seq_id
stringlengths 7
11
| text
stringlengths 156
1.7M
| repo_name
stringlengths 7
125
| sub_path
stringlengths 4
132
| file_name
stringlengths 4
77
| file_ext
stringclasses 6
values | file_size_in_byte
int64 156
1.7M
| program_lang
stringclasses 1
value | lang
stringclasses 38
values | doc_type
stringclasses 1
value | stars
int64 0
24.2k
⌀ | dataset
stringclasses 1
value | pt
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
26693866815
|
import torch
import logging
from tqdm import tqdm
from schnetpack.src.schnetpack import properties
__all__ = ["TorchStructureLBFGS"]
class TorchStructureLBFGS(torch.optim.LBFGS):
"""
LBFGS optimizer that allows for relaxation of multiple structures in parallel. The approximation of the inverse
hessian is shared across the entire batch (all structures). Hence, it is recommended to use this optimizer
preferably for batches of similar structures/compositions. In other cases, please utilize the ASELBFGS optimizer,
which is particularly constructed for batches of different structures/compositions.
This optimizer is an extension/adaptation of the torch.optim.LBFGS optimizer particularly designed for relaxation
of atomic structures. In addition to the inherited features, this optimizer allows for fixing the positions of a
set of atoms during the relaxation and a method to run the optimizer. Latter allows for setting a convergence
criterium. Furthermore, we implemented a logging method that prints out the largest force in the system after each
optimization iteration.
"""
def __init__(
self,
model,
model_inputs,
fixed_atoms_mask,
maxstep=None,
logging_function=None,
lr: float = 1.0,
energy_key: str = "energy",
position_key: str = properties.R,
):
"""
Args:
model (schnetpack.model.AtomisticModel): ml force field model
model_inputs: input batch containing all structures
fixed_atoms_mask (list(bool)): list of booleans indicating to atoms with positions fixed in space.
maxstep (float): how far is a single atom allowed to move. (default: None)
logging_function: function that logs the structure of the systems during the relaxation
lr (float): learning rate (default: 1)
energy_key (str): name of energies in model (default="energy")
position_key (str): name of atomic positions in model (default="_positions")
"""
self.model = model
self.energy_key = energy_key
self.position_key = position_key
self.fixed_atoms_mask = fixed_atoms_mask
self.model_inputs = model_inputs
self.logging_function = logging_function
self.fmax = None
self.maxstep = maxstep
R = self.model_inputs[self.position_key]
R.requires_grad = True
super().__init__(params=[R], lr=lr)
def _gather_flat_grad(self):
"""override this function to allow for keeping atoms fixed during the relaxation"""
views = []
for p in self._params:
if p.grad is None:
view = p.new(p.numel()).zero_()
elif p.grad.is_sparse:
view = p.grad.to_dense().view(-1)
else:
view = p.grad.view(-1)
views.append(view)
flat_grad = torch.cat(views, 0)
if self.fixed_atoms_mask is not None:
flat_grad[self.fixed_atoms_mask] = 0.0
self.flat_grad = flat_grad
return flat_grad
def _add_grad(self, step_size, update):
offset = 0
if self.maxstep is not None:
step_size = self.determine_step_size(step_size, update)
for p in self._params:
numel = p.numel()
# view as to avoid deprecated pointwise semantics
p.add_(update[offset : offset + numel].view_as(p), alpha=step_size)
offset += numel
assert offset == self._numel()
def determine_step_size(self, step_size, update):
"""Determine step to take according to maxstep
Normalize all steps as the largest step. This way
we still move along the eigendirection.
"""
reshaped_update = update.view(-1, 3)
steplengths = ((step_size * reshaped_update) ** 2).sum(1) ** 0.5
longest_step = torch.max(steplengths)
# check if any step in entire batch is greater than maxstep
if longest_step >= self.maxstep:
# rescale all steps
logging.info("normalized integration step")
step_size *= self.maxstep / longest_step
return step_size
def closure(self):
results = self.model(self.model_inputs)
self.zero_grad()
loss = results[self.energy_key].sum()
loss.backward()
return loss
def log(self, forces=None):
"""log relaxation results such as max force in the system"""
if forces is None:
forces = self.flat_grad.view(-1, 3)
if not self.converged():
logging.info("NOT CONVERGED")
logging.info(
"max. atomic force: {}".format(torch.sqrt((forces**2).sum(axis=1).max()))
)
def converged(self, forces=None):
"""Did the optimization converge?"""
if forces is None:
forces = self.flat_grad.view(-1, 3)
return (forces**2).sum(axis=1).max() < self.fmax**2
def run(self, fmax, max_opt_steps):
"""run relaxation"""
self.fmax = fmax
# optimization
for opt_step in tqdm(range(max_opt_steps)):
self.step(self.closure)
# log structure
if self.logging_function is not None:
self.logging_function(opt_step)
# stop optimization if max force is smaller than threshold
if self.converged():
break
self.log()
def get_relaxed_structure(self):
return self.model_inputs[self.position_key]
|
maltefranke/solubility_prediction
|
schnetpack/src/schnetpack/interfaces/batchwise_optimizer.py
|
batchwise_optimizer.py
|
py
| 5,582 |
python
|
en
|
code
| 1 |
github-code
|
6
|
40411416951
|
#!/usr/bin/env python3
"""
Name: vpc_consistency.py
Description: NXAPI: display inconsistent vpc parameters
Example output when vpc is consistent:
% ./vpc_consistency.py --vault hashicorp --devices cvd_leaf_2 --interface Po11,Po12
192.168.11.103 cvd-1312-leaf all 22 global vpc params are consistent
192.168.11.103 cvd-1312-leaf all 7 vni vpc params are consistent
192.168.11.103 cvd-1312-leaf all 12 vlans vpc params are consistent
192.168.11.103 cvd-1312-leaf Po11 all 23 interface vpc port-channel params are consistent
192.168.11.103 cvd-1312-leaf Po12 all 23 interface vpc port-channel params are consistent
%
Example output when vpc po allowed-vlans are mismatched:
% ./vpc_consistency.py --vault hashicorp --devices cvd_leaf_2 --interface Po11,Po12
192.168.11.103 cvd-1312-leaf all 22 global vpc params are consistent
192.168.11.103 cvd-1312-leaf all 7 vni vpc params are consistent
192.168.11.103 cvd-1312-leaf all 12 vlans vpc params are consistent
192.168.11.103 cvd-1312-leaf Po11 Allowed VLANs
vpc-param-type: -
vpc-param-local-val: 1111-1112
vpc-param-peer-val: 1111
192.168.11.103 cvd-1312-leaf Po11 Local suspended VLANs
vpc-param-type: -
vpc-param-local-val: 1112
vpc-param-peer-val: -
192.168.11.103 cvd-1312-leaf Po12 all 23 interface vpc port-channel params are consistent
%
"""
our_version = 109
script_name = "vpc_consistency"
# standard libraries
import argparse
from concurrent.futures import ThreadPoolExecutor
# local libraries
from nxapi_netbox.args.args_cookie import ArgsCookie
from nxapi_netbox.args.args_nxapi_tools import ArgsNxapiTools
from nxapi_netbox.general.log import get_logger
from nxapi_netbox.netbox.netbox_session import netbox, get_device_mgmt_ip
from nxapi_netbox.vault.vault import get_vault
from nxapi_netbox.nxapi.nxapi_vpc_consistency import (
NxapiVpcConsistencyGlobal,
NxapiVpcConsistencyVni,
NxapiVpcConsistencyVlans,
NxapiVpcConsistencyInterface,
)
def get_parser():
help_interfaces = "a comma-separated list (no spaces) of port-channel interfaces to test for vpc consistency"
help_mismatched_labels = "display labels whose number of comma-separated entries differ from the number of values they refer to"
ex_interfaces = "Example: --interfaces Po1,Po10"
ex_mismatched_labels = "Example: --mismatched_labels"
parser = argparse.ArgumentParser(
description="DESCRIPTION: NXAPI: display inconsistent vpc parameters",
parents=[ArgsCookie, ArgsNxapiTools],
)
default = parser.add_argument_group(title="DEFAULT SCRIPT ARGS")
mandatory = parser.add_argument_group(title="MANDATORY SCRIPT ARGS")
parser.add_argument(
"--version", action="version", version="{} v{}".format("%(prog)s", our_version)
)
default.add_argument(
"--mismatched_labels",
dest="mismatched_labels",
required=False,
action="store_true",
default=False,
help="{} {}".format(help_mismatched_labels, ex_mismatched_labels),
)
default.add_argument(
"--interfaces",
dest="interfaces",
required=False,
default=None,
help="{} {}".format(help_interfaces, ex_interfaces),
)
return parser.parse_args()
def get_device_list():
try:
return cfg.devices.split(",")
except:
log.error(
"exiting. Cannot parse --devices {}. Example usage: --devices leaf_1,spine_2,leaf_2".format(
cfg.devices
)
)
exit(1)
def print_output(futures):
for future in futures:
output = future.result()
if output == None:
continue
for line in output:
print(line)
def show_inconsistent_params(ip, nx, interface=None):
lines = list()
if nx.error_reason != None:
log.error("{} {} error: {}".format(tb.sid, nx.hostname, nx.error_reason))
return lines
inconsistent_items = nx.inconsistent_params
if len(inconsistent_items) == 0:
if interface == None:
lines.append(
"{:<15} {:<20} all {} {} vpc params are consistent".format(
ip, nx.hostname, len(nx.info), nx.param_type
)
)
else:
lines.append(
"{:<15} {:<20} {} all {} {} vpc port-channel params are consistent".format(
ip, nx.hostname, interface, len(nx.info), nx.param_type
)
)
else:
for item in nx.inconsistent_params:
if interface == None:
lines.append(
"{:<15} {:<20} {}".format(ip, nx.hostname, item["vpc-param-name"])
)
else:
lines.append(
"{:<15} {:<20} {} {}".format(
ip, nx.hostname, interface, item["vpc-param-name"]
)
)
for key in item:
if key == "vpc-param-name":
continue
lines.append(" {}: {}".format(key, item[key]))
return lines
def show_mismatched_labels(ip, nx):
lines = list()
if cfg.mismatched_labels == False:
return lines
if len(nx.mismatched_info) > 0:
for label in nx.mismatched_info:
lines.append(
"{:<15} {:<20} vpc-param-name {}".format(ip, nx.hostname, label)
)
lines.append(" labels {}".format(nx.mismatched_info[label]["names"]))
lines.append(" values {}".format(nx.mismatched_info[label]["params"]))
return lines
def worker(device, vault):
ip = get_device_mgmt_ip(nb, device)
lines = list()
for class_name in [
NxapiVpcConsistencyGlobal,
NxapiVpcConsistencyVni,
NxapiVpcConsistencyVlans,
]:
nx = class_name(vault.nxos_username, vault.nxos_password, ip, log)
nx.nxapi_init(cfg)
nx.refresh()
if nx.error_reason != None:
lines.append("{} {} error: {}".format(ip, nx.hostname, nx.error_reason))
return lines
lines += show_inconsistent_params(ip, nx)
lines += show_mismatched_labels(ip, nx)
if cfg.interfaces == None:
return lines
for interface in cfg.interfaces.split(","):
nx = NxapiVpcConsistencyInterface(
vault.nxos_username, vault.nxos_password, ip, log
)
nx.nxapi_init(cfg)
nx.interface = interface
nx.refresh()
lines += show_inconsistent_params(ip, nx, interface)
return lines
cfg = get_parser()
log = get_logger(script_name, cfg.loglevel, "DEBUG")
vault = get_vault(cfg.vault)
vault.fetch_data()
nb = netbox(vault)
devices = get_device_list()
executor = ThreadPoolExecutor(max_workers=len(devices))
futures = list()
for device in devices:
args = [device, vault]
futures.append(executor.submit(worker, *args))
print_output(futures)
|
allenrobel/nxapi-netbox
|
scripts/vpc_consistency.py
|
vpc_consistency.py
|
py
| 6,995 |
python
|
en
|
code
| 0 |
github-code
|
6
|
18699671015
|
from django.urls import path
from posting.views import (
PostingView,
CategoryView,
PostingLikeView,
PostingScrapView
)
urlpatterns = [
path('', PostingView.as_view()),
path('/category', CategoryView.as_view()),
path('/like', PostingLikeView.as_view()),
path('/scrap', PostingScrapView.as_view())
]
|
wecode-bootcamp-korea/17-1st-SweetHome-backend
|
posting/urls.py
|
urls.py
|
py
| 336 |
python
|
en
|
code
| 3 |
github-code
|
6
|
33222746920
|
from tqdm import tqdm
# Define constant
SHORT = 15
MIDDLE = 30
LARGE = 50
def __clear__(times: int = 11, length: int = 123):
"""
Clear the previous table toward the terminal
"""
print()
for i in range(times + 1):
if i != times:
print("\033[F" + ' ' * length, end='')
else:
print("\033[F", end = '')
print("\r")
def __getCutLine__(length: int = 50, width_cell: int = 10, equal_symbol: bool = True) -> str:
"""
Obtain the cut line
Arg: length - The maximun length of the terminal
width_cell - The width of the table cell
equal_symbol - If use '=' as the symbol or not
Ret: The custom cut line string
"""
cut_string = "+"
acc_length = 0
while True:
if acc_length == 0:
if equal_symbol:
cut_string = cut_string + '=' * (width_cell) + '+'
else:
cut_string = cut_string + '-' * (width_cell) + '+'
acc_length += width_cell
else:
if equal_symbol:
cut_string = cut_string + '=' * (width_cell + 2) + '+'
else:
cut_string = cut_string + '-' * (width_cell + 2) + '+'
acc_length += (width_cell + 2)
if acc_length >= length - width_cell:
break
return cut_string
class tqdm_table(tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_length = 100
self.prev_lines = -1
def set_table_setting(self, max_length: int = 100):
"""
Assign the setting of this object
Arg: max_length - The maximun length of the terminal
"""
self.max_length = max_length
def set_table_info(self, mapping: dict):
"""
Set the table information
Arg: mapping - The key-value pair you want to form the table
"""
key_string = ""
val_string = ""
table_string = []
key_list = sorted(mapping.keys())
# Clear the previous table information toward stdout
if self.prev_lines > 0:
__clear__(self.prev_lines, self.max_length)
# Determine the width of cell
if max([max(len(str(val)), len(key)) for key, val in mapping.items()]) <= 15:
width_length = SHORT
elif max([max(len(str(val)), len(key)) for key, val in mapping.items()]) <= 30:
width_length = MIDDLE
else:
width_length = LARGE
# Collect the lines of keys and values
for key in key_list:
val = mapping[key]
single_max_length = max(len(key), len(str(val)))
if len(key_string) + single_max_length + 2 < self.max_length:
if width_length == SHORT:
key_string += '{:>15} | '.format(key)
val_string += '{:>15} | '.format(val)
elif width_length == MIDDLE:
key_string += '{:>30} | '.format(key)
val_string += '{:>30} | '.format(val)
else:
key_string += '{:>50} | '.format(key)
val_string += '{:>50} | '.format(val)
else:
table_string.append(key_string)
table_string.append(val_string)
if width_length == SHORT:
key_string = '{:>15} | '.format(key)
val_string = '{:>15} | '.format(val)
elif width_length == MIDDLE:
key_string = '{:>30} | '.format(key)
val_string = '{:>30} | '.format(val)
else:
key_string = '{:>50} | '.format(key)
val_string = '{:>50} | '.format(val)
# Accumulate the rest information if there are some information rest
if len(key_string) > 0 or len(val_string) > 0:
table_string.append(key_string)
table_string.append(val_string)
# Transfer the containing of queue into string
cut_string_small = __getCutLine__(length=max([len(_) for _ in table_string]), width_cell=width_length, equal_symbol=False)
cut_string_large = __getCutLine__(length=max([len(_) for _ in table_string]), width_cell=width_length, equal_symbol=True)
print_string = cut_string_large
for i in range(len(table_string) // 2):
print_string = print_string + '\n' + table_string[2*i] + '\n' + cut_string_small + '\n' + table_string[2*i+1] + '\n' + cut_string_large
self.prev_lines = 2 * (len(table_string) + 1)
# Write into tqdm
self.write(print_string)
|
SunnerLi/tqdm_table
|
tqdm_table/__init__.py
|
__init__.py
|
py
| 4,733 |
python
|
en
|
code
| 0 |
github-code
|
6
|
41045436456
|
'''
Exercise 3: Write a program to prompt for a score between 0.0 and
1.0. If the score is out of range, print an error message. If the score is
between 0.0 and 1.0, print a grade using the following table
>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 F
'''
