code
stringlengths
1
13.8M
context("Test if values in examples in functions stay the same") library("TOSTER") test_that("Test that one-sample t-test output is same as previous version", { res <- TOSTone(m=0.54,mu=0.5,sd=1.2,n=100,low_eqbound_d=-0.3, high_eqbound_d=0.3, alpha=0.05, plot = FALSE) expect_equal(res$diff, 0.04, tolerance = .0001) expect_equal(res$TOST_t1, 3.333333, tolerance = .0001) expect_equal(res$TOST_p1, 0.0006040021, tolerance = .0001) expect_equal(res$TOST_t2, -2.666667, tolerance = .0001) expect_equal(res$TOST_p2, 0.004474619, tolerance = .0001) expect_equal(res$TOST_df, 99, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.36, tolerance = .0001) expect_equal(res$high_eqbound, 0.36, tolerance = .0001) expect_equal(res$low_eqbound_d, -0.3, tolerance = .0001) expect_equal(res$high_eqbound_d, 0.3, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1592469, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2392469, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.198106, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.278106, tolerance = .0001) }) test_that("Test that raw one-sample t-test output is same as previous version", { res <- TOSTone.raw(m=0.52,mu=0.5,sd=0.5,n=300,low_eqbound=-0.1, high_eqbound=0.1, alpha=0.05, plot = FALSE) expect_equal(res$diff, 0.02, tolerance = .0001) expect_equal(res$TOST_t1, 4.156922, tolerance = .0001) expect_equal(res$TOST_p1, 0.00002108451, tolerance = .0001) expect_equal(res$TOST_t2, -2.771281, tolerance = .0001) expect_equal(res$TOST_p2, 0.002966762, tolerance = .0001) expect_equal(res$TOST_df, 299, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.1, tolerance = .0001) expect_equal(res$high_eqbound, 0.1, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.02763041, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.06763041, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.03680924, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.07680924, tolerance = .0001) }) test_that("Test that two-sample t-test output is same as previous version", { res <- TOSTtwo(m1=5.25,m2=5.22,sd1=0.95,sd2=0.83,n1=95,n2=89,low_eqbound_d=-0.43,high_eqbound_d=0.43, plot = FALSE) expect_equal(res$diff, 0.03, tolerance = .0001) expect_equal(res$TOST_t1, 3.14973, tolerance = .0001) expect_equal(res$TOST_p1, 0.0009560083, tolerance = .0001) expect_equal(res$TOST_t2, -2.692771, tolerance = .0001) expect_equal(res$TOST_p2, 0.003875522, tolerance = .0001) expect_equal(res$TOST_df, 181.1344, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.3835687, tolerance = .0001) expect_equal(res$high_eqbound, 0.3835687, tolerance = .0001) expect_equal(res$low_eqbound_d, -0.43, tolerance = .0001) expect_equal(res$high_eqbound_d, 0.43, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1870843, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2470843, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.2290799, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.2890799, tolerance = .0001) }) test_that("Test that raw two-sample t-test output is same as previous version", { res <- TOSTtwo.raw(m1=5.25,m2=5.22,sd1=0.95,sd2=0.83,n1=95,n2=89,low_eqbound=-0.384,high_eqbound=0.384, plot = FALSE) expect_equal(res$diff, 0.03, tolerance = .0001) expect_equal(res$TOST_t1, 3.153015, tolerance = .0001) expect_equal(res$TOST_p1, 0.0009458745, tolerance = .0001) expect_equal(res$TOST_t2, -2.696056, tolerance = .0001) expect_equal(res$TOST_p2, 0.003838994, tolerance = .0001) expect_equal(res$TOST_df, 181.1344, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.384, tolerance = .0001) expect_equal(res$high_eqbound, 0.384, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1870843, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2470843, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.2290799, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.2890799, tolerance = .0001) }) test_that("Test that paired two-sample t-test output is same as previous version", { res <- TOSTpaired(n=65,m1=5.83,m2=5.75,sd1=1.17,sd2=1.29,r12=0.75,low_eqbound_dz=-0.4,high_eqbound_dz=0.4, plot = FALSE) expect_equal(res$diff, 0.08, tolerance = .0001) expect_equal(res$TOST_t1, 3.960381, tolerance = .0001) expect_equal(res$TOST_p1, 0.00009531728, tolerance = .0001) expect_equal(res$TOST_t2, -2.489426, tolerance = .0001) expect_equal(res$TOST_p2, 0.00770235, tolerance = .0001) expect_equal(res$TOST_df, 64, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.350782, tolerance = .0001) expect_equal(res$high_eqbound, 0.350782, tolerance = .0001) expect_equal(res$low_eqbound_dz, -0.4, tolerance = .0001) expect_equal(res$high_eqbound_dz, 0.4, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1015433, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2615433, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.1372988, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.2972988, tolerance = .0001) }) test_that("Test that raw paired two-sample t-test output is same as previous version", { res <- TOSTpaired.raw(n=65,m1=5.83,m2=5.75,sd1=1.17,sd2=1.30,r12=0.745,low_eqbound=-0.34,high_eqbound=0.34, plot = FALSE) expect_equal(res$diff, 0.08, tolerance = .0001) expect_equal(res$TOST_t1, 3.803437, tolerance = .0001) expect_equal(res$TOST_p1, 0.0001606103, tolerance = .0001) expect_equal(res$TOST_t2, -2.354508, tolerance = .0001) expect_equal(res$TOST_p2, 0.01081349, tolerance = .0001) expect_equal(res$TOST_df, 64, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.34, tolerance = .0001) expect_equal(res$high_eqbound, 0.34, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1043032, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2643032, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.1406022, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.3006022, tolerance = .0001) }) test_that("Test that correlation test output is same as previous version", { res <- TOSTr(n=100, r = 0.02, low_eqbound_r=-0.3, high_eqbound_r=0.3, alpha=0.05, plot = FALSE) expect_equal(res$r, 0.02, tolerance = .0001) expect_equal(res$TOST_p1, 0.0005863917, tolerance = .0001) expect_equal(res$TOST_p2, 0.002176282, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound_r, -0.3, tolerance = .0001) expect_equal(res$high_eqbound_r, 0.3, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.145957, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.1848622, tolerance = .0001) expect_equal(res$LL_CI_TTEST, -0.1771139, tolerance = .0001) expect_equal(res$UL_CI_TTEST, 0.2155713, tolerance = .0001) }) test_that("Test that meta test output is same as previous version", { res <- TOSTmeta(ES=0.12, se=0.09, low_eqbound_d=-0.2, high_eqbound_d=0.2, alpha=0.05, plot = FALSE) expect_equal(res$ES, 0.12, tolerance = .0001) expect_equal(res$TOST_Z1, 3.555556, tolerance = .0001) expect_equal(res$TOST_p1, 0.0001885906, tolerance = .0001) expect_equal(res$TOST_Z2, -0.8888889, tolerance = .0001) expect_equal(res$TOST_p2, 0.1870314, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound_d, -0.2, tolerance = .0001) expect_equal(res$high_eqbound_d, 0.2, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.02803683, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.2680368, tolerance = .0001) expect_equal(res$LL_CI_ZTEST, -0.05639676, tolerance = .0001) expect_equal(res$UL_CI_ZTEST, 0.2963968, tolerance = .0001) }) test_that("Test that two proportions test output is same as previous version", { res <- TOSTtwo.prop(prop1 = .65, prop2 = .70, n1 = 100, n2 = 100, low_eqbound = -0.1, high_eqbound = 0.1, alpha = .05, plot = FALSE) expect_equal(res$dif, -0.05, tolerance = .0001) expect_equal(res$TOST_z1, 0.7559289, tolerance = .0001) expect_equal(res$TOST_p1, 0.2248459, tolerance = .0001) expect_equal(res$TOST_z2, -2.267787, tolerance = .0001) expect_equal(res$TOST_p2, 0.0116711, tolerance = .0001) expect_equal(res$alpha, 0.05, tolerance = .0001) expect_equal(res$low_eqbound, -0.1, tolerance = .0001) expect_equal(res$high_eqbound, 0.1, tolerance = .0001) expect_equal(res$LL_CI_TOST, -0.1587968, tolerance = .0001) expect_equal(res$UL_CI_TOST, 0.05879684, tolerance = .0001) expect_equal(res$LL_CI_ZTEST, -0.1796394, tolerance = .0001) expect_equal(res$UL_CI_ZTEST, 0.07963943, tolerance = .0001) expect_equal(res$NHST_z, -0.7559289, tolerance = .0001) expect_equal(res$NHST_p, 0.4496918, tolerance = .0001) })
scatterdens <- function(x, y, dens.frac = 1/5, ...) { zones <- matrix(c(2,0,1,3), ncol = 2, byrow = TRUE) layout(zones, widths = c(1 - dens.frac, dens.frac), heights = c(dens.frac, 1 - dens.frac)) x.dens <- density(x) y.dens <- density(y) top <- max(x.dens$y, y.dens$y) op <- par(mar = c(3, 3, 1, 1)) plot(x, y, main = "", ...) par(mar = c(0, 3, 1, 1)) plot(x.dens, axes = FALSE, ylim = c(0, top), main = "") par(mar = c(3, 0, 1, 1)) plot(y.dens$y, y.dens$x, type = "l", axes = FALSE, xlim = c(0, top)) par(op) } scatterhist <- function(x, y, xlab = "", ylab = "", dens.frac = 1/5, ...) { zones <- matrix(c(2,0,1,3), ncol = 2, byrow = TRUE) layout(zones, widths = c(1 - dens.frac, dens.frac), heights = c(dens.frac, 1 - dens.frac)) xhist <- hist(x, plot = FALSE) yhist <- hist(y, plot = FALSE) top <- max(c(xhist$counts, yhist$counts)) op <- par(mar = c(3, 3, 1, 1)) plot(x, y, main = "", ...) par(mar = c(0, 3, 1, 1)) barplot(xhist$counts, axes = FALSE, ylim = c(0, top), space = 0) par(mar = c(3, 0, 1, 1)) barplot(yhist$counts, axes = FALSE, xlim = c(0, top), space = 0, horiz = TRUE) par(op) }
BestSlope = function(x, y, adm="Extravascular", TOL=1e-4) { Result = c(R2 = NA, R2ADJ = NA, LAMZNPT = 0, LAMZ = NA, b0 = NA, CORRXY = NA, LAMZLL = NA, LAMZUL = NA, CLSTP = NA) n = length(x) if (n != length(y) | !is.numeric(x) | !is.numeric(y) | length(y[y < 0]) > 0) { Result["LAMZNPT"] = 0 return(Result) } if (length(unique(y)) == 1) { Result["LAMZNPT"] = 0 Result["b0"] = unique(y) return(Result) } if (UT(adm) == "BOLUS") { locStart = which.max(y) } else { locStart = which.max(y) + 1 } locLast = max(which(y > 0)) if (locLast - locStart < 2) { Result["LAMZNPT"] = 0 return(Result) } tmpMat = matrix(nrow=(locLast - locStart - 1), ncol=length(Result)) colnames(tmpMat) = names(Result) for (i in locStart:(locLast - 2)) { tmpMat[i - locStart + 1,] = Slope(x[i:locLast], log(y[i:locLast])) } tmpMat = tmpMat[tmpMat[,"LAMZNPT"] > 2,,drop=FALSE] if (is.matrix(tmpMat) & nrow(tmpMat) > 0) { maxAdjRsq = max(tmpMat[,"R2ADJ"]) OKs = ifelse(abs(maxAdjRsq - tmpMat[,"R2ADJ"]) < TOL, TRUE, FALSE) nMax = max(tmpMat[OKs,"LAMZNPT"]) Result = tmpMat[OKs & tmpMat[,"LAMZNPT"]==nMax,] } else { Result["LAMZNPT"] = 0 } return(Result) }
RS.estimates = function(x,thin = 100, burns, CI = c(0.05,0.95), corrmat = FALSE, acf.plot =TRUE , palette = 'mono') { if(class(x)=='RS.impute') { if(missing(burns)){burns =min(round(dim(x$par.matrix)[1]/2),25000)} windw = seq(burns,dim(x$par.matrix)[1],thin) est = apply(x$par.matrix[windw,], 2, mean) CI=t(apply(x$par.matrix[windw,], 2, quantile,probs = CI)) form = function(x,mm = 2){format(round(x, mm), nsmall = mm)} dat=(cbind(form(cbind(est,CI),3))) dat = matrix(as.numeric(as.matrix(dat)),dim(dat)[1]) rownames(dat)=paste0('theta[',1:dim(x$par.matrix)[2],']') colnames(dat) = c('Estimate','Lower_CI','Upper_CI') dat2=(form(cor(x$par.matrix[windw,]))) dat2 = matrix(as.numeric(as.matrix(dat2)),dim(dat2)[1]) rownames(dat2)=paste0('theta[',1:dim(x$par.matrix)[2],']') colnames(dat2)=paste0('theta[',1:dim(x$par.matrix)[2],']') if(acf.plot) { nper=dim(x$par.matrix)[2] if(nper==1){par(mfrow=c(1,2))} if(nper==2){par(mfrow=c(2,2))} if(nper==3){par(mfrow=c(2,2))} if(nper>3) { d1=1:((nper)+1) d2=d1 O=outer(d1,d2) test=O-((nper)+1) test[test<0]=100 test=test[1:4,1:4] test wh=which(test==min(test)) d1=d1[col(test)[wh[1]]] d2=d2[row(test)[wh[1]]] par(mfrow=c(d1,d2)) } if(palette=='mono') { cols =rep(' }else{ cols=rainbow_hcl(nper, start = 10, end = 275,c=100,l=70) } for(i in 1:dim(x$par.matrix)[2]) { acf(x$par.matrix[windw,i],main=paste0('ACF: theta[',i,']\nThin=',thin,', Burns=',burns,', N=',length(windw)),col = cols[i],lwd=2) } } if(corrmat){return(list(estimates = dat, corrmat = dat2))} return(dat) } }
mod_acercade_ui <- function(id){ ns <- NS(id) tagList( img(src = "img/Logo.png", style = paste0("padding-bottom:20px;margin-left: auto;", "margin-right: auto;display: block;width: 50%;")), infoBoxPROMiDAT( labelInput("copyright"), "PROMiDAT S.A.", icono = icon("copyright") ), infoBoxPROMiDAT( labelInput("info"), tags$a( href = "https://www.promidat.com/", style = "color:white;", target = "_blank", "https://www.promidat.com"), icono = icon("info") ), infoBoxPROMiDAT( labelInput("version"), "2.0.5", icono = icon("file-code")) ) } mod_acercade_server <- function(input, output, session){ ns <- session$ns }
plot_specs <- function(df = NULL, plot_a = NULL, plot_b = NULL, choices = c("x", "y", "model", "controls", "subsets"), labels = c("A", "B"), rel_heights = c(2, 3), desc = FALSE, null = 0, ci = TRUE, ribbon = FALSE, sample_perc = 1, ...) { if (!is.null(df)) { if (sample_perc > 1 | sample_perc < 0) { stop("`sample_n` must be greater than 0 and less than 1!") } df <- dplyr::sample_n(df, size = sample_perc*nrow(df)) plot_a <- plot_curve(df, ci = ci, ribbon = ribbon, desc = desc, null = null) plot_b <- plot_choices(df, choices = choices, desc = desc, null = null) } cowplot::plot_grid(plot_a, plot_b, labels = labels, align = "v", axis = "rbl", rel_heights = rel_heights, ncol = 1, ...) }
f7Messages <- function(id, title = NULL, autoLayout = TRUE, newMessagesFirst = FALSE, scrollMessages = TRUE, scrollMessagesOnEdge = TRUE) { config <- dropNulls( list( autoLayout = autoLayout, newMessagesFirst = newMessagesFirst, scrollMessages = scrollMessages, scrollMessagesOnEdge = scrollMessagesOnEdge ) ) shiny::tags$div( id = id, shiny::tags$script( type = "application/json", `data-for` = id, jsonlite::toJSON( x = config, auto_unbox = TRUE, json_verbatim = TRUE ) ), class = "messages", if (!is.null(title)) { shiny::tags$div(class = "messages-title", title) } ) } f7MessageBar <- function(inputId, placeholder = "Message") { ns <- shiny::NS(inputId) shiny::tags$div( id = inputId, class = "toolbar messagebar", shiny::tags$div( class = "toolbar-inner", shiny::tags$div( class = "messagebar-area", shiny::tags$textarea( class = "resizable", placeholder = placeholder ) ), shiny::tags$a( id = ns("send"), href = " class = "link icon-only demo-send-message-link f7-action-button", f7Icon("arrow_up_circle_fill") ) ) ) } updateF7MessageBar <- function(inputId, value = NULL, placeholder = NULL, session = shiny::getDefaultReactiveDomain()) { message <- dropNulls( list( value = value, placeholder = placeholder ) ) session$sendInputMessage(inputId, message) } f7Message <- function(text, name, type = c("sent", "received"), header = NULL, footer = NULL, avatar = NULL, textHeader = NULL, textFooter = NULL, image = NULL, imageSrc = NULL, cssClass = NULL) { type <- match.arg(type) dropNulls( list( text = text, header = header, footer = footer, name = name, avatar = avatar, type = type, textHeader = textHeader, textFooter = textFooter, image = image, imageSrc = imageSrc ) ) } updateF7Messages <- function(id, messages, showTyping = FALSE, session = shiny::getDefaultReactiveDomain()) { message <- list( value = jsonlite::toJSON( messages, auto_unbox = TRUE, pretty = TRUE, json_verbatim = TRUE ), showTyping = showTyping ) session$sendInputMessage(id, message) } f7AddMessages <- function(id, messages, showTyping = FALSE, session = shiny::getDefaultReactiveDomain()) { .Deprecated( "updateF7Messages", package = "shinyMobile", "f7AddMessages will be removed in future release. Please use updateF7Messages instead.", old = as.character(sys.call(sys.parent()))[1L] ) updateF7Messages(id, messages, showTyping, session) }
interpTs <- function(x, type = c("linear", "series.median", "series.mean", "cycle.median", "cycle.mean"), gap = NULL) { gap.max <- nrow(as.matrix(x)) - 2 if (is.null(gap)) gap <- gap.max if (is.na(as.numeric(gap)) || gap < 1 || gap > gap.max) stop("gap must be a number between 1 and the length - 2") type <- match.arg(type) if (!is.ts(x) && type %in% c("cycle.median", "cycle.mean")) stop("x must be a time series for these types") tspx <- tsp(x) replaceNA <- function (x, stat) { x <- ts(x, start = tspx[1], frequency = tspx[3]) x1 <- window(x, start = start(x)[1], end = c(end(x)[1], 12), extend = TRUE) x2 <- matrix(x1, byrow = TRUE, ncol = 12) stats <- apply(x2, 2, stat, na.rm = TRUE) indx <- (seq_len(length(x1)))[is.na(x1)] x3 <- replace(x1, indx, stats[cycle(x1)[indx]]) window(x3, start = tspx[1], end = tspx[2]) } f1 <- function(x, gap, type) { if (sum(!is.na(x)) < 2) { x1 <- x } else { x1 <- switch(type, linear = na.approx(x, na.rm = FALSE), series.median = ifelse(is.na(x), median(x, na.rm = TRUE), x), series.mean = ifelse(is.na(x), mean(x, na.rm = TRUE), x), cycle.median = replaceNA(x, median), cycle.mean = replaceNA(x, mean) ) for (i in seq_len(length(x) - gap)) { seq1 <- i:(i + gap) if (all(is.na(x[seq1]))) x1[seq1] <- x[seq1] } } x1 } if (is.matrix(x)) { ans <- apply(x, 2, f1, gap, type) } else { ans <- f1(x, gap, type) } if (is.ts(x)) { ans <- ts(ans, start = start(x), frequency = frequency(x)) } ans }
deconvolute_and_contextualize <- function(count_file,signature_matrix, DEG_list, case_grep, control_grep, max_proportion_change = -9, print_plots=T, plot_names="scMappR",theSpecies = "human", FC_coef = T, sig_matrix_size = 3000, drop_unknown_celltype = TRUE, toSave = FALSE, path = NULL, deconMethod = "DeconRNASeq") { count_class <- class(count_file)[1] %in% c("character", "data.frame", "matrix") if((count_class[1] == FALSE )[1]) { stop("count_file must be of class character, data.frame, or matrix.") } signature_class <- class(signature_matrix)[1] %in% c("character", "data.frame", "matrix") if((signature_class[1] == FALSE)[1]) { stop("count_file must be of class character, data.frame, or matrix.") } DEG_list_class <- class(DEG_list)[1] %in% c("character", "data.frame", "matrix") if((DEG_list_class[1] == FALSE)[1]) { stop("DEG_list must be of class character, data.frame, or matrix.") } case_grep_class <- class(case_grep)[1] %in% c("character", "numeric", "integer") if((case_grep_class[1] == FALSE)[1]) { stop("case_grep must be of class character (as a single character designating cases in column names) or of class numeric (integer matrix giving indeces of cases).") } control_grep_class <- class(control_grep)[1] %in% c("character", "numeric", "integer") if((control_grep_class == FALSE)[1]) { stop("control_grep must be of class character (as a single character designating controls in column names) or of class numeric (integer matrix giving indeces of controls).") } if((all(is.numeric(max_proportion_change), is.numeric(sig_matrix_size))[1] == FALSE)[1]) { stop(" max_proportion_change, and sig_matrix_size must all be of class numeric" ) } if((all(is.logical(print_plots), is.logical(FC_coef), is.logical(drop_unknown_celltype), is.logical(toSave))[1] == FALSE)[1]) { stop("print_plots, FC_coef, drop_unknown_celltype, toSave must all be of class logical." ) } if(is.character(plot_names)[1] == FALSE) { stop("plot_names must be of class character.") } if((!(theSpecies %in% c("human", "mouse")))[1]) { if((theSpecies != -9)) { warning("species_name is not 'human' 'mouse' or '-9' (case sensitive). If you are also completing pathway enrichment, please use a species name compatible with the gProfileR and gprofiler2 packages.") } } if(toSave == TRUE) { if(is.null(path)) { stop("scMappR is given write permission by setting toSave = TRUE but no directory has been selected (path = NULL). Pick a directory or set path to './' for current working directory") } if(!dir.exists(path)) { stop("The selected directory does not seem to exist, please check set path.") } } rowVars <- function(x) return(apply(x, 1, stats::var)) colMedians <- function(x) return(apply(x, 2, stats::median)) colVars <- function(x) return(apply(x, 2 , stats::var)) if(is.character(count_file)) { warning("reading count file table, assuming first column is the gene symbols -- not reccomended.") norm_counts_i <- utils::read.table(count_file, header = T, as.is = T, sep = "\t") rownames(norm_counts_i) <- norm_counts_i[,1] norm_counts_i <- norm_counts_i[,-1] } else { norm_counts_i <- count_file } if(is.character(signature_matrix)) { warning("loading in signature matrix from Rdata file -- not reccomeneded.") load(signature_matrix) } else { wilcoxon_rank_mat_or <- signature_matrix } if(is.character(DEG_list)) { DEGs <- utils::read.table(DEG_list, header = FALSE, as.is = T, sep = "\t") } else { DEGs <- as.data.frame(DEG_list) } colnames(DEGs) <- c("gene_name", "padj", "log2fc") sm <- wilcoxon_rank_mat_or if(theSpecies == -9) { gsym <- get_gene_symbol(sm) RN_2 <- gsym$rowname theSpecies <- gsym$species } else { RN_2 <- rownames(sm) } toInter <- intersect(RN_2, rownames(norm_counts_i)) if(length(toInter)==0) { message("Rownames of signature matrix") message(utils::head(RN_2)) message("Rownames of count matrix") message(utils::head(norm_counts_i)) stop("There is no overlap between the signature and count matrix. Please make sure that gene symbols are row names and they are gene symbols of te same species.") } rownames(wilcoxon_rank_mat_or) <- RN_2 unknown <- grep("unknown",colnames(wilcoxon_rank_mat_or)) if((length(unknown) > 0 & drop_unknown_celltype == TRUE)[1]) { message("Removing unknown cell-types") wilcox_or <- wilcoxon_rank_mat_or[,-unknown] } else { wilcox_or <- wilcoxon_rank_mat_or } wilcox_var <- wilcox_or wilcox_or <- as.data.frame(wilcox_or) wilcox_or[wilcox_or < 0 ] <- 0 if((nrow(wilcox_or) > sig_matrix_size)[1]) { message(paste0("For deconvolution, we're using the top ", sig_matrix_size," most vairable signatures")) RVar <- rowVars(wilcox_var) wilcox_or_var <- wilcox_or[order(RVar, decreasing = T), ] wilcox_or_signature <- wilcox_or_var[1:sig_matrix_size,] } else { wilcox_or_signature <- wilcox_or } if((length(unique(colnames(wilcox_or_signature))) < length(colnames(wilcox_or_signature)))[1]) { warning("cell-type naming is not unique, appending unique identifier (1:ncol(signature))") colnames(wilcox_or_signature) <- paste0(colnames(wilcox_or_signature), "_", 1:ncol(wilcox_or_signature)) } if(is.matrix(norm_counts_i)) norm_counts_i <- as.data.frame(norm_counts_i) cVar_wilcox <- colVars(wilcox_or_signature) wilcox_or_signature <- wilcox_or_signature[,cVar_wilcox > 0] if(deconMethod == "DCQ") { all_genes_in <- t(ADAPTS::estCellPercent(wilcox_or_signature,norm_counts_i, method = "DCQ") / 100) all_genes_in <- all_genes_in[,colnames(all_genes_in) != "others"] } if(deconMethod == "DeconRNASeq") { all_genes_in <- DeconRNAseq_CRAN(as.data.frame(norm_counts_i),as.data.frame(wilcox_or_signature))$out.all } if(deconMethod == "WGCNA") { all_genes_in <- t(ADAPTS::estCellPercent(wilcox_or_signature,norm_counts_i, method = "proportionsInAdmixture") / 100) all_genes_in <- all_genes_in[,colnames(all_genes_in) != "others"] } proportions <- all_genes_in rownames(proportions) <- colnames(norm_counts_i) propmeans <- colMeans(proportions) proportions <- proportions[,colMeans(proportions) > 0.001] message("your bulk data contains the following cell types") message(paste(colnames(proportions), " ")) wilcox_or <- wilcox_or[,colnames(proportions)] wilcox_or_df <- as.data.frame(wilcox_or) wilcox_or_signature <- as.data.frame(wilcox_or_signature[,colnames(proportions)]) bulk_in <- norm_counts_i DEGs <- DEGs[stats::complete.cases(DEGs),] genesIn <- DEGs$gene_name[DEGs$gene_name %in% rownames(bulk_in)] message(length(genesIn)) if(length(genesIn) == 0) { stop("None of your DEGs overlap with genes in your count matrix") } if(!is.data.frame(bulk_in)) bulk_in <- as.data.frame(bulk_in) if(!is.data.frame(wilcox_or)) wilcox_or <- as.data.frame(wilcox_or) max_bulk <- max(bulk_in) if(max_bulk < 50) { warning("You most highly expressed gene is < 50 suggesting your counts are log2 normalized. Removing