seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
916481756
# find the value that a given monkey will scream: def solve_monkey(monkey, solved_monkeys, unsolved_monkeys): if monkey in solved_monkeys: return solved_monkeys[monkey] monkey_math = unsolved_monkeys[monkey].split(' ') left = solve_monkey(monkey_math[0], solved_monkeys, unsolved_monkeys) right = solve_monkey(monkey_math[2], solved_monkeys, unsolved_monkeys) solution = int(eval(str(left) + monkey_math[1] + str(right))) solved_monkeys[monkey] = solution del unsolved_monkeys[monkey] return solution # find all the monkeys in between two monkeys def path_to_monkey(curr_monkey, target_monkey, solved_monkeys, unsolved_monkeys): if curr_monkey == target_monkey: return [target_monkey] if curr_monkey in solved_monkeys: return None monkey_math = unsolved_monkeys[curr_monkey].split(' ') left = path_to_monkey(monkey_math[0], target_monkey, solved_monkeys, unsolved_monkeys) right = path_to_monkey(monkey_math[2], target_monkey, solved_monkeys, unsolved_monkeys) if left is not None: return [curr_monkey] + left elif right is not None: return [curr_monkey] + right else: return None # Find the needed call of a variable monkey given that the inputted calls to the equals_monkey # must be equal. def solve_variable_monkey(equals_monkey, variable_monkey, solved_monkeys, unsolved_monkeys): path = path_to_monkey(equals_monkey, variable_monkey, solved_monkeys, unsolved_monkeys) sub_monkeys = unsolved_monkeys[equals_monkey].split(' ') invariate_monkey = sub_monkeys[0] if sub_monkeys[0] != path[1] else sub_monkeys[2] solve_monkey(equals_monkey, solved_monkeys, dict(unsolved_monkeys)) val = solved_monkeys[invariate_monkey] ops = { '/0': lambda val, n: val * n, '/2': lambda val, n: n / val, '*0': lambda val, n: val / n, '*2': lambda val, n: val / n, '-0': lambda val, n: val + n, '-2': lambda val, n: -1 * (val - n), '+0': lambda val, n: val - n, '+2': lambda val, n: val - n, } # The call of each monkey between the equals_monkey and the variable_monkey will be dependent on one sub_monkey # whose call is invariate (not determined by anything that we do) and another monkey whose call we # do control (with our choice of call for the variable_monkey). All monkeys whose call we do control will exist # in the path between the equals_monkey and the variable_monkey. We can find the call of the variable_monkey by # performing algebra to calculate the needed call of each sub_monkey whose call we do control (along the path # between the equals_monkey and the variable monkey). for i in range(1, len(path) - 1): sub_monkeys = unsolved_monkeys[path[i]].split(' ') op = sub_monkeys[1] # the operation performed on the calls of the two submonkeys idx = sub_monkeys.index(path[i + 1]) # the index of the variate monkey in sub_monkeys invariate_monkey = sub_monkeys[0] if sub_monkeys[0] != path[i + 1] else sub_monkeys[2] val = ops[op + str(idx)](val, solved_monkeys[invariate_monkey]) # perform algebra return int(val) f = open('../inputs/day21.txt').read().splitlines() solved_monkeys = {n[0]: int(n[1]) for n in [m.split(': ') for m in f] if n[1].isnumeric()} unsolved_monkeys = {n[0]: n[1] for n in [m.split(': ') for m in f] if not n[1].isnumeric()} part1 = solve_monkey('root', dict(solved_monkeys), dict(unsolved_monkeys)) part2 = solve_variable_monkey('root', 'humn', solved_monkeys, unsolved_monkeys) print(part1) print(part2)
UncatchableAlex/advent2022
solutions/day21.py
day21.py
py
3,622
python
en
code
0
github-code
6
72532883709
import os from pathlib import Path import s4l_v1 import s4l_v1.analysis.viewers as viewers import s4l_v1.document as document import s4l_v1.model as model import s4l_v1.simulation.emfdtd as fdtd import s4l_v1.units as units from dotenv import load_dotenv from osparc_isolve_api import run_simulation from s4l_v1._api.application import get_app_safe, run_application from s4l_v1._api.simwrappers import ApiSimulation from s4l_v1.model import Vec3 load_dotenv() HOST = os.environ.get("OSPARC_API_URL", "http://127.0.0.1:8006") KEY = os.environ["OSPARC_API_KEY"] SECRET = os.environ["OSPARC_API_SECRET"] def create_model(): wire = model.CreateWireBlock( p0=Vec3(0, 0, 0), p1=Vec3(100, 100, 100), parametrized=True ) wire.Name = "Plane Wave Source" def create_simulation() -> ApiSimulation: # retrieve needed entities from model entities = model.AllEntities() source_box = entities["Plane Wave Source"] sim = fdtd.Simulation() sim.Name = "Plane Wave Simulation" sim.SetupSettings.SimulationTime = 10.0, units.Periods # Materials: # No materials # Sources planesrc_settings = sim.AddPlaneWaveSourceSettings(source_box) options = planesrc_settings.ExcitationType.enum planesrc_settings.ExcitationType = options.Harmonic planesrc_settings.CenterFrequency = 1.0, units.GHz # Sensors # Only using overall field sensor # Boundary Conditions options = sim.GlobalBoundarySettings.GlobalBoundaryType.enum sim.GlobalBoundarySettings.GlobalBoundaryType = options.UpmlCpml # Grid manual_grid_settings = sim.AddManualGridSettings([source_box]) manual_grid_settings.MaxStep = (9.0,) * 3 # model units manual_grid_settings.Resolution = (2.0,) * 3 # model units # Voxels auto_voxel_settings = sim.AddAutomaticVoxelerSettings(source_box) # Solver settings options = sim.SolverSettings.Kernel.enum # sim.SolverSettings.Kernel = options.Software sim.SolverSettings.Kernel = options.Cuda # FIXME: This does not work. WHY??? sim.SolverSettings.Kernel = options.AXware return sim def analyze_simulation(sim): # Create extractor for a given simulation output file results = sim.Results() # overall field sensor overall_field_sensor = results["Overall Field"] # Create a slice viewer for the E field slice_field_viewer_efield = viewers.SliceFieldViewer() slice_field_viewer_efield.Inputs[0].Connect(overall_field_sensor["EM E(x,y,z,f0)"]) slice_field_viewer_efield.Data.Mode = ( slice_field_viewer_efield.Data.Mode.enum.QuantityRealPart ) slice_field_viewer_efield.Data.Component = ( slice_field_viewer_efield.Data.Component.enum.Component0 ) slice_field_viewer_efield.Slice.Plane = ( slice_field_viewer_efield.Slice.Plane.enum.YZ ) slice_field_viewer_efield.Update(0) slice_field_viewer_efield.GotoMaxSlice() document.AllAlgorithms.Add(slice_field_viewer_efield) def setup_simulation(smash_path: Path) -> ApiSimulation: s4l_v1.document.New() create_model() sim = create_simulation() s4l_v1.document.AllSimulations.Add(sim) sim.UpdateGrid() sim.CreateVoxels(str(smash_path)) sim.WriteInputFile() return sim def run(smash_path: Path): sim = setup_simulation(smash_path) # run using specific version # run_simulation(sim, isolve_version="2.0.79", host=HOST, api_key=KEY, api_secret=SECRET) # run using latest version run_simulation(sim, host=HOST, api_key=KEY, api_secret=SECRET) analyze_simulation(sim) def main(): if get_app_safe() is None: run_application() project_dir = Path() filename = "em_fdtd_simulation.smash" smash_path = project_dir / filename run(smash_path) if __name__ == "__main__": main()
ITISFoundation/osparc-simcore
tests/public-api/examples/s4l_tutorial.py
s4l_tutorial.py
py
3,834
python
en
code
35
github-code
6
33197235075
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys import glob import pcraster as pcr import raster_func # set the clone map to the regional/local model clone_map_filename = "/scratch-shared/edwinhs/colombia_model_results/head/l1_top/head_20000101_l1.idf.map" pcr.setclone(clone_map_filename) # start and end years str_year = 2000 end_year = 2012 # calculate the average value/map of the local model msg = "Calculate the average value/map of the local model!" print(msg) # - Using the top layer of the local model local_model_folder = "/scratch-shared/edwinhs/colombia_model_results/head/l1_top/" i_month = 0 cum_map = pcr.scalar(0.0) for year in (str_year, end_year + 1, 1): for month in (1, 12 + 1, 1): i_month = i_month + 1 file_name = local_model_folder + "/head_%04i%02i" + "01_l1.idf.map" %(year, month) print(file_name) cum_map = cum_map + pcr.readmap(local_model_folder + "") average_local = cum_map / i_month pcr.aguila(average_local) #~ # calculate the average value/map of the global model #~ # - Using the upper layer of the global model #~ global_model_folder = "/scratch-shared/edwinhs/modflow_results_in_pcraster/upper_layer/regional/" #~ i_month = 0 #~ for year in (str_year, end_year + 1, 1): #~ for month in (1, 12 + 1, 1): #~ average_global = #~ #~ # calculate the anomaly value of the local model #~ anomaly_local = {} #~ #~ #~ # calculate the anomaly value of the global model #~ anomaly_global = {} #~ #~ #~ # calculate the climatology values of the local model's anomaly value #~ climatology_anomaly_local = #~ for month in (1, 12 + 1, 1): #~ #~ #~ # calculate the climatology values of the global model's anomaly value #~ climatology_anomaly_global = #~ for month in (1, 12 + 1, 1): #~ #~ #~ # evaluating climatology maps (e.g. calculate the differences in climatology maps) #~ difference = map_1 - map_2 #~ for month in (1, 12 + 1, 1): #~
edwinkost/groundwater_model_comparison
comparing_and_evaluating_maps/etc/compare_and_evaluate_not-finished.py
compare_and_evaluate_not-finished.py
py
1,949
python
en
code
0
github-code
6
16813784584
import os import copy from typing import Dict import numpy as np import torch from collections import defaultdict from hsp.algorithms.population.policy_pool import PolicyPool from hsp.runner.shared.base_runner import make_trainer_policy_cls from hsp.utils.shared_buffer import SharedReplayBuffer from hsp.algorithms.population.utils import _t2n class TrainerPool: """TrainerPool maintains a pool of trainers, each trainer corresponding to one policy, both have the same name. For policies that are not trained, use null trainer. By specifying mapping from (env_id, agent_id) to trainer_name, TrainerPool creates buffer for each policy. """ def __init__(self, args, policy_pool: PolicyPool, device = torch.device("cpu")): self.all_args = args self.device = device self.policy_pool = policy_pool self.trainer_pool = {} self.trainer_total_num_steps = defaultdict(int) self.use_policy_in_env = dict(args._get_kwargs()).get('use_policy_in_env', False) self.__loaded_population = False self.__initialized = False def policy_config(self, trainer_name): return self.policy_pool.policy_config[trainer_name] def policy_type(self, trainer_name): if trainer_name.startswith("ppo") and trainer_name[-1] in "123": return eval(trainer_name[-1]) elif trainer_name.startswith("policy"): # preference policy return 4 else: raise RuntimeError(f"Cannot recognize policy type for {trainer_name}.") def policy_id(self, trainer_name): return int(self.policy_pool.policy_info[trainer_name][1]["id"] * self.policy_pool.num_policies - 1) def init_population(self): self.on_training = [] self.best_r = defaultdict(float) for policy_name, policy, policy_config, policy_train in self.policy_pool.all_policies(): # use the same name for trainer and policy trainer_name = policy_name trainer_cls, _ = make_trainer_policy_cls(policy_config[0].algorithm_name, use_single_network=policy_config[0].use_single_network) trainer = trainer_cls(policy_config[0], policy, device = self.device) self.trainer_pool[trainer_name] = trainer self.best_r[trainer_name] = -1e9 if policy_train: self.on_training.append(trainer_name) # trans policies in policy pool to EvalPolicy self.policy_pool.trans_to_eval() # train info would update when a trainer performs training self.train_infos = {} self.train_infos.update({f"{trainer_name}-total_num_steps":0 for trainer_name in self.trainer_pool.keys()}) self.__loaded_population = True def reset(self, map_ea2t, n_rollout_threads, num_agents, load_unused_to_cpu=False, **kwargs): assert self.__loaded_population self.map_ea2t = map_ea2t self.n_rollout_threads = n_rollout_threads self.num_agents = num_agents self.control_agent_count = defaultdict(int) self.control_agents = defaultdict(list) for (e, a), trainer_name in self.map_ea2t.items(): self.control_agent_count[trainer_name] += 1 self.control_agents[trainer_name].append((e, a)) self.active_trainers = [] self.buffer_pool: Dict[str, SharedReplayBuffer] = {} for trainer_name in self.trainer_pool.keys(): # set n_rollout_threads as control_agent_count[trainer_name] and num_agents as 1 if self.control_agent_count[trainer_name] > 0: policy_args, obs_space, share_obs_space, act_space = self.policy_config(trainer_name) self.buffer_pool[trainer_name] = SharedReplayBuffer( policy_args, 1, obs_space, share_obs_space, act_space, n_rollout_threads=self.control_agent_count[trainer_name]) self.trainer_pool[trainer_name].to(self.device) self.active_trainers.append(trainer_name) else: if load_unused_to_cpu: self.trainer_pool[trainer_name].to(torch.device("cpu")) else: self.trainer_pool[trainer_name].to(self.device) self.buffer_pool[trainer_name] = None #print("active trainers:", self.active_trainers) self.__initialized = True def extract_elements(self, trainer_name, x): return np.stack([x[e][a] for e, a in self.control_agents[trainer_name]]) def skip(self, trainer_name): # produce actions in parallel envs, skip this trainer return (self.use_policy_in_env and trainer_name not in self.on_training) or (trainer_name.startswith("script:")) def init_first_step(self, share_obs:np.ndarray, obs:np.ndarray): assert self.__initialized for trainer_name in self.active_trainers: # extract corresponding (e, a) and add num_agent=1 dimension obs_lst = np.expand_dims(self.extract_elements(trainer_name, obs), axis=1) share_obs_lst = np.expand_dims(self.extract_elements(trainer_name, share_obs), axis=1) self.buffer_pool[trainer_name].share_obs[0] = share_obs_lst.copy() self.buffer_pool[trainer_name].obs[0] = obs_lst.copy() self._step = 0 def reward_shaping_steps(self): """This should differ among algorithms and should be overrided by subclasses. """ reward_shaping_steps = [] for e in range(self.n_rollout_threads): train_tot_num_steps = [self.trainer_total_num_steps[self.map_ea2t[(e, a)]] * int(self.map_ea2t[(e, a)] in self.on_training) for a in range(self.num_agents)] reward_shaping_steps.append(max(train_tot_num_steps)) return reward_shaping_steps @torch.no_grad() def step(self, step): assert self.__initialized actions = np.full((self.n_rollout_threads, self.num_agents), fill_value=None).tolist() self.step_data = dict() for trainer_name in self.active_trainers: self.trainer_total_num_steps[trainer_name] += self.control_agent_count[trainer_name] self.train_infos[f"{trainer_name}-total_num_steps"] = self.trainer_total_num_steps[trainer_name] if self.skip(trainer_name): continue trainer = self.trainer_pool[trainer_name] buffer = self.buffer_pool[trainer_name] trainer.prep_rollout() value, action, action_log_prob, rnn_states, rnn_states_critic \ = trainer.policy.get_actions(np.concatenate(buffer.share_obs[step]), np.concatenate(buffer.obs[step]), np.concatenate(buffer.rnn_states[step]), np.concatenate(buffer.rnn_states_critic[step]), np.concatenate(buffer.masks[step])) value = np.expand_dims(np.array(_t2n(value)), axis=1) action = np.expand_dims(np.array(_t2n(action)), axis=1) action_log_prob = np.expand_dims(np.array(_t2n(action_log_prob)), axis=1) rnn_states = np.expand_dims(np.array(_t2n(rnn_states)), axis=1) rnn_states_critic = np.expand_dims(np.array(_t2n(rnn_states_critic)), axis=1) self.step_data[trainer_name] = value, action, action_log_prob, rnn_states, rnn_states_critic for i, (e, a) in enumerate(self.control_agents[trainer_name]): actions[e][a] = action[i][0] return actions def insert_data(self, share_obs, obs, rewards, dones, active_masks=None, bad_masks=None, infos=None): """ ndarrays of shape (n_rollout_threads, num_agents, *) """ assert self.__initialized self._step += 1 for trainer_name in self.active_trainers: if self.skip(trainer_name): continue trainer = self.trainer_pool[trainer_name] buffer = self.buffer_pool[trainer_name] value, action, action_log_prob, rnn_states, rnn_states_critic = self.step_data[trainer_name] # (control_agent_count[trainer_name], 1, *) obs_lst = np.expand_dims(self.extract_elements(trainer_name, obs), axis=1) share_obs_lst = np.expand_dims(self.extract_elements(trainer_name, share_obs), axis=1) rewards_lst = np.expand_dims(self.extract_elements(trainer_name, rewards), axis=1) dones_lst = np.expand_dims(self.extract_elements(trainer_name, dones), axis=1) rnn_states[dones_lst == True] = np.zeros(((dones_lst == True).sum(), buffer.recurrent_N, buffer.hidden_size), dtype=np.float32) rnn_states_critic[dones_lst == True] = np.zeros(((dones_lst == True).sum(), *buffer.rnn_states_critic.shape[3:]), dtype=np.float32) masks = np.ones((self.control_agent_count[trainer_name], 1, 1), dtype=np.float32) masks[dones_lst == True] = np.zeros(((dones_lst == True).sum(), 1), dtype=np.float32) bad_masks_lst = active_masks_lst = None if bad_masks is not None: bad_masks_lst = np.expand_dims(self.extract_elements(trainer_name, bad_masks), axis=1) if active_masks is not None: active_masks_lst = np.expand_dims(self.extract_elements(trainer_name, active_masks), axis=1) if self.all_args.use_task_v_out: value = value[:, :, self.policy_id(trainer_name)][:, :, np.newaxis] buffer.insert(share_obs_lst, obs_lst, rnn_states, rnn_states_critic, action, action_log_prob, value, rewards_lst, masks, active_masks=active_masks_lst, bad_masks=bad_masks_lst) if infos is not None: if self.all_args.env_name == "Overcooked" and self.all_args.predict_other_shaped_info: if not hasattr(buffer, "other_shaped_info"): buffer.other_shaped_info = np.zeros((buffer.episode_length + 1, buffer.n_rollout_threads, 1, 12), dtype=np.int32) for i, (e, a) in enumerate(self.control_agents[trainer_name]): buffer.other_shaped_info[self._step, i, 0] = infos[e]["vec_shaped_info_by_agent"][1-a] # insert other agent's shaped info # partner policy info if self.all_args.env_name == "Overcooked": if self.all_args.policy_group_normalization and not hasattr(buffer, "other_policy_type"): buffer.other_policy_type = np.zeros((buffer.episode_length + 1, buffer.n_rollout_threads, 1, 1), dtype=np.int32) for i, (e, a) in enumerate(self.control_agents[trainer_name]): buffer.other_policy_type[:, i, :, :] = self.policy_type(self.map_ea2t[(e, 1-a)]) if not hasattr(buffer, "other_policy_id"): buffer.other_policy_id = np.zeros((buffer.episode_length + 1, buffer.n_rollout_threads, 1, 1), dtype=np.int32) for i, (e, a) in enumerate(self.control_agents[trainer_name]): buffer.other_policy_id[:, i, :, :] = self.policy_id(self.map_ea2t[(e, 1-a)]) self.step_data = None def compute_advantages(self): all_adv = defaultdict(list) for trainer_name in self.active_trainers: trainer = self.trainer_pool[trainer_name] buffer = self.buffer_pool[trainer_name] if trainer_name in self.on_training: advantages = trainer.compute_advantages(buffer) for i, (e, a) in enumerate(self.control_agents[trainer_name]): all_adv[(self.map_ea2t[(e, 0)], self.map_ea2t[(e, 1)], a)].append(advantages[:, i].mean()) return all_adv def train(self, **kwargs): assert self.__initialized for trainer_name in self.active_trainers: trainer = self.trainer_pool[trainer_name] buffer = self.buffer_pool[trainer_name] if trainer_name in self.on_training: trainer.prep_rollout() # compute returns next_values = trainer.policy.get_values(np.concatenate(buffer.share_obs[-1]), np.concatenate(buffer.rnn_states_critic[-1]), np.concatenate(buffer.masks[-1])) next_values = np.expand_dims(np.array(_t2n(next_values)), axis=1) if self.all_args.use_task_v_out: next_values = next_values[:, :, self.policy_id(trainer_name)][:, :, np.newaxis] buffer.compute_returns(next_values, trainer.value_normalizer) # train trainer.prep_training() train_info = trainer.train(buffer, turn_on=(self.trainer_total_num_steps[trainer_name] >= self.all_args.critic_warmup_horizon)) self.train_infos.update({f"{trainer_name}-{k}": v for k, v in train_info.items()}) self.train_infos.update({f"{trainer_name}-average_episode_rewards": np.mean(buffer.rewards) * buffer.episode_length}) # place first step observation of next episode buffer.after_update() return copy.deepcopy(self.train_infos) def lr_decay(self, episode, episodes): for trainer_name in self.on_training: self.trainer_pool[trainer_name].policy.lr_decay(episode, episodes) def update_best_r(self, d, save_dir=None): for trainer_name, r in d.items(): trainer = self.trainer_pool[trainer_name] if r > self.best_r[trainer_name]: self.best_r[trainer_name] = r if trainer_name in self.on_training and save_dir is not None: if not os.path.exists(str(save_dir) + "/{}".format(trainer_name)): os.makedirs(str(save_dir) + "/{}".format(trainer_name)) #print("save", str(save_dir) + "/{}".format(trainer_name), f"best_r") if self.policy_config(trainer_name)[0].use_single_network: policy_model = trainer.policy.model torch.save(policy_model.state_dict(), str(save_dir) + "/{}/model_best_r.pt".format(trainer_name)) else: policy_actor = trainer.policy.actor torch.save(policy_actor.state_dict(), str(save_dir) + "/{}/actor_best_r.pt".format(trainer_name)) policy_critic = trainer.policy.critic torch.save(policy_critic.state_dict(), str(save_dir) + "/{}/critic_best_r.pt".format(trainer_name)) def save(self, step, save_dir): for trainer_name in self.on_training: trainer = self.trainer_pool[trainer_name] if not os.path.exists(str(save_dir) + "/{}".format(trainer_name)): os.makedirs(str(save_dir) + "/{}".format(trainer_name)) trainer_step = self.trainer_total_num_steps[trainer_name] #print("save", str(save_dir) + "/{}".format(trainer_name), f"periodic_{trainer_step}") if self.policy_config(trainer_name)[0].use_single_network: policy_model = trainer.policy.model torch.save(policy_model.state_dict(), str(save_dir) + "/{}/model_periodic_{}.pt".format(trainer_name, trainer_step)) else: policy_actor = trainer.policy.actor torch.save(policy_actor.state_dict(), str(save_dir) + "/{}/actor_periodic_{}.pt".format(trainer_name, trainer_step)) policy_critic = trainer.policy.critic torch.save(policy_critic.state_dict(), str(save_dir) + "/{}/critic_periodic_{}.pt".format(trainer_name, trainer_step))
samjia2000/HSP
hsp/algorithms/population/trainer_pool.py
trainer_pool.py
py
15,925
python
en
code
15
github-code
6
38744507299
import vidcap import pygame from baselines.ppo1.mlp_policy import MlpPolicy from baselines.trpo_mpi import trpo_mpi import gym import monkeywars import wrappers import numpy as np import time import tensorflow as tf from baselines import deepq def main(): env = monkeywars.Monkeywars(graphic_mode=True) wenv = wrappers.ShooterAgentWrapper(env) #wenv = gym.wrappers.TimeLimit(wenv, max_episode_steps=400) act = deepq.load("monkeywars_model.pkl") while True: obs, done = wenv.reset(), False wenv.render() obs = np.array(obs) episode_rew = 0 it=0 #pygame.image.save(env.screen, 'tmp/image{:03d}.bmp'.format(it)) while it < 500: wenv.render() obs, rew, done, _ = wenv.step(act(obs.reshape(1,-1))[0]) obs = np.array(obs) episode_rew += rew time.sleep(0.05) it+=1 #pygame.image.save(env.screen, 'tmp/image{:03d}.bmp'.format(it)) print("Episode reward", episode_rew) break def enjoy_trpo(): env = monkeywars.Monkeywars(graphic_mode=True) wenv = wrappers.ShooterAgentWrapper(env) ob_space = wenv.observation_space ac_space = wenv.action_space pi = MlpPolicy(name='pi', ob_space=ob_space, ac_space=ac_space, hid_size=64, num_hid_layers=2) oldpi = MlpPolicy(name='oldpi', ob_space=ob_space, ac_space=ac_space, hid_size=64, num_hid_layers=2) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) saver.restore(sess, "./mymodel") stochastic = tf.Variable(False, dtype=tf.bool) while True: obs, done = wenv.reset(), False wenv.render() obs = np.array(obs) episode_rew = 0 it=0 #pygame.image.save(env.screen, 'tmp/image{:03d}.bmp'.format(it)) while it < 500: wenv.render() obs, rew, done, _ = wenv.step(pi.act(stochastic, obs)[0]) obs = np.array(obs) episode_rew += rew time.sleep(0.05) it+=1 #pygame.image.save(env.screen, 'tmp/image{:03d}.bmp'.format(it)) print("Episode reward", episode_rew) break if __name__ == '__main__': #main() enjoy_trpo()
battuzz/RL_lab
monkeywars/enjoy_monkeywars.py
enjoy_monkeywars.py
py
2,459
python
en
code
0
github-code
6
34839802828
# -*- coding: utf-8 -*- """ Created on Tue Sep 21 01:32:51 2021 @author: vidhy """ from fastapi import FastAPI, File, UploadFile, Request import uvicorn import numpy as np from io import BytesIO from PIL import Image import requests from starlette.middleware.cors import CORSMiddleware from starlette.responses import RedirectResponse app = FastAPI() origins = [ "http://localhost", "http://localhost:3000", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # uvicorn main:app --reload # install docker # docker pull tensorflow/serving # cd D:/deep-learning/ # docker run -t --rm -p 8501:8501 -v D:/deep-learning/potato-disease-classification:/potato-disease-classification tensorflow/serving --rest_api_port=8501 --model_config_file=/potato-disease-classification/models.config endpoint = "http://localhost:8501/v1/models/potatoes_model:predict" CLASS_NAMES = ['Early Blight', 'Late Blight', 'Healthy'] @app.get("/ping") async def ping(): return "Hello, I'm alive" @app.get("/", include_in_schema=False) async def index(): return RedirectResponse(url="/docs") def read_file_as_image(data) -> np.ndarray: # bytes = await file.read() image = np.array(Image.open(BytesIO(data))) return image @app.post("/predict") async def predict( file: UploadFile = File(...) ): image = read_file_as_image(await file.read()) img_batch = np.expand_dims(image, 0) json_data = { "instances": img_batch.tolist() } response = requests.post(endpoint, json=json_data) prediction = response.json()["predictions"][0] predicted_class = CLASS_NAMES[np.argmax(prediction)] confidence = np.max(prediction) return { 'class': predicted_class, 'confidence': float(confidence) } if __name__ == "__main__": uvicorn.run(app, host='localhost', port=8000)
VidhyaGupta/Potato-Disease-Classification
api/main-tf-serving.py
main-tf-serving.py
py
1,938
python
en
code
0
github-code
6
45135866644
# code by : dev patel # https://www.github.com/dev22419/ i = 0 while i <= 5: x = input("enter a letter : ") x.lower() if x in ["a","e","i","o","u"]: print("it is an vowel . ") i = 6 else : print("you entered an constant . ")
dev22419/msu
pro/python/a7/24.py
24.py
py
266
python
en
code
1
github-code
6
29546474630
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def _new_id(self): # get an id from auto-increment self.cur_id += 1 return self.cur_id def _get_tree_id(self, n): """Check if a tree with head n has been visited before by checking the signature of the tree If the tree is not visited, take a record of the tree, give a new id to the tree, and return the new id If the tree has been visited before, add the signature of the tree to self.res return the id in record A signature of a tree with head n: if n is not None, (_get_tree_id(n.left), _get_tree_id(n.right), n.val) if n is None, (None, None, None) n: the head of the input tree return the id of tree with head n """ encoding = (None, None, None) if n: l_id = self._get_tree_id(n.left) r_id = self._get_tree_id(n.right) encoding = (l_id, r_id, n.val) if encoding in self.tree_signature_map: if n: self.res.add(encoding) else: self.tree_signature_map[encoding] = (self._new_id(), n) return self.tree_signature_map[encoding][0] def findDuplicateSubtrees(self, root): """Find dup subtree by encoding of the subtree an encoding of a subtree with node n as root is a triple (, n.val) """ self.cur_id = 0 self.tree_signature_map = {} # (id_l, id_r, self.val) -> (id, node reference) self.res = set() self._get_tree_id(root) return [self.tree_signature_map[signature][1] for signature in self.res]
HeliWang/upstream
Tree/BST/find-dup-subtree.py
find-dup-subtree.py
py
1,870
python
en
code
0
github-code
6
8631033228
import tkinter DEFAULT_FONT = ('Helvetica', 14) ################################################### ############GAME OPTIONS CLASS##################### ################################################### class GameOptions: def __init__(self): ''' initialises GameOptions ''' self._dialog_window = tkinter.Tk() title_label = tkinter.Label( master = self._dialog_window, text = 'OTHELLO', font = DEFAULT_FONT) title_label.grid( row = 0, column = 0, columnspan = 2, padx = 10, pady = 10, sticky = tkinter.N) row_label = tkinter.Label( master = self._dialog_window, text = 'Number Of Rows:', font = DEFAULT_FONT) row_label.grid( row = 1, column = 0, padx = 10, pady = 10, sticky = tkinter.W) self._row_entry = tkinter.Entry( master = self._dialog_window, width = 20, font = DEFAULT_FONT) self._row_entry.grid( row = 1, column = 1, padx = 10, pady = 1, sticky = tkinter.W + tkinter.E) col_label = tkinter.Label( master = self._dialog_window, text = 'Number Of Columns:', font = DEFAULT_FONT) col_label.grid( row = 2, column = 0, padx = 10, pady = 10, sticky = tkinter.W) self._col_entry = tkinter.Entry( master = self._dialog_window, width = 20, font = DEFAULT_FONT) self._col_entry.grid( row = 2, column = 1, padx = 10, pady = 1, sticky = tkinter.W + tkinter.E) player1_label = tkinter.Label( master = self._dialog_window, text = 'Who Goes First?(B/W):', font = DEFAULT_FONT) player1_label.grid( row = 3, column = 0, padx = 10, pady = 10, sticky = tkinter.W) self._player1_entry = tkinter.Entry( master = self._dialog_window, width = 20, font = DEFAULT_FONT) self._player1_entry.grid( row = 3, column = 1, padx = 10, pady = 1, sticky = tkinter.W + tkinter.E) topleft_label = tkinter.Label( master = self._dialog_window, text = 'Top Left Player?(B/W):', font = DEFAULT_FONT) topleft_label.grid( row = 4, column = 0, padx = 10, pady = 10, sticky = tkinter.W) self._topleft_entry = tkinter.Entry( master = self._dialog_window, width = 20, font = DEFAULT_FONT) self._topleft_entry.grid( row = 4, column = 1, padx = 10, pady = 1, sticky = tkinter.W + tkinter.E) moreless_label = tkinter.Label( master = self._dialog_window, text = 'More Wins Or Less Wins?(>/<):', font = DEFAULT_FONT) moreless_label.grid( row = 5, column = 0, padx = 10, pady = 10, sticky = tkinter.W) self._moreless_entry = tkinter.Entry( master = self._dialog_window, width = 20, font = DEFAULT_FONT) self._moreless_entry.grid( row = 5, column = 1, padx = 10, pady = 1, sticky = tkinter.W + tkinter.E) button_frame = tkinter.Frame(master = self._dialog_window) button_frame.grid( row = 6, column = 0, columnspan = 2, padx = 10, pady = 10, sticky = tkinter.E + tkinter.S) ok_button = tkinter.Button( master = button_frame, text = 'OK', font = DEFAULT_FONT, command = self._on_ok_button) ok_button.grid(row = 0, column = 0, padx = 10, pady = 10) cancel_button = tkinter.Button( master = button_frame, text = 'Cancel', font = DEFAULT_FONT, command = self._on_cancel_button) cancel_button.grid(row = 0, column = 1, padx = 10, pady = 10) self._dialog_window.rowconfigure(6, weight = 1) self._dialog_window.columnconfigure(1, weight = 1) self._ok_clicked = False self._row = '' self._col = '' self._topleft = '' self._player1 = '' self._moreless = '' self.show() ################################################### ##############PUBLIC METHODS####################### ################################################### def show(self): ''' shows the window ''' self._dialog_window.grab_set() self._dialog_window.wait_window() def was_ok_clicked(self): ''' returns true if the ok button was clicked ''' return self._ok_clicked def get_row(self): ''' returns the row that was inputed by the user ''' return self._row def get_col(self): ''' returns the collumn that was inputed by the user ''' return self._col def get_player1(self): ''' returns the starting player that was inputed by the user ''' return self._player1 def get_topleft(self): ''' returns the top left player that was inputed by the user ''' return self._topleft def get_moreless(self): ''' returns the winning rule that was inputed by the user ''' return self._moreless ################################################### ##############PRIVATE METHODS###################### ################################################### def _on_ok_button(self): ''' carries out action if ok button was clicked ''' self._ok_clicked = True self._row = self._row_entry.get() self._col = self._col_entry.get() self._player1 = self._player1_entry.get() self._topleft = self._topleft_entry.get() self._moreless = self._moreless_entry.get() self._dialog_window.destroy() def _on_cancel_button(self): ''' carries out action if cancel button was clicked ''' self._dialog_window.destroy()
bsmorton/Othello
othello_prompt.py
othello_prompt.py
py
6,226
python
en
code
0
github-code
6
11782658861
# -*- coding: utf-8 -*- from random import randint class StaticAnswers: """ collection of callable static/ semi-static strings """ def __init__(self, nick=""): self.nickname = nick self.helpfile = { 'help': '!help -- display this text', 'version': '!version domain.tld -- receive XMPP server version', 'uptime': '!uptime domain.tld -- receive XMPP server uptime', 'contact': '!contact domain.tld -- receive XMPP server contact address info', 'xep': '!xep XEP Number -- recieve information about the specified XEP' } self.possible_answers = { '1': 'I heard that, %s.', '2': 'I am sorry for that %s.', '3': '%s did you try turning it off and on again?' } self.error_messages = { '1': 'not reachable', '2': 'not a valid target' } self.keywords = { "keywords": ["!help", "!uptime", "!version", "!contact", "!xep"], "domain_keywords": ["!uptime", "!version", "!contact"], "no_arg_keywords": ["!help"], "number_keywords": ["!xep"] } def keys(self, key=""): # if specific keyword in referenced return that if key in self.keywords.keys(): return self.keywords[key] # in any other case return the whole dict return self.keywords["keywords"] def gen_help(self): helpdoc = "\n".join(['%s' % value for (_, value) in self.helpfile.items()]) return helpdoc def gen_answer(self): possible_answers = self.possible_answers return possible_answers[str(randint(1, possible_answers.__len__()))] % self.nickname def error(self,code): try: text = self.error_messages[str(code)] except KeyError: return 'unknown error' return text
mightyBroccoli/xmpp-chatbot
common/strings.py
strings.py
py
1,618
python
en
code
7
github-code
6
2026763119
import hashlib import os import shutil import zipfile import numpy as np def extract_aab(aab_file, extract_dir): """ 解压aab文件到指定目录 :param aab_file: aab文件路径 :param extract_dir: 解压目录 """ with zipfile.ZipFile(aab_file, 'r') as z: print(extract_dir) z.extractall(extract_dir) def get_aab_feature(aab_dir): """ 提取aab文件的特征 :param aab_dir: aab文件解压后的目录 :return: 特征向量 """ feature = [] print(aab_dir) for root, dirs, files in os.walk(aab_dir): for file in files: file_path = os.path.join(root, file) with open(file_path, 'rb') as f: # 读取文件的前16个字节作为特征 feature.append(f.read(16)) if feature: feature = np.vstack(feature) print(feature) else: feature = np.zeros((0,), dtype=np.uint8) return feature def compare_aab_features(feature1, feature2): """ 比较两个aab文件的特征 :param feature1: 第一个aab文件的特征向量 :param feature2: 第二个aab文件的特征向量 :return: 相似度分数,范围在0到1之间 """ # 计算两个特征向量的哈希值 hash1 = hash(feature1.tobytes()) hash2 = hash(feature2.tobytes()) print("hash1: ", hash1) print("hash2: ", hash2) # 比较两个哈希值的汉明距离,返回相似度分数 hamming_distance = bin(hash1 ^ hash2).count('1') print("hamming distance: ", hamming_distance) similarity = 1 - hamming_distance / max(feature1.size * 8, feature2.size * 8) return similarity def compare_aab_files(aab_file_path1, aab_file_path2): """ 比较两个aab文件的相似度 :param aab_file_path1: 第一个aab文件路径 :param aab_file_path2: 第二个aab文件路径 :return: 相似度分数,范围在0到1之间 """ try: # 解压第一个aab文件到临时目录 aab_dir1 = 'tmp1' extract_aab(aab_file_path1, aab_dir1) feature1 = get_aab_feature(aab_dir1) shutil.rmtree(aab_dir1) # 解压第二个aab文件到临时目录 aab_dir2 = 'tmp2' extract_aab(aab_file_path2, aab_dir2) feature2 = get_aab_feature(aab_dir2) shutil.rmtree(aab_dir2) # 比较两个aab文件的特征 similarity = compare_aab_features(feature1, feature2) return similarity except (IOError, zipfile.BadZipFile, KeyError) as e: # 处理文件读写异常、文件格式错误等异常情况 print(f"Error: {str(e)}") if __name__ == '__main__': print(compare_aab_files("a.aab","b.aab"))
Nienter/mypy
personal/aabcom.py
aabcom.py
py
2,731
python
zh
code
0
github-code
6
40467524976
def solution(e, starts): num = [0 for _ in range(e+1)] # end까지 개수 저장하기 for i in range(1, e+1): for j in range(i, e+1): idx = i * j # j * k가 e보다 크다면 break if idx > e: break # 숫자가 동일한 경우 1 증가 if i == j: num[idx] # 숫자가 다른 경우 2 증가 else: num[idx] = num[idx] + 2 result = [0] * (e+1) max_value = 0 for i in range(e, 0, -1): if num[i] >= max_value: max_value = num[i] result[i] = i else: result[i] = result[i + 1] return [result[start] for start in starts]
Cho-El/coding-test-practice
프로그래머스 문제/파이썬/연습문제/억억단을 외우자.py
억억단을 외우자.py
py
739
python
ko
code
0
github-code
6
9424927662
APPNAME = "Aislinn" VERSION = "0.0.1" from waflib import Utils BIN_FILES = [ "bin/aislinn", "bin/aislinn-cc", "bin/aislinn-c++", "bin/mpicc", "bin/mpicxx" ] def options(ctx): ctx.load("compiler_cc python") def configure(ctx): ctx.load("compiler_cc python") if not ctx.env.CFLAGS: ctx.env.append_value("CFLAGS", "-O2") ctx.env.append_value("CFLAGS", "-g") ctx.env.append_value("CFLAGS", "-Wall") def build(ctx): ctx.recurse("src/libs/aislinn") ctx.recurse("src/libs/mpi") ctx.recurse("src/aislinn") ctx.install_files("${PREFIX}/bin", BIN_FILES, chmod=Utils.O755)
spirali/aislinn
wscript
wscript
638
python
en
code
10
github-code
6
18680639270
