- list(category = category, solvername = solver_name, inputMethod = input_method) template <- xmlrpc(neos_url(), "getSolverTemplate", params = params) neos_set_db(key, read_xml(template)) } xml_copy(neos_get_db(key)) } set_template_parameters <- function(xml_template, params) { template_params <- xml_children(xml_template) template_params_names <- as.character(lapply(template_params, xml_name)) for (i in seq_along(params)) { key <- names(params)[i] k <- which(key == template_params_names) if ( length(k) ) { xml_replace(template_params[[k]], new_xml_node(key, params[[key]])) } else { xml_add_sibling(template_params[[length(template_params)]], new_xml_node(key, params[[key]])) } } as.character(xml_template) } neos_submit_job <- function(x, xmlstring, user = "", password = "") { if ( (nchar(user) == 0L) | (nchar(password) == 0L) ) { response <- xmlrpc(neos_url(), "submitJob", params = list(xmlstring = xmlstring)) } else { params <- list(xmlstring = xmlstring, user = user, password = password) response <- xmlrpc(neos_url(), "authenticatedSubmitJob", params = params) } neos_job(response[[1]], response[[2]], x) } neos_job <- function(job_number, password, x) { job <- list() class(job) <- "neos_job" job$job_number <- job_number job$password <- password job$status <- function() { self <- parent.env(environment())$job xmlrpc(neos_url(), "getJobStatus", params = list(jobNumber = self$job_number, password = self$password)) } job$completion_code <- function() { self <- parent.env(environment())$job params <- list(jobNumber = self$job_number, password = self$password) xmlrpc(neos_url(), "getCompletionCode", params = params) } job$info <- function() { self <- parent.env(environment())$job params <- list(jobNumber = self$job_number, password = self$password) xmlrpc(neos_url(), "getJobInfo", params = params) } job$kill_job <- function(killmsg="") { self <- parent.env(environment())$job params <- list(jobNumber = self$job_number, password = self$password, killmsg = killmsg) xmlrpc(neos_url(), "killJob", params = params) } job$final_results <- function(wait = FALSE) { self <- parent.env(environment())$job params <- list(jobNumber = self$job_number, password = self$password) neos_method <- if (wait) "getFinalResults" else "getFinalResultsNonBlocking" response <- xmlrpc(neos_url(), neos_method, params = params) rawToChar(response) } job$output_file <- function(file_name) { self <- parent.env(environment())$job params <- list(jobNumber = self$job_number, password = self$password, fileName = file_name) response <- xmlrpc(neos_url(), "getOutputFile", params = params) response } job$objective_function <- objective(x) job$solution <- function(wait = FALSE) { self <- parent.env(environment())$job if ( isTRUE(self$status() != "Done") & !wait ) { message("job not finished yet") return(NULL) } neos_message <- self$final_results(wait) if ( !neos_message_indicates_success(neos_message) ) { stop(neos_message) } output_file <- sprintf("%s-%s-solver-output.zip", self$job_number, self$password) response <- self$output_file(output_file) tmpfi <- tempfile(fileext="-neos.zip") on.exit(unlink(tmpfi)) writeBin(response, tmpfi) results_con <- unz(tmpfi, "results.txt") on.exit(close(results_con)) neos_result_txt <- readLines(results_con) neos_results <- extract_results(neos_result_txt) objval <- tryCatch(unname(self$objective_function(neos_results$solution)), error = function(e) NA_real_) status <- generate_status_code(neos_results$solver_status, neos_results$model_status) neos_results$message <- neos_message ROI_plugin_canonicalize_solution(solution = neos_results$solution, optimum = objval, status = status, solver = "neos", message = neos_results) } job } neos_read_result_file <- function(file, neos_message, objective_function) { neos_results <- extract_results(readLines(file)) objval <- tryCatch(unname(objective_function(neos_results$solution)), error = function(e) NA_real_) status <- generate_status_code(neos_results$solver_status, neos_results$model_status) neos_results$message <- neos_message ROI_plugin_canonicalize_solution(solution = neos_results$solution, optimum = objval, status = status, solver = "neos", message = neos_results) } neos_client <- function() { neos <- new.env(parent = emptyenv()) class(neos) <- "neos_client" neos$help <- neos_help neos$emailHelp <- neos_emailHelp neos$welcome <- neos_welcome neos$version <- neos_version neos$ping <- neos_ping neos$printQueue <- neos_queue neos$listAllSolvers <- function() { neos_ls_solvers() } neos$listSolversInCategory <- function(category) { neos_ls_solvers(category) } neos$listCategories <- neos_ls_categories neos$getSolverTemplate <- neos_solver_template neos }
.Random.seed <- c(403L, 96L, 1793153639L, 625602485L, 307531749L, -1225712580L, -1017251838L, 2140837563L, -1487036697L, 1472558359L, -1875002080L, 1878212252L, 1999907631L, 1408892741L, -1928876932L, -1166554983L, 2066061675L, -1214060594L, -1363037676L, 444453990L, 786126460L, -744308775L, 1678603075L, 1153253180L, 1711531516L, -1786857214L, -1754340697L, 1796620271L, 1915832912L, -2102026616L, 1672887443L, -34925476L, 68698202L, 1426041635L, 1708838213L, 1807206507L, 696083127L, 731608966L, 1397594688L, 1758084833L, -1471643323L, 1306818973L, -685851050L, -1807538622L, 2025772753L, 624325663L, -165785358L, -1007087937L, -1712150903L, 1896324196L, 1514783082L, -12491508L, -2046594258L, -1201329917L, -262725199L, -250767862L, 363253178L, -1013254840L, -1098289371L, -143944795L, 362637010L, -683298174L, 1119691073L, 814756778L, -249751736L, 245666425L, 1618490691L, 769292129L, -662413247L, 811794408L, 90449294L, -1622984809L, -724604981L, -945576309L, -624683548L, 578972008L, -1750635005L, -292877671L, 1077840592L, 958836597L, 1089350903L, 1508049178L, -1881648728L, -1815311158L, 349783120L, -620221363L, -545588601L, -373596624L, 397086840L, -2138978098L, 1521302851L, 1523073875L, 351493564L, 872848932L, 796826639L, 991840272L, 1624237150L, 377550135L, 705762753L, 1845407495L, 1602654419L, 1521000562L, 1569902748L, 2079765197L, -1175833447L, -1442945855L, 1939187274L, -1125010306L, 287428725L, 1981085091L, 1337904502L, 40494507L, 605549861L, -1503004368L, -1840450194L, -228894254L, 1523370217L, 956441073L, -719650497L, 295417777L, -162092246L, 1568736273L, 1392588824L, -956145279L, -2012274385L, 1520514846L, -1348105195L, 1376935811L, 1779278510L, 1576247530L, -1470397864L, -808041229L, 1943573882L, -1934234050L, -1380408372L, 1556298256L, -2147177641L, -1736261186L, -528038283L, -71699632L, -1583855510L, -1945511959L, -366135008L, -1953243680L, 576725277L, -287007643L, -172890857L, 984056260L, -646752169L, -1615590097L, -778790183L, 505963251L, 1437118608L, -86430553L, -294193842L, 648538071L, 46191953L, 158749672L, -106075477L, 2147077153L, -404794856L, 741637316L, 524264082L, 1466604725L, 1277621072L, 1372502092L, -1867887066L, 900447586L, 599472141L, 544343356L, -1777022085L, 577318966L, -284839796L, -1107102401L, 1480233104L, -1352380275L, -1229120756L, -199491719L, 450715897L, 1336009571L, -971204016L, 1575161325L, -1895175327L, -907849726L, -92206415L, -2058170481L, -853362784L, 1674647860L, -1319527222L, 1443854598L, 1589637615L, -915851132L, 2140563745L, 259468896L, 1528564956L, 1721674986L, -2079975477L, -1841947470L, 572079194L, -848886613L, 1581198956L, -188537280L, 1619163837L, 137670669L, 276047823L, 535022561L, 380123018L, 930761551L, 1856055610L, 1176640943L, -2080602557L, -1567654675L, -1713817498L, -1671237493L, -2099658689L, -1035139024L, -4152069L, 800371745L, 192589518L, 336719722L, 1688039612L, 1804766120L, 1786255305L, -2104848618L, 662860719L, 1921322518L, 1719154854L, -1098180268L, -1057194287L, 1889491024L, -1700053488L, 872474313L, -1933553130L, 504874930L, 1405607371L, -1595730621L, -1943380927L, -1106725469L, -221518556L, 1684891081L, 817737568L, 1428585213L, -306720883L, 1942197807L, 1740913708L, -103002775L, -420761611L, 380321222L, -317029011L, -1353149181L, 251986900L, 1160456200L, 30758934L, -559616630L, -1624200765L, 263618080L, -2076103915L, -1741590044L, -699721568L, 112160934L, -159032329L, 563837214L, -237726770L, 1768425487L, 182810968L, -1717530396L, 62333905L, -1691400911L, -1312666341L, -80757531L, 2055387038L, 1476848331L, 1860338542L, 1429158691L, -1336495785L, -2085744151L, -427221390L, 1143641495L, 1176739907L, -23745772L, -1838236937L, 329752197L, -1997733198L, 1755384718L, 2126970785L, 1440931646L, 766735230L, 1018973847L, 1980694363L, -595058212L, -24125585L, 826801779L, -1154563775L, -99520621L, -943129556L, -1747809391L, -212870829L, -721601593L, 1414016531L, 1941434731L, 1674125122L, 696038971L, -484038219L, -589480234L, 1737168738L, -176161555L, -834905554L, -683816070L, -1163684438L, 105142444L, 1301778139L, 742151632L, 1018521014L, 1823899264L, 552789566L, -854271330L, 276127423L, -140056736L, -1005368040L, 1630276909L, -1834983187L, -1569735766L, -1402321467L, -27118379L, -969786133L, -106853919L, -286509346L, 907793795L, -2050116807L, -1713690315L, -653584835L, 280472421L, 1563489092L, -974542815L, 1401666635L, 339440744L, -640380544L, -449217665L, -1460435072L, -909920032L, 1959195904L, 2105152870L, 1022709697L, 2072641862L, 175753160L, -430167702L, -1742612092L, 507012036L, 780217189L, 2024095418L, 1894738922L, -1742088573L, 1495905095L, -393320752L, -1569678157L, -523139337L, 702590381L, -445286289L, 905278680L, 380403173L, -2145030249L, -1425250349L, -1583710137L, 528590047L, -393159986L, -184367473L, 2091030313L, -41630838L, -907817178L, -1483067823L, 165981458L, -1462993010L, -331382914L, -1229725600L, -1120725257L, -1856119812L, -1388610526L, -1854799292L, -878099182L, -163504214L, -86601685L, -1208287756L, -1089992628L, 1368163553L, 280946721L, -1094755578L, -1805605983L, 451688849L, 1005675967L, 1832481829L, -517785006L, 1030218847L, 2122086805L, -1289798855L, -296819879L, -1472770623L, 1923229592L, -520367331L, -1838517769L, -107535196L, -1709713880L, 1853493485L, 1600022863L, 1969735431L, -14057598L, 208036874L, -2101923136L, -26796569L, 19764348L, -362626060L, 126503759L, 1695753239L, -1087645693L, -383492366L, -2006717081L, -590557522L, 1719489647L, 1412785322L, 832019580L, -1017018168L, 995837119L, 254665387L, -959527527L, -1898934980L, -511448525L, 1348357701L, 2062618188L, -1621901852L, -414192232L, 1564585759L, -1954834252L, 992764007L, 440382606L, 947188035L, -1622550459L, -606565207L, 1265990444L, -1855774980L, 1200250630L, -1607022475L, -1791227202L, -561207398L, 179589609L, 1377079513L, 1029621117L, 1627626300L, -1210181631L, 1449780724L, 695077753L, 265354412L, 2007043222L, -754831682L, 8701589L, 97233673L, 522275227L, -929083474L, 1924395753L, -323595561L, -1530497310L, 1170380602L, 2011416350L, 800993989L, 527903978L, -1237521719L, -1300380004L, -1827561471L, -502069589L, -1530060685L, 46828918L, -307518170L, -113614116L, 1166688243L, -1978373536L, -1071380304L, -2063158125L, 807637379L, -40082793L, 973052166L, -727978429L, 1650011562L, -2034296461L, -2111040634L, -671418112L, 2048163100L, -665928813L, -1230546409L, -1346315171L, -2086301736L, 1607202311L, -1554006815L, -1786925112L, -230784864L, -889679788L, 21178299L, 828195528L, -1716744581L, -507899590L, 1669294463L, -295086663L, -293587027L, 1983288008L, -1308796016L, 876408618L, -1776142983L, 1342295546L, 1016793422L, 618164229L, 1999859485L, 1467429241L, -1700319400L, -1808927291L, 979009393L, 996308871L, 991999779L, -104788665L, -757946654L, -521390361L, -800479336L, -2007274636L, -1972882066L, -155669846L, -27013101L, 41433962L, 236755103L, -1788471853L, 1887530645L, -1785813382L, 1690078858L, 2105093228L, -179084056L, 1763196084L, -679756183L, -798871370L, -760789827L, 700716905L, -860358419L, 867997325L, 1641942446L, -942688707L, -630889808L, 1157220236L, 1050769164L, 1562956013L, 315505387L, -280257223L, -1841329971L, -840402555L, 508719332L, -1467725019L, -508943326L, 774330166L, -2124611316L, -1623382736L, -1121109215L, -2027884476L, 1858240017L, -44782771L, -1421861969L, -281173556L, 611669740L, -640849746L, 2029304274L, -96345822L, 1364598355L, -795798644L, -62749425L, 2128495067L, 696178707L, 13230771L, 1039501670L, -1140211436L, 16886940L, 1644573884L, -836764375L, -1683468669L, -440456424L, -577064702L, 999147207L, 1174749218L, 1955230774L, 856107883L, -1646783775L, 407335258L, -238915099L, 90133729L, 191401793L, -1936352039L, -1155445551L, 772538601L, -1740641926L, -841596290L, 424856151L, 1952913485L, 492365864L, 1636178709L, -1826040687L, 1481583134L, 1518607736L, 1435182227L, 1970241634L, 2117107426L, -529994152L, 1032996394L, -2054467086L, 1351250610L, -811915993L, 883692901L, 1394395354L, 1642132348L, -177577159L, -647353352L, 647781664L, 1917650625L, -1363360045L, -1272024256L, -1388383633L, -1693505517L, -1471229621L, -1918990617L, 1810820431L, 814590615L, -666361768L, -432503086L, 2033202338L, 586066856L, 1041394715L)
test_that("multiplication works", { x <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69) r <- mkTrend_r(x, IsPlot = FALSE) r_cpp <- mkTrend(x, IsPlot = FALSE) expect_equal(r, r_cpp) })
NULL InputStream <- R6Class( 'InputStream', public = list( initialize = function(conn, length) { private$conn <- conn private$length <- length seek(private$conn, 0) }, read_lines = function(n = -1L) { readLines(private$conn, n, warn = FALSE) }, read = function(l = -1L) { if (l < 0) l <- private$length - seek(private$conn) if (l == 0) return(raw()) else return(readBin(private$conn, raw(), l)) }, rewind = function() { seek(private$conn, 0) } ), private = list( conn = NULL, length = NULL ), cloneable = FALSE ) NullInputStream <- R6Class( 'NullInputStream', public = list( read_lines = function(n = -1L) { character() }, read = function(l = -1L) { raw() }, rewind = function() invisible(), close = function() invisible() ), cloneable = FALSE ) nullInputStream <- NullInputStream$new() ErrorStream <- R6Class( 'ErrorStream', public = list( cat = function(... , sep = " ", fill = FALSE, labels = NULL) { base::cat(..., sep=sep, fill=fill, labels=labels, file=stderr()) }, flush = function() { base::flush(stderr()) } ), cloneable = FALSE ) stdErrStream <- ErrorStream$new() rookCall <- function(func, req, data = NULL, dataLength = -1) { compute <- function() { inputStream <- if(is.null(data)) nullInputStream else InputStream$new(data, dataLength) req$rook.input <- inputStream req$rook.errors <- stdErrStream req$httpuv.version <- httpuv_version() if (!is.null(req$HTTP_CONTENT_TYPE)) req$CONTENT_TYPE <- req$HTTP_CONTENT_TYPE if (!is.null(req$HTTP_CONTENT_LENGTH)) req$CONTENT_LENGTH <- req$HTTP_CONTENT_LENGTH func(req) } prepare_response <- function(resp) { if (is.null(resp) || length(resp) == 0) return(NULL) if (is.null(resp$headers) || (length(resp$headers) == 0 && is.null(names(resp$headers)))) { resp$headers <- named_list() } resp$headers <- lapply(resp$headers, paste) if ('file' %in% names(resp$body)) { filename <- resp$body[['file']] owned <- FALSE if ('owned' %in% names(resp$body)) owned <- as.logical(resp$body$owned) resp$body <- NULL resp$bodyFile <- filename resp$bodyFileOwned <- owned } resp } on_error <- function(e) { list( status=500L, headers=list( 'Content-Type'='text/plain; charset=UTF-8' ), body=charToRaw(enc2utf8( paste("ERROR:", conditionMessage(e), collapse="\n") )) ) } compute_error <- NULL response <- tryCatch( compute(), error = function(e) compute_error <<- e ) if (!is.null(compute_error)) { return(on_error(compute_error)) } if (is.promise(response)) { response %...>% prepare_response %...!% on_error } else { tryCatch(prepare_response(response), error = on_error) } } AppWrapper <- R6Class( 'AppWrapper', private = list( app = NULL, wsconns = NULL, supportsOnHeaders = NULL ), public = list( initialize = function(app) { if (is.function(app)) private$app <- list(call=app) else private$app <- app private$supportsOnHeaders <- isTRUE(try(!is.null(private$app$onHeaders), silent=TRUE)) if (class(try(private$app$staticPaths, silent = TRUE)) == "try-error" || is.null(private$app$staticPaths)) { self$staticPaths <- list() } else { self$staticPaths <- normalizeStaticPaths(private$app$staticPaths) } if (class(try(private$app$staticPathOptions, silent = TRUE)) == "try-error" || is.null(private$app$staticPathOptions)) { self$staticPathOptions <- staticPathOptions() } else if (inherits(private$app$staticPathOptions, "staticPathOptions")) { self$staticPathOptions <- normalizeStaticPathOptions(private$app$staticPathOptions) } else { stop("staticPathOptions must be an object of class staticPathOptions.") } private$wsconns <- new.env(parent = emptyenv()) }, onHeaders = function(req) { if (!private$supportsOnHeaders) return(NULL) rookCall(private$app$onHeaders, req) }, onBodyData = function(req, bytes) { if (is.null(req$.bodyData)) req$.bodyData <- file(open='w+b', encoding='UTF-8') writeBin(bytes, req$.bodyData) }, call = function(req, cpp_callback) { resp <- if (is.null(private$app$call)) { list( status = 404L, headers = list( "Content-Type" = "text/plain" ), body = "404 Not Found\n" ) } else { rookCall(private$app$call, req, req$.bodyData, seek(req$.bodyData)) } clean_up <- function() { if (!is.null(req$.bodyData)) { close(req$.bodyData) } req$.bodyData <- NULL } if (is.promise(resp)) { resp <- resp %...>% invokeCppCallback(., cpp_callback) finally(resp, clean_up) } else { on.exit(clean_up()) invokeCppCallback(resp, cpp_callback) } invisible() }, onWSOpen = function(handle, req) { ws <- WebSocket$new(handle, req) private$wsconns[[wsconn_address(handle)]] <- ws result <- try(private$app$onWSOpen(ws)) if (inherits(result, 'try-error')) { ws$close(1011, "Error in onWSOpen") } }, onWSMessage = function(handle, binary, message) { for (handler in private$wsconns[[wsconn_address(handle)]]$messageCallbacks) { result <- try(handler(binary, message)) if (inherits(result, 'try-error')) { private$wsconns[[wsconn_address(handle)]]$close(1011, "Error executing onWSMessage") return() } } }, onWSClose = function(handle) { ws <- private$wsconns[[wsconn_address(handle)]] ws$handle <- NULL rm(list = wsconn_address(handle), envir = private$wsconns) for (handler in ws$closeCallbacks) { handler() } }, staticPaths = NULL, staticPathOptions = NULL ) ) WebSocket <- R6Class( 'WebSocket', public = list( initialize = function(handle, req) { self$handle <- handle self$request <- req }, onMessage = function(func) { self$messageCallbacks <- c(self$messageCallbacks, func) }, onClose = function(func) { self$closeCallbacks <- c(self$closeCallbacks, func) }, send = function(message) { if (is.null(self$handle)) return() if (is.raw(message)) sendWSMessage(self$handle, TRUE, message) else { sendWSMessage(self$handle, FALSE, as.character(message)) } }, close = function(code = 1000L, reason = "") { if (is.null(self$handle)) return() code <- as.integer(code) if (code < 0 || code > 2^16 - 1) { warning("Invalid websocket error code: ", code) code <- 1001L } reason <- iconv(reason, to = "UTF-8") closeWS(self$handle, code, reason) self$handle <- NULL }, handle = NULL, messageCallbacks = list(), closeCallbacks = list(), request = NULL ) ) startServer <- function(host, port, app, quiet = FALSE) { WebServer$new(host, port, app, quiet) } startPipeServer <- function(name, mask, app, quiet = FALSE) { PipeServer$new(name, mask, app, quiet) } service <- function(timeoutMs = ifelse(interactive(), 100, 1000)) { if (is.na(timeoutMs)) { run_now(0, all = FALSE) } else if (timeoutMs == 0 || timeoutMs == Inf) { .globals$paused <- FALSE check_time <- if (interactive()) 0.1 else Inf while (!.globals$paused) { run_now(check_time, all = FALSE) } } else { run_now(timeoutMs / 1000, all = FALSE) } TRUE } runServer <- function(host, port, app, interruptIntervalMs = NULL) { server <- startServer(host, port, app) on.exit(stopServer(server)) service(0) } interrupt <- function() { .globals$paused <- TRUE } rawToBase64 <- function(x) { base64encode(x) } .globals <- new.env() startDaemonizedServer <- startServer legacy_dummy <- function(value){ .Call('httpuv_decodeURIComponent', PACKAGE = "httpuv", value) }