# Function to calculate the score.
def cal_grade(score):
if score >= 0.9:
print("Grade: A")
elif score >= 0.8:
print("Grade: B")
elif score >= 0.7:
print("Grade: C")
elif score >= 0.6:
print("Grade: D")
else:
print("Grade: F")
try:
score = float(input("Enter your score: "))
cal_grade(score)
except:
print("Please input a number between 0.0 and 1.0")
|
simonSlamka/UCL-ITtech
|
programming/SimonStorm/ch3_ex3.py
|
ch3_ex3.py
|
py
| 682 |
python
|
en
|
code
| 2 |
github-code
|
6
|
41058141376
|
from copy import copy
class Poly:
def __init__(self,*terms):
# __str__ uses the name self.terms for the dictionary of terms
# So __init__ should build this dictionary from terms
self.terms = {}
if terms==None:
self.terms={0:0}
for term in terms:
assert type(term[0]) in (int,float)
assert type(term[1])==int and term[1]>=0
if term[1] in self.terms:
if term[0]!=0:
raise AssertionError
if term[0]!=0:
self.terms[term[1]]=term[0]
# Fill in the rest of this method, using *terms to intialize self.terms
# I have written str(...) because it is used in the bsc.txt file and
# it is a bit subtle to get correct. Notice that it assumes that
# every Poly object stores a dict whose keys are powers and whose
# associated values are coefficients. This function does not depend
# on any other method in this class being written correctly.
def __str__(self):
def term(c,p,var):
return (str(c) if p == 0 or c != 1 else '') +\
('' if p == 0 else var+('^'+str(p) if p != 1 else ''))
if len(self.terms) == 0:
return '0'
else:
return ' + '.join([term(c,p,'x') for p,c in sorted(self.terms.items(),reverse=True)]).replace('+ -','- ')
def __repr__(self):
results=[]
for k,v in self.terms.items():
results.append(str((v,k)))
return 'Poly({})'.format(','.join(results))
def __len__(self):
return max(self.terms) if len(self.terms)>0 else 0
def __call__(self,arg):
results=0
for k,v in self.terms.items():
results+=v*(arg)**k
return results
def __iter__(self):
for k in sorted(self.terms,reverse=True):
yield(self.terms[k],k)
def __getitem__(self,index):
if type(index)==int and index>=0:
return self.terms[index] if index in self.terms else 0
raise TypeError
def __setitem__(self,index,value):
if type(index)==int and index>=0:
if value==0:
if index in self.terms:
del self.terms[index]
else:
pass
else:
self.terms[index]=value
else:
raise TypeError
def __delitem__(self,index):
if type(index)==int and index>=0:
if index in self.terms:
del self.terms[index]
else:
raise TypeError
def _add_term(self,c,p):
if type(p)==int and p>=0 and type(c) in (int,float):
if p not in self.terms and c!=0:
self.terms[p]=c
else:
if p in self.terms:
if self.terms[p]+c!=0:
self.terms[p]=self.terms[p]+c
else:
del self.terms[p]
else:
raise TypeError
def __add__(self,right):
values=[[v,k] for k,v in self.terms.items()]
if type(right) in (int,float):
for value in values:
if value[1]==0:
if value[0]+right!=0:
value[0]=value[0]+right
else:
values.remove(value)
elif type(right)==Poly:
for k,v in right.terms.items():
if k in [value[1] for value in values]:
for value in values:
if value[1]==k:
if value[0]+right.terms[k]!=0:
value[0]=value[0]+right.terms[k]
else:
values.remove(value)
else:
values.append((v,k))
else:
raise TypeError
results=[str(value) for value in values]
return eval('Poly({})'.format(','.join(results)))
def __radd__(self,left):
values=[[v,k] for k,v in self.terms.items()]
if type(left) in (int,float):
for value in values:
if value[1]==0:
if value[0]+left!=0:
value[0]=value[0]+left
else:
values.remove(value)
elif type(left)==Poly:
for k,v in left.terms.items():
if k in [value[1] for value in values]:
for value in values:
if value[1]==k:
if value[0]+left.terms[k]!=0:
value[0]=value[0]+left.terms[k]
else:
values.remove(value)
else:
values.append((v,k))
else:
raise TypeError
results=[str(value) for value in values]
return eval('Poly({})'.format(','.join(results)))
def __mul__(self,right):
values=[[v,k] for k,v in self.terms.items()]
if type(right) in (int,float):
if right==0:
return 0
else:
for value in values:
value[0]=right*value[0]
results=[str(value) for value in values]
if type(right)==Poly:
temp=[]
for k,v in right.terms.items():
for value in values:
if k+value[1] in [t[1] for t in temp]:
for t in temp:
if t[1]==k+value[1]:
temp.append((v*value[0]+t[0],t[1]))
temp.remove(t)
else:
temp.append((v*value[0],k+value[1]))
results=[str(i) for i in temp]
return eval('Poly({})'.format(','.join(results)))
def __rmul__(self,left):
values=[[v,k] for k,v in self.terms.items()]
if type(left) in (int,float):
if left==0:
return 0
for value in values:
value[0]=left*value[0]
results=[str(value) for value in values]
return eval('Poly({})'.format(','.join(results)))
def __eq__(self,right):
if type(right) in (int,float):
if len(self.terms)==1 and 0 in self.terms:
return self.terms[0]==right
else:
return False
elif type(right)==Poly:
results=True
for k,v in right.terms.items():
if k not in self.terms and v!=0:
return False
results=results*(self.terms[k]==right.terms[k])
return results
raise TypeError
if __name__ == '__main__':
# Some simple tests; you can comment them out and/or add your own before
# the driver is called.
# print('Start simple tests')
# p = Poly((3,2),(-2,1), (4,0))
# print(' For Polynomial: 3x^2 - 2x + 4')
# print(' str(p):',p)
# print(' repr(p):',repr(p))
# print(' len(p):',len(p))
# print(' p(2):',p(2))
# print(' list collecting iterator results:',[t for t in p])
# print(' p+p:',p+p)
# print(' p+2:',p+2)
# print(' p*p:',p*p)
# print(' p*2:',p*2)
# print('End simple tests\n')
# p[2] = 0
# print(str(p))
# p[10] = 0
# p1 = Poly((1,1),(2,0))
# p2 = Poly((3,2),(2,1),(1,0))
# p3 = Poly((3,5),(-2,2),(-4,0))
# print(p1+p2)
# print(p2+p3)
# print(p1+p3)
# p3*2
import driver
#driver.default_show_exception=True
#driver.default_show_exception_message=True
#driver.default_show_traceback=True
driver.driver()
|
solomc1/python
|
ics 33/solutions/ile2 solutions/Lab 1/JiangYu/poly.py
|
poly.py
|
py
| 8,201 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70285709629
|
from __future__ import absolute_import
import os
from setuptools import setup, find_packages
# Utility function to read the README file.
# Used for the long_description. It's nice, because now 1) we have a top level
# README file and 2) it's easier to type in the README file than to put a raw
# string in below ...
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
setup(
name='pyswf',
version='1.5.4',
description='SWF Parsing Utilities',
long_description=read('README.md'),
keywords = "swf parser parsing decompile utilities",
author='Tim Knip',
author_email='[email protected]',
url='https://github.com/timknip/pyswf',
install_requires = ["lxml>=3.3.0", "Pillow>=2.3.0", "pylzma>=0.4.6", "six"],
packages=find_packages(),
license = "MIT",
classifiers=[
"Development Status :: 4 - Beta",
"Topic :: Utilities",
"License :: OSI Approved :: MIT License",
],
)
|
timknip/pyswf
|
setup.py
|
setup.py
|
py
| 982 |
python
|
en
|
code
| 154 |
github-code
|
6
|
32100438574
|
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import load_wine
from E2 import sammon
from E1 import bkmeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
sammons_maxiter = 100
e = 0.001
A = 0.3
# Figure 1
fig1, axs1 = plt.subplots(3, 3, figsize=(10, 10))
print(f"Max iter set to {sammons_maxiter}. It might take a total of {sammons_maxiter*3} to run the code. Each iteration takes approx 0.5-2 seconds.")
for i in range(3):
if i == 0:
datasetX, datasetLabels = load_breast_cancer().data, load_breast_cancer().target
dataset_name = 'Breast Cancer Dataset'
elif i == 1:
datasetX, datasetLabels = load_wine().data, load_wine().target
dataset_name = 'Wine Dataset'
elif i == 2:
diabetesData = np.genfromtxt('csv_result-diabetes.csv', delimiter=',', skip_header=1)
datasetX, datasetLabels = diabetesData[:, :-1], diabetesData[:, -1]
dataset_name = 'Diabetes Dataset'
for j in range(3):
if j == 0:
print(f"Computing sammon mapping for {dataset_name} ({i+1}/3)")
result = sammon(datasetX, sammons_maxiter, e, A)
plot_title = 'Sammon Mapping'
elif j == 1:
pca = PCA(n_components=2)
result = pca.fit_transform(datasetX)
plot_title = 'PCA'
elif j == 2:
tsne = TSNE(n_components=2)
result = tsne.fit_transform(datasetX)
plot_title = 't-SNE'
axs1[i, j].scatter(result[:, 0], result[:, 1], c=datasetLabels, s=5)
axs1[i, j].set_title(f'{dataset_name} - {plot_title}')
plt.tight_layout()
fig, axes = plt.subplots(3, 3, figsize=(10, 10))
for i in range(3):
if i == 0:
datasetX, datasetLabels = load_breast_cancer().data, load_breast_cancer().target
dataset_name = 'Breast Cancer Dataset'
elif i == 1:
datasetX, datasetLabels = load_wine().data, load_wine().target
dataset_name = 'Wine Dataset'
elif i == 2:
diabetesData = np.genfromtxt('csv_result-diabetes.csv', delimiter=',', skip_header=1)
datasetX, datasetLabels = diabetesData[:, :-1], diabetesData[:, -1]
dataset_name = 'Diabetes Dataset'
pca = PCA(n_components=2)
X_pca = pca.fit_transform(datasetX)
for j in range(3):
ax = axes[i, j]
if j == 0:
bkmeans_result = bkmeans(X_pca, 2, 30)
c = bkmeans_result
algorithm_name = 'bk means'
elif j == 1:
kmeans_result = KMeans(n_init = 10, n_clusters=2, random_state=0).fit_predict(X_pca)
c = kmeans_result
algorithm_name = 'classic k means'
elif j == 2:
hierarchical_result = linkage(X_pca, method='ward')
dendro = dendrogram(hierarchical_result, ax=ax)
c = datasetLabels
algorithm_name = 'hierarchical'
ax.scatter(X_pca[:, 0], X_pca[:, 1], c=c)
ax.set_title(f'{dataset_name} - {algorithm_name}')
plt.tight_layout()
plt.show()
|
Knoz9/ML-A3-A4
|
km222ug_A4/E3.py
|
E3.py
|
py
| 3,231 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26831922928
|
"""
This class is used to cause object-like behavior in non-OOP libraries or enhance polymorphism in objects.
It does so by saving any repetitive parameter in its attributes and passing it into any function that can accept them.
For a demo, see example.py
@author Ben Hsieh
"""
import inspect
class ClassEmulator:
def __init__(self, target_class, **kwargs):
"""
Creates a target_class emulator and stores any function parameter as self attributes.
Parameters
----------
target_class: class or object
The target to emulate. Can be anything with its own library of functions.
**kwargs: any key=value
Any additional parameters to store and use in target_class's functions.
"""
self.__target_class = target_class
self.__reference_objects = []
self.save_params(**kwargs)
def save_params(self, **kwargs):
"""
Stores any parameter you may want to pass into functions as class attributes.
Parameters
----------
**kwargs: any key=value
Any parameter to store and use in target_class's functions.
"""
for key, value in kwargs.items():
self.__setattr__(key, value)
def save_reference_object(
self, reference_object, copy_attributes: bool = False
) -> None:
"""
Saves an object from which we can look up attributes.
Newer references' attributes will overwrite older references' attributes.
Self attributes will overwrite any reference object attributes.
If copy_attributes, the reference object's attributes are copied to self attributes, and the reference object is then discarded.