log2 transformation") message("You most highly expressed gene is < 50 suggesting your counts are log2 normalized. Removing log2 transformation. We suggest you input non-log transformed count data.") bulk_in <- 2^bulk_in } deconvolute_gene_removed <- function(x, bulk = bulk_in, signature = wilcox_or_signature) { if(x %in% rownames(bulk)) { bulk_rem <- bulk[-which(rownames(bulk) == x),] } else { warning(paste0(x, " is not in your bulk matrix, remove gene and rerun or check gene symbol matching in general.")) bulk_rem <- bulk } if(x %in% rownames(signature)) { signature_rem <- signature[-which(rownames(signature) == x),] signature_var <- apply(signature_rem, 2, stats::var) if(any(signature_var == 0)[1]) { signature_rem <- signature bulk_rem <- bulk } } else { signature_rem <- signature } if(deconMethod == "DCQ") { proportions <- t(ADAPTS::estCellPercent(signature_rem,bulk_rem, method = "DCQ") / 100) proportions <- proportions[,colnames(proportions) != "others"] } if(deconMethod == "DeconRNASeq") { proportions <- DeconRNAseq_CRAN(bulk_rem,signature_rem)$out.all } if(deconMethod == "WGCNA") { proportions <- t(ADAPTS::estCellPercent(signature_rem,bulk_rem, method = "proportionsInAdmixture") / 100) proportions <- proportions[,colnames(proportions) != "others"] } return(proportions) } iterated <- pbapply::pblapply(genesIn, deconvolute_gene_removed) names(iterated) <- genesIn proportion_pull <- function(tester) { rownames(tester) <- colnames(bulk_in) cases <- grep(case_grep, rownames(tester)) control <- grep(control_grep, rownames(tester)) if((any(length(cases) < 2, length(control) < 2))[1]) { stop("There is fewer than two cases or controls, please check 'case_grep' or 'control_grep'.") } cases_Med <- colMedians(tester[cases,]) control_Med <- colMedians(tester[control,]) M <- min(c(min(cases_Med[cases_Med != 0]), min(control_Med[control_Med != 0]))) cases_Med[cases_Med == 0] <- M control_Med[control_Med == 0] <- M FC <- cases_Med/control_Med Mean_CC <- (cases_Med + control_Med) / 2 l <- list(cases = cases_Med, control = control_Med, FC = FC, Mean = Mean_CC) return(l) } message("Leave one out cell proporitons: ") iterated_pull <- pbapply::pblapply(iterated, proportion_pull) pull_means <- function(x) return(x$Mean) pull_fc <- function(x) return(x$FC) means <- do.call("rbind",lapply(iterated_pull, pull_means)) fold_changes <- do.call("rbind",lapply(iterated_pull, pull_fc)) if( max_proportion_change != -9) { message("converting maximum CT proportion change to have a maximum odds-ratio of") message(max_proportion_change) fold_changes[fold_changes > max_proportion_change] <- max_proportion_change fold_changes[fold_changes < (1/max_proportion_change)] <- (1/max_proportion_change) } cmeaned <- lapply(iterated, colMeans) cmeaned_stacked <- do.call("rbind", cmeaned) n <- colnames(cmeaned_stacked) message("Done") cmeaned_no0 <- as.data.frame(cmeaned_stacked[,colSums(cmeaned_stacked) > 0 ]) if((length(colnames(cmeaned_stacked)) != length(unique(colnames(cmeaned_stacked))))[1]) { message("adding code for non-unique cell-types") colnames(fold_changes) <- colnames(wilcox_or) <- colnames(means) <- colnames(cmeaned_stacked) <- paste0(n,"_",1:ncol(cmeaned_stacked)) } else { colnames(fold_changes) <- colnames(wilcox_or) <- colnames(means) <- colnames(cmeaned_stacked) <- n } scaled_odds_ratio <- wilcox_or dup_gene_names <- which(duplicated(DEGs$gene_name)) if((length(dup_gene_names) > 0)[1]) { dup_gene_names <- DEGs$gene_name[dup_gene_names] warning("Duplicated gene names:") message(paste(dup_gene_names, " ")) warning("Some gene names are duplicated -- keeping the first duplicate in the list. Check if there should be duplicate gene symbols in your dataset.") } DEGs <- DEGs[!duplicated(DEGs$gene_name),] rownames(DEGs) <- DEGs$gene_name intered <- genesIn toInter_InGene<- DEGs[intered,] fc_co <- FC_coef values_with_preferences <- function(gene, FC_coef = fc_co) { if(gene %in% rownames(scaled_odds_ratio)) { scaled_pref <- scaled_odds_ratio[gene,] } else { scaled_pref <- rep(1, ncol(scaled_odds_ratio)) } gene_DE <- DEGs[gene,] prop <- means[gene,] prop_fc <- fold_changes[gene, ] up <- gene_DE$log2fc > 0 sign <- -1 if((up == T)[1]) { prop_fc <- 1/prop_fc sign <- 1 } if(FC_coef == TRUE) { val <- scaled_pref * prop * prop_fc * sign*2^abs(gene_DE$log2fc) } else { warning("using P-FDR instead of fold-change -- Not reccomended") val <- scaled_pref * prop * prop_fc * sign*-1*log10(gene_DE$padj) } return(val) } message("Adjusting Coefficients:") vals_out <- pbapply::pblapply(toInter_InGene$gene_name, values_with_preferences) message("Done") vals_out_mat <- do.call("rbind", vals_out) rownames(vals_out_mat) <- toInter_InGene$gene_name colnames(vals_out_mat) <- colnames(wilcox_or) all_reordered <- vals_out_mat comp <- plot_names printing <- print_plots == TRUE & toSave == TRUE if(printing[1] == TRUE) { boxplot_values <- function(cmeaned_stacked, names) { all_stack <- c() for(i in 1:ncol(cmeaned_stacked)) { cm_stack <- cmeaned_stacked[,i] top3 <- head(sort(cm_stack), 3) bottom3 <- utils::tail(sort(cm_stack), 3) empty <- rep("", length(cm_stack)) names(empty) <- names(cm_stack) empty[names(top3)] <- names(top3) empty[names(bottom3)] <- names(bottom3) y <- cbind(names(cm_stack), unname(cm_stack), colnames(cmeaned_stacked)[i], unname(empty)) all_stack <- rbind(all_stack, y) } all_stack <- as.data.frame(all_stack) colnames(all_stack) <- c("gene", "proportion", "cell_type", "label") all_stack$gene <- tochr(all_stack$gene) all_stack$proportion <- toNum(all_stack$proportion) all_stack$cell_type <- tochr(all_stack$cell_type) all_stack$label <- tochr(all_stack$label) cell_type <- all_stack$cell_type proportion<- all_stack$proportion label <- all_stack$label grDevices::pdf(paste0(path,"/","deconvolute_generemove_quantseq_",names,".pdf")) g <- ggplot2::ggplot(all_stack, ggplot2::aes(factor(cell_type), proportion)) + ggplot2::geom_boxplot() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, size = 8)) print(g) grDevices::dev.off() for(i in unique(all_stack$cell_type)) { cm_one <- all_stack[all_stack$cell_type == i,] cell_type <- cm_one$cell_type proportion <- cm_one$proportion label <- cm_one$label g <- ggplot2::ggplot(cm_one, ggplot2::aes(factor(cell_type), proportion)) + ggplot2::geom_boxplot() + ggplot2::geom_text(ggplot2::aes(label=label),hjust=-0.2) + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 0, hjust = 1, size = 12)) grDevices::pdf(paste0(path,"/","deconvolute_generemov_quantseq_", i,"_",names,".pdf")) print(g) grDevices::dev.off() message(i) } return("Done!") } } l <- list(cellWeighted_Foldchange = all_reordered, cellType_Proportions = proportions, leave_one_out_proportions = cmeaned_stacked, processed_signature_matrix = scaled_odds_ratio) return(l) }
expected <- c("x", "CC", "f") test(id=5, code={ argv <- structure(list(x = structure(list(x = 1:6, CC = 11:16, f = structure(c(1L, 1L, 2L, 2L, 3L, 3L), .Label = c("1", "2", "3"), class = "factor")), .Names = c("x", "CC", "f"), row.names = c(NA, -6L), class = "data.frame")), .Names = "x") do.call('colnames', argv); }, o = expected);
context("Checking Outputs") test_that("checking value",{ expect_identical(round(pMultiBin(2,4,0.5,0.4),4), 0.5288) }) test_that("checking class",{ expect_that(pMultiBin(2,4,0.5,0.1), is_a("numeric")) }) test_that("checking length of output",{ expect_equal(length(pMultiBin(1:2,4,0.5,1)),2) })
create_scatter <- function(data, metric_x, metric_y, hrvar = "Organization", mingroup = 5, return = "plot"){ required_variables <- c(hrvar, metric_x, metric_y, "PersonId") data %>% check_inputs(requirements = required_variables) violate_thres_chr <- data %>% group_by(!!sym(hrvar)) %>% summarise(n = n_distinct(PersonId)) %>% filter(n < mingroup) %>% pull(!!sym(hrvar)) clean_x <- us_to_space(metric_x) clean_y <- us_to_space(metric_y) myTable <- data %>% filter(!(!!sym(hrvar) %in% violate_thres_chr)) %>% group_by(PersonId, !!sym(hrvar)) %>% summarise_at(vars(!!sym(metric_x), !!sym(metric_y)), ~mean(.)) %>% ungroup() plot_object <- myTable %>% ggplot(aes(x = !!sym(metric_x), y = !!sym(metric_y), colour = !!sym(hrvar))) + geom_point(alpha = 0.5) + labs(title = paste0(clean_x, " and ", clean_y), subtitle = paste("Distribution of employees by", tolower(camel_clean(hrvar))), caption = extract_date_range(data, return = "text")) + xlab(clean_x) + ylab(clean_y) + theme_wpa_basic() myTable_return <- myTable %>% group_by(!!sym(hrvar)) %>% summarise_at(vars(!!sym(metric_x), !!sym(metric_y)), ~mean(.)) if(return == "table"){ return(myTable_return) } else if(return == "plot"){ return(plot_object) } else { stop("Please enter a valid input for `return`.") } }
statamode <- function(x, method = c("last", "stata", "sample")){ if(is.null(x)){ return(NA) } if (missing(method)){ method <- "stata" } else { method <- match.arg(method) } xClass <- class(x) x <- as.character(x) if (method == 'stata'){ z <- table(as.vector(x)) m <- names(z)[z == max(z)] if (length(m) == 1){ if(xClass == "factor"){ m <- factor(m) } else{ class(m) <- xClass } return(m) } return(".") } else if (method == 'sample'){ z <- table(as.vector(x)) m<-names(z)[z == max(z)] if (length(m)==1){ if(xClass == "factor"){ m <- factor(m) } else{ class(m) <- xClass } return(m) } else if (length(m) > 1){ if(xClass == "factor"){ m <- factor(m) } else{ class(m) <- xClass } return(sample(m, 1)) } else if (length(m) < 1){ if(xClass == "character"){ return(NA_character_) } else if(xClass == "numeric"){ return(NA_real_) } else if(xClass == "integer"){ return(NA_integer_) } else if(xClass == "factor"){ return(NA_character_) } } } else if (method=='last'){ x_vec <- as.vector(x) z <- table(x_vec) m <- names(z[which(z == max(z))]) m <- x[which(x %in% m)] m <- m[length(m)] if(length(m) > 0){ if(xClass == "factor"){ m <- factor(m) return(m) } else { class(m) <- xClass return(m) } } else if(length(m) < 1){ if(xClass == "character"){ return(NA_character_) } else if(xClass == "numeric"){ return(NA_real_) } else if(xClass == "integer"){ return(NA_integer_) } else if(xClass == "factor"){ return(NA_character_) } } } }
summaryFull.formula <- function (object, data = NULL, subset, na.action = na.pass, ...) { if (missing(object) || (length(object) != 3L)) stop("formula missing or incorrect") m <- match.call(expand.dots = FALSE) if (is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m$... <- NULL m$formula <- m$object m$object <- NULL m$na.action <- na.action requireNamespace("stats", quietly = TRUE) m[[1L]] <- as.name("model.frame") mf <- eval(m, parent.frame()) response <- attr(attr(mf, "terms"), "response") arg.list <- list(object = mf[, response]) dot.list <- list(...) match.vec <- pmatch(names(dot.list), "data.name") if (length(match.vec) == 0 || all(is.na(match.vec))) arg.list <- c(arg.list, list(data.name = names(mf)[response])) if (ncol(mf) == 1) arg.list <- c(arg.list, dot.list) else arg.list <- c(arg.list, list(group = mf[, -response]), dot.list) do.call(summaryFull.default, arg.list) }
RNA <- c("NM_00001","NM_00001","NM_00002") Cpos <- as.integer(c(1,5,1)) Cpos2 <- as.integer(c(1,100000005,1)) ncratio <- c(0.1,0.5,0.3) pv.adj <- c(0.001,0.1,0.3) BSdata <- data.frame(RNA, Cpos, ncratio, pv.adj, stringsAsFactors = FALSE) BSdata2 <- as.matrix(BSdata) BSdata3 <- data.frame(RNA, Cpos, ncratio, stringsAsFactors = FALSE) BSdata4 <- data.frame(Cpos, RNA, ncratio, pv.adj, stringsAsFactors = FALSE) BSdata5 <- data.frame(RNA, ncratio, Cpos, pv.adj, stringsAsFactors = FALSE) BSdata6 <- data.frame(RNA, Cpos, Cpos, pv.adj, stringsAsFactors = FALSE) BSdata7 <- data.frame(RNA, Cpos, ncratio, Cpos, stringsAsFactors = FALSE) BSdata8 <- data.frame(RNA, Cpos2, ncratio, pv.adj, stringsAsFactors = FALSE) bsXP <- class.BisXP(BSdata) testthat::test_that("Does class.BisXP yield BisXP object or throw an error?", { testthat::expect_equal(class(bsXP), "BisXP") testthat::expect_error(class.BisXP(BSdata2),"class.BisXP requires a data frame as input") testthat::expect_error(class.BisXP(BSdata3),"class.BisXP's input should have 4 columns: RNA, C.position, non-conversion ratio, adjusted p-value") testthat::expect_error(class.BisXP(BSdata4),"Column 1 should contain RNA names, as character or as factor") testthat::expect_error(class.BisXP(BSdata5),"Column 2 should contain cytosine position - starts at 1, integer") testthat::expect_error(class.BisXP(BSdata6),"Column 3 should contain non-conversion ratio - numeric >=0 and <=1") testthat::expect_error(class.BisXP(BSdata7),"Column 4 should contain adjusted p-values - numeric >=0 and <=1") testthat::expect_error(class.BisXP(BSdata8),"C position > 100,000,000, please increase this limit, in class.BisXP.R") } ) fichier <- system.file("testdata","BSdata.tabular", package = "BisRNA") BSdata9 <- read.BisXP(fichier) testthat::test_that("Does read.BisXP correctly read BisXP object?", { testthat::expect_equal(class(BSdata9), "BisXP") } ) x <- c(1e-3,1e-3,1e-3,1) px <- fisher.method(x) testthat::test_that("Does fisher.method works correctly?", { testthat::expect_equal(px,1.719731e-06) } ) BSinter <- intersectMatrix(as.data.frame(BSdata, row.names=c("NM_00001_1","NM_00001_5","NM_00002_1")), as.data.frame(BSdata8, row.names=c("NM_00001_1","NM_00001_10005","NM_00002_1")) ) testthat::test_that("Does intersectMatrix work?", { testthat::expect_equal(nrow(BSinter),2) } ) RNA <- c("NM1") Cpos <- 1:1000 coverage <- c(4:1003) set.seed(1) ncratio <- rpois(n = 1000,lambda = c(4:1003)*0.1) / 4:1003 BSrna <- data.frame(RNA, Cpos, coverage, ncratio, stringsAsFactors = FALSE) lambdaetc <- RNAmeth.poisson.par(BSrna) testthat::test_that("Does RNAmeth.poisson.par produce the actual rate?", { testthat::expect_lt(lambdaetc$bootbca95[1],0.1) testthat::expect_gt(lambdaetc$bootbca95[2],0.1) } ) data(Bisdata,package="BisRNA") lambda1 <- RNAmeth.poisson.par(Bisdata1)$estimate BisXP1 <- RNAmeth.poisson.test(Bisdata1,lambda1,method="BH") testthat::test_that("Does RNAmeth.poisson.test produce the correct output?", { testthat::expect_equal(class(BisXP1),"BisXP") } ) data(Bisdata,package="BisRNA") lambda1 <- RNAmeth.poisson.par(Bisdata1)$estimate BisXP1 <- RNAmeth.poisson.test(Bisdata1,lambda1,method="BH") lambda2 <- RNAmeth.poisson.par(Bisdata2)$estimate BisXP2 <- RNAmeth.poisson.test(Bisdata2,lambda2,method="BH") lambda3 <- RNAmeth.poisson.par(Bisdata3)$estimate BisXP3 <- RNAmeth.poisson.test(Bisdata3,lambda3,method="BH") BisXP.combined <- samples.combine(BisXP1,BisXP2,BisXP3) testthat::test_that("Does samples.combine produce the expected output?", { testthat::expect_equal(class(BisXP.combined),"data.frame") testthat::expect_equal(ncol(BisXP.combined),3) testthat::expect_lte(nrow(BisXP.combined),length(BisXP1$RNA.pos)) } )
"%||%" <- function(a, b) if (!is.null(a)) a else b all_identical <- function(xs) { if (length(xs) <= 1) return(TRUE) for (i in seq(2, length(xs))) { if (!identical(xs[[1]], xs[[i]])) return(FALSE) } TRUE } normalize_melt_arguments <- function(data, measure.ind, factorsAsStrings) { measure.attributes <- lapply(measure.ind, function(i) { attributes(data[[i]]) }) measure.attrs.equal <- all_identical(measure.attributes) if (measure.attrs.equal) { measure.attributes <- measure.attributes[[1]] } else { warning("attributes are not identical across measure variables; ", "they will be dropped", call. = FALSE) measure.attributes <- NULL } if (!factorsAsStrings && !measure.attrs.equal) { warning("cannot avoid coercion of factors when measure attributes not identical", call. = FALSE) factorsAsStrings <- TRUE } any.factors <- any( sapply( measure.ind, function(i) { is.factor( data[[i]] ) })) if (factorsAsStrings && any.factors) { measure.attributes <- NULL } list( measure.attributes = measure.attributes, factorsAsStrings = factorsAsStrings ) } is.string <- function(x) { is.character(x) && length(x) == 1 }
IntegralCorrelation <- function(HRVData, Data, m, tau, r) { .Deprecated("CalculateSampleEntropy") DataExp = BuildTakensVector(HRVData,Data,m=m,tau=tau) numelem = nrow(DataExp) VerboseMessage(HRVData$Verbose, "Calculating Integral Correlation") mutualDistance = as.matrix(dist(DataExp,method="maximum")) Cmr = array(1:numelem) for (i in 1:numelem) { iDistance = mutualDistance[i, 1:numelem] Cmr[i] = length(iDistance[iDistance <= r]) / numelem } VerboseMessage(HRVData$Verbose, paste("Integral Correlation:", rhrvFormat(sum(Cmr)))) return(Cmr) }
standard_error <- function(model, ...) { UseMethod("standard_error") } standard_error.default <- function(model, method = NULL, verbose = TRUE, ...) { if (!is.null(method)) { method <- tolower(method) } else { method <- "wald" } if (method == "robust") { standard_error_robust(model, ...) } else { se <- tryCatch( { if (grepl("^Zelig-", class(model)[1])) { unlist(model$get_se()) } else { .get_se_from_summary(model) } }, error = function(e) { NULL } ) if (is.null(se)) { se <- tryCatch( { varcov <- insight::get_varcov(model) se_from_varcov <- sqrt(diag(varcov)) names(se_from_varcov) <- colnames(varcov) se_from_varcov }, error = function(e) { NULL } ) } if (is.null(se)) { if (isTRUE(verbose)) { insight::print_color("\nCould not extract standard errors from model object.\n", "red") } } else { .data_frame( Parameter = names(se), SE = as.vector(se) ) } } } .get_se_from_summary <- function(model, component = NULL) { cs <- stats::coef(summary(model)) se <- NULL if (is.list(cs) && !is.null(component)) cs <- cs[[component]] if (!is.null(cs)) { se_col <- which(colnames(cs) == "Std. Error") if (length(se_col) == 0) se_col <- 2 se <- as.vector(cs[, se_col]) if (is.null(names(se))) { coef_names <- rownames(cs) if (length(coef_names) == length(se)) names(se) <- coef_names } } names(se) <- .remove_backticks_from_string(names(se)) se }
is_connected <- function(fw){ DFS <- function(m, i, visited, env = envf) { for (n in which(m[i,] > 0)){ if (!env$visited[n]){ env$visited[n] = TRUE DFS(m, n, env$visited) } } return() } fw.s <- fw fw.s[lower.tri(fw.s)] <- t(fw.s)[lower.tri(fw.s)] visited <- rep(FALSE, nrow(fw.s)) visited[1] <- TRUE envf <- environment() visited <- DFS(fw.s, 1, visited, envf) return(all(visited)) }
searchrules <- function(d, lhs=2:ncol(d), rhs=1, tnorm=c("goedel", "goguen", "lukasiewicz"), n=100, best=c("confidence"), minSupport=0.02, minConfidence=0.75, maxConfidence=1, maxLength=4, numThreads=1, trie=(maxConfidence < 1)) { .mustBe(is.fsets(d), "'d' must be an instance of class 'fsets'") .mustBe(ncol(d) >= 2, "'d' must have at least 2 columns") .mustBe(nrow(d) >= 1, "'d' must not be empty") .mustBeNumericVector(lhs) .mustBe(min(lhs) >= 1 && max(lhs) <= ncol(d), "'lhs' must contain valid indexes of the columns of 'd'") .mustBeNumericVector(rhs) .mustBe(min(rhs) >= 1 && max(rhs) <= ncol(d), "'rhs' must contain valid indexes of the columns of 'd'") .mustBeNumericScalar(n) .mustBe(n >= 0, "'n' must be a non-negative number (zero means unlimited number of rules)") .mustBeNumericScalar(minSupport) .mustBeInInterval(minSupport, 0, 1) .mustBeNumericScalar(minConfidence) .mustBeInInterval(minConfidence, 0, 1) .mustBeNumericScalar(maxConfidence) .mustBeInInterval(maxConfidence, 0, 1) .mustBe(maxConfidence >= minConfidence, "'maxConfidence' must be greater or equal to 'minConfidence'") if (maxLength < 0) { maxLength <- -1 } .mustBeNumericScalar(numThreads) .mustBe(numThreads >= 1, "'numThreads' must be positive integer number") tnorm <- match.arg(tnorm) if (tnorm == 'goedel') { tnorm <- 'minimum' } else if (tnorm == 'goguen') { tnorm <- 'product' } best = match.arg(best) config <- list(vars=as.numeric(as.factor(vars(d))), minSupport=minSupport, minConfidence=minConfidence, maxConfidence=maxConfidence, maxLength=maxLength, lhs=lhs - 1, rhs=rhs - 1, tnorm=tnorm, n=n, best=best, numThreads=numThreads, trie=trie) result <- .Call("_lfl_search", d, config, PACKAGE="lfl") map <- colnames(d) names(map) <- 1:ncol(d) rules <- lapply(result$rules, function(x) { x <- x + 1 x[] <- map[unlist(x)] return(x) }) if (is.null(result$statistics) || length(result$statistics) <= 0) { stats <- matrix(0, nrow=0, ncol=0) } else { stats <-matrix(unlist(result$statistics), byrow=TRUE, nrow=length(result$statistics)) colnames(stats) <- c('support', 'lhsSupport', 'rhsSupport', 'confidence', 'lift', 'loLift', 'hiLift') stats <- stats[, c('support', 'lhsSupport', 'rhsSupport', 'confidence'), drop=FALSE] if (tnorm == 'product') { stats <- cbind(stats, lift=stats[, 'confidence'] / stats[, 'rhsSupport'], conviction=(1 - stats[, 'rhsSupport']) / (1 - stats[, 'confidence'])) } } res <- farules(rules=rules, statistics=stats) return(res) }
obj_tracker <- new.env() make_id_char <- function(id) { if(is.na(id)) { return(NA) } else { id_char <- format(as.integer64(id), width=25, scientific = FALSE) return(id_char) } } new_id_obj <- function(id) { return(environment()) } is_open <- function(id) { id_char <- make_id_char(id) return(exists(id_char, envir=obj_tracker)) } get_obj <- function(id) { id_char <- make_id_char(id) if(exists(id_char, envir=obj_tracker)) { return(get(id_char, envir=obj_tracker)$obj) } else { return(NULL) } } incr_count <- function(id) { id_char <- make_id_char(id) if(exists(id_char, envir=obj_tracker)) { item <- get(id_char, envir=obj_tracker) item$count <- item$count + 1 assign(x=id_char, value=item, envir=obj_tracker) return(item) } else { item <- list(count=1, obj=new_id_obj(id)) assign(x=id_char, value=item, envir=obj_tracker) return(item) } } rm_obj <- function(id) { id_char <- make_id_char(id) item <- try(get(id_char, envir=obj_tracker), silent=TRUE) if(!inherits(item, "try-error")) { item$obj$id <- NA rm(list=id_char, envir=obj_tracker) } else { print(paste("Couldn't delete", id_char)) } return(invisible(NULL)) } decr_count <- function(id) { id_char <- make_id_char(id) if(exists(id_char, envir=obj_tracker)) { item <- get(id_char, envir=obj_tracker) if(item$count == 1) { rm_obj(id) return(invisible(NULL)) } else { item$count <- item$count - 1 assign(x=id_char, value=item, envir=obj_tracker) return(item) } } else { stop(paste("Can't decrease count of obj", id_char," - already 0")) } } obj_info <- function(id) { if(!is.character(id)) { id_char <- make_id_char(id) } else { id_char <- id } item <- get(id_char, envir=obj_tracker) id_internal <- item$obj$id return(data.frame(id=id, count=item$count, id_internal=id_internal)) } list_tracked_obj <- function() { gc() all_obj <- as.list(ls(envir=obj_tracker)) res <- do.call("rbind", lapply(all_obj, obj_info)) rownames(res) <- NULL return(res) }
BIC.MeanNormal <- function(a, N, L){ -2 * a + {N + 2} * log(L) }
"psdata"
snake_case_fact <- function(ft) { UseMethod("snake_case_fact") } snake_case_fact.fact_table <- function(ft) { sep = "_" attr(ft, "name") <- snakecase::to_snake_case(attr(ft, "name"), sep_out = sep) attr(ft, "foreign_keys") <- snakecase::to_snake_case(attr(ft, "foreign_keys"), sep_out = sep) attr(ft, "measures") <- snakecase::to_snake_case(attr(ft, "measures"), sep_out = sep) attr(ft, "nrow_agg") <- snakecase::to_snake_case(attr(ft, "nrow_agg"), sep_out = sep) names(ft) <- snakecase::to_snake_case(names(ft), sep_out = sep) ft }
subsetOffsets <- function(offsets, objects, image_type = c("img", "msk")) { if(missing(offsets)) stop("'offsets' can't be missing") if(missing(objects)) stop("'objects' can't be missing") assert(offsets, cla = "IFC_offset") assert(image_type, alw = c("img", "msk")) XIF_test = ifelse(length(attr(offsets, "test")) == 0, testXIF(attr(offsets, "fileName_image")), attr(offsets, "test")) type = as.integer(XIF_test == 1) + 1L objects = as.integer(objects); objects = objects[(objects >= 0) & (objects < attr(offsets, "obj_count")) & (is.finite(objects))] if(length(objects) == 0) { warning("subsetOffsets: No objects to subset, check the objects you provided.", immediate. = TRUE, call. = FALSE) foo = integer() } else { if(all(c("img", "msk") %in% image_type)) { if(type == 1) { in_offsets = objects + 1L warning("subsetOffsets: There may be no mask to subset.", immediate. = TRUE, call. = FALSE) } else { in_offsets = unlist(lapply(objects, FUN=function(x) c(2*x+1,2*(x+1)))) } } else { if("img" %in% image_type) { if(type == 1) { in_offsets = objects + 1L } else { in_offsets = 2 * objects + 1 } } else { if(type == 1) { in_offsets = NULL warning("subsetOffsets: There may be no mask to subset.", immediate. = TRUE, call. = FALSE) } else { in_offsets = 2 * (objects + 1) } } } foo = attr(offsets, "all")[in_offsets] } attr(foo, "all") = attr(offsets, "all") attr(foo, "first") = attr(offsets, "first") attr(foo, "fileName_image") = attr(offsets, "fileName_image") attr(foo, "checksum") = attr(offsets, "checksum") attr(foo, "obj_count") = attr(offsets, "obj_count") attr(foo, "test") = XIF_test class(foo) = c("IFC_offset") return(foo) }