fparse <- function(json, query = NULL, empty_array = NULL, empty_object = NULL, single_null = NULL, parse_error_ok = FALSE, on_parse_error = NULL, query_error_ok = FALSE, on_query_error = NULL, max_simplify_lvl = c("data_frame", "matrix", "vector", "list"), type_policy = c("anything_goes", "numbers", "strict"), int64_policy = c("double", "string", "integer64", "always"), always_list = FALSE) { if (!.is_valid_json_arg(json)) { stop("`json=` must be a non-empty character vector, raw vector, or a list containing raw vectors.") } if (!.is_valid_query_arg(query)) { stop("`query=` must be `NULL`, a non-empty character vector, or a list containing non-empty character vectors.") } if (is.list(query) && length(json) != length(query)) { stop("`query=` is a list (nested query), but is not the same length as `json=`.") } if (!.is_scalar_lgl(parse_error_ok)) { stop("`parse_error_ok=` must be either `TRUE` or `FALSE`.") } if (!.is_scalar_lgl(query_error_ok)) { stop("`query_error_ok=` must be either `TRUE` or `FALSE`.") } if (!.is_scalar_lgl(always_list)) { stop("`always_list=` must be either `TRUE` or `FALSE`.") } if (is.character(max_simplify_lvl)) { max_simplify_lvl <- switch( match.arg(max_simplify_lvl, c("data_frame", "matrix", "vector", "list")), data_frame = 0L, matrix = 1L, vector = 2L, list = 3L, stop("Unknown `max_simplify_lvl=`.") ) } else if (is.numeric(max_simplify_lvl)) { stopifnot(max_simplify_lvl %in% 0:3) } else { stop("`max_simplify_lvl=` must be of type `character` or `numeric`.") } if (is.character(type_policy)) { type_policy <- switch( match.arg(type_policy, c( "anything_goes", "numbers", "strict" )), anything_goes = 0L, numbers = 1L, strict = 2L, stop("Unknown `type_policy=`.") ) } else if (is.numeric(type_policy)) { stopifnot(type_policy %in% 0:2) } else { stop("`type_policy=` must be of type `character` or `numeric`.") } if (is.character(int64_policy)) { int64_policy <- switch( match.arg(int64_policy, c("double", "string", "integer64", "always")), double = 0L, string = 1L, integer64 = 2L, always = 3L, stop("Unknown `int64_policy=`.") ) } else if (is.numeric(int64_policy)) { stopifnot(int64_policy %in% 0:3) } else { stop("`int64_policy` must be of type `character` or `numeric`.") } if (int64_policy == 2L && !requireNamespace("bit64", quietly = TRUE)) { stop('`int64_policy="integer64", but the {bit64} package is not installed.') } out <- .deserialize_json( json = json, query = query, empty_array = empty_array, empty_object = empty_object, single_null = single_null, parse_error_ok = parse_error_ok, on_parse_error = on_parse_error, query_error_ok = query_error_ok, on_query_error = on_query_error, simplify_to = max_simplify_lvl, type_policy = type_policy, int64_r_type = int64_policy ) if (always_list && length(json) == 1L) { `names<-`(list(out), names(json)) } else { out } }
step_dummy_hash <- function(recipe, ..., role = "predictor", trained = FALSE, columns = NULL, signed = TRUE, num_terms = 32L, collapse = FALSE, prefix = "hash", skip = FALSE, id = rand_id("dummy_hash")) { recipes::recipes_pkg_check(required_pkgs.step_dummy_hash()) add_step( recipe, step_dummy_hash_new( terms = enquos(...), role = role, trained = trained, columns = columns, signed = signed, num_terms = num_terms, collapse = collapse, prefix = prefix, skip = skip, id = id ) ) } step_dummy_hash_new <- function(terms, role, trained, columns, signed, collapse ,num_terms, prefix, skip, id) { step( subclass = "dummy_hash", terms = terms, role = role, trained = trained, columns = columns, signed = signed, num_terms = num_terms, collapse = collapse, prefix = prefix, skip = skip, id = id ) } prep.step_dummy_hash <- function(x, training, info = NULL, ...) { col_names <- recipes_eval_select(x$terms, training, info) recipes::check_type(training[, col_names], quant = FALSE) step_dummy_hash_new( terms = x$terms, role = x$role, trained = TRUE, columns = col_names, signed = x$signed, num_terms = x$num_terms, collapse = x$collapse, prefix = x$prefix, skip = x$skip, id = x$id ) } bake.step_dummy_hash <- function(object, new_data, ...) { if (length(object$columns) == 0L) { return(new_data) } col_names <- object$columns hash_cols <- col_names if (object$collapse) { new_name <- paste0(col_names, collapse = "_") new_data <- new_data %>% dplyr::rowwise() %>% dplyr::mutate( !!new_name := paste0(dplyr::c_across(dplyr::all_of(hash_cols)), collapse = "") ) hash_cols <- new_name } for (i in seq_along(hash_cols)) { tf_text <- hashing_function( as.character(new_data[[ hash_cols[i] ]]), paste0(hash_cols[i], "_", names0(object$num_terms, object$prefix) ), object$signed, object$num_terms ) new_data <- new_data[, !(colnames(new_data) %in% hash_cols[i]), drop = FALSE] new_data <- vctrs::vec_cbind(tf_text, new_data) } if (object$collapse) { new_data <- new_data[, !(colnames(new_data) %in% col_names), drop = FALSE] } as_tibble(new_data) } print.step_dummy_hash <- function(x, width = max(20, options()$width - 30), ...) { cat("Feature hashing with ", sep = "") printer(x$columns, x$terms, x$trained, width = width) invisible(x) } tidy.step_dummy_hash <- function(x, ...) { if (is_trained(x)) { res <- tibble( terms = unname(x$columns), value = x$signed, num_terms = x$num_terms, collapse = x$collapse ) } else { term_names <- sel2char(x$terms) res <- tibble( terms = term_names, value = na_lgl, num_terms = na_int, collapse = na_lgl ) } res$id <- x$id res } required_pkgs.step_dummy_hash <- function(x, ...) { c("text2vec", "textrecipes") } tunable.step_dummy_hash <- function(x, ...) { tibble::tibble( name = c("signed", "num_terms"), call_info = list( list(pkg = "dials", fun = "signed_hash"), list(pkg = "dials", fun = "num_hash", range = c(8, 12)) ), source = "recipe", component = "step_dummy_hash", component_id = x$id ) }
NULL zmq.poll <- function(socket, type, timeout = -1L, MC = .pbd_env$ZMQ.MC){ if(length(socket) != length(type)){ stop("socket and type are of different length.") } type <- as.integer(type) if(!all(type %in% 1:7)){ stop("type should be integers in 1 to 7.") } zmq.poll.free() ret <- .Call("R_zmq_poll", socket, type, as.integer(timeout), as.logical(MC$check.eintr), PACKAGE = "pbdZMQ") return(invisible(ret)) } zmq.poll.free <- function(){ ret <- .Call("R_zmq_poll_free", PACKAGE = "pbdZMQ") invisible(ret) } zmq.poll.length <- function(){ ret <- .Call("R_zmq_poll_length", PACKAGE = "pbdZMQ") invisible(ret) } zmq.poll.get.revents <- function(index = 1L){ if(index < 1){ stop("index is a positive interger.") } ret <- .Call("R_zmq_poll_get_revents", as.integer(index - 1)[1], PACKAGE = "pbdZMQ") invisible(ret) }
stamp.direction <- function(stmp,dir.mode="CentroidAngle",ndir=4,group=FALSE){ CentroidAngle <- function(stmp,group=FALSE){ stmp$CENDIR <- NA grps <- unique(stmp$GROUP) for (i in grps){ ind <- which(stmp$GROUP == i) if (length(ind) > 1){ t1.base <- stmp[which(stmp$GROUP == i & is.na(stmp$ID1) == FALSE),] c1 <- coordinates(gCentroid(t1.base)) if (group==FALSE){ for (j in ind){ c2 <- coordinates(gCentroid(stmp[j,])) dy <- c2[2] - c1[2] dx <- c2[1] - c1[1] temp <- atan2(dx,dy)*180/pi if (temp < 0){temp <- 360 + temp} stmp$CENDIR[j] <- temp } } else { t2.base <- stmp[which(stmp$GROUP == i & is.na(stmp$ID2) == FALSE),] c2 <- coordinates(gCentroid(t2.base)) dy <- c2[2] - c1[2] dx <- c2[1] - c1[1] temp <- atan2(dx,dy)*180/pi if (temp < 0){temp <- 360 + temp} stmp$CENDIR[ind] <- temp } } } return(stmp) } ConeModel <- function(stmp,ndir=4){ cwidth <- 2*pi/ndir origins <- seq(0,2*pi,by=cwidth) dexpand <- sqrt( (bbox(stmp)[1,2]-bbox(stmp)[1,1])^2 + (bbox(stmp)[2,2]-bbox(stmp)[2,1])^2 ) cols <- paste("DIR",round(origins*180/pi),sep="")[1:ndir] stmp@data[,cols] <- NA grps <- unique(stmp$GROUP) for (i in grps){ ind <- which(stmp$GROUP == i) if (length(ind) > 1){ t1.base <- stmp[which(stmp$GROUP == i & is.na(stmp$ID1) == FALSE),] c1 <- coordinates(gCentroid(t1.base)) for (j in 1:ndir){ theta1 <- origins[j] + 0.5*cwidth theta2 <- origins[j] - 0.5*cwidth c2 <- c1 + c(sin(theta1),cos(theta1))*dexpand c3 <- c1 + c(sin(theta2),cos(theta2))*dexpand cone <- SpatialPolygons(list(Polygons(list(Polygon(rbind(c1,c3,c2,c1))),1)),proj4string=stmp@proj4string) for (k in 1:length(ind)){ into <- gIntersection(cone,stmp[ind[k],]) if (is.null(into) == FALSE) { stmp@data[ind[k],cols[j]] <- gArea(into) } else { stmp@data[ind[k],cols[j]] <- 0 } } } } } return(stmp) } MBRModel <- function(stmp){ dexpand <- sqrt( (bbox(stmp)[1,2]-bbox(stmp)[1,1])^2 + (bbox(stmp)[2,2]-bbox(stmp)[2,1])^2 ) c1 <- c(1,2,3,5,6,7,9,10,11) cols <- c("SW","S","SE","W","SAME","E","NW","N","NE") stmp@data[,cols] <- NA grps <- unique(stmp$GROUP) for (i in grps){ ind <- which(stmp$GROUP == i) if (length(ind) > 1){ t1.base <- stmp[which(stmp$GROUP == i & is.na(stmp$ID1) == FALSE),] t1.bbox <- bbox(t1.base) x.tmp <- c(t1.bbox[1,1]-dexpand,t1.bbox[1,1],t1.bbox[1,2],t1.bbox[1,2]+dexpand) y.tmp <- c(t1.bbox[2,1]-dexpand,t1.bbox[2,1],t1.bbox[2,2],t1.bbox[2,2]+dexpand) crds <- expand.grid(list(x=x.tmp,y=y.tmp)) for (j in 1:9){ ind.crds <- c(c1[j],c1[j]+4,c1[j]+5,c1[j]+1,c1[j]) box.poly <- SpatialPolygons(list(Polygons(list(Polygon(crds[ind.crds,])),1)),proj4string=stmp@proj4string) for (k in 1:length(ind)){ into <- gIntersection(box.poly,stmp[ind[k],]) if (is.null(into) == FALSE) { stmp@data[ind[k],cols[j]] <- gArea(into) } else { stmp@data[ind[k],cols[j]] <- 0 } } } } } return(stmp) } ModConeModel <- function(stmp,ndir=4){ allcoords = function(x) { vert = NULL polys = slot(x,'polygons') for(i in 1:length(polys)) { pp = slot(polys[[i]],'Polygons') for (j in 1:length(pp)) {vert = rbind(vert, coordinates(pp[[j]]))} } return(data.frame(x=vert[,1],y=vert[,2])) } voronoipolygons <- function(x,poly) { if (.hasSlot(x, 'coords')) { crds <- slot(x,'coords') } else crds <- x bb = bbox(poly) rw = as.numeric(t(bbox(poly))) z <- deldir(crds[,1], crds[,2],rw=rw,supressMsge=TRUE) w <- tile.list(z) polys <- vector(mode='list', length=length(w)) for (i in seq(along=polys)) { pcrds <- cbind(w[[i]]$x, w[[i]]$y) pcrds <- rbind(pcrds, pcrds[1,]) polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i)) } SP <- SpatialPolygons(polys) voronoi <- SpatialPolygonsDataFrame(SP, data=data.frame(x=crds[,1],y=crds[,2], row.names=sapply(slot(SP, 'polygons'),function(x) slot(x, 'ID')))) return(voronoi) } ModVoronoi <- function(multi.pol,bbox.sp){ verts <- unique(allcoords(multi.pol)) vor <- voronoipolygons(verts,gBuffer(bbox.sp,width=1)) data <- vor@data slot(vor,'proj4string') <- slot(bbox.sp,'proj4string') vor <- gIntersection(vor,bbox.sp,byid=T,id=as.character(1:length(vor))) vor <- SpatialPolygonsDataFrame(vor,data=data) vor$own <- NA for (p in 1:length(multi.pol)){vor$own[gIntersects(vor,multi.pol[p,],byid=T)] <- multi.pol@polygons[[p]]@ID} vor <- unionSpatialPolygons(vor,vor$own) return(vor) } if (ndir == 4) { cols <- c("N","E","S","W") slot(stmp,'data')[,cols] <- 0 c2.ind <- c(3,4,2,1) c4.ind <- c(4,2,1,3) } if (ndir == 8) { cols <- c("N","NE","E","SE","S","SW","W","NW") slot(stmp,'data')[,cols] <- 0 c2.ind <- c(22,24,20,10,4,2,6,16) c3.ind <- c(23,25,15,5,3,1,11,21) c4.ind <- c(24,20,10,4,2,6,16,22) } grps <- unique(stmp$GROUP) for (i in grps){ ind <- which(stmp$GROUP == i) stb <- which(stmp$LEV3[ind] == "STBL") if (length(ind) > 1){ bbox.sp <- gEnvelope(stmp[ind,]) if (ndir == 4){ x.tmp <- bbox(stmp[ind,])[1,] y.tmp <- bbox(stmp[ind,])[2,] crds <- expand.grid(x=x.tmp,y=y.tmp) } if (ndir == 8){ dx <- bbox(stmp[ind,])[1,2] - bbox(stmp[ind,])[1,1] x.tmp <- c(bbox(stmp[ind,])[1,1],bbox(stmp[ind,])[1,1] + 0.25*dx,bbox(stmp[ind,])[1,1] + 0.5*dx, bbox(stmp[ind,])[1,1] + 0.75*dx, bbox(stmp[ind,])[1,2]) dy <- bbox(stmp[ind,])[2,2] - bbox(stmp[ind,])[2,1] y.tmp <- c(bbox(stmp[ind,])[2,1],bbox(stmp[ind,])[2,1] + 0.25*dy,bbox(stmp[ind,])[2,1] + 0.5*dy, bbox(stmp[ind,])[2,1] + 0.75*dy, bbox(stmp[ind,])[2,2]) crds <- expand.grid(x=x.tmp,y=y.tmp) } if (length(stb) < 1){ t1.base <- stmp[which(stmp$GROUP == i & is.na(stmp$ID1) == FALSE),] c1 <- coordinates(gCentroid(t1.base)) for (j in 1:ndir){ c2 <- crds[c2.ind[j],] c4 <- crds[c4.ind[j],] if (ndir==8){c3 <- crds[c3.ind[j],]} else{c3 <- (c2+c4)/2} cone <- SpatialPolygons(list(Polygons(list(Polygon(rbind(c1,c2,c3,c4,c1))),1)),proj4string=stmp@proj4string) for (k in 1:length(ind)){ into <- gIntersection(cone,stmp[ind[k],]) if (is.null(into) == FALSE) { stmp@data[ind[k],cols[j]] <- gArea(into) } } } } else if (length(stb) == 1){ ID1.stb <- unique(stmp$ID1[ind[stb]]) T1.stb <- stmp[which(stmp$ID1 %in% ID1.stb),] c1 <- coordinates(gCentroid(T1.stb)) for (j in 1:ndir){ c2 <- crds[c2.ind[j],] c4 <- crds[c4.ind[j],] if (ndir==8){c3 <- crds[c3.ind[j],]} else{c3 <- (c2+c4)/2} cone <- SpatialPolygons(list(Polygons(list(Polygon(rbind(c1,c2,c3,c4,c1))),1)),proj4string=stmp@proj4string) for (k in 1:length(ind)){ into <- gIntersection(cone,stmp[ind[k],]) if (!is.null(into)) { stmp@data[ind[k],cols[j]] <- gArea(into) } } } } else { print('c3c') ID1.stb <- unique(stmp$ID1[ind[stb]]) T1.stb <- stmp[which(stmp$ID1 %in% ID1.stb),] if (stmp$LEV4[ind[1]] == "UNION"){ vor.p <- ModVoronoi(T1.stb,bbox.sp) } else if (stmp$LEV4[ind[1]] == "DIVISION"){ ID2.stb <- unique(stmp$ID2[ind[stb]]) T2.stb <- stmp[which(row.names(stmp) %in% ID2.stb),] vor.p <- ModVoronoi(T2.stb,bbox.sp) } else{ vor.p1 <-ModVoronoi(T1.stb,bbox.sp) ID2.stb <- unique(stmp$ID2[ind[stb]]) T2.stb <- stmp[which(row.names(stmp) %in% ID2.stb),] vor.p2 <- ModVoronoi(T2.stb,bbox.sp) vor.p <- gIntersection(vor.p1,vor.p2,byid=T) } for (vor in 1:length(vor.p)){ print('c4') c1 <- coordinates(gCentroid(gIntersection(T1.stb,vor.p[vor,]))) for (j in 1:ndir){ c2 <- crds[c2.ind[j],] c4 <- crds[c4.ind[j],] if (ndir==8){c3 <- crds[c3.ind[j],]} else{c3 <- (c2+c4)/2} cone <- SpatialPolygons(list(Polygons(list(Polygon(rbind(c1,c2,c3,c4,c1))),1)),proj4string=stmp@proj4string) modCone <- gIntersection(cone,vor.p[vor,]) for (k in 1:length(ind)){ into <- gIntersection(modCone,stmp[ind[k],]) if (is.null(into) == FALSE) { stmp@data[ind[k],cols[j]] <- stmp@data[ind[k],cols[j]] + gArea(into) } } } } } } else {stmp@data[ind,cols] <- NA} } return(stmp) } stmp <- switch(dir.mode, CentroidAngle = CentroidAngle(stmp,group), ConeModel = ConeModel(stmp,ndir), MBRModel = MBRModel(stmp), ModConeModel = ModConeModel(stmp,ndir), stop(paste("The direction method is does not exist: ",dir.mode))) return(stmp) }
visual_testing <- grepl("true", Sys.getenv("VISUAL_TESTS"), fixed = TRUE) message("Visual testing is ", if (!visual_testing) "not ", "enabled.") imageServer <- if (visual_testing) { kaleido() } else { list(transform = function(...) stop("Visual testing is disabled!")) } expect_doppelganger <- function(p, name, ...) { testthat::local_edition(3) name <- str_standardise(name) file <- paste0(name, ".svg") path <- tempfile(file, fileext = ".svg") testthat::announce_snapshot_file(path, name = file) if (!visual_testing) { return(invisible(NULL)) } set.seed(555) write_plotly_svg(p, path) testthat::expect_snapshot_file(path = path, name = file, cran = FALSE) } expect_doppelganger_built <- function(p, name, ...) { expect_doppelganger(p, name, ...) plotly_build(p)$x[c("data", "layout")] } write_plotly_svg <- function(p, file) { p <- plotly_build(p) uid_data <- paste0("-vdiffr-plotly-", seq_along(p$x$data)) p$x$data <- Map(function(tr, id) { tr$uid <- id; tr }, p$x$data, uid_data) owd <- setwd(dirname(file)) on.exit(setwd(owd)) imageServer$transform(p, file = basename(file), width = 640, height = 480) svg_txt <- readLines(file, warn = FALSE) strextract <- function(str, pattern) regmatches(str, regexpr(pattern, str)) def <- strextract(svg_txt, 'defs id=\\"defs-[[:alnum:]]+\\"') uid <- sub("defs-", "", strextract(def, "defs-[[:alnum:]]+")) svg_txt <- gsub(uid, "", svg_txt, fixed = TRUE) writeLines(svg_txt, file) } str_standardise <- function(s, sep = "-") { stopifnot(rlang::is_scalar_character(s)) s <- gsub("[^a-z0-9]", sep, tolower(s)) s <- gsub(paste0(sep, sep, "+"), sep, s) s <- gsub(paste0("^", sep, "|", sep, "$"), "", s) s }
NULL lfmm_fit <- function(m, dat, ...) { UseMethod("lfmm_fit") } lfmm_fit_knowing_loadings <- function(m, dat, ...) { UseMethod("lfmm_fit_knowing_loadings") } lfmm_impute <- function(m, dat, ...) { UseMethod("lfmm_impute") } lfmm_residual_error2 <- function(m, dat, ...) { UseMethod("lfmm_residual_error2") }
gssanova1 <- function(formula,family,type=NULL,data=list(),weights, subset,offset,na.action=na.omit,partial=NULL, method=NULL,varht=1,alpha=1.4,nu=NULL, id.basis=NULL,nbasis=NULL,seed=NULL,random=NULL, skip.iter=FALSE) { if (!(family%in%c("binomial","poisson","Gamma","nbinomial","inverse.gaussian", "polr","weibull","lognorm","loglogis"))) stop("gss error in gssanova1: family not implemented") mf <- match.call() mf$family <- mf$type <- mf$partial <- NULL mf$method <- mf$varht <- mf$nu <- NULL mf$alpha <- mf$id.basis <- mf$nbasis <- mf$seed <- NULL mf$random <- mf$skip.iter <- NULL mf[[1]] <- as.name("model.frame") mf <- eval(mf,parent.frame()) wt <- model.weights(mf) nobs <- dim(mf)[1] if (is.null(id.basis)) { if (is.null(nbasis)) nbasis <- max(30,ceiling(10*nobs^(2/9))) if (nbasis>=nobs) nbasis <- nobs if (!is.null(seed)) set.seed(seed) id.basis <- sample(nobs,nbasis,prob=wt) } else { if (max(id.basis)>nobs|min(id.basis)<1) stop("gss error in gssanova: id.basis out of range") nbasis <- length(id.basis) } term <- mkterm(mf,type) if (!is.null(random)) { if (class(random)=="formula") random <- mkran(random,data) } if (is.null(method)) { method <- switch(family, binomial="u", nbinomial="u", poisson="u", inverse.gaussian="v", Gamma="v", polr="u", weibull="u", lognorm="u", loglogis="u") } s <- r <- NULL nq <- 0 for (label in term$labels) { if (label=="1") { s <- cbind(s,rep(1,len=nobs)) next } x <- mf[,term[[label]]$vlist] x.basis <- mf[id.basis,term[[label]]$vlist] nphi <- term[[label]]$nphi nrk <- term[[label]]$nrk if (nphi) { phi <- term[[label]]$phi for (i in 1:nphi) s <- cbind(s,phi$fun(x,nu=i,env=phi$env)) } if (nrk) { rk <- term[[label]]$rk for (i in 1:nrk) { nq <- nq+1 r <- array(c(r,rk$fun(x,x.basis,nu=i,env=rk$env,out=TRUE)),c(nobs,nbasis,nq)) } } } if (is.null(r)) stop("gss error in gssanova1: use glm for models with only unpenalized terms") if (!is.null(partial)) { mf.p <- model.frame(partial,data) for (lab in colnames(mf.p)) mf[,lab] <- mf.p[,lab] mt.p <- attr(mf.p,"terms") lab.p <- labels(mt.p) matx.p <- model.matrix(mt.p,data)[,-1,drop=FALSE] if (dim(matx.p)[1]!