import collections import torchvision.transforms as transforms import os import json try: from IPython import embed except: pass _DATASETS = {} Dataset = collections.namedtuple( 'Dataset', ['trainset', 'testset']) def _add_dataset(dataset_fn): _DATASETS[dataset_fn.__name__] = dataset_fn return dataset_fn def _get_transforms(augment=True, normalize=None): if normalize is None: normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) basic_transform = [transforms.ToTensor(), normalize] transform_train = [] if augment: transform_train += [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), ] else: transform_train += [ transforms.Resize(256), transforms.CenterCrop(224), ] transform_train += basic_transform transform_train = transforms.Compose(transform_train) transform_test = [ transforms.Resize(256), transforms.CenterCrop(224), ] transform_test += basic_transform transform_test = transforms.Compose(transform_test) return transform_train, transform_test def _get_mnist_transforms(augment=True, invert=False, transpose=False): transform = [ transforms.ToTensor(), ] if invert: transform += [transforms.Lambda(lambda x: 1. - x)] if transpose: transform += [transforms.Lambda(lambda x: x.transpose(2, 1))] transform += [ transforms.Normalize((.5,), (.5,)), transforms.Lambda(lambda x: x.expand(3, 32, 32)) ] transform_train = [] transform_train += [transforms.Pad(padding=2)] if augment: transform_train += [transforms.RandomCrop(32, padding=4)] transform_train += transform transform_train = transforms.Compose(transform_train) transform_test = [] transform_test += [transforms.Pad(padding=2)] transform_test += transform transform_test = transforms.Compose(transform_test) return transform_train, transform_test def _get_cifar_transforms(augment=True): transform = [ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ] transform_train = [] if augment: transform_train += [ transforms.Pad(padding=4, fill=(125, 123, 113)), transforms.RandomCrop(32, padding=0), transforms.RandomHorizontalFlip()] transform_train += transform transform_train = transforms.Compose(transform_train) transform_test = [] transform_test += transform transform_test = transforms.Compose(transform_test) return transform_train, transform_test def set_metadata(trainset, testset, config, dataset_name): trainset.metadata = { 'dataset': dataset_name, 'task_id': config.task_id, 'task_name': trainset.task_name, } testset.metadata = { 'dataset': dataset_name, 'task_id': config.task_id, 'task_name': testset.task_name, } return trainset, testset @_add_dataset def inat2018(root, config): from dataset.inat import iNat2018Dataset transform_train, transform_test = _get_transforms() trainset = iNat2018Dataset(root, split='train', transform=transform_train, task_id=config.task_id) testset = iNat2018Dataset(root, split='val', transform=transform_test, task_id=config.task_id) trainset, testset = set_metadata(trainset, testset, config, 'inat2018') return trainset, testset def load_tasks_map(tasks_map_file): assert os.path.exists(tasks_map_file), tasks_map_file with open(tasks_map_file, 'r') as f: tasks_map = json.load(f) tasks_map = {int(k): int(v) for k, v in tasks_map.items()} return tasks_map @_add_dataset def cub_inat2018(root, config): """This meta-task is the concatenation of CUB-200 (first 25 tasks) and iNat (last 207 tasks). - The first 10 tasks are classification of the animal species inside one of 10 orders of birds in CUB-200 (considering all orders except passeriformes). - The next 15 tasks are classification of species inside the 15 families of the order of passerifomes - The remaining 207 tasks are classification of the species inside each of 207 families in iNat As noted above, for CUB-200 10 taks are classification of species inside an order, rather than inside of a family as done in the iNat (recall order > family > species). This is done because CUB-200 has very few images in each family of bird (expect for the families of passeriformes). Hence, we go up step in the taxonomy and consider classification inside a orders and not families. """ NUM_CUB = 25 NUM_CUB_ORDERS = 10 NUM_INAT = 207 assert 0 <= config.task_id < NUM_CUB + NUM_INAT transform_train, transform_test = _get_transforms() if 0 <= config.task_id < NUM_CUB: # CUB from dataset.cub import CUBTasks, CUBDataset tasks_map_file = os.path.join(root, 'cub/CUB_200_2011', 'final_tasks_map.json') tasks_map = load_tasks_map(tasks_map_file) task_id = tasks_map[config.task_id] if config.task_id < NUM_CUB_ORDERS: # CUB orders train_tasks = CUBTasks(CUBDataset(root, split='train')) trainset = train_tasks.generate(task_id=task_id, use_species_names=True, transform=transform_train) test_tasks = CUBTasks(CUBDataset(root, split='test')) testset = test_tasks.generate(task_id=task_id, use_species_names=True, transform=transform_test) else: # CUB passeriformes families train_tasks = CUBTasks(CUBDataset(root, split='train')) trainset = train_tasks.generate(task_id=task_id, task='family', taxonomy_file='passeriformes.txt', use_species_names=True, transform=transform_train) test_tasks = CUBTasks(CUBDataset(root, split='test')) testset = test_tasks.generate(task_id=task_id, task='family', taxonomy_file='passeriformes.txt', use_species_names=True, transform=transform_test) else: # iNat2018 from dataset.inat import iNat2018Dataset tasks_map_file = os.path.join(root, 'inat2018', 'final_tasks_map.json') tasks_map = load_tasks_map(tasks_map_file) task_id = tasks_map[config.task_id - NUM_CUB] trainset = iNat2018Dataset(root, split='train', transform=transform_train, task_id=task_id) testset = iNat2018Dataset(root, split='val', transform=transform_test, task_id=task_id) trainset, testset = set_metadata(trainset, testset, config, 'cub_inat2018') return trainset, testset @_add_dataset def imat2018fashion(root, config): NUM_IMAT = 228 assert 0 <= config.task_id < NUM_IMAT from dataset.imat import iMat2018FashionDataset, iMat2018FashionTasks transform_train, transform_test = _get_transforms() train_tasks = iMat2018FashionTasks(iMat2018FashionDataset(root, split='train')) trainset = train_tasks.generate(task_id=config.task_id, transform=transform_train) test_tasks = iMat2018FashionTasks(iMat2018FashionDataset(root, split='validation')) testset = test_tasks.generate(task_id=config.task_id, transform=transform_test) trainset, testset = set_metadata(trainset, testset, config, 'imat2018fashion') return trainset, testset @_add_dataset def split_mnist(root, config): assert isinstance(config.task_id, tuple) from dataset.mnist import MNISTDataset, SplitMNISTTask transform_train, transform_test = _get_mnist_transforms() train_tasks = SplitMNISTTask(MNISTDataset(root, train=True)) trainset = train_tasks.generate(classes=config.task_id, transform=transform_train) test_tasks = SplitMNISTTask(MNISTDataset(root, train=False)) testset = test_tasks.generate(classes=config.task_id, transform=transform_test) trainset, testset = set_metadata(trainset, testset, config, 'split_mnist') return trainset, testset @_add_dataset def split_cifar(root, config): assert 0 <= config.task_id < 11 from dataset.cifar import CIFAR10Dataset, CIFAR100Dataset, SplitCIFARTask transform_train, transform_test = _get_cifar_transforms() train_tasks = SplitCIFARTask(CIFAR10Dataset(root, train=True), CIFAR100Dataset(root, train=True)) trainset = train_tasks.generate(task_id=config.task_id, transform=transform_train) test_tasks = SplitCIFARTask(CIFAR10Dataset(root, train=False), CIFAR100Dataset(root, train=False)) testset = test_tasks.generate(task_id=config.task_id, transform=transform_test) trainset, testset = set_metadata(trainset, testset, config, 'split_cifar') return trainset, testset @_add_dataset def cifar10_mnist(root, config): from dataset.cifar import CIFAR10Dataset from dataset.mnist import MNISTDataset from dataset.expansion import UnionClassificationTaskExpander transform_train, transform_test = _get_cifar_transforms() trainset = UnionClassificationTaskExpander(merge_duplicate_images=False)( [CIFAR10Dataset(root, train=True), MNISTDataset(root, train=True, expand=True)], transform=transform_train) testset = UnionClassificationTaskExpander(merge_duplicate_images=False)( [CIFAR10Dataset(root, train=False), MNISTDataset(root, train=False, expand=True)], transform=transform_test) return trainset, testset @_add_dataset def cifar10(root): from torchvision.datasets import CIFAR10 transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) trainset = CIFAR10(root, train=True, transform=transform, download=True) testset = CIFAR10(root, train=False, transform=transform) return trainset, testset @_add_dataset def cifar100(root): from torchvision.datasets import CIFAR100 transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) trainset = CIFAR100(root, train=True, transform=transform, download=True) testset = CIFAR100(root, train=False, transform=transform) return trainset, testset @_add_dataset def mnist(root): from torchvision.datasets import MNIST transform = transforms.Compose([ lambda x: x.convert("RGB"), transforms.Resize(224), transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (1., 1., 1.)), ]) trainset = MNIST(root, train=True, transform=transform, download=True) testset = MNIST(root, train=False, transform=transform) return trainset, testset @_add_dataset def letters(root): from torchvision.datasets import EMNIST transform = transforms.Compose([ lambda x: x.convert("RGB"), transforms.Resize(224), transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (1., 1., 1.)), ]) trainset = EMNIST(root, train=True, split='letters', transform=transform, download=True) testset = EMNIST(root, train=False, split='letters', transform=transform) return trainset, testset @_add_dataset def kmnist(root): from torchvision.datasets import KMNIST transform = transforms.Compose([ lambda x: x.convert("RGB"), transforms.Resize(224), transforms.ToTensor(), ]) trainset = KMNIST(root, train=True, transform=transform, download=True) testset = KMNIST(root, train=False, transform=transform) return trainset, testset @_add_dataset def stl10(root): from torchvision.datasets import STL10 transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) trainset = STL10(root, split='train', transform=transform, download=True) testset = STL10(root, split='test', transform=transform) trainset.targets = trainset.labels testset.targets = testset.labels return trainset, testset def get_dataset(root, config=None): return _DATASETS[config.name](os.path.expanduser(root), config)
awslabs/aws-cv-task2vec
datasets.py
datasets.py
py
12,841
python
en
code
96
github-code
6
1909072931
from pprint import pprint from config_loader import try_load_from_file from hpOneView.oneview_client import OneViewClient # To run this example fill the ip and the credentials bellow or use a configuration file config = { "ip": "<oneview_ip>", "credentials": { "userName": "<oneview_administrator_name>", "password": "<oneview_administrator_password>", } } # Try load config from a file (if there is a config file) config = try_load_from_file(config) oneview_client = OneViewClient(config) # To run this example you can define an logical interconnect uri (logicalInterconnectUri) and the ethernet network uri # or the example will attempt to retrieve those automatically from the appliance. logical_interconnect_uri = None ethernet_network_uri = None # Attempting to get first LI and Ethernet uri and use them for this example if logical_interconnect_uri is None: logical_interconnect_uri = oneview_client.logical_interconnects.get_all()[0]['uri'] if ethernet_network_uri is None: ethernet_network_uri = oneview_client.ethernet_networks.get_all()[0]['uri'] options = { "name": "Uplink Set Demo", "status": "OK", "logicalInterconnectUri": logical_interconnect_uri, "networkUris": [ ethernet_network_uri ], "fcNetworkUris": [], "fcoeNetworkUris": [], "portConfigInfos": [], "connectionMode": "Auto", "networkType": "Ethernet", "manualLoginRedistributionState": "NotSupported", } # Create an uplink set print("\nCreate an uplink set") created_uplink_set = oneview_client.uplink_sets.create(options) print("Created uplink set '{name}' successfully.\n uri = '{uri}'".format(**created_uplink_set)) # Update an uplink set print("\nUpdate an uplink set") created_uplink_set['name'] = 'Renamed Uplink Set Demo' updated_uplink_set = oneview_client.uplink_sets.update(created_uplink_set) print("Updated uplink set name to '{name}' successfully.\n uri = '{uri}'".format(**updated_uplink_set)) # Get a paginated list of uplink set resources sorting by name ascending and filtering by status print("\nGet a list of uplink sets") uplink_sets = oneview_client.uplink_sets.get_all(0, 15, sort='name:ascending') for uplink_set in uplink_sets: print(' %s' % uplink_set['name']) # Get an uplink set resource by name print("\nGet uplink set by name") uplink_set = oneview_client.uplink_sets.get_by('name', 'Renamed Uplink Set Demo')[0] print("Found uplink set at uri '{uri}'\n by name = '{name}'".format(**uplink_set)) # Add an ethernet network to the uplink set # To run this example you must define an ethernet network uri or ID below ethernet_network_id = None if ethernet_network_id: print("\nAdd an ethernet network to the uplink set") uplink_set = oneview_client.uplink_sets.add_ethernet_networks(created_uplink_set['uri'], ethernet_network_id) print("The uplink set with name = '{name}' have now the networkUris:\n {networkUris}".format(**uplink_set)) # Get an uplink set resource by uri print("\nGet an uplink set by uri") uplink_set = oneview_client.uplink_sets.get(created_uplink_set['uri']) pprint(uplink_set) # Remove an ethernet network from the uplink set # To run this example you must define an ethernet network uri or ID below ethernet_network_id = None if ethernet_network_id: print("\nRemove an ethernet network of the uplink set") uplink_set = oneview_client.uplink_sets.remove_ethernet_networks(created_uplink_set['uri'], ethernet_network_id) print("The uplink set with name = '{name}' have now the networkUris:\n {networkUris}".format(**uplink_set)) # Get the associated ethernet networks of an uplink set print("\nGet the associated ethernet networks of the uplink set") networks = oneview_client.uplink_sets.get_ethernet_networks(created_uplink_set['uri']) pprint(networks) # Delete the recently created uplink set print("\nDelete the uplink set") oneview_client.fc_networks.delete(updated_uplink_set) print("Successfully deleted the uplink set")
HewlettPackard/python-hpOneView
examples/uplink_sets.py
uplink_sets.py
py
3,986
python
en
code
86
github-code
6
2000640644
import webapp2 import jinja2 from google.appengine.api import users from google.appengine.ext import ndb import os from snippets import Words # from Tkinter import * JINJA_ENVIRONMENT=jinja2.Environment(loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], autoescape=True ) class Add(webapp2.RequestHandler): def split(self, word): return [char for char in word] def merge(self, word): new='' for x in word: new += x return new def sort(self, word): split_data =self.split(word) # print(split_data) sorted_alphabets = sorted(split_data) # print(sorted_alphabets) merged_word = self.merge(sorted_alphabets) return merged_word # def incrementCounter(self, user) def get(self): self.response.headers['Content-Type'] = 'text/html' display_message='Add words in the Anagram Engine' Template_values ={ 'display_message': display_message } template = JINJA_ENVIRONMENT.get_template('add.html') self.response.write(template.render(Template_values)) def post(self): action = self.request.get('add_button') # print (action) user = users.get_current_user() # print(myuser) add_string=self.request.get('word_input') sorted_alphabets = sorted(self.split(add_string.lower())) keyword=user.user_id() + self.merge(sorted_alphabets) if action == 'Add': key = ndb.Key('Words', keyword) word = key.get() myuser_key= ndb.Key('MyUser', user.user_id()) myuser=myuser_key.get() if word == None: word = Words(id=keyword) word.count_of_words=0 word.put() myuser.uniqueAnagramCounter=myuser.uniqueAnagramCounter+1 myuser.put() string = keyword if string == '' or string == None or len(string)<3: self.redirect('/add') return word_doesnt_exists = True List = [] for i in word.wordsList: print(i) List.append(i) print(List.count(add_string)) if List.count(add_string.lower())>0: word_doesnt_exists=False print('word exists') if(word_doesnt_exists): word.wordsList.append(add_string.lower()) word.count_of_words=word.count_of_words+1 word.alphabet_no_List.append(len(add_string)) word.put() myuser.wordCounter= myuser.wordCounter+1 myuser.put() # Code to read from text document # root = Tk() # root.fileName = filedialog.askopenfilename(filetypes =(("All text file", "*.txt"))) dict = [] f = open("words.txt", "r") for line in f.readlines(): # sorted_word_from_text = self.merge(sorted(self.split(line.strip()))) # if(line.rstrip()): # print (sorted_word_from_text) dict.append(line.rstrip()) # user = users.get_current_user() file_action = self.request.get('add_from_files') if file_action=='Add': print(len(dict)) for i in dict: if len(i)>0: keyword1=user.user_id() + self.sort(i) key = ndb.Key('Words', keyword1) word = key.get() # print(word) new_word = False if word!=None: if word.wordsList.count(i)==0: word.wordsList.append(i) word.count_of_words=word.count_of_words+1 word.alphabet_no_List.append(len(i)) word.put() # word.wordsList.append(i) # word.count_of_words=word.count_of_words+1 # word.alphabet_no_List.append(len(i)) # word.put() else: new_word=True if(new_word): word = Words(id=keyword1) print(i + " word is added") word.wordsList.append(i) word.count_of_words=1 word.alphabet_no_List.append(len(i)) word.put() print(i) self.redirect('/add') self.redirect('/add') # raw_word =self.request.get('word_input') # sorted_alphabets = sorted(self.split(raw_word.lower())) # user = users.get_current_user() # # used as a key to display only certain content to certain # keyword =user.user_id()+merge(sorted_alphabets) # print(keyword) # # if action =='Add': # # # # use user_id()+ keyword as the key. # word_key = ndb.Key('Words', keyword) # word = word_key.get() # # if word==None: # # word = Word(id=keyword) # word.word = raw_word # word.count_of_alphabets = len(raw_word) # word.count_of_words = 1 # word.put() # word.word.append(raw_word) # word.put() # self.redirect('/add') # # else: # word.word.append(raw_word) # word.count_of_alphabets = len(raw_word) # countOfWords = word.count_of_words # word.count_of_words=countOfWords+1 # word.put() # self.redirect('/add')
yolo117/Anagram-Checker
add.py
add.py
py
5,784
python
en
code
0
github-code
6
24287696833
def reachable(nums): i = 0 while i < len(nums) - 1: if nums[i] == 0: return False else: i += nums[i] if i == len(nums) - 1: return True return False def main(): assert reachable([1, 3, 1, 2, 0.1]) assert not reachable([1, 2, 1, 0, 0]) if __name__ == '__main__': main()
ckallum/Daily-Coding-Problem
solutions/#192.py
#192.py
py
365
python
en
code
0
github-code
6
19601208421
import sublime import sublime_plugin import re class Divideipv4segmentsCommand(sublime_plugin.TextCommand): def run(self, edit): full_select = sublime.Region(0, self.view.size()) splitted = self.view.split_by_newlines(full_select) text_archive = [] for text_line in splitted: text = self.view.substr(text_line) if text not in text_archive: text_archive.append(text) text_archive.sort() prev_segment = "" for index, ip in enumerate(text_archive): segment_search = re.search(r"(^\d{1,3}\.\d{1,3}\.\d{1,3})", ip) if segment_search: segment = segment_search.group() if segment != prev_segment and index > 0: text_archive[index] = "\n{}".format(ip) prev_segment = segment self.view.erase(edit, sublime.Region(0, self.view.size())) self.view.insert( edit, 0, "\n".join(text_archive) )
opendefinition/Threathunterspack
divideipv4segments.py
divideipv4segments.py
py
864
python
en
code
0
github-code
6
6581285508
from django.http import HttpResponse from django.http import HttpResponse import requests from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt import uuid reference_id = uuid.uuid4() def login(request): url = "https://test.cashfree.com/api/v1/order/create" payload = { "appid": "TEST3931154d6e90b54bfbc3b4946d511393", "secretKey": "TEST701a10a8d7389d719903c77dda9fa993fbc0db63", "orderId": reference_id, "orderAmount": "1", "orderCurrency": "INR", "oderNote": "pay", "customerName": "mohan", "customerEmail": "[email protected]", "customerPhone": "8494863493", # "returnUrl": "https://cashfree.com", } headers={ 'content_type':'application/json' } response = requests.request("POST", url, data=payload,headers=headers) print(response.text) return render(request,'home.html',{"response":response.text}) def payment_info(request): print(request.data) if request.method == 'POST': # Fetch the payment response details from the request order_id = request.POST.get('order_id') payment_status = request.POST.get('payment_status') print(order_id) print(payment_status) return None
Gunarjith/verceldeploy
masterlink/views.py
views.py
py
1,350
python
en
code
0
github-code
6
29210359176
import streamlit as st from PIL import Image import numpy as np def app(): display = Image.open('./Attendance-management.jpg') display = np.array(display) st.image(display) st.markdown(""" <style> .font { font-size:20px ; font-family: 'Cooper Black'; text-align: center; color: #000000;} </style> """, unsafe_allow_html=True) st.markdown('<h1 class="font">Made With ❤️ By Debasish</h1>', unsafe_allow_html=True)
dest-royer02/Attendance_Application
pages/welcomePage.py
welcomePage.py
py
468
python
en
code
1
github-code
6
38416857272
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from core.models import * from recipe.serializers import RecipeSerializer, RecipeDetailSerializer RECIPE_URL = reverse('recipe:recipe-list') # /api/recipe/recipes # /api/recipe/recipes/1/ def detail_url(recipe_id): """return recipe detail url""" return reverse('recipe:recipe-detail', args=[recipe_id]) def sample_tag(user, name='Main Course'): """Create and return sample tag""" return Tag.objects.create(user=user, name=name) def sample_ingredient(user, name='Cinnamon'): """Create and return sample ingredient""" return Ingredient.objects.create(user=user, name=name) def sample_recipe(user,**params): """Create and return sample recipe""" test_recipe = { 'title': 'Mushroom Chicken', 'time_minutes': 10, 'price': 5.00 } # update will create/update keys in dictionary test_recipe.update(params) return Recipe.objects.create(user=user, **test_recipe) class PublicRecipeTests(TestCase): """Test publicly avaialble tags API""" def setup(self): self.client = APIClient() def test_auth_required(self): res = self.client.get(RECIPE_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateTagsTests(TestCase): """Test the unauthenticated recipe API""" def setUp(self): self.user = get_user_model().objects.create_user( '[email protected]', 'testpass', ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_recipe(self): """Test retrieving a list of recipes""" sample_recipe(user=self.user) sample_recipe(user=self.user) res = self.client.get(RECIPE_URL) recipes = Recipe.objects.all().order_by('-id') serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_recipes_limited(self): """Test that recipes are retrieved for user""" user2 = get_user_model().objects.create_user( '[email protected]', 'testpass' ) sample_recipe(user=user2) sample_recipe(user=self.user) res = self.client.get(RECIPE_URL) recipes = Recipe.objects.filter(user=self.user) serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data, serializer.data) def test_view_recipe_detail(self): """TEst viewing recipe detail""" recipe=sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) recipe.ingredients.add(sample_ingredient(user=self.user)) url = detail_url(recipe.id) res = self.client.get(url) serializer = RecipeDetailSerializer(recipe) self.assertEqual(res.data, serializer.data) def test_create_recipe(self): """Test creating recipe""" new_recipe = { 'title': 'Cake', 'time_minutes': 30, 'price': 15.00 } res = self.client.post(RECIPE_URL, new_recipe) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) for key in new_recipe.keys(): self.assertEqual(new_recipe[key], getattr(recipe, key)) def test_create_recipe_with_tags(self): """Creating recipe with tags""" tag1 = sample_tag(user=self.user, name='Vegan') tag2 = sample_tag(user=self.user, name='Dessert') new_recipe = { 'title': 'CheeseCake', 'tags': [tag1.id, tag2.id], 'time_minutes': 30, 'price': 15.00 } res = self.client.post(RECIPE_URL, new_recipe) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) tags = recipe.tags.all() self.assertEqual(tags.count(), 2) self.assertIn(tag1, tags) self.assertIn(tag2, tags) def test_create_recipe_with_ingredients(self): """Creating recipe with ingredients""" ingredient1 = sample_ingredient(user=self.user, name='Shrimp') ingredient2 = sample_ingredient(user=self.user, name='Ginger') new_recipe = { 'title': 'Prawn curry', 'ingredients': [ingredient1.id, ingredient2.id], 'time_minutes': 25, 'price': 20.00 } res = self.client.post(RECIPE_URL, new_recipe) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) ingredients = recipe.ingredients.all() self.assertEqual(ingredients.count(), 2) self.assertIn(ingredient1, ingredients) self.assertIn(ingredient2, ingredients) def test_partial_update_recipe(self): """test updating recipe with patch""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) new_tag = sample_tag(user=self.user, name='Curry') payload = {'title': 'Chicken tikka', 'tags': [new_tag.id]} url = detail_url(recipe.id) self.client.patch(url,payload) recipe.refresh_from_db() self.assertEqual(recipe.title, payload['title']) tags = recipe.tags.all() self.assertEqual(len(tags), 1) self.assertIn(new_tag, tags) def test_full_update_reciple(self): """Test updating a recipe with put""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) payload = { 'title': 'Spaghetti', 'time_minutes': 15, 'price': 10.00 } url = detail_url(recipe.id) self.client.put(url,payload) recipe.refresh_from_db() self.assertEqual(recipe.title, payload['title']) self.assertEqual(recipe.time_minutes, payload['time_minutes']) self.assertEqual(recipe.price, payload['price']) tags = recipe.tags.all() self.assertEqual(len(tags), 0)
deveshp530/recipe-app-api
app/recipe/tests/test_recipe.py
test_recipe.py
py
6,459
python
en
code
0
github-code
6
43111552824
from typing import Any, Dict, Iterable import pandas as pd from fugue import DataFrame, FugueWorkflow, PandasDataFrame, out_transform, transform from fugue.constants import FUGUE_CONF_WORKFLOW_CHECKPOINT_PATH def test_transform(): pdf = pd.DataFrame([[1, 10], [0, 0], [1, 1], [0, 20]], columns=["a", "b"]) def f1(df: pd.DataFrame) -> pd.DataFrame: return df.sort_values("b").head(1) result = transform(pdf, f1, schema="*") assert isinstance(result, pd.DataFrame) assert result.values.tolist() == [[0, 0]] # schema: * def f2(df: pd.DataFrame) -> pd.DataFrame: return df.sort_values("b").head(1) result = transform(pdf, f2) assert isinstance(result, pd.DataFrame) assert result.values.tolist() == [[0, 0]] result = transform(pdf, f2, partition=dict(by=["a"])) assert isinstance(result, pd.DataFrame) assert sorted(result.values.tolist(), key=lambda x: x[0]) == [[0, 0], [1, 1]] result = transform( pdf, f2, partition=dict(by=["a"]), force_output_fugue_dataframe=True ) assert isinstance(result, DataFrame) ppdf = PandasDataFrame(pdf) assert isinstance(transform(ppdf, f2), DataFrame) # schema: * def f3(df: pd.DataFrame, called: callable) -> pd.DataFrame: called() return df cb = Callback() result = transform(pdf, f3, callback=cb.called) assert 1 == cb.ct def test_transform_from_yield(tmpdir): # schema: *,x:int def f(df: pd.DataFrame) -> pd.DataFrame: return df.assign(x=1) dag = FugueWorkflow() dag.df([[0]], "a:int").yield_dataframe_as("x1") dag.df([[1]], "b:int").yield_dataframe_as("x2") dag.run("", {FUGUE_CONF_WORKFLOW_CHECKPOINT_PATH: str(tmpdir)}) result = transform(dag.yields["x1"], f) assert isinstance(result, DataFrame) assert result.as_array(type_safe=True) == [[0, 1]] result = transform( dag.yields["x2"], f, engine_conf={FUGUE_CONF_WORKFLOW_CHECKPOINT_PATH: str(tmpdir)}, ) assert isinstance(result, DataFrame) assert result.as_array(type_safe=True) == [[1, 1]] def test_out_transform(tmpdir): pdf = pd.DataFrame([[1, 10], [0, 0], [1, 1], [0, 20]], columns=["a", "b"]) class T: def __init__(self): self.n = 0 def f(self, df: Iterable[Dict[str, Any]]) -> None: self.n += 1 t = T() out_transform(pdf, t.f) assert 1 == t.n t = T() out_transform(pdf, t.f, partition=dict(by=["a"])) assert 2 == t.n dag = FugueWorkflow() dag.df(pdf).yield_dataframe_as("x1") dag.df(pdf).yield_dataframe_as("x2") dag.run("", {FUGUE_CONF_WORKFLOW_CHECKPOINT_PATH: str(tmpdir)}) t = T() out_transform(dag.yields["x1"], t.f) assert 1 == t.n t = T() out_transform( dag.yields["x2"], t.f, partition=dict(by=["a"]), engine_conf={FUGUE_CONF_WORKFLOW_CHECKPOINT_PATH: str(tmpdir)}, ) assert 2 == t.n # schema: * def f3(df: pd.DataFrame, called: callable) -> pd.DataFrame: called() return df cb = Callback() result = out_transform(pdf, f3, callback=cb.called) assert 1 == cb.ct class Callback: def __init__(self): self.ct = 0 def called(self) -> None: self.ct += 1
ofili/Wrangle-and-Analyze-Data
venv/Lib/site-packages/tests/fugue/test_interfaceless.py
test_interfaceless.py
py
3,306
python
en
code
0
github-code
6
41348833415
# Configuration file for the Sphinx documentation builder. # root_doc = 'index' master_doc = 'index' # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = '' copyright = '2022, Aurelius Atlas Enterprise' author = 'Americo' release = '0.1' # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = [ 'sphinx.ext.intersphinx', 'sphinx.ext.autosectionlabel', #'myst_parser', ] source_suffix = ['.rst', '.md'] templates_path = ['_templates'] exclude_patterns = [] intersphinx_mapping = { 'sphinx': ('https://github.com/aureliusenterprise/helm-governance/blob/main/README.md', None), } # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output #alabaster is the other theme html_theme = "sphinx_rtd_theme" html_static_path = ['_static'] html_logo = '_static/logo/logo1.png' html_favicon = '_static/favicon/fav.png' # #html_style = 'theme1.css' def setup(app): app.add_stylesheet('theme1.css')
aureliusenterprise/doc_technical_manual
DOc/docs/source/conf.py
conf.py
py
1,408
python
en
code
0
github-code
6
8372518963
import pycosat from pprint import pprint # number of cells in sudoku NUM_CELLS = 81 # this can be used to interate all squares subset in 3x 3 # V V V # 1 2 3 4 5 6 7 8 9 #> 1 |0 0 0| 0 0 0| 0 0 0| # 2 |0 0 0| 0 0 0| 0 0 0| # 3 |0 0 0| 0 0 0| 0 0 0| # --------------------- #> 4 |0 0 0| 0 0 0| 0 0 0| # 5 |0 0 0| 0 0 0| 0 0 0| # 6 |0 0 0| 0 0 0| 0 0 0| # -------------------- #> 7 |0 0 0| 0 0 0| 0 0 0| # 8 |0 0 0| 0 0 0| 0 0 0| # 9 |0 0 0| 0 0 0| 0 0 0| SUBSQUARE_BOUDARIES = [1, 4, 7] # most digit in sudoku NUM_DIGITS = 9 def get_cell_value(row, column, digit): """ make unique id to a cell first number is a row second is a column third is a digit value Ex: the cell (1,3) and (3,1) with digit 7 there are diferentes id cell (1,3) = 137 cell (3,1) = 317 """ return row*100+column*10+ digit def get_base_clauses(): """ make all NUM_VARIABLES used in sudoku board, named by id Ex: for cell (1,1) and digit 7 can be named: 117 for cell (2,3) and digit 5 can be named: 235 """ base_clauses = [] for row in range(1, NUM_DIGITS+1): for column in range(1, NUM_DIGITS+1): clauses = [] for digit in range(1, NUM_DIGITS+1): clauses.append(get_cell_value(row,column,digit)) base_clauses.append(clauses) return base_clauses def get_unique_cells_clauses(): """ make clauses guarantee that a cell can just appear once for sudoku board. to make this each cell will have the next cell with the clause: ~current_digit or ~next_digit Example: to cell 111 there the clauses: (-111,-112),(-111,-113),(-111,-114),...,(-111,-999) """ unique_digits_clauses = [] for row in range(1, NUM_DIGITS+1): for column in range(1,NUM_DIGITS+1): for digit in range(1, NUM_DIGITS+1): for next_digit in range(digit+1, NUM_DIGITS+1): cell_id = -get_cell_value(row,column,digit) next_cell_id = -get_cell_value(row,column,next_digit) unique_digits_clauses.append([cell_id,next_cell_id]) return unique_digits_clauses def get_unique_subset_clauses(board_subset): """ this guarantee that a cell appear only once in the board subset """ subset_clauses = [] subset = enumerate(board_subset) for index, first_tuple in enumerate(board_subset): for n_index, n_tuple in enumerate(board_subset): if index < n_index: for digit in range(1, NUM_DIGITS + 1): clause = [-get_cell_value( first_tuple[0], first_tuple[1], digit), -get_cell_value( n_tuple[0], n_tuple[1], digit)] subset_clauses.append(clause) return subset_clauses def get_row_unique_clauses(): """ this guarantee that a cell in row appear only once in the row """ unique_clauses = [] for row in range(1,NUM_DIGITS +1): subset = [] for column in range(1, NUM_DIGITS+1): subset.append((row,column)) unique_clauses.extend(get_unique_subset_clauses(subset)) return unique_clauses def get_columns_unique_clauses(): """ this guarantee that a cell in column appear only once in the columns """ unique_clauses = [] for row in range(1,NUM_DIGITS +1): subset = [] for column in range(1, NUM_DIGITS+1): subset.append((column,row)) unique_clauses.extend(get_unique_subset_clauses(subset)) return unique_clauses def get_square_unique_clauses(): """ this guarantee that a cell in square appear only once in the squares """ subset_clauses = [] for row in SUBSQUARE_BOUDARIES: for column in SUBSQUARE_BOUDARIES: subset = [] # make subset 3x3 for k in range(9): subset.append((row+k%3,column+k//3)) subset_clauses.extend(get_unique_subset_clauses(subset)) return subset_clauses def get_sudoku_clauses(): """ mix all defined clauses to guarantee a valid sudoku """ sudoku_clauses = [] sudoku_clauses.extend(get_base_clauses()) sudoku_clauses.extend(get_unique_cells_clauses()) sudoku_clauses.extend(get_row_unique_clauses()) sudoku_clauses.extend(get_columns_unique_clauses()) sudoku_clauses.extend(get_square_unique_clauses()) return sudoku_clauses def get_single_clauses(sudoku_board): """ This method make a clauses that can be answer true to solve the sudoku board """ single_clauses = [] for row in range(1, NUM_DIGITS+1): for column in range(1,NUM_DIGITS+1): cell_value = sudoku_board[row-1][column-1] if cell_value: single_clauses.append( [get_cell_value(row,column,cell_value)]) return single_clauses def get_cell_solution(sudoku_solution, row, column): """ verify a cell id in a sudoku solution list """ for digit in range(1, NUM_DIGITS+1): if get_cell_value(row,column,digit) in sudoku_solution: return digit return -1 def solve_sudoku(sudoku_board): """ Generate a sudoku clauses, apply in a pycosat and get sudoku solution """ sudoku_clauses = get_sudoku_clauses() single_clauses = get_single_clauses(sudoku_board) sudoku_clauses.extend(single_clauses) sudoku_solution = set(pycosat.solve(sudoku_clauses)) for row in range(1, NUM_DIGITS+1): for column in range(1, NUM_DIGITS+1): sudoku_board[row-1][column-1] = get_cell_solution( sudoku_solution, row, column) return sudoku_board def main(): print ("Sudoku problem:") sudoku_problem = [[0, 2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 6, 0, 0, 0, 0, 3], [0, 7, 4, 0, 8, 0, 0, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 2], [0, 8, 0, 0, 4, 0, 0, 1, 0], [6, 0, 0, 5, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 7, 8, 0], [5, 0, 0, 0, 0, 9, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 4, 0]] pprint(sudoku_problem) print('\nGenerating solution:') sudoku_solution = solve_sudoku(sudoku_problem) pprint(sudoku_solution) if __name__ == '__main__': main()
macartur/programming_ai
sudoku.py
sudoku.py
py
6,456
python
en
code
0
github-code
6
35430507994
# HOHMANN GUI # A GUI version of HOHMANN BASIC. # Basic program to calculate a Hohmann transfer between two coplanar, circular orbits. # The altitudes of the two orbits are defined by user input. # --------------------------------------------------- # Imports from orbit_toolbox import hohmann, Transfer from bodies_toolbox import Planet from guizero import App, Text, TextBox, PushButton # --------------------------------------------------- # Constants Earth_radius = Planet["Earth"]["radius"] # --------------------------------------------------- # Functions def hohmann_calc(): Hoh_1 = Transfer(1, "hohmann", "09012022") hohmann_result = Hoh_1.hohmann("Earth", int(h_start_input.value)+Earth_radius, int(h_end_input.value)+Earth_radius) result_dv1.value = hohmann_result[0] result_dv2.value = hohmann_result[1] result_dv_total.value = hohmann_result[2] result_t_transfer.value = hohmann_result[3] # --------------------------------------------------- # App # App and grid frameworks app = App("Hohmann GUI", layout="grid") # Input text and boxes h_start_text = Text(app, text="Start altitude (km): ", grid=[0, 0]) h_start_input = TextBox(app, text="Insert start altitude (km) here", width="30", grid=[2, 0]) h_end_text = Text(app, text="End altitude (km): ", grid=[0, 1]) h_end_input = TextBox(app, text="Insert end altitude (km) here", width="30", grid=[2, 1]) # Calculation button h_start_set = PushButton(app, command=hohmann_calc, text="Calculate transfer", grid=[1, 2]) # Output text and boxes dv1_text = Text(app, text="dv1 (km.s^-1) =", grid=[0, 3]) result_dv1 = TextBox(app, text="dv1 =", width="30", grid=[2, 3]) dv2_text = Text(app, text="dv2 (km.s^-1) =", grid=[0, 4]) result_dv2 = TextBox(app, text="dv2 =", width="30", grid=[2, 4]) dv_total_text = Text(app, text="dv_total (km.s^-1) =", grid=[0, 5]) result_dv_total = TextBox(app, text="dv_total =", width="30", grid=[2, 5]) t_transfer_text = Text(app, text="t_transfer (s) =", grid=[0, 6]) result_t_transfer = TextBox(app, text="t_transfer =", width="30", grid=[2, 6]) app.display()
weasdown/orbit-toolbox
Hohmann_GUI.py
Hohmann_GUI.py
py
2,090
python
en
code
0
github-code
6
18481259162
import time from roman_integer import Roman def check_for_higher_numerals(numeral): if "_I_V" in numeral: numeral = numeral.replace("_I_V", "MMMM") return numeral if __name__ == "__main__": start = time.time() roman = Roman() numerals = [i.strip() for i in open("Data/p089_roman.txt").readlines()] old_count = 0 new_count = 0 for numeral in numerals: old_count += len(numeral) int_val = roman.convert_to_integer(numeral, disp=False) # print(numeral, int_val) proper_roman = roman.convert_to_numeral(int_val, disp=False) corrected_roman = check_for_higher_numerals(proper_roman) new_count += len(corrected_roman) print("Default form count:", old_count) print("Minimal form count:", new_count) print("Characters saved:", old_count - new_count) print("Calculated in:", time.time() - start)
BreadBug007/Project-Euler
Prob_89.py
Prob_89.py
py
857
python
en
code
0
github-code
6
25950565947
import sys import fileinput import csv import operator import numpy as np import scipy.spatial.distance as sd import pickle #python compare_google.py [google_match-norm] [avg-$count-norm] states.p statescores$count google = [] matrix = [] infile = sys.argv[2] google_reader = csv.reader(open(sys.argv[1], 'rb'), delimiter=',') matrix_reader = csv.reader(open(infile, 'rb'), delimiter=',') states = pickle.load(open(sys.argv[3], 'rb')) results = open(sys.argv[4], 'wb') weeks = 52 def compute_score(m, g): sum = 0 for i in range(m.shape[1]): sum += sd.euclidean(m[:,i],g[:,i]) score = sum/float(m.shape[1]) return score #store google data for row in google_reader: row = [(float(x) if x else 0) for x in row] google.append(np.array(row)) google = np.array(google) for row in matrix_reader: row = [(float(x) if x else 0) for x in row] matrix.append(np.array(row)) matrix = np.array(matrix) scores = {} for i in range(google.shape[1]): scores[str(i) + ' ' + states[i]] = sd.euclidean(matrix[:,i],google[:,i]) sorted_scores = sorted(scores.iteritems(), key=operator.itemgetter(1)) for name,score in sorted_scores: results.write(name+':'+str(score)+'\n') results.close()
kris-samala/LBSN
data_analysis/compare_states.py
compare_states.py
py
1,233
python
en
code
2
github-code
6
11816060482
import numpy as np import torch with open("pdtSEIKA.csv", "r") as f: f_reader = np.loadtxt(f, delimiter=',', dtype=np.float32) predict = f_reader f.close() tensor = torch.from_numpy(np.load(r"C:\Users\cchen\PycharmProjects\LearnPyTorch/K05_excluded_xyz.npy")) # 101778, # 15,10,10 with open("ai__K05_SEIKA2.csv", "w") as f: for item, result in zip(tensor, predict): pos = (item[0, 0, 0], item[5, 0, 0], item[10, 0, 0]) row = "{},{},{},{},{},{},{},{}\n".format(*pos, *result) f.write(row) f.close()
cchenyixuan/Banira
utils/predict_map.py
predict_map.py
py
545
python
en
code
0
github-code
6
72580436348
from fastapi import FastAPI from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware from reconocer_form import analyze_general_documents from base_datos import crear_registro import asyncio app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials = True, allow_methods = ["*"], allow_headers = ["*"] ) class Registro(BaseModel): url: str @app.get("/") def verRegistros(): return "registros" @app.post("/post") async def crearRegistro(regitsro: Registro): repuesta = await analyze_general_documents(regitsro.url) registro_guardado = await crear_registro(regitsro.url,repuesta) if registro_guardado: return repuesta return "no se pudo guardar" @app.put("/post") def crearRegistro(): return "hola" @app.delete("/delete") def crearRegistro(): return "hola"
jefryne/web_placas
ia/detectar documento/api.py
api.py
py
898
python
es
code
0
github-code
6
18882639437
#! /usr/bin/env python3 import sys import json from flask import Flask, request app = Flask(__name__) def is_browser(ua_string): return ua_string.split('/')[0].lower() == 'mozilla' @app.route("/") def hello(): msg_content = "Hello World!" if is_browser(request.headers['User-Agent']): return "<html><body><h1>{}</body></html>".format(msg_content) else: response = dict() response["msg"] = msg_content return json.dumps(response) @app.route("/name", methods=["POST"]) def greeting(): print(request.data, file=sys.stdout) req = json.loads(request.data) req["msg"] = "Hi, {}".format(req["name"]) return json.dumps(req) if __name__ == "__main__": app.run(host="0.0.0.0", port=int(sys.argv[1]))
glennneiger/estate-backend
example/simple.py
simple.py
py
770
python
en
code
0
github-code
6
71737201468
from typing import List from project.appliances.appliance import Appliance from project.people.child import Child class Room: def __init__(self, name: str, budget: float, members_count: int): self.family_name = name self.budget = budget self.members_count = members_count self.children: List[Child] = [] self.expenses = 0 @property def expenses(self): return self.__expenses @expenses.setter def expenses(self, value): if value < 0: raise ValueError("Expenses cannot be negative") self.__expenses = value def calculate_expenses(self, *args): total_expenses = 0 for list_obj in args: for obj in list_obj: if isinstance(obj, Appliance): total_expenses += obj.get_monthly_expense() else: total_expenses += obj.cost * 30 self.expenses = total_expenses def room_info(self): result_str = [ f"{self.family_name} with {self.members_count} members." f" Budget: {self.budget:.2f}$, Expenses: {self.expenses:.2f}$"] for idx, child in enumerate(self.children): result_str.append(f"--- Child {idx + 1} monthly cost: {(child.cost * 30):.2f}$") if hasattr(self, 'appliances'): appliances_monthly_cost = sum([a.get_monthly_expense() for a in self.appliances]) result_str.append(f"--- Appliances monthly cost: {appliances_monthly_cost:.2f}$") return '\n'.join(result_str)