gcat.test = function(counts, distmatrix=NULL, C0=NULL, method="C-uMST", Nperm=0){ if (length(method)==0){ cat("Specify an appropriate method to use.\n") return(0) } methodid = match(method, c("aMST","C-uMST", "uMST", "C-uNNB", "RC0", "TC0")) NAids = which(is.na(methodid)) if (length(NAids)>0){ cat(method[NAids], "is/are not in the method list and so removed.\n") methodid = methodid[-NAids] } if (length(methodid)==0){ cat("Specify an appropriate method to use.\n") return(0) } if ((!is.na(match(1,methodid))) && Nperm==0){ cat("Specify the number of permutations for calculating p-value for R_aMST\n") return(0) } if (( (!is.na(match(1,methodid))) || (!is.na(match(2,methodid))) || (!is.na(match(3,methodid))) || (!is.na(match(4,methodid)))) && is.null(distmatrix)){ cat("You need to specify the distance matrix on the categories for calculating R_aMST, R_C-uMST, R_uMST, or R_C-uNNB.\n") return(0) } if (((!is.na(match(5,methodid))) || (!is.na(match(6,methodid)))) && is.null(C0)){ cat("You need to specify the edge information for calcuating RC0 or TC0.\n") return(0) } K = dim(counts)[1] B = Nperm permmat = matrix(0,K,2*(B+1)) permmat[,1:2] = counts v1 = counts[,1] v2 = counts[,2] if (B>0){ for (j in 1:B){ temp = perm(v1,v2) permmat[,2*j+(1:2)] = t(temp) } } result = list() if (!is.na(match(1,methodid))){ rawresult0 = .C("RG", as.double(rep(0,(B+1))), as.integer(0), as.double(rep(0,K*(K-1))), as.integer(0), as.integer(0), as.integer(K), as.integer(B+1), as.integer(permmat), as.double(distmatrix), PACKAGE="gCat") result0 = rawresult0[[1]] r = matrix(c(result0[1], myp_left(result0[2:(B+1)], result0[1])),1) colnames(r) = c("R_aMST", "pval.perm") result = c(result, list(aMST=r)) } if (!is.na(match(2,methodid)) || (!is.na(match(3,methodid)))){ rawresult1 = .C("RG", as.double(rep(0,(B+1))), as.integer(0), as.double(rep(0,K*(K-1))), as.integer(1), as.integer(0), as.integer(K), as.integer(B+1), as.integer(permmat), as.double(distmatrix), PACKAGE="gCat") edge = t(matrix(rawresult1[[3]],2)[,1:rawresult1[[2]]]) + 1 if (!is.na(match(2,methodid))){ result1 = rawresult1[[1]] tmp = getMV(v1, v2, edge) if (B<=0){ r = matrix(c(result1[1], pnorm(result1[1], tmp$Mean, tmp$Sd)),1) colnames(r) = c("R_C-uMST", "pval.appr") }else{ r = matrix(c(result1[1], pnorm(result1[1], tmp$Mean, tmp$Sd), myp_left(result1[2:(B+1)], result1[1])),1) colnames(r) = c("R_C-uMST", "pval.appr", "pval.perm") } result = c(result, list(CuMST=r)) } if (!is.na(match(3,methodid))){ rawresult4 = .C("RG", as.double(rep(0,(B+1))), as.integer(0), as.double(rep(0,K*(K-1))), as.integer(4), as.integer(0), as.integer(K), as.integer(B+1), as.integer(permmat), as.double(distmatrix), PACKAGE="gCat") result4 = rawresult4[[1]] tmp = getMV_uMST(v1, v2, edge) if (B<=0){ r = matrix(c(result4[1], pnorm(result4[1], tmp$Mean, tmp$Sd)),1) colnames(r) = c("R_uMST", "pval.appr") }else{ r = matrix(c(result4[1], pnorm(result4[1], tmp$Mean, tmp$Sd), myp_left(result4[2:(B+1)], result4[1])),1) colnames(r) = c("R_uMST", "pval.appr", "pval.perm") } result = c(result, list(uMST=r)) } } if (!is.na(match(4,methodid))){ rawresult3 = .C("RG", as.double(rep(0,(B+1))), as.integer(0), as.double(rep(0,K*(K-1))), as.integer(3), as.integer(0), as.integer(K), as.integer(B+1), as.integer(permmat), as.double(distmatrix), PACKAGE="gCat") result3 = rawresult3[[1]] edge3 = t(matrix(rawresult3[[3]],2)[,1:rawresult3[[2]]]) + 1 tmp3 = getMV(v1, v2, edge3) if (B<=0){ r = matrix(c(result3[1], pnorm(result3[1], tmp3$Mean, tmp3$Sd)),1) colnames(r) = c("R_C-uNNB", "pval.appr") }else{ r = matrix(c(result3[1], pnorm(result3[1], tmp3$Mean, tmp3$Sd), myp_left(result3[2:(B+1)], result3[1])),1) colnames(r) = c("R_C-uNNB", "pval.appr", "pval.perm") } result = c(result, list(CuNNB=r)) } if (!is.na(match(5,methodid))){ R = RC(counts, C0) tmp = getMV(v1,v2,C0) if (B<=0){ r = matrix(c(R, pnorm(R,tmp$Mean, tmp$Sd)), 1) colnames(r) = c("RC0", "pval.appr") }else{ Rv = rep(0,B) for (j in 1:B){ Rv[j] = RC(permmat[,(2*j)+(1:2)], C0) } r = matrix(c(R, pnorm(R,tmp$Mean, tmp$Sd), myp_left(Rv,R)), 1) colnames(r) = c("RC0", "pval.appr", "pval.perm") } result = c(result, list(RC0=r)) } if (!is.na(match(6,methodid))){ R = TC(counts, C0) tmp = getMV_uMST(v1,v2,C0) if (B<=0){ r = matrix(c(R, pnorm(R,tmp$Mean, tmp$Sd)), 1) colnames(r) = c("RC0", "pval.appr") }else{ Rv = rep(0,B) for (j in 1:B){ Rv[j] = TC(permmat[,(2*j)+(1:2)], C0) } r = matrix(c(R, pnorm(R,tmp$Mean, tmp$Sd), myp_left(Rv,R)), 1) colnames(r) = c("TC0", "pval.appr", "pval.perm") } result = c(result, list(TC0=r)) } return(result) } RC = function(counts, edge){ v1 = counts[,1] v2 = counts[,2] v = v1+v2 R = sum(2*v1*v2/v) for (i in 1:(dim(edge)[1])){ k1 = edge[i,1] k2 = edge[i,2] R = R + (v1[k1]*v2[k2] + v1[k2]*v2[k1])/v[k1]/v[k2] } R } TC = function(counts, edge){ v1 = counts[,1] v2 = counts[,2] v = v1+v2 R = sum(v1*v2) for (i in 1:(dim(edge)[1])){ k1 = edge[i,1] k2 = edge[i,2] R = R + (v1[k1]*v2[k2] + v1[k2]*v2[k1]) } R }
oxcalCalibrate <- function(bp, std, names = 1:length(bp)) { oxcal_script <- R_Date(names, bp, std) result_file <- executeOxcalScript(oxcal_script) result <- readOxcalOutput(result_file) RVA <- parseOxcalOutput(result) RVA }
context("Function .fillClusterDesc") sapply(studyPathS, function(studyPath){ opts <- setSimulationPath(studyPath) clusterDesc <- readClusterDesc() describe(".fillClusterDesc", { it("fill missing values with provided defaults", { .fillClusterDesc(clusterDesc, marginal.cost = 0, min.stable.power = 0) expect_false(any(is.na(clusterDesc$marginal.cost))) expect_false(any(is.na(clusterDesc$min.stable.power))) }) it("creates columns if they are not present", { .fillClusterDesc(clusterDesc, fictiveCol = "ok !") expect_false(is.null(clusterDesc$fictiveCol)) expect_true(all(clusterDesc$fictiveCol == "ok !")) }) }) })
verbose=TRUE Sys.setlocale("LC_ALL", "C") Sys.getlocale() require(haplo.stats) if(verbose) cat("prepare two datasets, one with char alleles, the other 3 loci from hla data\n") geno.char <- matrix(c('F','f','g','G','h1','h1', 'F','F','g','G','H','h1', 'F','f','g','G','h2','h2', 'f','f','g','G','h2','h1', 'F','F','g','G','H','h2', 'f','f','G','G','h1','h2', 'F','f','G','g','h2','h2', 'F','F','g','G','h1','z', 'F','f','z','z','h1','h1', 'F','f','G','g','h1','h2', 'F','f','G','G','h1','h2', 'F','F','g','G','h1','z', 'F','f','z','z','h1','h1', 'f','f','G','g','h1','h2'), nrow=14,byrow=T) y.response <- c(2.0,4.5,1.8,2.1,5.2,1.3,3.4,2.5,2.2,1.9,2.1,1.2,3.0,1.9) y.pheno <- c(0,1,0,0,1,0,0,1,0,0,0,1,1,0) char.label <- c("F","G","H") data(hla.demo) hla.sub <- hla.demo[,c(1,2,3,4,17,18,21:24)] geno.hla <- hla.sub[,-c(1:4)] hla.resp <- hla.sub[,1] hla.respcat <- hla.sub[,2] hla.sex <- hla.sub[,3] hla.label=c("DQB","DRB","HLA.B") seed <- c(33, 10, 39, 6, 16, 0, 40, 24, 12, 60, 7, 1) set.seed(seed) runif(10) if(verbose) cat("character alleles, binary trait, additive and dominant\n") set.seed(seed) score.char.pheno.add <- haplo.score(y.pheno, geno.char, trait.type="binomial", locus.label=char.label, miss.val='z', offset = NA, x.adj = NA, min.count=4, simulate=FALSE, haplo.effect="additive", sim.control = score.sim.control(), em.control = haplo.em.control()) print(score.char.pheno.add) set.seed(seed) runif(10) set.seed(seed) score.char.pheno.dom <- haplo.score(y.pheno, geno.char, trait.type="binomial", locus.label=char.label, miss.val='z', offset = NA, x.adj=NA, min.count=4, simulate=FALSE, haplo.effect="dom", sim.control = score.sim.control(), em.control = haplo.em.control()) print(score.char.pheno.dom) if(verbose) cat("character alleles, gaussian trait\n") set.seed(seed) score.char.gaus <- haplo.score(y.response, geno.char, trait.type="gaussian", skip.haplo=.1, locus.label=char.label, miss.val="z",simulate=TRUE, sim.control=score.sim.control(min.sim=50, p.threshold=.25, max.sim=1000,verbose=FALSE), em.control = haplo.em.control()) print(score.char.gaus) if(verbose) cat("hla data, gaussian trait and x.adj\n") set.seed(seed) score.hla.resp.adj <- haplo.score(hla.resp,geno.hla,trait.type="gaussian", locus.label=hla.label, miss.val=0, x.adj=hla.sex, simulate=FALSE, min.count=5) print(score.hla.resp.adj) if(verbose) cat("hla data ordinal trait\n") set.seed(seed) score.hla.respcat <- haplo.score(hla.respcat, geno.hla, trait.type="ordinal", locus.label=hla.label, miss.val=0, simulate=FALSE, min.count=5, offset=NA, x.adj=NA) print(score.hla.respcat) set.seed(seed) score.hla.respcat.adj <- haplo.score(hla.respcat, geno.hla, trait.type="ordinal", locus.label=hla.label, miss.val=0, simulate=FALSE, min.count=5, offset=NA, x.adj=hla.sex) print(score.hla.respcat) if(verbose) cat("snap SNP data with binary trait to test dominance,recessive\n") snapDF <- read.table("snapData.csv",header=TRUE, sep=",") y.bin <- snapDF[,1]-1 geno <- setupGeno(geno=snapDF[,-1]) set.seed(seed) y.ord <- sample(c("low", "med", "hi"), size=nrow(snapDF), prob=c(.3,.4,.3), replace=TRUE) geno.rec <- setupGeno(snapDF[,-c(1:9)]) set.seed(seed) hcount=5 bin.snap.add <- haplo.score(y=y.bin, geno=geno.rec, trait.type="binomial", min.count=hcount, simulate=TRUE, haplo.effect="add", sim.control=score.sim.control(min.sim=200,max.sim=500)) print(bin.snap.add) set.seed(seed) bin.snap.dom <- haplo.score(y=y.bin, geno=geno.rec, trait.type="binomial", min.count=hcount, simulate=TRUE, haplo.effect="dom", sim.control=score.sim.control(min.sim=200,max.sim=500)) print(bin.snap.dom) set.seed(seed) bin.snap.rec <- haplo.score(y=y.bin, geno=geno.rec, trait.type="binomial", min.count=hcount, simulate=TRUE, haplo.effect="rec", sim.control=score.sim.control(min.sim=200,max.sim=500)) print(bin.snap.rec) set.seed(seed) ord.snap.add <- haplo.score(y=y.ord, geno=geno.rec, trait.type="ordinal", min.count=hcount, simulate=TRUE, haplo.effect="add", sim.control=score.sim.control(min.sim=200,max.sim=500)) print(ord.snap.add) set.seed(seed) ord.snap.add.adj <- haplo.score(y=y.ord, geno=geno.rec, trait.type="ordinal", min.count=hcount, simulate=TRUE, haplo.effect="add", x.adj=hla.sex, sim.control=score.sim.control(min.sim=200,max.sim=500)) print(ord.snap.add.adj)
timestamp <- Sys.time() library(caret) library(plyr) library(recipes) library(dplyr) model <- "rpart1SE" set.seed(2) training <- twoClassSim(50, linearVars = 2) testing <- twoClassSim(500, linearVars = 2) trainX <- training[, -ncol(training)] trainY <- training$Class rec_cls <- recipe(Class ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all") cctrl2 <- trainControl(method = "LOOCV") cctrl3 <- trainControl(method = "none", classProbs = TRUE, summaryFunction = twoClassSummary) set.seed(849) test_class_cv_model <- train(trainX, trainY, method = "rpart1SE", trControl = cctrl1, preProc = c("center", "scale")) set.seed(849) test_class_cv_form <- train(Class ~ ., data = training, method = "rpart1SE", trControl = cctrl1, preProc = c("center", "scale")) test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)]) test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)]) set.seed(849) test_class_loo_model <- train(trainX, trainY, method = "rpart1SE", trControl = cctrl2, preProc = c("center", "scale")) set.seed(849) test_class_none_model <- train(trainX, trainY, method = "rpart1SE", trControl = cctrl3, tuneGrid = test_class_cv_model$bestTune, metric = "ROC", preProc = c("center", "scale")) test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)]) test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob") set.seed(849) test_class_rec <- train(x = rec_cls, data = training, method = "rpart1SE", trControl = cctrl1) if( !isTRUE( all.equal(test_class_cv_model$results, test_class_rec$results)) ) stop("CV weights not giving the same results") test_class_imp_rec <- varImp(test_class_rec) test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)]) test_levels <- levels(test_class_cv_model) if(!all(levels(trainY) %in% test_levels)) cat("wrong levels") library(caret) library(plyr) library(recipes) library(dplyr) set.seed(1) training <- SLC14_1(30) testing <- SLC14_1(100) trainX <- training[, -ncol(training)] trainY <- training$y rec_reg <- recipe(y ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) testX <- trainX[, -ncol(training)] testY <- trainX$y rctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all") rctrl2 <- trainControl(method = "LOOCV") rctrl3 <- trainControl(method = "none") set.seed(849) test_reg_cv_model <- train(trainX, trainY, method = "rpart1SE", trControl = rctrl1, preProc = c("center", "scale")) test_reg_pred <- predict(test_reg_cv_model, testX) set.seed(849) test_reg_cv_form <- train(y ~ ., data = training, method = "rpart1SE", trControl = rctrl1, preProc = c("center", "scale")) test_reg_pred_form <- predict(test_reg_cv_form, testX) set.seed(849) test_reg_loo_model <- train(trainX, trainY, method = "rpart1SE", trControl = rctrl2, preProc = c("center", "scale")) set.seed(849) test_reg_none_model <- train(trainX, trainY, method = "rpart1SE", trControl = rctrl3, tuneGrid = test_reg_cv_model$bestTune, preProc = c("center", "scale")) test_reg_none_pred <- predict(test_reg_none_model, testX) set.seed(849) test_reg_rec <- train(x = rec_reg, data = training, method = "rpart1SE", trControl = rctrl1) if( !isTRUE( all.equal(test_reg_cv_model$results, test_reg_rec$results)) ) stop("CV weights not giving the same results") test_reg_imp_rec <- varImp(test_reg_rec) test_reg_pred_rec <- predict(test_reg_rec, testing[, -ncol(testing)]) test_class_predictors1 <- predictors(test_class_cv_model) test_reg_predictors1 <- predictors(test_reg_cv_model) test_class_imp <- varImp(test_class_cv_model) test_reg_imp <- varImp(test_reg_cv_model) tests <- grep("test_", ls(), fixed = TRUE, value = TRUE) sInfo <- sessionInfo() timestamp_end <- Sys.time() save(list = c(tests, "sInfo", "timestamp", "timestamp_end"), file = file.path(getwd(), paste(model, ".RData", sep = ""))) if(!interactive()) q("no")
library(tidymodels) library(nycflights13) library(doMC) library(rlang) library(xgboost) library(vctrs) num_resamples <- 5 num_grid <- 10 num_cores <- 3 preproc <- "no preprocessing" par_method <- "resamples" set.seed(123) flight_data <- flights %>% mutate( arr_delay = ifelse(arr_delay >= 30, "late", "on_time"), arr_delay = factor(arr_delay), date = as.Date(time_hour) ) %>% inner_join(weather, by = c("origin", "time_hour")) %>% select(dep_time, flight, origin, dest, air_time, distance, carrier, date, arr_delay, time_hour) %>% na.omit() %>% mutate_if(is.character, as.factor) %>% sample_n(4000) flights_rec <- recipe(arr_delay ~ ., data = flight_data) %>% update_role(flight, time_hour, new_role = "ID") %>% step_date(date, features = c("dow", "month")) %>% step_holiday(date, holidays = timeDate::listHolidays("US")) %>% step_rm(date) %>% step_dummy(all_nominal_predictors()) %>% step_zv(all_predictors()) preproc_data <- flights_rec %>% prep() %>% juice(all_predictors(), all_outcomes()) xgboost_spec <- boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), loss_reduction = tune(), sample_size = tune()) %>% set_mode("classification") %>% set_engine("xgboost") if (preproc != "no preprocessing") { xgboost_workflow <- workflow() %>% add_recipe(flights_rec) %>% add_model(xgboost_spec) set.seed(33) bt <- bootstraps(flight_data, times = num_resamples) } else { xgboost_workflow <- workflow() %>% add_variables(arr_delay, predictors = c(everything())) %>% add_model(xgboost_spec) set.seed(33) bt <- bootstraps(preproc_data, times = num_resamples) } set.seed(22) xgboost_grid <- xgboost_workflow %>% parameters() %>% update(trees = trees(c(100, 2000))) %>% grid_max_entropy(size = num_grid) if (num_cores > 1) { registerDoMC(cores=num_cores) } roc_res <- metric_set(roc_auc) ctrl <- control_grid(parallel_over = par_method) grid_time <- system.time({ set.seed(99) xgboost_workflow %>% tune_grid(bt, grid = xgboost_grid, metrics = roc_res, control = ctrl) }) times <- tibble::tibble( elapsed = grid_time[3], num_resamples = num_resamples, num_grid = num_grid, num_cores = num_cores, preproc = preproc, par_method = par_method ) save(times, file = paste0("xgb_", num_cores, format(Sys.time(), "_%Y_%m_%d_%H_%M_%S.RData"))) sessioninfo::session_info() if (!interactive()) { q("no") }
skip_on_cran() test_that("gn_version", { expect_is(gn_version(), "list") expect_named(gn_version(), c("version", "build")) expect_is(gn_version()$version, "character") expect_is(gn_version()$build, "character") })
ct_shiny <- function() { shiny::runApp(system.file('ct_shiny', package='competitiontoolbox')) } trade_shiny <- function() { ct_shiny() } antitrust_shiny <- function() { ct_shiny() }
predict.sscox <- function (object,newdata,se.fit=FALSE, include=c(object$terms$labels,object$lab.p),...) { if (class(object)!="sscox") stop("gss error in predict.sscox: not a sscox object") nnew <- nrow(newdata) nbasis <- length(object$id.basis) nnull <- length(object$d) nz <- length(object$b) nn <- nbasis + nnull + nz labels.p <- object$lab.p if (!is.null(object$d)) s <- matrix(0,nnew,nnull) r <- matrix(0,nnew,nbasis) for (label in include) { if (label%in%labels.p) next xx <- object$mf[object$id.basis,object$terms[[label]]$vlist] xnew <- newdata[,object$terms[[label]]$vlist] nphi <- object$terms[[label]]$nphi nrk <- object$terms[[label]]$nrk if (nphi) { iphi <- object$terms[[label]]$iphi phi <- object$terms[[label]]$phi for (i in 1:nphi) { s[,iphi+(i-1)] <- phi$fun(xnew,nu=i,env=phi$env) } } if (nrk) { irk <- object$terms[[label]]$irk rk <- object$terms[[label]]$rk for (i in 1:nrk) { r <- r + 10^object$theta[irk+(i-1)]* rk$fun(xnew,xx,nu=i,env=rk$env,out=TRUE) } } } if (!is.null(object$partial)) { vars.p <- as.character(attr(object$partial$mt,"variables"))[-1] facs.p <- attr(object$partial$mt,"factors") vlist <- vars.p[as.logical(apply(facs.p,1,sum))] for (lab in labels.p) { if (lab%in%include) { vlist.wk <- vars.p[as.logical(facs.p[,lab])] vlist <- vlist[!(vlist%in%vlist.wk)] } } if (length(vlist)) { for (lab in vlist) newdata[[lab]] <- 0 } matx.p <- model.matrix(object$partial$mt,newdata)[,-1,drop=FALSE] matx.p <- sweep(matx.p,2,object$partial$center) matx.p <- sweep(matx.p,2,object$partial$scale,"/") nu <- nnull-dim(matx.p)[2] for (label in labels.p) { nu <- nu+1 if (label%in%include) s[,nu] <- matx.p[,label] } } if (nz) { if (is.null(newdata$random)) z.wk <- matrix(0,nnew,nz) else z.wk <- newdata$random rs <- cbind(r,z.wk,s) } else rs <- cbind(r,s) if (!se.fit) as.vector(exp(rs%*%c(object$c,object$b,object$d))) else { fit <- as.vector(exp(rs%*%c(object$c,object$b,object$d))) se.fit <- .Fortran("hzdaux2", as.double(object$se.aux$v), as.integer(dim(rs)[2]), as.integer(object$se.aux$jpvt), as.double(t(rs)), as.integer(dim(rs)[1]), se=double(dim(rs)[1]), PACKAGE="gss")[["se"]] list(fit=fit,se.fit=se.fit) } }
isNumberScalarOrNull <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = 1, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName) }
vcgUniformRemesh <- function(x,voxelSize=NULL,offset=0, discretize=FALSE, multiSample=FALSE,absDist=FALSE, mergeClost=FALSE,silent=FALSE) { if (is.null(voxelSize)) voxelSize <- bbox(x)$dia/50 vb <- x$vb it <- x$it-1 out <- .Call("RuniformResampling",vb,it,voxelSize,offset,discretize,multiSample, absDist,mergeClost,silent) out$vb <- rbind(out$vb,1) out$normals <- rbind(out$normals,1) class(out) <- "mesh3d" return(out) } bbox <- function(x) { bbox <- apply(t(x$vb[1:3,]), 2, range) bbox <- expand.grid(bbox[, 1], bbox[, 2], bbox[, 3]) dia <- max(dist(bbox)) return(list(bbox=bbox,diag=dia)) }
spca <- function (...) UseMethod("spca") spca.default <- function(x, ...) { stop(sprintf("No spca method for object of class %s", paste(class(x), collapse = " "))) } spca.matrix <- function(x, xy = NULL, cn = NULL, matWeight = NULL, center = TRUE, scale = FALSE, scannf = TRUE, nfposi = 1, nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE, truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL, dmin = NULL, ...) { if (!requireNamespace("spdep", quietly=TRUE)) { install <- paste0('install.packages(', shQuote("spdep"), ")") msg <- c("The spdep package is required. Please use `", install, "` to install it") stop(paste(msg, collapse = "")) } if (!requireNamespace("adespatial", quietly=TRUE)) { install <- paste0('install.packages(', shQuote("adespatial"), ")") msg <- c("The adespatial package is required. Please use `", install, "` to install it") stop(paste(msg, collapse = "")) } if (!is.numeric(x)) { stop("Only matrices of numeric values are accepted.") } if(is.null(xy) & (inherits(cn,"nb") & !inherits(cn,"listw")) ){ xy <- attr(cn,"xy") } if(is.null(xy)) { stop("xy coordinates are not provided") } if(is.data.frame(xy)) { xy <- as.matrix(xy) } if(!is.matrix(xy)) { stop("provided 'xy' cannot be converted to matrix") } if(ncol(xy) != 2) { stop("xy does not have two columns.") } if(nrow(xy) != nrow(x)) { stop("x and xy must have the same row numbers.") } resCN <- NULL if (!is.null(matWeight)) { if (!is.matrix(matWeight)) { stop("matWeight is not a matrix") } if (!is.numeric(matWeight)) { stop("matWeight is not numeric") } if (nrow(matWeight) != ncol(matWeight)) { stop("matWeight is not square") } if (nrow(matWeight) != nrow(x)) { stop("dimension of datWeight does not match data") } diag(matWeight) <- 0 matWeight <- prop.table(matWeight, 1) resCN <- spdep::mat2listw(matWeight) resCN$style <- "W" } if(is.null(resCN) & !is.null(cn)) { if(inherits(cn,"nb")) { if(!inherits(cn,"listw")){ cn <- spdep::nb2listw(cn, style="W", zero.policy=TRUE) } resCN <- cn } else { stop("cn does not have a recognized class") } } if(is.null(resCN)) { resCN <- chooseCN(xy=xy, ask=ask, type=type, plot.nb=plot.nb, edit.nb=edit.nb, result.type="listw", d1=d1, d2=d2, k=k, a=a, dmin=dmin) } x_pca <- ade4::dudi.pca(x, center = center, scale = scale, scannf = FALSE) out <- adespatial::multispati(dudi = x_pca, listw = resCN, scannf = scannf, nfposi = nfposi, nfnega = nfnega) nfposi <- out$nfposi nfnega <- out$nfnega out$tab <- x_pca$tab out$xy <- xy rownames(out$xy) <- rownames(out$li) colnames(out$xy) <- c("x","y") out$lw <- resCN dots <- list(...) if (!is.null(dots$call)) { out$call <- dots$call } else { out$call <- match.call() } posaxes <- if (nfposi > 0) {1:nfposi} else NULL negaxes <- if (nfnega > 0) {(length(out$eig)-nfnega+1):length(out$eig)} else NULL keptaxes <- c(posaxes, negaxes) colnames(out$c1) <- paste("Axis",keptaxes) colnames(out$li) <- paste("Axis",keptaxes) colnames(out$ls) <- paste("Axis",keptaxes) row.names(out$c1) <- colnames(x) colnames(out$as) <- colnames(out$c1) temp <- row.names(out$as) row.names(out$as) <- paste("PCA", temp) class(out) <- "spca" return(out) } spca.data.frame <- function(x, xy = NULL, cn = NULL, matWeight = NULL, center = TRUE, scale = FALSE, scannf = TRUE, nfposi = 1, nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE, truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL, dmin = NULL, ...) { call <- match.call() spca(as.matrix(x), xy = xy, cn = cn, matWeight = matWeight, center = center, cale = scale, scannf = scannf, nfposi = nfposi, nfnega = nfnega, type = type, ask = ask, plot.nb = plot.nb, edit.nb = edit.nb, truenames = truenames, d1 = d1, d2 = d2, k = k, a = a, dmin = dmin, call = call, ...) } spca.genind <- function(obj, xy = NULL, cn = NULL, matWeight = NULL, scale = FALSE, scannf = TRUE, nfposi = 1, nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE, truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL, dmin = NULL, ...){ invisible(validObject(obj)) if(is.null(xy) & !is.null(obj$other$xy)) { xy <- obj$other$xy } if(any(is.na(obj@tab))){ warning("NAs in data are automatically replaced (to mean allele frequency)") } X <- tab(obj, freq = TRUE, NA.method = "mean") call <- match.call() spca(X, xy = xy, cn = cn, matWeight = matWeight, center = TRUE, scale = scale, scannf = scannf, nfposi = nfposi, nfnega = nfnega, type = type, ask = ask, plot.nb = plot.nb, edit.nb = edit.nb, truenames = truenames, d1 = d1, d2 = d2, k = k, a = a, dmin = dmin, call = call, ...) } spca.genpop <- function(obj, xy = NULL, cn = NULL, matWeight = NULL, scale = FALSE, scannf = TRUE, nfposi = 1, nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE, truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL, dmin = NULL, ...){ invisible(validObject(obj)) if(is.null(xy) & !is.null(obj$other$xy)) { xy <- obj$other$xy } if(any(is.na(obj@tab))){ warning("NAs in data are automatically replaced (to mean allele frequency)") } X <- tab(obj, freq = TRUE, NA.method = "mean") call <- match.call() spca(X, xy = xy, cn = cn, matWeight = matWeight, center = TRUE, scale = scale, scannf = scannf, nfposi = nfposi, nfnega = nfnega, type = type, ask = ask, plot.nb = plot.nb, edit.nb = edit.nb, truenames = truenames, d1 = d1, d2 = d2, k = k, a = a, dmin = dmin, call = call, ...) } print.spca <- function(x, ...){ cat("\t cat("\t cat("\t cat("class: ") cat(class(x)) cat("\n$call: ") print(x$call) cat("\n$nfposi:", x$nfposi, "axis-components saved") cat("\n$nfnega:", x$nfnega, "axis-components saved") cat("\nPositive eigenvalues: ") l0 <- sum(x$eig >= 0) cat(signif(x$eig, 4)[1:(min(5, l0))]) if (l0 > 5) cat(" ...