"""
if copy_attributes:
reference_object_attributes = reference_object.__dict__
self.save_params(**reference_object_attributes)
else:
self.__reference_objects.append(reference_object)
def __getattr__(self, function_name):
"""
Runs the named function with any stored applicable parameter and any parameter the user passes in.
"""
def run_named_function(*args, **kwargs):
# identifies the target function
target_function = getattr(self.__target_class, function_name)
# identifies all parameters the target function uses
target_function_parameters = [
parameter
for i, parameter in enumerate(target_function.__code__.co_varnames)
if i > 0 or parameter != "obj" # TODO check if other non-parameters could be referenced
]
# acquires all stored parameters
stored_parameters = {}
for reference_object in self.__reference_objects:
for key, value in reference_object.__dict__.items():
stored_parameters[key] = value
for key, value in self.__dict__.items():
if not any(
key == reserved_name
for reserved_name in [
"_ClassEmulator__target_class",
"_ClassEmulator__reference_objects",
]
):
stored_parameters[key] = value
# finds all stored parameters parameters that are acceptable to the target function
named_parameters = {
key: value
for key, value in stored_parameters.items()
if "kwargs" in target_function_parameters
or key in target_function_parameters
}
# removes all stored parameters that overlap with kwargs
number_of_positional_parameters = len(args)
try:
is_class_method = self.__target_class.__name__ == target_function.__self__.__name__
if is_class_method:
number_of_positional_parameters += 1
except AttributeError:
pass
positional_parameters_used = target_function_parameters[:number_of_positional_parameters]
named_parameters = {
key: value
for key, value in named_parameters.items()
if key not in positional_parameters_used
}
# makes user input kwargs count
named_parameters.update(kwargs)
# run the target function and return the output
return target_function(*args, **named_parameters)
return run_named_function
|
hyv3m1nd/classemulator
|
emulator.py
|
emulator.py
|
py
| 4,564 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72530976189
|
def main():
# List comprehensions
# [ <expression> for item in list if <conditional>] syntax
# creating a list based on an existing list
# the if part act as a filter (if True it includes, False omittes)
#
my_comp_list = [x for x in range(1,10) if x % 2 == 0]
print(my_comp_list)
# calling a function in the expression slot.
# x is defined to be [0, 1, 2, 3, 4, 5, 6, 7]
# where some_function() is being called for every item in that list
my_comp_list_2 = [some_function(x) for x in range(8)]
print(my_comp_list_2)
# creating a matrix using nested list comprehension
# [[j for j in num_of_column] for i in [num_of_row]]
# better coding style than making a matrix with a nested for loop
my_comp_list_3 = [[j for j in range(3)] for i in range(10)]
print(my_comp_list_3)
# flatten the matrix into a one dimentional list
print([value for sublist in my_comp_list_3 for value in sublist])
# Set comprehensions are just like lists but with {}
# "s % 2 == 1" is the same as "s % 2" where it only sorts the odds
my_comp_set = [s for s in range(1, 5) if s % 2]
print(my_comp_set)
# Dictionary Comprehension
# it takes a key and a value
my_comp_dict = {x: x**2 for x in (2, 4, 6)}
print(my_comp_dict)
def some_function(a):
return (a + 5) / 2
if __name__ == '__main__':
main()
|
itiro-y/python-repo
|
LearningPython/data_types/comprehensions.py
|
comprehensions.py
|
py
| 1,394 |
python
|
en
|
code
| 0 |
github-code
|
6
|
1369749447
|
"""
Import 'OktaPasswordHealth.csv' and sort users into internal and external
groups.
"""
import csv
print("\nWhat is your fully qualified domain name?")
DOMAIN = input('> ')
INTERNAL_USERS = []
EXTERNAL_USERS = []
def write_csv(csv_file, lst):
"""Write results to a csv."""
with open(csv_file, 'w') as out_csvfile:
writer = csv.writer(out_csvfile)
writer.writerow(['email'])
for email in lst:
writer.writerow([email])
with open('OktaPasswordHealth.csv', 'r') as in_csvfile:
READER = csv.DictReader(in_csvfile)
for row in READER:
user_email = row['Login']
if user_email.endswith(DOMAIN):
INTERNAL_USERS.append(user_email)
else:
EXTERNAL_USERS.append(user_email)
write_csv('internal_users.csv', INTERNAL_USERS)
write_csv('external_users.csv', EXTERNAL_USERS)
print("'internal_users.csv' and 'external_users.csv' exported successfully\n")
|
craighillelson/sort_okta_users_internal_and_external
|
sort_okta_users_internal_and_external.py
|
sort_okta_users_internal_and_external.py
|
py
| 945 |
python
|
en
|
code
| 1 |
github-code
|
6
|
26932741505
|
from lightcurvetools import *
# should do a smooth-and-subtract operation on the test lightcurve, show a plot,
# and save the smoothed lc
testfile = 'testdata/lc_xrt_alldata.dat'
testlc = readlightcurve(testfile)
testlc.label = 'original'
testlc.stats()
sigma_HW = 2.355/2
wid = round(20/sigma_HW)
smoothlc = smoothlightcurve(testlc, wid)
smoothlc.label = 'smoothed'
sublc = subtractlightcurve(testlc, smoothlc)
sublc.label = 'subtracted'
plotlightcurve([testlc, smoothlc, sublc])
sublc.write('testwrite.dat')
|
unclellama/lightcurvetools
|
lightcurvetools/tests.py
|
tests.py
|
py
| 511 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8804328521
|
import pytest
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from datetime import datetime
from BaseTest import BaseTest
from Helper import Helper
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as ec
from Utilities.config import Utilities
from selenium.webdriver.support.color import Color
import time
@pytest.mark.usefixtures("user")
@pytest.mark.usefixtures("setup")
@pytest.mark.usefixtures("env")
@pytest.mark.migration
@pytest.mark.singapore
@pytest.mark.uk
@pytest.mark.usa
@pytest.mark.sandoz
@pytest.mark.eg
@pytest.mark.global_site
@pytest.mark.de
@pytest.mark.at
@pytest.mark.ph
@pytest.mark.ch
@pytest.mark.ch_fr
@pytest.mark.fr
@pytest.mark.za
@pytest.mark.malaysia
@pytest.mark.es
@pytest.mark.pt
@pytest.mark.tw
@pytest.mark.jp
@pytest.mark.lv
@pytest.mark.it
@pytest.mark.ar
@pytest.mark.fi
@pytest.mark.kr
@pytest.mark.br
@pytest.mark.cn
@pytest.mark.scn
@pytest.mark.hu
@pytest.mark.biome
@pytest.mark.foundation
@pytest.mark.ie
@pytest.mark.gr
@pytest.mark.dk
# @pytest.mark.no
@pytest.mark.ca
# @pytest.mark.se
@pytest.mark.tr
# @pytest.mark.cz
@pytest.mark.ru
# @pytest.mark.rs
@pytest.mark.ro
@pytest.mark.co
@pytest.mark.sk
@pytest.mark.ve
#@pytest.mark.id
@pytest.mark.bd
@pytest.mark.be
@pytest.mark.au
@pytest.mark.pl
class Test_NewsArchive(BaseTest):
# @pytest.mark.malaysia
# def test_ARC_2586_NewsArchive_get_newsArchive(self):
# self.driver.get(self.env)
# self.newsPage.launch_newsArchive(self.env_name)
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_bannerImage(self):
"""
Checks banner image in news archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if len(self.driver.find_elements(*self.newsPage.banner_img_css)) > 0:
assert len(self.basePage.get_elemet_attribute(self.newsPage.banner_img_css, "src")) > 0
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_pattern(self):
"""
Checks pattern in news archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
assert "patterns" in self.basePage.get_css_property(self.newsPage.pattern_css, "background-image")
# Already covered in test_breadcrumb
# def test_ARC_2586_NewsArchive_breadcrumbs(self):
# self.driver.get(self.env)
# if self.env_name == "france":
# self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
# self.basePage.press_button(self.newsRoomPage.link_btn_css)
# else:
# self.newsPage.launch_newsArchive(self.env_name)
# breadcrumb_items, breadcrumb_first_arrow_element, breadcrumb_second_arrow_element= self.newsPage.breadcrumb_ele()
# assert len(breadcrumb_items) == 3
# assert ">" in breadcrumb_first_arrow_element
# assert ">" in breadcrumb_second_arrow_element
# assert "#656565" == self.basePage.get_css_color(self.newsPage.news_archive_last_child_breadcrumb_color_css, "color")
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_search_bar_button(self):
"""
Checks search bar and button in news archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
search_bar, search_btn = self.newsPage.search_bar_and_btn()
assert search_bar == True
assert search_btn == True
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_default_view(self):
"""
Checks default view - grid view and list.svg icon in news archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
assert "arctic_grid_view" in self.basePage.get_elemet_attribute(self.newsPage.news_page_view_css, "class")
assert "list.svg" in self.basePage.get_css_property(self.newsPage.view_toggle_icon, "background")
# This is disabled in all sites now
# def test_ARC_2586_NewsArchive_calendar_from_to(self):
# if self.env_name == "france":
# self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
# self.basePage.press_button(self.newsRoomPage.link_btn_css)
# else:
# self.newsPage.launch_newsArchive(self.env_name)
# # assert len(self.basePage.get_element_text(self.newsPage.from_date_xpath)) > 0
# assert len(self.basePage.get_element_text(self.newsPage.to_date_xpath)) > 0
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_all_topics_grey_color(self):
"""
Checks All topics is greyed out by default in news archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
all_topics_text_status, hex_code= self.newsPage.all_topics_grey_color()
assert all_topics_text_status == True
assert "#f1f1f1" in hex_code
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_pagination_num(self):
"""
Checks pagination numbers are correctly displayed.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
current_page_num , page_num = self.newsPage.pagination_number()
assert current_page_num == page_num
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_right_hand_rail(self):
"""
Checks if there is no right hand rail.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
assert len(self.driver.find_elements(*self.newsPage.right_hand_rail_xpath)) == 0
# Already covered in test_breadcrumb
# def test_ARC_2586_NewsArchive_first_second_level_breadcrumbs(self):
# self.driver.get(self.env)
# if self.env_name == "france":
# self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
# self.basePage.press_button(self.newsRoomPage.link_btn_css)
# else:
# self.newsPage.launch_newsArchive(self.env_name)
# breadcumb_anchor_url_list, breadcumb_anchor_current_url_list = self.newsPage.check_all_breadcrumb_url()
# for breadcumb_anchor_url, breadcumb_anchor_current_url in zip(breadcumb_anchor_url_list, breadcumb_anchor_current_url_list):
# assert breadcumb_anchor_url in breadcumb_anchor_current_url
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_pagination(self):
"""
Checks pagination is working as expected or not.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if len(self.driver.find_elements(self.newsPage.pagination_heading_xpath[0], self.newsPage.pagination_heading_xpath[1])) > 0:
num_content_page,pagination_heading, page_content_list = self.newsPage.pagination_validation()
if num_content_page == 12 and pagination_heading > 0 :
page_count_len = len(page_content_list)
while page_count_len > 0:
assert len(page_content_list) > 0
page_count_len = page_count_len - 1
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_menuTabs_viewEmpty(self):
"""
Checks menu tabs are getting greyed out or not and if under any menu tab, no content is there,
It should display No Result Found.
"""
empty_list = []
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
hex_color_list, empty_list = self.newsPage.grey_menu_verify()
hex_color_list_len = len(hex_color_list)
while hex_color_list_len > 0:
assert "#f1f1f1" in hex_color_list[hex_color_list_len-1]
hex_color_list_len = hex_color_list_len - 1
# def test_ARC_2586_NewsArchive_viewEmpty(self):
# self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
empty_list_len = len(empty_list)
if empty_list_len > 0:
if "view-empty" in empty_list[empty_list_len-1]:
assert "view-empty" in empty_list[empty_list_len-1]
empty_list_len = empty_list_len - 1
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_listview(self):
"""
Checks the following :-
1. list.svg icon.
2. list view button.
3. Default view.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
list_icon,list_view_btn,grid_view = self.newsPage.list_view()
assert "list.svg" in list_icon
assert list_view_btn == True
assert "arctic_grid_view" in grid_view
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_gridView(self):
"""
Checks the following :-
1. grid.svg icon.
2. grid view button.
3. view is in list view.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
grid_icon,grid_view_btn,list_view = self.newsPage.grid_view()
assert "grid.svg" in grid_icon
assert grid_view_btn == True
assert "arctic_list_view" in list_view
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_search_url(self):
"""
Checks the searched text is coming in the url.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
searched_keyword = self.newsPage.verify_search_result()
current_url = self.driver.current_url
assert searched_keyword in current_url
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_search_keyword(self):
"""
Checks searched keyword is coming in the text box while changing the tabs.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
searched_keyword_list = self.newsPage.verify_searchText_with_Tabs()
for search_keyword in searched_keyword_list:
assert search_keyword == self.newsPage.test_data
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_greyMenu_verify(self):
"""
After searching some keyword, It checks tabs are getting greyed out or not.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
hex_color_list = self.newsPage.grey_menu_verify_with_Tabs()
for hex_color in hex_color_list:
assert "#f1f1f1" == hex_color
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_menuTab_url(self):
"""
Checks menu tab name is coming in the url.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
tab_href_list, selected_tab_url_list = self.newsPage.verify_menuTab_url()
for tab_href, selected_tab_url in zip(tab_href_list, selected_tab_url_list):
assert tab_href in selected_tab_url
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_searchKeyword_url(self):
"""
Checks searched keyword is coming in the url while changing tabs.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
searched_keyword,selected_tab_url_list = self.newsPage.verify_searchText_with_url()
for url in selected_tab_url_list:
assert searched_keyword in url
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_pagination_front_arrow_back_arrow(self):
"""
Checks front and back pagination arrow is working.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if len(self.driver.find_elements(self.newsPage.pagination_heading_xpath[0], self.newsPage.pagination_heading_xpath[1])) > 0:
num_content_page,pagination_heading,page_one_contents, page_zero_contents = self.newsPage.pagination_front_arrow_back_arrow_validation()
if num_content_page == 12 and pagination_heading > 0 :
assert len(page_one_contents) > 0
assert len(page_zero_contents) > 0
# @pytest.mark.malaysia
# def test_ARC_2586_NewsArchive_key_release_language_tab(self):
# """
# Checks language dropdown is coming under key release dropdown.
# """
# self.driver.get(self.env)
# if self.env_name == "france":
# self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
# self.basePage.press_button(self.newsRoomPage.link_btn_css)
# else:
# self.newsPage.launch_newsArchive(self.env_name)
# if self.env_name == "global":
# language_tab_txt = self.newsPage.key_releases(self.env_name)
# assert "Language" in language_tab_txt
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_media_release_language_tab(self):
"""
Checks language dropdown is coming under media release dropdown and dates are coming in descending order.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
desc_sort = self.newsPage.media_release(self.env_name)
assert desc_sort == True
# if self.env_name == "global":
# assert "Language" in language_tab_txt
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_randomText_verification(self):
"""
Checks after searching a keyword, the keyword is coming in the search box or not and all topics is getting greyed out or not.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
searched_keyword = self.newsPage.verify_search_result()
assert searched_keyword == self.newsPage.test_data
all_topics_text_status, hex_code = self.newsPage.all_topics_grey_color()
assert all_topics_text_status == True
assert "#f1f1f1" in hex_code
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_content_validation(self):
"""
Checks if content is there in newsw archive page.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
contents = self.basePage.get_elements(self.newsPage.content_pages_css)
assert len(contents) > 0
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_search_results(self):
"""
Checks searched input is coming in the searched result or not.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
content_title = self.newsPage.search_results()
for title in content_title:
if self.newsPage.test_data_novartis in title:
assert self.newsPage.test_data_novartis in title
break
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_verify_filters(self):
"""
Checks Filters are working or not.