=dim(mf)[1]) stop("gss error in ssanova: partial data are of wrong size") matx.p <- scale(matx.p) center.p <- attr(matx.p,"scaled:center") scale.p <- attr(matx.p,"scaled:scale") s <- cbind(s,matx.p) part <- list(mt=mt.p,center=center.p,scale=scale.p) } else part <- lab.p <- NULL if (qr(s)$rank<dim(s)[2]) stop("gss error in gssanova: unpenalized terms are linearly dependent") if (family=="polr") { y <- model.response(mf) if (!is.factor(y)) stop("gss error in gssanova1: need factor response for polr family") lvls <- levels(y) if (nlvl <- length(lvls)<3) stop("gss error in gssanova1: need at least 3 levels to fit polr family") y <- outer(y,lvls,"==") } else y <- model.response(mf,"numeric") offset <- model.offset(mf) if (!is.null(offset)) { term$labels <- c(term$labels,"offset") term$offset <- list(nphi=0,nrk=0) } nu.wk <- list(NULL,FALSE) if ((family=="nbinomial")&is.vector(y)) nu.wk <- list(NULL,TRUE) if (family%in%c("weibull","lognorm","loglogis")) { if (is.null(nu)) nu.wk <- list(nu,TRUE) else nu.wk <- list(nu,FALSE) } z <- ngreg1(family,s,r,id.basis,y,wt,offset,method,varht,alpha,nu.wk, random,skip.iter) desc <- NULL for (label in term$labels) desc <- rbind(desc,as.numeric(c(term[[label]][c("nphi","nrk")]))) if (!is.null(partial)) { desc <- rbind(desc,matrix(c(1,0),length(lab.p),2,byrow=TRUE)) } desc <- rbind(desc,apply(desc,2,sum)) if (is.null(partial)) rownames(desc) <- c(term$labels,"total") else rownames(desc) <- c(term$labels,lab.p,"total") colnames(desc) <- c("Unpenalized","Penalized") obj <- c(list(call=match.call(),family=family,mf=mf,terms=term,desc=desc, alpha=alpha,id.basis=id.basis,partial=part,lab.p=lab.p, random=random,skip.iter=skip.iter),z) class(obj) <- c("gssanova","ssanova") obj } ngreg1 <- function(family,s,r,id.basis,y,wt,offset,method,varht,alpha,nu, random,skip.iter) { nobs <- dim(s)[1] nq <- dim(r)[3] eta <- rep(0,nobs) if (family%in%c("Gamma","inverse.gaussian")) { yy <- log(y) if (!is.null(offset)) yy <- yy-offset if (nq==1) { z <- sspreg1(s,r[,,1],r[id.basis,,1],yy,wt,"v",alpha,varht,random) eta <- s%*%z$d+10^z$theta*r[,,1]%*%z$c if (!is.null(random)) eta <- eta+random$z%*%z$b eta <- as.vector(eta) } else { z <- mspreg1(s,r,id.basis,yy,wt,"v",alpha,varht,random,skip.iter) r.wk <- 0 for (i in 1:nq) r.wk <- r.wk+10^z$theta[i]*r[,,i] eta <- s%*%z$d+r.wk%*%z$c if (!is.null(random)) eta <- eta+random$z%*%z$b eta <- as.vector(eta) } } if (nu[[2]]&is.null(nu[[1]])) { wk <- switch(family, nbinomial=mkdata.nbinomial(y,eta,wt,offset,NULL), weibull=mkdata.weibull(y,eta,wt,offset,nu), lognorm=mkdata.lognorm(y,eta,wt,offset,nu), loglogis=mkdata.loglogis(y,eta,wt,offset,nu)) nu <- wk$nu } if (family=="polr") { if (is.null(wt)) P <- apply(y,2,sum) else P <- apply(y*wt,2,sum) P <- P/sum(P) P <- cumsum(P) nnu <- length(P)-2 eta <- rep(qlogis(P[1]),nobs) nu <- diff(qlogis(P[-(nnu+2)])) } iter <- 0 repeat { iter <- iter+1 dat <- switch(family, binomial=mkdata.binomial(y,eta,wt,offset), nbinomial=mkdata.nbinomial(y,eta,wt,offset,nu), polr=mkdata.polr(y,eta,wt,offset,nu), poisson=mkdata.poisson(y,eta,wt,offset), inverse.gaussian=mkdata.inverse.gaussian(y,eta,wt,offset), Gamma=mkdata.Gamma(y,eta,wt,offset), weibull=mkdata.weibull(y,eta,wt,offset,nu), lognorm=mkdata.lognorm(y,eta,wt,offset,nu), loglogis=mkdata.loglogis(y,eta,wt,offset,nu)) nu <- dat$nu w <- as.vector(sqrt(dat$wt)) if (nq==1) { z <- sspreg1(s,r[,,1],r[id.basis,,1],dat$ywk,w,method,alpha,varht,random) } else z <- mspreg1(s,r,id.basis,dat$ywk,w,method,alpha,varht,random,skip.iter) r.wk <- 0 for (i in 1:nq) r.wk <- r.wk + 10^z$theta[i]*r[,,i] if (!is.null(random)) r.wk <- cbind(r.wk,random$z) eta.new <- as.vector(s%*%z$d+r.wk%*%c(z$c,z$b)) if (!is.null(offset)) eta.new <- eta.new + offset disc <- sum(dat$wt*((eta-eta.new)/(1+abs(eta)))^2)/sum(dat$wt) eta <- eta.new if (disc<1e-7) break if (iter>=30) { warning("gss warning in gssanova1: performance-oriented iteration fails to converge") break } } if (is.list(nu)) nu <- nu[[1]] c(z,list(nu=nu,eta=eta,w=dat$wt)) }
testthat::context("Cheking all functions form packages") library(NADIA) library(testthat) test_set <- iris test_set$Sepal.Length[sample(1:150, 50)] <- NA test_set$Species[sample(1:150, 50)] <- NA col_type <- 1:5 col_type <- c(rep("numeric", 4), "factor") percent_of_missing <- 1:5 for (i in percent_of_missing) { percent_of_missing[i] <- (sum(is.na(test_set[, i])) / length(test_set)) * 100 } col_no_miss <- colnames(test_set)[percent_of_missing == 0] col_miss <- colnames(test_set)[percent_of_missing > 0] test_set <- iris test_set$Sepal.Length[sample(1:150, 50)] <- NA test_set$Species[sample(1:150, 50)] <- NA col_type <- 1:5 col_type <- c(rep("numeric", 4), "factor") percent_of_missing <- 1:5 for (i in percent_of_missing) { percent_of_missing[i] <- (sum(is.na(test_set[, i])) / length(test_set)) * 100 } col_no_miss <- colnames(test_set)[percent_of_missing == 0] col_miss <- colnames(test_set)[percent_of_missing > 0] test_that("Modyfied iris set Amleia", { expect_equal(sum(is.na(autotune_Amelia(test_set, col_type = col_type, percent_of_missing = percent_of_missing,parallel = FALSE))), 0) }) test_that("Modyfied iris set mice", { expect_equal(sum(is.na(autotune_mice(test_set, col_miss = col_miss, col_no_miss = col_no_miss, col_type = col_type, percent_of_missing = percent_of_missing, optimize = F, iter = 2))), 0) }) test_that("Modyfied iris set missForest", { expect_equal(sum(is.na(autotune_missForest(test_set, col_type = col_type, percent_of_missing = percent_of_missing, parallel = FALSE, optimize = FALSE))), 0) }) test_that("Modyfied iris set missRanger", { expect_equal(sum(is.na(autotune_missRanger(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set softImpute", { expect_equal(sum(is.na(autotune_softImpute(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set VIM_HD", { expect_equal(sum(is.na(autotune_VIM_hotdeck(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set VIM_irmi", { expect_equal(sum(is.na(autotune_VIM_Irmi(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set VIM_knn", { expect_equal(sum(is.na(autotune_VIM_kNN(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set ViM_regrImp", { expect_equal(sum(is.na(autotune_VIM_regrImp(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_that("Modyfied iris set missMDA FMAD", { expect_equal(sum(is.na(missMDA_FMAD_MCA_PCA(test_set, col_type = col_type, percent_of_missing = percent_of_missing, optimize_ncp = FALSE))), 0) }) test_that("Modyfied iris set missMDA MFA", { expect_equal(sum(is.na(missMDA_MFA(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_set <- data.frame( "a" = runif(100, 0, 10), "b" = rnorm(100, 0, 3), "c" = rbeta(100, 2, 2), "d" = rcauchy(100), "f" = rweibull(n = 100, 100, 3)) for (i in 1:5) { test_set[, i][sample(1:100, sample(1:70, 1))] <- NA } col_type <- rep("numeric", 5) percent_of_missing <- 1:5 for (i in percent_of_missing) { percent_of_missing[i] <- (sum(is.na(test_set[, i])) / length(test_set)) * 100 } col_no_miss <- colnames(test_set)[percent_of_missing == 0] col_miss <- colnames(test_set)[percent_of_missing > 0] test_that("Small numeric data set Amleia", { expect_equal(sum(is.na(autotune_Amelia(test_set, col_type = col_type, percent_of_missing = percent_of_missing,parallel = FALSE))), 0) }) test_that("Small numeric data set mice", { expect_error(sum(is.na(autotune_mice(test_set, col_miss = col_miss, col_no_miss = col_no_miss, col_type = col_type, percent_of_missing = percent_of_missing, optimize = F, iter = 2))), "`mice` detected constant and/or collinear variables. No predictors were left after their removal.") }) test_that("Small numeric data set missForest", { expect_equal(sum(is.na(autotune_missForest(test_set, col_type = col_type, percent_of_missing = percent_of_missing, parallel = FALSE, optimize = FALSE))), 0) }) test_that("Small numeric data set missRanger", { expect_equal(sum(is.na(autotune_missRanger(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Small numeric data set softImpute", { expect_equal(sum(is.na(autotune_softImpute(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_that("Small numeric data set VIM_HD", { expect_equal(sum(is.na(autotune_VIM_hotdeck(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Small numeric data set VIM_irmi", { expect_equal(sum(is.na(autotune_VIM_Irmi(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_that("Small numeric data set VIM_knn", { expect_equal(sum(is.na(autotune_VIM_kNN(test_set, percent_of_missing = percent_of_missing))), 0) }) test_that("Small numeric data set VIM_regrImp", { expect_error(sum(is.na(autotune_VIM_regrImp(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), "No values with no missing values") }) test_that("Small numeric data set missMDA FMAD...", { expect_equal(sum(is.na(missMDA_FMAD_MCA_PCA(test_set, col_type = col_type, percent_of_missing = percent_of_missing, optimize_ncp = FALSE))), 0) }) test_that("Small numeric data set missMDA MFA", { expect_equal(sum(is.na(missMDA_MFA(test_set, col_type = col_type, percent_of_missing = percent_of_missing))), 0) }) test_set <- iris test_set$Sepal.Length[sample(1:150, 50)] <- NA test_set$Species[sample(1:150, 50)] <- NA col_type <- 1:5 col_type <- c(rep("numeric", 3), "integer", "factor") test_set[, 4] <- as.integer(1:150) percent_of_missing <- 1:5 for (i in percent_of_missing) { percent_of_missing[i] <- (sum(is.na(test_set[, i])) / length(test_set)) * 100 } col_no_miss <- colnames(test_set)[percent_of_missing == 0] col_miss <- colnames(test_set)[percent_of_missing > 0] test_that("Corect class return Amelia", { imp_set <- autotune_Amelia(test_set, col_type = col_type, percent_of_missing = percent_of_missing) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return mice", { imp_set <- autotune_mice(test_set, col_type = col_type, percent_of_missing = percent_of_missing, col_miss = col_miss, col_no_miss = col_no_miss, iter = 2, optimize = FALSE) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return missForest", { imp_set <- autotune_missForest(test_set, col_type = col_type, percent_of_missing = percent_of_missing, optimize = FALSE) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return missRanger", { imp_set <- autotune_missRanger(test_set, percent_of_missing = percent_of_missing) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return softImpute", { imp_set <- autotune_softImpute(test_set, percent_of_missing = percent_of_missing, col_type = col_type) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return ViM_HD", { imp_set <- autotune_VIM_hotdeck(test_set, percent_of_missing = percent_of_missing) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return ViM_IRMI", { imp_set <- autotune_VIM_Irmi(test_set, percent_of_missing = percent_of_missing, col_type = col_type) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return ViM_regrImp", { imp_set <- autotune_VIM_regrImp(test_set, percent_of_missing = percent_of_missing, col_type = col_type) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return ViM_knn", { imp_set <- autotune_VIM_kNN(test_set, percent_of_missing = percent_of_missing) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return missMDA FMAD...", { imp_set <- missMDA_FMAD_MCA_PCA(test_set, percent_of_missing = percent_of_missing, col_type = col_type, optimize_ncp = FALSE) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Corect class return missMDA MFA", { imp_set <- missMDA_MFA(test_set, percent_of_missing = percent_of_missing, col_type = col_type) imp_type <- 1:5 for (i in 1:5) { imp_type[i] <- class(imp_set[, i]) } expect_equal(imp_type, col_type) }) test_that("Optimlaization test", { test_set <- iris test_set$Sepal.Length[sample(1:150, 50)] <- NA test_set$Species[sample(1:150, 50)] <- NA col_type <- 1:5 col_type <- c(rep("numeric", 3), "integer", "factor") test_set[, 4] <- as.integer(1:150) percent_of_missing <- 1:5 for (i in percent_of_missing) { percent_of_missing[i] <- (sum(is.na(test_set[, i])) / length(test_set)) * 100 } col_no_miss <- colnames(test_set)[percent_of_missing == 0] col_miss <- colnames(test_set)[percent_of_missing > 0] skip_on_cran() expect_equal(sum(is.na(autotune_mice(test_set, col_miss = col_miss, col_no_miss = col_no_miss, col_type = col_type, percent_of_missing = percent_of_missing, optimize = TRUE, iter = 5))), 0) expect_equal(sum(is.na(autotune_missForest(test_set, col_type = col_type, percent_of_missing = percent_of_missing, parallel = FALSE, optimize = TRUE))), 0) expect_equal(sum(is.na(autotune_missRanger(test_set, percent_of_missing = percent_of_missing, optimize = TRUE))), 0) expect_equal(sum(is.na(missMDA_FMAD_MCA_PCA(test_set, col_type = col_type, percent_of_missing = percent_of_missing, optimize_ncp = TRUE))), 0) }) test_set <- as.data.frame(tsk('pima')$data()) test_that("Pima set Amleia", { expect_equal(sum(is.na(autotune_Amelia(test_set, parallel = FALSE))), 0) }) test_that("Pima set mice", { expect_equal(sum(is.na(autotune_mice(test_set, optimize = F))), 0) }) test_that("Pima set missForest", { expect_equal(sum(is.na(autotune_missForest(test_set, parallel = FALSE, optimize = FALSE))), 0) }) test_that("Pima set missRanger", { expect_equal(sum(is.na(autotune_missRanger(test_set ))), 0) }) test_that("Pima set softImpute", { expect_equal(sum(is.na(autotune_softImpute(test_set))), 0) }) test_that("Pima set VIM_HD", { expect_equal(sum(is.na(autotune_VIM_hotdeck(test_set))), 0) }) test_that("Pima set VIM_irmi", { expect_equal(sum(is.na(autotune_VIM_Irmi(test_set ))), 0) }) test_that("Pima set VIM_knn", { expect_equal(sum(is.na(autotune_VIM_kNN(test_set ))), 0) }) test_that("Pima set ViM_regrImp", { expect_equal(sum(is.na(autotune_VIM_regrImp(test_set))), 0) }) test_that("Pima set missMDA FMAD", { expect_equal(sum(is.na(missMDA_FMAD_MCA_PCA(test_set, optimize_ncp = FALSE))), 0) }) test_that("Pima set missMDA MFA", { expect_equal(sum(is.na(missMDA_MFA(test_set))), 0) })
context("test cor_phylo output") test_that("cor_phylo produces proper output", { skip_on_cran() n <- 50 p <- 2 Rs <- c(0.8) d <- c(0.3, 0.6) M <- matrix(c(0.25, 0.6), nrow = n, ncol = p, byrow = TRUE) X_means <- c(1, 2) X_sds <- c(1, 0.5) U_means <- list(NULL, 2) U_sds <- list(NULL, 10) B <- list(NULL, 0.1) data_list <- phyr:::sim_cor_phylo_variates(n, Rs, d, M, X_means, X_sds, U_means, U_sds, B) SeM <- as.matrix(data_list$data[, grepl("^se", colnames(data_list$data))]) rownames(SeM) <- data_list$data$species X <- as.matrix(data_list$data[, grepl("^par", colnames(data_list$data))]) rownames(X) <- data_list$data$species U <- lapply(1:p, function(i) { UM <- as.matrix(data_list$data[,grepl(paste0("^cov", i), colnames(data_list$data))]) if (ncol(UM) == 0) return(NULL) rownames(UM) <- data_list$data$species return(UM) }) phyr_cp <- cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species, method = "nelder-mead-r", lower_d = 0) ape_cp <- ape::corphylo(X = X, SeM = SeM, U = U, phy = data_list$phy, method = "Nelder-Mead") expect_is(phyr_cp, "cor_phylo") expect_equivalent(names(phyr_cp), c("corrs", "d", "B", "B_cov", "logLik", "AIC", "BIC", "niter", "convcode", "rcond_vals", "bootstrap", "call"), label = "Names not correct.") phyr_cp_names <- sapply(names(phyr_cp), function(x) class(phyr_cp[[x]])) expected_classes <- c(corrs = "matrix", d = "matrix", B = "matrix", B_cov = "matrix", logLik = "numeric", AIC = "numeric", BIC = "numeric", niter = "numeric", convcode = "integer", rcond_vals = "numeric", bootstrap = "list", call = "call") expect_class_equal <- function(par_name) { eval(bquote(expect_equal(class(phyr_cp[[.(par_name)]])[1], expected_classes[[.(par_name)]]))) } for (n_ in names(phyr_cp)) expect_class_equal(n_) expect_par_equal <- function(cp_par, ape_par = NULL) { if (is.null(ape_par)) ape_par <- cp_par eval(bquote(expect_equivalent(phyr_cp[[.(cp_par)]], ape_cp[[.(ape_par)]]))) } expect_par_equal("corrs", "cor.matrix") expect_par_equal("logLik") expect_par_equal("d") expect_par_equal("AIC") expect_par_equal("BIC") expect_par_equal("convcode") phyr_cp$convcode <- 1 expect_output(print(phyr_cp), regexp = "Warning: convergence in .* not reached") Vphy <- ape::vcv(data_list$phy) phyr_cp <- cor_phylo(variates = ~ par1 + par2, meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = Vphy, REML = FALSE, species = ~ species, method = "subplex") expect_is(phyr_cp, "cor_phylo") expect_equivalent(names(phyr_cp), c("corrs", "d", "B", "B_cov", "logLik", "AIC", "BIC", "niter", "convcode", "rcond_vals", "bootstrap", "call"), label = "Names not correct.") phyr_cp_names <- sapply(names(phyr_cp), function(x) class(phyr_cp[[x]])) expected_classes <- c(corrs = "matrix", d = "matrix", B = "matrix", B_cov = "matrix", logLik = "numeric", AIC = "numeric", BIC = "numeric", niter = "numeric", convcode = "integer", rcond_vals = "numeric", bootstrap = "list", call = "call") for (n_ in names(phyr_cp)) expect_class_equal(n_) phyr_cp$convcode <- 1 expect_output(print(phyr_cp), regexp = "Warning: convergence in .* not reached") cp_out <- capture.output({ phyr_cp_sann <- cor_phylo(variates = ~ par1 + par2, meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = Vphy, species = ~ species, method = "sann", verbose = TRUE, sann_options = list(maxit = 100, temp = 1.1, tmax = 2)) }) cp_out <- unique(sapply(strsplit(cp_out, split = "\\s+"), length)) expect_identical(cp_out, 6L) expect_error(cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), species = ~ species, data = data_list$data, phy = ape::rtree(n, br = NULL)), regexp = "The input phylogeny has no branch lengths") expect_error(cor_phylo(variates = ~ par1, data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "argument `variates` should have >= 2 variables.") expect_error(cor_phylo(variates = c("par1", "par2"), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "The `variates` argument to `cor_phylo` must be a formula or matrix") expect_error(cor_phylo(variates = ~ par1 + par2, covariates = c("cov2a"), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "arg `covariates` must be NULL or a list") expect_error(cor_phylo(variates = ~ par1 + par2, meas_errors = c("se2"), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = paste("The `meas_errors` argument to `cor_phylo` must be NULL,", "a list, or matrix.")) x <- data_list$data$par1[10] data_list$data$par1[10] <- NA expect_error(cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "NAs are not allowed in `variates`") data_list$data$par1[10] <- x x <- data_list$data$cov2a[10] data_list$data$cov2a[10] <- NA expect_error(cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "NAs are not allowed in `covariates`") data_list$data$cov2a[10] <- x x <- data_list$data$se1[10] data_list$data$se1[10] <- NA expect_error(cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "NAs are not allowed in `meas_errors`") data_list$data$se1[10] <- x x <- data_list$data$species[10] data_list$data$species[10] <- NA expect_error(cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species), regexp = "NAs are not allowed in `species`") data_list$data$species[10] <- x cp_output_tests <- list(forms = NA, matrices = NA) cp_output_tests$forms <- cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), species = ~ species, phy = data_list$phy, data = data_list$data) X <- as.matrix(data_list$data[,c("par1", "par2")]) U <- list(par2 = cbind(cov2a = data_list$data$cov2a)) M <- cbind(par1 = data_list$data$se1, par2 = data_list$data$se2) cp_output_tests$matrices <- cor_phylo(variates = X, covariates = U, meas_errors = M, species = data_list$data$species, phy = data_list$phy) for (i in 2:length(cp_output_tests)) { expect_equal(cp_output_tests[[1]][-length(cp_output_tests[[1]])], cp_output_tests[[i]][-length(cp_output_tests[[i]])], label = names(cp_output_tests)[1], expected.label = names(cp_output_tests)[i]) } cp <- cor_phylo(variates = ~ par1 + par2, covariates = list(par2 ~ cov2a), meas_errors = list(par1 ~ se1, par2 ~ se2), data = data_list$data, phy = data_list$phy, species = ~ species, boot = 1, keep_boots = "all") cp2 <- cor_phylo(variates = X, covariates = U, meas_errors = M, species = data_list$data$species, phy = data_list$phy, boot = 1, keep_boots = "all") cp_bci <- boot_ci(cp) cp_bci2 <- boot_ci(cp2) expect_identical(names(cp_bci), c("corrs", "d", "B0", "B_cov")) expect_identical(names(cp_bci2), c("corrs", "d", "B0", "B_cov")) expect_identical(paste(sapply(cp_bci, function(i) class(i)[1])), rep("matrix", 4)) expect_identical(paste(sapply(cp_bci2, function(i) class(i)[1])), rep("matrix", 4)) expect_output(print(cp), regexp = "Bootstrapped 95\\% CIs \\(.* reps\\):") expect_output(print(cp2), regexp = "Bootstrapped 95\\% CIs \\(.* reps\\):") cp_refit <- refit_boots(cp) cp_refit2 <- refit_boots(cp2) expect_output(print(cp_refit), "< Refits to cor_phylo bootstraps >") expect_output(print(cp_refit2), "< Refits to cor_phylo bootstraps >") data_list$data$par3 <- runif(nrow(data_list$data)) * data_list$data$par1 phyr_cp_nc <- cor_phylo(variates = ~ par1 + par2 + par3, data = data_list$data, phy = data_list$phy, species = ~ species, method = "nelder-mead-r", no_corr = TRUE) expect_equal(sum(phyr_cp_nc$corrs[lower.tri(phyr_cp_nc$corrs)]), 0) expect_equal(sum(phyr_cp_nc$corrs[upper.tri(phyr_cp_nc$corrs)]), 0) phyr_cp <- cor_phylo(variates = ~ par1 + par2, data = data_list$data, phy = data_list$phy, species = ~ species, constrain_d = TRUE) expect_output(print(phyr_cp), "Call to cor_phylo:") })