\n") else cat("\n") cat("Negative eigenvalues: ") l0 <- sum(x$eig <= 0) cat(sort(signif(x$eig, 4))[1:(min(5, l0))]) if (l0 > 5) cat(" ...\n") else cat("\n") cat('\n') sumry <- array("", c(1, 4), list(1, c("vector", "length", "mode", "content"))) sumry[1, ] <- c('$eig', length(x$eig), mode(x$eig), 'eigenvalues') class(sumry) <- "table" print(sumry) cat("\n") sumry <- array("", c(5, 4), list(1:5, c("data.frame", "nrow", "ncol", "content"))) sumry[1, ] <- c("$tab", nrow(x$tab), ncol(x$tab), "transformed data: optionally centred / scaled") sumry[2, ] <- c("$c1", nrow(x$c1), ncol(x$c1), "principal axes: scaled vectors of alleles loadings") sumry[3, ] <- c("$li", nrow(x$li), ncol(x$li), "principal components: coordinates of entities ('scores')") sumry[4, ] <- c("$ls", nrow(x$ls), ncol(x$ls), "lag vector of principal components") sumry[5, ] <- c("$as", nrow(x$as), ncol(x$as), "pca axes onto spca axes") class(sumry) <- "table" print(sumry) cat("\n$xy: matrix of spatial coordinates") cat("\n$lw: a list of spatial weights (class 'listw')") cat("\n\nother elements: ") if (length(names(x)) > 10) cat(names(x)[11:(length(names(x)))], "\n") else cat("NULL\n") } summary.spca <- function (object, ..., printres=TRUE) { if (!inherits(object, "spca"))stop("to be used with 'spca' object") norm.w <- function(X, w) { f2 <- function(v) sum(v * v * w)/sum(w) norm <- apply(X, 2, f2) return(norm) } resfin <- list() if(printres) { cat("\nSpatial principal component analysis\n") cat("\nCall: ") print(object$call) } appel <- as.list(object$call) obj <- eval(appel$obj) if(is.null(appel$truenames)) appel$truenames <- FALSE f1 <- function(vec){ m <- mean(vec,na.rm=TRUE) vec[is.na(vec)] <- m return(vec) } if(is.genind(obj)) { X <- obj@tab } if(is.genpop(obj)) { X <- makefreq(obj, quiet=TRUE) } X <- apply(X,2,f1) nfposi <- object$nfposi nfnega <- object$nfnega dudi <- dudi.pca(X, center=TRUE, scale=FALSE, scannf=FALSE, nf=nfposi+nfnega) lw <- object$lw n <- nrow(X) I0 <- -1/(n-1) L <- spdep::listw2mat(lw) eigL <- suppressWarnings(as.numeric(eigen(0.5*(L+t(L)))$values)) Imin <- min(eigL) Imax <- max(eigL) Ival <- data.frame(I0=I0,Imin=Imin,Imax=Imax) row.names(Ival) <- "" if(printres) { cat("\nConnection network statistics:\n") print(Ival) } Istat <- c(I0,Imin,Imax) names(Istat) <- c("I0","Imin","Imax") resfin$Istat <- Istat nf <- dudi$nf eig <- dudi$eig[1:nf] cum <- cumsum(dudi$eig)[1:nf] ratio <- cum/sum(dudi$eig) w <- apply(dudi$l1,2,spdep::lag.listw,x=lw) moran <- apply(w*as.matrix(dudi$l1)*dudi$lw,2,sum) res <- data.frame(var=eig,cum=cum,ratio=ratio, moran=moran) row.names(res) <- paste("Axis",1:nf) if(printres) { cat("\nScores from the centred PCA\n") print(res) } resfin$pca <- res eig <- object$eig nfposimax <- sum(eig > 0) nfnegamax <- sum(eig < 0) ms <- adespatial::multispati(dudi=dudi, listw=lw, scannf=FALSE, nfposi=nfposimax, nfnega=nfnegamax) ndim <- dudi$rank nf <- nfposi + nfnega agarder <- c(1:nfposi,if (nfnega>0) (ndim-nfnega+1):ndim) varspa <- norm.w(ms$li,dudi$lw) moran <- apply(as.matrix(ms$li)*as.matrix(ms$ls)*dudi$lw,2,sum) res <- data.frame(eig=eig,var=varspa,moran=moran/varspa) row.names(res) <- paste("Axis",1:length(eig)) if(printres) { cat("\nsPCA eigenvalues decomposition:\n") print(res[agarder,]) } resfin$spca <- res return(invisible(resfin)) } plot.spca <- function (x, axis = 1, useLag=FALSE, ...){ if (!inherits(x, "spca")) stop("Use only with 'spca' objects.") if(axis>ncol(x$li)) stop("wrong axis required.") opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(mar = rep(.1,4), mfrow=c(3,2)) n <- nrow(x$li) xy <- x$xy if(useLag){ z <- x$ls[,axis] } else { z <- x$li[,axis] } nfposi <- x$nfposi nfnega <- x$nfnega nLinks <- sum(spdep::card(x$lw$neighbours)) if(nLinks < 500) { neig <- nb2neig(x$lw$neighbours) } else { neig <- NULL } sub <- paste("Score",axis) csub <- 2 if(n<30) clab <- 1 else clab <- 0 s.label(xy, clabel=clab, include.origin=FALSE, addaxes=FALSE, neig=neig, cneig=1, sub="Connection network", csub=2) s.image(xy,z, include.origin=FALSE, grid=TRUE, kgrid=10, cgrid=1, sub=sub, csub=csub, possub="bottomleft") box() if(n<30) {neig <- nb2neig(x$lw$neighbours)} else {neig <- NULL} s.value(xy,z, include.origin=FALSE, addaxes=FALSE, clegend=0, csize=.6, neig=neig, sub=sub, csub=csub, possub="bottomleft") s.value(xy,z, include.origin=FALSE, addaxes=FALSE, clegend=0, csize=.6, method="greylevel", neig=neig, sub=sub, csub=csub, possub="bottomleft") omar <- par("mar") par(mar = c(0.8, 2.8, 0.8, 0.8)) m <- length(x$eig) col.w <- rep("white", m) col.w[1:nfposi] <- "grey" if (nfnega>0) {col.w[m:(m-nfnega+1)] <- "grey"} j <- axis if (j>nfposi) {j <- j-nfposi +m -nfnega} col.w[j] <- "black" barplot(x$eig, col = col.w) scatterutil.sub(cha ="Eigenvalues", csub = 2.5, possub = "topright") par(mar=rep(.1,4)) box() par(mar=omar) par(mar=c(4,4,2,1)) screeplot(x,main="Eigenvalues decomposition") par(mar=rep(.1,4)) box() return(invisible(match.call())) } screeplot.spca <- function(x,...,main=NULL){ opar <- par("las") on.exit(par(las=opar)) sumry <- summary(x,printres=FALSE) labels <- lapply(1:length(x$eig),function(i) bquote(lambda[.(i)])) par(las=1) xmax <- sumry$pca[1,1]*1.1 I0 <- sumry$Istat[1] Imin <- sumry$Istat[2] Imax <- sumry$Istat[3] plot(x=sumry$spca[,2],y=sumry$spca[,3],type='n',xlab='Variance',ylab="Spatial autocorrelation (I)",xlim=c(0,xmax),ylim=c(Imin*1.1,Imax*1.1),yaxt='n',...) text(x=sumry$spca[,2],y=sumry$spca[,3],do.call(expression,labels)) ytick <- c(I0,round(seq(Imin,Imax,le=5),1)) ytlab <- as.character(round(seq(Imin,Imax,le=5),1)) ytlab <- c(as.character(round(I0,1)),as.character(round(Imin,1)),ytlab[2:4],as.character(round(Imax,1))) axis(side=2,at=ytick,labels=ytlab) rect(0,Imin,xmax,Imax,lty=2) segments(0,I0,xmax,I0,lty=2) abline(v=0) if(is.null(main)) main <- ("Spatial and variance components of the eigenvalues") title(main) return(invisible(match.call())) } colorplot.spca <- function(x, axes=1:ncol(x$li), useLag=FALSE, ...){ if(!any(inherits(x,"spca"))) stop("x in not a spca object.") xy <- x$xy if(useLag) { X <- as.matrix(x$ls) } else { X <- as.matrix(x$li) } colorplot(xy, X, axes, ...) }
source("ESEUR_config.r") library("plyr") runtime=read.csv(paste0(ESEUR_dir, "benchmark/runtime-powerperf.csv.xz"), as.is=TRUE) C1T=subset(runtime, CMPxSMT == "2C1T") SPEC_ind=grepl("^X4", names(C1T)) Core_2D_45=subset(C1T, Processor == "Core 2D (45)") arith_geo_mean=function(freq) { F_1603=subset(Core_2D_45, Frequency == freq) SPEC_perf=t(F_1603[, -(1:4)]) return(c(mean(SPEC_perf), exp(mean(log(SPEC_perf))))) } perf_base=arith_geo_mean(1603) perf_24=arith_geo_mean(2403) perf_30=arith_geo_mean(3066) perf_base/perf_24 perf_base/perf_30 base_ratio=function(freq) { F_1603=subset(Core_2D_45, Frequency == 1603) F_freq=subset(Core_2D_45, Frequency == freq) SPEC_F=t(F_1603[, -(1:4)]) SPEC_freq=t(F_freq[, -(1:4)]) return(mean(SPEC_F/SPEC_freq)) } ratio_24=base_ratio(2403) ratio_30=base_ratio(3066) ratio_24 ratio_30
strwrap_ctl <- function( x, width = 0.9 * getOption("width"), indent = 0, exdent = 0, prefix = "", simplify = TRUE, initial = prefix, warn=getOption('fansi.warn', TRUE), term.cap=getOption('fansi.term.cap', dflt_term_cap()), ctl='all', normalize=getOption('fansi.normalize', FALSE), carry=getOption('fansi.carry', FALSE), terminate=getOption('fansi.terminate', TRUE) ) { strwrap2_ctl( x=x, width=width, indent=indent, exdent=exdent, prefix=prefix, simplify=simplify, initial=initial, warn=warn, term.cap=term.cap, ctl=ctl, normalize=normalize, carry=carry, terminate=terminate ) } strwrap2_ctl <- function( x, width = 0.9 * getOption("width"), indent = 0, exdent = 0, prefix = "", simplify = TRUE, initial = prefix, wrap.always=FALSE, pad.end="", strip.spaces=!tabs.as.spaces, tabs.as.spaces=getOption('fansi.tabs.as.spaces', FALSE), tab.stops=getOption('fansi.tab.stops', 8L), warn=getOption('fansi.warn', TRUE), term.cap=getOption('fansi.term.cap', dflt_term_cap()), ctl='all', normalize=getOption('fansi.normalize', FALSE), carry=getOption('fansi.carry', FALSE), terminate=getOption('fansi.terminate', TRUE) ) { if(!is.logical(wrap.always)) wrap.always <- as.logical(wrap.always) if(length(wrap.always) != 1L || is.na(wrap.always)) stop("Argument `wrap.always` must be TRUE or FALSE.") if(!is.logical(tabs.as.spaces)) tabs.as.spaces <- as.logical(tabs.as.spaces) if(wrap.always && width < 2L) stop("Width must be at least 2 in `wrap.always` mode.") VAL_IN_ENV ( x=x, warn=warn, term.cap=term.cap, ctl=ctl, normalize=normalize, carry=carry, terminate=terminate, tab.stops=tab.stops, tabs.as.spaces=tabs.as.spaces, strip.spaces=strip.spaces ) if(tabs.as.spaces && strip.spaces) stop("`tabs.as.spaces` and `strip.spaces` should not both be TRUE.") VAL_WRAP_IN_ENV(width, indent, exdent, prefix, initial, pad.end) res <- .Call( FANSI_strwrap_csi, x, width, indent, exdent, prefix, initial, wrap.always, pad.end, strip.spaces, tabs.as.spaces, tab.stops, WARN.INT, TERM.CAP.INT, FALSE, CTL.INT, normalize, carry, terminate ) if(simplify) { if(normalize) normalize_state(unlist(res), warn=FALSE, term.cap) else unlist(res) } else { if(normalize) normalize_state_list(res, 0L, TERM.CAP.INT, carry=carry) else res } } strwrap_sgr <- function( x, width = 0.9 * getOption("width"), indent = 0, exdent = 0, prefix = "", simplify = TRUE, initial = prefix, warn=getOption('fansi.warn', TRUE), term.cap=getOption('fansi.term.cap', dflt_term_cap()), normalize=getOption('fansi.normalize', FALSE), carry=getOption('fansi.carry', FALSE), terminate=getOption('fansi.terminate', TRUE) ) strwrap_ctl( x=x, width=width, indent=indent, exdent=exdent, prefix=prefix, simplify=simplify, initial=initial, warn=warn, term.cap=term.cap, ctl='sgr', normalize=normalize, carry=carry, terminate=terminate ) strwrap2_sgr <- function( x, width = 0.9 * getOption("width"), indent = 0, exdent = 0, prefix = "", simplify = TRUE, initial = prefix, wrap.always=FALSE, pad.end="", strip.spaces=!tabs.as.spaces, tabs.as.spaces=getOption('fansi.tabs.as.spaces', FALSE), tab.stops=getOption('fansi.tab.stops', 8L), warn=getOption('fansi.warn', TRUE), term.cap=getOption('fansi.term.cap', dflt_term_cap()), normalize=getOption('fansi.normalize', FALSE), carry=getOption('fansi.carry', FALSE), terminate=getOption('fansi.terminate', TRUE) ) strwrap2_ctl( x=x, width=width, indent=indent, exdent=exdent, prefix=prefix, simplify=simplify, initial=initial, wrap.always=wrap.always, pad.end=pad.end, strip.spaces=strip.spaces, tabs.as.spaces=tabs.as.spaces, tab.stops=tab.stops, warn=warn, term.cap=term.cap, ctl='sgr', normalize=normalize, carry=carry, terminate=terminate ) VAL_WRAP_IN_ENV <- function( width, indent, exdent, prefix, initial, pad.end ) { call <- sys.call(-1) env <- parent.frame() stop2 <- function(x) stop(simpleError(x, call)) is_scl_int_pos <- function(x, name, strict=FALSE) { x <- as.integer(x) if( !is.numeric(x) || length(x) != 1L || is.na(x) || if(strict) x <= 0 else x < 0 ) stop2( sprintf( "Argument `%s` %s.", name, "must be a positive scalar numeric representable as integer" ) ) x } exdent <- is_scl_int_pos(exdent, 'exdent', strict=FALSE) indent <- is_scl_int_pos(indent, 'indent', strict=FALSE) if(is.numeric(width)) width <- as.integer(min(c(max(c(min(width), 2L)), .Machine$integer.max))) else stop2("Argument `width` must be numeric.") width <- is_scl_int_pos(width, 'width', strict=TRUE) width <- width - 1L if(!is.character(prefix)) prefix <- as.character(prefix) if(length(prefix) != 1L) stop2("Argument `prefix` must be a scalar character.") prefix <- enc_to_utf8(prefix) if(Encoding(prefix) == "bytes") stop2("Argument `prefix` cannot be \"bytes\" encoded.") if(!is.character(initial)) initial <- as.character(initial) if(length(initial) != 1L) stop2("Argument `initial` must be a scalar character.") initial <- enc_to_utf8(initial) if(Encoding(initial) == "bytes") stop2("Argument `initial` cannot be \"bytes\" encoded.") if(!is.character(pad.end)) pad.end <- as.character(pad.end) if(length(pad.end) != 1L) stop2("Argument `pad.end` must be a scalar character.") pad.end <- enc_to_utf8(pad.end) if(Encoding(pad.end) == "bytes") stop2("Argument `pad.end` cannot be \"bytes\" encoded.") if(nchar(pad.end, type='bytes') > 1L) stop2("Argument `pad.end` must be at most one byte long.") list2env( list( width=width, indent=indent, exdent=exdent, prefix=prefix, initial=initial, pad.end=pad.end ), env ) }
identifyCoeffs <- function(fixed, data, random, XmaxIter=1000, XmsMaxIter=1000, Xtolerance=.01, XniterEM=1000, XmsMaxEval=400, XmsTol=.00001, Xopt='optim', diagnose=FALSE, verbose=TRUE) { MC <- match.call() if(verbose) { print("", quote = FALSE) print("Running identifyCoeffs", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) print("Call:", quote = FALSE) print(MC) print("", quote = FALSE) } newcontrol <- nlme::lmeControl(maxIter=XmaxIter, msMaxIter=XmsMaxIter, tolerance=Xtolerance, niterEM=XniterEM, msMaxEval=XmsMaxEval, msTol=XmsTol, opt=Xopt) newcontrol <<- newcontrol zzzz <- data zzzz <<- zzzz on.exit(rm(zzzz, pos=1)) on.exit(rm(newcontrol, pos=1)) lmerun <- nlme::lme(fixed,data,random, control=newcontrol) coeffs <- lmerun$coefficients fixd <- coeffs[[1]] rndm <- coeffs[[2]] print("Typical fixed coefficient estimates from a run of lme( ) on fixdat", quote=FALSE) print(fixd) print("", quote = FALSE) print("", quote = FALSE) print("Typical random coefficient estimates from a run of lme( ) on fixdat", quote=FALSE) print(rndm) print("", quote = FALSE) dimsN <- lmerun$dims$N dimsQ <- lmerun$dims$Q IDs <- NULL for(jjj in 1:dimsQ){ IDs1 <- dimnames(rndm[[jjj]])[[1]] IDs2 <- dimnames(rndm[[jjj]])[[2]] IDs <- c(IDs, paste(rep(IDs1,times=length(IDs2)), rep(IDs2,each =length(IDs1)),sep="--")) IDs <- c(IDs) } vectfixd <- 1:length(fixd) names(vectfixd) <- names(fixd) uu <- unlist(rndm) vectrandm <- (length(fixd) + 1):(length(fixd)+length(uu)) names(vectrandm) <- IDs vectrandm <- as.matrix(vectrandm, col=1) print("When only a few coefficients can be graphed, specify them using the following codes:", quote=FALSE) print("", quote = FALSE) print("Fixed coefficient estimates", quote=FALSE) print(vectfixd, quote = FALSE) print("", quote = FALSE) print("", quote = FALSE) print("Random coefficient estimates", quote=FALSE) print(vectrandm) print("", quote = FALSE) if(verbose) { print("", quote = FALSE) print("Finished running identifyCoeffs", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) } list("Fixed coefficients"=fixd, "Complete random coefficients"=rndm, "Use these random codes"=vectrandm) }
order_neighborhood <- function(bigZ, B, V, Vt, constraint) { assertthat::assert_that( nrow(bigZ) == ncol(B) + 1, ncol(bigZ) == nrow(B)) if (is.null(V)) { sel.indx <- t(apply(bigZ, MARGIN = 2, FUN = function (X) { unlist(as.matrix(sort.int(X, index.return = TRUE))[2])})) } else { bigV <- t(cbind(matrix(V$v[B], dim(B)), Vt$v)) opname <- paste0("constraint_", constraint$name) ord.args <- constraint ord.args$name <- NULL ord.args$B <- B ord.args$bigZ <- bigZ ord.args$bigV <- bigV ord.args$V <- V$v ord.args$Vt <- Vt$v sel.indx <- do.call(opname, args = ord.args) } return(sel.indx) }
context("detect and convert crs")
exp1st <- function(alpha,tol,itmax,n,eps) { ny <- 2*n err1 <- -alpha c1 <- 1.0 while (err1 < 0) { c1 <- c1 -0.05 h <- alpha + pchisq(ny*c1/(1+eps),ny) c2 <- qchisq(h,ny) * (1+eps)/ny err1 <- pchisq(ny*(1+eps)*c2,ny) - pchisq(ny*(1+eps)*c1,ny) - alpha } c1L <- c1 c1R <- c1 + 0.05 it <- 0 while (abs(err1) >= tol && it <= itmax) { it <- it + 1 c1 <- (c1L+c1R) / 2 h <- alpha + pchisq(ny*c1/(1+eps),ny) c2 <- qchisq(h,ny) * (1+eps)/ny err1 <- pchisq(ny*(1+eps)*c2,ny) - pchisq(ny*(1+eps)*c1,ny) - alpha if (err1 <= 0) c1R <- c1 else c1L <- c1 } pow0 <- pchisq(ny*c2,ny) - pchisq(ny*c1,ny) c1 <- n*c1 c2 <- n*c2 cat(" ALPHA =",alpha," TOL =",tol," ITMAX =",itmax," N =",n," EPS =",eps, " IT =",it,"\n","C1 =",c1," C2 =",c2," ERR1 =",err1," POW0 =",pow0) }
boundaryweight_fct_2p3p<- function(formula, model.object, data_select_from, boundary_weights){ formula_plus_boundary.weight <- as.formula(paste(paste(all.vars(formula)[1],"~"), paste(c(attr(terms(model.object),"term.labels"), boundary_weights), collapse= "+"))) design_matrix<- design_matrix.s1_return(formula=formula_plus_boundary.weight, data=data_select_from) Z1_bar_weighted<- apply(design_matrix, 2, weighted.mean, w=design_matrix[,boundary_weights]) Z1_bar_weighted[- which(names(Z1_bar_weighted) %in% boundary_weights)] }
test.ezsim <- function(x,return_name=TRUE,print_result=FALSE,...){ parameter_list <- generate(x$parameter_def) create_cluster_flag <- FALSE if (x$use_core > 1 & is.null(x$cluster) ){ x$cluster <- makeCluster(x$use_core) if (!is.null(x$cluster_packages)){ for (i in 1:length(x$cluster_packages)) eval(substitute( clusterEvalQ(x$cluster , require(w, character.only=TRUE) ) , list( w=x$cluster_packages[i] ) )) } clusterSetRNGStream(x$cluster,x$use_seed) create_cluster_flag<-TRUE } if (x$use_core == 1) set.seed(x$use_seed) i=NULL tryCatch({ cat("Testing for estimator...") compute_estimates <- function(i,ezsim_object) { ezsim_object$estimator(Jmisc::evalFunctionOnList(ezsim_object$dgp,i)) } test_estimates<- if (!is.null(x$cluster)){ parLapply(x$cluster,parameter_list,fun=compute_estimates,ezsim_object=x) } else{ lapply(parameter_list,FUN=compute_estimates,ezsim_object=x) } cat("Passed\n") cat("Testing for estimator parser...") test_estimates_parsed<- foreach( i = test_estimates ) %do%{ x$estimator_parser(i) } if (any(!sapply(test_estimates_parsed,is.vector))) stop("estimator parser do not return a vector") length_estimates<-sapply(test_estimates_parsed,length) if (!all(length_estimates==length_estimates[[1]])) stop("length of estimates are not the same") cat("Passed\n") cat("Testing for true value...") if (is.function(x$true_value)){ compute_true_value <- function(i,ezsim_object) { Jmisc::evalFunctionOnList(ezsim_object$true_value,i) } test_true_value<- if (!is.null(x$cluster)){ parLapply(x$cluster,parameter_list,fun=compute_true_value,ezsim_object=x) } else{ lapply(parameter_list,FUN=compute_true_value,ezsim_object=x) } length_true_value<-sapply(test_true_value,length) if (!all(length_true_value==length_true_value[[1]])) stop("length of true value are not the same") if (length_true_value[[1]]!=length_estimates[[1]]) stop("length of true value and estimates are not the same") } cat("Passed\n") }, finally = { if (create_cluster_flag){ tryCatch({ stopCluster(x$cluster) }, finally = { x$cluster<-NULL }) } }) }
context("Kantorovich distance") test_that("Main example - numeric mode", { mu <- c(1/7, 2/7, 4/7) nu <- c(1/4, 1/4, 1/2) x <- kantorovich(mu, nu) expect_equal(x, 0.107142857142857) mu <- setNames(mu, c("a","b","c")) nu <- setNames(nu, c("a","b","c")) x <- kantorovich(mu, nu) expect_equal(x, 0.107142857142857) mu <- setNames(mu, c("a","b","c")) nu <- c(c=1/2, a=1/4, b=1/4) x <- kantorovich(mu, nu) expect_equal(x, 0.107142857142857) mu <- setNames(c(1/7, 2/7, 4/7), c("a","b","c")) nu <- setNames(c(1/4, 1/4, 1/2), c("a","b","c")) M <- matrix(1, nrow=3, ncol=3) - diag(3) expect_error(kantorovich(mu, nu, dist=M)) rownames(M) <- colnames(M) <- c("a","b","c") x <- kantorovich(mu, nu, dist=M) expect_equal(x, 0.107142857142857) mu <- c(1/7, 2/7, 4/7) nu <- c(1/4, 1/4, 1/2) x <- kantorovich(mu, nu, details=TRUE) bestj <- attr(x, "joinings") expect_equal(length(bestj), 1) expect_equal(bestj[[1]], structure(c(0.142857142857143, 0.0357142857142857, 0.0714285714285714, 0, 0.25, 0, 0, 0, 0.5), .Dim = c(3L, 3L), .Dimnames = list(c("1", "2", "3"), c("1", "2", "3"))) ) }) test_that("Main example - bigq mode", { mu <- as.bigq(c(1,2,4), 7) nu <- as.bigq(c(1,1,1), c(4,4,2)) x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) mu <- setNames(as.bigq(c(1,2,4), 7), c("a","b","c")) nu <- setNames(as.bigq(c(1,1,1), c(4,4,2)), c("a","b","c")) x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) mu <- setNames(as.bigq(c(1,2,4), 7), c("a","b","c")) nu <- setNames(as.bigq(c(1,1,1), c(2,4,4)), c("c","a","b")) x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) x <- kantorovich(mu, nu, details=TRUE) bestj <- attr(x, "joinings") expect_equal(length(bestj), 1) expect_equal(bestj[[1]], structure(c("1/7", "1/28", "1/14", "0", "1/4", "0", "0", "0", "1/2"), .Dim = c(3L, 3L), .Dimnames = list(c("a", "b", "c"), c("a", "b", "c"))) ) bestj_num <- attr(kantorovich(as.numeric(mu), as.numeric(nu)[c(2,3,1)], details=TRUE), "joinings")[[1]] expect_equal(as.numeric(as.bigq(bestj[[1]])), as.vector(bestj_num)) }) test_that("Main example - character mode", { mu <- c("1/7", "2/7", "4/7") nu <- c("1/4", "1/4", "1/2") x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) mu <- setNames(c("1/7", "2/7", "4/7"), c("a","b","c")) nu <- setNames(c("1/4", "1/4", "1/2"), c("a","b","c")) x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) mu <- setNames(c("1/7", "2/7", "4/7"), c("a","b","c")) nu <- setNames(c("1/2", "1/4", "1/4"), c("c","a","b")) x <- kantorovich(mu, nu) expect_true(x==as.bigq(3,28)) x <- kantorovich(mu, nu, details=TRUE) bestj <- attr(x, "joinings") expect_equal(length(bestj), 1) expect_equal(bestj[[1]], structure(c("1/7", "1/28", "1/14", "0", "1/4", "0", "0", "0", "1/2"), .Dim = c(3L, 3L), .Dimnames = list(c("a", "b", "c"), c("a", "b", "c"))) ) bestj_bigq <- attr(kantorovich(as.bigq(mu), as.bigq(nu)[c(2,3,1)], details=TRUE), "joinings")[[1]] expect_equal(as.numeric(as.bigq(bestj[[1]])), as.numeric(as.bigq(bestj_bigq))) expect_equal(rownames(bestj[[1]]), names(mu)) expect_false(all(colnames(bestj[[1]])==names(nu))) }) test_that("Non-square example - numeric mode", { mu <- c(2/5,3/5) nu <- c(1/4,1/4,1/4,1/4) x <- kantorovich(mu, nu) expect_equal(x, 0.5) mu <- setNames(mu, c("a","b")) nu <- setNames(nu, c("a","b","c","d")) x <- kantorovich(mu, nu) expect_equal(x, 0.5) mu <- setNames(mu, c("b","a")) x <- kantorovich(mu, nu) expect_equal(x, 0.5) mu <- setNames(c(2/5,3/5), c("a","b")) nu <- setNames(c(1/4,1/4,1/4,1/4), c("a","b","c","d")) M <- matrix(1, nrow=4, ncol=4) - diag(4) rownames(M) <- c("a","b","c","d"); colnames(M) <- names(nu) x <- kantorovich(mu, nu) expect_equal(x, 0.5) }) test_that("Non-square example - bigq mode", { mu <- as.bigq(c(2/5,3/5)) nu <- as.bigq(c(1/4,1/4,1/4,1/4)) x <- kantorovich(mu, nu) expect_identical(x, as.bigq(0.5)) mu <- setNames(mu, c("a","b")) nu <- setNames(nu, c("a","b","c","d")) x <- kantorovich(mu, nu) expect_identical(x, as.bigq(0.5)) mu <- setNames(mu, c("b","a")) x <- kantorovich(mu, nu) expect_identical(x, as.bigq(0.5)) })