"""
media_release_list = ['key release', 'media release']
featured_news_list = ['pulse update', 'statement','featured news']
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
menu_tab_list , tab_label_list = self.newsPage.verify_filters()
for filter_name,tab_label in zip(menu_tab_list , tab_label_list):
if filter_name == "media releases" and self.env_name == 'global':
for tab in tab_label:
assert tab in media_release_list
elif filter_name == "key releases" and self.env_name == 'global':
for tab in tab_label:
assert tab in media_release_list
elif filter_name == "featured news" and self.env_name == 'global':
for tab in tab_label:
assert tab in featured_news_list
elif filter_name == "statements" and self.env_name == 'global':
for tab in tab_label:
assert tab in featured_news_list
elif filter_name == "pulse updates" and self.env_name == 'global':
for tab in tab_label:
assert tab in featured_news_list
elif filter_name == "statement" and self.env_name == 'biome':
for tab in tab_label:
assert tab in featured_news_list
elif filter_name == "statements" and self.env_name == 'usa':
for tab in tab_label:
assert tab in featured_news_list
elif filter_name == "statement" and self.env_name == 'foundation':
for tab in tab_label:
assert tab in featured_news_list
else :
for label in tab_label :
assert label in filter_name
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_banner_title(self):
"""
Checks if banner title is displaying.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if self.env_name == "global":
assert self.basePage.is_displayed(self.newsPage.banner_text_css) == True
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_key_release_text(self):
"""
Checks key release text is there above search bar.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if self.env_name == "global":
assert self.basePage.is_displayed(self.newsPage.key_releases_text_xpath) == True
assert "Key Releases" in self.basePage.get_element_text(self.newsPage.key_releases_text_xpath)
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_menu_ellipse(self):
"""
Checks ellipse is displayed.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if self.env_name == "global":
visible_element = self.driver.find_elements(*self.newsPage.visible_element_xpath)
if len(visible_element) == 7 :
assert self.basePage.is_displayed(self.newsPage.ellipses_xpath) == True
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_ellipses_validation(self):
"""
Checks any element is there inside ellipse.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if self.env_name == "global":
if self.basePage.is_displayed(self.newsPage.ellipses_xpath):
self.basePage.press_button(self.newsPage.ellipses_xpath)
elements = self.driver.find_elements(*self.newsPage.non_visible_ellipses_xpath)
assert len(elements) > 0
@pytest.mark.malaysia
def test_ARC_2586_NewsArchive_ellipses_element_greyed_out(self):
"""
Checks while clicking any element in ellipse, that element should greyed out.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
if self.env_name == "global":
if self.basePage.is_displayed(self.newsPage.ellipses_xpath):
self.basePage.press_button(self.newsPage.ellipses_xpath)
non_visible_element_text = self.basePage.get_element_text(self.newsPage.non_visible_ellipses_xpath)
self.basePage.press_button(self.newsPage.non_visible_ellipses_xpath)
length = len(self.driver.find_elements(*self.newsPage.visible_element_xpath))
element = self.driver.find_element(By.CSS_SELECTOR,f'ul#block-newsarchivenavigation>li:nth-child({length}) > a')
value_of_css = element.value_of_css_property('background-color')
hex = Color.from_string(value_of_css).hex
assert '#f1f1f1' == hex
assert non_visible_element_text == element.text
def test_ARC_2586_NewsArchive_grey_bg_only_one_tab(self):
"""
Checks only tab is getting greyed out at a time.
"""
self.driver.get(self.env)
if self.env_name == "france":
self.homePage.mega_menu_landing_page(self.env_name,self.homePage.mega_menu_news_xpath,'news')
self.basePage.press_button(self.newsRoomPage.link_btn_css)
else:
self.newsPage.launch_newsArchive(self.env_name)
first_tab_color, second_tab_color = self.newsPage.menu_tab_one_grey_bg()
assert "#000000" == first_tab_color
assert "#f1f1f1" == second_tab_color
|
Shreyasi2205/MyPOMProject
|
tests/test_NewsArchive.py
|
test_NewsArchive.py
|
py
| 27,544 |
python
|
en
|
code
| 0 |
github-code
|
6
|
75174435386
|
from tkinter import *
import time
import threading
from tkinter.ttk import *
def start_download():
GB = 100
download = 0
speed = 1
while download < GB:
time.sleep(0.05)
download += speed
percent.set(str(int(download/GB*100)) + "%")
text.set(str(download) + "/" + str(GB) + " GB completed")
bar['value'] = (download/GB)*100
window.update_idletasks()
def download():
t = threading.Thread(target=start_download)
t.start()
window = Tk()
percent = StringVar()
text = StringVar()
bar = Progressbar(window, orient=HORIZONTAL, length=300)
bar.pack(pady=10)
percentLabel = Label(window, textvariable=percent).pack()
taskLabel = Label(window, textvariable=text).pack()
button = Button(window, text="Download", command=download).pack()
window.mainloop()
|
cakel/python_tutorial_tkinter_brocode
|
19_tk_progressbar5.py
|
19_tk_progressbar5.py
|
py
| 823 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17463247487
|
#! /usr/bin/python
# import sys
import os
import time
if __name__ == '__main__':
numsOfProducers = [ 5]
numsOfConsumers = [ 5]
Ns = [5, 50, 100]
for prNum, conNum in zip(numsOfProducers, numsOfConsumers):
for N in Ns:
print("producers: ", prNum, " consumers: ", conNum, " N: ", N)
if os.fork() == 0:
os.execl("./wrapper","wrapper" ,str(prNum), str(conNum), str(N) )
else:
os.wait()
# verifySolution(prNum)
with open("consumerFile.txt", "r") as conF:
consumerLines = conF.readlines()
for conLine in consumerLines:
print(conLine, end = "")
time.sleep(0.5)
|
youngdashu/systemy-operacyjne-2020-2021
|
lab5/NowakAdam/cw05/zad3/runTests.py
|
runTests.py
|
py
| 770 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40851164655
|
from django.db import models
from django.contrib.auth.models import AbstractUser
# Create your models here.
from django.dispatch import receiver
from rest_framework.authtoken.models import Token
from django.db.models.signals import post_save
from django.conf import settings
class User(AbstractUser):
is_teacher = models.BooleanField(default = False)
is_student = models.BooleanField(default = False)
def __Str__(self):
return self.username
#class Teacher(models.Model):
# user = models.OneToOneField(User, on_delete = models.CASCADE, primary_key = True)
#
#class Student(modesl.Model):
# user = models.OneToOneField(User, on_delete = models.CASCADE, primary_key = True)
class Doubt(models.Model):
questions = models.TextField(max_length = 200)
picture = models.ImageField(blank = True, null = True, upload_to='images')
student = models.ForeignKey(User, related_name = 'student', on_delete = models.CASCADE)
teacher = models.ForeignKey(User, related_name = 'teacher', on_delete = models.CASCADE)
@receiver(post_save, sender=settings.AUTH_USER_MODEL)
def create_auth_token(sender, instance=None, created=False, **kwargs):
if created:
Token.objects.create(user=instance)
|
ali7070droid/doubts-app
|
myapp/models.py
|
models.py
|
py
| 1,197 |
python
|
en
|
code
| 0 |
github-code
|
6
|
74280991547
|
hx711_reference_unit = 226
load_threshold = 1000 # g
loop_interval = 0.1
camera_device = "/dev/video0"
photo_format = "width=1920,height=1080"
photo_count = 4
reset_timeout = 300 # sec
tmpdir = "/tmp"
debug = True
# remote
bot_token="BOT_TOKEN"
channel_id=CHANNEL_ID
|
mojyack/rpi-cat-monitor
|
config-example.py
|
config-example.py
|
py
| 268 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8916098020
|
# Faça um programa que lê um número inteiro n. E verifique se n é um número par, se não for pedir para inserir outro número até que seja par. Use while.
#usando um laço infinito para o programa continuar executando
while True:
n = int(input("Digite um número: ")) #para While com true, usar o print dentro do laço
if n % 2 != 0: #Se o numero digitado seja impar o programa continua executando (True)
print("Digite um numero par")
else: #se o número for par entra o break e o programa para a execução
break
|
lucasnasc46/curso-python22
|
Lista 4 de py/questao5.py
|
questao5.py
|
py
| 608 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
31355521081
|
import numpy as np
# some useful constants:
edges = (N,S,E,W) = list(range(4))
def lonlat2cart( lons, lats, rad=1.):
"""Convert longitude/latitude to cartesian coordinates.
Args:
lons (numpy 2-d array): longitude ("x") values (decimal degrees).
lats (numpy 2-d array): latitude ("y") values (decimal degrees).
rad (float): nominal sphere radius (default=1. returns cartesian
coordinates on the unit sphere).
Returns:
cart (numpy 3-d array): cartesian coordinates on the sphere. Rows and
columns are arranged according to the input lons/lats arrays, while
along the third axis, the 0, 1, and 2 indices correspond to the x, y
and z components, respectively.
Raises:
ValueError: If input lons and lats matrix dimensions are not equal.
"""
if lons.ndim!=2 or lats.ndim!=2 or lons.shape!=lats.shape:
raise ValueError('lons and lats must be two-dimensional matrices of equal size.')
dims = list(lons.shape)
dims.append(3)
cart = np.zeros(dims)
cart[:,:,0] = np.cos(np.radians(lons))*np.cos(np.radians(lats)) # x
cart[:,:,1] = np.sin(np.radians(lons))*np.cos(np.radians(lats)) # y
cart[:,:,2] = np.sin(np.radians(lats)) # z
return cart
def nearest(lon,lat,lons,lats,geod):
"""Determine indices of, and distance to, nearest lon/lat point.
Args:
lon (float): Longitude of search origin
lat (float): Latitude of search origin
lons (numpy 2-d array): Matrix of longitude values used in the nearest
neighbour search.
lats (numpy 2-d array): Matrix of latitude values used in the nearest
neighbour search.
geod (pyproj.Geod object): Geod to be used as basis for distance
calculations.
Returns:
i (int): Zeros-based row index of nearest neighbour.
j (int): Zeros-based colum index of nearest neighbour.
dist (float): Great circle distance from (lon,lat) to
(lons(i,j), lats(i,j))
Raises:
ValueError: If input lons and lats matrix dimensions are not
equal.
"""
if lons.ndim!=2 or lats.ndim!=2 or lons.shape!=lats.shape:
raise ValueError('lons and lats must be two-dimensional matrices of equal size.')
i,j,dist = -1,-1,1.e10
it = np.nditer(lons,flags=['multi_index'])
while not it.finished:
(fwd_az,back_az,distance) = geod.inv(
lon,lat,
lons[it.multi_index[0],it.multi_index[1]],
lats[it.multi_index[0],it.multi_index[1]])
if distance<dist:
i,j,dist = it.multi_index[0],it.multi_index[1],distance
it.iternext()
return i,j,dist
def squad_uarea( cart):
"""Compute quadrilateral surface areas for cartesian array of corner points
on the unit sphere.
Args:
cart (numpy array): 3-d array (m x n x 3) of cartesian x,y,z corner
points on the unit sphere (for every (i,j), (x,y,z) = (i,j,0),
(i,j,1), (i,j,2)).
Returns:
areas (numpy array): 2-d array (n-1 x m-1) of cell areas.
Note:
One of many possible approaches, the algorithm implemented here is based
on Girard's spherical excess formula, with direct calculation of angles
using the spherical law of cosines. Note that, due to numerical
round-off, its results can be inaccurate for small angles/areas (edge
lengths less than roughly 5km on the scaled sphere). In such cases,
pquad_uarea is recommended.
"""
# only because some geometries are poorly conditioned:
import warnings
warnings.filterwarnings("ignore")
area = np.zeros((np.size(cart,0)-1,np.size(cart,1)-1))
for x_idx in np.arange(np.size(cart,0)-1):
for y_idx in np.arange(np.size(cart,1)-1):
# quadrilateral corners in counterclockwise direction:
ptA = cart[x_idx ,y_idx ,:]
ptB = cart[x_idx+1,y_idx ,:]
ptC = cart[x_idx+1,y_idx+1,:]
ptD = cart[x_idx ,y_idx+1,:]
# interior angles of first subtriangle:
at,bt,ct = ptA, ptB, ptC
ca,cb,cc = np.dot(bt,ct), np.dot(at,ct), np.dot(at,bt)
sa,sb,sc = np.sin(np.arccos(ca)), np.sin(np.arccos(cb)), np.sin(np.arccos(cc))
A1 = np.arccos((ca-cb*cc)/(sb*sc))
B1 = np.arccos((cb-ca*cc)/(sa*sc))
C1 = np.arccos((cc-ca*cb)/(sa*sb))
# interior angles of second subtriangle:
at,bt,ct = ptA, ptC, ptD
ca,cb,cc = np.dot(bt,ct), np.dot(at,ct), np.dot(at,bt)
sa,sb,sc = np.sin(np.arccos(ca)), np.sin(np.arccos(cb)), np.sin(np.arccos(cc))
A2 = np.arccos((ca-cb*cc)/(sb*sc))
B2 = np.arccos((cb-ca*cc)/(sa*sc))
C2 = np.arccos((cc-ca*cb)/(sa*sb))
# area:
area[x_idx,y_idx] = A1+B1+C1 + A2+B2+C2 - 2*np.pi
return area
def pquad_uarea( cart):
""" Compute planar quadrilateral (faceted) areas for cartesian array of
corner points on the unit sphere.