context("Test default user key") test_that("reading protected keys", { sk1 <- rsa_keygen() pk1 <- as.list(sk1)$pubkey tmp_key <- tempfile() tmp_pubkey <- tempfile() write_pem(sk1, tmp_key, password = NULL) write_pem(pk1, tmp_pubkey) Sys.setenv("USER_KEY" = tmp_key) expect_equal(sk1, my_key()) expect_equal(pk1, my_pubkey()) })
getPencilLayer <- function(x, size = 100, buffer = 1000, lefthanded = TRUE){ a <- median(sf::st_area(sf::st_set_crs(x, NA))) size <- size * size . <- lapply(sf::st_geometry(x), makelines, size = size, buffer = buffer, lefthanded = lefthanded, a = a) . <- sf::st_sfc(do.call(rbind,.)) if(length(.)<nrow(x)){ stop(simpleError("Try a smaller buffer size or a larger size")) } . <- sf::st_sf(geometry = ., x[,,drop=TRUE], sf_column_name = "geometry") . <- sf::st_set_crs(., sf::st_crs(x)) . <- sf::st_cast(. , "MULTILINESTRING") return(.) } makelines <- function(x, size, buffer, lefthanded, a){ size <- round(sqrt(as.numeric(sf::st_area(x) * size / a)), 0) if (size <= 10){size <- 10} pt <- sf::st_sample(sf::st_buffer(sf::st_sfc(x), buffer), size = size) if(lefthanded){ pt <- sf::st_sf(pt, x = sf::st_coordinates(pt)[,2] + sf::st_coordinates(pt)[,1]) } else{ pt <- sf::st_sf(pt, x = sf::st_coordinates(pt)[,2] - sf::st_coordinates(pt)[,1]) } pt <- sf::st_combine(pt[order(pt$x),]) r <- sf::st_intersection(sf::st_cast(pt, "LINESTRING"), x) }
readRDS("resources/test-endpoint_tables-bad_request.RDS")
source("ESEUR_config.r") library("lubridate") library("plyr") pal_col=rainbow(2) changes=read.csv(paste0(ESEUR_dir, "time-series/splc-2010-fm-evol-files-commit-date.xz"), as.is=TRUE) changes$date=as.Date(changes$date, format="%a %B %d %H:%M:%S %Y %z") changes=subset(changes, !is.na(changes$date)) changes$rnd_date=round_date(changes$date, unit="week") kconfig=subset(changes, kconfig == "Kconfig") linux=subset(changes, kconfig == "Not Kconfig") kconfig_week=count(kconfig$rnd_date) linux_week=count(linux$rnd_date) plot(linux_week$x, linux_week$freq, type="l", log="y", col=pal_col[2], xaxs="i", ylim=c(1, 2600), xlab="Date", ylab="Commits\n") lines(kconfig_week, col=pal_col[1]) legend(x="bottomright", legend=c("Kconfig", "Linux"), bty="n", fill=pal_col, cex=1.2)
library(shiny) library(toastui) schedules <- cal_demo_data() schedules$id <- seq_len(nrow(schedules)) schedules$raw <- lapply( X = seq_len(nrow(schedules)), FUN = function(i) { list( status = sample(c("Completed", "In progress", "Closed"), 1) ) } ) ui <- fluidPage( fluidRow( column( width = 8, offset = 2, tags$h2("Custom popup made with Shiny"), calendarOutput(outputId = "cal"), uiOutput("ui") ) ) ) server <- function(input, output, session) { output$cal <- renderCalendar({ calendar(view = "month", taskView = TRUE, useDetailPopup = FALSE) %>% cal_props(cal_demo_props()) %>% cal_schedules(schedules) %>% cal_events( clickSchedule = JS( "function(event) {", "Shiny.setInputValue('calendar_id_click', {id: event.schedule.id, x: event.event.clientX, y: event.event.clientY});", "}" ) ) }) observeEvent(input$calendar_id_click, { removeUI(selector = " id <- as.numeric(input$calendar_id_click$id) sched <- schedules[schedules$id == id, ] insertUI( selector = "body", ui = absolutePanel( id = "custom_popup", top = input$calendar_id_click$y, left = input$calendar_id_click$x, draggable = FALSE, width = "300px", tags$div( style = "background: actionLink( inputId = "close_calendar_panel", label = NULL, icon = icon("close"), style = "position: absolute; top: 5px; right: 5px;" ), tags$br(), tags$div( style = "text-align: center;", tags$p( "Here you can put custom", tags$b("HTML"), "elements." ), tags$p( "You clicked on schedule", sched$id, "starting from", sched$start, "ending", sched$end ), tags$b("Current status:"), tags$span(class = "label label-primary", sched$raw[[1]]$status), radioButtons( inputId = "status", label = "New status:", choices = c("Completed", "In progress", "Closed"), selected = sched$raw[[1]]$status ) ) ) ) ) }) observeEvent(input$close_calendar_panel, { removeUI(selector = " }) rv <- reactiveValues(id = NULL, status = NULL) observeEvent(input$status, { rv$id <- input$calendar_id_click$id rv$status <- input$status }) output$ui <- renderUI({ tags$div( "Schedule", tags$b(rv$id), "has been updated with status", tags$b(rv$status) ) }) } shinyApp(ui, server)
rewrite <- function(ast, rules) { magrittr::freduce(ast, rules) } make_rule <- function(from, to) { f <- function(x) subst(x, pattern = from, replacement = to) structure(f, class = "sketch_rule", from = from, to = to) } rm_attributes <- function(x) { attributes(x) <- NULL x } combine_rules <- function(rs, group = rep(1, length(rs))) { unique(group) %>% sort(decreasing = TRUE) %>% purrr::map(~rs[which(group == .x)]) %>% purrr::map(join_rules) } split_rules <- function(rs) { rs %>% purrr::map(unjoin_rules) %>% unlist() } join_rules <- function(rs) { make_rule(purrr::map_chr(rs, ~attr(.x, "from")), purrr::map_chr(rs, ~attr(.x, "to"))) } unjoin_rules <- function(r) { purrr::map2(attr(r, "from"), attr(r, "to"), make_rule) } print.sketch_rule <- function(x, ...) { from <- attr(x, 'from') to <- attr(x, 'to') print(glue::glue("Rule: Rewrite '{from}' to '{to}'.")) print(rm_attributes(x)) invisible(x) } subst <- function(ast, pattern, replacement) { if (rlang::is_call(ast)) { if (rlang::is_call(ast, '.')) { ast[[2]] <- subst(ast[[2]], pattern, replacement) return(ast) } return(as.call(purrr::map(ast, ~subst(.x, pattern, replacement)))) } if (rlang::is_symbol(ast)) { if (rlang::is_symbol(ast, pattern)) { index <- min(which(ast == pattern)) return(as.symbol(replacement[index])) } else { return(ast) } } if (rlang::is_syntactic_literal(ast)) { if (is.null(ast) || is.na(ast) || is.character(ast)) { return(ast) } if (ast %in% pattern) { index <- min(which(ast == pattern)) return(as.symbol(replacement[index])) } return(ast) } if (rlang::is_pairlist(ast)) { ast2 <- as.pairlist(purrr::map(ast, ~subst(.x, pattern, replacement))) names(ast2) <- names(ast) return(ast2) } if (class(ast) == "srcref") { return(ast) } stop("The line should not be reached, please submit an issue with the input on github. Thanks!") }
NULL axe_call.train <- function(x, verbose = FALSE, ...) { old <- x x <- exchange(x, "call", call("dummy_call")) x <- exchange(x, "dots", list(NULL)) add_butcher_attributes( x, old, disabled = c("summary()"), verbose = verbose ) } axe_ctrl.train <- function(x, verbose = FALSE, ...) { old <- x x <- exchange(x, "control", list(NULL), "method", old) add_butcher_attributes( x, old, disabled = "update()", verbose = verbose ) } axe_data.train <- function(x, verbose = FALSE, ...) { old <- x x <- exchange(x, "trainingData", data.frame(NA)) add_butcher_attributes( x, old, verbose = verbose ) } axe_env.train <- function(x, verbose = FALSE, ...) { old <- x x$modelInfo <- purrr::map(x$modelInfo, function(z) axe_env(z, ...)) add_butcher_attributes( x, old, verbose = verbose ) } axe_fitted.train <- function(x, verbose = FALSE, ...) { old <- x x <- exchange(x, "pred", list(NULL)) add_butcher_attributes( x, old, disabled = "residuals()", verbose = verbose ) }
plot_ggplot_survHE <- function(exArgs) { w <- which(unlist(lapply(1:length(exArgs),function(i) class(exArgs[[i]])))=="survHE") if(length(w)==0){ stop("Please give at least one 'survHE' object, generated by a call to 'fit.models(...)") } else { survHE_objs=lapply(1:length(w),function(i) exArgs[[w[i]]]) } names(survHE_objs)=names(exArgs)[w] if (!exists("t",exArgs)) {t <- sort(unique(survHE_objs[[1]]$misc$km$time))} else {t <- exArgs$t} if (!exists("newdata",exArgs)) {newdata <- NULL} else {newdata <- exArgs$newdata} if (!exists("nsim",exArgs)) {nsim <- 1} else {nsim <- exArgs$nsim} if (!exists("mods",exArgs)) { mods=1:sum(unlist(lapply(survHE_objs,function(x) length(x$models)))) } else {mods=exArgs$mods} if (!exists("add.km",exArgs)) {add.km <- FALSE} else {add.km <- exArgs$add.km} if(exists("annotate",where=exArgs)){annotate=exArgs$annotate} else {annotate=FALSE} obj <- mod <- NULL all_models=tibble( obj=unlist( lapply(1:length(survHE_objs),function(x) { rep(names(survHE_objs)[x],length(survHE_objs[[x]]$models)) }) ), mod=unlist(lapply(survHE_objs,function(x) 1:length(x$models))) ) %>% slice(mods) %>% arrange(obj) sel_mods=unique(match(all_models$obj,names(survHE_objs))) toplot = lapply(sel_mods,function(i){ make_data_surv(survHE_objs[[i]], mods=all_models %>% filter(obj==names(survHE_objs)[i]) %>% pull(mod), nsim=nsim, t=t, newdata=newdata, add.km=add.km )[[1]] %>% mutate(object_name=as.factor(names(survHE_objs)[i])) }) %>% bind_rows() %>% group_by(object_name,model_name) %>% mutate(mods_id=cur_group_id()) %>% ungroup() if(add.km==TRUE) { datakm = lapply(1:length(survHE_objs),function(i){ make_data_surv(survHE_objs[[i]], mods=1, nsim=1, t=t, newdata=newdata, add.km=add.km )[[2]] %>% mutate(object_name=as.factor(names(survHE_objs)[i])) }) %>% bind_rows() %>% group_by(object_name,model_name) %>% mutate(mods_id=cur_group_id()) %>% ungroup() } else { datakm=NULL } surv.curv=make_surv_curve_plot(toplot,datakm,mods) if(exists("lab.profile",exArgs)){ surv.curv=surv.curv+ scale_linetype_manual(labels=exArgs$lab.profile,values=1:length(exArgs$lab.profile)) } if(exists("colour",exArgs) & exists("lab.model",exArgs)) { surv.curv=surv.curv+scale_color_manual(labels=exArgs$lab.model,values=exArgs$colour) } if(exists("colour",exArgs) & !exists("lab.model",exArgs)) { surv.curv=surv.curv+scale_color_manual(values=exArgs$colour) } if(exists("lab.model",exArgs) & !exists("colour",exArgs)) { surv.curv=surv.curv+scale_color_manual(values=1:length(exArgs$lab.model),labels=exArgs$lab.model) } if(exists("xlab",where=exArgs)){ surv.curv=surv.curv+labs(x=exArgs$xlab) } if(exists("ylab",where=exArgs)){ surv.curv=surv.curv+labs(y=exArgs$ylab) } if(exists("main",where=exArgs)) { surv.curv=surv.curv+labs(title=exArgs$main)+theme(plot.title=element_text(size=18,face="bold")) } if(annotate==TRUE){ cutoff=max(survHE_objs[[1]]$misc$km$time) surv.curv=surv.curv + geom_segment(aes(x=cutoff,y=-Inf,xend=cutoff,yend=-.01),size=0.9) + geom_segment(aes(x=cutoff,y=-.01,xend=cutoff*.85,yend=-.01),arrow=arrow(length=unit(.25,"cm"),type="closed"),size=1.1)+ geom_segment(aes(x=cutoff,y=-.01,xend=cutoff*1.15,yend=-.01),arrow=arrow(length=unit(.25,"cm"),type="closed"),size=1.1)+ annotate(geom="text",x=cutoff,y=-Inf,hjust=1.1,vjust=-1,label="Observed data",size=5) + annotate(geom="text",x=cutoff,y=-Inf,hjust=-0.1,vjust=-1,label="Extrapolation",size=5) + ylim(-0.01,1) + geom_rect(data=data.frame(xmin=-Inf,xmax=cutoff,ymin=-Inf,ymax=Inf), aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),fill="grey",alpha=.1) } else{ surv.curv=surv.curv+ylim(0,1) } if(exists("legend.position",exArgs)){ surv.curv=surv.curv+theme(legend.position=exArgs$legend.position) } if(exists("legend.title",exArgs)){ surv.curv=surv.curv+theme(legend.title=exArgs$legend.title) } if(exists("legend.text",exArgs)){ surv.curv=surv.curv+theme(legend.text=exArgs$legend.text) } surv.curv } make_data_surv <- function(x,mods=1:length(x$models),nsim=1,t=NULL,newdata=NULL,add.km=FALSE) { if(is.null(t)) { t <- sort(unique(x$misc$km$time)) } s=lapply(mods,function(i) { make.surv(x,mod=i,t=t,nsim=nsim,newdata=newdata) }) strata=lapply(1:length(s),function(i) { lapply(1:nrow(s[[i]]$des.mat),function(x){ s[[i]]$des.mat %>% as_tibble() %>% select(-matches("(Intercept)",everything())) %>% slice(x) %>% round(digits=2) %>% mutate(strata=paste0(names(.),"=",.,collapse=",")) }) %>% bind_rows(.) %>% select(strata) }) toplot=lapply(1:length(mods),function(i) { lapply(1:length(s[[i]]$S),function(j) { s[[i]]$S[[j]] %>% bind_cols(strata=as.factor(as.character(strata[[i]][j,])),model_name=as.factor(names(x$models)[mods[i]])) }) }) %>% bind_rows(.) out=list(toplot) if(add.km==TRUE) { if(length(x$misc$km$strata)!=nrow(s[[1]]$des.mat)){ x$misc$km=rms::npsurv(update(x$misc$formula,~1),data=x$misc$data) x$misc$km$call$formula=as.formula(deparse(update(x$misc$formula,~1))) } datakm=bind_cols(t=x$misc$km$time,n.risk=x$misc$km$n.risk,n.event=x$misc$km$n.event, n.censor=x$misc$km$n.censor,S=x$misc$km$surv,lower=x$misc$km$lower, upper=x$misc$km$upper) %>% mutate(model_name="Kaplan Meier") if(is.null(x$misc$km$strata)) { datakm$strata=as.factor("all") } else { datakm$strata=as.factor(rep(1:length(x$misc$km$strata),x$misc$km$strata)) } out$datakm=datakm } return(out) } make_surv_curve_plot <- function(toplot,datakm=NULL,mods) { if (all(toplot$strata=="=")) { linetype=NULL } else { linetype=toplot$strata } surv.curv=ggplot() if(length(levels(toplot$object_name))==1) { surv.curv=surv.curv+ geom_line(data=toplot,aes(x=t,y=S,group=model_name:strata,col=model_name,linetype=linetype),size=.9) } else { surv.curv=surv.curv+ geom_line(data=toplot,aes(x=t,y=S,group=model_name:strata:object_name,col=object_name:model_name,linetype=linetype),size=.9) } surv.curv=surv.curv + theme_bw() + theme(axis.text.x = element_text(color="black",size=12,angle=0,hjust=.5,vjust=.5), axis.text.y = element_text(color="black",size=12,angle=0,hjust=.5,vjust=.5), axis.title.x = element_text(color="black",size=14,angle=0,hjust=.5,vjust=.5), axis.title.y = element_text(color="black",size=14,angle=90,hjust=.5,vjust=.5)) + theme(axis.line = element_line(colour = "black"), panel.background = element_blank(), panel.border = element_blank(), plot.title = element_text(size=18, face="bold")) + theme(legend.position=c(.75,.78), legend.title=element_text(size=15,face="bold"), legend.text = element_text(colour="black", size=14, face="plain"), legend.background=element_blank()) + labs(y="Survival",x="Time",title=NULL, color=ifelse(length(mods)==1,"Model","Models"), linetype="Profile") + guides(color=guide_legend(order=1), linetype=guide_legend(order=2)) if(any(grepl("low",names(toplot)))) { surv.curv=surv.curv+geom_ribbon(data=toplot,aes(x=t,y=S,ymin=low,ymax=upp,group=model_name:strata),alpha=.2) } if(!is.null(datakm)) { surv.curv=surv.curv+geom_step(data=datakm,aes(t,S,group=as.factor(strata)),color="darkgrey") + geom_ribbon(data=datakm,aes(x=t,y=S,ymin=lower,ymax=upper,group=as.factor(strata)),alpha=.2) } surv.curv } plot_base_survHE <- function(x,exArgs) { nexArgs <- length(exArgs) classes <- unlist(lapply(1:nexArgs,function(i) class(exArgs[[i]]))) w <- which(classes=="survHE") original.method <- unlist(lapply(w,function(i) exArgs[[i]]$method)) if(length(w)==0) { stop("You need to input at least one 'survHE' object to run this function!") } if(length(w)==1) { totmodels <- unlist(lapply(w,function(i) length(exArgs[[i]]$models))) mods <- exArgs[[w]]$models method <- rep(exArgs[[w]]$method,totmodels) aic <- unlist(exArgs[[w]]$model.fitting$aic) bic <- unlist(exArgs[[w]]$model.fitting$bic) dic <- unlist(exArgs[[w]]$model.fitting$dic) if(totmodels>1){ if (!is.null(exArgs$mod)) {which.model <- exArgs$mod} else {which.model <- 1:length(mods)} mods <- lapply(which.model,function(i) mods[[i]]) method <- method[which.model] aic <- aic[which.model] bic <- bic[which.model] dic <- dic[which.model] } } if (length(w)>1) { mods <- unlist(lapply(w,function(i) exArgs[[i]]$models),recursive = F) totmodels <- unlist(lapply(w,function(i) length(exArgs[[i]]$models))) method <- unlist(lapply(w,function(i) rep(exArgs[[i]]$method,totmodels[i]))) aic <- unlist(lapply(w,function(i) exArgs[[i]]$model.fitting$aic)) bic <- unlist(lapply(w,function(i) exArgs[[i]]$model.fitting$bic)) dic <- unlist(lapply(w,function(i) exArgs[[i]]$model.fitting$dic)) if (!is.null(exArgs$mod)) {which.model <- exArgs$mod} else {which.model <- 1:length(mods)} mods <- lapply(which.model,function(i) mods[[i]]) method <- method[which.model] aic <- aic[which.model] bic <- bic[which.model] dic <- dic[which.model] } model.fitting <- list(aic=aic,bic=bic,dic=dic) x <- list() x$models <- mods nmodels <- length(x$models) class(x) <- "survHE" x$model.fitting <- model.fitting if (any(method=="hmc")) { x$misc <- exArgs[[min(which(original.method=="hmc"))]]$misc x$misc$data.stan=x$misc$data.stan[[1]] if (exists("X",x$misc$data.stan)) { x$misc$data.stan$X_obs <- x$misc$data.stan$X } else { x$misc$data.stan$X <- x$misc$data.stan$X_obs } x$misc$data.stan <- rep(list(x$misc$data.stan),nmodels) } else { x$misc <- exArgs[[1]]$misc } if (is.null(exArgs$t)) {t <- sort(unique(x$misc$km$time))} else {t <- exArgs$t} if (is.null(exArgs$xlab)) {xl <- "time"} else {xl <- exArgs$xlab} if (is.null(exArgs$ylab)) {yl <- "Survival"} else {yl <- exArgs$ylab} if (is.null(exArgs$lab.profile)) {lab.profile <- names(x$misc$km$strata)} else {lab.profile<-exArgs$lab.profile} if (is.null(exArgs$cex.trt)) {cex.trt <- 0.8} else {cex.trt <- exArgs$cex.trt} if (is.null(exArgs$n.risk)) {nrisk <- FALSE} else {nrisk <- exArgs$n.risk} if (is.null(exArgs$main)) {main <- ""} else {main <- exArgs$main} if (is.null(exArgs$newdata)) {newdata <- NULL} else {newdata <- exArgs$newdata} if (is.null(exArgs$cex.lab)) {cex.lab <- 0.8} else {cex.lab <- exArgs$cex.lab} if (is.null(exArgs$legend)) {legend=TRUE} else (legend=FALSE) if (is.null(exArgs$xlim) & is.null(exArgs$t)) { xlm <- range(pretty(x$misc$km$time)) } if (is.null(exArgs$xlim) & !is.null(exArgs$t)) { xlm <- range(pretty(t)) } if (!is.null(exArgs$xlim) & is.null(exArgs$t)) { xlm <- exArgs$xlim } if (!is.null(exArgs$xlim) & !is.null(exArgs$t)) { xlm <- exArgs$xlim } if (is.null(exArgs$colors)) { if (nmodels>1) {colors <- (2:(nmodels+1))} else {colors <- 2} } else {colors <- exArgs$colors} if(is.null(exArgs$axes)){axes <- TRUE} else {axes <- exArgs$axes} if (is.null(exArgs$labs)) { labs <- unlist(lapply(1:length(x$models),function(i) { if(class(x$models[[i]])=="stanfit") {tolower(x$models[[i]]@model_name)} else {x$models[[i]]$dlist$name} })) labs[labs %in% c("weibull.quiet","weibull","weibullaf","weibullph")] <- "Weibull" labs[labs %in% c("exp","exponential")] <- "Exponential" labs[labs %in% "gamma"] <- "Gamma" labs[labs %in% c("lnorm","lognormal")] <- "log-Normal" labs[labs %in% c("llogis","loglogistic","loglogis")] <- "log-Logistic" labs[labs %in% "gengamma"] <- "Gen. Gamma" labs[labs %in% "genf"] <- "Gen. F" labs[labs %in% "gompertz"] <- "Gompertz" labs[labs %in% c("survspline","rp")] <- "Royston & Parmar splines" } else {labs <- exArgs$labs} labs <- c("Kaplan Meier",labs) if (is.null(exArgs$add.km)) {add.km <- TRUE} else {add.km <- exArgs$add.km} if (add.km==TRUE & is.null(newdata)) { rms::survplot(x$misc$km, xlab=xl,ylab=yl, label.curves=list(labels=lab.profile,cex=cex.trt), n.risk=nrisk, lwd=2,xlim=xlm ) col <- c("black",colors) title(main) } else { labs <- labs[-1] if(class(colors)!="character") {colors <- colors-1} plot(0,0,col="white",xlab=xl,ylab=yl,axes=F,xlim=xlm,ylim=c(0,1),main=main) if(axes==TRUE) { axis(1) axis(2)} col <- colors } res <- lapply(1:nmodels,function(i) { x$method <- method[i] make.surv(x,nsim=1,t=t,mod=i,newdata=newdata) }) if (!is.null(newdata)) { options(digits=5,nsmall=2) pts <- list() for (i in 1:nmodels) { if (method[i]=="mle") { pts[[i]] <- lapply(1:length(newdata),function(j) { tmp <- matrix(unlist(res[[i]]$S[[j]]),ncol=4) cbind(tmp[,1],tmp[,2]) }) } else { pts[[i]] <- lapply(1:length(newdata),function(j) { res[[i]]$S[[1]][[j]] }) } } colors <- 1:nmodels leg.txt <- character() for (i in 1:nmodels) { for (j in 1:length(newdata)) { points(pts[[i]][[j]],t="l",col=colors[i],lty=j) leg.txt[j] <- paste0(names(newdata[[j]]),"=",prettyNum(newdata[[j]],format="fg"),collapse=", ") } } if (legend) {legend("topright",legend=leg.txt,bty="n",lty=1:length(newdata),cex=cex.lab)} } if(is.null(newdata)) { for (i in 1:nmodels) { pts <- lapply(res[[i]]$S[[1]],function(m) m %>% as.matrix()) lapply(1:length(pts), function(x) points(pts[[x]]$t,pts[[x]]$S,t="l",col=colors[i],lty=x)) } if(legend) {legend(x="topright",legend=labs,lwd=2,bty="n",col=col,cex=cex.lab)} } }