nlists <- function(...) { args <- list(...) if (length(args)) { return(as_nlists(args)) } structure(list(), class = "nlists") }
module_convert_to_table <- function(MEGENA.output,mod.pval = 0.05,hub.pval = 0.05,min.size = 10,max.size) { summary.output <- MEGENA.ModuleSummary(MEGENA.output,mod.pvalue = mod.pval,hub.pvalue = hub.pval, min.size = min.size,max.size = max.size,annot.table = NULL,symbol.col = NULL,id.col = NULL, output.sig = TRUE) modules <- summary.output$modules is.annted <- any(sapply(modules,function(x) length(grep("\\|",x)) > 0)) df <- mapply(FUN = function(x,y) data.frame(id = x,module = rep(y,length(x))),x = modules,y = as.list(names(modules)),SIMPLIFY = FALSE) df <- do.call('rbind.data.frame',df) if (is.annted) { df <- data.frame(id = df[[1]],gene.symbol = gsub("\\|(.*)","",as.character(df[[1]])),gene.symbol2 = gsub("^(.*)\\|","",as.character(df[[1]])), module = df[[2]]) } if (!is.null(summary.output$module.table)) { modtbl <- summary.output$module.table df <- cbind.data.frame(df[,-ncol(df)],module.parent = modtbl$module.parent[match(df$module,modtbl$module.id)],module = df[[ncol(df)]]) rm(modtbl) colnames(df)[1] <- "id" } if (!is.null(MEGENA.output$node.summary)) { colnames(df)[1] <- "id" hubs <- lapply(MEGENA.output$hub.output$module.degreeStat,function(x,hp) as.character(x[[1]])[which(x$pvalue < hp)],hp = hub.pval) hvec <- rep(NA,nrow(df)) for (j in 1:length(hubs)) hvec[which(df[[1]] %in% hubs[[j]] & df$module == names(hubs)[j])] <- "hub" df <- cbind.data.frame(df[,-ncol(df)],node.degree = MEGENA.output$node.summary$node.degree[match(df$id,MEGENA.output$node.summary$id)], node.strength = MEGENA.output$node.summary$node.strength[match(df$id,MEGENA.output$node.summary$id)],is.hub = hvec, module = df[[ncol(df)]]); rm(MEGENA.output,summary.output) } rownames(df) <- NULL return(df) } module_rank=function(X){ X=as.matrix(X) G=apply(X,2,function(y) {z=rank(y);M=max(z);(M+1-z)/M} ) apply(G,1,function(x) sum(log(x))) } flatten.table <- function(master.table,factor.col,out.cols) { if (length(factor.col) == 1) { factor.vec <- factor(master.table[[factor.col]]) }else{ factor.vec <- factor(apply(do.call(cbind,lapply(master.table[factor.col],as.character)),1,function(x) paste(x,collapse = "~"))) } split.table <- lapply(split(1:nrow(master.table),factor.vec),function(ii,m) m[ii,],m = master.table) common.id <- Reduce("union",lapply(split.table,function(x) as.character(x[[1]]))) big.table <- list() for (out.col in out.cols) { aligned.table <- do.call(cbind,lapply(split.table,function(tbl,id,out.col) { vec <- rep(NA,length(id));names(vec) <- id; if (is.numeric(tbl[[out.col]])) vec[as.character(tbl[[1]])] <- as.numeric(tbl[[out.col]]) if (is.factor(tbl[[out.col]])) vec[as.character(tbl[[1]])] <- as.character(tbl[[out.col]]) return(vec) },id = common.id,out.col = out.col)) colnames(aligned.table) <- paste(names(master.table)[out.col],colnames(aligned.table),sep = "__") big.table <- c(big.table,list(aligned.table)) } big.table <- data.frame(module = common.id,do.call(cbind.data.frame,big.table)) return(big.table) } combine.table <- function(abl,bbl) { common.id <- union(as.character(abl[[1]]),as.character(bbl[[1]])) abl.align <- do.call(cbind,lapply(abl[2:ncol(abl)],function(x,y,z) { names(x) <- z; vec <- rep(NA,length(y));names(vec) <- y; if (is.numeric(x)) {vec[match(names(x),names(vec))] <- x;}else{ vec[match(names(x),names(vec))] <- as.character(x);} return(vec) },y = common.id,z = as.character(abl[[1]]))) bbl.align <- do.call(cbind,lapply(bbl[2:ncol(bbl)],function(x,y,z) { names(x) <- z; vec <- rep(NA,length(y));names(vec) <- y; if (is.numeric(x)) {vec[match(names(x),names(vec))] <- x;}else{ vec[match(names(x),names(vec))] <- as.character(x);} return(vec) },y = common.id,z = as.character(bbl[[1]]))) out <- cbind.data.frame(data.frame(id = common.id),abl.align,bbl.align) return(out) } coerce.manyTables <- function(table.lst) { if (length(table.lst) > 1) { out.table <- table.lst[[1]] for (i in 2:length(table.lst)) { out.table <- combine.table(out.table,table.lst[[i]]) } }else{ out.table <- table.lst[[1]]; } return(out.table) }
rrf.opt.1 <- function(X.train, Y.train, X.test=NULL, Y.test=NULL, pwr, weight, iter=1,total=10, cutoff=0.5) { surrogate <- min(weight[which(weight>0)])*0.1; weight[which(weight==0)] <- surrogate; coefReg <- weight^pwr; coefReg <- coefReg/max(coefReg); feature.rrf <- select.stable(X.train, Y.train, coefReg, total, cutoff) n <- length(Y.train); m <- length(feature.rrf); aic <- c(); auc <- c(); auc.test <- c(); if(length(feature.rrf) >= 1) { for(i in 1:iter) { model.rrf_rf <- randomForest(X.train[, feature.rrf], Y.train) if(class(Y.train) == 'factor') { p1 <- model.rrf_rf$votes[,2] pred <- data.frame(response=Y.train, pred=p1); roc <- roc.curve(pred[which(pred$response==1), 'pred'], pred[which(pred$response==0), 'pred']) auc <- c(auc, roc$auc); p1 <- sapply(p1, function(x) ifelse(x==0, 1/(2*n), ifelse(x==1, 1-1/(2*n), x))) y <- data.frame(p1=p1, class=as.numeric(as.character(Y.train))); lh <- sum(y$class*log(y$p1) + (1-y$class)*log(1-y$p1), na.rm=F); aic <- c(aic, 2*m - 2*lh); if(!is.null(X.test)){ pred.test <- predict(model.rrf_rf, X.test[, feature.rrf], type='prob') pred.test <- data.frame(response=Y.test, pred=pred.test[, 2]); roc.test <- roc.curve(pred.test[which(pred.test$response==1), 'pred'], pred.test[which(pred.test$response==0), 'pred']) auc.test <- c(auc.test, roc.test$auc); } } else { mse <- mean((model.rrf_rf$predicted - Y.train)^2); aic <- c(aic, 2*m + n*log(mse)); auc <- NA auc.test <- NA } } cat('par ', pwr, ' ... number of features ', m, ' ... aic ', mean(aic), ' ... auc ', mean(auc), ' ... auc.test ', mean(auc.test), '...\n');flush.console(); return(list(AIC=aic, AUC=auc, Test.AUC=auc.test, feaSet=feature.rrf)); } else { return("No feature is selected"); } }
.simd <- function(dat,mod,...,.p,.dry) { if(!inherits(mod, "packmod")) loadso(mod) if(.dry) { return(dat) } else { return(.p(mrgsim_d(mod,dat,...,output="df"),mod)) } } future_mrgsim_d <- function(mod, data, nchunk = 4, ..., .as_list = FALSE, .p = NULL, .dry = FALSE, .seed = TRUE, .parallel = TRUE) { if(!inherits(data,"list")) data <- chunk_by_id(data,nchunk) pa <- "mrgsolve" if(!is.function(.p)) .p <- .nothing if((length(data)==1)) { return(.simd(data[[1]],mod,...,.p=.p,.dry=.dry)) } if(isTRUE(.parallel)) { ans <- future_lapply( X = data, future.packages = pa, future.globals = character(0), future.seed = .seed, mod = mod, .p = .p, .dry = .dry, FUN = .simd, ... ) } else { ans <- lapply(X = data, mod = mod, .p = .p, .dry = .dry, FUN = .simd,...) } if(.as_list) return(ans) return(bind_rows(ans)) } mc_mrgsim_d <- function(mod, data, nchunk = 4, ..., .as_list = FALSE, .p = NULL, .dry = FALSE, .seed = NULL, .parallel = TRUE) { if(!inherits(data,"list")) data <- chunk_by_id(data,nchunk) if(!is.function(.p)) .p <- .nothing if((length(data)==1)) { return(.simd(data[[1]],mod,...,.p=.p,.dry=.dry)) } if(mc_able() & isTRUE(.parallel)) { ans <- mclapply(X = data, mod = mod, .p = .p, .dry = .dry, FUN = .simd, ...) } else { ans <- lapply(X = data, mod = mod, .p = .p, .dry = .dry, FUN = .simd,...) } if(.as_list) return(ans) return(bind_rows(ans)) } fu_mrgsim_d <- future_mrgsim_d fu_mrgsim_d0 <- function(...,.dry=TRUE) fu_mrgsim_d(...,.dry=TRUE)
make_Sample <- function( book, depth, geometry = "cuboid", radius, height, width, length, slice = TRUE, force = FALSE, n_cores = max(1,parallel::detectCores() - 2) ) { if (!all(c("sandbox", "book") %in% attributes(book)[c("package", "medium")])) stop("[make_Sample()] 'book' is not an object created by sandbox!", call. = FALSE) if (geometry == "cuboid") { depth_range <- c( depth[1] - height[1] / 2, depth[1] + height[1] / 2) V_sample <- height[1] * width[1] * length[1] } else if (geometry == "cylinder") { depth_range <- c( depth[1] - radius[1], depth[1] + radius[1]) V_sample <- pi * radius[1]^2 * length[1] } n_estimate <- 1000 z_estimate <- runif( n = n_estimate, min = depth_range[1], max = depth_range[2]) v_estimate <- lapply( X = z_estimate, FUN = function(z, book) { p_z <- vapply( X = book$population[-1], FUN = function(x, z) { x$value(x = z)}, FUN.VALUE = numeric(1), z = z) p_z[p_z < 0] <- 0 p_z <- p_z / sum(p_z) p_z <- base::sample( x = 1:length(p_z), size = 1, prob = p_z) if (book$grainsize[[p_z + 1]]$type == "exact") { d_z <- book$grainsize[[p_z + 1]][[2]](z) } else if (book$grainsize[[p_z + 1]]$type == "normal") { d_z <- stats::rnorm( n = 1, mean = book$grainsize[[p_z + 1]]$mean(z), sd = book$grainsize[[p_z + 1]]$sd(z)) } else if (book$grainsize[[p_z + 1]]$type == "uniform") { d_z <- stats::runif( n = 1, min = book$grainsize[[p_z + 1]]$min(z), max = book$grainsize[[p_z + 1]]$max(z)) } else if (book$grainsize[[p_z + 1]]$type == "gamma") { d_z <- stats::rgamma( n = 1, shape = book$grainsize[[p_z + 1]]$shape(z), scale = book$grainsize[[p_z + 1]]$scale(z)) + book$grainsize[[p_z + 1]]$offset(z) } if (book$packing[[p_z + 1]]$type == "exact") { w_z <- book$packing[[p_z + 1]][[2]](z) } else if (book$packing[[p_z + 1]]$type == "normal") { w_z <- stats::rnorm( n = 1, mean = book$packing[[p_z + 1]]$mean(z), sd = book$packing[[p_z + 1]]$sd(z)) } else if (book$packing[[p_z + 1]]$type == "uniform") { w_z <- stats::runif( n = 1, min = book$packing[[p_z + 1]]$min(z), max = book$packing[[p_z + 1]]$max(z)) } else if (book$packing[[p_z + 1]]$type == "gamma") { w_z <- stats::rgamma( n = 1, shape = book$packing[[p_z + 1]]$shape(z), scale = book$packing[[p_z + 1]]$scale(z)) + book$packing[[p_z + 1]]$offset(z) } r_z <- convert_units(phi = d_z) / 2000000 v_z <- 4 / 3 * pi * r_z^3 * 1/w_z if (v_z > 0) return(v_z) }, book = book) n_grains <- round(V_sample * n_estimate / sum(unlist(v_estimate)) * 1.1) if (n_grains < 1) stop("[make_Sample()] Sample volume is smaller than grain diameter!", call. = FALSE) if (geometry == "cuboid") { d_sample <- runif( n = n_grains, min = depth_range[1], max = depth_range[2]) } else if (geometry == "cylinder") { depth_i <- runif( n = n_grains, min = depth_range[1], max = depth_range[2]) - depth depth_circle <- sqrt(radius^2 - depth_i^2) depth_weight <- depth_circle/max(depth_circle) d_sample <- sample( x = depth_i, size = n_grains, replace = TRUE, prob = depth_weight) + depth } if (n_grains > 10 ^ 7 & force == FALSE) { stop(paste0( "More than 10^7 grains (", n_grains, ") to model. Enable with force = TRUE." ), call. = FALSE) } cl <- parallel::makeCluster(getOption("mc.cores", n_cores[1])) on.exit(parallel::stopCluster(cl)) if (slice[1]) { i_slice <- c( seq(from = 1, to = length(d_sample), by = 1e+06), length(d_sample) + 1) d_sample_slice <- vector( mode = "list", length = length(i_slice) - 1) for (i in 1:length(d_sample_slice)) d_sample_slice[[i]] <- d_sample[(i_slice[i]):(i_slice[i + 1] - 1)] } else { d_sample_slice <- list(d_sample) } population <- vector(mode = "list", length = length(d_sample_slice)) for (i in 1:length(population)) { population[[i]] <- parallel::parLapply( cl = cl, X = d_sample_slice[[i]], fun = function(d_sample, book) { p_z <- lapply( X = book$population[-1], FUN = function(x, d_sample) {x$value(x = d_sample)}, d_sample) p_z <- do.call(c, p_z) p_z[p_z < 0] <- 0 p_z <- p_z / sum(p_z) base::sample( x = 1:length(p_z), size = 1, prob = p_z) }, book = book) population[[i]] <- do.call(c, population[[i]]) } population <- do.call(c, population) parameters <- matrix(nrow = n_grains, ncol = length(book) - 1) colnames(parameters) <- names(book)[-1] grains <- 1:n_grains grains <- as.data.frame( cbind(grains,d_sample, population, parameters)) for (i in 2:length(book)) { if (book[[i]]$group == "general") { if (book[[i]][[2]]$type == "exact") { x_out <- try({ book[[i]][[2]][[2]](x = grains$d_sample) }, silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[,i + 2] <- x_out } else if (book[[i]][[2]]$type == "normal") { sd_pre <- try({ book[[i]][[2]]$sd(x = grains$d_sample) }, silent = TRUE) try(sd_pre[sd_pre < 0] <- 0, silent = TRUE) x_out <- try( stats::rnorm(n = nrow(grains), mean = book[[i]][[2]]$mean( x = grains$d_sample), sd = sd_pre), silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[,i + 2] <- x_out } else if (book[[i]][[2]]$type == "uniform") { min_pre <- try({ book[[i]][[2]]$min(x = grains$d_sample) }, silent = TRUE) max_pre <- try({ book[[i]][[2]]$max(x = grains$d_sample) }, silent = TRUE) x_out <- try({ stats::runif( n = nrow(grains), min = min_pre, max = max_pre)}, silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[,i + 2] <- x_out } else if (book[[i]][[2]]$type == "gamma") { shape_pre <- try(book[[i]][[2]]$shape(x = grains$d_sample), silent = TRUE) scale_pre <- try(book[[i]][[2]]$scale(x = grains$d_sample), silent = TRUE) offset_pre <- try(book[[i]][[2]]$offset(x = grains$d_sample), silent = TRUE) x_out <- try({ stats::rgamma( n = nrow(grains), shape = shape_pre, scale = scale_pre) + offset_pre }, silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[,i + 2] <- x_out } } else { for (j in 1:(length(book$population) - 1)) { ID_population_j <- (1:nrow(grains))[grains$population == j] if (book[[i]][[2]]$type == "exact") { x_out <- try(book[[i]][[j + 1]]$value( x = grains$d_sample[ID_population_j]), silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[ID_population_j,i + 2] <- x_out } else if (book[[i]][[2]]$type == "normal") { x_out <- try( stats::rnorm( n = length(ID_population_j), mean = book[[i]][[j + 1]]$mean(x = grains$d_sample), sd = abs(book[[i]][[j + 1]]$sd(x = grains$d_sample))), silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[ID_population_j,i + 2] <- x_out } else if (book[[i]][[2]]$type == "uniform") { x_out <- try( stats::runif( n = length(ID_population_j), min = book[[i]][[j + 1]]$min(x = grains$d_sample), max = book[[i]][[j + 1]]$max(x = grains$d_sample)), silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[ID_population_j,i + 2] <- x_out } else if (book[[i]][[2]]$type == "gamma") { x_out <- try( stats::rgamma( n = length(ID_population_j), shape = book[[i]][[j + 1]]$shape(x = grains$d_sample), scale = book[[i]][[j + 1]]$scale(x = grains$d_sample)) + book[[i]][[j + 1]]$offset(x = grains$d_sample), silent = TRUE) if (class(x_out[1]) == "try-error") x_out <- rep(NA, nrow(grains)) grains[ID_population_j,i + 2] <- x_out } } } } r_grains <- (convert_units(phi = grains$grainsize) / (2 * 1e+06)) V_grains <- cumsum(4 / 3 * pi * r_grains^3 * 1/grains$packing) grains <- grains[V_sample >= V_grains,] attributes(grains) <- c( attributes(grains), list(package = "sandbox")) return(grains) }
filter_evaluator <- filterEvaluator('determinationCoefficient') LV_search <- LasVegas() res <- LV_search(iris, 'Species', filter_evaluator) print(res)
pc.skel <- function(dataset, method = "pearson", alpha = 0.01, R = 1, stat = NULL, ini.pvalue = NULL) { is.init.vals <- c(!is.null(stat), !is.null(ini.pvalue)) if (is.null(stat)) stat <- matrix(); if (is.null(ini.pvalue)) ini.pvalue <- matrix(); .Call(Rfast_pc_skel,dataset, method, alpha, R, stat, ini.pvalue, is.init.vals) }
read.neuron.hxskel<-function(file, ...){ ndata=read.amiramesh(file) required_fields=c("Coordinates", "NeighbourCount", "Radii", "NeighbourList") missing_fields=setdiff(required_fields,names(ndata)) if(length(missing_fields)) stop("Neuron: ",file," is missing fields: ",paste(missing_fields,collapse=" ")) d=data.frame(ndata$Coordinates) colnames(d)=c("X","Y","Z") d$W=ndata$Radii*2 nVertices=nrow(d) d$PointNo=seq(nVertices) d[,1:4]=zapsmall(d[,1:4]) Neighbours=data.frame(Neighbour=ndata$NeighbourList+1, CurPoint=rep(seq(nVertices),ndata$NeighbourCount)) Origin=ndata$Origins if(!is.null(Origin)) Origin=Origin+1 if(length(ndata$vertexTypeList)){ SegmentProps=data.frame( PointNo=rep(seq(nVertices),ndata$vertexTypeCounter), Id=ndata$vertexTypeList) if(length(attr(ndata,'Materials'))){ attr(SegmentProps,'Materials')=attr(ndata,'Materials') } FirstSegmentProps=SegmentProps[!duplicated(SegmentProps$PointNo),] d$Label=0L d[FirstSegmentProps$PointNo,"Label"]=FirstSegmentProps$Id } el=data.matrix(Neighbours) doubleg=ngraph(el, d$PointNo, directed=TRUE) ug=as.undirected(doubleg, mode='collapse') if(!inherits(ug,'ngraph')) class(ug)=c("ngraph",class(ug)) n=as.neuron(ug, vertexData=d, origin=Origin, InputFileName=file, ... ) n } is.hxskel<-is.amiratype('SkeletonGraph') read.neuron.hxlineset<-function(file, defaultDiameter=NA_real_, ...){ amdata=read.amiramesh(file) if(!all(c("Coordinates","LineIdx")%in%names(amdata))) stop("Cannot find required data sections") coords=as.data.frame(amdata$Coordinates) colnames(coords)=c("X","Y","Z") radiusData=amdata[!names(amdata)%in%c("Coordinates","LineIdx")] lad=length(radiusData) if(lad==0){ warning("No width data for neuron:",file) coords[,"W"]=defaultDiameter } else if (lad==1) { coords[,"W"]=radiusData[[1]]*2 } else if (lad>1) { warning("Assuming that Data section ",lad," (",names(radiusData)[lad],") specifies radius") coords[,"W"]=radiusData[[lad]]*2 } coords=cbind(PointNo=seq(1:nrow(coords)), zapsmall(coords)) lpts = amdata$LineIdx+1 lpts[lpts==0]=NA el=cbind(start=lpts[-length(lpts)], end=lpts[-1]) el=el[!is.na(rowSums(el)),] vertices_in_edges=na.omit(unique(lpts)) missing_vertices=setdiff(vertices_in_edges, coords$PointNo) if(length(missing_vertices)) { stop( "Invalid amiramesh file - adjacency list mentions ", length(missing_vertices), " vertices that are undefined!" ) } ng=ngraph(el, vertexlabels=coords$PointNo, xyz = coords[,c("X","Y","Z"), drop=FALSE], diam=coords[,"W"]) as.neuron(ng, InputFileName=file, ...) } is.hxlineset<-is.amiratype('HxLineSet') write.neuron.hxskel<-function(x, file, WriteAllSubTrees=TRUE, ScaleSubTreeNumsTo1=TRUE, sep=NULL){ if(WriteAllSubTrees && isTRUE(x$nTrees>1)){ WriteAllSubTrees=TRUE SegList=unlist(x$SubTrees,recursive=FALSE) } else { WriteAllSubTrees=FALSE SegList=x$SegList } chosenVertices=sort(unique(unlist(SegList))) nVertices=length(chosenVertices) nEdgeList=sum(sapply(SegList,length)-1)*2 makeEdges=function(seg){ lSeg=length(seg) if(lSeg<2) return() elFwd=cbind(seg[-lSeg],seg[-1]) elRev=cbind(seg[-1],seg[-lSeg]) df=data.frame(rbind(elFwd,elRev)) names(df)=c("CurPoint","Neighbour") df[order(df$CurPoint,df$Neighbour),] } EdgeList=do.call('rbind',lapply(SegList,makeEdges)) EdgeList=EdgeList[order(EdgeList$CurPoint,EdgeList$Neighbour),] cat(" fc=file(file,open="at") cat(" cat("nVertices", nVertices,"\nnEdges",nEdgeList,"\n",file=fc) vertexTypeList=ifelse(WriteAllSubTrees,nVertices,0) cat("define Origins 1\ndefine vertexTypeList",vertexTypeList,"\n\n",file=fc) cat("Parameters {\n",file=fc) cat(" ContentType \"SkeletonGraph\"\n",file=fc) cat("}\n\n",file=fc) cat("Vertices { float[3] Coordinates } @1\n",file=fc) cat("Vertices { int NeighbourCount } @2\n",file=fc) cat("Vertices { float Radii } @3\n",file=fc) cat("EdgeData { int NeighbourList } @4\n",file=fc) cat("Origins { int Origins } @5\n",file=fc) cat("Vertices { int vertexTypeCounter } @6\n",file=fc) cat("vertexTypeList { int vertexTypeList } @7\n\n",file=fc) cat("@1 if(is.null(sep)){ Coords=as.matrix(x$d[,c("X","Y","Z")]) rownames(Coords)<-colnames(Coords)<-NULL write.table(format(Coords,trim=FALSE,scientific=FALSE), quote=F,row.names=FALSE,col.names=FALSE,file=fc) } else { write.table(x$d[chosenVertices,c("X","Y","Z")],col.names=F,row.names=F,file=fc,sep=sep) } cat("\n@2 numNeighbours=integer(nVertices) numNeighbours[sort(unique(EdgeList$CurPoint))]=table(EdgeList$CurPoint) write.table(numNeighbours,col.names=F,row.names=F,file=fc) cat("\n@3 write.table(x$d$W[chosenVertices]/2,col.names=F,row.names=F,file=fc) cat("\n@4 write.table(EdgeList$Neighbour-1,col.names=F,row.names=F,file=fc) cat("\n@5 cat(x$StartPoint-1,"\n",file=fc) cat("\n@6 cat(paste(rep(0,nVertices),"\n"),sep="",file=fc) if(WriteAllSubTrees) { cat("\n@7 if(ScaleSubTreeNumsTo1) x$d$SubTree=x$d$SubTree/max(x$d$SubTree) write.table(x$d$SubTree,col.names=F,row.names=F,file=fc) } cat("\n",file=fc) close(fc) } write.neuron.hxlineset<-function(x, file=NULL, WriteAllSubTrees=TRUE, ScaleSubTreeNumsTo1=TRUE, WriteRadius=TRUE){ SegList=as.seglist(x, all=WriteAllSubTrees, flatten=TRUE) WriteAllSubTrees=WriteAllSubTrees && isTRUE(x$nTrees>1) chosenVertices=sort(unique(unlist(SegList))) nVertices=length(chosenVertices) nLinePoints=length(unlist(SegList))+length(SegList) cat(" fc=file(file,open="at") cat(" cat("define Lines",nLinePoints,"\n",file=fc) cat("define Vertices", nVertices,"\n\n",file=fc) cat("Parameters {\n",file=fc) cat(" ContentType \"HxLineSet\"\n",file=fc) cat("}\n\n",file=fc) sectionNumbers=c(Coordinates=1,LineIdx=2) cat("Vertices { float[3] Coordinates } = @1\n",file=fc) if(WriteRadius){ if(any(is.na(x$d$W))) { warning("Width has NAs. Omitting invalid width data from file:", file) WriteRadius=FALSE } else { cat("Vertices { float Data } = @2\n",file=fc) sectionNumbers=c(Coordinates=1,Data=2,LineIdx=3) } } cat("Lines { int LineIdx } = @",sectionNumbers['LineIdx'],"\n",sep="",file=fc) if(WriteAllSubTrees) { sectionNumbers=c(sectionNumbers,Data2=max(sectionNumbers)+1) cat("Vertices { float Data2 } =@",sectionNumbers['Data2'],"\n",sep="",file=fc) } cat("\n",file=fc) cat("@1 write.table(x$d[chosenVertices,c("X","Y","Z")],col.names=F,row.names=F,file=fc) if(WriteRadius){ cat("\n@",sectionNumbers['Data']," write.table(x$d$W[chosenVertices]/2,col.names=F,row.names=F,file=fc,na='NaN') } cat("\n@",sectionNumbers['LineIdx']," lapply(SegList,function(x) cat(x-1,"-1 \n",file=fc)) if(WriteAllSubTrees) { cat("\n@",sectionNumbers['Data2']," if(ScaleSubTreeNumsTo1) x$d$SubTree=x$d$SubTree/max(x$d$SubTree) write.table(x$d$SubTree,col.names=F,row.names=F,file=fc) } close(fc) }
add_r_depend <- function() { r_version <- get_minimal_r_version() if (!is.null(r_version)) { r_version <- paste0("R (>= ", r_version, ")") descr <- read_descr() if (is.null(descr$"Depends")) { descr$"Depends" <- r_version } else { depends <- unlist(strsplit(descr$"Depends", "\n\\s+|,|,\\s+")) is_r <- grep("R \\(.*\\)", depends) if (length(is_r)) { depends[is_r] <- r_version } else { depends <- c(r_version, depends) } descr$"Depends" <- paste0(depends, collapse = ", ") } write_descr(descr) ui_done(paste0("Adding the following line to {ui_value('DESCRIPTION')}: ", "{ui_code(paste('Depends:', r_version))}")) } else { ui_done(paste0("No minimal R version detected")) } invisible(NULL) }
list_transform <- function(x) { df <- as.data.frame(t(as.data.frame(x, stringsAsFactors = FALSE)), row.names = FALSE, stringsAsFactors = FALSE) return(df) }