Args:
cart (numpy array): 3-d array (m x n x 3) of cartesian x,y,z corner
points on the unit sphere (for every (i,j), (x,y,z) = (i,j,0),
(i,j,1), (i,j,2)).
Returns:
areas (numpy array): 2-d array (n-1 x m-1) of cell areas.
Note:
The algorithm implemented here computes areas using edge vector cross
products and is recommented for small angles/areas (edge lengths less
than roughly 5km on the scaled sphere). If areas are larger,
squad_uarea is recommended.
"""
area = np.zeros((np.size(cart,0)-1,np.size(cart,1)-1))
for x_idx in np.arange(np.size(cart,0)-1):
for y_idx in np.arange(np.size(cart,1)-1):
# quadrilateral corners in counterclockwise direction:
ptA = cart[x_idx ,y_idx ,:]
ptB = cart[x_idx+1,y_idx ,:]
ptC = cart[x_idx+1,y_idx+1,:]
ptD = cart[x_idx ,y_idx+1,:]
# edge vectors:
ab = ptB-ptA
ac = ptC-ptA
ad = ptD-ptA
area[x_idx,y_idx] = 0.5 * np.linalg.norm(np.cross(ab,ac)+np.cross(ac,ad))
return area
|
nasa/simplegrid
|
simplegrid/util.py
|
util.py
|
py
| 6,298 |
python
|
en
|
code
| 5 |
github-code
|
6
|
73652316669
|
# 给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。
# 在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。
# 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
class Solution(object):
def maxArea(self, height):
"""
:type height: List[int]
:rtype: int
"""
l = 0
r = len(height) - 1
maxarea = 0
while (l < r):
maxarea = max(maxarea, (r - l) * min(height[l], height[r]))
if height[r] < height[l]:
r = r - 1
else:
l = l + 1
return maxarea
height = [1,8,6,2,5,4,8,3,7]
a = Solution()
print(a.maxArea(height))
|
xxxxlc/leetcode
|
Dynamicprogramming/maxArea.py
|
maxArea.py
|
py
| 815 |
python
|
zh
|
code
| 0 |
github-code
|
6
|
37568035732
|
# import statements
import nltk
import sys
import pandas as pd
import re
from nltk import pos_tag
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tokenize import word_tokenize, sent_tokenize
from sqlalchemy import create_engine
# download necessary NLTK data
nltk.download(['punkt', 'wordnet'])
nltk.download('stopwords')
def load_data(messages_filepath, categories_filepath):
"""
Load the data containing the messages and the
categories, and merge on the common column 'id'
Returns a single pandas Dataframe.
Keyword arguments:
messages_filepath -- filepath (including file name)
of the file containing the messages
categories_filepath -- filepath (including file name)
of the file containing the message
categories
"""
messages = pd.read_csv(messages_filepath, encoding='UTF-8')
categories = pd.read_csv(categories_filepath, encoding='UTF-8')
return messages.merge(categories, on=['id'])
def clean_data(df):
"""
Parse the single 'categories' column into the 36 distinct
message category columns, name the resulting columns, and
clean the values, removing the category name from the cells
and leaving only the numeric categorical value.
Remove true duplicate rows.
Returns a cleaned Dataframe.
Keyword argument:
df -- Dataframe requiring cleaning.
"""
categories_new = df['categories'].str.split(pat=';', expand=True)
row = categories_new.iloc[0,:]
category_colnames = list(row.apply(lambda x: x[:-2]))
categories_new.columns = category_colnames
for column in categories_new:
# set each value to be the last character of the string
categories_new[column] = categories_new[column].str.slice(-1)
# convert column from string to numeric
categories_new[column] = categories_new[column].astype(int)
df.drop(columns=['categories'], inplace=True)
df = pd.concat([df, categories_new], axis=1)
# drop duplicates
df.drop_duplicates(inplace=True)
return df
def save_data(df, database_filename):
"""
Save cleaned Dataframe to a SQL Database table.
Keyword arguments:
df -- Cleaned Dataframe for export
database_filename -- name of the database in which
table will be saved
"""
engine = create_engine('sqlite:///' + database_filename)
df.to_sql('messages_and_categories', engine, index=False)
def main():
"""
Executes following functions:
1) load_data(messages_filepath, categories_filepath)
2) clean_data(df)
3) save_data(df, database_filename)
"""
if len(sys.argv) == 4:
messages_filepath, categories_filepath, database_filepath = sys.argv[1:]
print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}'
.format(messages_filepath, categories_filepath))
df = load_data(messages_filepath, categories_filepath)
print('Cleaning data...')
df = clean_data(df)
print('Saving data...\n DATABASE: {}'.format(database_filepath))
save_data(df, database_filepath)
print('Cleaned data saved to database!')
else:
print('Please provide the filepaths of the messages and categories '\
'datasets as the first and second argument respectively, as '\
'well as the filepath of the database to save the cleaned data '\
'to as the third argument. \n\nExample: python process_data.py '\
'disaster_messages.csv disaster_categories.csv '\
'DisasterResponse.db')
if __name__ == '__main__':
main()
|
goitom/project_2_disaster_response
|
data/process_data.py
|
process_data.py
|
py
| 3,643 |
python
|
en
|
code
| 0 |
github-code
|
6
|
16179638713
|
import os
import torch
import wandb
import argparse
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedKFold
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, roc_auc_score, average_precision_score, balanced_accuracy_score
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--layer_1', help='layer 1 size', type=int, default=50, required=True)
parser.add_argument(
'--layer_2', help='layer 2 size', type=int, default=50, required=True)
parser.add_argument(
'--layer_3', help='layer 3 size', type=int, default=50, required=True)
parser.add_argument(
'--lr', help='Learning Rate', type=float, default=0.01, required=True)
parser.add_argument(
'--weight_decay', help='Weight Decay', type=float, default=0.9, required=True)
parser.add_argument(
'--momentum', help='Weight Decay', type=float, default=0.9, required=True)
parser.add_argument(
'--no_epoch', help='Number of Epochs', type=int, default=1000, required=True)
args = parser.parse_args()
return args
class Model(torch.nn.Module):
def __init__(self, layer_1, layer_2, layer_3):
super(Model, self).__init__()
self.lin1 = torch.nn.Linear(12, layer_1)
self.lin2 = torch.nn.Linear(layer_1, layer_2)
self.lin3 = torch.nn.Linear(layer_2, layer_3)
self.lin4 = torch.nn.Linear(layer_3, 1)
self.selu = torch.nn.SELU()
def forward(self, x):
x = self.selu(self.lin1(x))
x = self.selu(self.lin2(x))
x = self.selu(self.lin3(x))
x = self.lin4(x)
return x
def load_data():
cd = os.getcwd()
x_eicu = pd.read_csv(cd+'../data/x_eicu.csv')
y_eicu = pd.read_csv(cd+'../data/y_eicu.csv')
mimic = pd.read_csv(cd+'../data/mimic.csv')
assert np.all(x_eicu['patientunitstayid'].to_numpy() == y_eicu['patientunitstayid'].to_numpy())
feature_list = ['lactate', 'oobventday1', 'eyes', 'motor', 'verbal', 'albumin_x',
'age', 'creatinine_x', 'BUN', 'PT - INR', 'WBC x 1000', 'meanbp']
feature_list_mimic = ['Lactate', 'firstdayvent', 'gcseyes', 'gcsmotor', 'gcsverbal', 'Albumin',
'Age', 'Creatinine', 'BUN', 'INR', 'WBC', 'MAP']
x_eicu = x_eicu[feature_list].to_numpy()
y_eicu = y_eicu['actualicumortality'].to_numpy()
x_mimic = mimic[feature_list_mimic].to_numpy()
y_mimic = mimic['Mortality'].to_numpy()
x = np.vstack((x_eicu, x_mimic))
y = np.hstack((y_eicu, y_mimic))
return x, y
def main():
wandb.init(project='mortality-tool-newfeats')
args = parse_args()
x, y = load_data()
kfold = StratifiedKFold(n_splits=10)
logits_all = []
labels_all = []
counter = 1
for train_index, test_index in kfold.split(x, y):
x_train, y_train = x[train_index], y[train_index]
x_test, y_test = x[test_index], y[test_index]
imputer = IterativeImputer()
scaler = StandardScaler()
x_train = scaler.fit_transform(imputer.fit_transform(x_train))
x_test = scaler.transform(imputer.transform(x_test))
x_train, y_train = torch.from_numpy(x_train).float().to('cuda:0'), torch.from_numpy(y_train).float().to('cuda:0')
model = Model(args.layer_1, args.layer_2, args.layer_3)
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=torch.tensor([14.80], device='cuda:0'))
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum, nesterov=True)
model.train()
model.to('cuda:0')
for epoch in range(args.no_epoch):
optimizer.zero_grad()
outputs = model.forward(x_train)
loss = criterion(outputs, y_train.view(-1, 1))
loss.backward()
optimizer.step()
model.eval()
outputs = model.forward(torch.from_numpy(x_test).float().to('cuda:0'))
logits = torch.sigmoid(outputs).detach().cpu().numpy()
logits_all.append(logits.reshape(-1))
labels_all.append(y_test)
print('Iter {}/10 done'.format(counter))
counter += 1
logits_all = np.hstack(logits_all)
labels_all = np.hstack(labels_all)
tn, fp, fn, tp = confusion_matrix(labels_all, np.round(logits_all)).ravel()
accuracy = (tp + tn) / (tp + tn + fp + fn)
precision = tp / (tp + fp)
sensitivity = tp / (tp + fn)
specificity = tn / (tn + fp)
roc_auc = roc_auc_score(labels_all, logits_all)
prc_auc = average_precision_score(labels_all, logits_all)
balanced_acc = balanced_accuracy_score(labels_all, np.round(logits_all))
pos_likelihood_ratio = sensitivity / (1 - specificity)
neg_likelihood_ratio = (1 - sensitivity) / specificity
class_names = ['ALIVE', 'EXPIRED']
wandb.log({'accuracy': accuracy, 'precision': precision, 'sensitivity': sensitivity, 'specificitiy': specificity,
'roc_auc': roc_auc, 'prc_auc': prc_auc, 'balanced_accuracy': balanced_acc,
'neg_likelihood_ratio': neg_likelihood_ratio, 'pos_likelihood_ratio': pos_likelihood_ratio})
if __name__ == '__main__':
main()
|
jrepifano/mortality-tool
|
wandb_training/d_train_wandb.py
|
d_train_wandb.py
|
py
| 5,410 |
python
|
en
|
code
| 0 |
github-code
|
6
|
33670502801
|
import sqlite3
import sys
from PyQt6.QtWidgets import QApplication, QLabel, QWidget, QGridLayout, \
QLineEdit, QPushButton, QMainWindow, QTableWidget, QTableWidgetItem, QDialog, \
QVBoxLayout, QComboBox, QToolBar, QStatusBar, QMessageBox
from PyQt6.QtGui import QAction, QIcon
from PyQt6.QtCore import Qt
# Database connection class
class DatabaseConnection:
def __init__(self, database_file="database.db"):
self.database_file = database_file
def connect(self):
# Establish connection to database and create cursor
connection = sqlite3.connect(self.database_file)
cursor = connection.cursor()
# return connection and cursor, destructure variables in creation of instances
return connection, cursor
def close_connection(self, connection, cursor):
# Commit changes to db and close connections, refresh app table
return connection.commit(), cursor.close(), connection.close(), student_management_sys.load_data()
# App Main Window class
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Student Management System")
self.setMinimumSize(600, 400)
# Menu items
file_menu_item = self.menuBar().addMenu("&File")
utility_menu_item = self.menuBar().addMenu("&Utility")
help_menu_item = self.menuBar().addMenu("&Help")
# Add student menu item and action with toolbar icon binding to action
add_student_action = QAction(QIcon("icons/add.png"), "Add Student", self)
add_student_action.triggered.connect(self.insert)
file_menu_item.addAction(add_student_action)
# About menu item and action
about_action = QAction("About", self)
help_menu_item.addAction(about_action)
about_action.triggered.connect(self.about)
# SEARCH item and action with toolbar icon binding to action
search_action = QAction(QIcon("icons/search.png"), "Search", self)
search_action.triggered.connect(self.search)
utility_menu_item.addAction(search_action)
# Toolbar widget and elements, toolbar is also movable
toolbar = QToolBar()
toolbar.setMovable(True)
self.addToolBar(toolbar)
toolbar.addAction(add_student_action)
toolbar.addAction(search_action)
# Statusbar widget and elements
self.statusbar = QStatusBar()
self.setStatusBar(self.statusbar)
# QTableWidget attributes
self.table = QTableWidget()
self.table.setColumnCount(4)
self.table.setHorizontalHeaderLabels(("Id", "Name", "Course", "Mobile"))
# To hide default vertical numbers not associated with SQL database
self.table.verticalHeader().setVisible(False)
# Detect if cell is clicked
self.table.cellClicked.connect(self.cell_clicked)
# Set a center layout widget to QTableWidget instance
self.setCentralWidget(self.table)
# Cell clicked method
def cell_clicked(self):
# Edit button
edit_button = QPushButton("Edit Record")
edit_button.clicked.connect(self.edit)
# Delete button
delete_button = QPushButton("Delete Record")
delete_button.clicked.connect(self.delete)
# Find children of statusbar widgets and remove appending children
# Prevent duplications of widgets for every cell click
children = self.findChildren(QPushButton)
if children:
for child in children:
self.statusbar.removeWidget(child)
# Add widgets after cell is clicked
self.statusbar.addWidget(edit_button)
self.statusbar.addWidget(delete_button)
# Load SQL Database data in PyQt
def load_data(self):
# Connect SQL database
connection, cursor = DatabaseConnection().connect()
results = connection.execute("SELECT * FROM students")
# Initialize table number to 0
self.table.setRowCount(0)