invdir.mle <- function(x, tol = 1e-09) { n <- dim(x)[1] p <- dim(x)[2] zx <- t( log(x) ) sx2 <- sum( log1p( Rfast::rowsums(x) ) ) com <- c( Rfast::rowsums(zx) - sx2, -sx2 ) a <- Rfast::colmeans(x) b <- Rfast::colVars(x, suma = n * a) D <- p + 1 aD <- 0.5 * ( mean(a)^2 + mean(a) ) / mean(b) + 1 a1 <- abs( c( a * (aD - 1), aD) ) / 2 phi <- sum(a1) f1 <- n * digamma( phi ) - n * digamma(a1) + com f2 <- matrix(n * trigamma(phi), D, D) diag(f2) <- diag(f2) - n * trigamma(a1) a2 <- a1 - solve(f2, f1) i <- 2 while ( sum( abs(a2 - a1) ) > tol ) { i <- i + 1 a1 <- a2 phi <- sum(a1) f1 <- n * digamma( phi ) - n * digamma(a1) + com f2 <- matrix(n * trigamma(phi), D, D) diag(f2) <- diag(f2) - n * trigamma(a1) a2 <- a1 - solve(f2, f1) } phi <- sum(a2) lik <- n * lgamma( phi ) - n * sum( lgamma(a2) ) + sum( zx * (a2[1:p] - 1) ) - phi * sx2 list(iters = i, loglik = lik, param = a2 ) } diri.nr2 <- function(x, type = 1, tol = 1e-07) { dm <- dim(x) n <- dm[1] p <- dm[2] if (type == 1) { m <- Rfast::colmeans(x) zx <- t( Log(x) ) down <- - sum( m * ( Rfast::rowmeans( zx ) - log(m) ) ) sa <- 0.5 * (p - 1) / down a1 <- sa * m gm <- rowsums(zx) z <- n * Digamma( sa ) g <- z - n * Digamma(a1) + gm qk <- - n * Trigamma(a1) b <- sum(g / qk) / ( 1/z - sum(1 / qk) ) a2 <- a1 - (g - b)/qk while ( sum( abs( a2 - a1 ) ) > tol ) { a1 <- a2 z <- n * digamma( sum(a1) ) g <- z - n * Digamma(a1) + gm qk <- - n * Trigamma(a1) b <- sum(g / qk) / ( 1/z - sum(1 / qk) ) a2 <- a1 - (g - b) / qk } loglik <- n * Lgamma( sum(a2) ) - n * sum( Lgamma(a2) ) + sum( zx * (a2 - 1) ) if ( is.null(colnames(x)) ) { names(a2) <- paste("X", 1:p, sep = "") } else names(a2) <- colnames(x) res <- list(loglik = loglik, param = a2) } else { zx <- t( Log(x) ) ma <- Rfast::rowmeans(zx) m <- Rfast::colmeans(x) down <- -sum(m * (ma - log(m))) sa <- 0.5 * (p - 1)/down a1 <- sa * m f <- ma - Digamma(a1) + digamma(sa) der <- - Trigamma(a1) + trigamma(sa) a2 <- a1 - f/der a <- .Call(Rfast_diri_nr_type2, a1, a2, ma, p, tol) loglik <- n * lgamma(sum(a)) - n * sum(Lgamma(a)) + sum(zx * (a - 1)) if (is.null(colnames(x))) { names(a) <- paste("X", 1:p, sep = "") } else names(a) <- colnames(x) res <- list(loglik = loglik, param = a) } res } mvlnorm.mle <- function(x) { dm <- dim(x) d <- dm[2] n <- dm[1] y <- Rfast::Log(x) m1 <- Rfast::colmeans(y) sigma <- crossprod(y)/n - tcrossprod(m1) a <- n * d * log(2 * pi) + n * log(det(s)) + n * d - sum(y) s1 <- diag(sigma) m <- exp( m1 + 0.5 * s1 ) m2 <- outer(m1, m1, "+") s2 <- outer(s1, s1, "+") s <- exp( m2 + 0.5 * s2 ) * ( exp(sigma) - 1 ) list(loglik = -0.5 * a, mu = m1, sigma = sigma, m = m, s = s) } mvnorm.mle <- function(x) { m <- Rfast::colmeans(x) dm <- dim(x) n <- dim(x)[1] d <- dm[2] s <- crossprod(x)/n - tcrossprod(m) a <- n * d * log(2 * pi) + n * log( det(s) ) + n * d list(loglik = - 0.5 * a, mu = m, sigma = s) } mvt.mle <- function(x, v = 5, tol = 1e-07){ dm <- dim(x) p <- dm[2] ; n <- dm[1] m <- Rfast::colmeans(x) y <- Rfast::eachrow(x, m, oper = "-") R <- crossprod(y)/(n - 1) y <- NULL if (v != 1 ) R <- abs( v - 1 ) / v * R con <- n * lgamma( (v + p)/2 ) - n * lgamma(v/2) - 0.5 * n * p * log(pi * v) wi <- (v + p) / ( v + Rfast::mahala(x, m, R) ) y <- sqrt(wi) * ( Rfast::eachrow(x, m, oper = "-" ) ) sumwi <- sum(wi) R <- crossprod(y) / sumwi m <- Rfast::colsums(wi * x) / sumwi dis <- Rfast::mahala(x, m, R) el1 <- - n * log( det(R) ) - (v + p) * sum( log1p(dis/v) ) wi <- (v + p) / ( v + dis ) y <- sqrt(wi) * ( Rfast::eachrow(x, m, oper = "-" ) ) sumwi <- sum(wi) R <- crossprod(y) / sumwi m <- Rfast::colsums(wi * x) / sumwi dis <- Rfast::mahala(x, m, R) el2 <- - n * log( det(R) ) - (v + p) * sum( log1p(dis/v) ) i <- 2 while ( el2 - el1 > tol ) { i <- i + 1 el1 <- el2 wi <- (v + p) / ( v + dis) y <- sqrt(wi) * ( Rfast::eachrow(x, m, oper = "-" ) ) sumwi <- sum(wi) R <- crossprod(y) / sumwi m <- Rfast::colsums(wi * x) / sumwi dis <- Rfast::mahala(x, m, R) el2 <- - n * log( det(R) )- (v + p) * sum( log1p(dis/v) ) } list(iters = i, loglik = 0.5 * el2 + con, location = m, scatter = R) }
ciEnvelope <- function(x,ylo,yhi,...){ polygon(cbind(c(x, rev(x), x[1]), c(ylo, rev(yhi), ylo[1])), border = NA,...) } options(warn = 1, keep.source = TRUE, error = quote({ status.end("ERROR") })) status.start <- function(name) { cat(paste(name, format(Sys.time(), "%F %T"), sep="\t"), file=file.path(settings$outdir, "STATUS"), append=TRUE) } status.end <- function(status="DONE") { cat(paste("", format(Sys.time(), "%F %T"), status, "\n", sep="\t"), file=file.path(settings$outdir, "STATUS"), append=TRUE) } library(PEcAn.all) library(PEcAn.assim.sequential) library(mvtnorm) library(rjags) library(reshape2) library(PEcAn.LINKAGES) source('~/pecan/modules/assim.sequential/R/sda.enkf.R') settings <- read.settings("/fs/data2/output//PEcAn_1000002613/pecan.SDA.xml") settings$ensemble$size <- 50 settings$state.data.assimilation$n.ensemble<- 100 load(file.path(settings$outdir, "samples.Rdata")) pick.trait.params <- c(names(ensemble.samples[[1]]),names(ensemble.samples[[2]])) obs.mean <- list() for(i in 1:10) { obs.mean[[i]]<-c(100+i, 5+i) names(obs.mean[[i]])<-c("NPP",'plantWood') } obs.cov <- list() for(i in 1:10) obs.cov[[i]]<- diag(c(.1,.08)) sda.enkf(settings=settings, obs.mean = obs.mean, obs.cov = obs.cov, IC = IC, Q = NULL) settings <- read.settings("/fs/data2/output//PEcAn_1000002229/pecan.xml") settings$ensemble$size <- 30 IC = matrix(NA,as.numeric(settings$ensemble$size),length(settings$pfts)) settings$run$start.date <-"1960/01/01" settings$run$end.date <-"1960/12/31" settings$ensemble$start.date <-"1960/01/01" settings$ensemble$end.date <-"1960/12/31" variables <- c("AGB.pft","TotSoilCarb") processvar <- TRUE pick.trait.params <- c("G") spp.params.default <- read.csv(system.file("spp_matrix.csv", package = "linkages")) sample_parameters=TRUE load("/home/araiho/linkages_lyford_summary.Rdata") row.keep <- list() for(i in 1:15){ row.keep[[i]]<-grep(rownames(ab_mat)[i],spp.params.default[,2])[1] } dist.mat<-spp.params.default[unlist(row.keep),] dist.mat<-dist.mat[-9,] rownames(dist.mat)<-dist.mat[,1] dist(dist.mat,method="canberra") new.names <- spp.params.default[unlist(row.keep),1] new.names[2] <- spp.params.default[18,1] rm.spp <- which(is.na(new.names)) new.names<-new.names[-rm.spp] ab_mat<-ab_mat[-rm.spp,] rownames(ab_mat)<- paste0("AGB.pft.",new.names) obs.mean <- list() for(i in 1:ncol(ab_mat)){ obs.mean[[i]] <- ab_mat[,i] } cov_array<-cov_array[-rm.spp,-rm.spp,] colnames(cov_array)<-new.names rownames(cov_array)<-new.names obs.cov <- list() for(i in 1:dim(cov_array)[3]){ obs.cov[[i]] <- cov_array[,,i] } sda.enkf(settings=settings,obs.mean = obs.mean, obs.cov = obs.cov, pick.trait.params = c("G"), given.process.variance = NULL)
.libPaths() library(cluster) set.seed(21) x <- rbind(cbind(rnorm(10, 0, 0.5), rnorm(10, 0, 0.5)), cbind(rnorm(15, 5, 0.5), rnorm(15, 5, 0.5)), cbind(rnorm( 3,3.2,0.5), rnorm( 3,3.2,0.5))) .proctime00 <- proc.time() (fannyx <- fanny(x, 2)) summary(fannyx) str(fannyx) summary(fanny(x,3)) (fanny(x,2, memb.exp = 1.5)) (fanny(x,2, memb.exp = 1.2)) (fanny(x,2, memb.exp = 1.1)) (fanny(x,2, memb.exp = 3)) data(ruspini) summary(fanny(ruspini, 3), digits = 9) summary(fanny(ruspini, 4), digits = 9) summary(fanny(ruspini, 5), digits = 9) cat('Time elapsed: ', proc.time() - .proctime00,'\n') data(chorSub) p4cl <- pam(chorSub, k = 4, cluster.only = TRUE) f4.20 <- fanny(chorSub, k = 4, trace.lev = 1) ; f4.20$coef f4.18 <- fanny(chorSub, k = 4, memb.exp = 1.8) f4.18. <- fanny(chorSub, k = 4, memb.exp = 1.8, iniMem.p = f4.20$membership) stopifnot(all.equal(f4.18[-c(7,9)], f4.18.[-c(7,9)], tol = 5e-7)) f4.16 <- fanny(chorSub, k = 4, memb.exp = 1.6) f4.16. <- fanny(chorSub, k = 4, memb.exp = 1.6, iniMem.p = f4.18$membership, trace.lev = 2) f4.16.2 <- fanny(chorSub, k = 4, memb.exp = 1.6, iniMem.p = cluster:::as.membership(p4cl), tol = 1e-10, trace.lev = 2) stopifnot(f4.16$clustering == f4.16.2$clustering, all.equal(f4.16[-c(1,7,9)], f4.16.2[-c(1,7,9)], tol = 1e-7), all.equal(f4.16$membership, f4.16.2$membership, tol = 0.001)) f4.14 <- fanny(chorSub, k = 4, memb.exp = 1.4) f4.12 <- fanny(chorSub, k = 4, memb.exp = 1.2) table(f4.12$clustering, f4.14$clustering) table(f4.16$clustering, f4.14$clustering) table(f4.12$clustering, f4.16$clustering) symnum(cbind(f4.16$membership, 1, f4.12$membership), cutpoints= c(0., 0.2, 0.6, 0.8, 0.9, 0.95, 1 -1e-7, 1 +1e-7), symbols = c(" ", ".", ",", "+", "*", "B","1")) cat('Time elapsed: ', proc.time() - .proctime00,'\n')
.onAttach <- function(...) { mylib <- dirname(system.file(package = "anchors")) ver <- packageDescription("anchors", lib.loc = mylib)$Version builddate <- packageDescription("anchors", lib.loc = mylib)$Date packageStartupMessage("\n " }
DirichReg <- function(formula, data, model = c("common", "alternative"), subset, sub.comp, base, weights, control, verbosity = 0 ){ this.call <- match.call() if(!(verbosity %in% 0:4)){ verbosity <- 0L warning("invalid value for verbosity.") } storage.mode(verbosity) <- "integer" if(verbosity > 0){ cat("- PREPARING DATA\n") if(interactive()) flush.console() } if(missing(data)) data <- environment(formula) if(missing(formula)){ stop("specification of \"formula\" is necessary.") } else { oformula <- formula } model <- match.arg(model) if(missing(control)){ control <- list(sv = NULL, iterlim = 10000L, tol1 = .Machine$double.eps^(1/2), tol2 = .Machine$double.eps^(3/4)) } else { if(is.null(control$sv)) control$sv <- NULL if(is.null(control$iterlim)) control$iterlim <- 10000L if(is.null(control$tol1)) control$tol1 <- .Machine$double.eps^(1/2) if(is.null(control$tol2)) control$tol2 <- .Machine$double.eps^(3/4) } resp_lang <- oformula[[2L]] resp_char <- deparse_nocutoff(resp_lang) has_data <- !missing(data) Y_in_data <- ifelse(has_data, resp_char %in% names(data), FALSE) has_DR_call <- grepl("DR_data", resp_char, fixed = TRUE) if(Y_in_data){ Y_full <- data[[resp_char]] } else if(has_DR_call){ Y_full <- eval(resp_lang) warning(paste0(strwrap("The response was transformed by DR_data() on the fly. This is not recommended, consider adapting your code.", width = getOption("width") - 9L, exdent = 9L), collapse = "\n"), call. = FALSE, immediate. = TRUE) oformula[[2L]] <- as.symbol("Y_full") } else { Y_full <- get(resp_char, environment(oformula)) } formula <- as.Formula(oformula) if(class(Y_full) != "DirichletRegData") stop("the response must be prepared by DR_data") if(has_data){ assign(resp_char, Y_full) } else { data[[resp_char]] <- Y_full } repar <- ifelse(model == "common", FALSE, TRUE) mf <- match.call(expand.dots = FALSE) if(has_DR_call){ mf[["formula"]][[2L]] <- as.symbol("Y_full") } mf <- mf[c(1L, match(c("formula", "data", "subset", "weights"), names(mf), 0L))] mf[["formula"]] <- as.Formula(mf[["formula"]]) mf[["drop.unused.levels"]] <- TRUE mf[[1L]] <- as.name("model.frame") mf_formula <- mf d <- mf <- eval(mf, parent.frame()) if("(weights)" %in% names(mf)) weights <- mf[["(weights)"]] else weights <- rep(1, nrow(mf)) storage.mode(weights) <- "double" Y <- model.response(mf, "numeric") if(missing(sub.comp)){ sub.comp <- seq_len(ncol(Y)) } else { if(length(sub.comp) == ncol(Y)) warning("no subcomposition made, because all variables were selected") if(length(sub.comp) == (ncol(Y) - 1)) stop("no subcomposition made, because all variables except one were selected") if(any((sub.comp < 1) | (sub.comp > ncol(Y)))) stop("subcompositions must contain indices of variables of the Dirichlet data object") y_in <- (seq_len(ncol(Y)))[sub.comp] y_out <- (seq_len(ncol(Y)))[-sub.comp] y_in_labels <- colnames(Y)[y_in] y_out_labels <- paste(colnames(Y)[y_out], sep = "", collapse = " + ") Y <- cbind(rowSums(Y[, y_out]), Y[, y_in]) colnames(Y) <- c(y_out_labels, y_in_labels) } base <- ifelse(missing(base), attr(Y_full, "base"), base) if(!(base %in% seq_len(ncol(Y)))) stop("the base variable lies outside the number of variables") n.dim <- ncol(Y) if(length(formula)[1] != 1) stop("the left hand side of the model must contain one object prepared by DR_data()") if(!repar){ if(length(formula)[2] == 1) for(i in 2:ncol(Y)) attr(formula, "rhs") <- lapply(seq_len(ncol(Y)), function(i) attr(formula, "rhs")[[1]]) if(length(formula)[2] > ncol(Y)) stop("the right hand side must contain specifications for either one or all variables") } else { if(length(formula)[2] == 1) formula <- as.Formula(formula(formula), ~ 1) if(length(formula)[2] > 2) stop("the right hand side can only contain one or two specifications in the alternative parametrization") } if(!repar){ X.mats <- lapply(seq_len(ncol(Y)), function(i){ model.matrix(terms(formula, data = data, rhs = i), mf) }) Z.mat <- NULL n.vars <- unlist(lapply(X.mats, ncol)) } else { X.mats <- lapply(seq_len(ncol(Y)), function(i) model.matrix(terms(formula, data = data, rhs = 1), mf) ) Z.mat <- model.matrix(terms(formula, data = data, rhs = 2), mf) n.vars <- c(unlist(lapply(X.mats, ncol))[-1], ncol(Z.mat)) } Y_fit <- unclass(Y) attributes(Y_fit) <- NULL dim(Y_fit) <- dim(Y) storage.mode(Y_fit) <- "double" X_fit <- lapply(X.mats, function(this_mat){ attr(this_mat, "dimnames") <- NULL attr(this_mat, "assign") <- NULL return(this_mat) }) for(i in seq_along(X_fit)) storage.mode(X_fit[[i]]) <- "double" if(!is.null(Z.mat)) storage.mode(Z.mat) <- "double" storage.mode(n.dim) <- "integer" storage.mode(n.vars) <- "integer" storage.mode(base) <- "integer" if(verbosity > 0){ cat("- COMPUTING STARTING VALUES\n") if(interactive()) flush.console() } if(is.null(control$sv)){ starting.vals <- get_starting_values(Y = Y_fit, X.mats = X_fit, Z.mat = {if(repar) as.matrix(Z.mat) else Z.mat}, repar = repar, base = base, weights = weights) * if(repar){ 1 } else { 1/n.dim } } else { if(length(control$sv) != n.vars) stop("wrong number of starting values supplied.") starting.vals <- control$sv } parametrization <- ifelse(repar, "alternative", "common") if(verbosity > 0){ cat("- ESTIMATING PARAMETERS\n") if(interactive()) flush.console() } fit.res <- DirichReg_fit(Y = Y_fit, X = X_fit, Z = as.matrix(Z.mat), sv = starting.vals, d = n.dim, k = n.vars, w = as.vector(weights), ctls = control, repar = repar, base = base, vrb = verbosity) varnames <- colnames(Y) coefs <- fit.res$estimate if(repar){ names(coefs) <- unlist(as.vector(c(rep(colnames(X.mats[[1]]), n.dim-1), colnames(Z.mat)))) } else { names(coefs) <- unlist(lapply(X.mats, colnames)) } if(repar){ B <- matrix(0.0, nrow = n.vars[1L], ncol = n.dim) B[cbind(rep(seq_len(n.vars[1L]), (n.dim-1L)), rep(seq_len(n.dim)[-base], each = n.vars[1]))] <- coefs[1:((n.dim-1)*n.vars[1])] g <- matrix(coefs[((n.dim-1)*n.vars[1]+1):length(coefs)], ncol = 1) XB <- exp(apply(B, 2L, function(b){ as.matrix(X.mats[[1L]]) %*% b })) MU <- apply(XB, 2L, function(x){ x /rowSums(XB) }) PHI <- exp(as.matrix(Z.mat) %*% g) ALPHA <- apply(MU, 2L, "*", PHI) } else { B <- sapply(seq_len(n.dim), function(i){ coefs[(cumsum(c(0, n.vars))[i]+1) : cumsum(n.vars)[i]] }, simplify = FALSE) ALPHA <- sapply(seq_len(n.dim), function(i){ exp(as.matrix(X.mats[[i]]) %*% matrix(B[[i]], ncol = 1)) }) PHI <- rowSums(ALPHA) MU <- apply(ALPHA, 2L, "/", PHI) } colnames(ALPHA) <- varnames colnames(MU) <- varnames hessian <- fit.res$hessian vcov <- tryCatch(solve(-fit.res$hessian), error = function(x){ return(matrix(NA, nrow = nrow(hessian), ncol = ncol(hessian))) }, silent = TRUE) if(!repar){ coefnames <- apply(cbind(rep(varnames, n.vars), unlist(lapply(X.mats, colnames))), 1, paste, collapse = ":") } else { coefnames <- apply(cbind(rep(c(varnames[-base], "(phi)"), n.vars), c(unlist(lapply(X.mats, colnames)[-base]), colnames(Z.mat))), 1, paste, collapse = ":") } dimnames(hessian) <- list(coefnames, coefnames) dimnames(vcov) <- list(coefnames, coefnames) shortnames <- names(coefs) names(coefs) <- coefnames se <- if(!any(is.na(vcov))) sqrt(diag(vcov)) else rep(NA, length(coefs)) res <- structure(list( call = this.call, parametrization = parametrization, varnames = varnames, n.vars = n.vars, dims = length(varnames), Y = Y, X = X.mats, Z = Z.mat, sub.comp = sub.comp, base = base, weights = weights, orig.resp = Y_full, data = data, d = d, formula = formula, mf_formula = mf_formula, npar = length(coefs), coefficients = coefs, coefnames = shortnames, fitted.values = list(mu = MU, phi = PHI, alpha = ALPHA), logLik = fit.res$maximum, vcov = vcov, hessian = hessian, se = se, optimization = list(convergence = fit.res$code, iterations = fit.res$iterations, bfgs.it = fit.res$bfgs.it, message = fit.res$message) ), class = "DirichletRegModel") for(maxLik_ob in c("lastFuncGrad", "lastFuncParam")){ if(exists(maxLik_ob, envir = parent.frame(), inherits = FALSE)) rm(list = maxLik_ob, envir = parent.frame(), inherits = FALSE) } used_objects <- ls(all.names = TRUE) rm(list = c("used_objects", used_objects[used_objects != "res"])) on.exit(gc(verbose = FALSE, reset = TRUE), add = TRUE) return(res) }
stat_count <- function(mapping = NULL, data = NULL, geom = "bar", position = "stack", ..., width = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = StatCount, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, width = width, ... ) ) } StatCount <- gganimintproto("StatCount", Stat, required_aes = "x", default_aes = aes(y = ..count..), setup_params = function(data, params) { if (!is.null(data$y) || !is.null(params$y)) { stop("stat_count() must not be used with a y aesthetic.", call. = FALSE) } params }, compute_group = function(self, data, scales, width = NULL) { x <- data$x weight <- data$weight %||% rep(1, length(x)) width <- width %||% (resolution(x) * 0.9) count <- as.numeric(tapply(weight, x, sum, na.rm = TRUE)) count[is.na(count)] <- 0 data.frame( count = count, prop = count / sum(abs(count)), x = sort(unique(x)), width = width ) } )
context("gather_shadow") df <- data.frame(x = c(NA, 1:4), y = c(NA, NA, 1:3)) test_that("gather_shadow returns a tibble or data.frame",{ expect_is(gather_shadow(df), "data.frame") expect_is(gather_shadow(df), "tbl") }) test_that("gather_shadow errors when given non dataframe or 0 entry",{ expect_error(gather_shadow(0)) expect_error(gather_shadow(matrix(0))) expect_error(gather_shadow(NULL)) }) test_that("The number of rows are the same after using gather_shadow",{ expect_equal(nrow(gather_shadow(df)),nrow(df)*2) }) test_that("There are three columns in gather_shadow",{ expect_equal(ncol(gather_shadow(df)),3) }) test_that("gather_shadow returns columns with right names",{ expect_equal(names(gather_shadow(df)), c("case","variable","missing")) })