today_pin <- substr(paste(paste(unlist(strsplit(as.character(Sys.Date()),split = "-")), collapse = ""),"0000",sep=""), 3, 12) tomorrow_pin <- paste(paste(unlist(strsplit(as.character(Sys.Date()+1),split = "-")), collapse = ""),"0000",sep="") context("as.pin") test_that(desc="class: pin",{ expect_is(as.pin("196408233234"), class = "pin") }) test_that(desc="numeric: YYYYMMDDNNNC",{ expect_equal(as.character(suppressMessages(as.pin(196408233234))), expected = "196408233234") expect_equal(as.character(suppressMessages(as.pin(200108230000))), expected = "200108230000") expect_is(as.character(suppressMessages(as.pin(200108230000))), "character") expect_is(as.character(suppressMessages(as.pin(pin = c(NA,198501169885)))), "character") expect_is(as.character(suppressMessages(as.pin(pin = as.numeric(NA)))), "character") }) test_that(desc="numeric: YYMMDDNNNC",{ expect_equal(as.character(suppressMessages(as.pin(6408233234))), expected = "196408233234") expect_equal(as.character(suppressMessages(as.pin(108230000))), expected = "200108230000") expect_equal(as.character(suppressMessages(as.pin(pin = c(8230000,108230000)))), expected = c("200008230000", "200108230000")) expect_is(as.character(suppressMessages(as.pin(c(NA,8501169885)))), "character") }) test_that(desc="character: 'YYMMDDNNNC'",{ expect_equal(as.character(suppressMessages(as.pin("6408233234"))), expected = "196408233234") expect_equal(as.character(suppressMessages(as.pin("0008230000"))), expected = "200008230000") expect_equal(as.character(suppressMessages(as.pin(today_pin))), expected = paste("20",today_pin, sep="")) expect_is(as.character(suppressMessages(as.pin(c(NA,"8501169885")))), "character") }) test_that(desc="factor: 'YYMMDDNNNC'",{ expect_equal(as.character(suppressMessages(as.pin(as.factor("6408233234")))), expected = "196408233234") expect_equal(as.character(suppressMessages(as.pin(as.factor("0008230000")))), expected = "200008230000") }) test_that(desc="character: 'YYYYMMDDNNNC'",{ expect_equal(as.character(suppressMessages(as.pin("196408233234"))), expected = "196408233234") expect_is(as.character(suppressMessages(as.pin(c(NA,"198501169885")))), "character") }) test_that(desc="different formats",{ expect_equal(as.character(suppressMessages(as.pin(c("196408233234", "640823-3234", "19640823-3234", "6408233234")))), expected = rep("196408233234", 4)) expect_equal(as.character(suppressMessages(as.pin(c(196408233234, 6408233234)))), expected = rep("196408233234", 2)) }) test_that(desc="character: 'YYMMDD-NNNC'",{ expect_equal(as.character(as.pin("640823-3234")), expected = "196408233234") expect_equal(as.character(as.pin("000823-0000")), expected = "200008230000") expect_equal(as.character(as.pin("000823+0000")), expected = "190008230000") }) test_that(desc="error expected",{ suppressWarnings(expect_equal(as.character(as.pin(tomorrow_pin)), as.character(NA))) suppressWarnings(expect_equal(as.character(as.pin(pin = "AA6408233234")), as.character(NA))) suppressWarnings(expect_equal(as.character(as.pin("196418233234")), as.character(NA))) suppressWarnings(expect_equal(as.character(as.pin("196408333234")), as.character(NA))) expect_warning(as.pin(tomorrow_pin)) expect_warning(as.pin("AA6408233234")) expect_warning(as.pin("196418233234")) expect_warning(as.pin("196408333234")) test_pin <- c("196408233234", tomorrow_pin, "AA6408323234", "19640823323", "1964083332349", "196408333234", "19640823-334", "19640823") test_pin_res <- c(TRUE, rep(FALSE, 7)) suppressWarnings(expect_equal(!is.na(as.pin(test_pin)), test_pin_res)) non_relevant_class <- lm(1:10~rep(1:5,2)) expect_error(as.pin(non_relevant_class)) expect_error(as.pin(c(TRUE,FALSE))) }) test_that("as.pin.pin", { suppressWarnings(expect_equal(as.pin(as.pin("test_pin")), as.pin("test_pin"))) }) test_that("as.pin.logical", { expect_is(as.pin(NA), "pin") expect_error(as.pin(TRUE)) }) test_pins <- c("18920822-2298", "18920822-2299", "19920419-1923") test_that("Recycling rules", { expect_is(data.frame(as.pin(test_pins), 1:9), "data.frame") expect_equal(nrow(data.frame(as.pin(test_pins), 1:9)), 9) expect_equal(data.frame(as.pin(test_pins), 1:9)[1:3, 1], data.frame(as.pin(test_pins), 1:9)[4:6, 1]) expect_equal(data.frame(as.pin(test_pins), 1:9)[1:3, 1], data.frame(as.pin(test_pins), 1:9)[7:9, 1]) }) semi_pins <- c("550504333A", "19280118123X", "850504111T", "850504111 ", "19280118123 ") test_that("deceased 1947 - 1967", { suppressWarnings(expect_is(as.pin(semi_pins), "pin")) expect_warning(as.pin(semi_pins[3]), "Erroneous pin") expect_warning(as.pin(semi_pins[4]), "Erroneous pin") expect_message(as.pin(semi_pins[1]), "less than 100 years old and people with birth year") expect_message(as.pin(semi_pins[2]), "Assumption: People with birth year before 1967 and character") expect_message(as.pin(semi_pins[5]), "Assumption: People with birth year before 1967 and character") }) test_that("Expect message only when YYMMDDNNNC format is used", { num_to_check <- c("202100-6255","121212-1212","19121212-1212","121212+1212", 121212121212, NA, Inf, TRUE, F, "foo", 123, 456L) expect_silent(suppressWarnings(as.pin(num_to_check))) })
context("ImportData") test_csv <- "test.csv" test_that("ImportData input", { expect_error(ImportData(), "Please provide file path of data to import.") expect_error(ImportData("xxx.rds"), "Please provide the social media type of data to import.") supported_types <- c("csv", "rds") not_supp_msg <- paste0("File format not supported. please choose from: ", paste0(supported_types, collapse = ", "), ".") expect_error(ImportData("xxx", "twitter"), not_supp_msg) expect_error(ImportData("xxx.graphml", "twitter"), not_supp_msg) expect_error(suppressWarnings(ImportData("xxx.rds", "twitter"))) if (file.exists(test_csv)) { expect_error(ImportData(test_csv, "twitter", "rds")) expect_error(capture.output(ImportData(test_csv, "xxx", "csv")), "Unknown social media type provided as datasource.") } }) test_that("ImportData output", { skip_if_not(file.exists(test_csv), message = "csv file exists") capture.output({ data <- ImportData(test_csv, "twitter", "csv") }) expect_s3_class(data, "data.frame") expect_s3_class(data, "datasource") expect_s3_class(data, "twitter") })
test_that("evaluate methods with random values", { skip_on_cran() status_pu <- sample(0:3, 10, replace = TRUE) status_pu <- ifelse(status_pu == 1, 0, status_pu) status_action <- sample(0:3, 10, replace = TRUE) status_action <- ifelse(status_action == 1, 0, status_action) bound <- expand.grid(seq_len(10), seq_len(10)) colnames(bound) <- c("id1", "id2") pu_sim <- data.frame( id = seq_len(10), monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)), status = ifelse(status_pu == 1, 0 , status_pu)) features_sim <- data.frame( id = seq_len(2), target_recovery = sample(1:10, 2, replace = TRUE), name = letters[seq_len(2)]) dist_features_sim <- data.frame( pu = rep(seq_len(10), 2), feature = c(rep(1, 10), rep(2, 10)), amount = sample(1:10, 20, replace = TRUE)) threats_sim <- data.frame( id = seq_len(1), blm_actions = sample(1:10, 1, replace = TRUE), name = letters[seq_len(1)]) dist_threats_sim <- data.frame( pu = seq_len(10), threat = rep(1, 10), amount = rep(1, 10), action_cost = sample(1:10, 10, replace = TRUE), status = ifelse(status_action == 1, 0 , status_action)) boundary_sim <- data.frame( bound, boundary = sample(1:10, nrow(bound), replace = TRUE)) blm_values = sample(0:10, 3, replace = FALSE) port <- suppressWarnings(evalBlm(pu = pu_sim, features = features_sim, dist_features = dist_features_sim, threats = threats_sim, dist_threats = dist_threats_sim, boundary = boundary_sim, values = blm_values, output_file = FALSE)) expect_s3_class(port, "Portfolio") expect_equal(length(port$data), 3) for (i in seq_along(port$data)) expect_s3_class(port$data[[i]], "Solution") expect_type(port$getBlms(), "double") expect_equal(port$getBlms(), blm_values) expect_equal(port$getNames(), paste0("Blm", blm_values)) }) test_that("evaluate solutions values", { skip_on_cran() bound <- expand.grid(seq_len(10), seq_len(10)) colnames(bound) <- c("id1", "id2") pu_sim <- data.frame( id = seq_len(10), monitoring_cost = c(0.1, 1, 2, 3, 2, 1, 2, 3, 2, 1), status = c(0, 0, 3, 2, 0, 3, 3, 0, 2, 2)) features_sim <- data.frame( id = seq_len(2), target_recovery = c(0.2, 0.5), name = letters[seq_len(2)]) dist_features_sim <- data.frame( pu = rep(seq_len(10), 2), feature = c(rep(1, 10), rep(2, 10)), amount = 1) threats_sim <- data.frame( id = seq_len(1), blm_actions = 0.5, name = letters[seq_len(1)]) dist_threats_sim <- data.frame( pu = seq_len(10), threat = rep(1, 10), amount = rep(1, 10), action_cost = c(1.5, 2.5, 2.5, 1.5, 2.5, 2.5, 1.5, 2.5, 1.5, 2.5), status = c(0, 0, 3, 0, 0, 3, 3, 2, 2, 2)) boundary_sim <- data.frame( bound, boundary = 0.5) w <- capture_warnings(port <- evalBlm(pu = pu_sim, features = features_sim, dist_features = dist_features_sim, threats = threats_sim, dist_threats = dist_threats_sim, boundary = boundary_sim, values = c(0, 4), output_file = FALSE)) s1 <- port$data[[1]]$data s2 <- port$data[[2]]$data expect_equal(s1$sol[1:20], c(0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)) expect_equal(s2$sol[1:20], c(1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)) expect_gt(s2$objval, s1$objval) expect_match(w, "The blm argument was set to 0", all = FALSE) })
context("convertToShortString") test_that("convertToShortString", { expect_equal(convertToShortString(1L), "1") expect_equal(convertToShortString(1.0), "1") expect_equal(convertToShortString(1.23), "1.23") expect_equal(convertToShortString(numeric(0)), "numeric(0)") expect_equal(convertToShortString(factor(c())), "factor(0)") expect_equal(convertToShortString(iris), "<data.frame>") expect_equal(convertToShortString(NULL), "<NULL>") expect_equal(convertToShortString(c(a=1, b=2)), "1,2") expect_equal(convertToShortString(expression(a + b + 3)), "a + b + 3") expect_equal(convertToShortString(list(a=1, 45)), "a=1, <unnamed>=45") expect_equal(convertToShortString(list(a=1, b=list(x=3))), "a=1, b=<list>") expect_equal(convertToShortString(list(a=1, b=iris)), "a=1, b=<data.frame>") expect_equal(convertToShortString(list()), "") expect_equal(convertToShortString(list(a=1)), "a=1") expect_equal(convertToShortString(list(a=1:2)), "a=1,2") expect_equal(convertToShortString(list(a=1:20)), "a=1,2,3,4,5,6,...") expect_equal(convertToShortString(list(a=1, 2, b=3)), "a=1, <unnamed>=2, b=3") expect_equal(convertToShortString(list(a=1, 2, b=data.frame())), "a=1, <unnamed>=2, b=<data.frame>") expect_equal(convertToShortString(list(a=identity, b=new.env(), c = NULL, d = expression(a + b + 3))), "a=<function>, b=<environment>, c=<NULL>, d=a + b + 3") expect_equal(convertToShortString(list(a=1, b=3.2)), "a=1, b=3.2") expect_equal(convertToShortString(list(a=1, b=3.223), num.format="%.2f"), "a=1.00, b=3.22") expect_equal(convertToShortString(list(a=1L, b=3.223), num.format="%.2f"), "a=1, b=3.22") })
backtransform.par.rLNLN <- function(this.par,m,fix.mu,fixed.mu) { if (!fix.mu) { TY <- (length(this.par)+1)/(m+2) } else { TY <- (length(this.par)+1)/2 } if (TY>1) { this.w <- this.par[1:(TY-1)] p.sums <- rep(NA,TY-1) p.sums[length(p.sums)] <- stochprof.expit(this.w[length(this.w)]) if (TY>2) { for (i in (length(p.sums)-1):1) { p.sums[i] <- stochprof.expit(this.w[i]) * p.sums[i+1] } } if (TY>2) { p.sums.shifted <- c(0,p.sums[1:(length(p.sums)-1)]) this.p <- p.sums - p.sums.shifted } else { this.p <- p.sums } } else { this.p <- NULL } if (!fix.mu) { this.mu <- this.par[TY:((m+1)*TY-1)] } else { this.mu <- fixed.mu } this.sigma <- exp(this.par[length(this.par)-(TY-1):0]) this.theta <- c(this.p,this.mu,this.sigma) return(this.theta) }
print.toufit <- function(x, ...) { fm <- x if(fm$method == 'ml'){ cat(' Maximum Likelihood', '\n') cat("$fit", '\n') print(fm$fit) cat("AIC = ", fm$aic, " ", "BIC = ", fm$bic, "\n") cat('\n', 'Null: delta = 0 (Poisson)', '\n') printCoefmat(fm$test, P.values=TRUE, has.Pvalue=TRUE) } if( fm$method %in% c('mm','gmm') ){ r <- ifelse( fm$method == 'mm', 2, 3 ) cat(' Method of Moments', ' ( r = ', r, ')', '\n') cat("$fit", '\n') print(fm$fit) cat('\n', 'Null: delta = 0 (Poisson)', '\n') printCoefmat(fm$test, P.values=TRUE, has.Pvalue=TRUE) } }
chicane <- function( bam = NULL, baits = NULL, fragments = NULL, interactions = NULL, replicate.merging.method = 'sum', distribution = 'negative-binomial', include.zeros = 'none', bait.filters = c(0, 1), target.filters = c(0, 1), distance.bins = NULL, multiple.testing.correction = c('bait-level', 'global'), adjustment.terms = NULL, remove.adjacent = FALSE, temp.directory = NULL, keep.files = FALSE, maxit = 100, epsilon = 1e-8, cores = 1, trace = FALSE, verbose = FALSE, interim.data.dir = NULL ) { if( is.null(interactions) && (is.null(bam) || is.null(baits) || is.null(fragments)) ) { stop('Must provide either interactions or bam/baits/fragments.'); } if( !is.null(interactions) && !(is.null(bam) || is.null(baits) || is.null(fragments)) ) { stop('Cannot deal with both interactions and bam/baits/fragments. Please provide one or the other.'); } if( !is.null(interactions) && !is.character(interactions) && !is.data.table(interactions) ) { stop('interactions should be either a data.table object or the path to a text file generated by prepare.data'); } if( is.null(interactions) ) { input.files <- list(bam, baits, fragments); object.is.character <- vapply( input.files, FUN = function(x) all( is.character(x) ), FUN.VALUE = FALSE ); if( !all(object.is.character) ) { stop('bam, baits, and fragments should be character strings'); } if( !all( 1 == vapply(input.files[-1], length, FUN.VALUE = 0) ) ) { stop('bam, baits, and fragments should have length 1'); } for( input.file in unlist(input.files) ) { if( !file.exists(input.file) ) { error.message <- paste('File', input.file, 'does not exist'); stop(error.message); } } } if( !is.null(interactions) && 'none' != include.zeros ) { stop('Zeros are added in the prepare.data step. Please provide bam/baits/fragments'); } replicate.merging.method <- match.arg(replicate.merging.method); multiple.testing.correction <- match.arg(multiple.testing.correction); if( is.null(interactions) ) { if( verbose ) { cat('PREPARING DATA\n'); } interaction.data <- prepare.data( bam, baits, fragments, replicate.merging.method = replicate.merging.method, include.zeros = include.zeros, remove.adjacent = remove.adjacent, temp.directory = temp.directory, keep.files = keep.files, verbose = verbose ); } else if( is.character(interactions) ) { if( !file.exists(interactions) ) { error.message <- paste('File', interactions, 'does not exist'); stop(error.message); } if( verbose ) { cat('READING DATA FROM FILE\n'); } interaction.data <- data.table::fread(interactions); } else if( is.data.table(interactions) ) { interaction.data <- interactions; rm(interactions); } if( verbose ) { cat('FITTING MODEL\n'); } chicane.results <- fit.model( interaction.data, distance.bins = distance.bins, distribution = distribution, bait.filters = bait.filters, target.filters = target.filters, adjustment.terms = adjustment.terms, verbose = verbose, cores = cores, maxit = maxit, epsilon = epsilon, trace = trace, interim.data.dir = interim.data.dir ); chicane.results <- multiple.testing.correct( chicane.results, bait.level = 'bait-level' == multiple.testing.correction ); chicane.results <- chicane.results[ order(q.value, p.value) ]; return(chicane.results); }
confint.fe.prov <- function(object, parm = "all", level = 0.95, data, Y.char, Z.char, prov.char,...) { prov.all <- unique(data[data$included==1,prov.char]) if(is.null(parm) | identical(parm,"all")) { data <- data[data$included==1, ] } else { presence.parm <- parm %in% prov.all if (max(presence.parm)==0) { stop("All provider ID(s) misspecified!", call.=F) } else if (length(parm[!presence.parm])==0) { data <- data[data[,prov.char] %in% parm[presence.parm], ] } else { warning("Provider ID(s) '",paste(parm[!presence.parm], collapse="', '"), "' misspecified with no confidence intervals!", call.=F, immediate.=T) data <- data[data[,prov.char] %in% parm[presence.parm], ] } } fe.ls <- object alpha <- 1 - level data <- data[data$included==1, ] df.prov <- fe.ls$df.prov gamma <- df.prov$gamma; names(gamma) <- rownames(df.prov) beta <- fe.ls$beta max.gamma <- norm(as.matrix(gamma[is.finite(gamma)]),"I") CL.finite <- function(df) { UL.gamma <- function(Gamma) ppoibin(Obs-1,plogis(Gamma+Z.beta))+0.5*dpoibin(Obs,plogis(Gamma+Z.beta))-alpha/2 LL.gamma <- function(Gamma) 1-ppoibin(Obs,plogis(Gamma+Z.beta))+0.5*dpoibin(Obs,plogis(Gamma+Z.beta))-alpha/2 prov <- ifelse(length(unique(df[,prov.char]))==1, unique(df[,prov.char]), stop("Number of providers involved NOT equal to one!")) Z.beta <- as.matrix(df[,Z.char])%*%beta Obs <- df.prov[prov, "Obs"]; Exp <- df.prov[prov, "Exp"] gamma.lower <- uniroot(LL.gamma, gamma[prov]+c(-5,0))$root gamma.upper <- uniroot(UL.gamma, gamma[prov]+c(0,5))$root SRR.lower <- sum(plogis(gamma.lower+Z.beta)) / Exp SRR.upper <- sum(plogis(gamma.upper+Z.beta)) / Exp return(c(gamma.lower, gamma.upper, SRR.lower, SRR.upper)) } CL.no.readm <- function(df) { prov <- ifelse(length(unique(df[,prov.char]))==1, unique(df[,prov.char]), stop("Number of providers involved NOT equal to one!")) Z.beta <- as.matrix(df[,Z.char])%*%beta max.Z.beta <- norm(Z.beta, "I") gamma.upper <- uniroot(function(x) prod(plogis(-x-Z.beta))/2-alpha, (10+max.Z.beta)*c(-1,1))$root SRR.upper <- sum(plogis(gamma.upper+Z.beta)) / df.prov[prov, "Exp"] return(c(-Inf, gamma.upper, 0, SRR.upper)) } CL.all.readm <- function(df) { prov <- ifelse(length(unique(df[,prov.char]))==1, unique(df[,prov.char]), stop("Number of providers involved NOT equal to one!")) Z.beta <- as.matrix(df[,Z.char])%*%beta max.Z.beta <- norm(Z.beta, "I") Exp <- df.prov[prov, "Exp"]; SRR <- df.prov[prov, "SRR"] gamma.lower <- uniroot(function(x) prod(plogis(x+Z.beta))/2-alpha, (10+max.Z.beta)*c(-1,1))$root SRR.lower <- sum(plogis(gamma.lower+Z.beta)) / Exp return(c(gamma.lower, Inf, SRR.lower, SRR)) } confint.finite <- sapply(by(data[(data$no.readm==0) & (data$all.readm==0),], data[(data$no.readm==0) & (data$all.readm==0),prov.char],identity), FUN=function(df) CL.finite(df)) confint.no.readm <- sapply(by(data[data$no.readm==1,], data[data$no.readm==1,prov.char],identity), FUN=function(df) CL.no.readm(df)) confint.all.readm <- sapply(by(data[data$all.readm==1,], data[data$all.readm==1,prov.char],identity), FUN=function(df) CL.all.readm(df)) confint.df <- as.data.frame(t(cbind(confint.finite, confint.no.readm, confint.all.readm))) names(confint.df) <- c("gamma.lower", "gamma.upper", "SRR.lower", "SRR.upper") return(confint.df[order(rownames(confint.df)),]) }
NULL .gtimer.guiWidgetsToolkittcltk <- function(toolkit, ms, FUN, data=NULL, one.shot=FALSE, start=TRUE) GTimer$new(toolkit, ms, FUN, data=data, one.shot=one.shot, start=start) GTimer <- setRefClass("GTimer", fields=list( "again"="logical", interval="integer", data="ANY", FUN="ANY", FUN_wrapper="ANY", ID = "ANY" ), methods=list( initialize=function(toolkit=guiToolkit(), ms, FUN=function(...) {}, data=NULL, one.shot=FALSE, start=TRUE) { f <- function() { FUN(data) if(again) { start_timer() } else { stop_timer() } } initFields(interval=as.integer(ms), again=!one.shot, data=data, FUN=FUN, FUN_wrapper=f ) ID <<- "" if(start) start_timer() callSuper() }, set_interval=function(ms) { "Set the interval. Need to stop and start active timer to implement." interval <<- as.integer(ms) }, start_timer = function() { "Start the timer" again <<- TRUE ID <<- tcl("after", interval, FUN_wrapper) }, stop_timer = function() { "stop the timer" again <<- FALSE tcl("after", "cancel", ID) } ))
getSubstrate <- function(substrate){ substratelist<-list() substratelist[[1]]<-xmlGetAttr(substrate,"id","unknow") substratelist[[2]]<-xmlGetAttr(substrate,"name","unknow") names(substratelist)<-c("id","name") return(substratelist) }
test_that("credentials are provided", { creds <- list( access_key_id = "foo", secret_access_key = "bar" ) expect_true(is_credentials_provided(creds)) }) test_that("credentials not provided", { creds <- NULL expect_false(is_credentials_provided(creds)) creds <- Creds( access_key_id = "", secret_access_key = "bar" ) expect_false(is_credentials_provided(creds)) creds <- Creds( access_key_id = "foo", secret_access_key = "" ) expect_false(is_credentials_provided(creds)) creds <- Creds( access_key_id = "", secret_access_key = "" ) expect_false(is_credentials_provided(creds)) }) test_that("credentials expired", { creds <- Creds( access_key_id = "foo", secret_access_key = "bar", expiration = 0 ) expect_false(is_credentials_provided(creds)) creds <- Creds( access_key_id = "foo", secret_access_key = "bar", expiration = Inf ) expect_true(is_credentials_provided(creds)) creds <- Creds( access_key_id = "foo", secret_access_key = "bar", expiration = NA ) expect_true(is_credentials_provided(creds)) }) f_get_credentials <- function() { cfg <- get_config() if (!is_credentials_provided(cfg$credentials$creds, window = 0)) { get_credentials(cfg$credentials) } return(cfg) } g_dont_get_credentials <- function() { cfg <- get_config() return(cfg) } credential_provider <- function() { list( access_key_id = "AKID", secret_access_key = "SECRET", session_token = "SESSION", expiration = Sys.time() + 5, provider_name = "StaticProvider" ) } service <- function(config = list()) { svc <- list( get_credentials = f_get_credentials, dont_get_credentials = g_dont_get_credentials ) svc <- set_config(svc, config) svc$.internal$config$credentials$provider <- list(credential_provider) return(svc) } test_that("credentials are cached", { creds <- list(access_key_id = "foo", secret_access_key = "bar") svc <- service(config = list(credentials = list(creds = creds))) actual <- svc$get_credentials() expect_equivalent(actual$credentials$creds$access_key_id, creds$access_key_id) expect_equivalent(actual$credentials$creds$secret_access_key, creds$secret_access_key) svc <- service() foo <- svc$get_credentials() actual <- svc$dont_get_credentials() expect_equivalent(actual$credentials$creds$access_key_id, "AKID") expect_equivalent(actual$credentials$creds$secret_access_key, "SECRET") }) test_that("credentials refresh when expired", { svc <- service() f1 <- svc$get_credentials() expiration1 <- f1$credentials$creds$expiration Sys.sleep(1) f2 <- svc$get_credentials() expiration2 <- f2$credentials$creds$expiration expect_equal(expiration1, expiration2) Sys.sleep(5) f3 <- svc$get_credentials() expiration3 <- f3$credentials$creds$expiration expect_true(expiration1 != expiration3) })
drawUniMMHPIntensity <- function(mmhp, simulation, int_title = "Intensity of MMHP", leg_location = "topright", color = 1, add = FALSE) { events <- simulation$events event_state <- simulation$zt state <- simulation$z state_time <- simulation$x lambda0 <- mmhp$lambda0 lambda1 <- mmhp$lambda1 alpha <- mmhp$alpha beta <- mmhp$beta n <- length(events) m <- length(state) ylim <- c() for (i in 1:(m - 1)) { if (state[i] == 1) { hawkes_time <- events[events >= state_time[i] & events < state_time[i + 1]] if (i == 1) hawkes_time <- hawkes_time[-1] history <- events[events < state_time[i]] hawkes_obj <- list( lambda0 = lambda1, alpha = alpha, beta = beta ) if (length(hawkes_time) > 1) { ylim <- append(ylim, hawkes_max_intensity(hawkes_obj, hawkes_time)) } } } if (!is.null(ylim)) { yupper <- max(ylim) } else { message("No events in Hawkes state.") yupper <- lambda0 + 1 } if (add == FALSE) { plot(0, 0, xlim = c(0, state_time[m]), ylim = c(0, yupper * 2), type = "n", xlab = "Time", ylab = "Intensity", main = int_title ) points(events[-1], rep(lambda0 / 2, n - 1), cex = 0.6, pch = ifelse(event_state[-1] == 1, 16, 1), col = "blue" ) points(state_time, rep(lambda0, m), cex = 0.6, pch = 4, col = "red") } for (i in 1:(m - 1)) { if (state[i] == 1) { hawkes_time <- events[events >= state_time[i] & events < state_time[i + 1]] if (i == 1) { hawkes_time <- hawkes_time[-1] } history <- events[events < state_time[i]] hawkes_obj <- list( lambda0 = lambda1, alpha = alpha, beta = beta ) drawHPIntensity( hp = hawkes_obj, start = state_time[i], end = state_time[i + 1], history = history[-1], events = hawkes_time, color = color, i, add = TRUE ) segments(x0 = state_time[i], y0 = lambda0, y1 = lambda1) } else { segments( x0 = state_time[i], x1 = state_time[i + 1], y0 = lambda0, lty = 2, col = color ) } } if (add == FALSE) { legend(leg_location, c( "Hawkes event", "Poisson event", "state change point" ), col = c("blue", "blue", "red"), pch = c(16, 1, 4), cex = 0.6 ) } else { legend(leg_location, c("True", "Estimation"), col = c("black", color), lty = c(1, 1), cex = 0.6 ) } }
single2abr <- function(x){ stopifnot(is.integer(x)) x5 <- x - x %% 5 x5[x %in% c(1:4)] <- 1 x5 }
spans <- function(startandend, start, end){ return(startandend[1] <= start & startandend[2] >= end) }