# Iterate through row numbers
for row_number, row_data in enumerate(results):
# Every index insert a row cell with a row number
self.table.insertRow(row_number)
# Iterate through column numbers
for column_number, column_data in enumerate(row_data):
# Every index of a row number and column number add column data
self.table.setItem(row_number, column_number, QTableWidgetItem(str(column_data)))
# Close the database connection
connection.close()
# Insert new data method call
def insert(self):
dialog = InsertDialog()
dialog.exec()
def search(self):
search_dialog = SearchDialog()
search_dialog.exec()
def edit(self):
edit_dialog = EditDialog()
edit_dialog.exec()
def delete(self):
delete_dialog = DeleteDialog()
delete_dialog.exec()
def about(self):
about_dialog = AboutDialog()
about_dialog.exec()
# Dialog Attributes for Insert
class InsertDialog(QDialog):
def __init__(self):
super().__init__()
# Set Window Attributes
self.setWindowTitle("Insert Student Data")
self.setFixedWidth(300)
self.setFixedHeight(300)
layout = QVBoxLayout()
# Add Student Name widget
self.student_name = QLineEdit()
self.student_name.setPlaceholderText("Name")
layout.addWidget(self.student_name)
# Add Course ComboBox widget
self.course_name = QComboBox()
courses = ["Biology", "Math", "Astronomy", "Physics"]
self.course_name.addItems(courses)
layout.addWidget(self.course_name)
# Add Mobile Number widget
self.mobile_number = QLineEdit()
self.mobile_number.setPlaceholderText("Mobile Number")
layout.addWidget(self.mobile_number)
# Submit button
submit_btn = QPushButton("Register")
submit_btn.clicked.connect(self.add_student)
layout.addWidget(submit_btn)
self.setLayout(layout)
# Add Student method
def add_student(self):
# Reference to field values stored in variables
name = self.student_name.text()
course = self.course_name.itemText(self.course_name.currentIndex())
mobile = self.mobile_number.text()
# Connect to database and create cursor
connection, cursor = DatabaseConnection().connect()
# Use the cursor to destructure and INSERT reference variables into related db columns
cursor.execute("INSERT INTO students (name, course, mobile) VALUES (?, ?, ?)",
(name, course, mobile))
# Commit changes, Close connection to database and cursor
DatabaseConnection().close_connection(connection, cursor)
# Close window after entry
self.close()
# Dialog Attributes for Search
class SearchDialog(QDialog):
def __init__(self):
super().__init__()
# Set Window Attributes
self.setWindowTitle("Search Student")
self.setFixedWidth(300)
self.setFixedHeight(300)
search_layout = QVBoxLayout()
# Search Student Name widget
self.search_student_name = QLineEdit()
self.search_student_name.setPlaceholderText("Name")
search_layout.addWidget(self.search_student_name)
# Search button
search_btn = QPushButton("Search")
search_btn.clicked.connect(self.search_student)
search_layout.addWidget(search_btn)
self.setLayout(search_layout)
# Search Student method
def search_student(self):
# Reference to field values stored in variables
name = self.search_student_name.text()
# Connect to database and create cursor
connection, cursor = DatabaseConnection().connect()
# Select all fields that contained query of student name in database
result = cursor.execute("SELECT * FROM students WHERE name = ?", (name, ))
rows = list(result)
print(rows)
# Select all fields in Main window table and find match of student name
items = student_management_sys.table.findItems(name, Qt.MatchFlag.MatchFixedString)
# Highlight all names that match query and print item row to console
for item in items:
print(item)
student_management_sys.table.item(item.row(), 1).setSelected(True)
# Close cursor and connection to db
cursor.close()
connection.close()
# Close dialog after search
self.close()
# Dialog Attributes for Edit
class EditDialog(QDialog):
def __init__(self):
super().__init__()
# Set Window Attributes
self.setWindowTitle("Update Student Data")
self.setFixedWidth(300)
self.setFixedHeight(300)
layout = QVBoxLayout()
# Get table row and column of student to edit
index = student_management_sys.table.currentRow()
# Get ID from selected Row
self.student_id = student_management_sys.table.item(index, 0).text()
# Get student name
student_name = student_management_sys.table.item(index, 1).text()
# Get Course name
course_name = student_management_sys.table.item(index, 2).text()
# Get Mobile number
mobile_number = student_management_sys.table.item(index, 3).text()
# Add Student Name widget
self.student_name = QLineEdit(student_name)
self.student_name.setPlaceholderText("Name")
layout.addWidget(self.student_name)
# Add Course ComboBox widget
self.course_name = QComboBox()
courses = ["Biology", "Math", "Astronomy", "Physics"]
self.course_name.addItems(courses)
self.course_name.setCurrentText(course_name)
layout.addWidget(self.course_name)
# Add Mobile Number widget
self.mobile_number = QLineEdit(mobile_number)
self.mobile_number.setPlaceholderText("Mobile Number")
layout.addWidget(self.mobile_number)
# Submit button
submit_btn = QPushButton("Update")
submit_btn.clicked.connect(self.update_student)
layout.addWidget(submit_btn)
self.setLayout(layout)
# Update method
def update_student(self):
connection, cursor = DatabaseConnection().connect()
# Destructure table rows and UPDATE with new values from references in edit fields
cursor.execute("UPDATE students SET name = ?, course = ?, mobile = ? WHERE id = ?",
(self.student_name.text(),
self.course_name.itemText(self.course_name.currentIndex()),
self.mobile_number.text(), self.student_id))
# Commit changes, Close connection to database and cursor
DatabaseConnection().close_connection(connection, cursor)
# Close dialog after update
self.close()
# Dialog Attributes for Delete
class DeleteDialog(QDialog):
def __init__(self):
super().__init__()
# Set Window Attributes
self.setWindowTitle("Delete Student Data")
layout = QGridLayout()
confirmation = QLabel("Are you sure you want to delete?")
yes = QPushButton("Yes")
no = QPushButton("No")
layout.addWidget(confirmation, 0, 0, 1, 2)
layout.addWidget(yes, 1, 0)
layout.addWidget(no, 1, 1)
self.setLayout(layout)
yes.clicked.connect(self.delete_student)
no.clicked.connect(self.close)
# Delete Method
def delete_student(self):
# Connect to database
connection, cursor = DatabaseConnection().connect()
# Get table row and column of student to edit
index = student_management_sys.table.currentRow()
# Get ID from selected Row
student_id = student_management_sys.table.item(index, 0).text()
# Execute SQL DELETE query using student ID
cursor.execute("DELETE FROM students WHERE id = ?", (student_id, ))
# Commit changes, Close connection to database and cursor
DatabaseConnection().close_connection(connection, cursor)
# Create a message box to relay deletion was successful
confirmation_widget = QMessageBox()
confirmation_widget.setWindowTitle("Success")
confirmation_widget.setText("The Record Deleted Successfully!")
confirmation_widget.exec()
# Close delete dialog window
self.close()
# About Inheriting from 'QMessageBox' simple child version of a QDialog
class AboutDialog(QMessageBox):
def __init__(self):
super().__init__()
self.setWindowTitle("About")
# Content for about section
content = "I built this academic management app as I learned PyQt6 and it's component libraries. " \
"I used object oriented architecture to keep my code organized and scalable." \
" A SQL database was used store records and 'CRUD' methods were used to managed it's contents."
# Use set text to content
self.setText(content)
if __name__ == "__main__":
app = QApplication(sys.argv)
student_management_sys = MainWindow()
student_management_sys.show()
student_management_sys.load_data()
sys.exit(app.exec())
|
KelvinBrannonJr/Student_Mangement_System
|
main.py
|
main.py
|
py
| 13,372 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35484437119
|
def adress_book():
a = {}
while True:
print("Имя - ")
name = input()
if name != "q":
print("Номер - ")
phone = input()
if (phone[0] == "+" and phone[2] == "-" and phone[6] == "-"
and phone[10] == "-" and phone[13] == "-"):
if phone[1:].replace("-", "").isdigit():
a[name] = phone
else:
break
return a
print(adress_book())
|
TaffetaEarth/homework_python
|
0610/hw.py
|
hw.py
|
py
| 480 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10648619314
|
# -*- coding: utf-8 -*-
"""
Created on Wed May 6 15:04:40 2020
@author: Rijk
Scipy signal sos filter toolbox test
"""
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
plt.close('all')
b, a = signal.butter(4, 100, 'low', analog=True)
w, h = signal.freqs(b, a)
plt.figure()
plt.semilogx(w, 20 * np.log10(abs(h)))
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [radians / second]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
plt.grid(which='both', axis='both')
plt.axvline(100, color='green') # cutoff frequency
#plt.show()
t = np.linspace(0, 1, 1000, False) # 1 second
sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(t, sig)
ax1.set_title('10 Hz and 20 Hz sinusoids')
ax1.axis([0, 1, -2, 2])
sos = signal.butter(10, 15, 'hp', fs=1000, output='sos')
filtered = signal.sosfilt(sos, sig)
ax2.plot(t, filtered)
ax2.set_title('After 15 Hz high-pass filter')
ax2.axis([0, 1, -2, 2])
ax2.set_xlabel('Time [seconds]')
plt.tight_layout()
plt.show()
# Compare FFT before and after
fft_before = np.fft.fft(sig)
fft_after = np.fft.fft(filtered)
sample_time = np.mean(np.diff(t))
f = np.fft.fftfreq(len(t), sample_time)
half = int(len(t)/2)
plt.figure()
plt.plot(f[1:half], fft_before[1:half], label='Original')
#plt.plot(f[1:half], fft_after[1:half], label='Filtered')
plt.legend()
## Measurement data filter
#f_axis = 1.12
#nyquist_f = f_axis
#
## Define filter
#lower_f = 0.025
#upper_f = 0.065
#bandpass_f = 2*np.pi * np.array([lower_f, upper_f]) / nyquist_f
#butter_low = signal.butter(2, lower_f, btype='lowpass', output='sos')
#butter_high = signal.butter(2, upper_f, btype='lowpass', output='sos')
#
#b, a = signal.butter(2, bandpass_f, btype='bandstop', output='ba')
#w, h = signal.freqz(b, a)
#
#plt.figure()
#plt.plot(w, 20 * np.log10(abs(h)))
|
rehogenbirk/MEP_control_software
|
Measurements/20200324 WO3196dev9/Hydrogen R_T correction/0324_1904_WO3196dev9_H2ToAir/signal_toolbox_test.py
|
signal_toolbox_test.py
|
py
| 1,897 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21689221352
|
import json
import os
import subprocess
from collections import OrderedDict
from copy import deepcopy
from sys import platform
from tabulate import tabulate
from openwpm.config import ConfigEncoder
def parse_http_stack_trace_str(trace_str):
"""Parse a stacktrace string and return an array of dict."""
stack_trace = []
frames = trace_str.split("\n")
for frame in frames:
try:
func_name, rest = frame.split("@", 1)
rest, async_cause = rest.rsplit(";", 1)
filename, line_no, col_no = rest.rsplit(":", 2)
stack_trace.append(
{
"func_name": func_name,
"filename": filename,
"line_no": line_no,
"col_no": col_no,
"async_cause": async_cause,
}
)
except Exception as exc:
print("Exception parsing the stack frame %s %s" % (frame, exc))
return stack_trace
def get_firefox_binary_path():
"""
If ../../firefox-bin/firefox-bin or os.environ["FIREFOX_BINARY"] exists,
return it. Else, throw a RuntimeError.
"""
if "FIREFOX_BINARY" in os.environ:
firefox_binary_path = os.environ["FIREFOX_BINARY"]
if not os.path.isfile(firefox_binary_path):
raise RuntimeError(
"No file found at the path specified in "
"environment variable `FIREFOX_BINARY`."
"Current `FIREFOX_BINARY`: %s" % firefox_binary_path
)
return firefox_binary_path
root_dir = os.path.dirname(__file__) + "/../.."
if platform == "darwin":
firefox_binary_path = os.path.abspath(
root_dir + "/Nightly.app/Contents/MacOS/firefox-bin"
)
else:
firefox_binary_path = os.path.abspath(root_dir + "/firefox-bin/firefox-bin")
if not os.path.isfile(firefox_binary_path):
raise RuntimeError(
"The `firefox-bin/firefox-bin` binary is not found in the root "
"of the OpenWPM directory (did you run the install script "
"(`install.sh`)?). Alternatively, you can specify a binary "
"location using the OS environment variable FIREFOX_BINARY."
)
return firefox_binary_path
def get_version():
"""Return OpenWPM version tag/current commit and Firefox version"""
try:
openwpm = subprocess.check_output(
["git", "describe", "--tags", "--always"]
).strip()
except subprocess.CalledProcessError:
ver = os.path.join(os.path.dirname(__file__), "../../VERSION")
with open(ver, "r") as f:
openwpm = f.readline().strip()
firefox_binary_path = get_firefox_binary_path()
try:
firefox = subprocess.check_output([firefox_binary_path, "--version"])
except subprocess.CalledProcessError as e:
raise RuntimeError("Firefox not found. " " Did you run `./install.sh`?") from e
ff = firefox.split()[-1]
return openwpm, ff
def get_configuration_string(manager_params, browser_params, versions):
"""Construct a well-formatted string for {manager,browser}params
Constructs a pretty printed string of all parameters. The config
dictionaries are split to try to avoid line wrapping for reasonably
size terminal windows.