tonytech83/Python-OOP
OOP_Exams/11_OOP_22_Aug_2020/hotel_everland/project/rooms/room.py
room.py
py
1,573
python
en
code
4
github-code
6
74291021627
import math import numpy as np from scipy.spatial import ConvexHull class LOS_guidance(): def __init__(self, params): self.ship_max_speed = params['ship_max_speed'] self.ship_ax_vel_lim = params['ship_ax_vel_lim'] self.ship_lat_acc_pos_lim = params['ship_lat_acc_pos_lim'] self.ship_lat_acc_neg_lim = params['ship_lat_acc_neg_lim'] self.ship_ax_acc_lim = params['ship_ax_acc_lim'] self.T_max_thrust = params['T_max_thrust'] self.T_min_thrust = params['T_min_thrust'] def ship_los_guidance(self, ship_phys_status, target_pos, dt=1 / 60): ship_position = ship_phys_status['pose'][0] heading_in = ship_phys_status['pose'][1] ship_speed_in = np.linalg.norm(ship_phys_status['velocity'][0]) ship_rot_spd_in = ship_phys_status['velocity'][1] def angle_between_vector_and_angle(vector, angle): # Calculate the angle between the vector and the x-axis vector_angle = math.atan2(vector[1], vector[0]) # Calculate the difference between the vector angle and the given angle angle_diff = vector_angle - angle # Ensure that the angle difference is within the range (-pi, pi] while angle_diff > math.pi: angle_diff -= 2 * math.pi while angle_diff <= -math.pi: angle_diff += 2 * math.pi # Return the absolute value of the angle difference return angle_diff ship_heading = heading_in ship_rot_spd = ship_rot_spd_in ship_speed = 0 distance_to_target = math.sqrt( (target_pos[0] - ship_position[0]) ** 2 + (target_pos[1] - ship_position[1]) ** 2) if not (distance_to_target >= -1 and distance_to_target <= 10000): angle_variance = 0 target_angle = (target_pos - ship_position) angle_variance = angle_between_vector_and_angle(target_angle, ship_heading) rotational_mul = angle_variance if not (angle_variance >= -10 and angle_variance <= 10): angle_variance = 0 if (angle_variance) > (math.pi / 4): rotational_mul = abs((math.pi / 2)) elif (angle_variance) < -(math.pi / 2): rotational_mul = - abs((math.pi / 2)) # rotational controller if abs(angle_variance) > 0.01 and abs(ship_rot_spd) <= abs(self.ship_ax_vel_lim): ship_rot_spd = -(rotational_mul / (math.pi / 2))*10 else: ship_rot_spd = 0 # translational controller if distance_to_target > 2: ship_speed = self.ship_max_speed elif distance_to_target >= 0.6: ship_speed = self.ship_max_speed/3 elif distance_to_target >= 0.3: ship_speed = self.ship_max_speed/8 else: ship_speed = 0 ship_rot_spd = 0 ship_vel = ship_speed*np.array([math.cos(heading_in), math.sin(heading_in)]) cmd_vel = [ship_vel, ship_rot_spd] #print("\rangle_variance, ship_rot_spd", np.degrees(heading_in), ship_rot_spd, end="") #print("\rTLeft, TRight", rTLeft.TRight, end="") return cmd_vel class LOS_VO_guidance(): def __init__(self, params): self.ship_max_speed = params['ship_max_speed'] self.ship_ax_vel_lim = params['ship_ax_vel_lim'] self.ship_lat_acc_pos_lim = params['ship_lat_acc_pos_lim'] self.ship_lat_acc_neg_lim = params['ship_lat_acc_neg_lim'] self.ship_ax_acc_lim = params['ship_ax_acc_lim'] self.T_max_thrust = params['T_max_thrust'] self.T_min_thrust = params['T_min_thrust'] self.detection_range = 10 self.spd_visual_multiplier = 2.5 self.los = LOS_guidance(params) self.vo_polygons = [] #parameters def ship_los_vo_guidance(self, phys_status, output_polygon, target_pos, sensor_data, dt=1 / 60): # First, this receives a database of ships in the world. the database is a dictionary # if there are no obstacles in range, it pursues the target using Line-of-sight guidance law # if there are VO cones in sight, it tries to evade the obstacle by maintaining speed and turning. # it prefers angles closer to the target. # if no trajectory is valid, it tries to decelerate to half the maximum speed # if there is still no trajectory, it tries to stop. #setting up variables self.phys_status = phys_status # updates phys status self.output_polygon = output_polygon self.sensor_data = sensor_data # get sensor_data self.vo_lines = [] self.vo_circles = [] # position and radius self.vo_cones = [] self.vo_polygons = [] ship_position = phys_status['pose'][0] heading_in = phys_status['pose'][1] ship_speed_in = np.linalg.norm(phys_status['velocity'][0]) ship_rot_spd_in = phys_status['velocity'][1] ship_heading = heading_in ship_rot_spd = ship_rot_spd_in ship_speed = 0 # recieving and processing the data self.filtered_objects_angle = self.sensor_simulator() # process the data self.vo_cone_generator() #generates VO cone # target_information distance_to_target = math.sqrt((target_pos[0] - ship_position[0]) ** 2 + (target_pos[1] - ship_position[1]) ** 2) target_vector = (target_pos - ship_position) target_angle = self.regularize_angle(math.atan2(target_vector[1], target_vector[0])) # search for valid angle target_speed = 2.0 self.angle_opacity = self.vo_theta_opacity(target_angle, target_speed) angle_rad = math.radians(3*self.index_with_lowest_number(self.angle_opacity)) angle_variance = self.regularize_angle(angle_rad - ship_heading) if abs(angle_variance) > math.pi * (1 / 8): target_speed = 1.5 self.angle_opacity = self.vo_theta_opacity(target_angle, target_speed) angle_rad = math.radians(3 * self.index_with_lowest_number(self.angle_opacity)) angle_variance = self.regularize_angle(angle_rad - ship_heading) if abs(angle_variance) > math.pi * (1.5 / 8): target_speed = 1.0 self.angle_opacity = self.vo_theta_opacity(target_angle, target_speed) angle_rad = math.radians(3 * self.index_with_lowest_number(self.angle_opacity)) angle_variance = self.regularize_angle(angle_rad - ship_heading) if abs(angle_variance) > math.pi * (1 / 4): target_speed = 0.5 self.angle_opacity = self.vo_theta_opacity(target_angle, target_speed) angle_rad = math.radians(3 * self.index_with_lowest_number(self.angle_opacity)) angle_variance = self.regularize_angle(angle_rad - ship_heading) if abs(angle_variance) > math.pi * (5 / 8): target_speed = -0.5 self.angle_opacity = self.vo_theta_opacity(target_angle, target_speed) angle_rad = math.radians(3 * self.index_with_lowest_number(self.angle_opacity)) angle_variance = self.regularize_angle(angle_rad - ship_heading) for theta in range(0,120): point = np.array( [self.spd_visual_multiplier*target_speed * math.cos(math.radians(theta*3)), self.spd_visual_multiplier*target_speed * math.sin(math.radians(theta*3))]) if self.angle_opacity[theta] < 1: #np.percentile(self.angle_opacity,10): self.vo_circles.append([self.phys_status["pose"][0]+point,0.05, (0,255,50), 1]) self.vo_lines.append([self.phys_status["pose"][0],[self.phys_status["pose"][0][0]+self.spd_visual_multiplier*target_speed*math.cos(angle_rad),self.phys_status["pose"][0][1]+self.spd_visual_multiplier*target_speed*math.sin(angle_rad)],(0,255,0)]) rotational_mul = angle_variance if target_speed < 0: rotational_mul = - rotational_mul if not (angle_variance >= -10 and angle_variance <= 10): angle_variance = 0 if (angle_variance) > (math.pi / 2): rotational_mul = abs((math.pi / 2)) elif (angle_variance) < -(math.pi / 2): rotational_mul = - abs((math.pi / 2)) # rotational controller if abs(angle_variance) > 0.01 and abs(ship_rot_spd) <= abs(self.ship_ax_vel_lim): ship_rot_spd = -(rotational_mul / (math.pi / 2))*10 else: ship_rot_spd = 0 # translational controller if distance_to_target > 2: ship_speed = target_speed elif distance_to_target >= 0.6: ship_speed = target_speed/3 elif distance_to_target >= 0.3: ship_speed = target_speed/8 else: ship_speed = 0 ship_rot_spd = 0 ship_vel = ship_speed*np.array([math.cos(heading_in), math.sin(heading_in)]) cmd_vel = [ship_vel, ship_rot_spd] return cmd_vel def vo_cone_generator(self): ship_pos = self.phys_status["pose"][0] ship_vel = self.phys_status["velocity"][0] ship_spd = abs(np.linalg.norm(self.phys_status["velocity"][0])) #vessel velocity indicator self.vo_lines.append([ship_pos,ship_pos+ship_vel*self.spd_visual_multiplier, (0, 0, 255)]) circle_color = (200, 200, 200, 255) line_width = 1 circle = [ship_pos, self.detection_range, circle_color, line_width] # object circle position self.vo_circles.append(circle) # circle representing collision distance of the object if self.filtered_objects_angle != None: for key, object in self.filtered_objects_angle.items(): object_pos = object[0].phys_status["pose"][0] # absolute object position object_vel = object[0].phys_status["velocity"][0] # absolute object velocity #object_radius = object[1] + object[2] # object VO_circle radius circle_color = (200, 0, 0, 255) line_width = 1 #circle = [object_pos, object_radius, circle_color, line_width] # object circle position #self.vo_circles.append(circle) # circle representing collision distance of the object pos_diff = object_pos - ship_pos object_distance = object[3] # distance from the object to the circle rel_spd = np.linalg.norm(object[0].phys_status["velocity"][0]-ship_vel) if object_distance < 0.1: # for avoiding divide by zero error object_distance = 0.1 start_rad = object[1] end_rad = object[2] object_velocity = object[0].phys_status["velocity"][0] #self.vo_cones.append([ship_pos, [start_rad, end_rad], object_distance*math.cos(tangent_angle)]) self.vo_cones.append([ship_pos+object_velocity*self.spd_visual_multiplier, [start_rad, end_rad], object_distance]) #print(math.degrees(self.filtered_objects)) pass def vo_theta_opacity(self, target_angle, spd_to_search): # when search spd = max_spd spd_to_search angle_opacity = np.linspace(start=0, stop=120, num=120, endpoint=False) for theta in range(0,120): delta_angle = target_angle - math.radians(theta*3) while delta_angle >= 1 * math.pi: delta_angle = delta_angle - 2 * math.pi while delta_angle <= -1 * math.pi: delta_angle = delta_angle + 2 * math.pi angle_diff_opacity = (abs(delta_angle/(math.pi)))*(30/80) angle_opacity[theta] = angle_diff_opacity for vo_cone in self.vo_cones: for theta in range(0, 120): point = np.array([self.spd_visual_multiplier*spd_to_search*math.cos(math.radians(theta*3)), self.spd_visual_multiplier**spd_to_search*math.sin(math.radians(theta*3))]) opacity = self.vo_cone_collision_detector(point + self.phys_status["pose"][0], vo_cone) if opacity > 1/5: opacity = 100 if opacity <1/10: opacity = 0 angle_opacity[theta] = angle_opacity[theta]+(opacity**2)*10 return angle_opacity def sensor_simulator_legacy(self): # receives dict(self.ships_database, **self.obstacle_database), which consists of dictionaries of objects(ship or obstacle). # extracts only {key, polygon} tuples using a for loop # then it filters only the keys of which its polygon is inside the detection range. # then it outputs {key: [polygon, phys_status]} to a dictionary. ship_pose = self.phys_status["pose"] ship_polygon = self.output_polygon objects_database = self.sensor_data origin_point = ship_pose[0] if not(objects_database): return filtered_objects = {} #print(objects_database) for key, object in objects_database.items(): # calculate distance between origin and closest point of polygon # print(key) object_pose = object.phys_status["pose"] object_vector = (object_pose[0] - ship_pose[0]) object_distance = (np.linalg.norm(object_vector)) #print(key, object_vector) # check if polygon is within detection range if object_distance <= self.detection_range: # gets object polygonal information poly_points = object.output_polygon # if there are no polygons, return nothing if poly_points == None: return #print(poly_points) (max_angle, min_angle) = self.get_min_max_angles(poly_points) FOV = (max_angle - min_angle) while FOV > 1 * math.pi: FOV = 2 * math.pi - FOV while FOV <= 0: FOV += 2 * math.pi object_radius = (object_distance * math.tan(FOV / 2)) self_radius = (self.get_largest_inner_product(ship_polygon, object_vector))/2 filtered_objects[key] = [object, object_radius, self_radius ] #print(" key, FOV object_radius self_radius : ", object_distance, math.degrees(FOV), object_radius, self_radius) return filtered_objects def sensor_simulator(self): # receives dict(self.ships_database, **self.obstacle_database), which consists of dictionaries of objects(ship or obstacle). # extracts only {key, polygon} tuples using a for loop # then it filters only the keys of which its polygon is inside the detection range. # then it outputs {key: [polygon, phys_status]} to a dictionary. ship_pose = self.phys_status["pose"] ship_polygon = self.output_polygon objects_database = self.sensor_data origin_point = ship_pose[0] if not (objects_database): return filtered_objects_angle = {} # print(objects_database) for key, object in objects_database.items(): # calculate distance between origin and closest point of polygon # print(key) object_pose = object.phys_status["pose"] object_vector = (object_pose[0] - ship_pose[0]) if object_pose[0][1] == ship_pose[0][1] and object_pose[0][0] == ship_pose[0][0]: continue object_distance = (np.linalg.norm(object_vector)) # print(key, object_vector) # check if polygon is within detection range if object_distance > self.detection_range*1.1: continue # print(poly_points) N = self.inflate_obstacles(object) if N == None: continue [max_angle_point, min_angle_point], [start_angle, end_angle], self.outer_polygon,closest_distance = N self.vo_lines.append([self.phys_status["pose"][0], max_angle_point,(255, 153, 251)]) self.vo_lines.append([self.phys_status["pose"][0], min_angle_point,(255, 153, 251)]) if closest_distance <= self.detection_range: filtered_objects_angle[key] = [object, start_angle, end_angle, closest_distance] # print(" key, FOV object_radius self_radius : ", object_distance, math.degrees(FOV), object_radius, self_radius) return filtered_objects_angle def get_min_max_angles(self,polygon): # Select the first point as the origin origin = self.phys_status["pose"][0] # Calculate the angle for each point relative to the origin angles = [] for point in polygon: x, y = point[0] - origin[0], point[1] - origin[1] angle = math.atan2(y, x) if angle < 0: while angle < 0: angle += 2 * math.pi if angle > 2 * math.pi: while angle > 2: angle -= 2 * math.pi angles.append(angle) # Return the maximum and minimum angles max_angle = max(angles) min_angle = min(angles) #print("\n",math.degrees(max_angle), math.degrees(min_angle),end="") #print("\n", polygon, end="") return (max_angle, min_angle) def inflate_obstacles(self,object): # Select the first point as the origin origin = self.phys_status["pose"][0] ship_polygon = self.output_polygon if object.output_polygon == None: return # Calculate the angle for each point relative to the origin object_vector = (object.phys_status["pose"][0] - self.phys_status["pose"][0]) avg_angle = math.atan2(object_vector[1],object_vector[0]) if avg_angle < 0: while avg_angle < 0: avg_angle += 2 * math.pi if avg_angle > 2 * math.pi: while avg_angle > 2: avg_angle -= 2 * math.pi #centers the ship polygon ship_polygon_centered = [] for point in self.output_polygon: ship_polygon_centered.append((point - self.phys_status["pose"][0])*2) inflated_points = [] for point in object.output_polygon: for point2 in ship_polygon_centered: inflated_point = point + point2 inflated_points.append(inflated_point) hull = ConvexHull(inflated_points) outer_polygon = [inflated_points[i] for i in hull.vertices] self.vo_polygons.append(outer_polygon) angles = [] for point in outer_polygon: x, y = point[0] - origin[0], point[1] - origin[1] angle = math.atan2(y, x) if angle < 0: while angle < 0: angle += 2 * math.pi if angle > 2 * math.pi: while angle > 2 * math.pi: angle -= 2 * math.pi delta_angle = angle-avg_angle if delta_angle < - math.pi: while delta_angle < -math.pi: delta_angle += 2 * math.pi if delta_angle > math.pi: while delta_angle > math.pi: delta_angle -= 2 * math.pi angles.append(delta_angle) # Return the maximum and minimum angles max_angle = max(angles) min_angle = min(angles) max_angle_index = angles.index(max_angle) min_angle_index = angles.index(min_angle) max_angle = min(max(angles), math.pi*(3/4))+math.pi/20 min_angle = max(min(angles), -math.pi*(3/4))-math.pi/20 max_angle_point = outer_polygon[max_angle_index] min_angle_point = outer_polygon[min_angle_index] closest_point = self.closest_point_to_polygon(origin, outer_polygon) self.vo_circles.append([closest_point[0], 0.1, (236, 232, 26), 1]) if closest_point[1] == -1: closest_distance = 1 else: closest_distance = np.linalg.norm(origin - closest_point[0]) return ([max_angle_point,min_angle_point],[avg_angle+min_angle,avg_angle+max_angle],outer_polygon,closest_distance) def get_largest_inner_product(self,polygon, B): # Rotate B by pi/2 B_rotated = np.array([-B[1], B[0]]) # Normalize B_rotated A = B_rotated / np.linalg.norm(B_rotated) max_inner_product = -float('inf') for i, point1 in enumerate(polygon): for j, point2 in enumerate(polygon[i + 1:], i + 1): # Calculate the line vector between point1 and point2 line_vector = np.array(point2) - np.array(point1) # Calculate the inner product of line_vector and A inner_product = np.dot(line_vector / np.linalg.norm(line_vector), A) # Update the max inner product if applicable if inner_product > max_inner_product: max_inner_product = inner_product # Return the largest inner product return max_inner_product def tangent_lines(self, circle, origin): # Unpack circle coordinates and radius x_c, y_c = circle[0] r = circle[1] # Unpack origin coordinates x_o, y_o = origin # Calculate the distance between the origin and the center of the circle d = math.sqrt((x_c - x_o) ** 2 + (y_c - y_o) ** 2) # Check if the origin is inside the circle if d < r: print("Error: origin is inside the circle.") return None # Calculate the angle between the origin and the center of the circle theta = math.atan2(y_c - y_o, x_c - x_o) # Calculate the distance from the origin to the tangent point a = math.sqrt(d ** 2 - r ** 2) # Calculate the angles of the tangent lines alpha = math.asin(r / d) beta = theta - alpha gamma = theta + alpha # Return the two angles of the tangent lines return beta, gamma def vo_cone_collision_detector(self, point, cone): """ Determines whether a point is inside a circle section """ origin, [start_angle, end_angle], radius = cone if radius < 0.5: radius = 1 # Calculate angle of point relative to circle origin point_angle = math.atan2(point[1] - origin[1], point[0] - origin[0]) start_angle = self.regularize_angle(start_angle) end_angle = self.regularize_angle(end_angle) point_angle = self.regularize_angle(point_angle) if end_angle >= start_angle: result = point_angle >= start_angle and point_angle <= end_angle inside_angle = end_angle - start_angle elif end_angle <= start_angle: # 0도 넘어갈 때 result = point_angle >= start_angle or point_angle <= end_angle inside_angle = end_angle + 2*math.pi - start_angle if result == True: time_till_collision = radius / (math.dist(point, origin)/5) print(1) if radius < 4: return 1 if inside_angle > math.pi: return 1 return 1/time_till_collision if result == False: return 0 def angle_between_vector_and_angle(self, vector, angle): # Calculate the angle between the vector and the x-axis vector_angle = math.atan2(vector[1], vector[0]) # Calculate the difference between the vector angle and the given angle angle_diff = vector_angle - angle # Ensure that the angle difference is within the range (-pi, pi] angle_diff = self.regularize_angle(angle_diff) # Return the absolute value of the angle difference return angle_diff def index_with_lowest_number(self, numbers): """ Returns the index of the lowest number in a list """ lowest_index = 0 for i in range(1, len(numbers)): if numbers[i] < numbers[lowest_index]: lowest_index = i return lowest_index def regularize_angle(self,angle): while angle > math.pi: angle -= 2 * math.pi while angle <= -math.pi: angle += 2 * math.pi return angle def point_polygon_distance(self, point, polygon): if isinstance(point, np.ndarray): point = tuple(point) polygon_vertices = polygon # Create a list of tuples containing the x,y coordinates of the polygon vertices polygon = [(x, y) for (x, y) in polygon_vertices] # Find the closest point on the polygon boundary to the target point closest_point = None min_distance = float('inf') for i in range(len(polygon)): x1, y1 = polygon[i] x2, y2 = polygon[(i + 1) % len(polygon)] dx = x2 - x1 dy = y2 - y1 dot = ((point[0] - x1) * dx + (point[1] - y1) * dy) / (dx ** 2 + dy ** 2) closest_x = float(x1) + dot * dx closest_y = float(y1) + dot * dy distance = math.sqrt((point[0] - closest_x) ** 2 + (point[1] - closest_y) ** 2) if distance < min_distance: min_distance = distance closest_point = (closest_x, closest_y) print(distance) # If the point is inside the polygon, return a negative distance if self.is_inside_polygon(point, polygon_vertices): return 0 else: return min_distance def closest_point_to_polygon(self, point, polygon_vertices): # Convert numpy array to tuple if necessary if isinstance(point, np.ndarray): point = tuple(point) # Find the closest point on the polygon boundary to the target point closest_point = None min_distance = float('inf') polygon_vertices2 = self.subdivide_polygon(polygon_vertices) for i in range(len(polygon_vertices2)): (closest_x, closest_y) = polygon_vertices2[i] distance = np.sqrt((point[0] - closest_x) ** 2 + (point[1] - closest_y) ** 2) if distance < min_distance: min_distance = distance closest_point = np.array([closest_x, closest_y]) if self.is_inside_polygon(point, polygon_vertices): return [closest_point, -1] else: return [closest_point, 1] def is_inside_polygon(self, point, polygon_vertices): # Create a list of tuples containing the x,y coordinates of the polygon vertices polygon = [(x, y) for x, y in polygon_vertices] # Use the winding number algorithm to check if the point is inside the polygon wn = 0 for i in range(len(polygon)): x1, y1 = polygon[i] x2, y2 = polygon[(i + 1) % len(polygon)] if y1 <= point[1]: if y2 > point[1]: if (point[0] - x1) * (y2 - y1) > (x2 - x1) * (point[1] - y1): wn += 1 else: if y2 <= point[1]: if (point[0] - x1) * (y2 - y1) < (x2 - x1) * (point[1] - y1): wn -= 1 return wn != 0 def subdivide_polygon(self, polygon, n=20): """Subdivides a polygon and divides each edge into n segments.""" new_polygon = [] # Iterate over the edges of the polygon for i in range(len(polygon)): # Add the current vertex to the new polygon new_polygon.append(polygon[i]) # Calculate the difference vector between the current and next vertex diff = [polygon[(i + 1) % len(polygon)][j] - polygon[i][j] for j in range(len(polygon[0]))] # Calculate the size of each segment along the current edge segment_size = [diff[j] / n for j in range(len(diff))] # Iterate over the segments of the current edge for j in range(1, n): # Calculate the coordinates of the new vertex x_new = polygon[i][0] + j * segment_size[0] y_new = polygon[i][1] + j * segment_size[1] new_vertex = [x_new, y_new] # Add the new vertex to the new polygon new_polygon.append(new_vertex) return new_polygon
spacedoge2320/Ship-OA-sim
Ship-OA-sim/Guidance_algorithms.py
Guidance_algorithms.py
py
28,641
python
en
code
0
github-code
6
8784244942
import os from django.conf import settings from django.contrib import messages from django.contrib.auth import logout from django.contrib.auth.mixins import LoginRequiredMixin from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import redirect, render from django.urls import reverse, reverse_lazy from django.views.generic.edit import CreateView, UpdateView from django.views.generic.list import ListView from Venter import upload_to_google_drive from Venter.models import Category, Profile from Venter.forms import CSVForm, ProfileForm, UserForm from .manipulate_csv import EditCsv def upload_csv_file(request): """ View logic for uploading CSV file by a logged in user. For POST request------- 1) The POST data, uploaded csv file and a request parameter are being sent to CSVForm as arguments 2) If form.is_valid() returns true, the user is assigned to the uploaded_by field 3) csv_form is saved and currently returns a simple httpresponse inplace of prediction results For GET request------- The csv_form is rendered in the template """ if request.method == 'POST': csv_form = CSVForm(request.POST, request.FILES, request=request) if csv_form.is_valid(): file_uploaded = csv_form.save(commit=False) file_uploaded.uploaded_by = request.user csv_form.save() return HttpResponse("<h1>Your csv file was uploaded, redirect user to prediction page (pie charts, tables..)</h1>") else: return render(request, './Venter/upload_file.html', {'csv_form': csv_form}) elif request.method == 'GET': csv_form = CSVForm(request=request) return render(request, './Venter/upload_file.html', {'csv_form': csv_form}) def handle_user_selected_data(request): """This function is used to handle the selected categories by the user""" if not request.user.is_authenticated: # Authentication security check return redirect(settings.LOGIN_REDIRECT_URL) else: rows = request.session['Rows'] correct_category = [] company = request.session['company'] if request.method == 'POST': file_name = request.session['filename'] user_name = request.user.username for i in range(rows): # We are getting a list of values because the select tag was multiple select selected_category = request.POST.getlist( 'select_category' + str(i) + '[]') if request.POST['other_category' + str(i)]: # To get a better picture of what we are getting try to print "request.POST.['other_category' + str(i)]", request.POST['other_category' + str(i) # others_list=request.POST['other_category' + str(i)] # for element in others_list: # print(element) # tuple = (selected_category,element) tuple = (selected_category, request.POST['other_category' + str(i)]) # print(request.POST['other_category' + str(i)]) # print(tuple) # So here the correct_category will be needing a touple so the data will be like: # [(selected_category1, selected_category2), (other_category1, other_category2)] This will be the output of the multi select correct_category.append(tuple) else: # So here the correct_category will be needing a touple so the data will be like: # [(selected_category1, selected_category2)] This will be the output of the multi select correct_category.append(selected_category) csv = EditCsv(file_name, user_name, company) csv.write_file(correct_category) if request.POST['radio'] != "no": # If the user want to send the file to Google Drive path_folder = request.user.username + "/CSV/output/" path_file = 'MEDIA/' + request.user.username + \ "/CSV/output/" + request.session['filename'] path_file_diff = 'MEDIA/' + request.user.username + "/CSV/output/Difference of " + request.session[ 'filename'] upload_to_google_drive.upload_to_drive(path_folder, 'results of ' + request.session['filename'], "Difference of " + request.session['filename'], path_file, path_file_diff) return redirect("/download") def file_download(request): if not request.user.is_authenticated: return redirect(settings.LOGIN_REDIRECT_URL) else: # Refer to the source: https://stackoverflow.com/questions/36392510/django-download-a-file/36394206 path = os.path.join(settings.MEDIA_ROOT, request.user.username, "CSV", "output", request.session['filename']) with open(path, 'rb') as csv: response = HttpResponse( csv.read()) # Try using HttpStream instead of this. This method will create problem with large numbers of rows like 25k+ response['Content-Type'] = 'application/force-download' response['Content-Disposition'] = 'attachment;filename=results of ' + \ request.session['filename'] return response def handle_uploaded_file(f, username, filename): """Just a precautionary step if signals.py doesn't work for any reason.""" data_directory_root = settings.MEDIA_ROOT path = os.path.join(data_directory_root, username, "CSV", "input", filename) path_input = os.path.join(data_directory_root, username, "CSV", "input") path_output = os.path.join(data_directory_root, username, "CSV", "output") if not os.path.exists(path_input): os.makedirs(path_input) if not os.path.exists(path_output): os.makedirs(path_output) with open(path, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) def user_logout(request): logout(request) return redirect(settings.LOGIN_REDIRECT_URL) class CategoryListView(LoginRequiredMixin, ListView): """ Arguments------ 1) ListView: View to display the category list for the organisation to which the logged in user belongs 2) LoginRequiredMixin: Request to update profile details by non-authenticated users, will throw an HTTP 404 error Functions------ 1) get_queryset(): Returns a new QuerySet filtering categories based on the organisation name passed in the parameter. """ model = Category def get_queryset(self): return Category.objects.filter(organisation_name=self.request.user.profile.organisation_name) class UpdateProfileView(LoginRequiredMixin, UpdateView): """ Arguments------ 1) UpdateView: View to update the user profile details for the logged in user 2) LoginRequiredMixin: Request to update profile details by non-authenticated users, will throw an HTTP 404 error """ model = Profile success_url = reverse_lazy('home') def post(self, request, *args, **kwargs): user_form = UserForm(request.POST, instance=request.user) profile_form = ProfileForm(request.POST, request.FILES, instance=request.user.profile) if user_form.is_valid() and profile_form.is_valid(): # pylint: disable = R1705 user_form.save() profile_form.save() messages.success(request, 'Your profile was successfully updated!') return HttpResponseRedirect(reverse_lazy('home')) else: messages.error(request, 'Please correct the error below.') def get(self, request, *args, **kwargs): user_form = UserForm(instance=request.user) profile_form = ProfileForm(instance=request.user.profile) return render(request, './Venter/update_profile.html', {'user_form': user_form, 'profile_form': profile_form}) class CreateProfileView(CreateView): """ Arguments------ 1) CreateView: View to create the user profile for a new user. Note------ profile_form.save(commit=False) returns an instance of Profile that hasn't yet been saved to the database. The profile.save() returns an instance of Profile that has been saved to the database. This occurs only after the profile is created for a new user with the 'profile.user = user' """ model = Profile def post(self, request, *args, **kwargs): user_form = UserForm(request.POST) profile_form = ProfileForm(request.POST, request.FILES) if user_form.is_valid() and profile_form.is_valid(): user = user_form.save() profile = profile_form.save(commit=False) profile.user = user profile.save() return HttpResponseRedirect(reverse('home', args=[])) else: messages.warning( request, 'Something went wrong in Venter, please try again') return HttpResponse("<h1>NO Profile created</h1>") def get(self, request, *args, **kwargs): user_form = UserForm() profile_form = ProfileForm() return render(request, './Venter/registration.html', {'user_form': user_form, 'profile_form': profile_form})
simranmadhok/Venter_CMS
Venter/views.py
views.py
py
9,673
python
en
code
0
github-code
6
20867652240
from vizasm.analysis.asm.cpu.AsmRegEx import AsmRegEx class AsmRegEx_arm(AsmRegEx): ''' Contains regular expressions (mostly in verbose mode) used for analyzing the assembler file on the arm architecture. Parameters ---------- RE_IVAR match e.g. "IVAR_0x291c" RE_CLASSREF match e.g. "@bind__OBJC_CLASS_$_UIScreen" RE_IMP_SYMBOLSTUB match e.g "imp___symbolstub1__objc_msgSend" RE_IMP_NL_SYMBOL_PTR match e.g. "@imp___nl_symbol_ptr__objc_retain" RE_ASSINGMENT_SPLIT match e.g. "ldr r8, [sp], #0x4" or "ldr r1, [r0] " or "cvtss2sd xmm2, xmm2" RE_OFFSET_ADDRESSING match .e.g "[sp, #0x8]" RE_CALL_INSTRUCTION match e.g. "blx imp___symbolstub1__objc_msgSend" RE_ADD match e.g. "add r7, sp, #0xc" or "add r7, sp" or "add r7, #0xc" RE_REGISTER match e.g. "ro" RE_ANNOTATED_SUPERCALL match e.g. "; call to super: 0xbb4e" ''' RE_IMP_STUBS_GR_IMP_SYMBOLSTUB = 'imp_symbolstub' RE_IMP_SYMBOLSTUB = r''' (?:imp[_]{3}symbolstub1[_]{2,}) # imp___symbolstub1__ (?P<%s>.*) # objc_msgSend ''' % RE_IMP_STUBS_GR_IMP_SYMBOLSTUB # @imp___nl_symbol_ptr__objc_retain RE_IMP_NL_SYMBOL_PTR_GR_NAME = 'name' RE_IMP_NL_SYMBOL_PTR = ''' @imp[_]{3}nl[_]symbol[_]ptr[_]{2} # @imp___nl_symbol_ptr__ (?P<%s>\S+) # objc_retain ''' % RE_IMP_NL_SYMBOL_PTR_GR_NAME RE_CLASSREF_GR_CLASSREF = 'classref' RE_CLASSREF = ''' @bind[_]{2}OBJC[_]CLASS[_][$][_] # @bind__OBJC_CLASS_$_ (?P<%s>\S+) # UIScreen ''' % RE_CLASSREF_GR_CLASSREF RE_ASSINGMENT_SPLIT_GR_OP = 'op' RE_ASSINGMENT_SPLIT_GR_VAL1 = 'val1' RE_ASSINGMENT_SPLIT_GR_VAL2 = 'val2' # ldr r8, [sp], #0x4 RE_ASSINGMENT_SPLIT = r''' (?P<%s>(add|mov|ldr|.*cvt|st(m|r)).*?) # ldr \s+ (?P<%s>.*?) # r8 ,\s* # , =? # optional "=" for ldr (?P<%s>.*) # [sp], #0x4 ''' % (RE_ASSINGMENT_SPLIT_GR_OP, RE_ASSINGMENT_SPLIT_GR_VAL1, RE_ASSINGMENT_SPLIT_GR_VAL2) RE_CALL_INSTRUCTION_GR_CALLED = 'called' RE_CALL_INSTRUCTION = ''' blx? # bl or blx \s* # whitespace (?P<%s>\S+) # called ''' % RE_CALL_INSTRUCTION_GR_CALLED RE_IVAR_GR_NAME = 'ivar_addr' RE_IVAR = r''' IVAR[_] # IVAR_ (?P<%s>\S+) # 0x291c ''' % (RE_IVAR_GR_NAME) # [ro] RE_REGISTER_GR_NAME = 'name' RE_REGISTER = ''' \[? # "[" is optional (?P<%s> ( [^]] # no ] \S # no whitespace )+ # match all but whitespace and ] ) \]? # "]" is optional ''' % (RE_REGISTER_GR_NAME) # [sp, #0x8] RE_OFFSET_ADDRESSING_GR_BASE_REGISTER = 'base_register' RE_OFFSET_ADDRESSING_GR_OFFSET = 'offset' RE_OFFSET_ADDRESSING = ''' \[ # [ (?P<%s>\w+) # sp ( ,\s* # , [#]? # # (?P<%s>\w+) # 0x8 )? \] # ] ''' % (RE_OFFSET_ADDRESSING_GR_BASE_REGISTER, RE_OFFSET_ADDRESSING_GR_OFFSET) RE_ADD_GR_DEST = 'dest' RE_ADD_GR_OPERAND1 = 'operand1' RE_ADD_GR_OPERAND2 = 'operand2' # add r7, sp, #0xc RE_ADD = ''' add\w* # add \s+ # whitespace (?P<%s>\w+) # r7 , # , \s* # whitespace (?P<%s>\#?\w+) # sp ( ,\s* # , whitespace (?P<%s>\#?\w+) # #0xc )* ''' % (RE_ADD_GR_DEST, RE_ADD_GR_OPERAND1, RE_ADD_GR_OPERAND2) # ; call to super: 0xbb4e RE_ANNOTATED_SUPERCALL_GR_SUPERREF_ADDR = 'superref_addr' RE_ANNOTATED_SUPERCALL = ''' call\s+to\s+super[:]\s+ # "; call to super:" (?P<%s>0x\w+) # 0xbb4e ''' % (RE_ANNOTATED_SUPERCALL_GR_SUPERREF_ADDR) RE_STACK_PUSH_GR_REGISTERS = 'registers' @staticmethod def compiled_re_stack_push_via_stm(stack_pointer, asmline): ''' Read a stack push via "stm" like e.g. "stm.w sp, {r3, r11}" and return the re match object. Use `RE_STACK_PUSH_GR_REGISTERS` to get the list<str> of pushed registers ''' RE_STACK_PUSH = ''' stm.*? # stm \s* # whitespace %s # stack pointer ,\s* # , [{] # { (?P<%s>.*) # r3, r11 [}] # } ''' % (stack_pointer, AsmRegEx_arm.RE_STACK_PUSH_GR_REGISTERS) stack_push_match = AsmRegEx_arm.compiled_vre(RE_STACK_PUSH).search(asmline) if stack_push_match is not None: return stack_push_match return None RE_STACK_GR_STACK_POINTER = 'stack_pointer' RE_STACK_GR_ADDRESS = 'stack_address' RE_STACK_GR_OFFSET = 'stack_offset' @staticmethod def compiled_re_stack(stack_pointer_name, frame_pointer_name): ''' Return a compiled regular expression that matches e.g. "[sp, #0x8]" or "[sp], #0x4" Use `RE_STACK_GR_ADDRESS` group key to get the stack address. Parameters ---------- stack_pointer_name: string the name of stack pointer register (e.g. "sp") ''' RE_STACK = r''' \[ # [ (?P<%s>%s|%s) # stack pointer name or frame pointer name ( ( \] ,\s+ # , [#] # # (?P<%s>0x\w+) # 0x8 ) | # or ( ,\s+ # , [#] (?P<%s>0x\w+) # #0x8 \] # ] ) | \] # ] ) ''' % (AsmRegEx_arm.RE_STACK_GR_STACK_POINTER, stack_pointer_name, frame_pointer_name, AsmRegEx_arm.RE_STACK_GR_OFFSET, AsmRegEx_arm.RE_STACK_GR_ADDRESS) return AsmRegEx.compiled_vre(RE_STACK) @staticmethod def stack_pointer_sub(stack_pointer_str, asmline): ''' Read a line like e.g. "sub sp, #0x14" and return the value that is being subtracted from the stack pointer as string. None if did not match. ''' RE_SP_SUB_GR_SUBTRACTED = 'subtracted' RE_SP_SUB = ''' sub\w* \s* %s, \s* \#(?P<%s>\w+) ''' % (stack_pointer_str, RE_SP_SUB_GR_SUBTRACTED) re_sp_sub_match = AsmRegEx_arm.compiled_vre(RE_SP_SUB).search(asmline) if re_sp_sub_match is not None: return re_sp_sub_match.group(RE_SP_SUB_GR_SUBTRACTED) return None
nachtmaar/vizasm
vizasm/analysis/asm/cpu/arm/AsmRegEx_arm.py
AsmRegEx_arm.py
py
7,381
python
en
code
0
github-code
6
38907524035
"""Create category Revision ID: bc8fb2b5aaaa Revises: cf3388347129 Create Date: 2023-05-06 09:44:36.431462 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'bc8fb2b5aaaa' down_revision = 'cf3388347129' branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_table('category', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=True), sa.Column('icon', sa.String(length=50), nullable=True), sa.Column('description', sa.Text(), nullable=True), sa.Column('create_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True), sa.Column('update_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_index(op.f('ix_category_id'), 'category', ['id'], unique=False) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_category_id'), table_name='category') op.drop_table('category') # ### end Alembic commands ###
rasimatics/excursio-backend
migrations/versions/bc8fb2b5aaaa_create_category.py
bc8fb2b5aaaa_create_category.py
py
1,266
python
en
code
1
github-code
6
14052300522
# vim set fileencoding=utf-8 from setuptools import setup with open('README.rst') as f: long_description = f.read() setup( name = 'AnthraxEplasty', version = '0.0.3', author = 'Szymon Pyżalski', author_email = 'zefciu <[email protected]>', description = 'Anthrax - generating forms from Elephantoplasty objects', url = 'http://github.com/zefciu/Anthrax', keywords = 'form web orm database', long_description = long_description, install_requires = ['anthrax', 'Elephantoplasty'], tests_require = ['nose>=1.0', 'nose-cov>=1.0'], test_suite = 'nose.collector', package_dir = {'': 'src'}, namespace_packages = ['anthrax'], packages = [ 'anthrax', 'anthrax.eplasty' ], classifiers = [ 'Development Status :: 1 - Planning', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], entry_points = """[anthrax.reflector] eplasty = anthrax.eplasty.reflector:EplastyReflector [anthrax.field_mixins] eplasty_unique = anthrax.eplasty.field:UniqueMixin """, )
zefciu/anthrax-eplasty
setup.py
setup.py
py
1,242
python
en
code
0
github-code
6
11838557066