get_minimum_wage <- function() { params <- list(subject="minwage") res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('%,\\)]", "") cols <- stringi::stri_replace_all_fixed(cols, "&", "_and_") cols <- stringi::stri_replace_all_fixed(cols, "/", "_") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") cols <- stringi::stri_replace_first_regex(cols, "([[:digit:]])", "x_$1") cols <- stringi::stri_replace_all_regex(cols, "_+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out }
dyplot.PrepGR <- function(x, ...) { if (!inherits(x, "PrepGR")) { stop("Non convenient data for x argument. Must be of class \"PrepGR\"") } dyplot.default(x, ...) }
test_that("Tests that terminal nodes are correct", { x <- iris[, -1] y <- iris[, 1] context('Terminal nodes') set.seed(24750371) forest <- forestry( ntree = 1, x, y, replace = TRUE, nthread = 2, maxDepth = 5, seed = 2323 ) skip_if_not_mac() full_predictions <- predict(forest, x[c(5, 100, 104),], aggregation = 'terminalNodes')$terminalNodes expect_equal(full_predictions, matrix(c(1,5,9,12), ncol = 1)) })
x <- rnorm(1e6) y <- sample(0:1, size = length(x), replace = TRUE) system.time(AUCBoot(x, y, nboot = 1e3)) y2 <- as.logical(y) y3 <- as.factor(y) x2 <- sample(seq_along(x)) x3 <- as.factor(x2) microbenchmark::microbenchmark( order(x), order(x2), order(x3), xtfrm(x), order(x, y), order(x, y, method = "shell"), order(x, y, method = "radix"), order(x, y2), order(x, y2, method = "shell"), order(x, y2, method = "radix"), order(x, y3), order(x, y3, method = "shell"), order(x, y3, method = "radix") ) z <- runif(8) z (ind <- order(z)) ind2 <- sample(length(z), replace = TRUE) ind2 microbenchmark::microbenchmark( ind <- sample(1e6, replace = TRUE), ind2 <- runif(1e6, min = 1, max = 1e6 + 1) ) microbenchmark::microbenchmark( ind2 <- sort(ind) ) tabulate(sample(n, replace = TRUE), n) n <- 1e6 Rcpp::sourceCpp('tmp-tests/fast-sort-sample.cpp') library(dqrng) microbenchmark::microbenchmark( sort(sample(n, replace = TRUE)), tabulate(sample(n, replace = TRUE), n), sort(dqsample.int(n, replace = TRUE)), tabulate(dqsample.int(n, replace = TRUE)), sort_sample(n) ) AUCBoot <- function(pred, target, nboot = 1e4, seed = NA, digits = NULL) { y <- as.logical(target) ord <- order(pred, y) pred <- pred[ord] y <- y[ord] if (!is.na(seed)) { old <- .Random.seed on.exit( { .Random.seed <<- old } ) set.seed(seed) } repl <- boot_auc_sorted_tab(pred, y, nboot) if (nbNA <- sum(is.na(repl))) warning2("%d/%d bootstrap replicates were mono-class.", nbNA, nboot) res <- c("Mean" = mean(repl, na.rm = TRUE), stats::quantile(repl, c(0.025, 0.975), na.rm = TRUE), "Sd" = stats::sd(repl, na.rm = TRUE)) round2(res, digits) } system.time(print(AUCBoot(x, y, nboot = 1e3)))
setGeneric("bns.test", function(yuima,r=rep(1,4),type="standard",adj=TRUE) standardGeneric("bns.test")) setMethod("bns.test",signature(yuima="yuima"), function(yuima,r=rep(1,4),type="standard",adj=TRUE) bns.test(yuima@data,r,type,adj)) setMethod("bns.test",signature(yuima="yuima.data"), function(yuima,r=rep(1,4),type="standard",adj=TRUE){ bns.stat_standard <- function(yuima,r=rep(1,4)){ JV <- mpv(yuima,r=2)-mpv(yuima,r=c(1,1)) IQ <- mpv(yuima,r) return(JV/sqrt((pi^2/4+pi-5)*IQ)) } bns.stat_ratio <- function(yuima,r=rep(1,4),adj=TRUE){ bpv <- mpv(yuima,r=c(1,1)) RJ <- 1-bpv/mpv(yuima,r=2) avar <- mpv(yuima,r)/bpv^2 if(adj){ avar[avar<1] <- 1 } return(RJ/sqrt((pi^2/4+pi-5)*avar)) } bns.stat_log <- function(yuima,r=rep(1,4),adj=TRUE){ bpv <- mpv(yuima,r=c(1,1)) RJ <- log(mpv(yuima,r=2)/bpv) avar <- mpv(yuima,r)/bpv^2 if(adj){ avar[avar<1] <- 1 } return(RJ/sqrt((pi^2/4+pi-5)*avar)) } data <- get.zoo.data(yuima) d.size <- length(data) n <- integer(d.size) for(d in 1:d.size){ n[d] <- sum(!is.na(as.numeric(data[[d]]))) if(n[d]<2) { stop("length of data (w/o NA) must be more than 1") } } switch(type, "standard"="<-"(bns,bns.stat_standard(yuima,r)), "ratio"="<-"(bns,bns.stat_ratio(yuima,r,adj)), "log"="<-"(bns,bns.stat_log(yuima,r,adj))) bns <- sqrt(n)*bns result <- vector(d.size,mode="list") for(d in 1:d.size){ p <- pnorm(bns[d],lower.tail=FALSE) result[[d]] <- list(statistic=c(BNS=bns[d]),p.value=p, method="Barndorff-Nielsen and Shephard jump test", data.names=paste("x",d,sep="")) class(result[[d]]) <- "htest" } return(result) })
bivnormMH<-function(rho, rho1 = 0.9, sigma = c(1.2, 1.2), steps = 1000, type = 'ind'){ if(rho < -1 | rho > 1){ stop("rho must be between -1 and 1") } if(steps < 100) warning("You should really do more than 100 steps") target = candidate = matrix(0, ncol = 2, nrow = steps) if(length(grep('^[Rr]',type))>0){ type = 'rw' }else if(length(grep('^[Ii]',type)) > 0){ type = 'ind' }else if(length(grep('^[Bb]',type)) > 0){ type = 'block' }else if(length(grep('^[Gg]',type)) > 0){ type = 'gibbs' }else{ stop("Type must be one of rw, ind, block or gibbs") } x0 = c(0,0) x1 = c(0,0) mu = c(0,0) if(type == 'rw'){ startValue = c(2,2) sigma1 = 0.5 var1 = sigma1^2 sigma2 = 1 var2 = sigma2^2 k = 2*pi/1000 u = runif(steps) z1 = rnorm(steps,0,sigma1) z2 = rnorm(steps,0,sigma1) w = 1-rho^2 target[1,] = startValue x1 = target[1,] mu = target[1,] x0 = c(mu[1]+z1[1], mu[2]+z2[1]) candidate[2,] = x0 for(n in 2:steps){ n1 = n-1 x1 = target[n1,] x0 = candidate[n,] canDens = exp(-1/(2*var2*w)*(x0[1]^2-2*rho*x0[1]*x0[2] +x0[2]^2)) curDens = exp(-1/(2*var2*w)*(x1[1]^2-2*rho*x1[1]*x1[2] +x1[2]^2)) if(u[n] < canDens/curDens){ target[n,] = x0 }else{ target[n,] = target[n1,] } mu = target[n,] x0 = c(mu[1]+z1[n], mu[2]+z2[n]) if(n<steps) candidate[n+1,] = x0 } }else if(type == 'ind'){ if(rho1 < -1 | rho > 1) stop("rho1 must be between -1 and 1") if(any(sigma<= 0)) stop("The elements of sigma must be strictly positive non-zero") u = runif(steps) startValue = c(2.0, 1.5) x1 = startValue x0 = matrix(rnorm(2*steps, rep(0,2*steps), rep(sigma,steps)),ncol = 2) x0[,2] = rho1*x0[,1]+sqrt(1-rho1^2)*x0[,2] gDensInd = function(x, rho){ y = x[2] x = x[1] return(exp(-0.5/(1-rho^2)*(x^2 - 2*rho*x*y + y^2))) } qDens = function(x, rho, rho1, sigma){ zy = x[2]/sigma[2] zx = x[1]/sigma[1] return(exp(-0.5/(1-rho1^2)*(zx^2 - 2*rho*zx*zy + zy^2))) } for(n in 1:steps){ target[n,] = x1 candidate[n,] = x0[n,] cand = gDensInd(x0[n,], rho) cur = gDensInd(x1, rho) qcand = qDens(x0[n,], rho, rho1, sigma) qcur = qDens(x1, rho, rho1, sigma) ratio = (cand/cur)*(qcur/qcand) if(u[n] < ratio) x1 = x0[n,] } }else if(type=='block'){ twosteps = 2*steps target = candidate = matrix(0, ncol = 2, nrow = twosteps) u = runif(twosteps) startValue = c(2, 1.5) x1 = startValue sx = sqrt(1-rho^2) vx = sx^2 sigma1 = 0.75 var1 = sigma1^2 gDensBlock = function(x, mx, vx){ return(exp(-0.5*(x-mx)^2/vx)) } for(n in 1:steps){ mx = rho*x1[2] x0 = c(rnorm(1,mx,sigma1), x1[2]) n1 = 2*n-1 target[n1,] = x1 candidate[n1,] = x0 cand = gDensBlock(x0[1], mx, vx) cur = gDensBlock(x1[1], mx, vx) qcand = gDensBlock(x0[1], mx, var1) qcur = gDensBlock(x1[1], mx, var1) ratio = (cand/cur)*(qcur/qcand) if(u[n1] < ratio) x1 = x0 my = rho*x1[1] x0 = c(x1[1], rnorm(1, my, sigma1)) n2 = 2*n target[n2,] = x1 candidate[n2,] = x0 cand = gDensBlock(x0[2], my, vx) cur = gDensBlock(x1[2], my, vx) qcand = gDensBlock(x0[2], my, var1) qcur = gDensBlock(x1[2], my, var1) ratio = (cand/cur)*(qcur/qcand) if(u[n2] < ratio) x1 = x0 } }else if(type == 'gibbs'){ twosteps = 2*steps target = candidate = matrix(0, ncol = 2, nrow = twosteps) u = runif(twosteps) startValue = c(2, 1.5) x1 = startValue sx = sqrt(1-rho^2) mx = rho*x1[1] vx = sx^2 sigma1 = sx var1 = sigma1^2 gDensGibbs = function(x, mx, vx){ return(exp(-0.5*(x-mx)^2/vx)) } for(n in 1:steps){ mx = rho*x1[1] x0 = c(rnorm(1, mx, sigma1), x1[2]) n1 = 2*n-1 target[n1, ] = x1 candidate[n1,] = x0 cand = gDensGibbs(x0[1], mx, vx) cur = gDensGibbs(x1[1], mx ,vx) qcand = gDensGibbs(x0[1], mx, var1) qcur = gDensGibbs(x1[1], mx ,var1) ratio = (cand/cur)*(qcur/qcand) if(u[n1] < ratio) x1 = x0 mx = rho * x1[1] x0 = c(x1[1], rnorm(1, mx, sigma1)) n2 = 2*n target[n2,] = x1 candidate[n2,] = x0 cand = gDensGibbs(x0[2], mx, vx) cur = gDensGibbs(x1[2], mx, vx) qcand = gDensGibbs(x0[2], mx, var1) qcur = gDensGibbs(x1[2], mx, var1) ratio = (cand/cur)*(qcur/qcand) if(u[n2] < ratio) x1 = x0 } } target = data.frame(x = target[,1], y = target[,2]) plot(y~x,data = target,type = "l") invisible(list(targetSample = target)) }
test_that("Individual types are supported", { result <- validate_wkt(c("GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,7 10))", "POINT (30 10)", "LINESTRING (30 10, 10 30, 40 40)", "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))", "POLYGON ((35 10, 45 45, 15 40, 10 20, 35 10),(20 30, 35 35, 30 20, 20 30))", "MULTIPOINT ((10 40), (40 30), (20 20), (30 10))", "MULTIPOINT (10 40, 40 30, 20 20, 30 10)", "MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))", "MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))" )) expect_length(result, 2) expect_type(result, "list") expect_true(is.data.frame(result)) expect_equal(sum(result$is_valid), 6) })
for (i in 3) 3
get_all_channel_video_stats <- function(channel_id = NULL, mine = FALSE, ...) { if (!is.character(channel_id) & !identical(tolower(mine), "true")) { stop("Must specify a channel ID or specify mine = 'true'.") } a <- list_channel_resources(filter = c(channel_id = channel_id), part = "contentDetails") playlist_id <- a$items[[1]]$contentDetails$relatedPlaylists$uploads vids <- get_playlist_items(filter = c(playlist_id = playlist_id), max_results = 100) vid_ids <- as.vector(vids$contentDetails.videoId) res <- lapply(vid_ids, function(x) get_stats(x)) details <- lapply(vid_ids, get_video_details) res_df <- do.call(what = bind_rows, lapply(res, data.frame)) details_tot <- data.frame(id = NA, title = NA, publication_date = NA, description = NA, channel_id = NA, channel_title = NA) for (p in 1:length(details)) { id <- details[[p]]$items[[1]]$id title <- details[[p]]$items[[1]]$snippet$title publication_date <- details[[p]]$items[[1]]$snippet$publishedAt description <- details[[p]]$items[[1]]$snippet$description channel_id <- details[[p]]$items[[1]]$snippet$channelId channel_title <- details[[p]]$items[[1]]$snippet$channelTitle detail <- data.frame(id = id, title = title, publication_date = publication_date, description = description, channel_id = channel_id, channel_title = channel_title) details_tot <- rbind(detail, details_tot) } res_df$url <- paste0("https://www.youtube.com/watch?v=", res_df$id) res_df <- merge(details_tot, res_df, by = "id") res_df }
"nCm"<- function(n, m, tol = 9.9999999999999984e-009) { len <- max(length(n), length(m)) out <- numeric(len) n <- rep(n, length = len) m <- rep(m, length = len) mint <- (trunc(m) == m) out[!mint] <- NA out[m == 0] <- 1 whichm <- (mint & m > 0) whichn <- (n < 0) which <- (whichm & whichn) if(any(which)) { nnow <- n[which] mnow <- m[which] out[which] <- ((-1)^mnow) * Recall(mnow - nnow - 1, mnow) } whichn <- (n > 0) nint <- (trunc(n) == n) which <- (whichm & whichn & !nint & n < m) if(any(which)) { nnow <- n[which] mnow <- m[which] foo <- function(j, nn, mm) { n <- nn[j] m <- mm[j] iseq <- seq(n - m + 1, n) negs <- sum(iseq < 0) ((-1)^negs) * exp(sum(log(abs(iseq))) - lgamma(m + 1)) } out[which] <- unlist(lapply(seq(along = nnow), foo, nn = nnow, mm = mnow)) } which <- (whichm & whichn & n >= m) nnow <- n[which] mnow <- m[which] out[which] <- exp(lgamma(nnow + 1) - lgamma(mnow + 1) - lgamma(nnow - mnow + 1)) nna <- !is.na(out) outnow <- out[nna] rout <- round(outnow) smalldif <- abs(rout - outnow) < tol outnow[smalldif] <- rout[smalldif] out[nna] <- outnow out }
IyenGreenMLE <- function(t, q, N, type = 1, alpha = 0.05){ para0 <- c(1, 1) res1 <- optim(par = para0, fn = IyenGreenLoglikT, method = "BFGS", control = list(trace = TRUE, REPORT = 1, fnscale = -1), t = t, q = q, N = N, type = type) theta <- res1$par[1] beta <- res1$par[2] p0 <- 2 * pnorm(-abs(t)) res <- list("theta" = theta, "beta" = beta, "p" = p0) return(res) }
"xf2"
maxstat.setupSNP<-function(x, y, colSNPs=attr(x,"colSNPs"), ...) { if(missing(y)) stop("a case-control variable must be indicated in the second argument") y<-deparse(substitute(y)) if (!exists(y)) y<-x[,y] else y<-get(y) if(length(table(y))>2) stop("case-control variable must have only 2 levels") ans<-sapply(x[,colSNPs, drop=FALSE], function(o) maxstat(y, o, ...)) class(ans)<-"maxstat" ans }
data("cdnow") l.illegal.start.params.model <- list(c(alpha=0, beta=1, r=1, s=1), c(alpha=-1, beta=1, r=1, s=1), c(alpha=1, beta=1, r=0, s=1)) fct.testthat.inputchecks.clvfittedtransactions.nocov(name.method = "PNBD", method=pnbd, start.params.model=c(r=1.234, alpha=0.678, s=2.345, beta=0.1111), l.illegal.start.params.model = l.illegal.start.params.model, has.cor = TRUE, data.cdnow = cdnow)
ynegbinompower<-function(nsize=200,r0=1.0,r1=0.5,shape0=1,shape1=shape0,pi1=0.5,alpha=0.05,twosided=1,fixedfu=1,type=1,u=c(0.5,0.5,1),ut=c(0.5,1.0,1.5),tfix=ut[length(ut)]+0.5,maxfu=10.0,tchange=c(0,0.5,1),ratec1=c(0.15,0.15,0.15),ratec0=ratec1,eps=1.0e-03){ pi0<-1-pi1 eff2<-(log(r1/r0))^2 alpha1<-alpha if (twosided==1)alpha1<-alpha/2 qalpha<--qnorm(alpha1) tilder0<-tilder1<-rep(0,3) tilder0[1]<-tilder1[1]<-r0 tilder0[2]<-r0;tilder1[2]<-r1 tilder0[3]<-tilder1[3]<-pi0*r0+pi1*r1 exposure<-SDexp<-rep(0,3) tildeXPWR<-XPWR<-tildemineffsize<-mineffsize<-rep(0,3) if (type==1){ exposure<-fixedfu SDexp<-0 if (shape0==0){a<-pi0*r0*exposure[1]} else {a<-shape0*r0*exposure[1];a<-a/(1+a);a<-pi0/shape0*a} if (shape1==0){b<-pi1*r1*exposure[2]} else {b<-shape1*r1*exposure[2];b<-b/(1+b);b<-pi1/shape1*b} mta<-a mtb<-b V1<-1/a+1/b tildeV1<-1/mta+1/mtb for (j in 1:3){ if (shape0==0){anull<-pi0*tilder0[j]*exposure[1]} else {anull<-shape0*tilder0[j]*exposure[1];anull<-anull/(1+anull);anull<-pi0/shape0*anull} if (shape1==0){bnull<-pi1*tilder1[j]*exposure[2]} else {bnull<-shape1*tilder1[j]*exposure[2];bnull<-bnull/(1+bnull);bnull<-pi1/shape1*bnull} mtanull=anull mtbnull=bnull V0<-1/anull+1/bnull tildeV0<-1/mtanull+1/mtbnull tildeXPWR[j]<-pnorm(-qalpha*sqrt(tildeV0/tildeV1)+sqrt(nsize)*sqrt(eff2/tildeV1)) XPWR[j]<-pnorm(-qalpha*sqrt(V0/V1)+sqrt(nsize)*sqrt(eff2/V1)) tildemineffsize[j]<-1-exp(-qalpha*sqrt(tildeV0/nsize)) mineffsize[j]<-1-exp(-qalpha*sqrt(V0/nsize)) } } else { abc0=negint2(ux=r0*shape0,fixedfu=fixedfu,type=type,u=u,ut=ut,tfix=tfix,maxfu=maxfu,tchange=tchange,ratec=ratec0,eps=eps) abc1=negint2(ux=r1*shape1,fixedfu=fixedfu,type=type,u=u,ut=ut,tfix=tfix,maxfu=maxfu,tchange=tchange,ratec=ratec1,eps=eps) exposure[1]=abc0$tt;SDexp[1]=sqrt(abc0$vt) exposure[2]=abc1$tt;SDexp[2]=sqrt(abc1$vt) exposure[3]=pi0*exposure[1]+pi1*exposure[2] SDexp[3]=pi0*SDexp[1]+pi1*SDexp[2] if (shape0==0) {a<-pi0*r0*exposure[1];mta=a} else {a<-shape0*r0*exposure[1];a<-a/(1+a);a<-pi0/shape0*a;mta<-pi0/shape0*abc0$mt} if (shape1==0) {b<-pi1*r1*exposure[2];mtb=b} else {b<-shape1*r1*exposure[2];b<-b/(1+b);b<-pi1/shape1*b;mtb<-pi1/shape1*abc1$mt} V1<-1/a+1/b tildeV1<-1/mta+1/mtb for (j in 1:3){ def0=negint2(ux=tilder0[j]*shape0,fixedfu=fixedfu,type=type,u=u,ut=ut,tfix=tfix,maxfu=maxfu,tchange=tchange,ratec=ratec0,eps=eps) def1=negint2(ux=tilder1[j]*shape1,fixedfu=fixedfu,type=type,u=u,ut=ut,tfix=tfix,maxfu=maxfu,tchange=tchange,ratec=ratec1,eps=eps) if (shape0==0){anull<-pi0*tilder0[j]*exposure[1];mtanull=anull} else {anull<-shape0*tilder0[j]*exposure[1];anull<-anull/(1+anull);anull<-pi0/shape0*anull;mtanull<-pi0/shape0*def0$mt} if (shape1==0){bnull<-pi1*tilder1[j]*exposure[2];mtbnull=bnull} else {bnull<-shape1*tilder1[j]*exposure[2];bnull<-bnull/(1+bnull);bnull<-pi1/shape1*bnull;mtbnull<-pi1/shape1*def1$mt} V0<-1/anull+1/bnull tildeV0<-1/mtanull+1/mtbnull tildeXPWR[j]<-pnorm(-qalpha*sqrt(tildeV0/tildeV1)+sqrt(nsize)*sqrt(eff2/tildeV1)) XPWR[j]<-pnorm(-qalpha*sqrt(V0/V1)+sqrt(nsize)*sqrt(eff2/V1)) tildemineffsize[j]<-1-exp(-qalpha*sqrt(tildeV0/nsize)) mineffsize[j]<-1-exp(-qalpha*sqrt(V0/nsize)) } } list(tildeXPWR=tildeXPWR*100,XPWR=XPWR*100,tildemineffsize=tildemineffsize,mineffsize=mineffsize,Exposure=exposure,SDexp=SDexp) }
context("Checking select_documents") test_that("select_documents ...",{ })
MeanWilliamsDesign.Equality <- function(alpha,beta,sigma,k,margin){ n<-(qnorm(1-alpha/2)+qnorm(1-beta))^2*sigma^2/(k*margin^2) n }
write.Structure <- function(object, ploidy, file = "", samples = Samples(object), loci = Loci(object), writepopinfo = TRUE, extracols = NULL, missingout = -9){ if(!all(!is.na(Ploidies(object, samples = samples, loci = loci)))) stop("Ploidies needed.") if(missing(ploidy)) stop("Ploidy of file must be specified seperately from ploidies of dataset.") structdata <- data.frame(rowlabel=c("missing",rep(samples, each = ploidy))) thiscol <- 1 if(writepopinfo){ if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed, or set writepopinfo to FALSE") thiscol <- thiscol+1 structdata[[thiscol]] <- c(0,rep(PopInfo(object)[samples], each = ploidy)) names(structdata)[thiscol] <- "PopInfo" } for(excol in dimnames(extracols)[[2]]){ thiscol <- thiscol+1 structdata[[thiscol]] <- c(0,rep(extracols[samples, excol], each = ploidy)) names(structdata)[thiscol] <- excol } for(L in loci){ thiscol <- thiscol + 1 alleles <- missingout for(s in samples){ if(isMissing(object,s,L)){ thesealleles <- rep(missingout, ploidy) } else { if(Ploidies(object, s, L) < ploidy){ if(length(Genotype(object,s,L)) == Ploidies(object, s, L)){ thesealleles <- c(Genotype(object, s, L), rep(missingout, times = ploidy - Ploidies(object, s, L))) } else { if(length(Genotype(object, s, L)) < Ploidies(object, s, L)){ thesealleles <- c(Genotype(object, s, L), rep(Genotype(object, s, L)[1], times = Ploidies(object, s, L) - length(Genotype(object, s, L))), rep(missingout, times = ploidy - Ploidies(object, s, L))) } else { thesealleles <- c(sample(Genotype(object, s, L), Ploidies(object, s, L),replace = FALSE), rep(missingout, times = ploidy - Ploidies(object, s, L))) cat(paste("Randomly removed alleles:", s, L), sep = "\n") } } } else { if(length(Genotype(object, s, L)) == ploidy){ thesealleles <- Genotype(object, s, L) } else { if(length(Genotype(object, s, L)) < ploidy){ thesealleles <- c(Genotype(object, s, L), rep(Genotype(object, s, L)[1], times = ploidy - length(Genotype(object, s, L)))) } else { thesealleles <- sample(Genotype(object, s, L), ploidy, replace = FALSE) cat(paste("Randomly removed alleles:", s, L), sep = "\n") } } } } alleles <- c(alleles, thesealleles) } structdata[[thiscol]] <- alleles names(structdata)[thiscol] <- L } if(writepopinfo){ colstoskip <- 2 } else { colstoskip <- 1 } if(!is.null(extracols)){ colstoskip <- colstoskip + dim(extracols)[2] } cat(c(paste(c(rep("", colstoskip), names(structdata)[-(1:colstoskip)]), collapse = "\t"), paste(c(rep("", colstoskip), rep(as.character(missingout), ncol(structdata) - colstoskip)), collapse = "\t")), sep = "\n", file = file) write.table(structdata[-1,], file = file, sep = "\t", row.names = FALSE, quote = FALSE, col.names = FALSE, append = TRUE) } write.GenoDive<-function(object, digits = 2, file = "", samples = Samples(object), loci = Loci(object)){ if(!all(!is.na(Ploidies(object, samples = samples, loci = loci)))) stop("Ploidies needed. Use estimatePloidy to get max number of alleles.") if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed.") if(!all(!is.na(Usatnts(object)[loci]))) stop("Usatnts needed.") numsam <- length(samples) numloc <- length(loci) numpop <- length(unique(PopInfo(object)[samples])) maxploidy <- max(Ploidies(object, samples, loci)) lines <- c(Description(object), paste(numsam, numpop, numloc, maxploidy, digits, sep = "\t")) lines[3:(numpop+2)] <- PopNames(object)[sort(unique(PopInfo(object)[samples]))] lines[numpop+3]<-paste("Population\tIndividual", paste(loci, sep = "", collapse = "\t"), sep = "\t") for(s in 1:numsam){ lines[numpop+3+s] <- paste(PopInfo(object)[samples[s]], samples[s], sep = "\t") } for(L in loci){ repmiss<-function(value){ if(value[1] == Missing(object)){ 0 } else {value} } convertedalleles <- mapply(repmiss, Genotypes(object, samples, L), SIMPLIFY = FALSE) divallele <- function(value) floor(value/Usatnts(object)[L]) convertedalleles <- mapply(divallele, convertedalleles, SIMPLIFY = FALSE) suballele <- function(value){ if(value[1] != 0){ value-(10^(digits-1)) } else{ 0 } } while(max(mapply(max, convertedalleles)) >= 10 ^ digits){ convertedalleles <- mapply(suballele, convertedalleles, SIMPLIFY = FALSE) } for(s in 1:numsam){ charalleles <- as.character(convertedalleles[[s]]) allelestring <- "" for(ca in charalleles){ allele <- ca while(nchar(allele) < digits){ allele <- paste("0", allele, sep = "") } allelestring <- paste(allelestring, allele, sep="") } lines[numpop+3+s] <- paste(lines[numpop+3+s], allelestring, sep = "\t") } } cat(lines, file = file, sep = "\n") } write.SPAGeDi<-function(object, samples = Samples(object), loci = Loci(object), allelesep = "/", digits = 2, file = "", spatcoord = data.frame(X = rep(1, length(samples)), Y = rep(1, length(samples)), row.names = samples)){ if(!all(!is.na(Ploidies(object, samples, loci)))) stop("Ploidies needed.") if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed.") if(!all(!is.na(Usatnts(object)[loci]))) stop("Usatnts needed.") if(identical(row.names(spatcoord), as.character(1:dim(spatcoord)[1]))) row.names(spatcoord) < -samples gentable <- data.frame(Ind = samples, Cat = PopNames(object)[PopInfo(object)[samples]], spatcoord[samples,]) for(L in loci){ genotypesL <- Genotypes(object, samples, L) genotypesL[isMissing(object, samples, L)] <- 0 divallele <- function(value) floor(value/Usatnts(object)[L]) genotypesL <- mapply(divallele, genotypesL, SIMPLIFY = FALSE) suballele <- function(value){ if(value[1] != 0){ value - (10 ^ (digits - 1)) } else { 0 } } while(max(mapply(max, genotypesL)) >= 10 ^ digits){ genotypesL <- mapply(suballele, genotypesL, SIMPLIFY = FALSE) } names(genotypesL) <- samples zerostoadd <- Ploidies(object, samples, L) - mapply(length, genotypesL) names(zerostoadd) <- samples for(s in samples){ if(length(genotypesL[[s]]) == 1){ genotypesL[[s]] <- rep(genotypesL[[s]], Ploidies(object, s, L)) } else { if(zerostoadd[s] < 0){ genotypesL[[s]] <- sample(genotypesL[[s]], Ploidies(object, s, L), replace=FALSE) cat("Alleles randomly removed to get to ploidy:", L, s, "\n") } else { genotypesL[[s]] <- c(genotypesL[[s]], rep(0, zerostoadd[s])) } } if(allelesep == ""){ genotypesL[[s]] <- as.character(genotypesL[[s]]) for(a in 1:length(genotypesL[[s]])){ while(nchar(genotypesL[[s]][a]) < digits){ genotypesL[[s]][a] <- paste(0, genotypesL[[s]][a], sep = "") } } } } genvect <- mapply(paste, genotypesL, collapse = allelesep) gentable <- data.frame(gentable, genvect) names(gentable)[dim(gentable)[2]] <- L } SpagTemp <- tempfile() write.table(gentable, file = SpagTemp, sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE) cat(paste(length(samples), length(unique(PopInfo(object)[samples])), dim(spatcoord)[2], length(loci), digits, max(Ploidies(object,samples,loci)), sep="\t"), "0", readLines(SpagTemp), "END", sep = "\n", file = file) } write.GeneMapper <- function(object, file = "", samples = Samples(object), loci = Loci(object)){ if(!all(!is.na(Ploidies(object, samples, loci)))) stop("Ploidies needed to determine number of columns.") numallelecol <- max(Ploidies(object, samples, loci)) numrows <- length(samples) * length(loci) gentable <- data.frame(Sample.Name = rep(samples, times = length(loci)), Marker = rep(loci, each = length(samples))) alcollabels <- paste("Allele.", 1:numallelecol, sep = "") for(ac in 1:numallelecol){ gentable[[ac + 2]] <- rep("", times = numrows) names(gentable)[ac + 2] <- alcollabels[ac] } currentrow <- 1 for(L in loci){ for(s in samples){ thesealleles <- as.character(Genotype(object, s, L)) while((length(thesealleles) + 2) > dim(gentable)[2]) gentable <- data.frame(gentable, rep("", numrows), stringsAsFactors = FALSE) gentable[currentrow, 3:(length(thesealleles) + 2)] <- thesealleles currentrow <- currentrow + 1 } } write.table(gentable, file = file, sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE) } write.Tetrasat <- function(object, samples = Samples(object), loci = Loci(object), file = ""){ if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed.") if(!all(!is.na(Usatnts(object)[loci]))) stop("Usatnts needed.") if(!all(Ploidies(object, samples, loci) == 4)) stop("Ploidy must be 4.") allpops <- unique(PopInfo(object)[samples]) lines <- c(Description(object)[1], loci) datastart <- length(lines) + 1 sampleindex <- integer(0) currentline <- datastart for(pop in allpops){ lines[currentline] <- "Pop" currentline <- currentline + 1 thesesamples <- samples[PopInfo(object)[samples] == pop] indextoadd <- currentline:(currentline + length(thesesamples) - 1) names(indextoadd) <- thesesamples sampleindex <- c(sampleindex, indextoadd) for(s in thesesamples){ samname <- s while(nchar(samname) < 20){ samname <- paste(samname, " ", sep = "") } lines[currentline] <- samname currentline <- currentline + 1 } } for(L in loci){ divallele <- function(value){ if(value[1] == Missing(object)){ value } else { floor(value/Usatnts(object)[L]) } } convertedalleles <- mapply(divallele, Genotypes(object, samples, L), SIMPLIFY = FALSE) names(convertedalleles) <- samples suballele <- function(value){ if(value[1] == Missing(object)){ value } else { value - 10 } } while(max(mapply(max,convertedalleles)) >= 100){ convertedalleles <- mapply(suballele, convertedalleles, SIMPLIFY = FALSE) } for(s in samples){ if(convertedalleles[[s]][1] == Missing(object)){ charalleles <- " " } else { charalleles <- as.character(convertedalleles[[s]]) if(length(charalleles) == 1){ charalleles <- rep(charalleles, 4) } if(length(charalleles) > 4){ charalleles <- sample(charalleles, 4, replace = FALSE) cat(c("Alleles randomly removed:", s, L, "\n"), sep = " ") } } allelestring <- "" for(ca in charalleles){ allele <- ca while(nchar(allele) < 2){ allele <- paste("0", allele, sep="") } allelestring <- paste(allelestring, allele, sep = "") } while(nchar(allelestring) < 9){ allelestring <- paste(allelestring, " ", sep = "") } lines[sampleindex[s]] <- paste(lines[sampleindex[s]], allelestring, sep = "") } } cat(lines, sep = "\n", file = file) } write.ATetra<-function(object, samples = Samples(object), loci = Loci(object), file = ""){ if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed.") if(!all(Ploidies(object, samples, loci) == 4)) stop("Ploidy must be 4.") lines <- paste("TIT", Description(object)[1], sep = ",") currentline <- 2 locnums <- 1:length(loci) names(locnums) <- loci samnums <- 1:length(samples) names(samnums) <- samples popnames <- PopNames(object)[sort(unique(PopInfo(object)[samples]))] popnums <- sort(unique(PopInfo(object)[samples])) names(popnums) <- popnames for(L in loci){ lines[currentline] <- paste("LOC", locnums[L], L, sep = ",") currentline <- currentline + 1 for(p in popnames){ lines[currentline] <- paste("POP", locnums[L], popnums[p], p, sep = ",") currentline <- currentline + 1 thesesamples <- Samples(object, populations = p) thesesamples <- thesesamples[thesesamples %in% samples] for(s in thesesamples){ lines[currentline] <- paste("IND", locnums[L], popnums[p], samnums[s], s, sep = ",") thesealleles<-Genotype(object, s, L) if(isMissing(object, s, L)){ thesealleles <- "" cat("Missing data:", s, L, "\n", sep = " ") } if(length(thesealleles) > 4){ thesealleles <- sample(thesealleles, 4, replace = FALSE) cat("More than 4 alleles:", s, L, "\n", sep = " ") } for(a in 1:4){ if(length(thesealleles) >= a){ lines[currentline] <- paste(lines[currentline], thesealleles[a], sep = ",") } else { lines[currentline] <- paste(lines[currentline], "", sep = ",") } } currentline <- currentline + 1 } } } lines[currentline] <- "END" cat(lines, sep = "\n", file = file) } write.POPDIST <- function(object, samples = Samples(object), loci = Loci(object), file = ""){ if(!all(!is.na(PopInfo(object)[samples]))) stop("PopInfo needed") if(!all(!is.na(Ploidies(object,samples,loci)))) stop("Ploidies needed") Lines <- c(Description(object)[1], loci) samindex <- integer(0) for(p in unique(PopInfo(object)[samples])){ Lines <- c(Lines, "Pop") for(s in samples[samples %in% Samples(object, populations=p)]){ Lines <- c(Lines, paste(PopNames(object)[p], "\t,", sep = "")) samindex <- c(samindex, length(Lines)) names(samindex)[length(samindex)] <- s } if(length(unique( Ploidies(object,samples[samples %in% Samples(object, populations = p)], loci))) > 1) warning(paste("Mixed ploidy in population", p, "; POPDIST may reject file.")) } for(L in loci){ thesegen <- Genotypes(object, samples, L) if(max(mapply(max, thesegen)) > 99){ if(!is.na(Usatnts(object)[L]) && Usatnts(object)[L] > 1){ thesegen <- array(mapply(function(value){ if(value[1] == Missing(object)){ value } else { floor(value/Usatnts(object)[L]) } }, thesegen, SIMPLIFY = FALSE), dim = c(length(samples), 1), dimnames=list(samples, L)) } while(max(mapply(max, thesegen)) > 99){ thesegen <- array(mapply(function(value){ if(value[1] == Missing(object)){ value } else { value - 10 } }, thesegen, SIMPLIFY = FALSE), dim = c(length(samples), 1), dimnames = list(samples, L)) } } for(s in samples){ if(thesegen[[s,L]][1] == Missing(object)){ alleles <- "00" } else { alleles <- as.character(thesegen[[s, L]]) } if(length(alleles) > Ploidies(object, s, L)){ alleles <- sample(alleles, Ploidies(object, s, L)) warning(paste("Alleles randomly removed:", s, L)) } Lines[samindex[s]] <- paste(Lines[samindex[s]], " ", sep="") for(a in 1:Ploidies(object, s, L)){ if(a > length(alleles)){ Lines[samindex[s]] <- paste(Lines[samindex[s]], "00", sep = "") } else { if(nchar(alleles[a]) == 1) alleles[a] <- paste("0", alleles[a], sep="") Lines[samindex[s]] <- paste(Lines[samindex[s]], alleles[a], sep = "") } } } } cat(Lines, file = file, sep = "\n") } gendata.to.genind <- function(object, samples = Samples(object), loci = Loci(object)){ if(!is(object, "gendata")) stop("genambig or genbinary object needed.") object <- object[samples, loci] if(!"ploidysample" %in% class(object@Ploidies)){ object <- reformatPloidies(object, output = "sample") } ploidy <- Ploidies(object) if(any(is.na(ploidy))) stop("Please specify ploidy.") if(is(object, "genambig")) object <- genambig.to.genbinary(object) tab <- Genotypes(object) tab[tab == Missing(object)] <- NA dimnames(tab)[[2]] <- gsub(".", "-", dimnames(tab)[[2]], fixed = TRUE) x <- adegenet::genind(tab, pop = PopNames(object)[PopInfo(object)[samples]], ploidy = ploidy, type = "PA") return(x) }
publish.subgroupAnalysis <- function(object,...){ publish(summary(object,...),...) }
library(ComplexHeatmap) gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, side = "left", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "left", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, side = "left", facing = "inside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "left", facing = "inside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, side = "right", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "right", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, side = "right", facing = "inside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "right", facing = "inside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, side = "top", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "top", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90, side = "top", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "top", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45, side = "top", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "top", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, side = "top", facing = "inside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "top", facing = "inside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, side = "bottom", facing = "outside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "bottom", facing = "outside"') grid.draw(gb) popViewport() gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, side = "bottom", facing = "inside") grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) grid.rect() grid.text('side = "bottom", facing = "inside"') grid.draw(gb) popViewport() grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside") grid.rect() grid.text('side = "left", facing = "outside"') grid.draw(gb) popViewport() grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) gb = annotation_axis_grob(side = "left", direction = "reverse") grid.rect() grid.text('side = "left", direction = "reverse') grid.draw(gb) popViewport() grid.newpage() pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) gb = annotation_axis_grob(side = "bottom", direction = "reverse") grid.rect() grid.text('side = "bottom", direction = "reverse"') grid.draw(gb) popViewport()
step_model<-function(HourTemp, df=data.frame( lower=c(-1000,1.4,2.4,9.1,12.4,15.9,18), upper=c(1.4,2.4,9.1,12.4,15.9,18,1000), weight=c(0,0.5,1,0.5,0,-0.5,-1)),summ=TRUE) {lower<-df$lower;upper<-df$upper;weight<-df$weight if (summ==TRUE) return(cumsum(sapply(HourTemp,function(x) weight[which(x>lower&x<=upper)]))) else return(sapply(HourTemp,function(x) weight[which(x>lower&x<=upper)])) } Utah_Model<-function(HourTemp,summ=TRUE) return(step_model(HourTemp,df=data.frame(lower=c(-1000,1.4,2.4,9.1,12.4,15.9,18),upper=c(1.4,2.4,9.1,12.4,15.9,18,1000),weight=c(0,0.5,1,0.5,0,-0.5,-1)),summ=summ)) Chilling_Hours<-function(HourTemp,summ=TRUE) { CH_range<-which(HourTemp<=7.2&HourTemp>=0) CH_weights<-rep(0,length(HourTemp)) CH_weights[CH_range]<-1 if(summ==TRUE) return(cumsum(CH_weights)) else return(CH_weights) } Dynamic_Model <- function(HourTemp, summ = TRUE, E0 = 4153.5, E1 = 12888.8, A0 = 139500, A1 = 2567000000000000000, slope = 1.6, Tf = 277) { if(missing(HourTemp)) { stop("HourTemp must be present! Aborting.") } TK <- HourTemp + 273 aa <- A0/A1 ee <- E1-E0 sr <- exp(slope*Tf*(TK-Tf)/TK) xi <- sr/(1+sr) xs <- aa*exp(ee/TK) eak1 <- exp(-A1*exp(-E1/TK)) x=0 for (l in c(2:length(HourTemp))) { S <- x[l-1] if(x[l-1] >= 1) { S <- S*(1-xi[l-2]) } x[l] <- xs[l-1]-(xs[l-1]-S)*eak1[l-1] } delta <- rep(0,length(HourTemp)) ii <- which(x >= 1) delta[ii] <- x[ii]*xi[ii-1] if (summ) return(cumsum(delta)) return(delta) } xsfct <- function(A0, A1, E0, E1, temp) { return ( A0/A1 * exp(-(E0 - E1)/temp) ) } k1fct <- function(A1, E1, temp) { return( A1*exp(-E1/temp) ) } DynModel_driver <- function(temp, times, A0 = 139500, A1 = 2567000000000000000, E0 = 4153.5, E1 = 12888.8, slope = 1.6, Tf = 4, deg_celsius=TRUE) { if(missing(times)) { times <- c(1:length(temp)) } stopifnot(length(temp) == length(times)) if(deg_celsius) { temp <- temp + 273 Tf <- Tf + 273 } xs <- A0/A1 * exp(-(E0 - E1)/temp) ek1 <- exp(-A1*exp(-E1/temp)*c(diff(x=times, lag=1), 0)) x <- 0. y <- 0. for(i in c(1:(length(times)-1))) { x[i+1] <- xs[i] - (xs[i] - x[i])*ek1[i] y[i+1] <- 0 if(x[i+1] >= 1) { xtmp <- slope*Tf*(temp[i]-Tf)/temp[i] delta <- x[i+1] if(xtmp < 17) { sr <- exp(xtmp) delta <- delta*sr/(1+sr) } y[i+1] <- delta x[i+1] <- x[i+1] - delta } } return(invisible(list(x=x, y=cumsum(y), delta=y, xs=xs))) } GDH<-function(HourTemp,summ=TRUE) {Stress<-1 Tb<-4 Tu<-25 Tc<-36 GDH_weight<-rep(0,length(HourTemp)) GDH_weight[which(HourTemp>=Tb&HourTemp<=Tu)]<-Stress*(Tu-Tb)/2* (1+cos(pi+pi*(HourTemp[which(HourTemp>=Tb&HourTemp<=Tu)]-Tb)/(Tu-Tb))) GDH_weight[which(HourTemp>Tu&HourTemp<=Tc)]<-Stress*(Tu-Tb)* (1+cos(pi/2+pi/2*(HourTemp[which(HourTemp>Tu&HourTemp<=Tc)]-Tu)/(Tc-Tu))) if (summ) return(cumsum(GDH_weight)) else return(GDH_weight) } GDH_model<-function(HourTemp,summ=TRUE) {Stress<-1 Tb<-4 Tu<-25 Tc<-36 GDH_weight<-rep(0,length(HourTemp)) GDH_weight[which(HourTemp>=Tb&HourTemp<=Tu)]<-Stress*(Tu-Tb)/2* (1+cos(pi+pi*(HourTemp[which(HourTemp>=Tb&HourTemp<=Tu)]-Tb)/(Tu-Tb))) GDH_weight[which(HourTemp>Tu&HourTemp<=Tc)]<-Stress*(Tu-Tb)* (1+cos(pi/2+pi/2*(HourTemp[which(HourTemp>Tu&HourTemp<=Tc)]-Tu)/(Tc-Tu))) if (summ) return(cumsum(GDH_weight)) else return(GDH_weight) } GDD<-function(HourTemp,summ=TRUE,Tbase=5) { Tlow<-10 Tup<-30 GDD_weight<-rep(0,length(HourTemp)) GDD_weight[which(HourTemp>=Tlow&HourTemp<=Tup)]<-(HourTemp[which(HourTemp>=Tlow&HourTemp<=Tup)]-Tbase)/24 GDD_weight[which(HourTemp<Tlow)]<-(Tlow-Tbase)/24 GDD_weight[which(HourTemp>Tup)]<-(Tup-Tbase)/24 if (summ) return(cumsum(GDD_weight)) else return(GDD_weight) }
test_utility_calc_1 <- function() { d <- data.frame( predicted_probability = c(0, 0.5, 0.5, 0.5), made_purchase = c(FALSE, TRUE, FALSE, FALSE), false_positive_value = -5, true_positive_value = 95, true_negative_value = 0.001, false_negative_value = -0.01 ) values <- model_utility(d, 'predicted_probability', 'made_purchase') expect_true(is.null(check_utility_calc(values, constant_utilities = TRUE, orig_score = d$predicted_probability, orig_outcome = d$made_purchase))) expect <- wrapr::build_frame( "model" , "threshold", "count_taken", "fraction_taken", "true_positive_value", "false_positive_value", "true_negative_value", "false_negative_value", "total_value", "true_negative_count", "false_negative_count", "true_positive_count", "false_positive_count" | "predicted_probability", 0 , 4 , 1 , 95 , -15 , 0 , 0 , 80 , 0 , 0 , 1 , 3 | "predicted_probability", 0.25 , 3 , 0.75 , 95 , -10 , 0.001 , 0 , 85 , 1 , 0 , 1 , 2 | "predicted_probability", NA_real_ , 0 , 0 , 0 , 0 , 0.003 , -0.01 , -0.007 , 3 , 1 , 0 , 0 ) wrapr::check_equiv_frames(values, expect, tolerance = 1.e-3) invisible(NULL) } test_utility_calc_1() test_utility_calc_1b <- function() { d <- data.frame( predicted_probability = c(0, 0, 0, 0.5), made_purchase = c(FALSE, TRUE, FALSE, FALSE), false_positive_value = -5, true_positive_value = 95, true_negative_value = 0.001, false_negative_value = -0.01 ) values <- model_utility(d, 'predicted_probability', 'made_purchase') expect_true(is.null(check_utility_calc(values, constant_utilities = TRUE, orig_score = d$predicted_probability, orig_outcome = d$made_purchase))) expect <- wrapr::build_frame( "model" , "threshold", "count_taken", "fraction_taken", "true_positive_value", "false_positive_value", "true_negative_value", "false_negative_value", "total_value", "true_negative_count", "false_negative_count", "true_positive_count", "false_positive_count" | "predicted_probability", 0 , 4 , 1 , 95 , -15 , 0 , 0 , 80 , 0 , 0 , 1 , 3 | "predicted_probability", 0.25 , 1 , 0.25 , 0 , -5 , 0.002 , -0.01 , -5.008 , 2 , 1 , 0 , 1 | "predicted_probability", NA_real_ , 0 , 0 , 0 , 0 , 0.003 , -0.01 , -0.007 , 3 , 1 , 0 , 0 ) wrapr::check_equiv_frames(values, expect, tolerance = 1.e-3) invisible(NULL) } test_utility_calc_1b() test_utility_calc_2 <- function() { d <- data.frame( predicted_probability = c(0, 0.25, 0.5, 0.5, 0.5, 0.75, 0.8, 1.0), made_purchase = c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE), false_positive_value = -5, true_positive_value = 95, true_negative_value = 0.001, false_negative_value = -0.01 ) values <- model_utility(d, 'predicted_probability', 'made_purchase') expect_true(is.null(check_utility_calc(values, constant_utilities = TRUE, orig_score = d$predicted_probability, orig_outcome = d$made_purchase))) expect <- wrapr::build_frame( "model" , "threshold", "count_taken", "fraction_taken", "true_positive_value", "false_positive_value", "true_negative_value", "false_negative_value", "total_value", "true_negative_count", "false_negative_count", "true_positive_count", "false_positive_count" | "predicted_probability", 0 , 8 , 1 , 380 , -20 , 0 , 0 , 360 , 0 , 0 , 4 , 4 | "predicted_probability", 0.125 , 7 , 0.875 , 380 , -15 , 0.001 , 0 , 365 , 1 , 0 , 4 , 3 | "predicted_probability", 0.375 , 6 , 0.75 , 285 , -15 , 0.001 , -0.01 , 270 , 1 , 1 , 3 , 3 | "predicted_probability", 0.625 , 3 , 0.375 , 190 , -5 , 0.003 , -0.02 , 185 , 3 , 2 , 2 , 1 | "predicted_probability", 0.775 , 2 , 0.25 , 95 , -5 , 0.003 , -0.03 , 89.97 , 3 , 3 , 1 , 1 | "predicted_probability", 0.9 , 1 , 0.125 , 95 , 0 , 0.004 , -0.03 , 94.97 , 4 , 3 , 1 , 0 | "predicted_probability", NA_real_ , 0 , 0 , 0 , 0 , 0.004 , -0.04 , -0.036 , 4 , 4 , 0 , 0 ) wrapr::check_equiv_frames(values, expect, tolerance = 1.e-3) invisible(NULL) } test_utility_calc_2() test_utility_calc_3 <- function() { d <- data.frame( predicted_probability = runif(100), made_purchase = sample(c(FALSE, TRUE), replace = TRUE, size = 100), false_positive_value = -5, true_positive_value = 95, true_negative_value = 0.001, false_negative_value = -0.01 ) values <- model_utility(d, 'predicted_probability', 'made_purchase') expect_true(is.null(check_utility_calc(values, constant_utilities = TRUE, orig_score = d$predicted_probability, orig_outcome = d$made_purchase))) invisible(NULL) } test_utility_calc_3()
getTypeMeasureName <- function(type.measure, family) { if ("family" %in% class(family)) family <- "GLM" if (type.measure == "deviance") { typename <- switch(family, gaussian = "Mean-squared Error", binomial = "Binomial Deviance", poisson = "Poisson Deviance", cox = "Partial Likelihood Deviance", multinomial = "Multinomial Deviance", mgaussian = "Mean-squared Error", GLM = "GLM Deviance" ) } else { typename <- switch(type.measure, mse = "Mean-Squared Error", mae = "Mean Absolute Error", auc = "AUC", class = "Misclassification Error", C = "C-index" ) } names(typename) <- type.measure return(typename) }
plot_imp_distr <- function(data, imp = 'Imputation_', id = '.id', rownr = '.rownr', ncol = NULL, nrow = NULL, labeller = NULL) { pkgs <- installed.packages()[, "Package"] if (!"ggplot2" %in% pkgs) msg("This function requires the package ggplot2 to be installed.") if (!"ggpubr" %in% pkgs) msg("This function requires the package ggpubr to be installed.") if (any(!c("ggpubr", "ggplot2") %in% pkgs)) { return(NULL) } subDF <- data[, (colSums(is.na(data[data[, imp] == 0, ])) > 0 & colSums(is.na(data[data[, imp] != 0, ])) == 0) | names(data) %in% c(imp, id, rownr)] DForig <- subDF[subDF[, imp] == 0, ] w <- as.data.frame(is.na(DForig)) w[, c(imp, id, rownr)] <- DForig[, c(imp, id, rownr)] type <- sapply(subDF, is.factor) DFlong <- melt_data.frame(subDF, id.vars = c(imp, id, rownr)) wlong <- melt_data.frame(w, id.vars = c(imp, id, rownr), valname = 'mis') wlong <- unique(wlong) DFlong <- merge(DFlong, wlong, by = c(id, 'variable', rownr), suffixes = c("",".y")) DFlong$type <- ifelse(type[as.character(DFlong$variable)], 'factor', 'numeric') plotDF <- DFlong[(DFlong[, imp] == 0 & !DFlong$mis) | (DFlong[, imp] != 0 & DFlong$mis), ] p <- lapply(split(plotDF, plotDF$variable), function(dat) { if (unique(dat$type) == 'factor') { dat$value <- factor(dat$value) prop <- sapply(split(dat, dat[, imp]), function(x) prop.table(table(x$value))) plong <- melt_matrix(prop, valname = 'proportion', varnames = c('value', imp)) dat <- merge(dat, plong, all = TRUE) dat$variable <- unique(na.omit(dat$variable)) } pl <- ggplot2::ggplot(dat) + ggplot2::facet_wrap("variable", scales = "free", labeller = if (!is.null(labeller)) labeller else "label_value" ) + ggplot2::scale_color_manual(name = '', limits = c(FALSE, TRUE), values = c('dodgerblue3', 'midnightblue'), labels = c('imputed', 'observed')) + ggplot2::scale_fill_manual(name = '', limits = c(FALSE, TRUE), values = c('dodgerblue3', 'midnightblue'), labels = c('imputed', 'observed')) + ggplot2::scale_size_manual(name = '', limits = c(FALSE, TRUE), values = c(0.5, 1.3), labels = c('imputed', 'observed')) + ggplot2::xlab('') if (unique(na.omit(dat$type) == 'numeric')) { if (min(table(dat[, imp])) == 1) { pl + ggplot2::stat_density(ggplot2::aes(x = as.numeric(.data$value), color = get(imp) == 0, size = get(imp) == 0), geom = 'line', position = 'identity', na.rm = TRUE) + ggplot2::geom_point(data = subset(dat, get(imp) > 0), ggplot2::aes(x = as.numeric(.data$value), y = 0, color = get(imp) == 0, shape = get(imp) == 0), alpha = 0.5, show.legend = FALSE) } else { pl + ggplot2::stat_density(ggplot2::aes(x = as.numeric(.data$value), size = get(imp) == 0, color = get(imp) == 0, group = get(imp)), geom = 'line', position = 'identity', na.rm = TRUE) } } else { pl + ggplot2::geom_bar(ggplot2::aes(x = .data$value, y = .data$proportion, group = get(imp), fill = get(imp) == 0), position = "dodge", stat = 'identity', color = 'midnightblue') + ggplot2::ylab('proportion') } }) if (is.null(nrow) & is.null(ncol)) { dims <- if (length(p) > 25) { grDevices::n2mfrow(25) } else { grDevices::n2mfrow(length(p)) } } else if (is.null(nrow) & !is.null(ncol)) { dims <- c(ceiling(length(p)/ncol), ncol) } else if (is.null(ncol) & !is.null(nrow)) { dims <- c(nrow, ceiling(length(p)/nrow)) } else { dims <- c(nrow, ncol) } ggpubr::ggarrange(plotlist = p, ncol = dims[2], nrow = dims[1], common.legend = TRUE, legend = "bottom") }
`BackcastResidualsAR` <- function(y,phi,Q=100,demean=TRUE){ if (demean) z <- y-mean(y) else z <- y p <- length(phi) if (p==0) a<-z else { n<-length(z) p<-length(phi) nQ<-n+Q a<-e<-zF<-zR<-numeric(nQ) r<-p+1 zR[1:n]<-rev(z) zF[Q+(1:n)]<-z for (i in r:n) e[i]<-zR[i]-crossprod(phi,zR[i-(1:p)]) for (i in 1:Q) zR[n+i]<-crossprod(phi,zR[(n+i)-(1:p)]) zF[1:Q]<-rev(zR[n+(1:Q)]) for (i in r:nQ) a[i]<-zF[i]-crossprod(phi,zF[i-(1:p)]) zF[Q+(1:n)]<-z a<-a[Q+(1:n)] } a }
library(phylopath) models <- define_model_set( A = c(C~M+D), B = c(C~D), C = c(C~D, P~M), D = c(C~D, M~P, G~P), E = c(C~D, P~M, G~P), F = c(C~D, P~M+G), G = c(C~D, M~P, P~G), H = c(C~D, M~P), I = c(C~D, M~M, G~P), J = c(M~P, G~D), K = c(P~M, G~D), L = c(C~M+D, P~M+G), .common = c(C~P+G) ) plot_model_set(models, algorithm = 'kk') (cichlids_results <- phylo_path(models, cichlids, cichlids_tree)) (s <- summary(cichlids_results)) plot(s) best_cichlids <- best(cichlids_results) best_cichlids coef_plot(best_cichlids, error_bar = "se", reverse_order = TRUE) + ggplot2::coord_flip() plot(best_cichlids)
(m1 = matrix(1:20, nrow=4)) mean(m1[1,]); mean(m1[2,]); mean(m1[3,]); mean(m1[4,]) for (i in 1:nrow(m1)) { print(mean(m1[i,])) } apply(m1,1,mean) apply(m1, MARGIN = 2, mean) apply(m1, 2, mean) addmargins(m1,1,mean) addmargins(m1,2,mean) addmargins(m1,c(1,2),mean) addmargins(m1) for( i in 1:4) { print(mean(m1[i,])) } nrow(m1) ncol(m1) for( i in 1:nrow(m1)) { print(paste0('Mean of row', i , ' is ', mean(m1[i,]))) } for( i in 1:ncol(m1)) { print(paste0('Mean of Col', i , ' is ', mean(m1[,i]))) } apply(m1, 1, mean) apply(m1, 2, mean)
knitr::opts_chunk$set(collapse = TRUE, comment = " options(knitr.table.format = "html", rmarkdown.html_vignette.check_title = FALSE) library(eRTG3D) set.seed(123) cerw <- reproduce.track.3d(niclas, DEM = dem) tests <- test.verification.3d(niclas, cerw, test = "ks", plot = FALSE) tests <- test.verification.3d(niclas, cerw, test = "ttest", plot = FALSE)
students3 %>% gather( , , : , = TRUE) %>% print
blav_model_fit <- function(lavpartable = NULL, lavmodel = NULL, lavjags = NULL, x = NULL, VCOV = NULL, TEST = NULL) { stopifnot(is.list(lavpartable), inherits(lavmodel, c("Model", "lavModel"))) if(class(lavjags) != "NULL"){ lavmcmc <- make_mcmc(lavjags) } else { lavmcmc <- NULL } iterations <- attr(x, "iterations") converged <- attr(x, "converged") fx <- attr(x, "fx") fx.group <- as.numeric(NA) logl.group <- as.numeric(NA) logl <- as.numeric(NA) control <- attr(x, "control") attributes(fx) <- NULL x.copy <- x attributes(x.copy) <- NULL est <- lav_model_get_parameters(lavmodel = lavmodel, type = "user") blaboot <- rearr_params(lavmcmc, lavpartable) se <- lav_model_vcov_se(lavmodel = lavmodel, lavpartable = lavpartable, VCOV = VCOV, BOOT = blaboot) if(is.null(TEST)) { test <- list() } else { test <- TEST } implied <- lav_model_implied(lavmodel, delta = (lavmodel@parameterization == "delta")) if([email protected]) { names(implied) <- c("cov", "mean", "slopes", "th", "group.w") } if(!is.null(attr(x, "partrace"))) { PARTRACE <- attr(x, "partrace") } else { PARTRACE <- matrix(0, 0L, 0L) } new("Fit", npar = as.integer(max(lavpartable$free)), x = x.copy, partrace = PARTRACE, start = lavpartable$start, est = est, se = se, fx = fx, fx.group = fx.group, logl = logl, logl.group = logl.group, iterations = as.integer(iterations), converged = converged, control = control, Sigma.hat = implied$cov, Mu.hat = implied$mean, TH = implied$th, test = test ) }