"""
config_str = "\n\nOpenWPM Version: %s\nFirefox Version: %s\n" % versions
config_str += "\n========== Manager Configuration ==========\n"
config_str += json.dumps(
manager_params.to_dict(),
sort_keys=True,
indent=2,
separators=(",", ": "),
cls=ConfigEncoder,
)
config_str += "\n\n========== Browser Configuration ==========\n"
print_params = [deepcopy(x.to_dict()) for x in browser_params]
table_input = list()
profile_dirs = OrderedDict()
archive_dirs = OrderedDict()
js_config = OrderedDict()
profile_all_none = archive_all_none = True
for item in print_params:
browser_id = item["browser_id"]
# Update print flags
if item["seed_tar"] is not None:
profile_all_none = False
if item["profile_archive_dir"] is not None:
archive_all_none = False
# Separate out long profile directory strings
profile_dirs[browser_id] = str(item.pop("seed_tar"))
archive_dirs[browser_id] = str(item.pop("profile_archive_dir"))
js_config[browser_id] = item.pop("cleaned_js_instrument_settings")
# Copy items in sorted order
dct = OrderedDict()
dct["browser_id"] = browser_id
for key in sorted(item.keys()):
dct[key] = item[key]
table_input.append(dct)
key_dict = OrderedDict()
counter = 0
for key in table_input[0].keys():
key_dict[key] = counter
counter += 1
config_str += "Keys:\n"
config_str += json.dumps(key_dict, indent=2, separators=(",", ": "))
config_str += "\n\n"
config_str += tabulate(table_input, headers=key_dict)
config_str += "\n\n========== JS Instrument Settings ==========\n"
config_str += json.dumps(js_config, indent=None, separators=(",", ":"))
config_str += "\n\n========== Input profile tar files ==========\n"
if profile_all_none:
config_str += " No profile tar files specified"
else:
config_str += json.dumps(profile_dirs, indent=2, separators=(",", ": "))
config_str += "\n\n========== Output (archive) profile dirs ==========\n"
if archive_all_none:
config_str += " No profile archive directories specified"
else:
config_str += json.dumps(archive_dirs, indent=2, separators=(",", ": "))
config_str += "\n\n"
return config_str
|
openwpm/OpenWPM
|
openwpm/utilities/platform_utils.py
|
platform_utils.py
|
py
| 5,733 |
python
|
en
|
code
| 1,286 |
github-code
|
6
|
3681349954
|
import json
from dataclasses import dataclass, field
from typing import Union
import requests
@dataclass
class ManyChatAPI:
api_base_url = 'https://api.manychat.com/fb/'
api_key: str
psid: str
headers: dict = field(init=False)
def __post_init__(self):
self.headers = {
'Accept': 'application/json',
'Content-Type': 'application/json',
'Authorization': f'Bearer {self.api_key}',
}
def get_user_info(self) -> dict:
params = {
'subscriber_id': self.psid,
}
try:
response = requests.get(
url=f'{self.api_base_url}subscriber/getInfo',
headers=self.headers,
params=params,
timeout=5,
)
except Exception as e:
results = {
'status': 'error',
'message': e,
}
else:
results = json.loads(response.text)
return results
def send_content(self, messages: list) -> dict:
params = {
'subscriber_id': self.psid,
'data': {
'version': 'v2',
'content': {
'messages': [
{
'type': 'text',
'text': message,
} for message in messages
]
}
},
}
try:
response = requests.post(
url=f'{self.api_base_url}sending/sendContent',
headers=self.headers,
data=json.dumps(params),
timeout=5,
)
except Exception as e:
results = {
'status': 'error',
'message': e,
}
else:
results = json.loads(response.text)
return results
def send_flow(self, flow_ns: str) -> dict:
params = {
'subscriber_id': self.psid,
'flow_ns': flow_ns,
}
try:
response = requests.post(
url=f'{self.api_base_url}sending/sendFlow',
headers=self.headers,
data=json.dumps(params),
timeout=5,
)
except Exception as e:
results = {
'status': 'error',
'message': e,
}
else:
results = json.loads(response.text)
return results
def set_custom_field_by_name(self,
field_name: str,
field_value: Union[str, int, bool]) -> dict:
params = {
'subscriber_id': self.psid,
'field_name': field_name,
'field_value': field_value,
}
try:
response = requests.post(
url=f'{self.api_base_url}subscriber/setCustomFieldByName',
headers=self.headers,
data=json.dumps(params),
timeout=5,
)
except Exception as e:
results = {
'status': 'error',
'message': e,
}
else:
results = json.loads(response.text)
return results
|
daiangan/manychat-dialogflow-connector
|
utils/manychat_helpers.py
|
manychat_helpers.py
|
py
| 3,304 |
python
|
en
|
code
| 5 |
github-code
|
6
|
11079705264
|
#------------------------------------------------
#other < supper_code
#Dylan Friesen
#October 30th, 2019
#------------------------------------------------
#--------------Dictionaries--------------------
supper = {}
#------------------Definitions-----------------
def add_stuff_s(): #used to add stuff to the supper list
stop = False
while stop == False:
stuff = input("What do you want to add to to your shopping list?").lower()
if stuff == "stop":
stop = True
elif stuff != "stop":
value = input("How many or description?")
print("adding", value, stuff)
supper[stuff] = value
def remove_stuff_s(): #used to remove stuff in the supper list
stop = False
while stop == False:
stuff = input("What do you want to take off of your shopping list?").lower()
if stuff == "stop":
stop = True
elif stuff != "stop":
if stuff in supper:
print("removing", stuff)
del supper[stuff]
else:
print("You don't have that on your list")
def view_stuff_s():
for (stuff, value) in supper.items():
print("you have", value, stuff, "on your shopping list")
#Main
def main_s(): #main code specified for just deciding what it wanted on the supper list
play = 1
print("Supper part of list")
while play == 1:
print("")
print("")
choice = input("Would you like to Add, Remove, View, or Stop?").lower()
if choice == "add":
add_stuff_s()
elif choice == "remove":
remove_stuff_s()
elif choice == "view":
view_stuff_s()
elif choice == "stop":
play = 0
print ("Onto Desserts")
else:
("Sorry, I didn't understand that.")
|
Gobbo306/libraries-summative
|
other/supper_code.py
|
supper_code.py
|
py
| 1,955 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22626759020
|
import pandas as pd
from math import sqrt
import random
import os
import sys
LIB_PATH = os.path.join(os.path.dirname(__file__), '../lib')
sys.path.append(LIB_PATH)
from RandomForest import *
def main():
if (len(sys.argv) < 5):
print("Usage: python3 %s <dataset-csv> <separator> <target-attr> <ntree>" % sys.argv[0])
exit(-1)
datasetFile = sys.argv[1]
separator = sys.argv[2]
targetAttr = sys.argv[3]
ntree = int(sys.argv[4])
random.seed(1)
# Read dataset
D = pd.read_csv(datasetFile, sep=separator)
# Get the number of possible values for each attribute in dataset
attrsNVals = D.nunique()
# Build Random Forest
forest = RandomForest(D, targetAttr, attrsNVals, ntree, attrsSampleFn=sqrt, graph=True)
if ntree <= 6:
forest.render()
# Test classification
instance = D.iloc[200]
print("> Test instance:")
print(instance)
print("> Prediction: %s" % forest.classify(instance))
if __name__ == "__main__":
main()
|
rubensrech/ml-random-forest
|
test/randomForest.py
|
randomForest.py
|
py
| 1,019 |
python
|
en
|
code
| 0 |
github-code
|
6
|
20194791845
|
# -*- coding: utf-8 -*-
import datetime
import json
import sys
from threading import Thread
from resources.lib.common import tools
from resources.lib.indexers.trakt import TraktAPI
from resources.lib.modules import database
from resources.lib.modules.trakt_sync.shows import TraktSyncDatabase
from resources.lib.modules.trakt_sync.hidden import TraktSyncDatabase as HiddenDatabase
try:
from Queue import Queue
except:
from queue import Queue
sysaddon = sys.argv[0]
try:
syshandle = int(sys.argv[1])
except:
syshandle = ''
trakt = TraktAPI()
language_code = tools.get_language_code()
trakt_database = TraktSyncDatabase()
hidden_database = HiddenDatabase()
class Menus:
def __init__(self):
self.itemList = []
self.threadList = []
self.direct_episode_threads = []
self.title_appends = tools.getSetting('general.appendtitles')
self.task_queue = Queue(40)
######################################################
# MENUS
######################################################
def onDeckShows(self):
hidden_shows = hidden_database.get_hidden_items('progress_watched', 'shows')
trakt_list = trakt.json_response('sync/playback/episodes', limit=True)
if trakt_list is None:
return
trakt_list = [i for i in trakt_list if i['show']['ids']['trakt'] not in hidden_shows]
trakt_list = sorted(trakt_list, key=lambda i: tools.datetime_workaround(i['paused_at'][:19],
format="%Y-%m-%dT%H:%M:%S",
date_only=False), reverse=True)
filter_list = []
showList = []
sort_list = []
for i in trakt_list:
if i['show']['ids']['trakt'] not in filter_list:
if int(i['progress']) != 0:
showList.append(i)
filter_list.append(i['show']['ids']['trakt'])
sort_list.append(i['show']['ids']['trakt'])
sort = {'type': 'showInfo', 'id_list': sort_list}
self.mixedEpisodeBuilder(showList, sort=sort)
tools.closeDirectory('tvshows')
def discoverShows(self):
tools.addDirectoryItem(tools.lang(32007), 'showsPopular&page=1', '', '')
if tools.getSetting('trakt.auth') is not '':
tools.addDirectoryItem(tools.lang(32008), 'showsRecommended', '', '')
# tools.addDirectoryItem('This Years Most Popular', '', '', '')
tools.addDirectoryItem(tools.lang(32009), 'showsTrending&page=1', '', '')
tools.addDirectoryItem(tools.lang(32067), 'showsNew', '', '')
tools.addDirectoryItem(tools.lang(32010), 'showsPlayed&page=1', '', '')
tools.addDirectoryItem(tools.lang(32011), 'showsWatched&page=1', '', '')
tools.addDirectoryItem(tools.lang(32012), 'showsCollected&page=1', '', '')
tools.addDirectoryItem(tools.lang(32013), 'showsAnticipated&page=1', '', '')
tools.addDirectoryItem(tools.lang(32014), 'showsUpdated&page=1', '', '')
tools.addDirectoryItem(tools.lang(40121), 'showsNetworks', '', '')
tools.addDirectoryItem(tools.lang(40123), 'showYears', '', '')
tools.addDirectoryItem(tools.lang(32062), 'tvGenres', '', '')
tools.addDirectoryItem(tools.lang(40151), 'showsByActor', '', '')
# show genres is now labeled as tvGenres to support genre icons in skins
if tools.getSetting('searchHistory') == 'false':
tools.addDirectoryItem(tools.lang(32016), 'showsSearch', '', '')
else:
tools.addDirectoryItem(tools.lang(32016), 'showsSearchHistory', '', '')
tools.closeDirectory('addons')
def myShows(self):
tools.addDirectoryItem(tools.lang(32063), 'onDeckShows', None, None)
tools.addDirectoryItem(tools.lang(32017), 'showsMyCollection', '', '')
tools.addDirectoryItem(tools.lang(32018), 'showsMyWatchlist', '', '')
tools.addDirectoryItem('Next Up', 'showsNextUp', '', '')
tools.addDirectoryItem('Upcoming Episodes', 'myUpcomingEpisodes', '', '')
tools.addDirectoryItem('Unfinished Shows in Collection', 'showsMyProgress', '', '')
tools.addDirectoryItem('Recent Episodes', 'showsMyRecentEpisodes', '', '')
tools.addDirectoryItem('My Show Lists', 'myTraktLists&actionArgs=shows', '', '')
tools.closeDirectory('addons')
def myShowCollection(self):
trakt_list = trakt_database.get_collected_episodes()
trakt_list = [i for i in trakt_list if i is not None]
trakt_list = list(set([i['show_id'] for i in trakt_list]))
trakt_list = [{'ids': {'trakt': i}} for i in trakt_list]
trakt_list = [i for i in trakt_list if i is not None]
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows', sort='title')
def myShowWatchlist(self):
trakt_list = trakt.json_response('users/me/watchlist/shows', limit=False)
if trakt_list is None:
return
try:
sort_by = trakt.response_headers['X-Sort-By']
sort_how = trakt.response_headers['X-Sort-How']
trakt_list = trakt.sort_list(sort_by, sort_how, trakt_list, 'show')
except:
tools.log('Failed to sort trakt list by response headers', 'error')
pass
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def myProgress(self):
collected_episodes = trakt_database.get_collected_episodes()
collection = list(set([i['show_id'] for i in collected_episodes]))
if len(collection) == 0:
return
show_dicts = []
for i in collection:
show_dicts.append({'show': {'ids': {'trakt': i}}})
show_meta_list = trakt_database.get_show_list(show_dicts)
unfinished = []
for show in show_meta_list:
if show['info']['playcount'] == 0:
unfinished.append(show)
self.showListBuilder(unfinished)
tools.closeDirectory('tvshows', sort='title')
def newShows(self):
hidden = hidden_database.get_hidden_items('recommendations', 'shows')
datestring = datetime.datetime.today() - datetime.timedelta(days=29)
trakt_list = database.get(trakt.json_response, 12, 'calendars/all/shows/new/%s/30?languages=%s' %
(datestring.strftime('%d-%m-%Y'), language_code))
if trakt_list is None:
return
# For some reason trakt messes up their list and spits out tons of duplicates so we filter it
duplicate_filter = []
temp_list = []
for i in trakt_list:
if not i['show']['ids']['tvdb'] in duplicate_filter:
duplicate_filter.append(i['show']['ids']['tvdb'])
temp_list.append(i)
trakt_list = temp_list
trakt_list = [i for i in trakt_list if i['show']['ids']['trakt'] not in hidden]
if len(trakt_list) > 40:
trakt_list = trakt_list[:40]
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def myNextUp(self, ):
watched_shows = trakt_database.get_watched_shows()
hidden_shows = hidden_database.get_hidden_items('progress_watched', 'shows')
watched_shows = [i for i in watched_shows if i['trakt_id'] not in hidden_shows]
watched_episodes = trakt_database.get_watched_episodes()
self._start_queue_workers()
for show in watched_shows:
self.task_queue.put((self._get_next_episode_to_watch, (show, watched_episodes)), block=True)
self._finish_queue_workers()
if tools.getSetting('nextup.sort') == '1':
watched_list = trakt.json_response('users/me/watched/shows')
watched_list = sorted(watched_list, key=lambda i: i['last_watched_at'], reverse=True)
watched_list = [i['show']['ids']['trakt'] for i in watched_list]
sort = {'type': 'showInfo', 'id_list': watched_list}
else:
sort = None
episodes = self.itemList
self.itemList = []
self.mixedEpisodeBuilder(episodes, sort=sort, hide_watched=True)
tools.closeDirectory('tvshows')
def _get_next_episode_to_watch(self, show_db_dict, watched_episodes):
try:
show_id = show_db_dict['trakt_id']
if show_db_dict['kodi_meta'] == {}:
show_db_dict['kodi_meta'] = trakt_database.get_single_show(show_id)
watched_episodes = [i for i in watched_episodes if i['show_id'] == show_id]
watched_episodes = sorted(watched_episodes, key=lambda episode: episode['season'], reverse=True)