import pickle import os import sys import numpy as np import json_tricks as json import cv2 import torch import copy import random import torchvision.transforms as transforms from glob import glob from tqdm import tqdm from PIL import Image from natsort import natsorted import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as R from torch.utils.data import Dataset from utils.dataset_helper import get_affine_transform,affine_transform from core.utils.helper_functions import load_matfile class InfantDataSet(Dataset): def __init__(self, root,pose_root,subjects,path=None, transform=transforms.ToTensor(),is_train=True): """ root: the root of data, eg: '/vol/biodata/data/human3.6m/training' pose_root: the root of 2d pose; subjects: subjects=['EMT4', 'EMT7', 'EMT38', 'EMT36', 'EMT31', 'EMT43', 'EMT5', 'EMT9', 'EMT47', 'EMT45', 'EMT29', 'EMT42', 'EMT23', 'EMT41', 'EMT37', 'EMT48', 'EMT44', 'EMT46', 'EMT20', 'EMT34', 'EMT11', 'EMT30', 'EMT39', 'EMT35', 'EMT14'] transforms: torchvision.transforms to resize and crop frame to (256,256) """ self.root = root self.pose_root=pose_root self.indices = np.array([3, 2, 9, 8, 4, 1, 10, 7, 13, 12, 15, 14, 5, 0, 11, 6]) self.subjects=subjects # load dataset self.sequences = [] self.transform=transform self.is_train=is_train self.dataset=None if path != None: self.load_seq(path) else: for subject in tqdm(self.subjects): # actor is in the form of 'S1','S5' if not os.path.isdir(os.path.join(root, subject)): print(subject,"not exists") continue frames = natsorted(os.listdir(os.path.join(root, subject))) frame_nums = [int(x[6:-4]) for x in frames] frame_nums=np.array(sorted(frame_nums))-1 pred_path=os.path.join(pose_root,subject+'.pickle') if not os.path.exists(pred_path): print(pred_path,"not exists") continue with open(pred_path, "rb") as file: pickle_file = pickle.load(file) for frame in frames: frame_num=self.find_index(frame,pickle_file) frame2=random.sample(frames, 1)[0] seq={'subject': subject, 'bbox':pickle_file[frame_num]['bounding_box'], 'center': pickle_file[frame_num]['center'], 'scale': pickle_file[frame_num]['scale'], 'frame_num':frame_num, 'frame1':pickle_file[frame_num]['frame_id'], 'frame2': frame2, 'pose_2d':pickle_file[frame_num]['predicted_keypoints'] } self.sequences.append(seq) def get_single(self, sequence): bbox=sequence['bbox'] center=sequence['center'] scale=np.asarray([sequence['scale'],sequence['scale']]) image_size=(256,256) frame1_path=os.path.join(self.root,sequence['subject'],sequence['frame1']) frame2_path=os.path.join(self.root,sequence['subject'],sequence['frame2']) pose_2d=sequence['pose_2d'][self.indices] frame1=Image.open(frame1_path) frame2=Image.open(frame2_path) trans = get_affine_transform(center, scale, 0, image_size) frame1=cv2.warpAffine(np.array(frame1), trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) frame2=cv2.warpAffine(np.array(frame2), trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) frame1_tensor=self.transform(frame1) frame2_tensor=self.transform(frame2) pose2d_tensor=torch.FloatTensor(pose_2d) return frame1_tensor,frame2_tensor,pose2d_tensor def find_index(self,s,file): j=None for i in range(len(file)): if s == file[i]['frame_id']: j=i return j def get_sequences(self): return self.sequences def save_seq(self,path): if not os.path.exists(path): os.makedirs(path) seq=self.__dict__['sequences'] torch.save(seq, os.path.join(path,'sequences.tar')) print("saved successfully!") def load_seq(self,path): seq_load=torch.load(path) self.sequences=seq_load print("load successfully!") def __getitem__(self, index): seq=self.sequences[index] return self.get_single(seq) def __len__(self): return len(self.sequences) class Infant3DPose(Dataset): def __init__(self, path,load_path=None): self.path = path self.indices = np.array([15, 14, 10, 6, 3, 0, 11, 7, 4, 1, 12, 8, 5, 2, 13, 9]) self.keypoints = ['hips', 'shoulders', 'knees', 'elbows', 'ankles', 'wrists', 'feet', 'hands'] self.sequences=[] if load_path != None: self.load_seq(load_path) else: self.sequences=self.get_sequences() def save_seq(self,path): if not os.path.exists(path): os.makedirs(path) seq=self.__dict__['sequences'] torch.save(seq, os.path.join(path,'pose3d_sequences.tar')) print("saved successfully!") def load_seq(self,path): seq_load=torch.load(path) self.sequences=seq_load print("load successfully!") def get_sequences(self): spatial_indices = np.array([1, 2, 0]) sequences = [] files = glob(os.path.join(self.path, '*.mat')) sequences=[] for file in tqdm(files): # subj = os.path.splitext(os.path.split(file)[-1])[0] data, timestamps = load_matfile(file) # only xyz data = data[:, 0:3] data = data.transpose((0, 2, 1)) # tracker data is 120 Hz, camera is 30 Hz, so factor is 4 tracker_data = data for i in range(len(tracker_data)): pose = tracker_data[i] # change keypoint order and spatial orientation pose = pose[self.indices] pose = pose[..., spatial_indices] pose = self.align(pose) first = pose pelvis = first[0] + (first[1] - first[0]) / 2 pose -= pelvis pose = self.normalize(pose) pose1 = np.copy(pose) pose1[..., 1] = pose[..., 2] pose1[..., 2] = pose[..., 1] sequences.append(pose1) return sequences def normalize(self, points): first = points # normalize to unit cube -1 to 1 max_ = np.abs(first.max()) min_ = np.abs(first.min()) if max_ >= min_: points /= max_ else: points /= min_ return points def get_angle(self, vec1, vec2): inv = vec1 @ vec2 / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) return np.arccos(inv) def align(self, sequence): """remove y component of hip line, align pelvis-neck line with z axis""" points = sequence hip_line = points[0] - points[1] pelvis = points[0] + (points[1] - points[0]) / 2 neck = points[2] + (points[3] - points[2]) / 2 pelvis_neck_line = neck - pelvis # pelvis neck rot_axis1 = np.array([0, 0, 1]) angle = self.get_angle(pelvis_neck_line, rot_axis1) cross_prod = np.cross(pelvis_neck_line, rot_axis1) cross_prod /= np.linalg.norm(cross_prod) R1 = R.from_rotvec(angle * cross_prod) points = R1.apply(points) # hip hip_line = points[0] - points[1] rot_axis2 = np.array([1, 0]) angle = self.get_angle(hip_line[0:2], rot_axis2) cross_prod = np.cross(hip_line[0:2], rot_axis2) cross_prod /= np.linalg.norm(cross_prod) R2 = R.from_rotvec(angle * np.array([0, 0, cross_prod])) points=R2.apply(points) rot = R.from_rotvec(np.array([0., 0., np.pi])) points=rot.apply(points) return points def __getitem__(self, idx): pose = np.array(self.sequences[idx]) # p1 = np.copy(pose) # p1[..., 1] = pose[..., 2] # p1[..., 2] = pose[..., 1] pose_tensor=torch.FloatTensor(pose) return pose_tensor def __len__(self): return len(self.sequences)
Qingwei-Li98/PoseEstimation
core/utils/infant_dataset.py
infant_dataset.py
py
8,713
python
en
code
0
github-code
6
73652411389
# 给你一个正整数 n ,返回 2 和 n 的最小公倍数(正整数)。 class Solution(object): def smallestEvenMultiple(self, n): """ :type n: int :rtype: int """ if n % 2 != 0: return 2 * n else: return n n = 5 a = Solution() print(a.smallestEvenMultiple(n))
xxxxlc/leetcode
competition/单周赛/311/smallestEvenMultiple.py
smallestEvenMultiple.py
py
359
python
zh
code
0
github-code
6
30364500871
import sys import mock import six from okonomiyaki.errors import InvalidMetadataField from ..python_implementation import PythonABI, PythonImplementation from hypothesis import given from hypothesis.strategies import sampled_from if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest class TestPythonImplementation(unittest.TestCase): @given(sampled_from(( ('2', '7', 'cp27'), ('3', '8', 'cp38'), ('4', '15', 'cp415'), ('3', '11', 'cp311')))) def test_creation(self, version): # Given kind = 'cpython' major, minor, r_tag = version # When tag = PythonImplementation(kind, major, minor) # Then self.assertEqual(tag.abbreviated_implementation, 'cp') self.assertEqual(str(tag), r_tag) self.assertIsInstance(six.text_type(tag), six.text_type) def test_from_running_python(self): # When with mock.patch( "okonomiyaki.platforms.python_implementation." "_abbreviated_implementation", return_value="cp"): with mock.patch("sys.version_info", (2, 7, 9, 'final', 0)): py = PythonImplementation.from_running_python() # Then self.assertEqual(py.pep425_tag, u"cp27") # When with mock.patch("sys.pypy_version_info", "pypy 1.9", create=True): with mock.patch("sys.version_info", (2, 7, 9, 'final', 0)): py = PythonImplementation.from_running_python() # Then self.assertEqual(py.pep425_tag, u"pp27") # When with mock.patch("sys.platform", "java 1.7", create=True): with mock.patch("sys.version_info", (2, 7, 9, 'final', 0)): py = PythonImplementation.from_running_python() # Then self.assertEqual(py.pep425_tag, u"jy27") # When with mock.patch("sys.platform", "cli", create=True): with mock.patch("sys.version_info", (2, 7, 9, 'final', 0)): py = PythonImplementation.from_running_python() # Then self.assertEqual(py.pep425_tag, u"ip27") @given(sampled_from(( ("cpython", "cp"), ("python", "py"), ("pypy", "pp"), ("dummy", "dummy")))) def test_abbreviations(self, kinds): # Given major = 2 minor = 7 kind, r_abbreviated = kinds # When tag = PythonImplementation(kind, major, minor) # Then self.assertEqual(tag.abbreviated_implementation, r_abbreviated) @given(sampled_from(( (2, 7, 'cp27'), (3, 8, 'cp38'), (3, 4, 'cpython34'), (4, 5, 'cp4_5'), (24, 7, 'cp24_7'), (4, 15, 'cp415'), (3, 11, 'cp311')))) def test_from_string(self, data): # Given major, minor, tag_string = data # When tag = PythonImplementation.from_string(tag_string) # Then self.assertEqual(tag.kind, "cpython") self.assertEqual(tag.major, major) if minor is not None: self.assertEqual(tag.minor, minor) @given(sampled_from(('cp2', 'py3', 'cp', 'pp4567'))) def test_from_string_errors(self, data): # When/Then message = r"^Invalid value for metadata field 'python_tag': '{}'$" with self.assertRaisesRegexp( InvalidMetadataField, message.format(data)): PythonImplementation.from_string(data) class TestPythonABI(unittest.TestCase): def test_pep425_tag_string_none(self): # Given abi_tag = None # When abi_tag_string = PythonABI.pep425_tag_string(abi_tag) # Then self.assertEqual(abi_tag_string, u"none") self.assertIsInstance(abi_tag_string, six.text_type) def test_pep425_tag_string(self): # Given abi_tag = PythonABI(u"cp27mu") # When abi_tag_string = PythonABI.pep425_tag_string(abi_tag) # Then self.assertEqual(abi_tag_string, u"cp27mu") self.assertIsInstance(abi_tag_string, six.text_type)
enthought/okonomiyaki
okonomiyaki/platforms/tests/test_python_implementation.py
test_python_implementation.py
py
4,083
python
en
code
2
github-code
6
33548298905
import sys import argparse import tensorflow as tf from keras.models import Model, load_model from keras.layers import TimeDistributed, Conv1D, Dense, Embedding, Input, Dropout, LSTM, Bidirectional, MaxPooling1D, \ Flatten, concatenate from keras.initializers import RandomUniform from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.utils import plot_model from keras.models import load_model from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform, randint from util.util import * def data(): train_df = get_train_data() #found = train_df['ner'] #hasValue = [True if 'VALUE' in x else False for i, x in enumerate(found)] #train_df = train_df[np.array(hasValue)] print(train_df.shape) train_data, case2Idx, caseEmbeddings, word2Idx, wordEmbeddings, \ char2Idx, label2Idx, sentences_maxlen, words_maxlen = prepare_data(train_df) val_df = get_val_data() print(val_df.shape) val_data = embed_sentences(add_char_information_in(tag_data(val_df)), INFOBOX_CLASS, PROPERTY_NAME) X_train, Y_train = split_data(train_data) X_val, Y_val = split_data(val_data) return X_train, Y_train, X_val, Y_val, caseEmbeddings, wordEmbeddings, label2Idx, char2Idx, sentences_maxlen, words_maxlen def model(X_train, Y_train, X_val, Y_val, caseEmbeddings, wordEmbeddings, label2Idx, char2Idx, sentences_maxlen, words_maxlen): temp = [] for item in Y_train[0]: flatten = [i for sublist in item for i in sublist] for i in flatten: temp.append(i) temp = np.asarray(temp) print('labels', np.unique(np.ravel(temp, order='C'))) # word-level input words_input = Input(shape=(None,), dtype='int32', name='Words_input') words = Embedding(input_dim=wordEmbeddings.shape[0], output_dim=wordEmbeddings.shape[1], weights=[wordEmbeddings], trainable=False)(words_input) # case-info input casing_input = Input(shape=(None,), dtype='int32', name='Casing_input') casing = Embedding(input_dim=caseEmbeddings.shape[0], output_dim=caseEmbeddings.shape[1], weights=[caseEmbeddings], trainable=False)(casing_input) # character input character_input = Input(shape=(None, words_maxlen,), name="Character_input") embed_char_out = TimeDistributed( Embedding(input_dim=len(char2Idx), output_dim=50, embeddings_initializer=RandomUniform(minval=-0.5, maxval=0.5)), name="Character_embedding")(character_input) dropout = Dropout(0.5)(embed_char_out) # CNN conv1d_out = TimeDistributed( Conv1D(kernel_size={{choice([3, 5])}}, filters=10, padding='same', activation='tanh', strides=1), name="Convolution")(dropout) maxpool_out = TimeDistributed(MaxPooling1D({{choice([10, 25, 50])}}), name="Maxpool")(conv1d_out) char = TimeDistributed(Flatten(), name="Flatten")(maxpool_out) char = Dropout(0.5)(char) # concat & BLSTM output = concatenate([words, casing, char]) output = Bidirectional(LSTM({{choice([100, 200, 300])}}, return_sequences=True, dropout=0.5, # on input to each LSTM block recurrent_dropout=0.25 # on recurrent input signal ), name="BLSTM")(output) output = TimeDistributed(Dense(len(label2Idx), activation='softmax'), name="Softmax_layer")(output) # set up model model = Model(inputs=[words_input, casing_input, character_input], outputs=[output]) model.compile(loss='sparse_categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() train_batch, train_batch_len = createBatches2CNN_BLSTM(X_train, Y_train) val_batch, val_batch_len = createBatches2CNN_BLSTM(X_val, Y_val) model.fit_generator(iterate_minibatches_CNN_BLSTM(train_batch, train_batch_len), steps_per_epoch=len(train_batch), # class_weight=class_weight_vect, epochs=10, verbose=2, validation_steps=len(val_batch), validation_data=iterate_minibatches_CNN_BLSTM(val_batch, val_batch_len)) # score, acc = model.evaluate(X_val, Y_val, verbose=0) score, acc = model.evaluate_generator(generator=iterate_minibatches_CNN_BLSTM(val_batch, val_batch_len), steps=len(val_batch), verbose=0) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model} if __name__ == "__main__": best_run, best_model = optim.minimize(model=model, data=data, algo=tpe.suggest, max_evals=5, trials=Trials(), functions=[createBatches2CNN_BLSTM, iterate_minibatches_CNN_BLSTM]) plot_model(best_model, to_file='models/' + PROPERTY_NAME + '-CNN_BLSTM_best_model.png', show_shapes=True, show_layer_names=True) best_model.save('models/'+INFOBOX_CLASS+'/dl/' + PROPERTY_NAME + '-CNN_BLSTM_best_model.h5') print("Best performing model chosen hyper-parameters:") print(best_run) model = load_model('models/'+INFOBOX_CLASS+'/dl/' + PROPERTY_NAME + '-CNN_BLSTM_best_model.h5') test_df = get_test_data() print(test_df.shape) test_data = embed_sentences(add_char_information_in(tag_data(test_df)), INFOBOX_CLASS, PROPERTY_NAME) X_test, Y_test = split_data(test_data) temp = [] for item in Y_test[0]: flatten = [i for sublist in item for i in sublist] for i in flatten: temp.append(i) temp = np.asarray(temp) print('labels', np.unique(np.ravel(temp, order='C'))) test_batch, test_batch_len = createBatches2CNN_BLSTM(X_test, Y_test) print("Evalutation of best performing model:") score, acc = model.evaluate_generator(generator=iterate_minibatches_CNN_BLSTM(test_batch, test_batch_len), steps=len(test_batch), verbose=0) print("acc on test: ", acc)
guardiaum/DeepEx
CNN_BLSTM_fit_hyperparams.py
CNN_BLSTM_fit_hyperparams.py
py
6,299
python
en
code
1
github-code
6
27054375172
import numpy as np import pandas as pd import config import sys import tensorflow as tf from keras import Sequential from keras.layers import Dense from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from service.Preprocess import Preprocess from service.FeatureEngineer import FeatureEngineer class TaxiFaresPredictionNYC: def __init__(self): self.df = None self.x = None self.y = None self.x_train = None self.y_test = None self.x_test = None self.y_train = None self.df_prescaled = None self.f_engineer = None self.model = Sequential() self.preprocessObj = Preprocess() def feature_engineer(self): self.f_engineer = FeatureEngineer(self.df) self.f_engineer.create_date_columns() self.f_engineer.create_dist_column() self.f_engineer.create_airport_dist_features() def preprocess(self): self.preprocessObj.remove_missing_values() self.preprocessObj.remove_fare_amount_outliers() self.preprocessObj.replace_passenger_count_outliers() self.preprocessObj.remove_lat_long_outliers() self.df = self.preprocessObj.get_dataset() self.feature_engineer() self.df = self.f_engineer.get_dataset() self.df_prescaled = self.df.copy() self.df = self.preprocessObj.scale() self.x = self.df.loc[:, self.df.columns != 'fare_amount'] self.y = self.df.fare_amount self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(self.x, self.y, test_size=0.2) def create(self): self.model.add(Dense(128, activation='relu', input_dim=self.x_train.shape[1])) self.model.add(Dense(64, activation='relu')) self.model.add(Dense(32, activation='relu')) self.model.add(Dense(8, activation='relu')) self.model.add(Dense(1)) def compile(self): self.model.compile(loss='mse', optimizer='adam', metrics=['mse']) self.model.fit(self.x_train, self.y_train, epochs=1) def predict(self): train_predict = self.model.predict(self.x_train) train_mrs_error = np.sqrt(mean_squared_error(self.y_train, train_predict)) print("Train RMSE: {:0.2f}".format(train_mrs_error)) test_predict = self.model.predict(self.x_test) test_mrs_error = np.sqrt(mean_squared_error(self.y_test, test_predict)) print("Test RMSE: {:0.2f}".format(test_mrs_error)) def get_dataset(self): return self.df
kalinVn/new_york_city_taxi_fare_predicton
service/TaxiFaresPredictionNYC.py
TaxiFaresPredictionNYC.py
py
2,573
python
en
code
0
github-code
6
32989650417
from flask_wtf import FlaskForm from wtforms import StringField, IntegerField, SelectField from wtforms.validators import InputRequired, Optional sizes = ['XS','S', 'M', 'L', 'XL'] ratings = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] class AddCupcakeForm(FlaskForm): """Form for adding cupcakes""" flavor = StringField("Flavor", validators=[InputRequired(message="Flavor cannot be blank")]) size = SelectField("Size", choices=[(size, size) for size in sizes], validators=[InputRequired(message="Size cannot be blank")]) rating = SelectField("Rating", coerce=float, choices=[(rating, rating) for rating in ratings], validators=[InputRequired(message="Rating cannot be blank")]) image = StringField("Image Link", validators=[Optional()])
BradButler96/flask-cupcakes
forms.py
forms.py
py
825
python
en
code
0
github-code
6
24287653793
from random import random import bisect def get_new_state(current_state, transitions): transition_map = dict() for source, target, probability in transitions: if source not in transition_map: transition_map[source] = ([], []) if not transition_map[source][0]: transition_map[source][0].append(probability) else: prev = transition_map[source][0][-1] transition_map[source][0].append(probability + prev) transition_map[source][1].append(target) r = random() index = bisect.bisect(transition_map[current_state][0], r) print(transition_map) return transition_map[current_state][1][index] def markov(start, transitions): current_state = start states = dict() for t in transitions: states[t[0]] = 0 for i in range(5000): states[current_state] += 1 current_state = get_new_state(current_state, transitions) return states def main(): visited = (markov('a', [ ('a', 'a', 0.9), ('a', 'b', 0.075), ('a', 'c', 0.025), ('b', 'a', 0.15), ('b', 'b', 0.8), ('b', 'c', 0.05), ('c', 'a', 0.25), ('c', 'b', 0.25), ('c', 'c', 0.5) ])) assert visited['a'] > visited['b'] assert visited['a'] > visited['c'] assert visited['b'] > visited['c'] if __name__ == '__main__': main()
ckallum/Daily-Coding-Problem
solutions/#175.py
#175.py
py
1,406
python
en
code
0
github-code
6
71375478588
# Import the utils import math import sys import os sys.path.append(os.path.abspath('../QUtils')) from qutils import pprint, graph # Import the QISKit SDK from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute # Create a Quantum Register with 2 qubits. q = QuantumRegister(3) # Create a Classical Register with 2 bits. c = ClassicalRegister(3) # Create a Quantum Circuit qc = QuantumCircuit(q, c) # move the qubits into a superpostion such that when they have an H gate and a Measure # applied they are equally likely to collapse to 0 or 1 qc.h(q) qc.s(q) pi = math.pi # add the gates to get the normal distribution """ # makes 111 less likely qc.crz(-0.3*pi, q[2], q[1]) qc.crz(-0.3*pi, q[1], q[0]) # some how encourages 100 qc.x(q[2]) qc.crz(-0.4*pi, q[0], q[1]) qc.crz(-0.4*pi, q[1], q[2]) qc.crz(-0.4*pi, q[0], q[2]) qc.x(q[2]) """ # THE 2 QUBIT CIRCUIT # I don't get why but this bumps up the ends and drops the middle # aka the exact opposite of what we want #qc.crz(-0.5*pi, q[1], q[0]) #qc.crz(-0.5*pi, q[0], q[1]) # this then flips it the right way up #qc.rz(pi, q[0]) # ATTEMPT AT 3 QUBIT CIRCUIT - kinda works? # ups 011 and 100, but also 000 and 111 qc.crz(-0.5*pi, q[1], q[0]) qc.crz(-0.5*pi, q[0], q[1]) qc.crz(-0.5*pi, q[2], q[1]) qc.rz(pi, q[2]) qc.h(q) # Add a Measure gate to see the state. qc.measure(q, c) # Compile and run the Quantum circuit on a simulator backend job_sim = execute(qc, "local_qasm_simulator", shots=7000) sim_result = job_sim.result() # Show the results print("simulation: ", sim_result) # Returns a dict pprint(sim_result.get_counts(qc)) graph(sim_result.get_counts(qc))
maddy-tod/quantum
Code/MonteCarlo/NormalTest.py
NormalTest.py
py
1,675
python
en
code
3
github-code
6
27673629381
import numpy as np import math import cv2 #input hsvColor:[h,s,v], ranges between (0-180, 0-255, 0-255) #and output true hsvColor:[h,s,v] def get_right_V(hsvColor): h = float(hsvColor[0]) s = float(hsvColor[1]) s1 = float(hsvColor[1])/255 v1 = float(hsvColor[2]) h60 = h / 60.0 h60f = math.floor(h60) f = h60 - h60f if f<0.5: v = 3*v1*(1-f*s1)/(3-2*s1) elif f>=0.5: v = 3*v1*(1-s1+f*s1)/(3-2*s1) return [h, s, min(v,255)] if __name__=="__main__": #input and ouput path for image. PATH_TO_WRONG_IMAGE = './wrong_image.jpg' PATH_TO_RIGHT_IMAGE = './right_image.jpg' image_wrong = cv2.imread(PATH_TO_WRONG_IMAGE) image_wrong_hsv = cv2.cvtColor(image_wrong, cv2.COLOR_BGR2HSV) shape = image_wrong.shape image_right_hsv = np.zeros(shape, dtype=np.uint8) #iterate over every pixel to change the V value. for row in range(shape[0]): for col in range(shape[1]): image_right_hsv[row][col] = get_right_V(image_wrong_hsv[row][col]) image_right = cv2.cvtColor(image_right_hsv, cv2.COLOR_HSV2BGR) cv2.imwrite(PATH_TO_RIGHT_IMAGE, image_right)
zznewclear13/Gradient_Colorizing_Fix
Gradient_Colorzing_Fix.py
Gradient_Colorzing_Fix.py
py
1,205
python
en
code
0
github-code
6
35914525125
class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: longest="" i=1 j=0 if strs==[""]: return "" elif strs==["a"]: return "a" shortestword=10000 for word in strs: if len(word) < shortestword: shortestword = len(word) while j < shortestword: while i < len(strs): if strs[i]=="" or strs[i-1]=="": return longest elif strs[i][j]==strs[i-1][j]: i+=1 else: return longest longest=longest+strs[i-1][j] j+=1 i=1 return longest class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if not len(min(strs)) or len(strs)<2: return min(strs) return_string = self.comparator(strs[1],strs[0]) for string in strs: return_string=self.comparator(return_string,string) return return_string def comparator(self,str1,str2): if not str1 or not str2: return "" index=0 return_string=[] while index<len(min(str1,str2)): if str1[index]==str2[index]: return_string.append(str1[index]) index+=1 else: break return "".join(return_string)
azbluem/LeetCode-Solutions
solutions/14.longest-common-prefix.py
14.longest-common-prefix.py
py
1,401
python
en
code
0
github-code
6
16540523617
import os import sys from nuitka.utils.FileOperations import ( areSamePaths, isFilenameBelowPath, isFilenameSameAsOrBelowPath, ) from nuitka.utils.Utils import ( isAndroidBasedLinux, isFedoraBasedLinux, isLinux, isMacOS, isPosixWindows, isWin32Windows, withNoDeprecationWarning, ) from .PythonVersions import ( getInstalledPythonRegistryPaths, getRunningPythonDLLPath, getSystemPrefixPath, isStaticallyLinkedPython, python_version, python_version_str, ) def isNuitkaPython(): """Is this our own fork of CPython named Nuitka-Python.""" # spell-checker: ignore nuitkapython if python_version >= 0x300: return sys.implementation.name == "nuitkapython" else: return sys.subversion[0] == "nuitkapython" _is_anaconda = None def isAnacondaPython(): """Detect if Python variant Anaconda""" # singleton, pylint: disable=global-statement global _is_anaconda if _is_anaconda is None: _is_anaconda = os.path.exists(os.path.join(sys.prefix, "conda-meta")) return _is_anaconda def isApplePython(): if not isMacOS(): return False # Python2 on 10.15 or higher if "+internal-os" in sys.version: return True # Older macOS had that if isFilenameSameAsOrBelowPath(path="/usr/bin/", filename=getSystemPrefixPath()): return True # Newer macOS has that if isFilenameSameAsOrBelowPath( path="/Library/Developer/CommandLineTools/", filename=getSystemPrefixPath() ): return True # Xcode has that on macOS, we consider it an Apple Python for now, it might # be more usable than Apple Python, we but we delay that. if isFilenameSameAsOrBelowPath( path="/Applications/Xcode.app/Contents/Developer/", filename=getSystemPrefixPath(), ): return True return False def isHomebrewPython(): # spell-checker: ignore sitecustomize if not isMacOS(): return False candidate = os.path.join( getSystemPrefixPath(), "lib", "python" + python_version_str, "sitecustomize.py" ) if os.path.exists(candidate): with open(candidate, "rb") as site_file: line = site_file.readline() if b"Homebrew" in line: return True return False def isPyenvPython(): if isWin32Windows(): return False return os.environ.get("PYENV_ROOT") and isFilenameSameAsOrBelowPath( path=os.environ["PYENV_ROOT"], filename=getSystemPrefixPath() ) def isMSYS2MingwPython(): """MSYS2 the MinGW64 variant that is more Win32 compatible.""" if not isWin32Windows() or "GCC" not in sys.version: return False import sysconfig if python_version >= 0x3B0: return "-mingw_" in sysconfig.get_config_var("EXT_SUFFIX") else: return "-mingw_" in sysconfig.get_config_var("SO") def isTermuxPython(): """Is this Termux Android Python.""" # spell-checker: ignore termux if not isAndroidBasedLinux(): return False return "com.termux" in getSystemPrefixPath().split("/") def isUninstalledPython(): # Debian package. if isDebianPackagePython(): return False if isStaticallyLinkedPython(): return False if os.name == "nt": import ctypes.wintypes GetSystemDirectory = ctypes.windll.kernel32.GetSystemDirectoryW GetSystemDirectory.argtypes = (ctypes.wintypes.LPWSTR, ctypes.wintypes.DWORD) GetSystemDirectory.restype = ctypes.wintypes.DWORD MAX_PATH = 4096 buf = ctypes.create_unicode_buffer(MAX_PATH) res = GetSystemDirectory(buf, MAX_PATH) assert res != 0 system_path = os.path.normcase(buf.value) return not getRunningPythonDLLPath().startswith(system_path) return isAnacondaPython() or "WinPython" in sys.version _is_win_python = None def isWinPython(): """Is this Python from WinPython.""" if "WinPython" in sys.version: return True # singleton, pylint: disable=global-statement global _is_win_python if _is_win_python is None: for element in sys.path: if os.path.basename(element) == "site-packages": if os.path.exists(os.path.join(element, "winpython")): _is_win_python = True break else: _is_win_python = False return _is_win_python def isDebianPackagePython(): """Is this Python from a debian package.""" # spell-checker: ignore multiarch if not isLinux(): return False if python_version < 0x300: return hasattr(sys, "_multiarch") else: with withNoDeprecationWarning(): try: from distutils.dir_util import _multiarch except ImportError: return False else: return True def isFedoraPackagePython(): """Is the Python from a Fedora package.""" if not isFedoraBasedLinux(): return False system_prefix_path = getSystemPrefixPath() return system_prefix_path == "/usr" def isCPythonOfficialPackage(): """Official CPython download, kind of hard to detect since self-compiled doesn't change much.""" sys_prefix = getSystemPrefixPath() # For macOS however, it's very knowable. if isMacOS() and isFilenameBelowPath( path="/Library/Frameworks/Python.framework/Versions/", filename=sys_prefix ): return True # For Windows, we check registry. if isWin32Windows(): for registry_python_exe in getInstalledPythonRegistryPaths(python_version_str): if areSamePaths(sys_prefix, os.path.dirname(registry_python_exe)): return True return False def isGithubActionsPython(): return os.environ.get( "GITHUB_ACTIONS", "" ) == "true" and getSystemPrefixPath().startswith("/opt/hostedtoolcache/Python") def getPythonFlavorName(): """For output to the user only.""" # return driven, pylint: disable=too-many-branches,too-many-return-statements if isNuitkaPython(): return "Nuitka Python" elif isAnacondaPython(): return "Anaconda Python" elif isWinPython(): return "WinPython" elif isDebianPackagePython(): return "Debian Python" elif isFedoraPackagePython(): return "Fedora Python" elif isHomebrewPython(): return "Homebrew Python" elif isApplePython(): return "Apple Python" elif isPyenvPython(): return "pyenv" elif isPosixWindows(): return "MSYS2 Posix" elif isMSYS2MingwPython(): return "MSYS2 MinGW" elif isTermuxPython(): return "Android Termux" elif isCPythonOfficialPackage(): return "CPython Official" elif isGithubActionsPython(): return "GitHub Actions Python" else: return "Unknown"
Nuitka/Nuitka
nuitka/PythonFlavors.py
PythonFlavors.py
py
6,933
python
en
code
10,019
github-code
6
39972780174
#!/usr/bin/env python3 # ------------------------------------------------------------------------ # MIDI Control for SignalFlow # ------------------------------------------------------------------------ from signalflow import * import configparser import logging import mido import os logger = logging.getLogger(__name__) class MIDIManager: shared_manager = None def __init__(self, device_name: str = None): if device_name is None: if os.getenv("SIGNALFLOW_MIDI_OUTPUT_DEVICE_NAME") is not None: device_name = os.getenv("SIGNALFLOW_MIDI_OUTPUT_DEVICE_NAME") else: config_path = os.path.expanduser("~/.signalflow/config") parser = configparser.ConfigParser() parser.read(config_path) try: # -------------------------------------------------------------------------------- # configparser includes quote marks in its values, so strip these out. # -------------------------------------------------------------------------------- device_name = parser.get(section="midi", option="input_device_name") device_name = device_name.strip('"') except configparser.NoOptionError: pass except configparser.NoSectionError: pass self.input = mido.open_input(device_name) self.input.callback = self.handle_message self.voice_class = None self.voice_class_kwargs = None self.notes = [None] * 128 self.note_handlers = [[] for _ in range(128)] self.control_handlers = [[] for _ in range(128)] self.control_values = [0] * 128 self.channel_handlers = [[] for _ in range(16)] if MIDIManager.shared_manager is None: MIDIManager.shared_manager = self logger.info("Opened MIDI input device: %s" % self.input.name) def handle_message(self, message): if message.type == 'control_change': logger.debug("Received MIDI control change: control %d, value %d" % (message.control, message.value)) self.on_control_change(message.control, message.value) elif message.type == 'note_on': logger.debug("Received MIDI note on: note %d, velocity %d" % (message.note, message.velocity)) if self.voice_class: voice = self.voice_class(frequency=midi_note_to_frequency(message.note), amplitude=message.velocity / 127, **self.voice_class_kwargs) voice.play() voice.auto_free = True self.notes[message.note] = voice if self.note_handlers[message.note]: self.note_handlers[message.note]() elif message.type == 'note_off': logger.debug("Received MIDI note off: note %d" % (message.note)) if self.notes[message.note]: self.notes[message.note].set_input("gate", 0) try: channel = message.channel for handler in self.channel_handlers[channel]: handler.handle_message(message) except AttributeError: pass @classmethod def get_shared_manager(cls): if MIDIManager.shared_manager is None: MIDIManager.shared_manager = MIDIManager() return MIDIManager.shared_manager def set_voice_patch(self, cls, **kwargs): self.voice_class = cls self.voice_class_kwargs = kwargs def add_note_handler(self, note, handler): self.note_handlers[note] = handler def add_control_handler(self, control, handler): self.control_handlers[control].append(handler) def on_control_change(self, control, value): self.control_values[control] = value for handler in self.control_handlers[control]: handler.on_change(value) def get_control_value(self, control): return self.control_values[control] def add_channel_handler(self, channel, handler): self.channel_handlers[channel].append(handler) def remove_channel_handler(self, channel, handler): self.channel_handlers[channel].remove(handler) class MIDIControl(Patch): def __init__(self, control, range_min, range_max, initial=None, mode="absolute", manager=None, curve="linear"): super().__init__() assert mode in ["absolute", "relative"] if manager is None: manager = MIDIManager.get_shared_manager() self.value = self.add_input("value") self.value_smoothed = Smooth(self.value, 0.999) self.set_output(self.value_smoothed) self.control = control self.range_min = range_min self.range_max = range_max self.curve = curve if initial is not None: if self.curve == "exponential": self._value_norm = scale_exp_lin(initial, range_min, range_max, 0, 1) elif self.curve == "linear": self._value_norm = scale_lin_lin(initial, range_min, range_max, 0, 1) else: self._value_norm = 0.5 self.update() self.mode = mode manager.add_control_handler(control, self) def on_change(self, value): if self.mode == "absolute": self._value_norm = value / 127.0 elif self.mode == "relative": if value > 64: value = value - 128 change = value / 127.0 self._value_norm += change if self._value_norm < 0: self._value_norm = 0 if self._value_norm > 1: self._value_norm = 1 self.update() def update(self): if self.curve == "exponential": value_scaled = scale_lin_exp(self._value_norm, 0, 1, self.range_min, self.range_max) elif self.curve == "linear": value_scaled = scale_lin_lin(self._value_norm, 0, 1, self.range_min, self.range_max) self.set_input("value", value_scaled)
ideoforms/signalflow
auxiliary/libs/signalflow_midi/signalflow_midi.py
signalflow_midi.py
py
6,131
python
en
code
138
github-code
6
36208434520
import multiDownload as dl import pandas as pd import sqlite3 import json import os from datetime import datetime, timedelta import shutil import argparse import jieba from jieba import analyse from wordcloud import WordCloud from opencc import OpenCC import requests import emoji with open("scripts/config.json", "r") as file: data = json.load(file) # account = data["account"] # nickName = data["nickName"] Cookie = data["Cookie"] picDriverPath = data["picDriverPath"] dbpath = data["dbpath"] storyPicLink = data["storyPicLink"] storyPicType = data["storyPicType"] # 创建 ArgumentParser 对象 parser = argparse.ArgumentParser() parser.add_argument("account", help="输入account") parser.add_argument("password", help="输入password") parser.add_argument("nickName", help="输入nickName") # parser.add_argument("Cookie", help="输入Cookie") parser.add_argument("repo", help="输入repo") options = parser.parse_args() account = options.account password = options.password nickName = options.nickName # Cookie = options.Cookie repo = options.repo font_path = "./scripts/font.otf" cn_path_svg = "./output/postcrossing_cn.svg" en_path_svg = "./output/postcrossing_en.svg" excel_file = "./template/postcardStory.xlsx" if os.path.exists(dbpath): shutil.copyfile(dbpath, f"{dbpath}BAK") def replateTitle(type): with open(f"./output/title.json", "r",encoding="utf-8") as f: title = json.load(f) value = title.get(type) from_or_to, pageNum, Num, title = value return title # 获取收发总距离 def getUserHomeInfo(type): distance_all = [] content = dl.readDB(dbpath,type,"Mapinfo") #print("content:",content) for item in content: distance_all.append(int(item["distance"])) total = sum(distance_all) rounds = round((total/40076),2) return total,len(content),rounds def getUserSheet(tableName): data = dl.readDB(dbpath, "", tableName) countryCount = len(data) new_data = [] for i, item in enumerate(data): if item['sentMedian']: sentMedian = f"{item['sentMedian']}天" else: sentMedian = "-" if item['receivedMedian']: receivedMedian = f"{item['receivedMedian']}天" else: receivedMedian = "-" formatted_item = { '国家': f"{item['name']} {emoji.emojize(item['flagEmoji'],language='alias')}", '已寄出': item['sentNum'], '已收到': item['receivedNum'], '寄出-平均': f"{item['sentAvg']}天", '收到-平均': f"{item['receivedAvg']}天", '寄出-中间值': sentMedian, '收到-中间值': receivedMedian, } new_data.append(formatted_item) # 将数据数组转换为DataFrame df = pd.DataFrame(new_data) # 修改索引从1开始 df.index = df.index + 1 # 将DataFrame转换为HTML表格,并添加Bootstrap的CSS类和居中对齐的属性 html_table = df.to_html(classes="table table-striped table-bordered", escape=False) html_table = html_table.replace('<th>', '<th class="text-center">') html_table = html_table.replace('<td>', '<td class="text-center">') # 生成完整的HTML文件 html_content = f''' <!DOCTYPE html> <html> <head> <title>{tableName}</title> <link rel="stylesheet" href="../src/bootstrap-5.2.2/package/dist/css/bootstrap.min.css"> <style> .table-responsive {{ width: 100%; overflow-x: auto; }} </style> </head> <body> <div class="container-fluid"> <div class="table-responsive"> {html_table} </div> </div> </body> </html> ''' # 保存HTML表格为网页文件 with open(f'./output/{tableName}.html', 'w', encoding="utf-8") as file: file.write(html_content) return countryCount def replaceTemplate(): stat,content_raw,types = dl.getAccountStat(Cookie) title_all="" desc_all="" countryNum = getUserSheet("CountryStats") travelingNum = getTravelingID(account,"traveling",Cookie) countryCount = f"> 涉及国家[🗺️**{countryNum}**]\n\n" travelingCount = f"> 待签收[📨**{travelingNum}**]\n\n" for type in types: distance,num,rounds = getUserHomeInfo(type) distance_all = format(distance, ",") summary = f"**{num}** 📏**{distance_all}** km 🌏**{rounds}** 圈]\n\n" if type == "sent": desc = f"> 寄出[📤{summary}" elif type == "received": desc = f"> 收到[📥{summary}" else: desc ="" desc_all += desc for type in types: title = replateTitle(type) title_all += f"#### [{title}](/{nickName}/postcrossing/{type})\n\n" title_final = f"{desc_all}\n{countryCount}\n{travelingCount}\n{title_all}" #print("title_all:\n",title_all) storylist,storyNum = getCardStoryList("received") commentlist,commentNum = getCardStoryList("sent") calendar,series,height = createCalendar() with open(f"./template/信息汇总_template.md", "r",encoding="utf-8") as f: data = f.read() dataNew = data.replace('$account',account) print(f"已替换account:{account}") dataNew = dataNew.replace('$title',title_final) print("已替换明信片墙title") dataNew = dataNew.replace('$storylist',storylist).replace('$storyNum',storyNum) print("已替换明信片故事list") dataNew = dataNew.replace('$commentlist',commentlist).replace('$commentNum',commentNum) print("已替换明信片评论list") dataNew = dataNew.replace('$calendar',calendar) dataNew = dataNew.replace('$series',series) dataNew = dataNew.replace('$height',str(height)) print("已替换明信片日历list") dataNew = dataNew.replace('$repo',repo) print(f"已替换仓库名:{repo}") with open(f"./output/信息汇总.md", "w",encoding="utf-8") as f: f.write(dataNew) blog_path = r"D:\web\Blog2\src\Arthur\Postcrossing\信息汇总.md" # 换为你的blog的本地链接,可自动同步过去 if os.path.exists(blog_path): with open(blog_path, "w", encoding="utf-8") as f: f.write(dataNew) def StoryXLS2DB(excel_file): df = pd.read_excel(excel_file) content_all = [] for index, row in df.iterrows(): data = { "id": row[0], "content_en": row[1], "content_cn": row[2], "comment_en": row[3], "comment_cn": row[4], } content_all.append(data) tablename = "postcardStory" dl.writeDB(dbpath, content_all,tablename) def getCardStoryList(type): list_all = "" content =dl.readDB(dbpath, type,"postcardStory") num = str(len(content)) for id in content: postcardID = id["id"] content_en = id["content_en"] content_cn = id["content_cn"] comment_en = id["comment_en"] comment_cn = id["comment_cn"] def remove_blank_lines(text): if text: return "\n".join(line for line in text.splitlines() if line.strip()) return text # 去掉空白行 content_en = remove_blank_lines(content_en) content_cn = remove_blank_lines(content_cn) comment_en = remove_blank_lines(comment_en) comment_cn = remove_blank_lines(comment_cn) if comment_en: comment = f'@tab 回复\n' \ f'* 回复原文\n\n> {comment_en}\n\n* 翻译:\n\n> {comment_cn}\n\n:::' else: comment = ":::" #print("comment:",comment) userInfo = id["userInfo"] picFileName = id["picFileName"] contryNameEmoji = id["contryNameEmoji"] if id["contryNameEmoji"] is not None else "" travel_time = id["travel_time"] distanceNum = id["distance"] distance = format(distanceNum, ",") if type == "received": list = f'### [{postcardID}](https://www.postcrossing.com/postcards/{postcardID})\n\n' \ f'> 来自 {userInfo} {contryNameEmoji}\n' \ f'> 📏 {distance} km\n⏱ {travel_time}\n\n' \ f':::tabs\n' \ f'@tab 图片\n' \ f'<div class="image-preview"> <img src="{picDriverPath}/{picFileName}" />' \ f' <img src="{storyPicLink}/{postcardID}.{storyPicType}" /></div>' \ f'\n\n' \ f'@tab 内容\n' \ f'* 卡片文字\n\n> {content_en}\n\n* 翻译:\n\n> {content_cn}\n\n' \ f'{comment}\n\n' \ f'---\n' else: list = f'### [{postcardID}](https://www.postcrossing.com/postcards/{postcardID})\n\n' \ f'> 寄往 {userInfo} {contryNameEmoji}\n' \ f'> 📏 {distance} km\n⏱ {travel_time}\n\n' \ f':::tabs\n' \ f'@tab 图片\n' \ f'![]({picDriverPath}/{picFileName})\n\n' \ f'' \ f'{comment}\n\n' \ f'---\n' list_all += list return list_all,num def createCalendar(): with open("output/UserStats.json", "r") as file: a_data = json.load(file) year_list = [] for data in a_data: timestamp = data[0] # 获取时间戳 date = datetime.fromtimestamp(timestamp) # 将时间戳转换为日期格式 year = date.strftime("%Y") # 提取年份(YYYY) if year not in year_list: year_list.append(year) calendar_all="" series_all="" for i,year in enumerate(year_list): calendar = f""" {{ top: {i*150}, cellSize: ["auto", "15"], range: {year}, itemStyle: {{ color: '#ccc', borderWidth: 3, borderColor: '#fff' }}, splitLine: true, yearLabel: {{ show: true }}, dayLabel: {{ firstDay: 1, }} }}, """ calendar_all+=calendar series = f""" {{ type: "heatmap", coordinateSystem: "calendar", calendarIndex: {i}, data: data }}, """ series_all+=series height = len(year_list)*150 return calendar_all, series_all, height def createWordCloud(type, contents): contents = contents.replace("nan","") # 转换为svg格式输出 if type == "cn": path = cn_path_svg # 使用jieba的textrank功能提取关键词 keywords = jieba.analyse.textrank(contents, topK=100, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) #print(f"keywords={keywords}") # 创建 OpenCC 对象,指定转换方式为简体字转繁体字 converter = OpenCC('s2t.json') # 统计每个关键词出现的次数 keyword_counts = {} for keyword in keywords: count = contents.count(keyword) keyword = converter.convert(keyword) #简体转繁体 keyword_counts[keyword] = count print(keyword_counts) # 创建一个WordCloud对象,并设置字体文件路径和轮廓图像 wordcloud = WordCloud(width=1600, height=800, background_color="white", font_path=font_path) # 生成词云 wordcloud.generate_from_frequencies(keyword_counts) else: path = en_path_svg wordcloud = WordCloud(width=1600, height=800, background_color="white", font_path=font_path, max_words=100).generate(contents) keywords = wordcloud.words_ print(keywords) svg_image = wordcloud.to_svg(embed_font=True) with open(path, "w+", encoding='UTF8') as f: f.write(svg_image) print(f"已保存至{path}") def readStoryDB(dbpath): result_cn = "" result_en = "" content =dl.readDB(dbpath, "sent","postcardStory") for id in content: postcardID = id["id"] content_en = id["content_en"] content_cn = id["content_cn"] comment_en = id["comment_en"] comment_cn = id["comment_cn"] data_en = f"{content_en}\n{comment_en}\n" data_cn = f"{content_cn}\n{comment_cn}\n" result_en += data_en result_cn += data_cn return result_cn,result_en # 实时获取该账号所有sent、received的明信片列表,获取每个postcardID的详细数据 def getTravelingID(account,type,Cookie): headers = { 'Host': 'www.postcrossing.com', 'X-Requested-With': 'XMLHttpRequest', 'Sec-Fetch-Site': 'same-origin', 'Accept-Language': 'zh-CN,zh-Hans;q=0.9', 'Accept-Encoding': 'gzip, deflate', 'Sec-Fetch-Mode': 'cors', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 17_0_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/17.0.1 Mobile/15E148 Safari/604.1', 'Connection': 'keep-alive', 'Referer': f'https://www.postcrossing.com/user/{account}/{type}', 'Cookie': Cookie, 'Sec-Fetch-Dest': 'empty' } url=f'https://www.postcrossing.com/user/{account}/data/{type}' response = requests.get(url,headers=headers).json() travelingCount = len(response) data = sorted(response, key=lambda x: x[7]) #print(data) new_data = [] for i,stats in enumerate(data): baseurl = "https://www.postcrossing.com" formatted_item = { 'ID号': f"<a href='{baseurl}/travelingpostcard/{stats[0]}'>{stats[0]}</a>", '收件人': f"<a href='{baseurl}/user/{stats[1]}'>{stats[1]}</a>", '国家': stats[3], '寄出时间': datetime.fromtimestamp(stats[4]).strftime('%Y/%m/%d'), '距离': f'{format(stats[6], ",")} km', '天数': stats[7] } new_data.append(formatted_item) df = pd.DataFrame(new_data) # 修改索引从1开始 df.index = df.index + 1 # 删除序号列 #df = df.drop(columns=['序号']) # 将DataFrame转换为HTML表格,并添加Bootstrap的CSS类和居中对齐的属性 html_table = df.to_html(classes="table table-striped table-bordered", escape=False) html_table = html_table.replace('<th>', '<th class="text-center">') html_table = html_table.replace('<td>', '<td class="text-center">') # 生成完整的HTML文件 html_content = f''' <!DOCTYPE html> <html> <head> <title>还在漂泊的明信片</title> <link rel="stylesheet" href="../src/bootstrap-5.2.2/package/dist/css/bootstrap.min.css"> <style> .table-responsive {{ width: 100%; overflow-x: auto; }} </style> </head> <body> <div class="container-fluid"> <div class="table-responsive"> {html_table} </div> </div> </body> </html> ''' # 保存HTML表格为网页文件 with open(f'./output/{type}.html', 'w', encoding="utf-8") as file: file.write(html_content) return travelingCount dl.replaceTemplateCheck() excel_file="./template/postcardStory.xlsx" StoryXLS2DB(excel_file) replaceTemplate() if os.path.exists(f"{dbpath}BAK"): dbStat = dl.compareMD5(dbpath, f"{dbpath}BAK") if dbStat == "1": print(f"{dbpath} 有更新") print(f"正在生成中、英文词库") result_cn,result_en = readStoryDB(dbpath) createWordCloud("cn",result_cn) createWordCloud("en",result_en) os.remove(f"{dbpath}BAK") else: print(f"{dbpath} 暂无更新") os.remove(f"{dbpath}BAK")