gglineage <- function(object, labels = TRUE){ nodes <- NULL object <- as_tidygraph(object) if (all(stringr::str_detect(attr(object[1], "names"), "[:digit:]{4}"))) { object <- object %>% activate(nodes) %>% mutate(year = stringr::str_extract(.data$name, "[:digit:]{4}")) } lo <- ggraph::create_layout(object, layout = "igraph", algorithm = "sugiyama", maxiter = 100000) if (!is.null(lo$year)) lo$y = lo$year g <- ggraph::ggraph(object, graph = lo) + ggraph::geom_edge_diagonal(aes(edge_color = as.factor(.data$from)), show.legend = FALSE) + ggraph::geom_node_point(shape = 3) + ggplot2::theme_void() + ggplot2::coord_flip() + ggplot2::scale_x_reverse() if (labels) { g <- g + ggraph::geom_node_text(aes(label = .data$name), nudge_x = 0.1, repel = TRUE) } g }
test_that("sql_substr works as expected", { local_con(simulate_dbi()) x <- ident("x") substr <- sql_substr("SUBSTR") expect_equal(substr(x, 3, 4), sql("SUBSTR(`x`, 3, 2)")) expect_equal(substr(x, 3, 3), sql("SUBSTR(`x`, 3, 1)")) expect_equal(substr(x, 3, 2), sql("SUBSTR(`x`, 3, 0)")) expect_equal(substr(x, 3, 1), sql("SUBSTR(`x`, 3, 0)")) expect_equal(substr(x, 0, 1), sql("SUBSTR(`x`, 1, 1)")) expect_equal(substr(x, -1, 1), sql("SUBSTR(`x`, 1, 1)")) expect_snapshot(error = TRUE, substr("test")) expect_snapshot(error = TRUE, substr("test", 0)) expect_snapshot(error = TRUE, substr("test", "x", 1)) expect_snapshot(error = TRUE, substr("test", 1, "x")) }) test_that("substring is also translated", { expect_equal(translate_sql(substring(x, 3, 4)), sql("SUBSTR(`x`, 3, 2)")) }) test_that("sql_str_sub works as expected", { local_con(simulate_dbi()) x <- ident("x") str_sub <- sql_str_sub("SUBSTR") expect_equal(str_sub(x), sql("SUBSTR(`x`, 1)")) expect_equal(str_sub(x, 1), sql("SUBSTR(`x`, 1)")) expect_equal(str_sub(x, -1), sql("SUBSTR(`x`, LENGTH(`x`))")) expect_equal(str_sub(x, 2, 4), sql("SUBSTR(`x`, 2, 3)")) expect_equal(str_sub(x, 2, 2), sql("SUBSTR(`x`, 2, 1)")) expect_equal(str_sub(x, 2, 0), sql("SUBSTR(`x`, 2, 0)")) expect_equal(str_sub(x, 1, -2), sql("SUBSTR(`x`, 1, LENGTH(`x`) - 1)")) expect_equal(str_sub(x, 3, -3), sql("SUBSTR(`x`, 3, LENGTH(`x`) - 4)")) expect_equal(str_sub(x, -3, 0), sql("SUBSTR(`x`, LENGTH(`x`) - 2, 0)")) expect_equal(str_sub(x, -3, -3), sql("SUBSTR(`x`, LENGTH(`x`) - 2, 1)")) }) test_that("sql_str_sub can require length paramter", { local_con(simulate_dbi()) x <- ident("x") str_sub <- sql_str_sub("SUBSTR", optional_length = FALSE) expect_equal(str_sub(x), sql("SUBSTR(`x`, 1, LENGTH(`x`))")) expect_equal(str_sub(x, 1), sql("SUBSTR(`x`, 1, LENGTH(`x`))")) expect_equal(str_sub(x, -1), sql("SUBSTR(`x`, LENGTH(`x`), 1)")) }) test_that("str_sub() returns consistent results", { mf <- memdb_frame(t = "abcde") expect_equal(mf %>% transmute(str_sub(t, -3, -1)) %>% pull(1), "cde") expect_equal(mf %>% transmute(str_sub(t, 0, -1)) %>% pull(1), "abcde") expect_equal(mf %>% transmute(str_sub(t, 1, -3)) %>% pull(1), "abc") expect_equal(mf %>% transmute(str_sub(t, -3, 0)) %>% pull(1), "") expect_equal(mf %>% transmute(str_sub(t, 0, 0)) %>% pull(1), "") expect_equal(mf %>% transmute(str_sub(t, 1, 0)) %>% pull(1), "") expect_equal(mf %>% transmute(str_sub(t, -3, 5)) %>% pull(1), "cde") expect_equal(mf %>% transmute(str_sub(t, 0, 1)) %>% pull(1), "a") expect_equal(mf %>% transmute(str_sub(t, 1, 3)) %>% pull(1), "abc") })
ParamPWR <- setRefClass( "ParamPWR", fields = list( X = "numeric", Y = "numeric", m = "numeric", phi = "matrix", K = "numeric", p = "numeric", gamma = "matrix", beta = "matrix", sigma2 = "matrix" ), methods = list( initialize = function(X = numeric(), Y = numeric(1), K = 2, p = 3) { X <<- X Y <<- Y m <<- length(Y) phi <<- designmatrix(X, p)$XBeta K <<- K p <<- p gamma <<- matrix(NA, K + 1) beta <<- matrix(NA, p + 1, K) sigma2 <<- matrix(NA, K) }, computeDynamicProgram = function(C1, K) { "Method which implements the dynamic programming based on the cost matrix \\code{C1} and the number of regimes/segments \\code{K}." solution <- dynamicProg(C1, K) Ck <- solution$J gamma <<- matrix(c(0, solution$t_est[nrow(solution$t_est),])) return(Ck) }, computeParam = function() { "Method which estimates the parameters \\code{beta} and \\code{sigma2} knowing the transition points \\code{gamma}." for (k in 1:K) { i <- gamma[k] + 1 j <- gamma[k + 1] nk <- j - i + 1 yij <- Y[i:j] X_ij <- phi[i:j, , drop = FALSE] beta[, k] <<- solve(t(X_ij) %*% X_ij, tol = 0) %*% t(X_ij) %*% yij if (p == 0) { z <- yij - X_ij * beta[, k] } else { z <- yij - X_ij %*% beta[, k] } sigma2[k] <<- t(z) %*% z / nk } } ) )
MSG <- list( not_list = "Must be a list.", valid_x = "x must be a named list or data.frame", not_unique = "List names must be unique.", no_names = "List must have named items.", all_names = "All list items must be named.", read_only = "VarBundle fields are read only.", not_empty = "List must not be empty", not_null = "Argument cannot be NULL", not_atomic = "Variables must be atomic.", only_atomic_scalar = "Only VarBundles with all atomic scalar items can be converted to data.frame", return_null = "Returning NULL" ) validate_x <- function(x) { if (is.null(x)) { stop(MSG$not_null) } if (sum(class(x) %in% c("list", "data.frame")) == 0) { stop(MSG$valid_x) } } validate_list <- function(ll) { if (length(ll) == 0) { stop(MSG$not_empty) } if (is.null(names(ll))) { stop(MSG$no_names) } if ("" %in% names(ll)) { stop(MSG$all_names) } if (sum(duplicated(names(ll))) > 0) { stop(MSG$not_unique) } }
f_get_dama_xml <- function(input_file_pbix, xml_start, xml_end) { index_collection <- f_get_dama_index(input_file_pbix) extract_xml <- f_get_dama_file(input_file_pbix, "xml", index_collection) if (xml_start > index_collection[[4]]) { error_message <- paste0("Start position exceeds length of the XML.") stop(error_message, call. = FALSE) } if (xml_end > index_collection[[4]]) { error_message <- paste0("End position exceeds length of the XML.") stop(error_message, call. = FALSE) } xml_subset <- extract_xml[xml_start:xml_end] temp_file <- tempfile() con <- file(temp_file, "wb") end_loop <- length(xml_subset) for (xml_si in seq_along(1:end_loop)) { write_value <- xml_subset[xml_si] writeBin(write_value, con = con) } close(con) xml_read <- xml2::read_xml(temp_file) file.remove(temp_file) return(xml_read) }
generate_pseudo_pop <- function(Y, w, c, ci_appr, pred_model, gps_model = "parametric", use_cov_transform = FALSE, transformers = list("pow2","pow3"), bin_seq = NULL, trim_quantiles = c(0.01,0.99), optimized_compile = FALSE, params = list(), nthread = 1, ...){ max_attempt <- NULL covar_bl_trs <- NULL log_system_info() st_time_gpp <- proc.time() fcall <- match.call() check_args(pred_model,ci_appr, use_cov_transform, transformers, gps_model, trim_quantiles, optimized_compile, ...) counter <- 0 dot_args <- list(...) arg_names <- names(dot_args) for (i in arg_names){ assign(i,unlist(dot_args[i],use.names = FALSE)) } q1 <- stats::quantile(w,trim_quantiles[1]) q2 <- stats::quantile(w,trim_quantiles[2]) logger::log_debug("{trim_quantiles[1]*100}% qauntile for trim: {q1}") logger::log_debug("{trim_quantiles[2]*100}% for trim: {q2}") tmp_data <- convert_data_into_standard_format(Y, w, c, q1, q2, ci_appr) original_corr_obj <- check_covar_balance(tmp_data, ci_appr, nthread, optimized_compile, ...) tmp_data <- NULL if (ci_appr == "matching") internal_use=TRUE else internal_use=FALSE covariate_cols <- as.list(colnames(c)) transformed_vals <- covariate_cols c_extended <- c recent_swap <- NULL best_ach_covar_balance <- NULL while (counter < max_attempt){ counter <- counter + 1 logger::log_debug("Started to estimate gps ... ") estimate_gps_out <- estimate_gps(Y, w, c_extended[unlist(covariate_cols)], pred_model, gps_model, params = params, nthread = nthread, internal_use = internal_use, ...) logger::log_debug("Finished estimating gps.") if (!is.null(recent_swap)){ new_col_ind <- which(covariate_cols==recent_swap[2]) covariate_cols[[new_col_ind]] <- NULL covariate_cols[length(covariate_cols)+1] <- recent_swap[1] c_extended[[recent_swap[2]]] <- NULL estimate_gps_out[[1]][recent_swap[2]] <- NULL estimate_gps_out[[1]][length(estimate_gps_out[[1]])+1] <- c[recent_swap[1]] logger::log_debug("Tranformed column {recent_swap[2]} was reset to {recent_swap[1]}.") } logger::log_debug("Started compiling pseudo population ... ") pseudo_pop <- compile_pseudo_pop(dataset=estimate_gps_out, ci_appr=ci_appr, gps_model,bin_seq, nthread = nthread, trim_quantiles = trim_quantiles, optimized_compile = optimized_compile,...) pseudo_pop <- subset(pseudo_pop[stats::complete.cases(pseudo_pop) ,], w <= q2 & w >= q1) logger::log_debug("Finished compiling pseudo population.") if (ci_appr == 'adjust'){ break } adjusted_corr_obj <- check_covar_balance(pseudo_pop, ci_appr, nthread, optimized_compile, ...) if (is.null(best_ach_covar_balance)){ best_ach_covar_balance <- adjusted_corr_obj$corr_results$mean_absolute_corr best_pseudo_pop <- pseudo_pop best_adjusted_corr_obj <- adjusted_corr_obj } if (adjusted_corr_obj$corr_results$mean_absolute_corr < best_ach_covar_balance){ best_ach_covar_balance <- adjusted_corr_obj$corr_results$mean_absolute_corr best_pseudo_pop <- pseudo_pop best_adjusted_corr_obj <- adjusted_corr_obj } if (adjusted_corr_obj$pass){ message(paste('Covariate balance condition has been met (iteration: ', counter,'/', max_attempt,')', sep = "")) break } if (use_cov_transform){ sort_by_covar <- sort(adjusted_corr_obj$corr_results$absolute_corr, decreasing = TRUE) value_found = FALSE for (c_name in names(sort_by_covar)){ el_ind <- which(unlist(lapply(transformed_vals, function(x){ x[1] == c_name }))) if (length(el_ind)==0){ next } if (is.factor(c_extended[[c_name]])){ next } logger::log_debug("Feature with the worst covariate balance: {c_name}.", " Located at index {el_ind}.") for (operand in transformers){ if (!is.element(operand, transformed_vals[[el_ind]])){ new_c <- c_name new_op <- operand value_found = TRUE break } } if (value_found){break} } if (!value_found){ warning(paste("All possible combination of transformers has been tried.", "Try using more transformers.", sep=" ")) } else { transformed_vals[[el_ind]][length(transformed_vals[[el_ind]])+1] <- new_op t_dataframe <- transform_it(new_c, c_extended[[new_c]], new_op) c_extended <- cbind(c_extended, t_dataframe) recent_swap <- c(new_c, unlist(colnames(t_dataframe))) index_to_remove <- which(unlist(covariate_cols)==new_c) covariate_cols[[index_to_remove]] <- NULL covariate_cols[length(covariate_cols)+1] <- unlist(colnames(t_dataframe)) logger::log_debug("In the next iteration (if any) feature {c_name}", " will be replaced by {unlist(colnames(t_dataframe))}.") } } } if (!adjusted_corr_obj$pass){ message(paste('Covariate balance condition has not been met.')) } message(paste("Best Mean absolute correlation: ", best_ach_covar_balance, "| Covariate balance threshold: ", covar_bl_trs)) result <- list() class(result) <- "gpsm_pspop" result$params$ci_appr <- ci_appr result$params$pred_model <- pred_model result$params$params <- params for (item in arg_names){ result$params[[item]] <- get(item) } result$pseudo_pop <- best_pseudo_pop result$adjusted_corr_results <- best_adjusted_corr_obj$corr_results result$original_corr_results <- original_corr_obj$corr_results result$fcall <- fcall result$passed_covar_test <- adjusted_corr_obj$pass result$counter <- counter result$ci_appr <- ci_appr result$optimized_compile <- optimized_compile end_time_gpp <- proc.time() logger::log_debug("Wall clock time to run generate_pseudo_pop:", " {(end_time_gpp - st_time_gpp)[[3]]} seconds.") logger::log_debug("Covariate balance condition has been met (TRUE/FALSE):", " {adjusted_corr_obj$pass}, (iteration:", " {counter} / {max_attempt})") invisible(result) } pow2 <- function(x) {x^2} pow3 <- function(x) {x^3} transform_it <- function(c_name, c_val, transformer){ t_c_name <- paste(c_name,"_",transformer, sep = "") t_data <- do.call(transformer, list(c_val)) t_data <- data.frame(t_data) colnames(t_data) <- t_c_name return(data.frame(t_data)) }
make_dt_lookup_by_column <- function(pick, result) { force(pick) force(result) f_dt <- function(d, nd = NULL) { dt <- as.data.table(d) .I <- PICK <- RESULT <- NULL wrapr::let( c(PICK = pick, RESULT = result), dt[, RESULT := dt[[PICK]][.I], by = PICK], strict = FALSE ) dt[] } f_dt }
if (interactive()) pkgload::load_all(".") test_compare_vectors <- function() { data(mtcars) cars <- rownames(mtcars) carz <- cars[-grep("Merc", cars)] cars <- cars[nchar(cars) < 15] expectation <- structure(c("AMC Javelin", NA, "Camaro Z28", NA, "Datsun 710", NA, "Duster 360", "Ferrari Dino", "Fiat 128", "Fiat X1-9", "Ford Pantera L", "Honda Civic", "Hornet 4 Drive", NA, NA, "Lotus Europa", "Maserati Bora", "Mazda RX4", "Mazda RX4 Wag", "Merc 230", "Merc 240D", "Merc 280", "Merc 280C", "Merc 450SE", "Merc 450SL", "Merc 450SLC", NA, "Porsche 914-2", "Toyota Corolla", "Toyota Corona", "Valiant", "Volvo 142E", "AMC Javelin", "Cadillac Fleetwood", "Camaro Z28", "Chrysler Imperial", "Datsun 710", "Dodge Challenger", "Duster 360", "Ferrari Dino", "Fiat 128", "Fiat X1-9", "Ford Pantera L", "Honda Civic", "Hornet 4 Drive", "Hornet Sportabout", "Lincoln Continental", "Lotus Europa", "Maserati Bora", "Mazda RX4", "Mazda RX4 Wag", NA, NA, NA, NA, NA, NA, NA, "Pontiac Firebird", "Porsche 914-2", "Toyota Corolla", "Toyota Corona", "Valiant", "Volvo 142E"), .Dim = c(32L, 2L), .Dimnames = list(c("AMC Javelin", "Cadillac Fleetwood", "Camaro Z28", "Chrysler Imperial", "Datsun 710", "Dodge Challenger", "Duster 360", "Ferrari Dino", "Fiat 128", "Fiat X1-9", "Ford Pantera L", "Honda Civic", "Hornet 4 Drive", "Hornet Sportabout", "Lincoln Continental", "Lotus Europa", "Maserati Bora", "Mazda RX4", "Mazda RX4 Wag", "Merc 230", "Merc 240D", "Merc 280", "Merc 280C", "Merc 450SE", "Merc 450SL", "Merc 450SLC", "Pontiac Firebird", "Porsche 914-2", "Toyota Corolla", "Toyota Corona", "Valiant", "Volvo 142E"), c("cars", "carz"))) result <- compare_vectors(cars, carz) RUnit::checkIdentical(result, expectation) RUnit::checkIdentical(sort(intersect(cars, carz)), row.names(result)[complete.cases(result)]) } if (interactive()) { test_compare_vectors() }
wrap.euclidean <- function(input){ if (is.matrix(input)){ N = nrow(input) tmpdata = list() for (i in 1:N){ tmpdata[[i]] = as.vector(input[i,]) } } else if (is.list(input)){ tmpdata = input } else { stop("* wrap.euclidean : input should be either a 2d matrix or a list.") } if (!check_list_eqsize(tmpdata, check.square=FALSE)){ stop("* wrap.euclidean : elements are not vectors of same size.") } N = length(tmpdata) for (n in 1:N){ tmpdata[[n]] = matrix(tmpdata[[n]], ncol=1) } output = list() output$data = tmpdata output$size = dim(tmpdata[[1]]) output$name = "euclidean" return(structure(output, class="riemdata")) }
library(AOV1R) set.seed(666) I=3; J=4 dat <- simAV1R(I, J, mu=0, sigmab=2, sigmaw=3) fit <- aov1r(y ~ group, data=dat) ssb <- fit[["Sums of squares"]][["ssb"]] ssw <- fit[["Sums of squares"]][["ssw"]] total_variance <- sum(fit[["Variance components"]]) a <- 1/J/(I-1) b <- (1-1/J) * 1/I/(J-1) (a*ssb+b*ssw)^2/((a*ssb)^2/(I-1) + (b*ssw)^2/(I*(J-1))) library(VCA) vca <- anovaMM(y ~ (group), Data=dat) var_total_var <- sum(vcovVC(vca)) 2*total_variance^2 / var_total_var
suppressPackageStartupMessages(library("argparse")) parser = ArgumentParser() parser$add_argument("--infercnv_obj", help="infercnv_obj file", required=TRUE, nargs=1) args = parser$parse_args() library(infercnv) library(ggplot2) library(futile.logger) infercnv_obj_file = args$infercnv_obj infercnv_obj = readRDS(infercnv_obj_file) pdf('ladeda.pdf')
seasonal_dot <- function(swmpr_in, ...) UseMethod('seasonal_dot') seasonal_dot.swmpr <- function(swmpr_in , param = NULL , lm_trend = FALSE , lm_lab = FALSE , free_y = FALSE , log_trans = FALSE , converted = FALSE , plot_title = FALSE , plot = TRUE , ...) { dat <- swmpr_in parm <- sym(param) conv <- converted seas <- sym('season') yr <- sym('year') parameters <- attr(dat, 'parameters') station <- attr(dat, 'station') data_type <- substr(station, 6, nchar(station)) if(substr(station, 6, nchar(station)) == 'nut' && !('season_names' %in% names(list(...)))) warning('Nutrient data detected. Consider specifying seasons > 1 month.') if(!any(param %in% parameters)) stop('Param argument must name input column') y_trans <- ifelse(log_trans, 'log10', 'identity') y_label <- y_labeler(param = param, converted = conv) if(attr(dat, 'qaqc_cols')) warning('QAQC columns present. QAQC not performed before analysis.') dat$season <- assign_season(dat$datetimestamp, abb = TRUE, ...) dat$year <- lubridate::year(dat$datetimestamp) dat <- dat[, c('year', 'season', param)] dat <- dat %>% dplyr::filter(!is.na(!! parm)) plt_data <- dat %>% group_by(!! yr, !! seas) %>% summarise(min = min(!! parm, na.rm = TRUE) , mean = mean(!! parm, na.rm = TRUE) , max = max(!! parm, na.rm = TRUE) , .groups = "drop_last") plt_data <- tidyr::complete(plt_data, !! seas) plt_data[, 3] <- remove_inf_and_nan(plt_data[, 3]) plt_data[, 4] <- remove_inf_and_nan(plt_data[, 4]) plt_data[, 5] <- remove_inf_and_nan(plt_data[, 5]) if(plot) { agg_lab <- ifelse(length(levels(plt_data$season)) == 12, 'Monthly ', 'Seasonal ') labs_legend <- factor(paste0(agg_lab, c('Minimum', 'Average', 'Maximum'), sep = '')) brks <- range(plt_data$year) tick_interval <- case_when( diff(brks) > 20 ~ 4, diff(brks) > 10 ~ 2, TRUE ~ 1) mx <- max(plt_data[ , c(3:5)], na.rm = TRUE) * 1.2 mx <- ifelse(data_type == 'nut' && param != 'chla_n', ceiling(mx/0.01) * 0.01, ceiling(mx)) mn <- min(plt_data[ , c(3:5)], na.rm = TRUE) mn <- ifelse(mn < 0 , min(pretty(mn)), 0) mn <- ifelse(log_trans, ifelse(substr(station, 6, nchar(station)) == 'nut', 0.001, 0.1), mn) plt <- ggplot(data = plt_data, aes_string(x = "year", y = "min", color = labs_legend[1])) + geom_point() + geom_point(data = plt_data, aes_string(x = "year", y = "mean", color = labs_legend[2])) + geom_point(data = plt_data, aes_string(x = "year", y = "max", color = labs_legend[3])) + geom_point() + scale_color_manual('', values = c('black', 'red', 'blue')) + scale_x_continuous(breaks = seq(from = brks[1], to = brks[2], by = tick_interval)) + facet_wrap(~ season) + labs(x = NULL, y = eval(y_label)) if(!log_trans) { plt <- plt + scale_y_continuous(labels = scales::format_format(digits = 2, big.mark = ",", decimal.mark = ".", scientific = FALSE) , breaks = scales::breaks_pretty(n = 8)) if(!free_y){plt <- plt + expand_limits(y = mn)} } else { plt <- plt + scale_y_continuous(trans = y_trans , labels = scales::format_format(digits = 2, big.mark = ",", decimal.mark = ".", scientific = FALSE) , breaks = scales::breaks_pretty(n = 8)) if(!free_y) {plt <- plt + expand_limits(y = mn)} } plt <- plt + theme_bw() + theme(legend.position = 'top' , legend.direction = 'horizontal') + theme(panel.grid.major = element_line(linetype = 'solid'), panel.grid.minor = element_line(linetype = 'solid'), strip.background = element_blank(), panel.border = element_rect(color = 'black')) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5), axis.title.y = element_text(margin = unit(c(0, 8, 0, 0), 'pt'), angle = 90)) + theme(text = element_text(size = 16)) plt <- plt + theme(legend.key.size = unit(7, 'pt')) + theme(legend.text = element_text(size = 10)) + theme(legend.spacing.x = unit(3, 'pt')) if(lm_trend) { plt <- plt + geom_smooth(aes_string(x = 'year', y = 'min', color = labs_legend[1]) , method = 'lm', se = FALSE, lwd = 0.5 , formula = y ~ x) + geom_smooth(aes_string(x = 'year', y = 'mean', color = labs_legend[2]) , method = 'lm', se = FALSE, lwd = 0.5 , formula = y ~ x) + geom_smooth(aes_string(x = 'year', y = 'max', color = labs_legend[3]) , method = 'lm', se = FALSE, lwd = 0.5 , formula = y ~ x) } if(lm_lab) { p_labs <- lm_p_labs(plt_data) if(nrow(p_labs) > 0) { y_mx <- max(ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range) y_mn <- min(ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range) y_rng <- y_mx - y_mn p_labs$x <- brks[2] p_labs$max_y <- y_mx - (0.01 * y_rng) p_labs$mean_y <- y_mx - (0.135 * y_rng) p_labs$min_y <- y_mx - (0.255 * y_rng) plt <- plt + geom_text(aes(label = .data$max, x = .data$x, y = .data$max_y) , data = p_labs , fontface = ifelse(p_labs$max == 'p < 0.05', 2, 1) , hjust = 1, color = 'red') + geom_text(aes(label = .data$mean, x = .data$x, y = .data$mean_y) , data = p_labs , fontface = ifelse(p_labs$mean == 'p < 0.05', 2, 1) , hjust = 1, color = 'black') + geom_text(aes(label = .data$min, x = .data$x, y = .data$min_y) , data = p_labs , fontface = ifelse(p_labs$min == 'p < 0.05', 2, 1) , hjust = 1, color = 'blue') } else { warning('Insufficient data to calculate linear regression p-values') } } if(plot_title) { ttl <- title_labeler(nerr_site_id = station) plt <- plt + ggtitle(ttl) + theme(plot.title = element_text(hjust = 0.5)) } return(plt) } else { return(plt_data) } }