arthurfsy2/Postcrossing_map_generator
scripts/createPersonalPage.py
createPersonalPage.py
py
15,829
python
en
code
0
github-code
6
10380773430
import torch.nn as nn from ..builder import BACKBONES from .base_backbone import BaseBackbone @BACKBONES.register_module() class RMNet(BaseBackbone): def __init__(self, depth,frozen_stages=-1): super(RMNet, self).__init__() self.frozen_stages = frozen_stages self.conv1 = nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inplanes = 64 stages = [2,2,2,2] if depth == 18 else [3,4,6,3] self.layer1 = self._make_layer(64, stages[0], 1) self.layer2 = self._make_layer(128, stages[1], 2) self.layer3 = self._make_layer(256, stages[2], 2) self.layer4 = self._make_layer(512, stages[3], 2) self._freeze_stages() def _make_layer(self, planes, blocks, stride=1): layers = [] layers.append( nn.Sequential( nn.Conv2d(self.inplanes, self.inplanes+planes, kernel_size=3,stride=stride, padding=1), nn.ReLU(inplace=True), nn.Conv2d(self.inplanes+planes, planes, kernel_size=3,stride=1, padding=1), nn.ReLU(inplace=True) ) ) self.inplanes = planes for _ in range(1, blocks): layers.append( nn.Sequential( nn.Conv2d(self.inplanes, self.inplanes+planes, kernel_size=3,stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(self.inplanes+planes, planes, kernel_size=3,stride=1, padding=1), nn.ReLU(inplace=True) ) ) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) outs = [] x = self.layer1(x) outs.append(x) x = self.layer2(x) outs.append(x) x = self.layer3(x) outs.append(x) x = self.layer4(x) outs.append(x) return tuple(outs) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, f'layer{i}') m.eval() for param in m.parameters(): param.requires_grad = False def train(self, mode=True): super(RMNet, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
fxmeng/mmclassification
mmcls/models/backbones/rmnet.py
rmnet.py
py
2,851
python
en
code
null
github-code
6
35228257702
#!/usr/bin/env python """Visualisation.py: Visualise data from simulation""" __author__ = "Murray Ireland" __email__ = "[email protected]" __date__ = "22/10/2018" __copyright__ = "Copyright 2017 Craft Prospect Ltd" __licence___ = "" import vtk import numpy as np from math import tan, sin, cos, atan, pi # import msvcrt import sys, os import platform from datetime import datetime from time import sleep if platform.system() == "Windows": from win32api import GetSystemMetrics screen_size = (GetSystemMetrics(0), GetSystemMetrics(1)) elif platform.system() == "Linux": try: import tkinter as tk except ImportError: import Tkinter as tk root = tk.Tk() screen_size = (root.winfo_screenwidth(), root.winfo_screenheight()) # Get current and base directories cur_dir = os.path.dirname(os.path.realpath(__file__)) if "\\" in cur_dir: base_dir = "/".join(cur_dir.split("\\")) else: base_dir = cur_dir class Visualisation(object): """Class for visualisation object""" # Scale time TIME_SCALE = 1 # Turn text overlay on/off SHOW_TEXT = True # Full-screen and window scaling FULL_SCREEN = True WIN_H_SCALE = 1. WIN_V_SCALE = 1. TEXT_SCALE = 1. # Use lower resolution textures where appropriate USE_SMALL_IMAGES = False # Scale entire animation for troubleshooting ANI_SCALE = 1. # Scale satellite up for better visibility SAT_SCALE = 500. # Breaks if too small # Colours COLOUR_BG = (0, 0, 0) COLOUR_FONT = (0.871, 0.246, 0.246) # Set solar panel angles [deg] PANEL_ANGLE = 10 # Tile size for Earth textures [m] TILE_SIZE = (177390, 183360) # Anchor settings ANCHOR = { "SW": (0, 0), "NW": (0, 2), "NE": (2, 2), "SE": (2, 0), "N": (1, 2), "E": (2, 1), "S": (1, 0), "W": (0, 1), "C": (1, 1) } def __init__(self, PROPS, data): """Class constructor""" # Screen size and aspect ratio self.SCREEN_SIZE = (screen_size[0], screen_size[1]) self.SCREEN_AR = float(self.SCREEN_SIZE[0])/float(self.SCREEN_SIZE[1]) # Initialise property dictionaries self.SAT_PROPS = PROPS["Sat"] self.CAM_PROPS = PROPS["Camera"] self.IMG_PROPS = PROPS["Imagery"] self.LSR_POS = PROPS["Laser"] self.EARTH_PROPS = PROPS["Earth"] # Initialise simulation data self.DATA = data # Initialise imagery self.IMG_PROPS["Texture size"] = ( self.IMG_PROPS["Size"]["full"][0]*self.IMG_PROPS["Res"]["full"], self.IMG_PROPS["Size"]["full"][1]*self.IMG_PROPS["Res"]["full"] ) # Initialise index self.index = 0 # Initialise render window and interactor self.renWin, self.iren = self.init_renderer() self.ren = {} # Create scenes self.actors, self.cameras, self.text, self.lights = self.create_scenes() for key in self.lights.keys(): for light in self.lights[key]: self.ren[key].AddLight(light) # Render scenes self.iren.Initialize() self.renWin.Render() # Initialise time now = datetime.now() self.init_time = [now.hour, now.minute, now.second] # Create timer event self.iren.AddObserver("TimerEvent", self.execute) timerId = self.iren.CreateRepeatingTimer(int(1000*self.DATA["Time step"])) # Start interactor and timer self.iren.Start() # Stop timer? # self.movieWriter.End() def init_renderer(self): """Initialise render window and interactor""" # Initialise render window renWin = vtk.vtkRenderWindow() if self.FULL_SCREEN: renWin.FullScreenOn() else: renWin.SetSize( int(self.WIN_H_SCALE*self.SCREEN_SIZE[0]), int(self.WIN_V_SCALE*self.SCREEN_SIZE[1]) ) class MyInteractorStyle(vtk.vtkInteractorStyleTrackballCamera): def __init__(self, parent=None): return None # Initialise interactor iren = vtk.vtkRenderWindowInteractor() iren.SetInteractorStyle(MyInteractorStyle()) # iren.AutoAdjustCameraClippingRangeOn() iren.SetRenderWindow(renWin) return renWin, iren def init_video(self): """Initialise video recorder""" # Set up filter imageFilter = vtk.vtkWindowToImageFilter() imageFilter.SetInput(self.renWin) imageFilter.SetInputBufferTypeToRGB() imageFilter.ReadFrontBufferOff() imageFilter.Update() return imageFilter, 0 def add_to_ren(self, name, actors, camera, viewport, text): """Add elements of scene to renderer window""" # Create renderer for scene self.ren[name] = vtk.vtkRenderer() # Add renderer to render window self.renWin.AddRenderer(self.ren[name]) # Add camera and viewport if camera != []: self.ren[name].SetActiveCamera(camera) self.ren[name].SetViewport(viewport) # Add actors for key in actors: if type(actors[key]) is list: for actor in actors[key]: self.ren[name].AddActor(actor) else: self.ren[name].AddActor(actors[key]) self.ren[name].ResetCameraClippingRange() # Add text if type(text) is dict: for actor in text: self.ren[name].AddActor(text[actor]) else: self.ren[name].AddActor(text) self.ren[name].SetBackground(self.COLOUR_BG) def create_scenes(self): """Create scenes""" # Initialise dictionaries cameras = {} text = {} lights = {} # Create scenes actors, cameras["Main"], text["Main"], lights["Main"] = self.scene_main() # Return actors and cameras return actors, cameras, text, lights def scene_main(self): """Create main scene""" # Create viewport viewport = [0, 0, 1, 1] # Camera settings # Focal point offset from sat centre foffset = [200, -400, 0] # Distance from sat cam_dist = 5e3 # Angles pitch = -65 yaw = 2 # Focal point fpoint = np.array([0., 0., -self.SAT_PROPS["Alt"]]) + np.array(foffset) # Transform camera position prad = pitch*pi/180 yrad = yaw*pi/180 Rpitch = np.matrix([ [cos(prad), 0, sin(prad)], [0, 1, 0], [-sin(prad), 0, cos(prad)] ]) Ryaw = np.matrix([ [cos(yrad), -sin(yrad), 0], [sin(yrad), cos(yrad), 0], [0, 0, 1] ]) cam_pos = Ryaw*Rpitch*np.matrix([-cam_dist, 0., 0.]).T cam_pos = np.array(cam_pos).flatten() cam_pos = cam_pos + fpoint # cam_pos = [-10, 0., -self.SAT_PROPS["Alt"] - cam_dist] # Create camera camera = vtk.vtkCamera() camera.SetPosition(cam_pos) camera.SetViewUp(0, 0, -1) camera.SetViewAngle(15) camera.SetFocalPoint(fpoint) camera.SetClippingRange(0.001, 100) # Create lights lights = [] lights.append(vtk.vtkLight()) lights[0].SetPosition(cam_pos) lights[0].SetFocalPoint([0., 0., -self.SAT_PROPS["Alt"]]) lights[0].SetColor(1., 1., 1.) lights.append(vtk.vtkLight()) lights[1].SetPosition(0., 0., 0) lights[1].SetFocalPoint([0., 0., -self.SAT_PROPS["Alt"]]) # Create actors actors = { "Sat body": self.create_sat_body(), "Sat panels": self.create_sat_panels(), "Earth": self.create_earth("true", "small"), "Forward cam": self.create_cam_fov("Forward"), "Redline": self.create_line(self.LSR_POS["Red"], [1., 0., 0.]), "Greenline": self.create_line(self.LSR_POS["Green"], [0., 1., 0.]), "Blueline": self.create_line(self.LSR_POS["Blue"], [0., 0., 1.]) } for T, pos in zip(range(self.DATA["Target info"]["Num"]), self.DATA["Target info"]["Pos"]): actors["T{}".format(T+1)] = self.create_sphere(pos) # Text actors text = {} if self.SHOW_TEXT: # Craft text text["Craft"] = self.create_text( { "String": "CRAFT PROSPECT", "Size": 60, "Font": "Montserrat-SemiBold", "Y offset": 0.06 }, viewport ) # Subtitle text text["QKD"] = self.create_text( { "String": "Demo Simulation", "Size": 40, "Style": "Normal" }, viewport ) # Time text text["Time"] = self.create_text( { "String": "", "Size": 50, "Anchor": "NE", "Font": "7Segment" }, viewport ) # Info text text["Info"] = self.create_text( { "String": """Altitude: {:.0f} km Velocity: {:.2f} km/s """.format( self.SAT_PROPS["Alt"]/1000, self.DATA["Vel"][0, 0]/1000, ), "Size": 20, "Anchor": "NE", "Y offset": 0.06 }, viewport ) # Render scene self.add_to_ren("Main", actors, camera, viewport, text) # Reset clipping range # camera.SetClippingRange(1000, 1000e3) # Return actors to animate return actors, camera, text, lights def create_sat_body(self): """Generate satellite body geometry""" # Dimensions of body SAT_SIZE = self.ANI_SCALE*self.SAT_SCALE*np.asarray(self.SAT_PROPS["Size"])/2 bx = SAT_SIZE[0] by = SAT_SIZE[1] bz = SAT_SIZE[2] # Create vertices in body frame ind = 0 V = [] for x in [-1, 1]: for y in [-1, 1]: for z in [-1, 1]: V.append((bx*x, by*y, bz*z)) # Create faces F = [ (0, 1, 3, 2), (4, 5, 7, 6), (0, 1, 5, 4), (2, 3, 7, 6), (0, 2, 6, 4), (1, 3, 7, 5) ] # Create building blocks of polydata sat = vtk.vtkPolyData() points = vtk.vtkPoints() polys = vtk.vtkCellArray() scalars = vtk.vtkFloatArray() # Load the point, cell and data attributes for i in range(len(V)): points.InsertPoint(i, V[i]) for i in range(len(F)): polys.InsertNextCell(self.mkVtkIdList(F[i])) for i in range(len(V)): scalars.InsertTuple1(i, i) # Assign the pieces to the vtkPolyData. sat.SetPoints(points) del points sat.SetPolys(polys) del polys sat.GetPointData().SetScalars(scalars) del scalars # Mapper mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(sat) mapper.ScalarVisibilityOff() # Actor actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(0.5, 0.5, 0.5) actor.GetProperty().SetAmbient(0.5) actor.GetProperty().SetSpecular(1.0) actor.GetProperty().SetSpecularPower(5.0) actor.GetProperty().SetDiffuse(0.2) # Move to sat position actor.SetPosition(0, 0, -self.SAT_PROPS["Alt"]) return actor def create_sat_panels(self): """Create satellite solar panel geometry""" # Dimensions of body SAT_SIZE = self.ANI_SCALE*self.SAT_SCALE*np.asarray(self.SAT_PROPS["Size"])/2 bx = SAT_SIZE[0] by = SAT_SIZE[1] bz = SAT_SIZE[2] # Panel length L = bx # Panels theta = self.PANEL_ANGLE*pi/180 px1 = bx - L*sin(theta) py1 = by + L*cos(theta) pz1 = bz px2 = px1 + L*sin(theta) py2 = py1 + L*cos(theta) pz2 = pz1 # Vertices V = [ (-bx, by, -bz), (-bx, by, bz), (-px1, py1, pz1), (-px1, py1, -pz1), (-px1, py1, -pz1), (-px1, py1, pz1), (-px2, py2, pz2), (-px2, py2, -pz2), (-bx, -by, -bz), (-bx, -by, bz), (-px1, -py1, pz1), (-px1, -py1, -pz1), (-px1, -py1, -pz1), (-px1, -py1, pz1), (-px2, -py2, pz2), (-px2, -py2, -pz2) ] # Create faces F = [ (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (12, 13, 14, 15) ] # Create building blocks of polydata sat = vtk.vtkPolyData() points = vtk.vtkPoints() polys = vtk.vtkCellArray() scalars = vtk.vtkFloatArray() # Load the point, cell and data attributes for i in range(len(V)): points.InsertPoint(i, V[i]) for i in range(len(F)): polys.InsertNextCell(self.mkVtkIdList(F[i])) for i in range(len(V)): scalars.InsertTuple1(i, i) # Assign the pieces to the vtkPolyData. sat.SetPoints(points) del points sat.SetPolys(polys) del polys sat.GetPointData().SetScalars(scalars) del scalars # Mapper mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(sat) mapper.ScalarVisibilityOff() # Actor actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(0., 0., 0.8) actor.GetProperty().SetAmbient(0.5) actor.GetProperty().SetSpecular(.5) actor.GetProperty().SetSpecularPower(10.0) actor.GetProperty().SetDiffuse(0.2) # Move to sat position actor.SetPosition(0, 0, -self.SAT_PROPS["Alt"]) return actor def create_earth(self, imtype, size): """Create tiles for Earth geometry""" # Update properties for tile tile_props = { "Size": self.IMG_PROPS["Texture size"], "Translate": ( -self.IMG_PROPS["Offset"][0], -self.IMG_PROPS["Texture size"][1]/2, 0 ) } # Texture for tile texture = f"{cur_dir}/images/samp1_{size}.jpg" # Create actors actor = self.create_plane(tile_props, texture) return actor def create_plane(self, props, texture): """Create flat plane""" # Pull and scale dimensions SIZE = np.asarray(props["Size"]) POS = np.asarray(props["Translate"]) # Create texture reader reader = vtk.vtkJPEGReader() reader.SetFileName(texture) # Create texture object texture = vtk.vtkTexture() texture.SetInputConnection(reader.GetOutputPort()) texture.InterpolateOn() # Create plane model plane = vtk.vtkPlaneSource() plane.SetResolution(1, 1) plane.SetPoint1(0, SIZE[1], 0) plane.SetPoint2(SIZE[0], 0, 0) # Translate to centre transP = vtk.vtkTransform() transP.Translate( POS[0], POS[1], POS[2] ) tpd = vtk.vtkTransformPolyDataFilter() tpd.SetInputConnection(plane.GetOutputPort()) tpd.SetTransform(transP) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(tpd.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) actor.SetTexture(texture) actor.GetProperty().SetAmbient(1.0) actor.GetProperty().SetSpecular(.5) actor.GetProperty().SetSpecularPower(5.0) actor.GetProperty().SetDiffuse(0.2) return actor def create_cam_fov(self, name): """Create FOV actor for camera""" # Vertices of FOV V = [ (0, 0, -self.SAT_PROPS["Alt"]), tuple(self.CAM_PROPS[name]["Intercepts"][:, 0]), tuple(self.CAM_PROPS[name]["Intercepts"][:, 1]), tuple(self.CAM_PROPS[name]["Intercepts"][:, 2]), tuple(self.CAM_PROPS[name]["Intercepts"][:, 3]) ] # Faces of FOV F = [(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 1)] # Create building blocks of polydata cam = vtk.vtkPolyData() points = vtk.vtkPoints() polys = vtk.vtkCellArray() scalars = vtk.vtkFloatArray() # Load the point, cell and data attributes for i in range(5): points.InsertPoint(i, V[i]) for i in range(4): polys.InsertNextCell( self.mkVtkIdList(F[i])) for i in range(5): scalars.InsertTuple1(i,i) # Assign the pieces to the vtkPolyData. cam.SetPoints(points) del points cam.SetPolys(polys) del polys cam.GetPointData().SetScalars(scalars) del scalars # Mapper mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(cam) mapper.ScalarVisibilityOff() # Actor actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(0.5, 1, 0.5) actor.GetProperty().SetAmbient(0.5) actor.GetProperty().SetOpacity(0.1) return actor def create_line(self, pos, colour): """Create line""" # Absolute source position pos_abs = np.array([0., 0., -self.SAT_PROPS["Alt"]]) + np.array(pos)*self.SAT_SCALE # Create line line = vtk.vtkLineSource() line.SetPoint1(pos_abs) line.SetPoint2(2*self.SAT_PROPS["Alt"], 0., -self.SAT_PROPS["Alt"]) # Mapper mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(line.GetOutputPort()) # Actor actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(colour) actor.GetProperty().SetOpacity(0.5) actor.GetProperty().SetLineWidth(4) actor.SetOrigin(0., 0., -self.SAT_PROPS["Alt"]) return actor def create_sphere(self, position): """Create sphere of specific size""" # Create source source = vtk.vtkSphereSource() source.SetCenter(0, 0, 0) source.SetRadius(1.e3) source.SetPhiResolution(40) source.SetThetaResolution(40) # Mapper mapper = vtk.vtkPolyDataMapper() if vtk.VTK_MAJOR_VERSION <= 5: mapper.SetInput(source.GetOutput()) else: mapper.SetInputConnection(source.GetOutputPort()) # Actor actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(1, 0.5, 0.5) actor.GetProperty().SetAmbient(0.5) actor.GetProperty().SetOpacity(0.8) actor.SetPosition(position) # Return actor return actor def create_text(self, settings, viewport): """Create text actor for view labels""" viewport = np.array(viewport) viewport[[0, 2]] = self.WIN_H_SCALE*viewport[[0, 2]] viewport[[1, 3]] = self.WIN_V_SCALE*viewport[[1, 3]] viewport = list(viewport) # Set defaults if not specified defaults = { "Size": 20, "Anchor": "SW", "X offset": 0.02, "Y offset": 0.02, "Font": "Montserrat", "Colour": self.COLOUR_FONT } for key in defaults: try: settings[key] except KeyError: settings[key] = defaults[key] # Position margin = ( self.TEXT_SCALE*settings["X offset"]*(self.ANCHOR[settings["Anchor"]][0] - 1), self.TEXT_SCALE*settings["Y offset"]*(self.ANCHOR[settings["Anchor"]][1] - 1) ) posx = int((viewport[0] + 0.5*self.ANCHOR[settings["Anchor"]][0]*(viewport[2] - viewport[0]) - margin[0])*self.SCREEN_SIZE[0]) posy = int((viewport[1] + 0.5*self.ANCHOR[settings["Anchor"]][1]*(viewport[3] - viewport[1]) - margin[1])*self.SCREEN_SIZE[1]) # Properties props = vtk.vtkTextProperty() props.SetFontFamily(vtk.VTK_FONT_FILE) if settings["Font"] == "Montserrat-SemiBold": props.SetFontFile("./fonts/Montserrat-SemiBold.ttf") elif settings["Font"] == "Consolas": props.SetFontFile("./fonts/consola.ttf") elif settings["Font"] is "7Segment": props.SetFontFile("./fonts/digital-7 (mono).ttf") else: props.SetFontFile("./fonts/Montserrat.ttf") props.SetFontSize(int(self.TEXT_SCALE*settings["Size"])) props.SetColor(settings["Colour"]) props.SetJustification(self.ANCHOR[settings["Anchor"]][0]) props.SetVerticalJustification(self.ANCHOR[settings["Anchor"]][1]) # Create actor actor = vtk.vtkTextActor() actor.SetInput(settings["String"]) actor.SetDisplayPosition(posx, posy) actor.SetTextProperty(props) return actor def execute(self, obj, event): """Execute timed event""" # Reset clipping range # self.cameras["Main"].SetClippingRange(1000, 3000e3) # Simulation time T = self.DATA["Time"][self.index] # Visualisation time Tvis = T*self.TIME_SCALE # Modes adcs_mode = self.DATA["ADCS mode names"][int(self.DATA["ADCS mode"][self.index])] payload_mode = self.DATA["Payload mode names"][int(self.DATA["Payload mode"][self.index])] # Update Earth position self.actors["Earth"].SetPosition( -self.DATA["Pos"][0, self.index], 0, 0 ) # Update target positions for trgt, pos in zip(range(self.DATA["Target info"]["Num"]), self.DATA["Target info"]["Pos"]): self.actors["T{}".format(trgt+1)].SetPosition( -self.DATA["Pos"][0, self.index] + pos[0], pos[1], pos[2] ) # Update sightline att_des = tuple(np.array(self.DATA["Inputs"][:, self.index])*180/pi) self.actors["Redline"].SetOrientation(att_des) self.actors["Greenline"].SetOrientation(att_des) self.actors["Blueline"].SetOrientation(att_des) if payload_mode in ["Synchronise"]: self.actors["Redline"].GetProperty().SetOpacity(0) self.actors["Greenline"].GetProperty().SetOpacity(0.9) self.actors["Blueline"].GetProperty().SetOpacity(0) elif payload_mode in ["Authenticate"]: self.actors["Redline"].GetProperty().SetOpacity(0) self.actors["Greenline"].GetProperty().SetOpacity(0) self.actors["Blueline"].GetProperty().SetOpacity(0.9) elif payload_mode in ["Key delivery"]: self.actors["Redline"].GetProperty().SetOpacity(0.9) self.actors["Greenline"].GetProperty().SetOpacity(0) self.actors["Blueline"].GetProperty().SetOpacity(0.9) else: self.actors["Redline"].GetProperty().SetOpacity(0) self.actors["Greenline"].GetProperty().SetOpacity(0) self.actors["Blueline"].GetProperty().SetOpacity(0) # Update satellite attitude att = tuple(np.array(self.DATA["Att"][:, self.index])*180/pi) for key in ["Sat body", "Sat panels"]: self.actors[key].SetOrientation(att) # Update text actors hh = self.init_time[0] ss = int(self.init_time[2] + Tvis) mm = self.init_time[1] + (ss // 60) ss = ss % 60 hh = hh + (mm // 60) mm = mm % 60 self.text["Main"]["Time"].SetInput( "{:02d}:{:02d}:{:02d}".format(hh, mm, ss) ) # Update render window interactor self.iren = obj self.iren.GetRenderWindow().Render() # Increment index, loop if at end of data if self.index < len(self.DATA["Time"]) - 1: self.index += 1 else: self.index = 0 def mkVtkIdList(self, it): """Makes a vtkIdList from a Python iterable""" vil = vtk.vtkIdList() for i in it: vil.InsertNextId(int(i)) return vil
Craft-Prospect/CubeSatVis
python/visualisation.py
visualisation.py
py
24,867
python
en
code
2
github-code
6
655237097
import os from glob import glob import numpy as np import pandas as pd try: import imageio.v2 as imageio except ImportError: import imageio from tqdm import tqdm from xarray import DataArray from elf.evaluation import dice_score def run_prediction(input_folder, output_folder): import bioimageio.core os.makedirs(output_folder, exist_ok=True) inputs = glob(os.path.join(input_folder, "*.tif")) model = bioimageio.core.load_resource_description("10.5281/zenodo.5869899") with bioimageio.core.create_prediction_pipeline(model) as pp: for inp in tqdm(inputs): fname = os.path.basename(inp) out_path = os.path.join(output_folder, fname) image = imageio.v2.imread(inp) input_ = DataArray(image[None, None], dims=tuple("bcyx")) pred = bioimageio.core.predict_with_padding(pp, input_)[0].values.squeeze() imageio.volwrite(out_path, pred) def evaluate(label_folder, output_folder): cell_types = ["A172", "BT474", "BV2", "Huh7", "MCF7", "SHSY5Y", "SkBr3", "SKOV3"] grid = pd.DataFrame(columns=["Cell_types"] + cell_types) row = ["all"] for i in cell_types: label_files = glob(os.path.join(label_folder, i, "*.tif")) this_scores = [] for label_file in label_files: fname = os.path.basename(label_file) pred_file = os.path.join(output_folder, fname) label = imageio.imread(label_file) pred = imageio.volread(pred_file)[0] score = dice_score(pred, label != 0, threshold_gt=None, threshold_seg=None) this_scores.append(score) row.append(np.mean(this_scores)) grid.loc[len(grid)] = row print("Cell type results:") print(grid) def main(): # input_folder = "/home/pape/Work/data/incu_cyte/livecell/images/livecell_test_images" output_folder = "./predictions" # run_prediction(input_folder, output_folder) label_folder = "/home/pape/Work/data/incu_cyte/livecell/annotations/livecell_test_images" evaluate(label_folder, output_folder) if __name__ == "__main__": main()
constantinpape/torch-em
experiments/unet-segmentation/livecell/check_cell_type_performance.py
check_cell_type_performance.py
py
2,148
python
en
code
42
github-code
6
72609945147
import requests from parsel import Selector url='http://www.porters.vip/verify/uas/index.html' # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.3'} headers = {'User-Agent': 'PostmanRuntime/7.26.2', 'Host': 'www.porters.vip', 'Accept':'*/*', 'Connection':'keep-alive', 'Accept-Endcoding':'gzip,deflate,br'} r=requests.get(url,headers=headers) sel = Selector(r.text) print(r.status_code) print(sel.css('.list-group-item::text').extract())
0xdeciverAngel/anti-web-crawler
user agent.py
user agent.py
py
569
python
en
code
0
github-code
6
43193724256
# -*- coding: utf-8 -*- import streamlit as st from topics import TopicModel import pandas as pd import numpy as np from scipy.optimize import linear_sum_assignment import matplotlib.pyplot as plt import base64 @st.cache(allow_output_mutation=True) def load_corpus(url): return tm.load_corpus(url) # check the cache if there is already a model for this url, stopwords and number_of_topics @st.cache(allow_output_mutation=True, persist=True, show_spinner=False) def lda_model(url, stopwords, number_of_topics): corpus = load_corpus(url) corpus.update_stopwords(stopwords) with st.spinner("Training the topic model for {} topics ...".format(number_of_topics)): print("*** Training the topic model: {}".format(number_of_topics)) return lda_model_no_cache(corpus, number_of_topics) def lda_model_no_cache(corpus, number_of_topics): if use_heuristic_alpha_value: return tm.fit(corpus, number_of_topics, alpha="talley", number_of_chunks=number_of_chunks) else: return tm.fit(corpus, number_of_topics, number_of_chunks=number_of_chunks) # check the cache if there are already runs for this url, stopwords and number_of_topics @st.cache(allow_output_mutation=True, persist=True, show_spinner=False) def lda_model_runs(url, stopwords, number_of_topics, n=4): corpus = load_corpus(url) corpus.update_stopwords(stopwords) with st.spinner("Creating {} different topic models".format(n)): lda_models = [lda_model_no_cache(corpus, number_of_topics) for run in range(n)] return lda_models def topic_alignment(n): lda_models = lda_model_runs(url, stopwords, number_of_topics, n=n) topics = pd.DataFrame([[" ".join([tw[0] for tw in lda.lda.show_topic(t, 10)]) for lda in lda_models] for t in range(number_of_topics)]) diff = [lda_models[0].difference(lda_models[i]) for i in range(1, n)] matches = pd.DataFrame() matches[0] = range(number_of_topics) for i in range(1, n): _, cols = linear_sum_assignment(diff[i-1]) matches[i] = cols return topics, matches, lda_models, diff def highlight_topic(x, topic, matches, color="lightgreen"): color = "background-color: %s" % (color) df = pd.DataFrame('', x.index, x.columns) for run in range(len(x.columns)): df[run].loc[matches[run][topic]] = color return df def topic_runs(lda_models, topic, matches): keywords = pd.DataFrame() weights = pd.DataFrame() documents = pd.DataFrame() for run in range(len(lda_models)): keywords[run] = [tw[0] for tw in lda_models[run].lda.show_topic(matches[run][topic], 10)] weights[run] = [tw[1] for tw in lda_models[run].lda.show_topic(matches[run][topic], 10)] # todo: while correct, this is inefficient as the DTM is recomputed for each run documents[run] = document_topics_matrix(lda_models[run])[matches[run][topic]] return lda_models, keywords, weights, documents # done: once we pass weights, use the relative weights to assign colors # relative weight = weight / lowest weight in top 10 # for all keywords that are repeated across topics, color them blue if all >= 2, # green if some >= 2, and blue if all < 2 def highlight_repeated_keywords(keywords, weights): df = pd.DataFrame('', keywords.index, keywords.columns) num_runs, num_words = len(keywords.columns), len(keywords.index) # extract array from data frame # we transpose the array so that each row represents one run keywords = keywords.values.T weights = weights.values.T repeated_keywords = [] for keyword in keywords[0]: i = 0 for run in range(1, num_runs): if keyword in keywords[run]: i = i + 1 # print("keyword {} occurs {} times".format(keyword, i)) if i == num_runs - 1: repeated_keywords.append(keyword) color = keyword_color(repeated_keywords, num_runs, num_words, keywords, weights) for j in range(num_runs): for i in range(num_words): if keywords[j,i] in repeated_keywords: df[j].loc[i] = "background-color: light%s" % (color[keywords[j,i]]) return df def keyword_color(repeated_keywords, num_runs, num_words, keywords, weights): color = {} for keyword in repeated_keywords: color[keyword] = None for j in range(num_runs): for i in range(num_words): if keywords[j,i] in repeated_keywords: ratio = weights[j,i]/weights[j,num_words-1] if ratio >= 2.0: if color[keywords[j,i]] is None: color[keywords[j,i]] = 'yellow' elif color[keywords[j,i]] == 'blue': color[keywords[j,i]] = 'green' else: if color[keywords[j,i]] is None: color[keywords[j,i]] = 'blue' elif color[keywords[j,i]] == 'yellow': color[keywords[j,i]] = 'green' return color def document_topics_matrix(lda): dtm = [] for document_bow in corpus.bow(): dtm.append(topics_sparse_to_full(lda.get_document_topics(document_bow))) return pd.DataFrame(dtm) def topics_sparse_to_full(topics): topics_full = [0] * number_of_topics # pythonic way of creating a list of zeros for topic, score in topics: topics_full[topic] = score return topics_full def download_link_from_csv(csv, file_name, title="Download"): b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here href = "<a href='data:file/csv;base64,{}' download='{}'>{}</a>".format(b64, file_name, title) st.markdown(href, unsafe_allow_html=True) def download_link_from_html(html, file_name, title="Download"): b64 = base64.b64encode(html.encode()).decode() # some strings <-> bytes conversions necessary here href = "<a href='data:file/html;base64,{}' download='{}'>{}</a>".format(b64, file_name, title) st.markdown(href, unsafe_allow_html=True) st.sidebar.title("Topic Model Explorer") tm = TopicModel() url = st.sidebar.file_uploader("Corpus", type="csv") stopwords = st.sidebar.text_area("Stopwords (one per line)") update_stopwords = st.sidebar.button("Update stopwords") if update_stopwords: if url is not None: corpus = load_corpus(url) corpus.update_stopwords(stopwords) show_documents = st.sidebar.checkbox("Show documents", value=True) if show_documents: st.header("Corpus") if url is not None: corpus = load_corpus(url) if('name' not in corpus.documents or 'content' not in corpus.documents): st.markdown(''' The corpus must have a *name* and a *content* column. ''') st.dataframe(corpus.documents) download_link_from_csv("\n".join(corpus.stopwords), "stopwords.txt", "Download stopwords") else: st.markdown("Please upload a corpus.") number_of_topics = st.sidebar.slider("Number of topics", 1, 50, 10) use_heuristic_alpha_value = st.sidebar.checkbox("Use heuristic value for alpha", value=False) number_of_chunks = st.sidebar.slider("Number of chunks", 1, 100, 100) show_runs = st.sidebar.checkbox("Compare topic model runs", value=False) if show_runs: st.header("Topic Model Runs") topic_to_highlight = st.sidebar.selectbox("Highlight topic", range(number_of_topics), 0) show_runs_all_topics = st.sidebar.checkbox("Show all topics", value=True) if url is None: st.markdown("No corpus") elif show_runs_all_topics: topics, matches, lda_models, diff = topic_alignment(4) st.table(topics.style .apply(highlight_topic, topic=topic_to_highlight, matches=matches, axis=None)) download_link_from_csv(topics.to_csv(index=False), "tm-{}-runs.csv".format(number_of_topics), title="Download topics as CSV") else: # todo: topic_alignment to return weights as well # then pass weights as argument to highlight_repeated_keywords topics, matches, lda_models, diff = topic_alignment(4) lda_models, keywords, weights, documents = topic_runs(lda_models, topic=topic_to_highlight, matches=matches) st.table(keywords.style .apply(highlight_repeated_keywords, weights=weights, axis=None)) download_link_from_csv(keywords.to_csv(index=False), "tm-{}-{}-keywords.csv".format(number_of_topics, topic_to_highlight), title="Download keywords as CSV") download_link_from_html(keywords.style .apply(highlight_repeated_keywords, weights=weights, axis=None) .render(), "tm-{}-{}-keywords.html".format(number_of_topics, topic_to_highlight), title="Download keywords as HTML (with colors)") st.table(weights) download_link_from_csv(keywords.to_csv(index=False), "tm-{}-{}-weights.csv".format(number_of_topics, topic_to_highlight), title="Download weights as CSV") st.dataframe(documents)
michaelweiss/topic-model-explorer
old/topic_model_explorer_stability.py
topic_model_explorer_stability.py
py
8,264
python
en
code
2
github-code
6
36264192726
from PyQt5.QtCore import QModelIndex, pyqtSignal, pyqtSlot, QVariant, QFile, QByteArray, QBuffer, QIODevice, QSize, \ QItemSelectionModel, QItemSelection from PyQt5.QtGui import QPixmap, QFont, QIcon from PyQt5.QtSql import QSqlQuery from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QDialog, QMessageBox from TreeModel import TreeModel from inputdialog import InputDialog from connect1 import Connect1 from newForm import * class Widget2(QWidget): def __init__(self): super().__init__() self.db = None self.setWindowModality(QtCore.Qt.ApplicationModal) self.setFixedSize(600, 400) self.setWindowTitle("Лейман М.А.") label = QLabel(self) label.move(25, 25) label.setFixedSize(550, 350) label.setStyleSheet('background-color: rgb(180, 190, 200)') label.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) label.setFont(QFont('Arial', 15)) label.setWordWrap(True) label.setText('Тестовая программа\n \nПостроение из базы данных иерархического списка\n в виде дерева,' 'с возможностью редактирования\n и добавления дочерних элементов. \n \n \n ' ' выполнил: Лейман М.А.\n тел: +79613224543\n email: [email protected]') self.setWindowFlags(QtCore.Qt.Dialog) # делает окно несворачиваемым class Widget1(QtWidgets.QWidget): valueChangedSignal = pyqtSignal(list) valueInsertSignal = pyqtSignal(list) def __init__(self, parent): QtWidgets.QWidget.__init__(self, parent) self.idRowNew = None # id новой (вставляемой) строки self.__iDialog = None self.w = None self.y = None self.ui = Ui_Widget() pixmap = QPixmap(":/img2.png") # установка эмблеммы в окно self.ui.setupUi(self) self.ui.label_2.setPixmap(pixmap) self.ui.label.setPixmap(pixmap) self.ui.treeView.setAttribute(QtCore.Qt.WA_StyledBackground, True) self.ui.treeView.setStyleSheet('background-color: rgb(170, 190,195)') # установка фона для окна дерева self.ui.button.setToolTip("<h3>Нажми меня</h3>") self.ui.button.setStyleSheet("background-color : rgb(10, 120, 10)") self.db = Connect1("task") cursor = self.db.connect_to_data_base treemodel = TreeModel() self.ui.treeView.setModel(treemodel) self.ui.button.clicked.connect(self.window_open) # открывает окно "О программе" + self.ui.delRow.clicked.connect(self.removeRowTree) # удаляет строку (узел) с дочерними строками + self.ui.modifi.clicked.connect(self.modifiRow) # изменяет данные строки (узла) - self.ui.addRow.clicked.connect(self.insertChildTree) # Добавляет строку (Узел) - self.ui.treeView.selectionModel().selectionChanged[QItemSelection, QItemSelection].connect(self.updateActions) self.ui.treeView.selectionModel().currentRowChanged[QModelIndex, QModelIndex].connect(self.slotCurrentPic) self.valueChangedSignal[list].connect(self.editDataBase) # Изменяет выбранный элемент в БАЗЕ self.valueInsertSignal[list].connect(self.insertDataBase) # вставляем новые данные в БАЗУ self.ui.treeView.setColumnHidden(2, True) # делает невидимым столбцы 2,3,4 self.ui.treeView.setColumnHidden(3, True) self.ui.treeView.setColumnHidden(4, True) header = self.ui.treeView.header() header.setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(2, QtWidgets.QHeaderView.Fixed) header.setSectionResizeMode(3, QtWidgets.QHeaderView.Fixed) header.setSectionResizeMode(4, QtWidgets.QHeaderView.Fixed) header.setStretchLastSection(False) self.updateActions() def window_open(self): self.w = Widget2() self.w.show() # self.hide() def closeEvent(self, event): self.db.close_db() for window in QApplication.topLevelWidgets(): window.close() def slotCurrentPic(self, index: QModelIndex): yurModel = self.ui.treeView.model() item = yurModel.getItem(index) pix = item.data(1) if not isinstance(pix, QByteArray): # sss = QByteArray(item.data(1).encode()) sss = ":/img2.png" outPixmap = QPixmap(sss) pixmap = outPixmap.scaledToWidth(200) else: sss = pix outPixmap = QPixmap() outPixmap.loadFromData(sss) dd = outPixmap.width() pixmap = outPixmap.scaledToWidth(200) self.ui.label.setPixmap(pixmap) @pyqtSlot() def insertChildTree(self): pInputDialog = InputDialog() if pInputDialog.flag: name = pInputDialog.name() # вводим данные image = pInputDialog.image() state = pInputDialog.state() var = pInputDialog.destroyed index = self.ui.treeView.selectionModel().currentIndex() # Получаем модельный индекс элемента model = self.ui.treeView.model() # получаем модель дерева colCount = model.columnCount(index) itemParent = model.getItem(index) # получаем выбранный элемент, он становится родителем вставляемого элемента idParentRow = int(itemParent.data(2)) # получаем id выбранной строки, становится id_parent для вставляемого элемента newValue = list() newValue.append(name) newValue.append(image) newValue.append(state) newValue.append(idParentRow) self.valueInsertSignal.emit(newValue) # отправляем сигнал на запись данных в БД newValue.clear() query2 = QSqlQuery() # получаем изображение query2.prepare("SELECT * FROM hierarhy WHERE id =?;") query2.addBindValue(self.idRowNew) query2.exec() query2.next() image2 = query2.value(3) query2.clear() newValue.append(name) newValue.append(image2) newValue.append(self.idRowNew) newValue.append(idParentRow) newValue.append(state) rowNew = model.rowCount(index) if not model.insertRow(rowNew, index): return dictRole = (0, 1, 0, 0, 0) for column in range(colCount): indexChild = model.index(rowNew, column, index) # индекс вставляемого элемента в модели model.setData(indexChild, newValue[column], dictRole[column]) # вставляем данные в столбец модели по индексу self.ui.treeView.selectionModel().reset() self.updateActions() def updateActions(self): hasSelection = not self.ui.treeView.selectionModel().selection().isEmpty() self.ui.delRow.setEnabled(hasSelection) self.ui.modifi.setEnabled(hasSelection) @pyqtSlot() def modifiRow(self): pInputDialog = InputDialog() if pInputDialog.flag: name = pInputDialog.name() # вводим данные image = pInputDialog.image() state = pInputDialog.state() var = pInputDialog.destroyed index = self.ui.treeView.selectionModel().currentIndex() # модельный индекс элемента model = self.ui.treeView.model() item2 = model.getItem(index) # выбранный элемент rowItem = item2.rowNumber() # номер строки элемента в родительском узле idRow = int(item2.data(2)) # id выбранной строки idRowParent = int(item2.data(3)) # id_parent выбраной строки parent = model.parent(index) # индекс родителя newValue = list() newValue.append(name) newValue.append(image) newValue.append(state) newValue.append(idRow) self.valueChangedSignal.emit(newValue) # отправляем сигнал на запись данных в БД newValue.clear() query2 = QSqlQuery() # получаем изображение query2.prepare("SELECT * FROM hierarhy WHERE id =?;") query2.addBindValue(idRow) query2.exec() query2.next() image2 = query2.value(3) query2.clear() newValue.append(name) newValue.append(image2) newValue.append(idRow) newValue.append(idRowParent) newValue.append(state) model.beginResetModel1() # Изменяем данные в строке colCount = model.columnCount(index) dictRole = (0, 1, 0, 0, 0) for column in range(colCount): indexInsert = model.index(rowItem, column, parent) # УЗНАТЬ СТРОКУ Изменяемого (ТЕКУЩЕГО) ЭЛЕМЕНТА model.setData(indexInsert, newValue[column], dictRole[column]) model.endResetModel1() newValue.clear() self.updateActions() var = pInputDialog.destroyed def removeRowTree(self): """ удаляет строку со всеми зависимыми строками """ model = self.ui.treeView.model() index = self.ui.treeView.selectionModel().currentIndex() # Получаем модельный индекс выбранного элемента self.remoweItemRows(index, model) self.ui.treeView.selectionModel().reset() self.updateActions() def remoweItemRows(self, index: QModelIndex, model: TreeModel): # удаляет элементы из списка детей item = model.getItem(index) childCountItem = item.childCount() # количество детей у элемента numRow = item.rowNumber() # номер строки элемента indexParent = model.parent(index) # индекс родителя элемента if childCountItem > 0: for numRowChild in range(childCountItem - 1, - 1, -1): indexChild = model.index(numRowChild, 0, index) self.remoweItemRows(indexChild, model) # каскадное удаление потомков потомка idRow = int(item.data(2)) # получаем id строки if not model.hasChildren(index): # если нет потомков, то удаляем узел query2 = QSqlQuery() query2.prepare("DELETE FROM hierarhy WHERE id =?;") query2.addBindValue(idRow) query2.exec() query2.clear() model.removeRow(numRow, indexParent) # Удаляем текущий узел после удаления всех детей @pyqtSlot(list) def insertDataBase(self, newValue: list): """ вставляет новые данные в базу""" strName = str(newValue[0]) if strName == '': return strImg1 = str(newValue[1]) file = QFile(strImg1) # создаем объект класса QFile dataImg = QByteArray() # куда будем считывать данные # inBuffer = QBuffer(dataImg) if file.open(QIODevice.ReadOnly): # Проверяем, возможно ли открыть наш файл для чтения dataImg = file.readAll() # считываем данные query3 = QSqlQuery() query3.exec("INSERT INTO hierarhy (id_parent,name,image,state) VALUES (?, ?, ?, ?)") strIdParent = int(newValue[3]) query3.addBindValue(strIdParent) query3.addBindValue(strName) query3.addBindValue(dataImg) strState = str(newValue[2]) query3.addBindValue(strState) query3.exec() self.idRowNew = int(query3.lastInsertId()) query3.clear() @pyqtSlot(list) def editDataBase(self, newValue: list): strName = str(newValue[0]) if strName == '': return strImg1 = newValue[1] file = QFile(strImg1) # создаем объект класса QFile dataImg = QByteArray() # куда будем считывать данные if file.open(QIODevice.ReadOnly): # Проверяем, возможно ли открыть наш файл для чтения dataImg = file.readAll() query3 = QSqlQuery() query3.prepare("UPDATE hierarhy SET name=?, image=?, state=? WHERE id =?;") strName = str(newValue[0]) query3.addBindValue(strName) query3.addBindValue(dataImg) strState = str(newValue[2]) query3.addBindValue(strState) idRow = int(newValue[3]) query3.addBindValue(idRow) query3.exec() query3.next() if not query3.isActive(): QMessageBox.warning(self, "Database Error", query3.lastError().text())
drug173/Python
applications/Tree1/widget1.py
widget1.py
py
13,903
python
ru
code
0
github-code
6
19621184365
#import libraries import tensorflow as tf import numpy as np import matplotlib.pyplot as plt """ This tutorial from the AI at UCLA's technical blog post: https://uclaacmai.github.io/Linear-Regression """ testlines = [] testans = [] trainlines = [] trainans = [] for line in open("boston2.txt", 'r').readlines()[0:100]: tl = line.strip('\n').strip(' ').split(' ') testlines.append(map(lambda x:float(x.strip(' ')),tl[0:13])) testans.append([float(tl[13].strip(' '))]) for line in open("boston2.txt", 'r').readlines()[100:]: tl = line.strip('\n').strip(' ').split(' ') trainlines.append(map(lambda x:float(x.strip(' ')),tl[0:13])) trainans.append([float(tl[13].strip(' '))]) X_train = np.array(trainlines, dtype=np.float32) X_test = np.array(testlines, dtype=np.float32) Y_train = np.array(trainans, dtype=np.float32) Y_test = np.array(testans, dtype=np.float32) print(",".join([str(t.shape) for t in (X_train, X_test, Y_train, Y_test)])) prices = Y_train.tolist() student_teacher_ratios = [X_train[i][10] for i in range(X_train.shape[0])] plt.scatter(student_teacher_ratios,prices) plt.show() X = tf.placeholder(tf.float32,shape=[None,13]) Y = tf.placeholder(tf.float32, shape = [None,1]) W = tf.Variable(tf.constant(0.1,shape=[13,1])) b = tf.Variable(tf.constant(0.1)) y_pred = tf.matmul(X,W) + b loss = tf.reduce_mean(tf.square(y_pred - Y)) opt = tf.train.GradientDescentOptimizer(learning_rate = 0.5).minimize(loss) init = tf.global_variables_initializer() sess = tf.InteractiveSession() sess.run(init) initial_loss = loss.eval(feed_dict = {X:X_train, Y:Y_train}) print("initial loss: {}".format(initial_loss)) for i in range(100): #Run the optimization step with training data sess.run(opt, feed_dict = {X:X_train, Y:Y_train}) print("epoch "+str(i)+"loss:{}".format(loss.eval(feed_dict = {X:X_train, Y:Y_train}))) final_test_loss = loss.eval(feed_dict = {X:X_test,Y:Y_test}) print("final loss (test): {}".format(final_test_loss))
canders1/COMSC343
_site/pdf/regression_class.py
regression_class.py
py
1,961
python
en
code
0
github-code
6
16543939917
import functools def makeTable(grid): """Create a REST table.""" def makeSeparator(num_cols, col_width, header_flag): if header_flag == 1: return num_cols * ("+" + (col_width) * "=") + "+\n" else: return num_cols * ("+" + (col_width) * "-") + "+\n" def normalizeCell(string, length): return string + ((length - len(string)) * " ") cell_width = 2 + max( functools.reduce( lambda x, y: x + y, [[len(item) for item in row] for row in grid], [] ) ) num_cols = len(grid[0]) rst = makeSeparator(num_cols, cell_width, 0) header_flag = 1 for row in grid: rst = ( rst + "| " + "| ".join([normalizeCell(x, cell_width - 1) for x in row]) + "|\n" ) rst = rst + makeSeparator(num_cols, cell_width, header_flag) header_flag = 0 return rst
Nuitka/Nuitka
nuitka/utils/Rest.py
Rest.py
py
927
python
en
code
10,019
github-code
6
75189166908
import pygame, threading pygame.init() white = (255, 255, 255) green = (0, 255, 0) blue = (0, 0, 128) X = 400 Y = 400 display_surface = pygame.display.set_mode((X, Y )) pygame.display.set_caption('Show Text') font = pygame.font.Font('freesansbold.ttf', 32) text = font.render('GeeksForGeeks', True, green, blue) textRect = text.get_rect() textRect.center = (X // 2, Y // 2) def updateGUI(): while True: display_surface.fill(white) display_surface.blit(text, textRect) for event in pygame.event.get() : if event.type == pygame.QUIT : pygame.quit() quit() pygame.display.update() GUI = threading.Thread(target = updateGUI, args = ()) GUI.daemon = True GUI.start()
ger534/Proyecto2Arqui2
examplePygame.py
examplePygame.py
py
779
python
en
code
0
github-code
6
6497432832
from stock_util import StockUtil from logger import Logger from stock_db import StockDb import time import threading import requests from pandas import DataFrame import pandas as pd class StockMon(): def __init__(self): self.logger = Logger("StockMon") self.util = StockUtil() def get_xueqiu_info(self,url): cookie_url = "https://xueqiu.com" headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36'} r = requests.get(cookie_url,headers=headers) cookies = r.cookies r1 = requests.get(url,headers=headers,cookies=cookies) #self.logger.info(r1.text) stock_list = eval(r1.text)['stocks'] return DataFrame(stock_list) def get_market_status_from_xueqiu(self,direction,page_number,page_size): #direction = asc 跌幅榜, direction = desc 涨幅榜 url = "https://xueqiu.com/stock/cata/stocklist.json?page=%s&size=%s&order=%s&orderby=percent&type=11%%2C12&_=1541985912951"%(page_number,page_size,direction) #self.logger.info(url) return self.get_xueqiu_info(url) def get_market_status(self,direction,page_number,page_size,use_proxy=0): #direction=0 means top n, direction=1 means bottom n proxies = {'http': 'http://18.197.117.119:8080', 'https': 'http://18.197.117.119:8080'} detail_url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData?\ page=%s&num=%s&sort=changepercent&asc=%s&node=hs_a&symbol=&_s_r_a=init"%(page_number,page_size,direction) if use_proxy==1: resp = requests.get(detail_url,proxies=proxies) else: resp = requests.get(detail_url) #self.logger.info(resp.text) if resp.text=='null': return '' elif '?xml' in resp.text: self.logger.info(resp.text) else: return eval(resp.text.replace('symbol','"symbo"').replace('code','"code"').replace('name','"name"').replace('trade','"trade"').\ replace('pricechange','"pricechange"').replace('changepercent','"changepercent"').replace('buy','"buy"').replace('sell','"sell"').\ replace('settlement','"settlement"').replace('open','"open"').replace('high','"high"').replace('low','"low"').\ replace('volume','"volume"').replace('amount','"amount"').replace('ticktime','"ticktime"').replace('per:','"per":').\ replace('pb','"pb"').replace('mktcap','"mktcap"').replace('nmc','"nmc"').replace('turnoverratio','"turnoverratio"')) def get_zt_number(self): #Get zt number market_status = self.get_market_status(0,1,100) for i in range(100): if float(market_status[i]['changepercent'])<9.7: self.logger.info("涨停个数:%s"%i) return i def get_dt_number(self): #Get dt number market_status = self.get_market_status(1,1,100) for i in range(100): if float(market_status[i]['changepercent'])>-9.7: self.logger.info("跌停个数:%s"%i) return i def monitor_bid(self,stock_list,refresh_interval): sample = {} for s in stock_list: aoi = self.util.get_live_aoi_bid(s) sample[s] = aoi while True: self.logger.info("================Monitor==============") self.logger.info("股票名称(股票ID)| 涨幅 | 竞买价 | 竞买量(万手)") for s in stock_list: status = self.util.get_live_mon_items_bid(s) aoi = self.util.get_live_aoi_bid(s) if aoi-sample[s]>1: plus_icon = "[↑+%s]"%(round(aoi-sample[s],2)) self.logger.info("*%s %s"%(status,plus_icon)) elif aoi-sample[s]<-1: plus_icon = "[↓%s]"%(round(aoi-sample[s],2)) self.logger.info("*%s %s"%(status,plus_icon)) else: self.logger.info(status) ''' if aoi-sample[s]>2: self.logger.info("Stock %s aoi increased from %s to %s"%(s,sample[s],aoi)) elif aoi-sample[s]<-2: self.logger.info("Stock %s aoi dropped from %s to %s"%(s,sample[s],aoi)) ''' sample[s] = aoi time.sleep(refresh_interval) def check_stock_list(self,stock_list): self.logger.info("================Monitor==============") status = '\n'.join(self.util.get_summary_status(stock_list)) self.logger.info(status) def monitor_after_bid(self,stock_list,refresh_interval): while True: self.logger.info("===============Monitor===============") self.logger.info("股票名称(股票ID)| 开盘涨幅 | 当前涨幅 | 当前价格 | 成交量(万手)| 成交金额(亿)") for s in stock_list: self.logger.info(self.util.get_live_mon_items(s)) time.sleep(refresh_interval) def check_top_and_bottom(self,n): status = self.get_market_status(0,1,n) df = DataFrame(status) df1 = df[['symbo','name','changepercent','trade','open','high','low','volume','turnoverratio']] print(df1) status = self.get_market_status(1,1,n) df = DataFrame(status) df1 = df[['symbo','name','changepercent','trade','open','high','low','volume','turnoverratio']] print(df1) def get_top_n_df(self,direction,n): #direction=0 means top n, direction=1 means bottom n status = self.get_market_status(direction,1,n) df = DataFrame(status) ret = df[['symbo','name','changepercent','trade','open','turnoverratio']] print(ret) return ret def sum_top_n_list(self,direction,n): ''' tmp_csv = 'tmp.csv' df = self.get_top_n_df(direction,n) df.to_csv(tmp_csv,index=False) f = open(tmp_csv,'r') out = open('out.csv','w') line_number = 0 sample_count = 3 for line in f.readlines(): item = line.replace('\n','') if line_number==0: target_line = ",%s,"%(item) else: s = item.split(',')[0] s_name = item.split(',')[1] #self.logger.info(s) if s_name.startswith('N'): target_line = "%s,%s,"%(line_number,item) else: db = StockDb() tmp = [] turn_over_list = db.get_last_n_turnover(s,sample_count) for t in turn_over_list: tmp.append(str(t)) turn_over_sample = ','.join(tmp) pchg_list = db.get_last_n_pchg(s,sample_count) for t in pchg_list: tmp.append(str(t)) pchg_sample = ','.join(tmp) target_line = ("%s,%s,%s,%s"%(line_number,item,turn_over_sample,pchg_sample)) line_number = line_number+1 out.write("%s\n"%(target_line)) f.close() out.close() ''' df1 = pd.read_csv('out.csv',index_col=0) with open('output.html','w',encoding="gb2312") as f: f.write(df1.to_html()) def get_bid_sample_list(self,top_n=100): #run on 9:20, get stock_list which is in top n url = 'https://xueqiu.com/stock/cata/stocklist.json?page=1&size=%s&order=desc&orderby=percent&type=11%%2C12&_=1541985912951'%(top_n) df = self.get_xueqiu_info(url) df1 = df[['symbol','name','current','percent','volume']] #print(df1) s_list = df1['symbol'].values.tolist() #print(s_list) return s_list def mon_bid(self): sample_list = self.get_bid_sample_list() f = open('bid.txt','w') while True: time.sleep(20) #every 20 seconds, check diff(new_list,sample_list)... new_list = self.get_bid_sample_list() check_list = [] for s in new_list: if s not in sample_list: check_list.append(s) for s in check_list: self.logger.info("================Please check the following==============") status = self.util.get_live_status(s) self.logger.info(s) self.logger.info(status) f.write(s) f.close() if __name__ == '__main__': t = StockMon() t.mon_bid() #df = t.get_bid_sample_list() #stock_list = t.get_top_n_list(100) #print(stock_list) #t.sum_top_n_list(0,100) #check(50) #df = DataFrame(t.get_market_status(0,1,50)) #df1 = df.iloc[:,10:20] #df1 = df.iloc[:,0:10] #print(df1) #t.get_bid_sample_list() #t.mon_bid() ''' f = open('t1.csv','w') for i in range(1,40): status = t.get_market_status(0,i,100) if status == '': print('No data in this %s page!'%i) break else: df = DataFrame(status) csv_file = 't.csv' #df1 = df.loc[df.turnoverratio>5] #df1 = df.iloc[:,10:20] df1 = df[['code','open','high','low','trade','volume','turnoverratio','changepercent']] print(df1) df1.to_csv(f,header=False,index=False) f.close() '''
jia-zhang/fp-client
lib/stock_mon.py
stock_mon.py
py
9,923
python
en
code
0
github-code
6
3477657730
import logging import posixpath from collections import defaultdict from typing import TYPE_CHECKING, Callable, Dict, Generator, Optional, Tuple from ...stash import ExpStashEntry from ..base import BaseExecutor from ..ssh import SSHExecutor, _sshfs from .base import BaseExecutorManager if TYPE_CHECKING: from scmrepo.git import Git from dvc.repo import Repo logger = logging.getLogger(__name__) class SSHExecutorManager(BaseExecutorManager): EXECUTOR_CLS = SSHExecutor def __init__( self, scm: "Git", wdir: str, host: Optional[str] = None, port: Optional[int] = None, username: Optional[str] = None, fs_factory: Optional[Callable] = None, **kwargs, ): assert host super().__init__(scm, wdir, **kwargs) self.host = host self.port = port self.username = username self._fs_factory = fs_factory def _load_infos(self) -> Generator[Tuple[str, "BaseExecutor"], None, None]: # TODO: load existing infos using sshfs yield from [] @classmethod def from_stash_entries( cls, scm: "Git", wdir: str, repo: "Repo", to_run: Dict[str, ExpStashEntry], **kwargs, ): machine_name: Optional[str] = kwargs.get("machine_name", None) manager = cls( scm, wdir, **repo.machine.get_executor_kwargs(machine_name) ) manager._enqueue_stash_entries(scm, repo, to_run, **kwargs) return manager def sshfs(self): return _sshfs(self._fs_factory, host=self.host, port=self.port) def get_infofile_path(self, name: str) -> str: return f"{name}{BaseExecutor.INFOFILE_EXT}" def _exec_attached(self, repo: "Repo", jobs: Optional[int] = 1): from dvc.exceptions import DvcException from dvc.stage.monitor import CheckpointKilledError assert len(self._queue) == 1 result: Dict[str, Dict[str, str]] = defaultdict(dict) rev, executor = self._queue.popleft() info = executor.info infofile = posixpath.join( info.root_dir, info.dvc_dir, "tmp", self.get_infofile_path(rev), ) try: exec_result = executor.reproduce( info=executor.info, rev=rev, infofile=infofile, log_level=logger.getEffectiveLevel(), fs_factory=self._fs_factory, ) if not exec_result.exp_hash: raise DvcException( f"Failed to reproduce experiment '{rev[:7]}'" ) if exec_result.ref_info: result[rev].update( self._collect_executor(repo, executor, exec_result) ) except CheckpointKilledError: # Checkpoint errors have already been logged return {} except DvcException: raise except Exception as exc: raise DvcException( f"Failed to reproduce experiment '{rev[:7]}'" ) from exc finally: self.cleanup_executor(rev, executor) return result def cleanup_executor(self, rev: str, executor: "BaseExecutor"): executor.cleanup()
gshanko125298/Prompt-Engineering-In-context-learning-with-GPT-3-and-LLMs
myenve/Lib/site-packages/dvc/repo/experiments/executor/manager/ssh.py
ssh.py
py
3,336
python
en
code
3
github-code
6
11557761416
import sys from classes import * import pprint import os # system keword 에 대한 dfa를 자동생성한다. def make_system_dfa(name, keyword): digit = "1234567890" char = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" length = len(keyword) dfa = Dfa(name) dfa.set_final_states([length]) for i in range(0, length): dfa.add_rule(i,i+1, keyword[i]) return dfa # 한 글자를 판단하기 위한 dfa를 작성한다. def make_single_dfa(name, char): dfa = Dfa(name) dfa.set_final_states([1]) dfa.add_rule(0, 1, char) return dfa # dfa 작성 코드가 너무 길어서 별도의 함수로 분리. def set_dfa(token_scanner): nz = "123456789" digit = "1234567890" char = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" # system keyword (Keyword stmt) token_scanner.add_dfa(make_system_dfa(Token.IF, "if")) token_scanner.add_dfa(make_system_dfa(Token.ELSE, "else")) token_scanner.add_dfa(make_system_dfa(Token.WHILE, "while")) token_scanner.add_dfa(make_system_dfa(Token.FOR, "for")) token_scanner.add_dfa(make_system_dfa(Token.RETURN, "return")) # system keyword (Vtype) vtype_dfa = Dfa(Token.V_TYPE) vtype_dfa.set_final_states([3, 7, 11, 16]) vtype_dfa.add_rule(0, 1, "i") vtype_dfa.add_rule(1, 2, "n") vtype_dfa.add_rule(2, 3, "t") vtype_dfa.add_rule(0, 4, "c") vtype_dfa.add_rule(4, 5, "h") vtype_dfa.add_rule(5, 6, "a") vtype_dfa.add_rule(6, 7, "r") vtype_dfa.add_rule(0, 12, "f") vtype_dfa.add_rule(12, 13, "l") vtype_dfa.add_rule(13, 14, "o") vtype_dfa.add_rule(14, 15, "a") vtype_dfa.add_rule(15, 16, "t") token_scanner.add_dfa(vtype_dfa) # arthimatic operators addsub_dfa = Dfa(Token.ADDSUB) addsub_dfa.set_final_states([1]) addsub_dfa.add_rule(0, 1, "-") addsub_dfa.add_rule(0, 1, "+") token_scanner.add_dfa(addsub_dfa) multdiv_dfa = Dfa(Token.MULTDIV) multdiv_dfa.set_final_states([1]) multdiv_dfa.add_rule(0, 1, "*") multdiv_dfa.add_rule(0, 1, "/") token_scanner.add_dfa(multdiv_dfa) # comparison operators comp_dfa = Dfa(Token.COMP) comp_dfa.set_final_states([1, 2, 3, 4, 6, 8]) comp_dfa.add_rule(0, 1, "<") comp_dfa.add_rule(1, 2, "=") comp_dfa.add_rule(0, 3, ">") comp_dfa.add_rule(3, 4, "=") comp_dfa.add_rule(0, 5, "=") comp_dfa.add_rule(5, 6, "=") comp_dfa.add_rule(0, 7, "!") comp_dfa.add_rule(7, 8, "=") token_scanner.add_dfa(comp_dfa) # whites space ws_dfa = Dfa(Token.WHITE_SPACE) ws_dfa.set_final_states([1]) ws_dfa.add_rule(0, 1, "\t") ws_dfa.add_rule(0, 1, "\n") ws_dfa.add_rule(0, 1, " ") ws_dfa.add_rule(1, 1, "\t") ws_dfa.add_rule(1, 1, "\n") ws_dfa.add_rule(1, 1, " ") token_scanner.add_dfa(ws_dfa) #assign token_scanner.add_dfa(make_single_dfa(Token.ASSIGN, "=")) #semicolon semi_dfa = Dfa(Token.SEMI) semi_dfa.set_final_states([1]) semi_dfa.add_rule(0, 1, ";") token_scanner.add_dfa(semi_dfa) # brackets token_scanner.add_dfa(make_single_dfa(Token.L_PAREN, "(")) token_scanner.add_dfa(make_single_dfa(Token.R_PAREN, ")")) token_scanner.add_dfa(make_single_dfa(Token.L_BRACE, "{")) token_scanner.add_dfa(make_single_dfa(Token.R_BRACE, "}")) # comma token_scanner.add_dfa(make_single_dfa(Token.COMMA, ",")) # integer integer_dfa = Dfa(Token.NUM) integer_dfa.set_final_states([1, 3]) integer_dfa.add_rule(0, 1, "0") integer_dfa.add_rule(0, 2, "-") integer_dfa.add_rule(0, 3, nz) integer_dfa.add_rule(2, 3, nz) integer_dfa.add_rule(3, 3, digit) token_scanner.add_dfa(integer_dfa) # literal literal_dfa = Dfa(Token.LITERAL) literal_dfa.set_final_states([2]) literal_dfa.add_rule(0, 1, "\"") literal_dfa.add_rule(1, 1, digit) literal_dfa.add_rule(1, 1, char) literal_dfa.add_rule(1, 1, " ") literal_dfa.add_rule(1, 2, "\"") token_scanner.add_dfa(literal_dfa) #float float_dfa = Dfa(Token.FLOAT) float_dfa.set_final_states([5]) float_dfa.add_rule(0, 1, "-") float_dfa.add_rule(0, 2, nz) float_dfa.add_rule(0, 3, "0") float_dfa.add_rule(1, 2, nz) float_dfa.add_rule(1, 3, "0") float_dfa.add_rule(2, 2, digit) float_dfa.add_rule(2, 4, ".") float_dfa.add_rule(3, 4, ".") float_dfa.add_rule(4, 5, digit) float_dfa.add_rule(5, 5, nz) float_dfa.add_rule(5, 6, "0") float_dfa.add_rule(6, 5, nz) float_dfa.add_rule(6, 6, "0") token_scanner.add_dfa(float_dfa) #id id_dfa = Dfa(Token.ID) id_dfa.set_final_states([1]) id_dfa.add_rule(0, 1, char) id_dfa.add_rule(0, 1, "_") id_dfa.add_rule(1, 1, char) id_dfa.add_rule(1, 1, "_") id_dfa.add_rule(1, 1, digit) token_scanner.add_dfa(id_dfa) def main(file_path): with open(file_path, mode="r") as f: literal_list = f.read() # print(literal_list) # 읽어온 Source Code를 Parsing 하기 위해 Token Scanner에 전달합니다. token_scanner = TokenScanner(literal_list) # Token을 인식하기 위한 dfa를 생성해 token_scanner에 전달해준다. set_dfa(token_scanner) # Parse 된 Token을 저장하기 위한 list를 생성한다. token_list = [] while True: # Token 한개를 Parsing 해본다. ret = token_scanner.parse_token() # ret이 None이다 -> 파싱 실패 또는 파싱 종료. filename, file_extension = os.path.splitext(file_path) new_filename = f"{filename}.out" if ret is None: if token_scanner.parse_end() is True: # print("성공") # 성공했을 때의 출력 # pprint.pprint(token_list) with open(new_filename, "w") as f: import json f.write(json.dumps({"body": token_list, "original": literal_list})) # f.writelines(map(lambda t: f"{t}\n", token_list)) else: end_pos = token_scanner.start_pos all_lines = literal_list[0:end_pos + 1] line_number = len(all_lines.splitlines()) literal_list_lines = literal_list.splitlines(keepends=True) print(literal_list_lines, literal_list_lines[0:line_number]) length_line_before = len(''.join(literal_list_lines[0:line_number - 1])) print(length_line_before) local_pos = end_pos - length_line_before + 1 print(f"local_pos {local_pos} = end_pos {end_pos} - {length_line_before} + 1") str = "" str = str + f"error at line number {line_number}, column {local_pos}.\n\n" original_line = literal_list_lines[line_number - 1] str = str + f"{original_line}\n" print(str) with open(new_filename, "w") as f: f.write(str) pass break token_list.append(ret) if len(token_list) > 1 \ and (token_list[-1][0] in [Token.NUM, Token.FLOAT] and "-" in token_list[-1][1]): # print(1) # 그 이전에 Number 가 바로 나오면 쪼갠다 # 그렇지 않으면 유지 finding_token = None for i in range(len(token_list) - 1, 0, -1): i = i - 1 # range 반복 값 보정. # 블랭크는 제외하고 찾는다. if token_list[i][0] == Token.WHITE_SPACE: continue finding_token = token_list[i] break if (finding_token is not None) and finding_token[0] in [Token.NUM, Token.FLOAT]: # print(f"split {token_list[-1]}") token_list[-1] = (token_list[-1][0], token_list[-1][1].replace("-", "")) token_list.insert(-1, (Token.ADDSUB, "-")) if __name__ == "__main__": if(len(sys.argv) < 2): print("plaese pass file path") sys.exit() file_path = sys.argv[1] print("File path : " + file_path) main(file_path)
pula39/compiler_assignment1
lexical.py
lexical.py
py
8,178
python
en
code
0
github-code
6
5073225846
import asyncio import logging import aiohttp import aiohttp.server logger = logging.getLogger(__name__) class ProxyRequestHandler(aiohttp.server.ServerHttpProtocol): """ Inspired by https://github.com/jmehnle/aiohttpproxy Copyright Julian Mehnle, Apache License 2.0 """ def __init__(self): super(ProxyRequestHandler, self).__init__(keep_alive_on=False) self.logger = logger @asyncio.coroutine def handle_request(self, message, payload): url = message.path logger.info('{0} {1}'.format(message.method, url)) if message.method in ('POST', 'PUT', 'PATCH'): data = yield from payload.read() else: data = None message, data = self.intercept_request(message, data) if not message: return response = yield from aiohttp.request(message.method, url, headers=message.headers, data=data) response_content = yield from response.content.read() response, response_content = self.intercept_response(response, response_content) yield from self.response_to_proxy_response(response, response_content) def response_to_proxy_response(self, response, response_content): proxy_response = aiohttp.Response(self.writer, response.status, http_version=response.version) # Copy response headers, except for Content-Encoding header, # since unfortunately aiohttp transparently decodes content. proxy_response_headers = [(name, value) for name, value in response.headers.items() if name not in ('CONTENT-ENCODING',)] proxy_response.add_headers(*proxy_response_headers) proxy_response.send_headers() proxy_response.write(response_content) yield from proxy_response.write_eof() def intercept_request(self, message, data): return message, data def intercept_response(self, response, content): return response, content def run(port, cls=None): cls = cls or ProxyRequestHandler loop = asyncio.get_event_loop() logging.basicConfig( format='[proxy] {asctime} {levelname} {name}: {message}', style='{', level=logging.DEBUG ) server_future = loop.create_server(lambda: cls(), '', port) server = loop.run_until_complete(server_future) logger.info('Accepting HTTP proxy requests on {0}:{1} ...'.format(*server.sockets[0].getsockname())) loop.run_forever() if __name__ == '__main__': run(8080)
raphaelm/cockatiel
functional_tests/utils_proxy.py
utils_proxy.py
py
2,602
python
en
code
4
github-code
6
41058208626
import re class Poly: def __init__(self,*terms): # __str__ uses the name self.terms for the dictionary of terms # So __init__ should build this dictionary from terms self.terms = {} for coeff,power in terms: assert type(coeff) in [int,float] assert type(power) in [int] assert power >=0, 'Power must be greater than or equal to 0.' assert power not in self.terms.keys(), 'Power already exists.' if coeff == 0: pass else: self.terms[power] = coeff # Fill in the rest of this method, using *terms to intialize self.terms # I have written str(...) because it is used in the bsc.txt file and # it is a bit subtle to get correct. Notice that it assumes that # every Poly object stores a dict whose keys are powers and whose # associated values are coefficients. This function does not depend # on any other method in this class being written correctly. def __str__(self): def term(c,p,var): return (str(c) if p == 0 or c != 1 else '') +\ ('' if p == 0 else var+('^'+str(p) if p != 1 else '')) if len(self.terms) == 0: return '0' else: return ' + '.join([term(c,p,'x') for p,c in sorted(self.terms.items(),reverse=True)]).replace('+ -','- ') def __repr__(self): return 'Poly(' + ','.join([str(item) for item in self.terms.items()]) + ')' def __len__(self): return max(self.terms.keys()) def __call__(self,arg): result = 0 for power,coeff in self.terms.items(): result += coeff*(arg**power) return result def __iter__(self): ordered = sorted(self.terms, reverse=True) for power in ordered: yield (self.terms[power],power) def __getitem__(self,index): if type(index) != int or index < 0: raise TypeError if index not in self.terms.keys(): return 0 return self.terms[index] def __setitem__(self,index,value): power = index coeff = value if type(power) != int or power < 0: raise TypeError else: if coeff == 0: if power in self.terms.keys: del self.terms[power] else: self.terms[power] = coeff def __delitem__(self,index): if type(index) != int or index < 0: raise TypeError if index in self.terms.keys(): del self.terms[index] def _add_term(self,c,p): assert type(c) in [int,float] assert type(p) == int and p >= 0 if p not in self.terms.keys(): self.terms[p] = c elif p in self.terms.keys(): self.terms[p] = self.terms[p] + c if self.terms[p] == 0: del self.terms[p] def __add__(self,right): for r_power,r_coeff in right.terms.items(): self._add_term(r_coeff,r_power) return self def __radd__(self,left): self.__add__(left) return self def __mul__(self,right): return self def __rmul__(self,left): self.__mul__(left) return self def __eq__(self,right): return str(self) == str(right) for power,coeff in self.terms.items(): try: if coeff != right.terms[power]: return False except: return False if __name__ == '__main__': # Some simple tests; you can comment them out and/or add your own before # the driver is called. # print('Start simple tests') # p = Poly((3,2),(-2,1), (4,0)) # print(' For Polynomial: 3x^2 - 2x + 4') # print(' str(p):',p) # print(' repr(p):',repr(p)) # print(' len(p):',len(p)) # print(' p(2):',p(2)) # print(' list collecting iterator results:',[t for t in p]) # print(' p+p:',p+p) # print(' p+2:',p+2) # print(' p*p:',p*p) # print(' p*2:',p*2) # print('End simple tests\n') import driver #driver.default_show_exception=True #driver.default_show_exception_message=True #driver.default_show_traceback=True driver.driver()
solomc1/python
ics 33/solutions/ile2 solutions/Lab 1/ZhongAaron/poly.py
poly.py
py
4,707
python
en
code
0
github-code
6
70911492987
print('zohair hashmi - 18b-127-cs - Section A') print('Practice Problem - 3.39') def collision(x1,y1,r1,x2,y2,r2): import math c_diff = ((x2-x1)**2+(y2-y1)**2) if c_diff <= (r1+r2)**2: return True else: return False x1 = collision(0,1,2,3,2,2) print(x1) x2 = collision(2,5,2,1,0,2) print(x2)
zohairhashmi17/Programming-Fundamentals-Detailed-Assignment
3.39.py
3.39.py
py
347
python
en
code
0
github-code
6
41495871576
from rdkit import Chem import argparse import math import os from sklearn.metrics import mean_squared_error, r2_score from statistics import stdev if __name__ == "__main__": parser = argparse.ArgumentParser(description='Calculate the RMSD value for a molecular property.') parser.add_argument('--original', '-o', metavar='ORIGINAL', required=True, type=str, help='File with original property values. SDF or SMILES format.') parser.add_argument('--prediction', '-p', metavar='PREDICTION', required=True, type=str, help='File with predicted property values. SDF or SMILES format.') parser.add_argument('--optimized', '-q', metavar="OPTIMIZED", type=str, help="File with optimized property predictions. SDF or SMILES format.") parser.add_argument('-i', '--id', type=str, default="_Name", help="ID tag for files in SD format.") parser.add_argument('-l', '--logfile', type=str, default="evaluation_result.log") parser.add_argument('--label_predicted', type=str, required=True, help="Label of the prediction.") parser.add_argument('--label_optimized', type=str, required=True, help="Label of the optimized prediction.") parser.add_argument('property', metavar='Property', type=str, help='Property of interest (should be similar in both files.') args = parser.parse_args() original_dict = {} pred_dict = {} opti_dict = {} orig_ext = os.path.splitext(args.original)[-1].lower() pred_ext = os.path.splitext(args.prediction)[-1].lower() id_label = args.id # collect original values if orig_ext == ".sdf": original_mols = Chem.SDMolSupplier(args.original) for mol in original_mols: original_dict[mol.GetProp(id_label)] = float(mol.GetProp(args.property)) else: for line in open(args.original, "r"): line_arr = line.split("\t") original_dict[line_arr[1]] = float(line_arr[2]) # collect values predicted values no_deviation = False if pred_ext ==".sdf": pred_mols = Chem.SDMolSupplier(args.prediction) for mol in pred_mols: pred_dict[mol.GetProp(id_label)] = float(mol.GetProp(args.property)) else: for line in open(args.prediction, "r"): line_arr = line.split("\t") pred_dict[line_arr[1]] = float(line_arr[2]) if args.optimized: if os.path.splitext(args.optimized)[-1].lower() == ".sdf": pred_mols = Chem.SDMolSupplier(args.optimized) for mol in pred_mols: opti_dict[mol.GetProp(id_label)] = float(mol.GetProp(args.label_optimized)) else: for line in open(args.prediction, "r"): line_arr = line.split("\t") pred_dict[line_arr[1]] = float(line_arr[2]) + float(line_arr[3]) sum_sq = 0 preds = [] orgs = [] optis_all = [] # including unoptimizable prediction values optis_only = [] orgs_only = [] unoptimizable_ids = [] unopt_values = [] unopt_values_for_ori = [] pred_in_net = [] pred_not_in_net = [] for id in pred_dict.keys(): preds.append(pred_dict[id]) orgs.append(original_dict[id]) diff = (pred_dict[id] - original_dict[id]) if args.optimized: if id in opti_dict.keys(): optis_only.append(opti_dict[id]) orgs_only.append(original_dict[id]) optis_all.append(opti_dict[id]) pred_in_net.append(pred_dict[id]) else: unoptimizable_ids.append(id) optis_all.append(pred_dict[id]) unopt_values.append(pred_dict[id]) unopt_values_for_ori.append(original_dict[id]) pred_not_in_net.append(pred_dict[id]) with open(args.logfile, "w") as f: stdDev_orig_all = stdev(orgs) stdDev_orig_only_in_net = stdev(orgs_only) stdDev_orig_only_not_in_net = stdev(unopt_values_for_ori) stdDev_opt_all = stdev(optis_all) stdDev_opt_only_in_net = stdev(optis_only) f.write("StdDevs:\n") f.write(f"original all values: {stdDev_orig_all}\n") f.write(f"original only in net values: {stdDev_orig_only_in_net}\n") f.write(f"original only NOT in net values: {stdDev_orig_only_not_in_net}\n") f.write(f"optimized all values: {stdDev_opt_all}\n") f.write(f"optimized only in net values: {stdDev_opt_only_in_net}\n\n") f.write(f" Root Mean Square Deviation R² Num_of_Samples\n") f.write(f"Predictions(all): {mean_squared_error(orgs, preds, squared=False):.6f} {r2_score(orgs, preds):.6f} {len(orgs)}\n") f.write(f"Predictions(only in net): {mean_squared_error(orgs_only, pred_in_net, squared=False):.6f} {r2_score(orgs_only, pred_in_net):.6f} {len(orgs_only)}\n") f.write(f"Predictions(only NOT in net): {mean_squared_error(unopt_values_for_ori, pred_not_in_net, squared=False):.6f} {r2_score(unopt_values_for_ori, pred_not_in_net):.6f} {len(unopt_values_for_ori)}\n\n") if len(optis_all) > 0: f.write(f"Optimized (all): {mean_squared_error(orgs, optis_all, squared=False):.6f} {r2_score(orgs, optis_all):.6f} {len(orgs)}\n") f.write( f"Optimized (only): {mean_squared_error(orgs_only, optis_only, squared=False):.6f} {r2_score(orgs_only, optis_only):.6f} {len(orgs_only)}\n\n") if len(unopt_values) > 0: f.write(f"Scores (un_opt): {mean_squared_error(unopt_values_for_ori, unopt_values, squared=False):.6f} {r2_score(unopt_values_for_ori, unopt_values):.6f} {len(unopt_values)}\n") f.write(f"\nUnoptimizable molecules (IDs) ({len(unoptimizable_ids)} mols):\n") for id in unoptimizable_ids: f.write(f"{id}\n")
sophiahoenig/NetworkBalanceScaling
utils/evaluate_results.py
evaluate_results.py
py
6,038
python
en
code
0
github-code
6
32500175374
from random import randint """ כתבו תוכנית הבוחרת באקראי מספר בין 1 ל-100. על המשתמש לנחש את המספר שנבחר ואחרי כל ניחוש יש להדפיס ״גדול מדי״ או ״קטן מדי״ לפי היחס בין המספר שנבחר לניחוש. בונוס: כדי שיהיה מעניין דאגו שמדי פעם התוכנית תדפיס את ההודעה הלא נכונה. """ def check_user_input(user_number): number = randint(1, 100) if user_number > number: print(f"The number is you choose is higher than the number which is being raffled{number}") elif user_number < number: print("The number is you choose is Lower than the number which is being raffled") else: print("YOU GUESSED THE NUMBER --> WELL DONE ") while True: try: print("Hello User, Which number is being raffled?") check_user_input(int(input())) except ValueError: print("Please enter a number")
eehud738/python-
Section 2/HW6.py
HW6.py
py
1,025
python
he
code
0
github-code
6
8834313838
import mysql.connector from mysql.connector import Error class MySQL: def __init__(self, host='localhost', database=None, user=None, password=None): if database == None: return print("Please, enter your Database name!") elif user == None: return print("Please, enter your user name!") elif password == None: return print("Please, enter your password!") else: try: self.connection = mysql.connector.connect( host=host, database=database, user=user, password=password ) if self.connection.is_connected(): db_Info = self.connection.get_server_info() print("Connected to MySQL Server version ", db_Info) cursor = self.connection.cursor() cursor.execute("select database();") record = cursor.fetchone() print("You're connected to database:", record) except Error as e: print("Error while connecting to MySQL:", e) def create_table(self, sql_script=None): if sql_script == None: return print("Please, enter your SQL Script to Create Table.") else: try: cursor = self.connection.cursor() result = cursor.execute(sql_script) print("Table created successfully!") except mysql.connector.Error as error: print("Failed to create table in MySQL: {}".format(error)) finally: cursor.close() def insert_data(self, insert_query=None, records_to_insert=None): if insert_query == None: return print("Please, enter your SQL Script to insert data in the table.") elif records_to_insert == None: return print("Please, enter your records data to insert data in the table.") else: try: cursor = self.connection.cursor() cursor.executemany(insert_query, records_to_insert) self.connection.commit() print(cursor.rowcount, "Record inserted successfully into table") except mysql.connector.Error as error: print("Failed to insert records into MySQL table: {}".format(error)) finally: cursor.close() def get_hospital_detail(self, hospital_id=None): if hospital_id == None: return print("Please, enter Hospital ID.") else: try: cursor = self.connection.cursor() select_query = """select * from Hospital where Hospital_Id = %s""" cursor.execute(select_query, (hospital_id,)) records = cursor.fetchall() print("Printing Hospital record") for row in records: print("Hospital Id:", row[0], ) print("Hospital Name:", row[1]) print("Bed Count:", row[2]) except (Exception, mysql.connector.Error) as error: print("Error while getting data", error) finally: cursor.close() def get_doctor_detail(self, doctor_id=None): if doctor_id == None: return print("Please, enter Doctor ID.") else: try: cursor = self.connection.cursor() select_query = """select * from Doctor where Doctor_Id = %s""" cursor.execute(select_query, (doctor_id,)) records = cursor.fetchall() print("Printing Doctor record") for row in records: print("Doctor Id:", row[0]) print("Doctor Name:", row[1]) print("Hospital Id:", row[2]) print("Joining Date:", row[3]) print("Specialty:", row[4]) print("Salary:", row[5]) print("Experience:", row[6]) except (Exception, mysql.connector.Error) as error: print("Error while getting data", error) finally: cursor.close() def close_connection(self): if self.connection.is_connected(): self.connection.close() print("MySQL connection is closed.")