ess <- function(mix, method=c("elir", "moment", "morita"), ...) UseMethod("ess") ess.default <- function(mix, method=c("elir", "moment", "morita"), ...) stop("Unknown density") calc_loc <- function(mix, loc=c("mode", "median", "mean")) { loc <- match.arg(loc) if(loc == "mode") { tol <- .Machine$double.eps^0.25 locEst <- mixmode(mix) if(length(attr(locEst, "modes")) > 1) { warning("Detected multiple modes.\nThe ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.") } else { attr(locEst, "modes") <- NULL } } if(loc == "median") { locEst <- qmix(mix, 0.5) } if(loc == "mean") { locEst <- summary(mix, NULL)["mean"] } names(locEst) <- NULL return(unname(locEst)) } mixInfo <- function(mix, x, dens, gradl, hessl) { p <- mix[1,] a <- mix[2,] b <- mix[3,] lp <- log(p) ldensComp <- dens(x, a, b, log=TRUE) ldensMix <- log_sum_exp(lp + ldensComp) lwdensComp <- lp + ldensComp - ldensMix dgl <- gradl(x,a,b) dhl <- (hessl(x,a,b) + dgl^2) if(all(dgl < 0) || all(dgl > 0)) { gsum <- exp(2*log_sum_exp(lwdensComp + log(abs(dgl)))) } else { gsum <- (sum(exp(lwdensComp)*dgl))^2 } if(all(dhl < 0) || all(dhl > 0)) { hsum <- sign(dhl[1]) * exp(log_sum_exp(lwdensComp + log(abs(dhl)))) } else { hsum <- (sum(exp(lwdensComp)*dhl)) } gsum - hsum } lir <- function(mix, info, fisher_inverse) { fn <- function(x) { info(mix, x) * fisher_inverse(x) } Vectorize(fn) } weighted_lir <- function(mix, info, fisher_inverse) { fn <- function(x) { dmix(mix, x) * info(mix, x) * fisher_inverse(x) } Vectorize(fn) } weighted_lir_link <- function(mix, info, fisher_inverse, link) { dlink(mix) <- link_map[[link]] fn <- function(x) { x_orig <- mixinvlink(mix, x) dmix(mix, x) * info(mix, x_orig) * fisher_inverse(x_orig) } Vectorize(fn) } ess.betaMix <- function(mix, method=c("elir", "moment", "morita"), ..., s=100) { method <- match.arg(method) if(method == "elir") { if(!test_numeric(mix[2,], lower=1, finite=TRUE, any.missing=FALSE) || !test_numeric(mix[3,], lower=1, finite=TRUE, any.missing=FALSE)) { stop("At least one parameter of the beta mixtures is less than 1.\n", "This leads to an ill-defined elir ess since the defining integral diverges.\n", "Consider constraining all parameters to be greater than 1 (use constrain_gt1=TRUE argument for EM fitting functions).") } elir <- integrate_density(lir(mix, betaMixInfo, bernoulliFisherInfo_inverse), mix) return(elir) } if(method == "moment") { smix <- summary(mix) res <- sum(ms2beta(smix["mean"], smix["sd"])) names(res) <- NULL return( res ) } alphaP <- mix[2,] betaP <- mix[3,] locEst <- calc_loc(mix, "mode") deriv2.prior <- betaMixInfo(mix, locEst) ESSmax <- ceiling(sum(alphaP+betaP)) * 2 alphaP0 <- locEst / s betaP0 <- (1-locEst) / s info.prior0 <- betaInfo(locEst, alphaP0, betaP0) if(any(rowSums(mix[2:3,,drop=FALSE]) < 10/s )) { warning("Some of the mixture components have a scale which is large compared to the rescaling factor s. Consider increasing s.") } ed2p <- function(m) { yn <- seq(0,m) info <- betaInfo(locEst, alphaP0 + yn, betaP0 + m - yn) sum(info * dmix(preddist(mix,n=m), yn) ) } ed2pDiff <- function(m) { deriv2.prior - ed2p(m) } pd0 <- dmix(preddist(mix, n=1), 0) Einfo <- binomialInfo(0,locEst,1) * pd0 + binomialInfo(1,locEst,1) * (1-pd0) return( unname((deriv2.prior - info.prior0) / Einfo ) ) } betaLogGrad <- function(x,a,b) { lxm1 <- log1p(-x) lx <- log(x) - (b-1) * exp(- lxm1) + (a-1)*exp(- lx) } betaLogHess <- function(x,a,b) { lxm1 <- log1p(-x) lx <- log(x) - (b-1) * exp(-2 * lxm1) - (a-1)*exp(-2 * lx) } betaMixInfo <- function(mix,x) { mixInfo(mix, x, dbeta, betaLogGrad, betaLogHess) } betaInfo <- function(x,a,b) { -betaLogHess(x,a,b) } bernoulliFisherInfo_inverse <- function(x) { x - x^2 } binomialInfo <- function(r,theta,n) { r / theta^2 + (n-r)/(1-theta)^2 } ess.gammaMix <- function(mix, method=c("elir", "moment", "morita"), ..., s=100, eps=1E-4) { method <- match.arg(method) lik <- likelihood(mix) if(method == "elir") { if(lik == "poisson") return(integrate_density(lir(mix, gammaMixInfo, poissonFisherInfo_inverse), mix)) if(lik == "exp") return(integrate_density(lir(mix, gammaMixInfo, expFisherInfo_inverse), mix)) } if(method == "moment") { smix <- summary(mix) coef <- ms2gamma(smix["mean"], smix["sd"]) names(coef) <- NULL if(lik == "poisson") return(unname(coef[2])) if(lik == "exp") return(unname(coef[1])) stop("Unkown likelihood") } locEst <- calc_loc(mix, "mode") deriv2.prior <- gammaMixInfo(mix, locEst) if(lik == "poisson") { meanPrior <- summary(mix)["mean"] names(meanPrior) <- NULL priorN <- mix[3,,drop=FALSE] ed2pDiff <- function(m) { deriv2.prior - ( gammaInfo(locEst, locEst/s + m * meanPrior, 1/s)) } ESSmax <- ceiling(sum(mix[3,])) * 2 info.prior0 <- gammaInfo(locEst, locEst/s, 1/s) pred_pmf <- preddist(mix, n=1) lim <- qmix(pred_pmf, c(eps/2, 1-eps/2)) y1 <- seq(lim[1], lim[2]) Einfo <- sum(dmix(pred_pmf, y1) * poissonInfo(y1, locEst)) } if(lik == "exp") { priorN <- mix[2,,drop=FALSE] ed2pDiff <- function(m) { deriv2.prior - gammaInfo(locEst, 1/s + m, 1/(s*locEst)) } ESSmax <- ceiling(sum(mix[2,])) * 2 info.prior0 <- gammaInfo(locEst, 1/s, 1/(s*locEst)) Einfo <- expInfo(1,locEst) } if(any(priorN < 10/s )) { warning("Some of the mixture components have a scale which is large compared to the rescaling factor s. Consider increasing s.") } return(unname( (deriv2.prior - info.prior0)/Einfo ) ) } gammaLogGrad <- function(x,a,b) { (a-1)/x - b } gammaLogHess <- function(x,a,b) { -(a-1)/x^2 } gammaInfo <- function(x,a,b) { -gammaLogHess(x,a,b) } gammaMixInfo <- function(mix,x) { mixInfo(mix, x, dgamma, gammaLogGrad, gammaLogHess) } poissonFisherInfo_inverse <- function(x) { x } expFisherInfo_inverse <- function(x) { x^2 } poissonInfo <- function(y,theta) { y/theta^2 } expInfo <- function(y,theta) { 1/theta^2 } ess.normMix <- function(mix, method=c("elir", "moment", "morita"), ..., sigma, s=100) { method <- match.arg(method) if(missing(sigma)) { sigma <- RBesT::sigma(mix) message("Using default prior reference scale ", sigma) } assert_number(sigma, lower=0) tauSq <- sigma^2 mu <- mix[2,] sigma <- mix[3,] sigmaSq <- sigma^2 if(method == "elir") { return(tauSq * integrate_density(lir(mix, normMixInfo, normStdFisherInfo_inverse), mix)) } if(method == "moment") { smix <- summary(mix) res <- tauSq / smix["sd"]^2 return( unname(res) ) } locEst <- calc_loc(mix, "mode") deriv2.prior <- normMixInfo(mix, locEst) ESSmax <- ceiling(sum( (1-1/s) * tauSq/sigmaSq )) * 2 muP0 <- locEst sigmaP0Sq <- s * max(sigmaSq) ed2pDiff <- function(m) { deriv2.prior - normInfo(locEst, muP0, sqrt(1/(m/tauSq + 1/sigmaP0Sq))) } info.prior0 <- normInfo(locEst, muP0, sqrt(sigmaP0Sq)) Einfo <- 1/tauSq return(unname( (deriv2.prior - info.prior0)/Einfo )) } normLogGrad <- function(x,mu,sigma) { -1 * (x-mu)/(sigma)^2 } normLogHess <- function(x,mu,sigma) { -1/sigma^2 } normMixInfo <- function(mix,x) { mixInfo(mix, x, dnorm, normLogGrad, normLogHess) } normInfo <- function(x,mean,sigma) { -normLogHess(x,mean,sigma) } normStdFisherInfo_inverse <- function(x) { 1.0 }
summary_interact <- function(model, ref, discrete, ref_min = NULL, ref_max = NULL, level = NULL, ..., digits = 3L, p = FALSE) { if (!inherits(model, "lrm")) { ui_stop("model has to inherits to lrm class") } if (is.null(getOption("datadist"))) ui_stop("datadist non defined") discrete <- rlang::enquo(discrete) discrete_name <- rlang::quo_name(discrete) ref <- rlang::enquo(ref) ref_name <- rlang::quo_name(ref) dd <- getOption("datadist") %>% as.name() %>% eval() if (!ref_name %in% names(dd[["limits"]])) { ui_stop("ref isn't in datadist") } if (!discrete_name %in% names(dd[["limits"]])) { ui_stop("discrete isn't in datadist") } if (is.null(ref_min)) { ref_min <- dd[["limits"]][[ref_name]][[1L]] } if (is.null(ref_max)) { ref_max <- dd[["limits"]][[ref_name]][[3L]] } if (is.null(level)) { level <- dd[["values"]][[discrete_name]] } suppressMessages({ res <- purrr::map_df(.x = level, ~ { interact <- .x eval(parse(text = paste0( "summary(model, ", discrete_name, " = interact, ", ref_name, " = c(ref_min, ref_max)", ")" ))) %>% tibble::as_tibble( rownames = ".rownames", .name_repair = "universal" ) %>% dplyr::mutate(.rownames = dplyr::lag(.data[[".rownames"]])) %>% dplyr::filter(Type == 2L) %>% dplyr::select(-"Type", -"S.E.") %>% dplyr::filter(.rownames == rlang::quo_name(ref)) %>% dplyr::mutate( Low = ifelse(is.na(Diff.), NA, Low), High = ifelse(is.na(Diff.), NA, High), Diff. = ifelse(!is.na(Diff.), Diff., stringr::str_extract(.data[[".rownames"]], " - .*$") %>% stringr::str_replace(" - ", "") ), Effect = as.numeric(Effect), Lower.0.95 = as.numeric(Lower.0.95), Upper.0.95 = as.numeric(Upper.0.95), .rownames = stringr::str_replace(.data[[".rownames"]], " -+.*$", "") ) %>% dplyr::mutate( .rownames = paste0(.data[[".rownames"]], " - ", interact) ) %>% dplyr::rename( `&nbsp;` = .data[[".rownames"]], `Odds Ratio` = .data[["Effect"]], `Lower 95% CI` = .data[["Lower.0.95"]], `Upper 95% CI` = .data[["Upper.0.95"]] ) }) }) if (p) { res[["P-value"]] <- purrr::pmap_dbl( list( or = res[["Odds Ratio"]], low = res[["Lower 95% CI"]], high = res[["Upper 95% CI"]] ), function(or, low, high) { ci2p(or, low, high, log_transform = TRUE) } ) } res %>% dplyr::mutate_if(is.double, round, digits = digits) }
fts.dpca = function(X, q = 30, freq = (-1000:1000/1000)*pi, Ndpc = X$basis$nbasis){ if (!is.fd(X)) stop("X must be a functional data object") res = list() res$spec.density = fts.spectral.density(X, freq = freq, q = q) res$filters = fts.dpca.filters(res$spec.density, q = q, Ndpc = Ndpc) res$scores = fts.dpca.scores(X, res$filters) res$var = fts.dpca.var(res$spec.density) res$Xhat = fts.dpca.KLexpansion(X, res$filters) res }
test_that("file_line_endings detects Unix line endings", { tmp <- tempfile() on.exit(unlink(tmp)) writeBin(charToRaw("foo\n"), tmp) expect_equal(file_line_endings(tmp), "\n") writeBin(charToRaw(""), tmp) expect_identical(file_line_endings(tmp), NA_character_) }) test_that("file_line_endings detects Windows line endings", { tmp <- tempfile() on.exit(unlink(tmp)) writeBin(charToRaw("foo\r\n"), tmp) expect_equal(file_line_endings(tmp), "\r\n") })
v.raster <- function(obj, varname, layer=1, param=varname, zlim, minv, maxv, adaptive.vals, replace.na=F, Log, main, show.colorbar,cbpos='',cbx, cby, cb.title, cb.xlab, cb.xlab.line=0, pal, nticks=5, sidelabels=F, Ylab=F, axeslabels=T, ticklabels=T, cex.lab=0.8, cex.ticks=0.8, cex.cb.title=0.9,cex.cb.xlab=0.8,cex.cb.ticks=0.7, subplot=F, width, height, figdim, xpos=-1, Save=F, plotfolder=".", plotname, fileformat="png", suffix, region, v_area=region, v_image=T, v_contour=F, levels, contour.labels=NULL, v_arrows=F, scale_arrow=1, fill.land=T, col.land="grey", col.bg=NA,border='black', grid=T, grid.res, bwd=2,cb.ticks.srt=90,las=1, dates,terrain=T,verbose=T){ if(missing(show.colorbar)) show.colorbar <- T if(missing(param) & missing(varname)) { param <- '' if(missing(cb.xlab) & missing(cb.title)) cb.xlab <- names(obj) if(missing(cb.title)) cb.title <- '' } if(missing(varname)) varname <- param if(!missing(width) & !missing(height)) figdim <- c(width, height) region_definitions <- NULL rm(region_definitions) data('region_definitions',envir=environment()) parameter_definitions <- NULL rm(parameter_definitions) data('parameter_definitions',envir=environment()) param_def <- parameter_definitions[as.character(parameter_definitions$param) == param,] if(nrow(param_def) == 0) param_def <- as.data.frame(matrix(NA,nrow=1,ncol=ncol(param_def),dimnames=list(1,names(param_def)))) if(missing(Log)) Log <- F param_def$log <- as.numeric(Log) if(missing(cb.xlab) & is.na(param_def$name1)) cb.xlab <- varname param <- param_def$param <- varname if(param == "bathy" & !terrain){ ii <- which(obj[,] < 0) if(length(ii) > 0){ obj[obj[,] > 0] <- NA obj[,] <- -obj[,] } } if(!(grepl('Raster', class(obj)))) stop('error in.v.raster.r: obj of unknown input format. Please check!') obj <- brick(obj) if(missing(adaptive.vals)) adaptive.vals <- T if(missing(v_area)){ ext <- extent(obj) v_area.rounded <- round(as.vector(t(sp::bbox(ext))),digits=1) ext2 <- as.vector(t(sp::bbox(ext)))[c(4,3,1:2)] id <- which(apply(region_definitions[,3:6],1,function(x) all(ext2 %in% x))) if(length(id) > 0){ v_area <- as.character(region_definitions$label[id[1]]) v_area.valid <- T }else{ v_area.valid <- F cat('\nno region (v_area) defined, run add.region to add region definitions and to save settings for the plot region, colorbar and window size!\n') v_area.name <- paste0('lon',v_area.rounded[1],'-',v_area.rounded[2],'.lat',v_area.rounded[3],'-',v_area.rounded[4]) r <- as.data.frame(matrix(NA,ncol=8,nrow=2)) names(r) <- c("xlim","ylim","dim","name","cbx","cby","figdim","grid.res") } }else{ v_area.valid <- T if(class(v_area) == 'Extent'){ v_area.valid <- F area.extent <- ext <- v_area obj <- crop(obj,area.extent) v_area.name <- 'object.extent' r <- as.data.frame(matrix(NA,ncol=8,nrow=2)) names(r) <- c("xlim","ylim","dim","name","cbx","cby","figdim","grid.res") } } if(v_area.valid){ r <- regions(v_area) area.extent <- extent(c(range(r$xlim),range(r$ylim))) if(dim(obj)[3] > 1){ obj <- crop(obj,area.extent) }else{ obj <- brick(crop(raster(obj,layer=1),area.extent)) } v_area.name <- v_area if(missing(grid.res)) grid.res <- r$grid.res[1] ext <- extent(c(r$xlim,r$ylim)) } if(cbpos %in% c('b','l','t','r') | !v_area.valid){ cb <- cust.colorbar(ext,cbpos=cbpos,cbx=cbx,cby=cby,figdim=figdim,force.figdim.widget=F,xpos=xpos) r$cbx <- cb$cbx r$cby <- cb$cby r$align <- cb$align r$figdim <- cb$figdim } if(missing(dates)) dates <- apply(as.matrix(names(obj)),1,function(x)tail(strsplit(x,"X")[[1]],1)) if(any(dates == 'layer')) dates <- rep(NA,length(dates)) if(length(dates) <= 1){ timestep = "1d" }else{ k <- as.POSIXct(dates,format="%Y%m%d%H") k.diff <- diff(k) k.val <- round(k.diff)[[1]] k.unit <- substr(attributes(k.diff)$units,0,1) if(k.val %in% c(28:31) & k.unit == "d"){ k.val <- 1 k.unit <- "m" } timestep <- paste0(k.val,k.unit) } for(ts in layer){ file_def <- list(source='raster',timestep=timestep,date1=dates[which(layer %in%ts)],date2=dates[which(layer %in%ts)]) outfile.name <- paste0(v_area.name,"_",param) if(!is.na(file_def$date1)) outfile.name <- paste0(outfile.name,"_",file_def$date1) b <- raster(obj,layer=ts) .v.plot(b=b, minv=minv, maxv=maxv, zlim=zlim, adaptive.vals=adaptive.vals, v_area=v_area, replace.na=replace.na, main=main, cb.title=cb.title, cb.xlab=cb.xlab, cb.xlab.line=cb.xlab.line, pal=pal, cb.ticks.srt=cb.ticks.srt, nticks=nticks, sidelabels=sidelabels, Ylab=Ylab, axeslabels=axeslabels, ticklabels=ticklabels, cex.lab=cex.lab, cex.ticks=cex.ticks, cex.cb.title=cex.cb.title,cex.cb.xlab=cex.cb.xlab,cex.cb.ticks=cex.cb.ticks, subplot=subplot, xpos=xpos, Save=Save, plotfolder=plotfolder, plotname=plotname, fileformat=fileformat, param=param, param_def=param_def, file_def=file_def, r=r, outfile.name=outfile.name, show.colorbar=show.colorbar,suffix=suffix, v_image=v_image, v_contour=v_contour, levels=levels, contour.labels=contour.labels, v_arrows=F, fill.land=fill.land, col.land=col.land, col.bg=col.bg,border=border, grid=grid, grid.res=grid.res, bwd=bwd,las=las,verbose=verbose) } }
reactivePlotOutput <- function(id) { ns <- NS(id) plotOutput(ns("plot_out")) } reactivePlot <- function(input, output, session, plot_type, dat) { req(dat) if(plot_type == "line") { output$plot_out <- renderPlot({ ggplot(dat(), aes(x=DateTime, y=Elevation, group=Animal, color=Animal)) + labs( title = "Elevation Time Series, by Animal", x = "Date", y = "Elevation (meters)") + ylim(1000,2000) + geom_line(na.rm = TRUE) + geom_point(na.rm = TRUE) + theme_minimal() }) } else if(plot_type == "hist") { output$plot_out <- renderPlot({ ggplot(dat(), aes(x=TimeDiffMins, fill=Animal)) + geom_histogram( col="White", breaks = seq(0,40, 2)) + facet_wrap(~Animal, ncol=2)+ labs( title = "Sample Rate, by GPS Unit" , x = "Time between GPS Readings (minutes)", y = "Frequency") + theme_minimal() }) } else if(plot_type == "violin") { output$plot_out <- renderPlot({ ggplot(dat() %>% dplyr::filter(Rate < 50), aes(x=Animal, y= Rate, fill=Animal))+ geom_violin() + geom_boxplot(width=.2, outlier.color = NA) + theme_minimal()+ labs( title = "Rate of Travel, by GPS Unit" , x = "Animal", y = "Rate of Travel (meters/minute)") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) }) } else if(plot_type == "heatmap") { mybreaks <- reactive({ list(x = round( seq(min(dat()$Longitude), max(dat()$Longitude), length.out = 10 ),3), y = round( seq(min(dat()$Latitude), max(dat()$Latitude), length.out = 10 ),3)) }) output$plot_out <- renderPlot({ ggplot(dat() %>% dplyr::mutate( LongBin = cut_number(Longitude, 100, labels= round( seq(min(Longitude), max(Longitude), length.out = 100 ),3) ), LatBin = cut_number(Latitude, 100, labels=round( seq(min(Latitude), max(Latitude), length.out = 100 ), 3) )) %>% group_by(LongBin, LatBin, Animal) %>% summarize(Duration = sum(TimeDiffMins, na.rm = TRUE)/60), aes (x = LongBin, y = LatBin, fill = Duration))+ geom_tile() + facet_wrap(~Animal, ncol=2)+ labs( title = "Total Time Spent per Location (hours)" , x = "Longitude", y = "Latitude")+ scale_fill_gradientn(colors = c("white", "green", "red")) + scale_x_discrete( breaks = mybreaks()$x) + scale_y_discrete( breaks = mybreaks()$y) + coord_equal() + theme_minimal() }, height = 1200) } }