drigols/studies
modules/python-codes/modules/mysql/modules/exercises/hospital/hospital/database.py
database.py
py
3,910
python
en
code
0
github-code
6
30543923938
import sys import numpy as np import torch from tqdm import tqdm import matplotlib.pyplot as plt from Preprocessor import Preprocessor """ Dataset Snapshot: Dataset A: Normal Murmur Extra Heart Sound Artifact Dataset B: Normal Murmur Extrasystole """ class PASCAL(Preprocessor): def __init__(self): super().__init__() self.dataset_dir = {"normal": ["./data/PASCAL/Atraining_normal/", "./data/PASCAL/Training B Normal/"], "murmur": ["./data/PASCAL/Atraining_murmur/", "./data/PASCAL/Btraining_murmur/"], "extra-heart-sounds": ["./data/PASCAL/Atraining_extrahls/", "./data/PASCAL/Btraining_extrastole/"], "artifact": ["./data/PASCAL/Atraining_artifact/"]} self.lbls = {"normal": 0, "murmur": 1, "extra-heart-sounds": 2, "artifact": 3} self.data = [] self.data_lbls = [] def traverseDataset(self, location): for label in tqdm(self.dataset_dir): data_lbl = self.lbls[label] for dir in self.dataset_dir[label]: files = self.getFiles(dir) for file in files: raw_signal = self.getAudioSignal(f"{dir}{file}", 500) segmented_signal = self.signalPreprocess( raw_signal, length=5, sampleRate=500, includeLast=False) for segment in segmented_signal: self.data.append(segment.flatten()[:2500]) self.data_lbls.append(data_lbl) self.data = torch.tensor(self.data).float() self.data_lbls = torch.tensor(self.data_lbls).long() print(self.data.shape) print(self.data_lbls.shape) torch.save({'data': self.data, 'labels': self.data_lbls}, location) def signalPreprocess(self, data, **kargs): segmented_signal = self.timeSegmentation( data, length=kargs["length"], sampleRate=kargs["sampleRate"], includeLast=kargs["includeLast"]) return segmented_signal dataset = PASCAL() dataset.traverseDataset("./data/preprocessed/PASCAL.pt")
kendreaditya/heart-auscultation
src/preprocess/PASCAL-dataset.py
PASCAL-dataset.py
py
2,173
python
en
code
2
github-code
6
75189172348
import threading, time #REGISTROS ESCALARES Scalar_Reg = [ "FUC1K", "", "11110000", "00001111", "0000000A" ] #REGISTROS VECTORIALES Vector_Reg = [ ["0", "", "", "","", "", "", ""], ["1", "", "", "","", "", "", ""], ["2", "", "", "","", "", "", ""], ["3", "", "", "","", "", "", ""], ["4", "", "", "","", "", "", ""] ] ##Banco de registros class REG_BANK(threading.Thread): def __init__(self, CLK, DIR_W, DIR_A, DIR_B,Control,MemOrRegW): self.MyCLK = CLK self.DIR_A = DIR_A self.DIR_B = DIR_B self.DIR_W = DIR_W self.MyControl = Control self.MemOrRegW = MemOrRegW self.RegA = self.getReg(DIR_A) self.RegB = self.getReg(DIR_B) self.RegW = self.getReg(DIR_W) threading.Thread.__init__(self,target = self.listening, args = ()) def listening(self): while True: if(self.MyCLK.running): self.MemOrRegW = self.MyControl.MemOrRegW #print("loop en bank dirA" + str(self.DIR_A) + " dirB "+str(self.DIR_B)) #self.RegW = self.getReg(self.DIR_W) self.RegA = self.getReg(self.DIR_A) if(self.MemOrRegW == 1): self.RegW = self.getReg(self.DIR_W) if(self.MyControl.Imm != 1): self.RegB = self.getReg(self.DIR_B) else: self.RegB = self.DIR_B """if(Reg_W and Imm): self.RegA = self.getReg(int(DIR_W,16)) self.RegB = int(DIR_B,16) self.DIR_W = self.DIR_A #esto lo debe hacer la ALU #self.DIR_W = self.RegW + self.DIR_B if(Reg_D): self.DIR_W = int(DIR_W,16) self.RegA = self.getReg(int(DIR_A,16)) self.RegB = self.getReg(int(DIR_B,16))""" def getReg(self,Reg): print("este es Reg en Bank "+str(Reg)) Reg = int(Reg,2) if(Reg<=10): return Scalar_Reg[Reg] if(Reg>10): return Vector_Reg[Reg] def setReg(self,Reg,DI): Reg = int(Reg,2); if(Reg<=10): Scalar_Reg[Reg] = DI if(Reg>10): Vector_Reg[Reg] = DI
ger534/Proyecto2Arqui2
procesador/REG_BANK.py
REG_BANK.py
py
2,353
python
en
code
0
github-code
6
32469600718
class Solution: def findJudge(self, n: int, trust: List[List[int]]) -> int: trust_counts = defaultdict(lambda: [0,0]) for truster, trusted in trust: trust_counts[truster][0] += 1 trust_counts[trusted][1] += 1 candidates = [person for person in range(1,n+1) if trust_counts[person] == [0,n-1]] return candidates[0] if len(candidates) == 1 else -1
MdAbedin/leetcode
0901 - 1000/0997 Find the Town Judge.py
0997 Find the Town Judge.py
py
437
python
en
code
7
github-code
6
26948867994
# Python for Everyone # Chapter 3 exercise 2 try: hrs = float(input('Enter Hours: ')) rate = float(input('Enter Rate: ')) except: print("Please enter a number") quit() if hrs <= 40: # no overtime pay = rate * hrs else: # calculate overtime pay = (hrs - 40) * rate * 1.5 + 40 * rate print("Pay:", pay)
dansdevelopments/py4e
py4e/chapter03/ex03_02.py
ex03_02.py
py
334
python
en
code
0
github-code
6
40696691343
import asyncio import re from collections import namedtuple from magma.magmad.check import subprocess_workflow DEFAULT_NUM_PACKETS = 4 DEFAULT_TIMEOUT_SECS = 20 PingCommandParams = namedtuple( 'PingCommandParams', ['host_or_ip', 'num_packets', 'timeout_secs'], ) PingInterfaceCommandParams = namedtuple( 'PingInterfaceCommandParams', ['host_or_ip', 'num_packets', 'interface', 'timeout_secs'], ) PingCommandResult = namedtuple( 'PingCommandResult', ['error', 'host_or_ip', 'num_packets', 'stats'], ) ParsedPingStats = namedtuple( 'ParsedPingStats', [ 'packets_transmitted', 'packets_received', 'packet_loss_pct', 'rtt_min', 'rtt_avg', 'rtt_max', 'rtt_mdev', ], ) # regexp's for parsing dec_re = r'\d+(\.\d+)?' packet_line_re = re.compile( r'^(?P<packets_transmitted>\d+) packets transmitted, ' + r'(?P<packets_received>\d+) received, ' + r'(?P<packet_loss_pct>{d})% packet loss, '.format(d=dec_re) + r'time .+$', ) rtt_line_re = re.compile( r'^rtt min/avg/max/mdev = ' + r'(?P<rtt_min>{d})/(?P<rtt_avg>{d})/'.format(d=dec_re) + r'(?P<rtt_max>{d})/(?P<rtt_mdev>{d}) ms$'.format(d=dec_re), ) def ping(ping_params): """ Execute ping commands via subprocess. Blocks while waiting for output. Args: ping_params ([PingCommandParams]): params for the pings to execute Returns: [PingCommandResult]: stats from the executed ping commands """ return subprocess_workflow.exec_and_parse_subprocesses( ping_params, _get_ping_command_args_list, parse_ping_output, ) @asyncio.coroutine def ping_async(ping_params, loop=None): """ Execute ping commands asynchronously. Args: ping_params ([PingCommandParams]): params for the pings to execute loop: asyncio event loop (optional) Returns: [PingCommandResult]: stats from the executed ping commands """ return subprocess_workflow.exec_and_parse_subprocesses_async( ping_params, _get_ping_command_args_list, parse_ping_output, loop, ) @asyncio.coroutine def ping_interface_async(ping_params, loop=None): """ Execute ping commands asynchronously through specified interface. Args: ping_params ([PingCommandParams]): params for the pings to execute loop: asyncio event loop (optional) Returns: [PingCommandResult]: stats from the executed ping commands """ return subprocess_workflow.exec_and_parse_subprocesses_async( ping_params, _get_ping_command_interface_args_list, parse_ping_output, loop, ) def _get_ping_command_args_list(ping_param): return [ 'ping', ping_param.host_or_ip, '-c', str(ping_param.num_packets or DEFAULT_NUM_PACKETS), '-w', str(ping_param.timeout_secs or DEFAULT_TIMEOUT_SECS), ] def _get_ping_command_interface_args_list(ping_param): return [ 'ping', ping_param.host_or_ip, '-c', str(ping_param.num_packets or DEFAULT_NUM_PACKETS), '-I', str(ping_param.interface), '-w', str(ping_param.timeout_secs or DEFAULT_TIMEOUT_SECS), ] def parse_ping_output(stdout, stderr, param): """ Parse stdout output from a ping command. Raises: ValueError: If any errors are encountered while parsing ping output. """ def create_error_result(error_msg): return PingCommandResult( error=error_msg, host_or_ip=param.host_or_ip, num_packets=param.num_packets or DEFAULT_NUM_PACKETS, stats=None, ) def find_statistic_line_idx(ping_lines): line_re = re.compile('^--- .+ statistics ---$') for i, line in enumerate(ping_lines): if line_re.match(line): return i raise ValueError('Could not find statistics header in ping output') def match_ping_line(line, line_re, line_name='ping'): line_match = line_re.match(line) if not line_match: raise ValueError( 'Could not parse {name} line:\n{line}'.format( name=line_name, line=line, ), ) return line_match def str_to_num(s_in): try: return int(s_in) except ValueError: return float(s_in) if stderr: return create_error_result(stderr) else: try: stdout_lines = stdout.decode('ascii').strip().split('\n') stat_header_line_idx = find_statistic_line_idx(stdout_lines) if len(stdout_lines) <= stat_header_line_idx + 2: raise ValueError( 'Not enough output lines in ping output. ' 'The ping may have timed out.', ) packet_match = match_ping_line( stdout_lines[stat_header_line_idx + 1], packet_line_re, line_name='packet', ) rtt_match = match_ping_line( stdout_lines[stat_header_line_idx + 2], rtt_line_re, line_name='rtt', ) match_dict = {} match_dict.update(packet_match.groupdict()) match_dict.update(rtt_match.groupdict()) match_dict = {k: str_to_num(v) for k, v in match_dict.items()} return PingCommandResult( error=None, host_or_ip=param.host_or_ip, num_packets=param.num_packets or DEFAULT_NUM_PACKETS, stats=ParsedPingStats(**match_dict), ) except ValueError as e: return create_error_result(str(e.args[0]))
magma/magma
orc8r/gateway/python/magma/magmad/check/network_check/ping.py
ping.py
py
5,786
python
en
code
1,605
github-code
6
3440116021
class Node: def __init__(self, val): self.val = val self.freq = 1 self.next = None self.last = None self.seq_next = None class FreqStack: def __init__(self): self.freq_to_root = {} self.val_to_node = {} self.max_freq = 0 def push(self, val: int) -> None: if val not in self.val_to_node: node = self.val_to_node[val] = Node(val) else: old_node = self.val_to_node[val] node = Node(val) node.seq_next = old_node self.val_to_node[val] = node node.freq = old_node.freq + 1 freq = node.freq self.max_freq = max(self.max_freq, freq) if freq not in self.freq_to_root: root = self.freq_to_root[freq] = Node(None) root.next, root.last = root, root else: root = self.freq_to_root[freq] root.last.next, root.last, node.last, node.next = node, node, root.last, root def pop(self) -> int: root = self.freq_to_root[self.max_freq] node = root.last node.next.last, node.last.next = node.last, node.next res = node.val old_node = node.seq_next if old_node is None: del self.val_to_node[node.val] else: self.val_to_node[node.val] = old_node while root.last == root: self.max_freq -= 1 if self.max_freq == 0: break root = self.freq_to_root[self.max_freq] return res # Your FreqStack object will be instantiated and called as such: # obj = FreqStack() # obj.push(val) # param_2 = obj.pop()
cuiy0006/Algorithms
leetcode/895. Maximum Frequency Stack.py
895. Maximum Frequency Stack.py
py
1,718
python
en
code
0
github-code
6
26857827694
import os import numpy as np import torch import torch.nn as nn class Generator(nn.Module): def __init__(self, latent_dim, img_shape): super().__init__() self.img_shape = img_shape self.label_embed = nn.Embedding(10, 10) def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(latent_dim+10, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh(), ) def forward(self, z, labels): c = self.label_embed(labels) z = torch.cat([z, c], dim=1) img = self.model(z) img = img.view(img.shape[0], *self.img_shape) return img class Discriminator(nn.Module): def __init__(self, img_shape): super().__init__() self.label_embed = nn.Embedding(10, 10) self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape))+10, 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img, labels): img_flat = img.view(img.size(0), -1) c = self.label_embed(labels) x = torch.cat([img_flat, c], dim=1) validity = self.model(x) return validity
zeroone-universe/GM4MNIST
models/cGAN/model.py
model.py
py
1,673
python
en
code
0
github-code
6
30866831466
import uuid class CustomerGenerator: def __init__(self, client): self.client = client self.customers_api = client.customers def create_customer(self, **kwargs): print('create_customer', kwargs) result = self.customers_api.create_customer(body=kwargs) if result.is_success(): print(result.body) return result.body.get('customer', {}) elif result.is_error(): print(result.errors) return None
cbonoz/square21
customer_generator.py
customer_generator.py
py
502
python
en
code
1
github-code
6
25867921082
#import libraries import pandas as pd import numpy as np import bokeh from bokeh.plotting import figure, output_file, show from bokeh.models.tools import HoverTool from bokeh.core.properties import value from bokeh.models import ColumnDataSource, FactorRange from bokeh.plotting import figure import math from bokeh.models import Range1d, LabelSet, Label class Flight_Arrivals(): def __init__(self): pass def flights(self): avion=pd.read_csv("fly_mia.csv",encoding="latin-1") a=avion a['est_arr_time'] = a['est_arr_time'].str.replace('?', '') a['est_arr_time']=a['est_arr_time'].str.replace(r"\(.*\)","") a=a[a.est_arr_time.str.contains('0')] sun1=a[a.est_arr_time.str.contains('Sun')] sun1['est_arr_time'] = sun1['est_arr_time'].str.replace('Sun', '2019-08-18') sun1['dep_time'] = sun1['dep_time'].str.replace('Sun', '2019-08-18') sat1=a[a.est_arr_time.str.contains('Sat')] sat1['est_arr_time'] = sat1['est_arr_time'].str.replace('Sat', '2019-08-17') sat1['dep_time'] = sat1['dep_time'].str.replace('Sat', '2019-08-17') fri1=a[a.est_arr_time.str.contains('Fri')] fri1['est_arr_time'] =fri1['est_arr_time'].str.replace('Fri', '2019-08-16') fri1['dep_time'] =fri1['dep_time'].str.replace('Fri', '2019-08-16') ok2=pd.concat([sun1,sat1,fri1],axis=0) ok2['dep_time'] =ok2['dep_time'].str.replace('Fri', '2019-08-16') ok2['dep_time'] =ok2['dep_time'].str.replace('Sat', '2019-08-17') ok2['dep_time']=pd.to_datetime(ok2['dep_time']) ok2['est_arr_time']=pd.to_datetime(ok2['est_arr_time']) ok2['flight_time']=ok2['est_arr_time']-ok2['dep_time'] ok2['flight_time']=ok2['flight_time'].dt.total_seconds() ok2['flight_time']=ok2['flight_time']/60 #to minutes #airport time zones (departure zones) #1. cest cest=ok2[ok2.origin.str.contains('MAD|ZRH|BRU|MXP|CDG|DUS|FCO|VIE|FRA|Pisa|BCN|ZAZ|WAW|ORY|AMS')] cest['flight_time']=cest['flight_time']+360 cest['flight_time'] = cest['flight_time'].apply(lambda x: 561 if x < 400 else x) #2.south american flights sa=ok2[ok2.origin.str.contains("GIG|FOR|COR|EZE|Dois de|BSB|GRU|REC|MVD|BEL|SNU")] sa['flight_time']=sa['flight_time']+60 sa['flight_time']=sa['flight_time'].apply(lambda x: 451.5 if x<350 else x) otro=ok2[~ok2.origin.str.contains('MAD|ZRH|BRU|MXP|CDG|DUS|FCO|VIE|FRA|Pisa|BCN|ZAZ|WAW|ORY|AMS|GIG|FOR|COR|EZE|Dois de|BSB|GRU|REC|MVD|BEL|SNU')] todos=pd.concat([cest,sa,otro],axis=0) # percent of flights less one hour bins=[0,60,120,180,240,300,360,420,480,540,600,660] todos['flight_bins']=pd.cut(todos['flight_time'], bins) pct_time=todos['flight_bins'].value_counts() pct_time=pd.DataFrame(pct_time) pct_time.reset_index(level=0,inplace=True) pct_time['pct']=pct_time['flight_bins']/todos.shape[0] #ii. variance by origin vaR=todos.groupby('origin')['flight_time'].var() vaR.sort_values() #iii. arrives by part of the day tiempo=todos[["origin","est_arr_time"]] t=tiempo t['hours']=t['est_arr_time'].dt.hour t['minutes']=t['est_arr_time'].dt.minute mid_six=t[(t.hours>=0) & (t.hours<=6)] seven_twelve=t[(t.hours>=7) & (t.hours<=12)] one_six=t[(t.hours>=13) & (t.hours<=18)] seven_twelve1=t[(t.hours>=19) & (t.hours<=23)] #percent arrivals by time of the day mid_sixP=mid_six.shape[0]/t.shape[0] seven_twelveP=seven_twelve.shape[0]/t.shape[0] one_sixP=one_six.shape[0]/t.shape[0] seven_twelveP1=seven_twelve1.shape[0]/t.shape[0] #origin counts ori=t['origin'].value_counts() ori=pd.DataFrame(ori) ori.reset_index(level=0,inplace=True) ori.columns=['origin','total'] #time between flights tX=todos tX.sort_values(['origin','dep_time'],inplace=True) tX['diff_dep']=tX['dep_time'].diff() mask=tX.origin !=tX.origin.shift(1) tX['diff_dep'][mask]=np.nan tX['diff_dep']=tX['diff_dep'].dt.total_seconds() tX['diff_dep']=tX['diff_dep']/60 #to minutes tX.iloc[0:10] tX=tX[~(tX.diff_dep==0)] takeoffs=tX.groupby('origin')['diff_dep'].median() takeoffs=takeoffs.sort_values() takeoffs=pd.DataFrame(takeoffs) take=takeoffs take=take[take.diff_dep>=1] take1=take[take.diff_dep<=80] s=t s=s.set_index('est_arr_time') s=s.loc['2019-08-17 00:00:00':'2019-08-17 23:59:59'] #VIZ I #east coast time vs. cst,pdt, and mdt (comparing flight times) west_cent=tX[tX.origin.str.contains('LAX|SFO|LAS|SEA|SAN|SNU|DFW|MEX|MDW|MSY|CMW|MEM|ORD|TUL|MSP|MCI|STL|MID|IAH|VRA|PNS|GDL|MTY|KSAT|BHM|SCU|HOG|TLC|HSV')] east=tX[tX.origin.str.contains('NAS|PHI|Toron|Bahama|DCA|HAV|ORF|TPA|LGA|JAX|SAV|SDF|PIE|GGT|PLS|CVG|PIT|CHS|CLE|JFK|CAP|IND|DTW|KEY|CMH|BUF|RDU|SFB|MYEH|MYAM|CYUL|GSP|PBI|RIC|GSO|FMY|BDL|BWI|KTEB|ZSA|KMLB|KAPF|SGJ')] #length of flights wc=west_cent['flight_bins'].value_counts() wc=pd.DataFrame(wc) wc.columns=['flight_time'] wc.reset_index(level=0,inplace=True) wc=wc.sort_values(by="index") wc=wc.set_index('index') ea=east['flight_bins'].value_counts() ea=pd.DataFrame(ea) ea.columns=['flight_time'] ea.reset_index(level=0,inplace=True) ea=ea.sort_values(by="index") ea=ea.set_index('index') factors=[("0-60"),("60-120"),("120-180"), ("180-240"),("240-300"),("300-360"),("360-420"),("420-480"),("480-540"),("540-600"),("600-660")] regions=['east_time_zone','other_time_zone'] east_data=ea.flight_time.tolist() west_data=wc.flight_time.tolist() source=ColumnDataSource(data=dict(x=factors,east_time_zone=east_data,other_time_zone=west_data,)) p = figure(x_range=FactorRange(*factors), plot_height=250,toolbar_location=None, tools="") p.vbar_stack(regions, x='x', width=0.9, alpha=0.5, color=["orange", "purple"], source=source,legend=[value(x) for x in regions]) p.y_range.start = 0 p.y_range.end = 120 p.x_range.range_padding = 0.1 p.xaxis.major_label_orientation = 1 p.xgrid.grid_line_color = None p.xaxis.axis_label='Flight Time (Minutes)' p.yaxis.axis_label='Frequency' p.legend.location = "top_right" p.legend.orientation = "horizontal" output_file("mia1.html") #show(p) #VIZ II (time between departures) source1=ColumnDataSource(take1) airports=source1.data['origin'].tolist() p1=figure(x_range=airports) p1.vbar_stack(stackers=['diff_dep'],x='origin',source=source1,width=0.5) p1.title.text='Time Between Flight Departures' p1.title.align="center" p1.title.text_color="orange" p1.xaxis.major_label_orientation = math.pi/4.25 p1.xaxis.axis_label='' p1.yaxis.axis_label='Minutes' hover=HoverTool() hover.tooltips=[("Time Between Flights","@diff_dep minutes")] hover.mode='vline' p1.add_tools(hover) output_file("mia2.html") #show(p1) #VIZ III (what time of the day do flights arrive?) time_arr=['Midnight to 7 AM','7 AM to 1 PM','1 PM to 7 PM','7 PM to Midnight'] counts=[mid_sixP,seven_twelveP1,one_sixP,seven_twelveP1] palette=['lavender','plum','darkviolet','indigo'] source = ColumnDataSource(data=dict(time_arr=time_arr, counts=counts)) p = figure(x_range=time_arr, plot_height=250, toolbar_location=None, title="When Do Flights to X Arrive?") p.vbar(x='time_arr', top='counts', width=0.5, source=source, color="teal", line_color='white') p.xgrid.grid_line_color = None p.y_range.start = 0.0 p.y_range.end = 0.6 p.xaxis.axis_label="" p.yaxis.major_label_overrides = {0:'0',0.1:'10%',0.2:'20%',0.3:'30%',0.4:'40%',0.5:'50%'} p.yaxis.axis_label="Total Flights" p.legend.orientation = "horizontal" p.legend.location = "top_center" p.title.align="center" output_file("mia3.html") #show(p) #VIZ IV (outlier flights time plot) top_diez=tX['origin'].value_counts() top_diez=pd.DataFrame(top_diez) top_diez.reset_index(level=0,inplace=True) air_names=top_diez.iloc[0:10]["index"] an=air_names an0=an.iloc[0] an1=an.iloc[1] an2=an.iloc[2] an3=an.iloc[3] an4=an.iloc[4] an5=an.iloc[5] an6=an.iloc[6] an7=an.iloc[7] an8=an.iloc[8] an9=an.iloc[9] sub_air=tX[(tX.origin==an0) | (tX.origin==an1) | (tX.origin==an2) | (tX.origin==an3) | (tX.origin==an4) | (tX.origin==an5) | (tX.origin==an6) | (tX.origin==an7) | (tX.origin==an8) | (tX.origin==an9)] df=pd.DataFrame(dict(flight_time=sub_air['flight_time'],group=sub_air['origin'])) originS=df['group'].unique().tolist() groups=df.groupby('group') q1=groups.quantile(q=0.25) q2=groups.quantile(q=0.50) q3=groups.quantile(q=0.75) iqr=q3-q1 upper=q3+1.5*iqr lower=q1-1.5*iqr #find outliers in each group def outliers(group): originS=group.name return group[(group.flight_time > upper.loc[originS]['flight_time']) | (group.flight_time < lower.loc[originS]['flight_time'])]['flight_time'] out=groups.apply(outliers).dropna() #prepare outlier data for plotting if not out.empty: outx=[] outy=[] for keys in out.index: outx.append(keys[0]) outy.append(out.loc[keys[0]].loc[keys[1]]) p = figure(tools="", background_fill_color="#efefef", x_range=originS, toolbar_location=None) #if no outliers, shrink lengths of stems to be no longer than the minimums or maximums qmin=groups.quantile(q=0.00) qmax=groups.quantile(q=1.00) upper.score=[min([x,y]) for (x,y) in zip(list(qmax.loc[:,'flight_time']),upper.flight_time)] lower.score = [max([x,y]) for (x,y) in zip(list(qmin.loc[:,'flight_time']),lower.flight_time)] # stems p.segment(originS, upper.flight_time, originS, q3.flight_time, line_color="black") p.segment(originS, lower.flight_time, originS, q1.flight_time, line_color="black") # boxes p.vbar(originS, 0.7, q2.flight_time, q3.flight_time, fill_color="aqua", line_color="black") p.vbar(originS, 0.7, q1.flight_time, q2.flight_time, fill_color="maroon", line_color="black") # whiskers (almost-0 height rects simpler than segments) p.rect(originS, lower.flight_time, 0.2, 0.01, line_color="black") p.rect(originS,upper.flight_time, 0.2, 0.01, line_color="black") # outliers if not out.empty: p.circle(outx, outy, size=6, color="#F38630", fill_alpha=0.6) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = "white" p.grid.grid_line_width = 2 p.xaxis.major_label_text_font_size="12pt" p.xaxis.major_label_orientation = 3.5/2 p.xaxis.axis_label = '' p.yaxis.axis_label = 'Flight Time (minutes)' p.title.text='Flights That Are Shorter or Longer Than Average' p.title.align="center" output_file('mia4x.html') #show(p) #VIZ V dep=tX['diff_dep'].tolist() time=tX['flight_time'].tolist() airports=tX['origin'].tolist() source=ColumnDataSource(data=dict(dep=dep,time=time,airports=airports)) p=figure(title="Flight Time Vs. Time Between Departures",x_range=Range1d(0,1000)) p.scatter(x="dep",y="time",size=4,source=source) p.xaxis[0].axis_label="Time Between Flights (Minutes)" p.yaxis[0].axis_label="Flight Time (Minutes)" labels = LabelSet(x='dep', y='time', text='airports', level='glyph',x_offset=5, y_offset=5, source=source, render_mode='canvas') p.add_layout(labels) show(p) if __name__=='__main__': flights=Flight_Arrivals() flights.flights()
Fremont28/miami_flights-
flights_viz1.py
flights_viz1.py
py
12,432
python
en
code
0
github-code
6
39690983841
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="visbeat", version="0.0.9", author="Abe Davis", author_email="[email protected]", description="Code for 'Visual Rhythm and Beat' SIGGRAPH 2018", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/abedavis/visbeat", project_urls={ 'Abe Davis': 'http://www.abedavis.com/', 'Visual Rhythm and Beat': 'http://www.abedavis.com/visualbeat/', 'Source': 'https://github.com/abedavis/visbeat', 'Demo': 'http://www.abedavis.com/visualbeat/demo/', }, install_requires=[ 'numpy', 'scipy', 'bs4', 'librosa', 'imageio', 'requests', 'moviepy', 'termcolor', 'youtube-dl', 'matplotlib', ], scripts=['bin/dancefer'], packages=setuptools.find_packages(exclude=['contrib', 'docs', 'tests*']), include_package_data=True, classifiers=[ "Programming Language :: Python :: 2.7", "Operating System :: OS Independent", ], )
abedavis/visbeat
setup.py
setup.py
py
1,170
python
en
code
220
github-code
6
73674519546
'''This script contains the functions used to contruct and train the GAN.''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import tensorflow as tf # Change the environment variable TF_CPP_MIN_LOG_LEVEL to 2 to avoid the orderbooks about the compilation of the CUDA code os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from data_utils import * import argparse import logging # from tensorflow.keras.utils import plot_model from model_utils import * import math import gc from scipy.stats import wasserstein_distance import sys if __name__ == '__main__': parser = argparse.ArgumentParser( description='''Main script used to train the GAN.''') parser.add_argument("-l", "--log", default="info", help=("Provide logging level. Example --log debug', default='info'")) parser.add_argument('-N', '--N_days', type=int, help='Number of the day to consider') parser.add_argument('-d', '--depth', help='Depth of the orderbook', type=int) parser.add_argument('-bs', '--batch_size', help='Batch size', type=int) parser.add_argument('-ld', '--latent_dim', help='Latent dimension', type=int) parser.add_argument('-nlg', '--n_layers_gen', help='Number of generator layers', type=int) parser.add_argument('-nld', '--n_layers_disc', help='Number of discriminator layers', type=int) parser.add_argument('-tg', '--type_gen', help='Type of generator model (conv, lstm, dense)', type=str) parser.add_argument('-td', '--type_disc', help='Type of discriminator model (conv, lstm, dense)', type=str) parser.add_argument('-sc', '--skip_connection', action='store_true', help='Use or not skip connections') parser.add_argument('-Tc', '--T_condition', help='Number of time steps to condition on', type=int, default=2) parser.add_argument('-Tg', '--T_gen', help='Number of time steps to generate', type=int, default=1) parser.add_argument('-ls', '--loss', help='Loss function (original, wasserstein)', type=str, default='original') parser.add_argument('-lo', '--load', help='Load a model. The job_id must be provided', type=int, default=0) args = parser.parse_args() levels = {'critical': logging.CRITICAL, 'error': logging.ERROR, 'warning': logging.WARNING, 'info': logging.INFO, 'debug': logging.DEBUG} if os.getenv("PBS_JOBID") != None: job_id = os.getenv("PBS_JOBID") else: job_id = os.getpid() logging.basicConfig(filename=f'train_{job_id}.log', format='%(message)s', level=levels[args.log]) logger = tf.get_logger() logger.setLevel('ERROR') # Set the seed for TensorFlow to the number of the beast tf.random.set_seed(666) # Print the current date and time current_datetime = pd.Timestamp.now() formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S") logging.info(f"Current Date and Time:\n\t {formatted_datetime}") # Enable device placement logging tf.debugging.set_log_device_placement(True) # Load the data stock = 'MSFT' date = '2018-04-01_2018-04-30_5' total_depth = 5 N = args.N_days depth = args.depth logging.info(f'Stock:\n\t{stock}') logging.info(f'Number of days:\n\t{N}') physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) == 0: logging.info("No GPUs available.") else: logging.info("Available GPUs:") tf.config.experimental.set_memory_growth(physical_devices[0], True) for device in physical_devices: logging.info(f'\t{device}\n') # Folders creation os.mkdir(f'plots/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}') # Model architecture plots, metrics plots os.mkdir(f'generated_samples/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}') # Generated samples os.mkdir(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}') # Models # Create the orderbook dataframe orderbook_df = create_orderbook_dataframe(N, previos_days=False) # Define the parameters of the GAN. Some of them are set via argparse T_condition = args.T_condition T_gen = args.T_gen window_size = T_condition + T_gen n_features_input = orderbook_df.shape[1] n_features_gen = 2*depth latent_dim = args.latent_dim n_epochs = 5000 batch_size = args.batch_size # Define the parameters for the early stopping criterion best_gen_weights = None best_disc_weights = None best_wass_dist = float('inf') patience_counter = 0 patience = 200 num_pieces = 5 if not os.path.exists(f'../data/input_train_{stock}_{window_size}_day{N}_orderbook.npy'): logging.info('\n[Input] ---------- PREPROCESSING ----------') data_input = orderbook_df.values # data_input = np.load(f'anomaly_data_{N}.npy') # logging.info(f'\nAre anomaly_data and normal_data the same?\n\t{np.all(data_input == data_input_a)}') # exit() # Divide input data into overlapping pieces sub_data, length = divide_into_overlapping_pieces(data_input, window_size, num_pieces) if sub_data[-1].shape[0] < window_size: raise ValueError(f'The last piece has shape {sub_data[-1].shape} and it is smaller than the window size {window_size}.') logging.info(f'Number of windows: {length}') # Create a memmap to store the scaled data. final_shape = (length-num_pieces*(window_size-1), window_size, n_features_input) fp = np.memmap("final_data.dat", dtype='float32', mode='w+', shape=final_shape) start_idx = 0 logging.info(f'\nStart scaling the data...') for piece_idx, data in enumerate(sub_data): logging.info(f'\t{piece_idx+1}/{num_pieces}') windows = np.array(divide_into_windows(data, window_size)) logging.info(f'\twindows shape: {windows.shape}') end_idx = start_idx + windows.shape[0] fp[start_idx:end_idx] = windows start_idx = end_idx del windows # Explicit deletion logging.info('Done.') np.save(f'normal_data_{N}.npy', fp) logging.info('\nDividing each window into condition and input...') condition_train, input_train = fp[:, :T_condition, :], fp[:, T_condition:, :n_features_gen] logging.info('Done.') logging.info(f'input_train shape:\n\t{input_train.shape}') logging.info(f'condition_train shape:\n\t{condition_train.shape}') logging.info('\nSave the files...') np.save(f'../data/condition_train_{stock}_{window_size}_day{N}_orderbook.npy', condition_train) np.save(f'../data/input_train_{stock}_{window_size}_day{N}_orderbook.npy', input_train) logging.info('Done.') logging.info('\n[Input] ---------- DONE ----------') else: logging.info('Loading input_train, input_validation and input_test sets...') input_train = np.load(f'../data/input_train_{stock}_{window_size}_{N}days_orderbook.npy', mmap_mode='r') condition_train = np.load(f'../data/condition_train_{stock}_{window_size}_{N}days_orderbook.npy', mmap_mode='r') logging.info(f'input_train shape:\n\t{input_train.shape}') logging.info(f'condition_train shape:\n\t{condition_train.shape}') logging.info(f"\nHYPERPARAMETERS:\n" f"\tstock: {stock}\n" f"\tdepth: {depth}\n" f"\tgenerator: {args.type_gen}\n" f"\tdiscriminator: {args.type_disc}\n" f"\tn_layers_gen: {args.n_layers_gen}\n" f"\tn_layers_disc: {args.n_layers_disc}\n" f"\tskip_connection: {args.skip_connection}\n" f"\tlatent_dim per time: {latent_dim}\n" f"\tn_features_input: {n_features_input}\n" f"\tn_features_gen: {n_features_gen}\n" f"\tfeatures: {orderbook_df.columns}\n" f"\tn_epochs: {n_epochs}\n" f"\tT_condition: {T_condition}\n" f"\tT_gen: {T_gen}\n" f"\tbatch_size: {batch_size} (num_batches: {input_train.shape[0]//batch_size})\n" f"\tloss: {args.loss}\n" f"\tpatience: {patience}\n" f"\tjob_id: {job_id}\n" f"\tLoaded model: {None if args.load==0 else args.load}\n") # Define the optimizers generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.00001) discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.00001) optimizer = [generator_optimizer, discriminator_optimizer] if args.load == 0: # Build the models generator_model = build_generator(args.n_layers_gen, args.type_gen, args.skip_connection, T_gen, T_condition, n_features_input, n_features_gen, latent_dim, True) discriminator_model = build_discriminator(args.n_layers_disc, args.type_disc, args.skip_connection, T_gen, T_condition, n_features_input, n_features_gen, True, args.loss) feature_extractor = build_feature_extractor(discriminator_model, [i for i in range(1, args.n_layers_disc)]) else: prev_job_id = args.load # Load the models generator_model = tf.keras.models.load_model(f'models/{prev_job_id}.pbs01_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/generator_model.h5') discriminator_model = tf.keras.models.load_model(f'models/{prev_job_id}.pbs01_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/discriminator_model.h5') feature_extractor = build_feature_extractor(discriminator_model, [i for i in range(1, args.n_layers_disc)]) logging.info('\n[Model] ---------- MODEL SUMMARIES ----------') generator_model.summary(print_fn=logging.info) logging.info('\n') discriminator_model.summary(print_fn=logging.info) logging.info('[Model] ---------- DONE ----------\n') # Define a dictionary to store the metrics metrics = {'discriminator_loss': [], 'gen_loss': [], 'real_disc_out': [], 'fake_disc_out': []} # Train the GAN. logging.info('\n[Training] ---------- START TRAINING ----------') dataset_train = tf.data.Dataset.from_tensor_slices((condition_train, input_train)).batch(batch_size) num_batches = len(dataset_train) logging.info(f'Number of batches:\n\t{num_batches}\n') # Initialize a list to store the mean over all the features of the wasserstein distances at each epoch wass_to_plot = [] for epoch in range(n_epochs): j = 0 W_batch = [] # W_batch will have num_batches elements noises = [[] for _ in range(num_batches)] # noises will have num_batches elements. Each elements is a list containing the noises used for each batch in that epoch for batch_condition, batch_real_samples in dataset_train: j += 1 batch_size = batch_real_samples.shape[0] generator_model, discriminator_model, generated_samples, noise = train_step(batch_real_samples, batch_condition, generator_model, discriminator_model, feature_extractor, optimizer, args.loss, T_gen, T_condition, latent_dim, batch_size, num_batches, j, job_id, epoch, metrics, args) # Append the noise noises[j-1] = noise W_features = [] # W_features will have n_features_gen elements for feature in range(n_features_gen): # Iteration over the features W_samples = [] # W_samples will have batch_size elements for i in range(generated_samples.shape[0]): # Iteration over the samples w = wasserstein_distance(batch_real_samples[i, :, feature], generated_samples[i, :, feature]) W_samples.append(w) W_features.append(np.mean(np.array(W_samples))) # averaged over the samples in a batch W_batch.append(np.mean(np.array(W_features))) # averaged over the features overall_W_mean = np.mean(np.array(W_batch)) # averaged over the batches wass_to_plot.append(overall_W_mean) logging.info(f'Wasserstein distance: {overall_W_mean}') if epoch % 150 == 0: logging.info('Creating a time series with the generated samples...') features = orderbook_df.columns[:n_features_gen] plot_samples(dataset_train, generator_model, noises, features, T_gen, n_features_gen, job_id, epoch, args) logging.info('Saving the models...') generator_model.save(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/generator_model.h5') discriminator_model.save(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/discriminator_model.h5') logging.info('Done') logging.info('Check Early Stopping Criteria...') if epoch > 2500: if overall_W_mean + 5e-4 < best_wass_dist: logging.info(f'Wasserstein distance improved from {best_wass_dist} to {overall_W_mean}') best_wass_dist = overall_W_mean best_gen_weights = generator_model.get_weights() best_disc_weights = discriminator_model.get_weights() patience_counter = 0 np.save(f'generated_samples/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/noise_{epoch}.npy', noises) else: logging.info(f'Wasserstein distance did not improve from {best_wass_dist}') patience_counter += 1 if patience_counter >= patience: best_epoch = epoch - patience logging.info(f"Early stopping on epoch {epoch}. Restoring best weights of epoch {best_epoch}...") generator_model.set_weights(best_gen_weights) # restore best weights discriminator_model.set_weights(best_disc_weights) logging.info('Saving the models...') generator_model.save(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/generator_model.h5') discriminator_model.save(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/discriminator_model.h5') logging.info('Done') else: logging.info(f'Early stopping criterion not met. Patience counter:\n\t{patience_counter}') # Plot the wasserstein distance plt.figure(figsize=(10, 6)) plt.plot(wass_to_plot) plt.xlabel('Epoch') plt.ylabel('Wasserstein distance') plt.title(f'Mean over the features of the Wasserstein distances') # add a vertical line at the best epoch plt.axvline(x=epoch-patience_counter, color='r', linestyle='--', alpha=0.8, label=f'Best epoch: {epoch-patience_counter}') plt.legend() plt.savefig(f'plots/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/0_wasserstein_distance.png') plt.close() if patience_counter >= patience: break logging.info('[Training] ---------- DONE ----------\n') logging.info('Plotting the first 2 principal components of the generated and real samples...') # Plot the first 2 principal components of the generated and real samples # Load the best generator generator_model = tf.keras.models.load_model(f'models/{job_id}_{args.type_gen}_{args.type_disc}_{args.n_layers_gen}_{args.n_layers_disc}_{args.T_condition}_{args.loss}/generator_model.h5') generated_samples = [] real_samples = [] k = 0 for batch_condition, batch in dataset_train: gen_sample = generator_model([noises[k], batch_condition]) for i in range(gen_sample.shape[0]): # All the appended samples will be of shape (T_gen, n_features_gen) generated_samples.append(gen_sample[i, -1, :]) real_samples.append(batch[i, -1, :]) k += 1 plot_pca_with_marginals(generated_samples, real_samples, job_id, args) logging.info('Done.') logging.info('Computing the errors on the correlation matrix using bootstrap...') # At the end of the training, compute the errors on the correlation matrix using bootstrap. # In order to do so, I need the best generator and the noises used. correlation_matrix(dataset_train, generator_model, noises, T_gen, n_features_gen, job_id) logging.info('Done.') # Maybe it is not necessary, but I prefer to clear all the memory and exit the script gc.collect() tf.keras.backend.clear_session() sys.exit()
DanieleMDiNosse/GAN_Anomaly_Detection
train.py
train.py
py
17,245
python
en
code
0
github-code
6
33138124964
#mass import import pandas as pd import urllib.request import json import numpy as np import matplotlib.pyplot as plt from datetime import datetime, timedelta from sklearn.cluster import KMeans pd.options.display.max_rows = 999 #for getting the date 5 days ago daydif = str(datetime.today() - timedelta(days=5)) dayref = str(daydif[0:10]) today = str(datetime.today().strftime('%Y-%m-%d')) #for retrieving the data from the APIs link = ["https://environment.data.gov.uk/flood-monitoring/id/stations/46160/readings?since=",dayref, "&_sorted&parameter=rainfall"] final = "" final = final.join(link) #print(final) web = urllib.request.Request(final) response = urllib.request.urlopen(web) the_page = response.read() jason = json.loads(the_page) link1 = ["http://environment.data.gov.uk/flood-monitoring/id/measures/46126-level-stage-i-15_min-m/readings?since=",dayref] final1 = "" final1 = final1.join(link1) #print(final1) web1 = urllib.request.Request(final1) response1 = urllib.request.urlopen(web1) the_page1 = response1.read() jason1 = json.loads(the_page1) #creates dataframes for each API df1 = pd.DataFrame(jason1["items"]) df1 = df1.sort_values('dateTime', ascending = True) df = pd.DataFrame(jason["items"]) df = df.sort_values('dateTime', ascending = True) #merged table containing level and fall, plots a graph a = pd.merge(df, df1, on = 'dateTime', how = 'left') b = a[['dateTime', 'value_x', 'value_y']].copy() b = b.rename(columns = {"dateTime" : "Date/Time", "value_x" : "Rainfall", "value_y" : "River Level"}) #Calculates hourly results c = b[['Rainfall', 'River Level']] d = c['River Level'].groupby(c.index//4).mean() d = d.diff() e = c.groupby(c.index//4)['Rainfall'].sum() hourly = pd.concat([d, e], axis = 1) drip = hourly['Rainfall'].max() drip = int(drip * 10) calc = [] tester = pd.DataFrame() for i in range (0, drip+1): x = i/10 s = hourly.Rainfall.eq(x) out = pd.DataFrame() out['River'] = hourly.loc[s.shift(1, axis = 0) | s.shift(2, axis = 0), 'River Level'] runner = len(out) out['Rain'] = x tester = pd.concat([tester, out]) tester = tester.dropna() #Machine learning : Kmeans clustering reg = KMeans(n_clusters = 2, random_state = 0).fit(tester[['River']]) #Producing a graph of the regression plt.scatter(tester['Rain'], tester['River'], color = 'Blue', marker = '+') plt.plot(tester['Rain'], reg.predict(tester[['Rain']]), color = 'Red') plt.show() #Producing an example prediction pred = pd.DataFrame() #print(pred) end = len(b.index) for i in range(1, end): prod = pd.DataFrame() #print(b) for row in b.itertuples(): temp = pd.DataFrame() temp['RDelta'] = reg.predict([[row.Rainfall]]) temp['Rainfall'] = row.Rainfall pred = pd.concat([pred, temp]) endriver = pd.DataFrame() riverstart = b['River Level'].iloc[0] for row in pred.itertuples(): rtemp = pd.DataFrame({'RPred': [riverstart]}) endriver = pd.concat([endriver, rtemp], ignore_index = True) riverstart = riverstart + row.RDelta #Producing a dataframe with the prediction and all other data together fin = pd.merge(b, endriver, left_index = True, right_index = True) print(fin) #Plotting a graph of expected riverlevel and the actual river level plt.plot(fin['Date/Time'],fin['River Level'],label = 'River Level') plt.plot(fin['Date/Time'],fin['Rainfall'], label = 'Rainfall') plt.plot(fin['Date/Time'],fin['RPred'], label = 'Predicted') plt.locator_params(axis = 'Date/Time', nbins = 10) plt.xticks(rotation = 'vertical') ax = plt.gca() ax.set_xticks(ax.get_xticks()[::48]) plt.show()
nicr0ss/RainDance
KMeans_model.py
KMeans_model.py
py
3,524
python
en
code
0
github-code
6
8870924854
from collections import deque import sys while True: try: a=str(input('Input final configuration: ')) N=int(a.replace(' ','')) if ((N>87654321)|(N<12345678)): raise ValueError('Incorrect configuration, giving up...') break except ValueError: print('Incorrect configuration, giving up...') sys.exit() final=[int(i) for i in str(N)] def initial_state(N): initial_list = [] for i in range(1, N + 1): locals()['d' + str(i)] = i name_list = [('d' + '%d' % i) for i in range(1, N + 1)] for i in range(N): initial_list.append(vars()[name_list[i]]) return initial_list def row_exchange(L): r_L = list(L) d8, d7, d6, d5, d4, d3, d2, d1 = r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] = d1, d2, d3, d4, d5, d6, d7, d8 return r_L def right_circular_shift(L): r_L = list(L) d1, d2, d3, d4, d5, d6, d7, d8 = r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] = d4, d1, d2, d3, d6, d7, d8, d5 return r_L def middle_clockwise_rotation(L): r_L = list(L) d1, d2, d3, d4, d5, d6, d7, d8 = r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] r_L[0], r_L[1], r_L[2], r_L[3], r_L[4], r_L[5], r_L[6], r_L[7] = d1, d7, d2, d4, d5, d3, d6, d8 return r_L def Rubik_Rectangle(initial_list, final_conf_list): steps_need = 0 created_list = list(initial_list) check_list = [] created_total = [] created_all=deque() created_all.append([1, 2, 3, 4, 5, 6, 7, 8]) temp_created_all=[] Flag = False temp_created_all=[] temp_created_all.append([1, 2, 3, 4, 5, 6, 7, 8]) don_t_know=set() don_t_know.add((1, 2, 3, 4, 5, 6, 7, 8)) def List_compare(list_1, list_2, i): if list_1 == list_2: return True else: return False for i in range(23): #print('I',i) #print('LENTH OF ALL',len(created_all)) steps_need = i if initial_list == final_conf_list: return steps_need else: for element in range(0, len(created_all)): created_list = created_all[element] if tuple(row_exchange(created_list)) not in don_t_know: created_total.append(row_exchange(created_list)) check_list = row_exchange(created_list) Flag = List_compare(check_list, final_conf_list, steps_need) if Flag == True: #print(check_list) return steps_need + 1 for element in range(0, len(created_all)): created_list = created_all[element] if tuple(right_circular_shift(created_list)) not in don_t_know: created_total.append(right_circular_shift(created_list)) check_list = right_circular_shift(created_list) Flag = List_compare(check_list, final_conf_list, steps_need) if Flag == True: #print(check_list) return steps_need + 1 for element in range(0, len(created_all)): created_list = created_all[element] if tuple(middle_clockwise_rotation(created_list)) not in don_t_know: created_total.append(middle_clockwise_rotation(created_list)) check_list = middle_clockwise_rotation(created_list) Flag = List_compare(check_list, final_conf_list, steps_need) if Flag == True: #print(check_list) return steps_need + 1 #print('------------------------------------------') #bug bug_L=[1,3,7,14,26,51,92,159,274,453,720,1115,1727,2603,3701,4729,5620,6240,5840,4492,2120,328,5,0] created_all1=deque(maxlen=bug_L[steps_need+1]) for i in range(len(created_total)): if tuple(created_total[i]) not in don_t_know: created_all1.append(created_total[i]) don_t_know.add(tuple(created_total[i])) temp_created_all=list(created_all1) created_all=list(created_all1) for num in range(len(created_all)): check_list = created_all[num] Flag = List_compare(check_list, final_conf_list, steps_need) if Flag == True: #print(check_list) return steps_need + 1 created_total = list() initial_list=[1,2,3,4,5,6,7,8] #final = [1,5,3,2,4,6,7,8] #print('step',Rubik_Rectangle(initial_list, final)) nb_of_stairs=Rubik_Rectangle(initial_list, final) stair_or_stairs = 'step is' if nb_of_stairs <= 1 else 'steps are' print(f'{nb_of_stairs} {stair_or_stairs} needed to reach the final configuration.')
hanxuwu/Learning-Python
Principles of Programming/Assignment/Assignment1/ASS question2.files/rubiks_rectangle.py
rubiks_rectangle.py
py
5,218
python
en
code
3
github-code
6
74413558908
class Solution: def reverse(self, x: int) -> int: result = 0 x_abs = abs(x) limit = [-2**31, 2**31 - 1] while x_abs: modulo = x_abs % 10 result = result * 10 + modulo x_abs = x_abs // 10 if x < 0: result = -result if result < limit[0] or result > limit[1]: return 0 return result
garimaarora1/LeetCode-2023
reverse-integer/reverse-integer.py
reverse-integer.py
py
436
python
en
code
0
github-code
6
28381664206
import socket ''' Send given value to the given address. ''' def send_value(to_addr, value): if not to_addr: print("Remote Address Not Set!") return msg = "VALUE:%d" % value print("Sending '%s' to %s:%d" % (msg, to_addr[0], to_addr[1])) s = socket.socket() try: s.connect(to_addr) s.send(bytes(msg+"\r\n\r\n", 'utf8')) return_msg = str(s.recv(64), 'utf8') if return_msg == "OK": print(" Message Received!") else: print(" Error: '%s'" % return_msg) except Exception as e: print(" Problem connecting: %s" % str(e)) finally: s.close() ''' Watch network for incoming value and send it to callback function. ''' def watch_for_value(my_addr, callback): if not my_addr: print("Local Address Not Set!") return print("Watching network at %s:%d" % my_addr) s = socket.socket() s.bind(my_addr) s.listen(1) value = -1 while True: cl, remote_address = s.accept() print("Client connected from %s:%d" % remote_address) cl_file = cl.makefile('rwb', 0) while True: line = cl_file.readline() if not line or line == b'\r\n': break if line[:6] == b'VALUE:': value = int(line[6:]) break cl.send("OK") cl.close() # print("Value = %d" % value) if value >= 0: callback(value)
jsayles/Thing1and2
src/utils.py
utils.py
py
1,489
python
en
code
1
github-code
6
13859758386
import bs4 import requests from bs4 import BeautifulSoup SUPPORTED_LANGUAGES = ("EN", "__test__") def scrape_oxford_learners_dictionary(word: str) -> list[str]: def url(i: int) -> str: return ( f"https://www.oxfordlearnersdictionaries.com" f"/definition/english/{word}_{i}" ) # The website filters out requests without a proper User-Agent headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X x.y; rv:42.0) " "Gecko/20100101 Firefox/42.0", } list_of_definitions = [] for i in range(1, 5, 1): response = requests.get(url(i), headers=headers) if response.status_code != 200: break page = response.text soup = BeautifulSoup(page, "html.parser") find_pos = soup.find("span", class_="pos") if isinstance(find_pos, bs4.Tag): pos = find_pos.text else: pos = "-" find_senses = soup.find("ol", class_="senses_multiple") if isinstance(find_senses, bs4.Tag): list_of_senses = find_senses.find_all( "li", class_="sense", recursive=False ) else: find_senses = soup.find("ol", class_="sense_single") if isinstance(find_senses, bs4.Tag): list_of_senses = find_senses.find_all( "li", class_="sense", recursive=False ) else: break for sense in list_of_senses: definition = sense.find("span", class_="def") list_of_definitions.append(f"({pos}) " + definition.text) return list_of_definitions
pavelkurach/vocab-builder
src/dict_scrapers.py
dict_scrapers.py
py
1,687
python
en
code
0
github-code
6
29147674060
#!/usr/bin/env python # coding: utf-8 # In[1]: import requests import bs4 # In[2]: 'http://books.toscrape.com/catalogue/page-2.html' # In[3]: 'http://books.toscrape.com/catalogue/page-3.html' # In[4]: base_url = 'http://books.toscrape.com/catalogue/page-{}.html' # In[5]: base_url.format('20') # In[9]: page_num = 18 # In[7]: 'http://books.toscrape.com/catalogue/page-{page_num}.html' # In[10]: base_url.format(page_num) # In[12]: res = requests.get(base_url.format(1)) # In[13]: soup = bs4.BeautifulSoup(res.text,'lxml') # In[14]: soup # In[15]: soup.select(".product_pod") # In[17]: len(soup.select(".product_pod")) # In[18]: products = soup.select(".product_pod") # In[19]: example = products[0] # In[20]: example # In[21]: 'star-rating Thr' in str(example) # In[22]: example.select(".star-rating.Two") # In[23]: example.select('a') # In[24]: example.select('a')[1] # In[25]: example.select('a')[1]['title'] # In[28]: two_star_titles = [] for n in range(1,51): scrape_url = base_url.format(n) res = requests.get(scrape_url) soup = bs4.BeautifulSoup(res.text, 'lxml') books = soup.select(".product_pod") for book in books: if len(book.select('.star-rating.Two')) != 0: book_title = book.select('a')[1]['title'] two_star_titles.append(book_title) # In[29]: two_star_titles # In[ ]:
maylinaung/python-learning
web_scrabing_book_example.py
web_scrabing_book_example.py
py
1,427
python
en
code
0
github-code
6
15304075993
from sklearn import model_selection from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.model_selection import train_test_split import pandas #names=['Total no of questions','Average time to solve each questions','No of questions marked for review','No of questions right','Average no of clicks in each page'] dataset = pandas.read_csv("dataset.csv") #dataset = dataset.apply(pandas.to_numeric,errors='ignore') ##cols.remove('Index') ##cols = dataset.columns ##for col in cols: ## try: ## dataset[col] = float(dataset[col]) ## except: ## pass array = dataset.values array=array[1:] X = array[:,0:5] Y = array[:,5] print(X) print(Y) validation_size = 0.20 seed = 7 X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed) print("X_train",X_train) print("Y_train",Y_train) print("X_validation",X_validation) print("Y_validation",Y_validation) seed = 7 scoring = 'accuracy' # Spot Check Algorithms models = [] models.append(('LR', LogisticRegression())) models.append(('LDA', LinearDiscriminantAnalysis())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) models.append(('NB', GaussianNB())) models.append(('SVM', SVC())) # evaluate each model in turn results = [] names = [] for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state=seed) cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) knn = KNeighborsClassifier() knn.fit(X_train, Y_train) predictions = knn.predict(X_validation) print("Actual Validators",Y_validation) print("predictions",predictions) print(accuracy_score(Y_validation, predictions)) print(confusion_matrix(Y_validation, predictions)) print(classification_report(Y_validation, predictions)) model = DecisionTreeClassifier() model.fit(X_train, Y_train) # make predictions predictions = model.predict(X_validation) #prediction = model.predict([[2.8,15,18,180]]) #print("prediction",prediction) # summarize the fit of the model print("predictions",predictions) print(accuracy_score(Y_validation, predictions)) print(confusion_matrix(Y_validation, predictions)) print(classification_report(Y_validation, predictions))
tunir27/ICDCN-2019
Chennai_Floods_code/ML.py
ML.py
py
2,819
python
en
code
0
github-code
6
21907313029
from heapq import * import heapq class SlidingWindowMedian: def __init__(self): self.maxHeap, self.minHeap = [], [] def find_sliding_window_median(self, nums, k): result = [0.0 for x in range(len(nums) - k + 1)] for i in range(0, len(nums)): if not self.maxHeap or nums[i] <= -self.maxHeap[0]: heappush(self.maxHeap, -nums[i]) else: heappush(self.minHeap, nums[i]) self.rebalance_heaps() if i - k + 1 >= 0: if len(self.maxHeap) == len(self.minHeap): result[i - k + 1] = -self.maxHeap[0] / 2.0 + self.minHeap[0] / 2.0 else: result[i - k + 1] = -self.maxHeap[0] / 1.0 elementToBeRemoved = nums[i - k + 1] if elementToBeRemoved <= -self.maxHeap[0]: self.remove(self.maxHeap, -elementToBeRemoved) else: self.remove(self.minHeap, elementToBeRemoved) self.rebalance_heaps() return result def remove(self, heap, element): ind = heap.index(element) heap[ind] = heap[-1] del heap[-1] if ind < len(heap): heapq._siftup(heap, ind) heapq._siftdown(heap, 0, ind) def rebalance_heaps(self): if len(self.maxHeap) > len(self.minHeap) + 1: heappush(self.minHeap, -heappop(self.maxHeap)) elif len(self.maxHeap) < len(self.minHeap): heappush(self.maxHeap, -heappop(self.minHeap)) def main(): slidingWindowMedian = SlidingWindowMedian() result = slidingWindowMedian.find_sliding_window_median([1, 2, -1, 3, 5], 2) print("Sliding window medians are: " + str(result)) main() #time complexity: O(N*K) N: total number of elements, K: size of the sliding window # inserting/removing numbers from heaps of size K: O(logK) # removing element going out the sliding window will take O(K) #space complexity: O(K): storing numbers in sliding window
justinyoonsk/GTCI
09_Two_Heaps/02_sliding_window_median.py
02_sliding_window_median.py
py
2,044
python
en
code
0
github-code
6
3240628422
from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response from entrepreneur.models import Usuario from authentication.serializers import UserListSerializers, UserSerializer @api_view(['GET', 'POST']) def user_api_view(request): # lista los usuarios activos ingresados al sistemna if request.method == 'GET': users = Usuario.objects.filter(is_active=True).values('id', 'username', 'email', 'password', 'first_name') user_serializer = UserListSerializers(users, many=True) return Response(user_serializer.data, status=status.HTTP_200_OK) elif request.method == 'POST': """ Habilita la creación de usuarios solicitando """ user_serializer = UserSerializer(data=request.data) if user_serializer.is_valid(): user_serializer.save() return Response({'message': 'Usuario creado correctamente!'}, status=status.HTTP_201_CREATED) return Response(user_serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def user_detail_api_view(request, pk=None): user = Usuario.objects.filter(id=pk).first() # Retrieve if user: if request.method == 'GET': user_serializer = UserSerializer(user) return Response(user_serializer.data, status=status.HTTP_200_OK) # Update elif request.method == 'PUT': user_serializer = UserSerializer(user, data=request.data) if user_serializer.is_valid(): user_serializer.save() return Response(user_serializer.data, status=status.HTTP_200_OK) return Response(user_serializer.errors, status=status.HTTP_400_BAD_REQUEST) # Delete elif request.method == 'DELETE': user.is_active = False user.save() return Response({'message': 'Usuario eliminado correctamente!'}, status=status.HTTP_201_CREATED) return Response({'message': 'Sin datos para la consulta, favor corregir y reintentar!'}, status=status.HTTP_400_BAD_REQUEST)
DevApa/auth_em
register/api.py
api.py
py
2,157
python
en
code
0
github-code
6
72531926909
# pylint: disable=redefined-outer-name # pylint: disable=unused-argument # pylint: disable=unused-variable import os import shutil from pathlib import Path from typing import Callable import pytest import yaml @pytest.fixture def tmp_compose_spec(tests_data_dir: Path, tmp_path: Path): src = tests_data_dir / "docker-compose-meta.yml" dst = tmp_path / "docker-compose-meta.yml" shutil.copyfile(src, dst) return dst def test_create_new_osparc_config( run_program_with_args: Callable, tmp_compose_spec: Path ): osparc_dir = tmp_compose_spec.parent / ".osparc" assert not osparc_dir.exists() result = run_program_with_args( "config", "--from-spec-file", str(tmp_compose_spec), ) assert result.exit_code == os.EX_OK, result.output assert osparc_dir.exists() meta_cfgs = set(osparc_dir.glob("./*/metadata.y*ml")) runtime_cfgs = set(osparc_dir.glob("./*/runtime.y*ml")) assert len(runtime_cfgs) == len(meta_cfgs) assert {f.parent for f in meta_cfgs} == {f.parent for f in runtime_cfgs} service_names = set(yaml.safe_load(tmp_compose_spec.read_text())["services"].keys()) assert service_names == set({f.parent.name for f in meta_cfgs})
ITISFoundation/osparc-simcore
packages/service-integration/tests/test_command_config.py
test_command_config.py
py
1,231
python
en
code
35
github-code
6
19581541837
import textract import re import os import requests from bs4 import BeautifulSoup import time import random # ===================================== get paper url ===================================== urls = [ 'https://sj.ctu.edu.vn/ql/docgia/nam-2015/loaichuyensan-2/xuatban-782.html', 'https://sj.ctu.edu.vn/ql/docgia/nam-2017/loaichuyensan-2/xuatban-1222/chuyensan-250.html', 'https://sj.ctu.edu.vn/ql/docgia/nam-2011/loaichuyensan-2/xuatban-182.html', 'https://sj.ctu.edu.vn/ql/docgia/nam-2013/loaichuyensan-2/xuatban-442/chuyensan-250.html', 'https://sj.ctu.edu.vn/ql/docgia/nam-2020/loaichuyensan-2/xuatban-2002.html' 'https://sj.ctu.edu.vn/ql/docgia/nam-2018/loaichuyensan-2/xuatban-1402.html', 'https://sj.ctu.edu.vn/ql/docgia/nam-2018/loaichuyensan-2/xuatban-1522.html' ] paper_url = [] for url in urls: page = requests.get(url) data = BeautifulSoup(page.content, 'html.parser') elements = data.select('.div-left.chitiet.grid_05') for e in elements: paper_url.append(str(e.parent.get("href"))) # ===================================== download pdf file ===================================== def download_file(writefile, url): r = requests.get(url, allow_redirects=True) with open(writefile, 'wb') as f: f.write(r.content) pdf_folder = '/content/drive/MyDrive/data/dhct' raw_text_folder = '/content/drive/MyDrive/data/dhct_raw_txt' clean_text_folder = '/content/drive/MyDrive/data/dhct_clean' for i, url in enumerate(paper_url): sleep_time = random.randint(1, 5) print(f'file {i} -- sleep in {sleep_time}s') file = os.path.join(pdf_folder, f'paper_{i}.pdf') download_file(file, url) time.sleep(sleep_time) # ===================================== convert pdf to raw txt ===================================== def convert_pdf_to_raw_txt(pdf_file, txt_file): text = textract.process(pdf_file, language='eng') text = text.decode('utf-8') with open(txt_file, 'w', encoding='utf-8') as f: f.write(text) # convert pdf to raw txt file. Raw mean there are still invalid characters for file in os.listdir(pdf_folder): file_name = file.split('.')[0] + '.txt' pdf_file = os.path.join(pdf_folder, file) txt_file = os.path.join(raw_text_folder, file_name) convert_pdf_to_raw_txt(pdf_file, txt_file) # ===================================== clean raw data ===================================== from util.shared import read_file, write_to_file from .text_preprocessor import TextPreprocessor processor = TextPreprocessor() # clean raw text for file in os.listdir(raw_text_folder): text = read_file(os.path.join(raw_text_folder, file)) text = processor.remove_invalid_unicode(text) text = re.sub('Tap chi Khoa hoc Trương Đai hoc Cân Thơ', 'Tạp chí Khoa học Trường Đại học Cần Thơ', text) text = re.sub('Trương Đai hoc Cân Thơ', 'Trường Đại học Cần Thơ', text) text = re.sub('Trương Đai hoc', 'Trường Đại học', text) text = re.sub('Tap chı Khoa hoc Trươ ng Đai hoc Cân Thơ', 'Tạp chí Khoa học Trường Đại học Cần Thơ', text) write_to_file(os.path.join(clean_text_folder, file), text) print(file)
oldguard69/lvtn
server/core/archive/crawl_data_1.py
crawl_data_1.py
py
3,229
python
en
code
0
github-code
6
2737490777
import wikipedia import pyfiglet word = pyfiglet.figlet_format("KAREN") print(word) while True: engine=input ("Search: ") def my_summary(): summ=wikipedia.summary(engine) return summ val = my_summary() print(val)
Shuklabrother/Search-engine.py
Index.py
Index.py
py
272
python
en
code
0
github-code
6
13015171086
import pickle import torch import argparse from foresight.models import * from foresight.pruners import * from foresight.dataset import * from foresight.weight_initializers import init_net def get_num_classes(args): return 100 if args.dataset == 'cifar100' else 10 if args.dataset == 'cifar10' else 120 def parse_arguments(): parser = argparse.ArgumentParser(description='Zero-cost Metrics for NAS-Bench-201') parser.add_argument('--api_loc', default='data/NAS-Bench-201-v1_0-e61699.pth', type=str, help='path to API') parser.add_argument('--outdir', default='./', type=str, help='output directory') parser.add_argument('--init_w_type', type=str, default='none', help='weight initialization (before pruning) type [none, xavier, kaiming, zero]') parser.add_argument('--init_b_type', type=str, default='none', help='bias initialization (before pruning) type [none, xavier, kaiming, zero]') parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--dataset', type=str, default='cifar10', help='dataset to use [cifar10, cifar100, ImageNet16-120]') parser.add_argument('--gpu', type=int, default=0, help='GPU index to work on') parser.add_argument('--num_data_workers', type=int, default=2, help='number of workers for dataloaders') parser.add_argument('--dataload', type=str, default='random', help='random or grasp supported') parser.add_argument('--dataload_info', type=int, default=1, help='number of batches to use for random dataload or number of samples per class for grasp dataload') parser.add_argument('--seed', type=int, default=42, help='pytorch manual seed') parser.add_argument('--write_freq', type=int, default=1, help='frequency of write to file') parser.add_argument('--start', type=int, default=0, help='start index') parser.add_argument('--end', type=int, default=0, help='end index') parser.add_argument('--noacc', default=False, action='store_true', help='avoid loading NASBench2 api an instead load a pickle file with tuple (index, arch_str)') args = parser.parse_args() args.device = torch.device("cuda:"+str(args.gpu) if torch.cuda.is_available() else "cpu") return args if __name__ == '__main__': args = parse_arguments() if args.noacc: api = pickle.load(open(args.api_loc,'rb')) else: from nas_201_api import NASBench201API as API api = API(args.api_loc) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False train_loader, val_loader = get_cifar_dataloaders(args.batch_size, args.batch_size, args.dataset, args.num_data_workers) cached_res = [] pre='cf' if 'cifar' in args.dataset else 'im' pfn=f'nb2_{pre}{get_num_classes(args)}_seed{args.seed}_dl{args.dataload}_dlinfo{args.dataload_info}_initw{args.init_w_type}_initb{args.init_b_type}.p' op = os.path.join(args.outdir,pfn) args.end = len(api) if args.end == 0 else args.end #loop over nasbench2 archs for i, arch_str in enumerate(api): if i < args.start: continue if i >= args.end: break res = {'i':i, 'arch':arch_str} net = nasbench2.get_model_from_arch_str(arch_str, get_num_classes(args)) net.to(args.device) init_net(net, args.init_w_type, args.init_b_type) arch_str2 = nasbench2.get_arch_str_from_model(net) if arch_str != arch_str2: print(arch_str) print(arch_str2) raise ValueError measures = predictive.find_measures(net, train_loader, (args.dataload, args.dataload_info, get_num_classes(args)), args.device) res['logmeasures']= measures if not args.noacc: info = api.get_more_info(i, 'cifar10-valid' if args.dataset=='cifar10' else args.dataset, iepoch=None, hp='200', is_random=False) trainacc = info['train-accuracy'] valacc = info['valid-accuracy'] testacc = info['test-accuracy'] res['trainacc']=trainacc res['valacc']=valacc res['testacc']=testacc #print(res) cached_res.append(res) #write to file if i % args.write_freq == 0 or i == len(api)-1 or i == 10: print(f'writing {len(cached_res)} results to {op}') pf=open(op, 'ab') for cr in cached_res: pickle.dump(cr, pf) pf.close() cached_res = []
SamsungLabs/zero-cost-nas
nasbench2_pred.py
nasbench2_pred.py
py
4,715
python
en
code
137
github-code
6
70808003389
from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg model = load_model("/home/yash/Desktop/PyImageSearch/checkpoints/emotion1.h5") classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') img_size = 48 validation_dir = "/home/yash/Desktop/PyImageSearch/deep_survelliance_detector/fer2013/validation/" validation_datagen = ImageDataGenerator(rescale=1./255) validation_generator = validation_datagen.flow_from_directory(validation_dir, color_mode="grayscale", target_size=(img_size,img_size), batch_size=32, class_mode="categorical", shuffle=False) #getting class labels class_labels = validation_generator.class_indices class_labels = {v:k for v,k in class_labels.items()} #predicting test_img = "/home/yash/Downloads/happy1.jpg" def get_label(prediction): for key, val in class_labels.items(): if prediction == val: return key return -1 def predict(test_img): img = cv2.imread(test_img,cv2.IMREAD_GRAYSCALE) faces = classifier.detectMultiScale(img,scaleFactor=1.2,minNeighbors=7) face = [] for (x,y,w,h) in faces: roi_gray = img[y:y+h,x:x+w] roi = cv2.resize(roi_gray, (img_size,img_size), interpolation=cv2.INTER_AREA) face.append(roi) num_image = np.array(face, dtype=np.float32) num_image /= 255.0 num_image = num_image.reshape(1,48,48,1) predicted = model.predict(num_image)[0] #returns a list of probabilities of diff classes pred = predicted.argmax() #getting the max value in the list label = get_label(pred) return label pred_class = predict(test_img) original_image = mpimg.imread(test_img) plt.xlabel("Predicted: {0}".format(str(pred_class))) plt.imshow(original_image) plt.show()
theartificialguy/Deep-Learning-Projects
Emotion and Gender Classification/Emotion Classification/recognition.py
recognition.py
py
1,841
python
en
code
2
github-code
6
35154021664
import json import os import cherrypy from jinja2 import Environment, FileSystemLoader # GET CURRENT DIRECTORY from helper import get_redis_connection, get_sorted_list from scrapper import main1 CUR_DIR = os.path.dirname(os.path.abspath(__file__)) env = Environment(loader=FileSystemLoader(CUR_DIR), trim_blocks=True) class Index(object): @cherrypy.expose def index(self): template = env.get_template('templates/home.html') r = get_redis_connection() try: users = json.loads(r.get('ten_users')) except: main1() # If file was not downloaded then download the latest file. users = json.loads(r.get('ten_users')) return template.render(users=users, name='JAYANTH') @cherrypy.expose class UserService(object): @cherrypy.tools.json_out() def POST(self, name): r = get_redis_connection() users = json.loads(r.get('users')) response = {} try: res = [user for user in users if name.lower() in user["name"].lower()] # search by name (substring match) result = get_sorted_list(res, 'dict') response['success'] = True response['users'] = result[:10] response['length'] = res.__len__() return response except: response['success'] = False return response if __name__ == '__main__': conf = { '/': { 'tools.sessions.on': True, 'tools.staticdir.root': os.path.abspath(os.getcwd()) }, '/get_users': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher(), 'tools.response_headers.on': True, }, '/static': { 'tools.staticdir.on': True, 'tools.staticdir.dir': './static' } } webapp = Index() webapp.get_users = UserService() cherrypy.server.socket_host = '0.0.0.0' cherrypy.quickstart(webapp, '/', conf)
jayanthns/bseproect
run.py
run.py
py
1,974
python
en
code
0
github-code
6
130544530
from apirequests.stratz import search_match, get_global_variables, get_items_per_time def inicia_overlay(imagem_path, root, label, hero_id, players, heroes_against): regiao_busca = (580, 492, 62, 25) #posicao = pyautogui.locateOnScreen(imagem_path, region=regiao_busca, grayscale=True) label['text'] = "Aguarde..." posicao = 1 if posicao: response_strataz = search_match(players, hero_id, heroes_against) while response_strataz is None and len(heroes_against) > 0: heroes_against.pop(-1) response_strataz = search_match(players, hero_id, heroes_against) if response_strataz is not None: label['text'] = response_strataz else: label['text'] = get_items_per_time(matchid=get_global_variables()[0]['id'], playerid=get_global_variables()[1]) else: root.after(1, inicia_overlay(imagem_path, root, label, hero_id, players, heroes_against))
caiorodrig0/dotahelper1
overlay/overlayfunctions.py
overlayfunctions.py
py
950
python
en
code
0
github-code
6
38048663522
from constants import API_STACK_BASE_URL import requests import sys class IpStack: def __init__(self, api_token: str, base_url: str): if base_url is None or base_url == '': base_url = API_STACK_BASE_URL self.api_token = api_token self.base_url = base_url def get_ip_location(self, ip_address: str) -> tuple[str,str]: endpoint = f"{self.base_url}/{ip_address}?access_key={self.api_token}" try: response = requests.get(endpoint, timeout=60) json_response = response.json() except requests.exceptions.RequestException as error: print(f"Error: The request could not be resolved") print(f"Provided base url: {self.base_url}") if 'doc' in error.__dict__: print(error.__dict__['doc']) sys.exit(1) if 'error' in json_response: error_code = json_response['error']['code'] error_mesage = json_response['error']['info'] print(f"Error {error_code}: {error_mesage}") sys.exit(1) latitude = json_response['latitude'] longitude = json_response['longitude'] if latitude == 0 and longitude == 0: print("Location not found") sys.exit(1) return latitude, longitude
AlejandroGC-SS/ip_stack_interface
ip_stack.py
ip_stack.py
py
1,318
python
en
code
0
github-code
6
37946645164
import ServerModule class StateMachine(): current_state = None nickname = None def __init__(self, start_state): self.current_state = start_state def login(self, nickname): self.nickname = nickname return ServerModule.login(nickname) def view_profile(self, nickname): ServerModule.show_user_data(nickname) self.choose_stage(['BC','welcome', 'go back'], ['SL', 'sell_item', 'sell item']) def sell_item(self, item_id): ServerModule.show_user_data(nickname) ServerModule.sell_item_by_id(input('Press item id\n')) pass def show_items_list(self): ServerModule.show_items_list() self.choose_stage(['BC','welcome', 'go back'], ['BY', 'buy_item', 'buy item']) def welcome(self): print(f'\nNice to see you {self.nickname}!\nWhat do you wanna to do?\n') self.choose_stage(['LO','leave_or_stay', 'logout'], ['IT', 'show_items_list', 'show items list'], ['IN', 'view_profile', 'show inventory']) def choose_stage(self, stage1, stage2, stage3 = ['', '', '']): print(f"Press '{stage1[0]}' to {stage1[2]}\nPress '{stage2[0]}' to {stage2[2]}") if stage3[0] != '': print(f"Press '{stage3[0]}' to {stage3[2]}\n") stage = input().upper() if stage == stage1[0]: self.current_state = stage1[1] elif stage == stage2[0]: self.current_state = stage2[1] elif stage3[0] != '' and stage == stage3[0]: self.current_state = stage3[1] else: print('Something went wrong. Try again.') self.choose_stage(stage1, stage2, stage3)
8Air/server-client_app
StateMachine.py
StateMachine.py
py
1,678
python
en
code
0
github-code
6
5390312333
class Node: def __init__(self, val): self.val = val self.next = None def deleteNode(root, target): if not root or not target: return "Error" if target.next: print(target.val) target.val = target.next.val target.next = target.next.next if not target.next: while root and root.next: if not root.next.next: root.next = None root = root.next def main(): root = Node(10) point = root for i in range(10): point.next = Node(i) point = point.next target = point deleteNode(root,target) while root: print(root.val) root = root.next if __name__ == "__main__": main()
JarvisFei/leetcode
剑指offer代码/算法和数据操作/面试题18:删除链表的节点.py
面试题18:删除链表的节点.py
py
764
python
en
code
0
github-code
6
41295805453
import pygame from pygame.locals import * import numpy as np from conway import Life class GameOfLife(Life): def __init__(self, width = 1600, height = 1000, cell_size = 5, speed = 10): Life.__init__(self, width // 10, height // 10) self.width = width self.height = height self.cell_size = cell_size # Устанавливаем размер окна self.screen_size = width, height # Создание нового окна self.screen = pygame.display.set_mode(self.screen_size) # Вычисляем количество ячеек по вертикали и горизонтали self.cell_width = self.width // self.cell_size self.cell_height = self.height // self.cell_size # Скорость протекания игры self.speed = speed self.Mboard() def draw_grid(self): for x in range(0, self.width, self.cell_size): pygame.draw.line(self.screen, pygame.Color('black'), (x, 0), (x, self.height)) for y in range(0, self.height, self.cell_size): pygame.draw.line(self.screen, pygame.Color('black'), (0, y), (self.width, y)) def cells(self): for row in range(self.rows): for column in range(self.columns): if self.board[row, column] == 1: pygame.draw.rect(self.screen, (57, 255, 20), ((row * self.cell_size) + 1, (column * self.cell_size) +1, self.cell_size -1, self.cell_size -1)) else: pygame.draw.rect(self.screen, (255, 255, 255), ((row * self.cell_size) + 1, (column * self.cell_size) + 1, self.cell_size -1, self.cell_size -1)) def run(self): pygame.init() clock = pygame.time.Clock() pygame.display.set_caption('Game of Life') self.screen.fill(pygame.Color('white')) running = True while running: for event in pygame.event.get(): if event.type == QUIT: running = False self.draw_grid() self.cells() self.cell() pygame.display.flip() clock.tick(self.speed) pygame.quit() if __name__ == '__main__': game = GameOfLife() game.run()
hatiff/GameLife
Life.py
Life.py
py
2,437
python
en
code
0
github-code
6
29696388258
# Sales Program # Written by Tanner McCarthy # 9/20/21 # Prof Fried packagePrice = 99 discount = 0 #used a while loop so that it will keep running until I am satisfied with the input given to me #by the user #use True so that it will always run while True: #used try and except so that if an error comes up that would crash the program occurs, this keeps #the program running and ask the user again for a valid input try: numPack = int(input("How many packages did you purchase?\nPackages Purchased: ")) print("") #except ValueError is to catch any error thrown so the program doesnt stop except ValueError: print("\nINVALID, Please try again\n") #continue will continue the program and reask the user for a valid input continue #this if statement is to make sure that the user does not enter 0 or any negative numebrs #since it would not make sense to have purchased 0 or a negative amount of packages if numPack < 0 or numPack == 0: print("\nINVALID, Please try again\n") #continue will continue the program and reask the user for a valid input continue #this else is so that when we have a valid input we can break out of this forever running while loop else: #break will simply break us out of the while loop and continue the rest of the program break #made it its own if statement bc it will read "...purchased 1 package..." and not #"...purchased 1 packages...". All of this so that it has correct grammar if numPack == 1: print("Since you purchased", numPack, "package, you are NOT entitled to any discount.") #elif statements for the rest to check what discount they fall into elif numPack <= 9: print("Since you purchased", numPack, "packages, you are NOT entitled to any discount.") elif numPack >= 10 and numPack <= 19: print("Since you purchased", numPack, "packages, you are entitled to a 10% discount.") discount = .10 elif numPack >= 20 and numPack <= 49: print("Since you purchased", numPack, "packages, you are entitled to a 20% discount.") discount = .20 elif numPack >= 50 and numPack <= 99: print("Since you purchased", numPack, "packages, you are entitled to a 30% discount.") discount = .30 #else statement and not a elif bc it is the last to run and I do not need to check anything since #everything I needed to check has already been checked else: print("Since you purchased", numPack, "packages, you are entitled to a 40% discount.") discount = .40 #math formula to apply the discount to get the total price totalAmt = packagePrice * numPack*(1 - discount) #commented this print line out bc the print(f) can format a nonconstant variable #print("The total cost after applying your discount is", totalAmt ) print(f'The total cost after applying your discount is ${totalAmt:,.2f}.\n' ) #end of the first part of the program #Start of the second part of the program #The Fast Freight Shipping Company program #use True so that it will always run while True: #used try and except so that if an error comes up that would crash the program occurs, this keeps #the program running and ask the user again for a valid input try: weight = float(input("Please enter the weight of the package.\nPackage weight: ")) print("") #except ValueError is to catch any error thrown so the program doesnt stop except ValueError: print("\nINVALID, Please try again.\n") #continue will continue the program and reask the user for a valid input continue #this if statement is to make sure that the user does not enter 0 or any negative numebrs #since it would not make sense to have a weight of 0 or a negative weight if weight < 0 or weight == 0: print("\nINVALID, Please try again.\n") #continue will continue the program and reask the user for a valid input continue #this else is so that when we have a valid input we can break out of this forever running while loop else: #break will simply break us out of the while loop and continue the rest of the program break #created the variable finalCost finalCost = float(0) #test to see if weight is less than 2lbs it applies the correct rpp if weight <= 2.00: finalCost = float(weight * 1.50) print(f'The total cost after applying our rate per pound, $1.50, the shipping cost is ${finalCost:,.2f}') #test to see if weight is inbetween 2lbs and 6lbs and applies the correct rpp elif weight > 2.00 and weight <= 6.00: finalCost = float(weight * 3.00) print(f'The total cost after applying our rate per pound, $3.00, the shipping cost is ${finalCost:,.2f}') #test to see if weight is inbetween 2lbs and 6lbs and applies the correct rpp elif weight > 6.00 and weight <= 10.00: finalCost = float(weight * 4.00) print(f'The total cost after applying our rate per pound, $4.00, the shipping cost is ${finalCost:,.2f}') #else statement and not a elif bc it is the last to run and I do not need to check anything since #everything I needed to check has already been checked else: finalCost = float(weight * 4.75) print(f'The total cost after applying our rate per pound, $4.75, the shipping cost is ${finalCost:,.2f}') #end of the second part of the program #end of the entire program
TannerMcCarthy/SalesHW
sales.py
sales.py
py
5,233
python
en
code
0
github-code
6
42591021729
import os import numpy as np import pickle import argparse from implicit.bpr import BayesianPersonalizedRanking from implicit.nearest_neighbours import CosineRecommender from scipy.sparse import csr_matrix from methods import consul, oracle, PrivateRank, PrivateWalk np.random.seed(0) def recall(li, gt): if gt in li: return 1 return 0 def nDCG(li, gt): if gt in li: return 1 / np.log2(li.tolist().index(gt) + 2) return 0 def list_minimum_group(li, sensitive): return np.bincount(sensitive[li], minlength=sensitive.max() + 1).min() parser = argparse.ArgumentParser() parser.add_argument('--data', choices=['100k', '1m', 'home', 'hetrec'], default='100k') parser.add_argument('--prov', choices=['cosine', 'bpr'], default='cosine') parser.add_argument('--sensitive', choices=['popularity', 'old'], default='popularity', help='`old` is valid only for MovieLens') parser.add_argument('--split', type=int, default=1, help='Total number of parallel execusion (only for parallel execusion, set 1 otherwise)') parser.add_argument('--block', type=int, default=0, help='Id of the current execusion (only for parallel excecusion, set 0 otherwise)') args = parser.parse_args() assert(args.sensitive == 'popularity' or args.data in ['100k', '1m']) assert(0 <= args.block and args.block < args.split) # # Load Data # if args.data == '100k': n = 943 m = 1682 filename = 'ml-100k/u.data' delimiter = '\t' elif args.data == '1m': n = 6040 m = 3952 filename = 'ml-1m/ratings.dat' delimiter = '::' K = 10 if args.data == '100k' or args.data == '1m': raw_R = np.zeros((n, m)) history = [[] for i in range(n)] with open(filename) as f: for r in f: user, movie, r, t = map(int, r.split(delimiter)) user -= 1 movie -= 1 raw_R[user, movie] = r history[user].append((t, movie)) elif args.data == 'hetrec': raw_R = np.log2(np.load('hetrec.npy') + 1) n, m = raw_R.shape history = [[] for i in range(n)] for i in range(n): for j in np.nonzero(raw_R[i] > 0)[0]: history[i].append((np.random.rand(), j)) elif args.data == 'home': raw_R = np.load('Home_and_Kitchen.npy') n, m = raw_R.shape with open('Home_and_Kitchen_history.pickle', 'br') as f: history = pickle.load(f) if args.sensitive == 'popularity': mask = raw_R > 0 if args.data == '100k': sensitive = mask.sum(0) < 50 elif args.data == '1m': sensitive = mask.sum(0) < 300 elif args.data == 'hetrec': sensitive = mask.sum(0) < 50 elif args.data == 'home': sensitive = mask.sum(0) < 50 sensitive = sensitive.astype('int') elif args.sensitive == 'old': sensitive = np.zeros(m, dtype='int') if args.data == '100k': filename = 'ml-100k/u.item' delimiter = '|' elif args.data == '1m': filename = 'ml-1m/movies.dat' delimiter = '::' with open(filename, encoding='utf8', errors='ignore') as f: for r in f: li = r.strip().split(delimiter) if '(19' in li[1]: year = 1900 + int(li[1].split('(19')[1].split(')')[0]) elif '(20' in li[1]: year = 2000 + int(li[1].split('(20')[1].split(')')[0]) sensitive[int(li[0]) - 1] = year < 1990 # # Data Loaded # damping_factor = 0.01 tau = 5 provider_recall = 0 provider_nDCG = 0 provider_minimum = 0 oracle_recall = 0 oracle_nDCG = 0 oracle_minimum = 0 PR_recall = 0 PR_nDCG = 0 PR_minimum = 0 PW_recall = 0 PW_nDCG = 0 PW_minimum = 0 random_recall = 0 random_nDCG = 0 random_minimum = 0 consul_recall = 0 consul_nDCG = 0 consul_minimum = 0 PW_cnt = np.array(0) consul_cnt = np.array(0) start_index = int(n * args.block / args.split) end_index = int(n * (args.block + 1) / args.split) for i in range(start_index, end_index): gt = sorted(history[i])[-1][1] source = sorted(history[i])[-2][1] used = [y for x, y in history[i] if y != gt] R = raw_R.copy() R[i, gt] = 0 mask = R > 0 if args.prov == 'bpr': model = BayesianPersonalizedRanking(num_threads=1, random_state=0) elif args.prov == 'cosine': model = CosineRecommender() sR = csr_matrix(mask.T) model.fit(sR, show_progress=False) if args.prov == 'bpr': score = model.item_factors @ model.item_factors.T else: score = np.zeros((m, m)) for item in range(m): for j, v in model.similar_items(item, m): score[item, j] = v score_remove = score.copy() score_remove[:, used] -= score.max() + 1 score_remove -= np.eye(m) * (score.max() + 1) list_provider = np.argsort(-score_remove[source])[:K] provider_recall += recall(list_provider, gt) provider_nDCG += nDCG(list_provider, gt) provider_minimum += list_minimum_group(list_provider, sensitive) oracle_list = oracle(score_remove[source], sensitive, tau, used, K) oracle_recall += recall(oracle_list, gt) oracle_nDCG += nDCG(oracle_list, gt) oracle_minimum += list_minimum_group(oracle_list, sensitive) # Construct the recsys graph A = np.zeros((m, m)) rank = np.argsort(-score_remove, 1)[:, :K] weight = 1 / np.log2(np.arange(K) + 2) weight /= weight.sum() A[np.arange(m).repeat(K), rank.reshape(-1)] += weight.repeat(m).reshape(K, m).T.reshape(-1) # Consul consul_list = consul(rank, sensitive, tau, source, used, K, access_conuter=consul_cnt) consul_recall += recall(consul_list, gt) consul_nDCG += nDCG(consul_list, gt) consul_minimum += list_minimum_group(consul_list, sensitive) # PrivateRank PR_list = PrivateRank(A, sensitive, tau, source, used, K, damping_factor) PR_recall += recall(PR_list, gt) PR_nDCG += nDCG(PR_list, gt) PR_minimum += list_minimum_group(PR_list, sensitive) # PrivateWalk PW_list = PrivateWalk(rank, sensitive, tau, source, used, K, access_conuter=PW_cnt) PW_recall += recall(PW_list, gt) PW_nDCG += nDCG(PW_list, gt) PW_minimum += list_minimum_group(PW_list, sensitive) # Random np.random.seed(0) random_score = np.random.rand(m) random_list = oracle(random_score, sensitive, tau, used, K) random_recall += recall(random_list, gt) random_nDCG += nDCG(random_list, gt) random_minimum += list_minimum_group(random_list, sensitive) print('#') print('# User {} - {}'.format(start_index, i)) print('#') print('-' * 30) print('provider recall {:.2f}'.format(provider_recall)) print('oracle recall ', oracle_recall) print('consul recall ', consul_recall) print('PrivateRank recall', PR_recall) print('PrivateWalk recall', PW_recall) print('random recall ', random_recall) print('-' * 30) print('provider nDCG {:.2f}'.format(provider_nDCG)) print('oracle nDCG ', oracle_nDCG) print('consul nDCG ', consul_nDCG) print('PrivateRank nDCG', PR_nDCG) print('PrivateWalk nDCG', PW_nDCG) print('random nDCG ', random_nDCG) print('-' * 30) print('provider least count {:.2f}'.format(provider_minimum)) print('oracle least count ', oracle_minimum) print('consul least count ', consul_minimum) print('PrivateRank least count', PR_minimum) print('PrivateWalk least count', PW_minimum) print('random least count ', random_minimum) print('-' * 30) print('consul access ', consul_cnt) print('PrivateWalk access', PW_cnt) print('-' * 30) if not os.path.exists('out'): os.mkdir('out') with open('out/{}-{}-{}-{}.txt'.format(args.data, args.prov, args.sensitive, args.block), 'w') as f: print(provider_recall, file=f) print(provider_nDCG, file=f) print(provider_minimum, file=f) print(oracle_recall, file=f) print(oracle_nDCG, file=f) print(oracle_minimum, file=f) print(consul_recall, file=f) print(consul_nDCG, file=f) print(consul_minimum, file=f) print(consul_cnt, file=f) print(PR_recall, file=f) print(PR_nDCG, file=f) print(PR_minimum, file=f) print(PW_recall, file=f) print(PW_nDCG, file=f) print(PW_minimum, file=f) print(PW_cnt, file=f) print(random_recall, file=f) print(random_nDCG, file=f) print(random_minimum, file=f)
joisino/consul
evaluate.py
evaluate.py
py
8,347
python
en
code
5
github-code
6