ewrates <- structure(list(year = c(1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1936, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1941, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1946, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1951, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1956, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1961, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1966, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976, 1976 ), age = c(10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80), lung = c(1, 2, 6, 14, 30, 68, 149, 274, 431, 586, 646, 636, 533, 464, 324, 1, 2, 6, 14, 30, 68, 149, 274, 431, 586, 646, 636, 533, 464, 324, 1, 2, 6, 16, 34, 81, 191, 384, 597, 883, 1021, 970, 748, 631, 385, 1, 3, 8, 18, 36, 94, 236, 544, 954, 1350, 1717, 1763, 1400, 1085, 765, 0, 2, 7, 13, 35, 98, 248, 579, 1224, 2003, 2555, 2926, 2624, 2069, 1416, 0, 2, 4, 12, 35, 93, 251, 590, 1248, 2317, 3315, 3926, 3878, 3332, 2258, 0, 2, 5, 11, 34, 90, 223, 563, 1221, 2284, 3663, 4844, 4977, 4513, 3417, 0, 2, 4, 10, 25, 76, 216, 531, 1160, 2201, 3695, 5273, 6210, 5914, 4563, 0, 1, 4, 10, 24, 58, 177, 503, 1070, 2077, 3546, 5174, 6820, 7273, 6089, 0, 1, 2, 7, 17, 56, 139, 403, 1003, 1896, 3342, 4985, 6718, 8068, 7744 ), nasal = c(0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 16, 19, 27, 48, 47, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 16, 19, 27, 48, 47, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 16, 19, 27, 48, 47, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 16, 19, 27, 48, 47, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 16, 19, 27, 48, 47, 0, 0, 0, 0, 1, 1, 3, 3, 6, 12, 17, 24, 28, 43, 50, 0, 0, 0, 0, 0, 1, 3, 4, 8, 9, 14, 18, 26, 41, 42, 0, 0, 0, 0, 0, 1, 2, 5, 7, 11, 16, 23, 29, 36, 31, 0, 0, 0, 1, 1, 1, 4, 4, 8, 11, 16, 26, 29, 33, 38, 0, 0, 0, 1, 1, 1, 2, 3, 9, 9, 15, 17, 20, 38, 33), other = c(1269, 2201, 3116, 3024, 3188, 4165, 5651, 8326, 13073, 19500, 30033, 45159, 72884, 120403, 183341, 1269, 2201, 3116, 3024, 3188, 4165, 5651, 8326, 13073, 19500, 30033, 45159, 72884, 120403, 183341, 1194, 2221, 3697, 3175, 3088, 3549, 4841, 7275, 11253, 17624, 27190, 41844, 63503, 103716, 161527, 690, 1194, 1589, 1787, 1990, 2493, 3643, 6154, 9755, 16058, 26287, 39985, 63136, 100618, 156959, 480, 858, 1230, 1253, 1474, 2008, 2998, 5126, 9222, 15410, 25864, 41555, 65408, 105973, 164695, 403, 875, 1116, 1050, 1228, 1801, 2795, 4667, 8296, 14941, 24552, 39537, 63512, 99886, 159181, 407, 949, 1098, 997, 1184, 1764, 2822, 4766, 8098, 14240, 24412, 39332, 62544, 97792, 154476, 389, 959, 971, 919, 1096, 1616, 2812, 4771, 8088, 13666, 23118, 38657, 61478, 94831, 138973, 346, 875, 983, 876, 1048, 1524, 2670, 4786, 8018, 13204, 21570, 36232, 59169, 92488, 141812, 293, 868, 930, 875, 976, 1454, 2394, 4311, 7687, 12544, 20787, 33729, 55480, 89199, 137360)), .Names = c("year", "age", "lung", "nasal", "other"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "140", "141", "142", "143", "144", "145", "146", "147", "148", "149", "150"))
NULL ddwm = function(x, wshape = 1, wscale = 1, cmu = 1, ctau = 1, sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), xi = 0, log = FALSE) { check.quant(x, allowna = TRUE, allowinf = TRUE) check.posparam(wshape, allowvec = TRUE) check.posparam(wscale, allowvec = TRUE) check.param(cmu, allowvec = TRUE) check.posparam(ctau, allowvec = TRUE, allowzero = TRUE) check.posparam(sigmau, allowvec = TRUE) check.param(xi, allowvec = TRUE) check.logic(log) n = check.inputn(c(length(x), length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) oneparam = (check.inputn(c(length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) == 1) if (any(is.infinite(x))) warning("infinite quantiles set to NA") x[is.infinite(x)] = NA x = rep(x, length.out = n) wshape = rep(wshape, length.out = n) wscale = rep(wscale, length.out = n) cmu = rep(cmu, length.out = n) ctau = rep(ctau, length.out = n) sigmau = rep(sigmau, length.out = n) xi = rep(xi, length.out = n) rx <- function(x, wshape, wscale, cmu, ctau, sigmau, xi) { (dgpd(x, 0, sigmau, xi) - dweibull(x, wshape, wscale))*atan((x - cmu)/ctau) } d = x whichnonmiss = which(!is.na(x)) if (oneparam) { r = try(integrate(rx, wshape = wshape[1], wscale = wscale[1], cmu = cmu[1], ctau = ctau[1], sigmau = sigmau[1], xi = xi[1], lower = 0, upper = Inf, subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r, "try-error")) { z = rep(NA, n) } else { z = rep(1 + r/pi, length.out = n) } } else { z = rep(NA, n) for (i in 1:n) { r = try(integrate(r, wshape = wshape[i], wscale = wscale[i], cmu = cmu[i], ctau = ctau[i], sigmau = sigmau[i], xi = xi[i], lower = 0, upper = Inf, subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r, "try-error")) { z[i] = NA } else { z[i] = 1 + r/pi } } } pweights = pcauchy(x[whichnonmiss], cmu[whichnonmiss], ctau[whichnonmiss]) d[whichnonmiss] = ((1 - pweights) * dweibull(x[whichnonmiss], wshape[whichnonmiss], wscale[whichnonmiss]) + pweights * dgpd(x, 0, sigmau[whichnonmiss], xi[whichnonmiss]))/z[whichnonmiss] if (log) d = log(d) d } pdwm = function(q, wshape = 1, wscale = 1, cmu = 1, ctau = 1, sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), xi = 0, lower.tail = TRUE) { check.quant(q, allowna = TRUE, allowinf = TRUE) check.posparam(wshape, allowvec = TRUE) check.posparam(wscale, allowvec = TRUE) check.param(cmu, allowvec = TRUE) check.posparam(ctau, allowvec = TRUE, allowzero = TRUE) check.posparam(sigmau, allowvec = TRUE) check.param(xi, allowvec = TRUE) check.logic(lower.tail) n = check.inputn(c(length(q), length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) oneparam = (check.inputn(c(length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) == 1) if (any(is.infinite(q))) warning("infinite quantiles set to NA") q[is.infinite(q)] = NA q = rep(q, length.out = n) wshape = rep(wshape, length.out = n) wscale = rep(wscale, length.out = n) cmu = rep(cmu, length.out = n) ctau = rep(ctau, length.out = n) sigmau = rep(sigmau, length.out = n) xi = rep(xi, length.out = n) rx <- function(x, wshape, wscale, cmu, ctau, sigmau, xi) { (dgpd(x, 0, sigmau, xi) - dweibull(x, wshape, wscale))*atan((x - cmu)/ctau) } rxw <- function(x, wshape, wscale, cmu, ctau) { (1 - pcauchy(x, cmu, ctau)) * dweibull(x, wshape, wscale) } rxg <- function(x, cmu, ctau, sigmau, xi){ pcauchy(x, cmu, ctau) * dgpd(x, 0, sigmau, xi) } p = q whichnonmiss = which(!is.na(q)) z1 = z2 = z = rep(NA, n) for (i in 1:n) { if (oneparam & (i == 1)) { r = try(integrate(rx, wshape = wshape[i], wscale = wscale[i], cmu = cmu[i], ctau = ctau[i], sigmau = sigmau[i], xi = xi[i], lower = 0, upper = Inf, subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r, "try-error")) { z[i] = NA } else { z[i] = 1 + r/pi } } else if (oneparam & (i > 1)) { z[i] = z[1] } else { r = try(integrate(rx, wshape = wshape[i], wscale = wscale[i], cmu = cmu[i], ctau = ctau[i], sigmau = sigmau[i], xi = xi[i], lower = 0, upper = Inf, subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r, "try-error")) { z[i] = NA } else { z[i] = 1 + r/pi } } r1 = try(integrate(rxw, wshape = wshape[i], wscale = wscale[i], cmu = cmu[i], ctau = ctau[i], lower = 0, upper = q[i], subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r1, "try-error")) { z1[i] = NA } else { z1[i] = r1 } r2 = try(integrate(rxg, cmu = cmu[i], ctau = ctau[i], sigmau = sigmau[i], xi = xi[i], lower = 0, upper = q[i], subdivisions = 10000, rel.tol = 1e-10, stop.on.error = FALSE)$value) if (inherits(r2, "try-error")) { z2[i] = NA } else { z2[i] = r2 } } p[whichnonmiss] = (z1[whichnonmiss] + z2[whichnonmiss])/z[whichnonmiss] if (!lower.tail) p = 1 - p p } qdwm = function(p, wshape = 1, wscale = 1, cmu = 1, ctau = 1, sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), xi = 0, lower.tail = TRUE, qinit = NULL) { check.prob(p, allowna = TRUE) check.posparam(wshape, allowvec = TRUE) check.posparam(wscale, allowvec = TRUE) check.param(cmu, allowvec = TRUE) check.posparam(ctau, allowvec = TRUE, allowzero = TRUE) check.posparam(sigmau, allowvec = TRUE) check.param(xi, allowvec = TRUE) check.logic(lower.tail) n = check.inputn(c(length(p), length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) if (!lower.tail) p = 1 - p check.posparam(qinit, allowvec = TRUE, allownull = TRUE, allowzero = TRUE) if (is.null(qinit)) qinit = NA qinit = rep(qinit, length.out = n) p = rep(p, length.out = n) wshape = rep(wshape, length.out = n) wscale = rep(wscale, length.out = n) cmu = rep(cmu, length.out = n) ctau = rep(ctau, length.out = n) sigmau = rep(sigmau, length.out = n) xi = rep(xi, length.out = n) pdmmmin = function(q, cprob, wshape, wscale, cmu, ctau, sigmau, xi) { cdfmm = pdwm(q, wshape, wscale, cmu, ctau, sigmau, xi) if (is.na(cdfmm)) { qdiff = 1e6 } else { qdiff = abs(cdfmm - cprob) } qdiff } findqdmm = function(cprob, wshape, wscale, cmu, ctau, sigmau, xi, qinit) { if (is.na(qinit)) { qwbl = qweibull(cprob, wshape, wscale) qgp = qgpd(cprob, 0, sigmau, xi) qinit = mean(c(qwbl, qgp)) } gt = try(nlm(pdmmmin, qinit, cprob, wshape, wscale, cmu, ctau, sigmau, xi, gradtol = 1e-10, steptol = 1e-10)$estimate) if (inherits(gt, "try-error")) { gt = try(nlm(pdmmmin, qgpd(cprob, 0, sigmau, xi), cprob, wshape, wscale, cmu, ctau, sigmau, xi, gradtol = 1e-10, steptol = 1e-10)$estimate) if (inherits(gt, "try-error")) { gt = NA } } return(gt) } q = rep(NA, n) for (i in 1:n) { q[i] = findqdmm(p[i], wshape[i], wscale[i], cmu[i], ctau[i], sigmau[i], xi[i], qinit[i]) } q } rdwm = function(n = 1, wshape = 1, wscale = 1, cmu = 1, ctau = 1, sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), xi = 0) { check.n(n) check.posparam(wshape, allowvec = TRUE) check.posparam(wscale, allowvec = TRUE) check.param(cmu, allowvec = TRUE) check.posparam(ctau, allowvec = TRUE, allowzero = TRUE) check.posparam(sigmau, allowvec = TRUE) check.param(xi, allowvec = TRUE) check.inputn(c(n, length(wshape), length(wscale), length(cmu), length(ctau), length(sigmau), length(xi)), allowscalar = TRUE) if (any(xi == 1)) stop("shape cannot be 1") wshape = rep(wshape, length.out = n) wscale = rep(wscale, length.out = n) cmu = rep(cmu, length.out = n) ctau = rep(ctau, length.out = n) sigmau = rep(sigmau, length.out = n) xi = rep(xi, length.out = n) r = rep(NA, n) i = 1 while (i <= n) { u = runif(1) if (u < 0.5) { rw = rweibull(1, wshape[i], wscale[i]) pw = pcauchy(rw, cmu[i], ctau[i]) v = runif(1) if (v <= (1 - pw)) { r[i] = rw i = i + 1 } } else { rg = rgpd(1, 0, sigmau[i], xi[i]) pg = pcauchy(rg, cmu[i], ctau[i]) v = runif(1) if (v <= pg){ r[i] = rg i = i + 1 } } } r }
sample_tidygraph <- function( factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE) { ellipsis::check_dots_unnamed() if (!(requireNamespace("tidygraph", quietly = TRUE))) { stop( "Must install `tidygraph` package to return graphs as `tidygraph` ", "objects", call. = FALSE ) } UseMethod("sample_tidygraph") } sample_tidygraph.undirected_factor_model <- function( factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE) { edgelist <- sample_edgelist( factor_model, poisson_edges = poisson_edges, allow_self_loops = allow_self_loops ) tidygraph::as_tbl_graph(edgelist, directed = FALSE) } sample_tidygraph.directed_factor_model <- function( factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE) { ig <- sample_igraph( factor_model, poisson_edges = poisson_edges, allow_self_loops = allow_self_loops ) tidygraph::as_tbl_graph(ig, directed = TRUE) }
PdPDB <- function(path, metal, n, perc, interactive, dropsReplicate){ path_to_commands = file.path(find.package("PdPDB"),"exec/") if (dropsReplicate>2) dropsReplicate<-2 if (dropsReplicate<0) dropsReplicate<-0 path_to_out<-paste(paste("cd", path, sep=" "), ";", sep="") print(" print(" PdPDB: Pattern discovery in PDB files") print(" saveLogoText <- 1 verbose <- 0 if((interactive > 2)||(interactive<0)) interactive <- 2 debug<-interactive if((debug==1)||(debug==2)){ print(paste("Interactive mode: ", debug)) reference<-as.data.frame(c(8.26,1.37,5.46,6.74,3.86,7.08,2.27,5.93,5.82,9.65,2.41,4.06,4.72,3.93,5.53,6.60,5.35,6.86,1.09,2.92)) colnames(reference)<-"referenceVec" rownames(reference)<-c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y") numberOfSamples<-554515 averageLength<-357 defineSeq<-1 defineDictionary<-0 } if (file.exists(file.path(path,"patterns.csv"))){ print("") print(paste("PdPDB has found a job to recover!!! ",file.path(path,"patterns.csv"))) print("If you want to start from scratch remove it and restart!") print("WARNING: check n before to proceed. It must be compliant with previous run for PdPDB to work properly!!!") print("") recovery <-1 } else { recovery <-0 } if((n>5)&&(perc<40)) { print("For optimal results consider to increase Trim frequency or reduce n...") print(" ") } if (verbose==1) { print("VERBOSE MODE ON...")} noScripts <-0 if ((!file.exists(file.path(path_to_commands,"fileManager")))||(!file.exists(file.path(path_to_commands,"findPatterns")))){ print(file.path("Some of the core functions of PdPDB are missing, please check paths:", path_to_commands)) noScripts <-1 } writeOnFS <- readline(paste(paste("Do you want PdPDB writes results in ", path, sep=" "), "? [1= Yes, 0=No] ", sep=" ")) if (dropsReplicate==2) print("PdPDB now keeps only unique entries...") if (dropsReplicate==1) print("PdPDB now drops replicated patterns in PDB entries...") if (dropsReplicate==0) print("PdPDB now keeps replicated patterns...") if (!(is.na(as.numeric(writeOnFS)==0))&&(as.numeric(writeOnFS)==0)){ print("PdPDB ABORTED!!!") noScripts <-1 } if (noScripts==0){ command1=paste(path_to_out, (paste(path_to_commands, "fileManager", sep=""))) system(command1) if (verbose==1){ print(command1) } filesFound <-TRUE if (recovery==0){ print("PdPDB runs from scratch!") pdbNames<-list.files(path = path,pattern = "\\.pdb$") cifNames<-list.files(path = path,pattern = "\\.cif$") filesFound <-FALSE if((length(pdbNames)>0)||(length(cifNames)>0)) { if((length(pdbNames))>(length(cifNames))){ print("PDB entries correctly located") command2=paste(path_to_out, paste(path_to_commands, paste("findPatterns",paste(metal,n,sep=" "),sep=" "), sep=""), sep=" ") } else{ print("CIF entries correctly located") command2=paste(path_to_out, paste(path_to_commands, paste("findPatternsX",paste(metal,n,sep=" "),sep=" "), sep=""), sep=" ") } if (verbose == 1){ print(command2) } system(command2) filesFound <-TRUE } else{ print("Invalid PATH! No PDB entries in this directory!") } } if (isTRUE(filesFound)){ print ("Patterns analysis START!!!!") if (file.exists(file.path(path,"patterns.csv"))){ datFileSize<-file.info(file.path(path,"patterns.csv"))$size if(datFileSize>10){ if (mean(count.fields(file.path(path,"patterns.csv"))) > 1 ){ block <- read.csv (file.path(path,"patterns.csv"), header=FALSE, sep=" ", dec=".", stringsAsFactors = FALSE) if (dropsReplicate!=1) { patterns<- arrangePatterns(block, n) if (dropsReplicate==2) { print("---> Drop option 2 <---") patterns<-patterns[!duplicated(patterns),] } } else { print("---> Drop option 1 <---") print("Please be patient this option takes time...") sbsp<-grep("pdb",block[,1]) patterns<-subPatternsExtract(block, sbsp, n, verbose) } defineDictionary<-0 if(debug==0) defineDictionary<-as.integer(readline("Type in the number of additional symbols to be used: [ 0 = no symbols ] ")) if((defineDictionary>=1)&&(!is.na(defineDictionary>=1))){ dictionary<-defineADictionary(defineDictionary) } else{ dictionary<-NA } fastaPatternsAligned<- alignLigands(toFasta(patterns, dictionary, verbose), n, verbose) print("Calculating frequencies...") df<-as.data.frame(count(patterns)) df.new <- df[with(df, order(df$freq, decreasing = TRUE)), ] numberOfPDB<-sum(df.new$freq) df.new<-as.data.frame(cbind(df.new, df.new$freq/numberOfPDB*100)) names(df.new)[length(names(df.new))]<-"freq_%" write.table(df.new, file = file.path(path,"frequencies.csv"),row.names=FALSE, na="", sep=" ", quote = FALSE) fastaPatterns <-checkChains(fastaPatternsAligned, which(colnames(fastaPatternsAligned)=="L"), dictionary, verbose) percAbs<-abs(perc) trimmed<-trimAlignment(fastaPatterns, percAbs, colnames(fastaPatterns), verbose) lastCol<-length(trimmed[1,]) for(i in 1:length(trimmed[,1])){ lastLigand<-(max(which(substr(trimmed[i,],1,1)=="("))+1) if(is.finite(lastLigand)){ if(lastLigand<lastCol) trimmed[i, lastLigand:lastCol]<-moveCharLeft(trimmed[i, lastLigand:lastCol],verbose) } else print(paste("WARNING at line of the alignment!!! ", i)) } write.table(trimmed, file = file.path(path,"alignment.csv"),row.names=FALSE, na="", sep=" ", quote = FALSE) df.clusters<-clustering(trimmed, path, "dendrogram.svg", debug) df.clusters.new<-df.clusters[order(df.clusters$points, decreasing = FALSE), ] numberOfClusters <- max(df.clusters.new$points) print(paste("This action results in", numberOfClusters,"clusters!", sep=" ")) for(i in 1:numberOfClusters){ cluster<-subset(df.clusters.new, points==i) df.cluster<-(as.data.frame(matrix(unlist(lapply(gsub("\\(|\\)","",cluster$seq), function(x) strsplit(x, split = ""))), nrow=length(cluster[,1]), byrow = TRUE))) maxFreqSeq<-maxFreq(df.cluster, colnames(trimmed), verbose) colnames(df.cluster)<-colnames(trimmed) makeTheLogo(df.cluster, colnames(df.cluster), maxFreqSeq, dictionary, path,paste("logo_",i,".svg",sep="")) if(saveLogoText==1){ if(verbose==1) print("PdPDB is going to save logos in text format") df.logo<-as.data.frame(count(df.cluster)) df.logo.new <- df.logo[with(df.logo, order(df.logo$freq, decreasing = TRUE)), ] numberOfPDB<-sum(df.logo.new$freq) df.logo.new<-as.data.frame(cbind(df.logo.new, df.logo.new$freq/numberOfPDB*100)) names(df.logo.new)<-c(names(df.cluster),"freq","freq_%") write.csv(as.data.frame(df.logo.new), file = file.path(path,paste("logo_",i,".csv",sep="")),row.names=FALSE, col.names=colnames(trimmed), na="", sep=" ", quote = FALSE) } } if(debug==0) defineSeq<-as.numeric(readline("Do you want to define a reference sequence for enrichment analysis? [ Yes = 1 ] ")) if((defineSeq==1)&&(!is.na(defineSeq==1))){ print("This will save a CSV file containing standardized distribution and Chi-squared p values") if(debug==0){ averageLength <- as.numeric(readline("Type in the average sequence length of the reference: ")) numberOfSamplesP <- as.numeric(readline("PROTEINS: How many samples have been used to define this reference? ")) if((numberOfSamplesP>0)&&(!is.na(numberOfSamplesP))) { reference<-defineSeqRef(1,0) numberOfSamples<-numberOfSamplesP } else{ reference<-defineSeqRef(1,0) numberOfSamples<-0 print(" } } enrichmentAnalysis(trimmed, numberOfPDB, reference, numberOfSamples, averageLength, path, "root", verbose) ligands<-trimmed[which(colnames(trimmed) %in% "L")] enrichmentAnalysis(ligands, numberOfPDB, reference, numberOfSamples, averageLength, path, "ligands", verbose) notligands<-trimmed[which(colnames(trimmed) %in% "x")] enrichmentAnalysis(notligands, numberOfPDB, reference, numberOfSamples, averageLength, path, "notLigands", verbose) colnumbersP<-NA colnumbersF<-NA for(i in 1:n){ colnumbersP<-(which((substr(colnames(trimmed),1,1)) %in% "L"))-i colnumbersP.filt<-colnumbersP[which(colnumbersP %in% 1:length(trimmed[1,]))] preceed.old<-trimmed[colnumbersP.filt] preceed<-preceed.old[substr(colnames(preceed.old),1,1) != "L"] enrichmentAnalysis(preceed, numberOfPDB, reference, numberOfSamples, averageLength, path, paste("preceeding",i,sep="_"), verbose) colnumbersF<-(which((substr(colnames(trimmed),1,1)) %in% "L"))+i colnumbersF.filt<-colnumbersF[which(colnumbersF %in% 1:length(trimmed[1,]))] follow.old<-trimmed[colnumbersF.filt] follow<-follow.old[substr(colnames(follow.old),1,1) != "L"] enrichmentAnalysis(follow, numberOfPDB, reference, numberOfSamples, averageLength, path, paste("following",i,sep="_"), verbose) } } } else print("PdPDB is not able to get suitable PATTERNS... check PdPDB.log file!") } else print("Empty patterns.csv file!") } else print ("Missing patterns.csv: No file to recovery!") } else {print ("Patterns won't be analyzed!!!")} } system(paste("rm -f ", path,"*.tmp", sep = "")) system(paste("echo 'Alignment has been trimmed to ", perc,"%' >> ",path,"PdPDB.log", sep = "")) system(paste("echo 'Drop option was ", dropsReplicate,"!' >> ",path,"PdPDB.log", sep = "")) if(recovery==1) { system(paste("echo 'You recovered an old job' >> ",path,"PdPDB.log", sep = "")) system(paste("echo 'n is now tuned to ", n,"' >> ",path,"PdPDB.log", sep = "")) } print(" ") print("---------------------------------------------------------- ") print(paste("Logos and output files (.csv, .svg, .log) are in ",path,sep=" ")) print("---------------------------------------------------------- ") print(" ") print("Legend for 'frequencies.csv' file: () = ligand, - = conect residues interleaved by of more than a position in the same chain, ... = conect residues from different chains") print("Legend for logos and 'alignment.csv' file: * = gap introduced by ligands alignment") print(" ") print(" system(paste("echo ' ' >> ",path,"PdPDB.log", sep = "")) system(paste("echo 'PdPDB exited gracefully...!!!' >> ",path,"PdPDB.log", sep = "")) print(" PdPDB exited gracefully...!!!") print(" }