season = watched_episodes[0]['season']
season_meta = trakt_database.get_single_season(show_id, season)
watched_episodes = [i for i in watched_episodes if i['season'] == season]
watched_episodes = sorted(watched_episodes, key=lambda episode: episode['number'], reverse=True)
last_watched_episode = watched_episodes[0]['number']
next_episode = int(watched_episodes[0]['number']) + 1
if season_meta is None:
tools.log('Could not acquire season meta information for %s Season %s' % (show_id, season), 'error')
return
if season_meta['info']['episode_count'] == len(watched_episodes) \
or season_meta['info']['episode_count'] == last_watched_episode:
if int(show_db_dict['kodi_meta']['info']['season_count']) > season:
season += 1
next_episode = 1
episode_dict = {'show': {'ids': {'trakt': show_id}},
'episode': {'season': season, 'number': next_episode}}
self.itemList.append(episode_dict)
except KeyError:
import traceback
traceback.print_exc()
pass
except:
import traceback
traceback.print_exc()
def myRecentEpisodes(self):
hidden_shows = hidden_database.get_hidden_items('calendar', 'shows')
datestring = datetime.datetime.today() - datetime.timedelta(days=13)
trakt_list = database.get(trakt.json_response, 12, 'calendars/my/shows/%s/14' %
datestring.strftime('%d-%m-%Y'))
if trakt_list is None:
return
trakt_list = [i for i in trakt_list if i['show']['ids']['trakt'] not in hidden_shows]
self.mixedEpisodeBuilder(trakt_list)
tools.closeDirectory('episodes')
def myUpcomingEpisodes(self):
tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).strftime('%Y-%m-%d')
upcoming_episodes = database.get(trakt.json_response, 24, 'calendars/my/shows/%s/30' % tomorrow)
sort = sorted(upcoming_episodes, key=lambda i: i['first_aired'])
sort = [i['episode']['ids']['trakt'] for i in sort]
sort = {'type': None, 'id_list': sort}
self.mixedEpisodeBuilder(upcoming_episodes, sort=sort, hide_watched=False, hide_unaired=False,
prepend_date=True)
tools.closeDirectory('episodes')
def showsNetworks(self):
trakt_list = database.get(trakt.json_response, 24, 'networks')
if trakt_list is None:
return
list_items = []
for i in trakt_list:
list_items.append(tools.addDirectoryItem(i['name'], 'showsNetworkShows&actionArgs=%s&page=1' % i['name'],
'', '', bulk_add=True))
tools.addMenuItems(syshandle, list_items, len(list_items))
tools.closeDirectory('addons')
def showsNetworkShows(self, network, page):
trakt_list = database.get(trakt.json_response, 24, 'shows/popular?networks=%s&page=%s' % (network, page))
if trakt_list is None:
return
self.showListBuilder(trakt_list)
if len(trakt_list) == int(tools.getSetting('item.limit')):
tools.addDirectoryItem(tools.lang(32019), 'showsNetworkShows&actionArgs=%s&page=%s' %
(network, int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsPopular(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/popular?page=%s' % page)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsPopular&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsRecommended(self):
trakt_list = database.get(trakt.json_response, 12, 'recommendations/shows?ignore_collected=true',
limit=True, limitOverride=100)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def showsTrending(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/trending?page=%s' % page)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsTrending&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsPlayed(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/played?page=%s' % page)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsPlayed&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsWatched(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/watched?page=%s' % page)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsWatched&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsCollected(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/collected?page=%s' % page)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsCollected&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsAnticipated(self, page):
trakt_list = database.get(trakt.json_response, 12, 'shows/anticipated?page=%s&language=%s'
% (page, language_code))
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsAnticipated&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showsUpdated(self, page):
import datetime
date = datetime.date.today() - datetime.timedelta(days=31)
date = date.strftime('%Y-%m-%d')
trakt_list = database.get(trakt.json_response, 12, 'shows/updates/%s?page=%s' % (date, page))
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019), 'showsUpdated&page=%s' % (int(page) + 1), '', '')
tools.closeDirectory('tvshows')
def showSearchHistory(self):
history = database.getSearchHistory('show')
tools.addDirectoryItem(tools.lang(40142), 'showsSearch', '', '')
tools.addDirectoryItem(tools.lang(40140), 'clearSearchHistory', '', '', isFolder=False)
for i in history:
tools.addDirectoryItem(i, 'showsSearch&actionArgs=%s' % tools.quote(i), '', '')
tools.closeDirectory('addon')
def showsSearch(self, actionArgs=None):
if actionArgs == None:
k = tools.showKeyboard('', tools.lang(32016))
k.doModal()
query = (k.getText() if k.isConfirmed() else None)
if query == None or query == '':
return
else:
query = actionArgs
database.addSearchHistory(query, 'show')
query = tools.deaccentString(tools.display_string(query))
tools.quote(query)
tools.closeAllDialogs()
tools.closeDirectory('tvshows')
tools.execute("Container.Update(%s?action=showsSearchResults&actionArgs=%s, replace)'" % (sysaddon, query))
def showsSearchResults(self, query):
query = tools.quote_plus(tools.unquote(query))
trakt_list = trakt.json_response('search/show?query=%s&extended=full&type=show&field=title' % query)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def showsByActor(self, actionArgs):
if actionArgs == None:
k = tools.showKeyboard('', tools.lang(32016))
k.doModal()
query = (k.getText() if k.isConfirmed() else None)
if query == None or query == '':
return
else:
query = tools.unquote(actionArgs)
database.addSearchHistory(query, 'showActor')
query = tools.deaccentString(query)
query = query.replace(' ', '-')
query = tools.quote_plus(query)
trakt_list = trakt.json_response('people/%s/shows' % query, limit=True)
try:
trakt_list = trakt_list['cast']
except:
import traceback
traceback.print_exc()
trakt_list = []
trakt_list = [i['show'] for i in trakt_list]
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def showSeasons(self, args):
args = tools.get_item_information(args)
self.seasonListBuilder(args['ids']['trakt'])
tools.closeDirectory('seasons')
def seasonEpisodes(self, args):
args = tools.get_item_information(args)
show_id = args['showInfo']['ids']['trakt']
if 'seasonInfo' in args:
season_number = args['seasonInfo']['info']['season']
else:
season_number = args['info']['season']
self.episodeListBuilder(show_id, season_number)
tools.closeDirectory('episodes', sort='episode')
def showGenres(self):
tools.addDirectoryItem(tools.lang(32065), 'showGenresGet', '', '', isFolder=True)
genres = database.get(trakt.json_response, 24, 'genres/shows')
if genres is None:
return
for i in genres:
tools.addDirectoryItem(i['name'], 'showGenresGet&actionArgs=%s' % i['slug'], '', '', isFolder=True)
tools.closeDirectory('addons')
def showGenreList(self, args, page):
if page is None:
page = 1
if args is None:
genre_display_list = []
genre_string = ''
genres = database.get(trakt.json_response, 24, 'genres/shows')
for genre in genres:
genre_display_list.append(genre['name'])
genre_multiselect = tools.showDialog.multiselect(tools.addonName + ": Genre Selection", genre_display_list)
if genre_multiselect is None: return
for selection in genre_multiselect:
genre_string += ', %s' % genres[selection]['slug']
genre_string = genre_string[2:]
else:
genre_string = args
page = int(page)
trakt_list = database.get(trakt.json_response, 12,
'shows/popular?genres=%s&page=%s' % (genre_string, page))
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019),
'showGenresGet&actionArgs=%s&page=%s' % (genre_string, page + 1), None, None)
tools.closeDirectory('tvshows')
def showsRelated(self, args):
trakt_list = database.get(trakt.json_response, 12, 'shows/%s/related' % args)
if trakt_list is None:
return
self.showListBuilder(trakt_list)
tools.closeDirectory('tvshows')
def showYears(self, year=None, page=None):
if year is None:
current_year = int(tools.datetime_workaround(datetime.datetime.today().strftime('%Y-%m-%d')).year)
all_years = reversed([year for year in range(1900, current_year+1)])
menu_items = []
for year in all_years:
menu_items.append(tools.addDirectoryItem(str(year), 'showYears&actionArgs=%s' % year, '', '',
bulk_add=True))
tools.addMenuItems(syshandle, menu_items, len(menu_items))
tools.closeDirectory('tvshows')
else:
if page is None:
page = 1
trakt_list = trakt.json_response('shows/popular?years=%s&page=%s' % (year, page))
self.showListBuilder(trakt_list)
tools.addDirectoryItem(tools.lang(32019),
'showYears&actionArgs=%s&page=%s' % (year, int(page) + 1), None, None)
tools.closeDirectory('tvshows')
######################################################
# MENU TOOLS
######################################################
def seasonListBuilder(self, show_id, smartPlay=False):
self.itemList = trakt_database.get_season_list(show_id)
self.itemList = [x for x in self.itemList if x is not None and 'info' in x]
self.itemList = sorted(self.itemList, key=lambda k: k['info']['season'])
if len(self.itemList) == 0:
tools.log('We received no titles to build a list', 'error')
return
hide_specials = False
if tools.getSetting('general.hideSpecials') == 'true':
hide_specials = True
item_list = []
for item in self.itemList:
try:
if hide_specials and int(item['info']['season']) == 0:
continue
action = 'seasonEpisodes'
args = {'trakt_id': item['showInfo']['ids']['trakt'],
'season': item['info']['season'],
'item_type': 'season'}
args = tools.quote(json.dumps(args, sort_keys=True))
item['trakt_object']['show_id'] = item['showInfo']['ids']['trakt']
name = item['info']['season_title']
if not self.is_aired(item['info']) or 'aired' not in item['info']:
if tools.getSetting('general.hideUnAired') == 'true':
continue
name = tools.colorString(name, 'red')
name = tools.italic_string(name)
item['info']['title'] = name
item['info'] = tools.clean_air_dates(item['info'])
except:
import traceback
traceback.print_exc()
continue
if smartPlay is True:
return args
cm = []
if tools.getSetting('trakt.auth') != '':
cm.append(('Trakt Manager', 'RunPlugin(%s?action=traktManager&actionArgs=%s)' % (sysaddon, args)))
if tools.context_addon():
cm = []
item_list.append(tools.addDirectoryItem(name, action, item['info'], item['art'], cm=cm, isFolder=True,
isPlayable=False, actionArgs=args, set_ids=item['ids'],
bulk_add=True))
tools.addMenuItems(syshandle, item_list, len(item_list))
def episodeListBuilder(self, show_id, season_number, smartPlay=False, hide_unaired=False):
try:
item_list = []
self.itemList = trakt_database.get_season_episodes(show_id, season_number)
self.itemList = [x for x in self.itemList if x is not None and 'info' in x]
if len(self.itemList) == 0:
tools.log('We received no titles to build a list', 'error')
return
try:
self.itemList = sorted(self.itemList, key=lambda k: k['info']['episode'])
except:
pass
for item in self.itemList:
cm = []
try:
if tools.getSetting('smartplay.playlistcreate') == 'true' and smartPlay is False:
action = 'smartPlay'
playable = False
else:
playable = True
action = 'getSources'
args = {'trakt_id': item['showInfo']['ids']['trakt'],
'season': item['info']['season'],
'episode': item['info']['episode'],
'item_type': 'episode'}
args = tools.quote(json.dumps(args, sort_keys=True))
name = item['info']['title']
if not self.is_aired(item['info']):
if tools.getSetting('general.hideUnAired') == 'true' or hide_unaired:
continue
else:
name = tools.colorString(name, 'red')
name = tools.italic_string(name)
item['info']['title'] = name
item['info'] = tools.clean_air_dates(item['info'])
except:
import traceback
traceback.print_exc()
continue
cm.append((tools.lang(32070),
'XBMC.PlayMedia(%s?action=shufflePlay&actionArgs=%s)' % (sysaddon, args)))
cm.append(('Browse Season',
'XBMC.Container.Update(%s?action=seasonEpisodes&actionArgs=%s)' %
(sysaddon,
tools.quote(json.dumps({'trakt_id': item['showInfo']['ids']['trakt'],
'season': item['info']['season'],
'item_type': 'season'})))))
cm.append((tools.lang(33022),
'PlayMedia(%s?action=getSources&seren_reload=true&actionArgs=%s)' % (sysaddon, args)))
cm.append((tools.lang(32066),
'PlayMedia(%s?action=getSources&source_select=true&actionArgs=%s)' % (sysaddon, args)))
if tools.getSetting('trakt.auth') != '':
cm.append(('Trakt Manager', 'RunPlugin(%s?action=traktManager&actionArgs=%s)' % (sysaddon, args)))
if tools.context_addon():
cm = []
if tools.getSetting('premiumize.enabled') == 'true' and tools.getSetting('premiumize.pin') != '':
cm.append((tools.lang(32068),
'XBMC.RunPlugin(%s?action=filePicker&actionArgs=%s)' % (sysaddon, args)))
item_list.append(tools.addDirectoryItem(name, action, item['info'], item['art'], isFolder=False,
isPlayable=playable, actionArgs=args, bulk_add=True,
set_ids=item['ids'], cm=cm))
if smartPlay is True:
return item_list
else:
tools.addMenuItems(syshandle, item_list, len(item_list))
except:
import traceback
traceback.print_exc()
def mixedEpisodeBuilder(self, trakt_list, sort=None, hide_watched=False, smartPlay=False, hide_unaired=True,
prepend_date=False):
self.threadList = []
try:
if len(trakt_list) == 0:
tools.log('We received no titles to build a list', 'error')
return
self.itemList = trakt_database.get_episode_list(trakt_list)
self.itemList = [x for x in self.itemList if x is not None and 'info' in x]
self.itemList = [i for i in self.itemList if 'info' in i and i['info'].get('premiered', None) is not None]
if sort is None:
self.itemList = sorted(self.itemList,
key=lambda i: tools.datetime_workaround(i['info']['premiered'],
tools.trakt_gmt_format, False),
reverse=True)
elif sort is not False:
sort_list = []
for trakt_id in sort['id_list']:
try:
if not sort['type']:
item = [i for i in self.itemList if i['ids']['trakt'] == trakt_id][0]
else:
item = [i for i in self.itemList if i[sort['type']]['ids']['trakt'] == trakt_id][0]
sort_list.append(item)
except IndexError:
continue
except:
import traceback
traceback.print_exc()
self.itemList = sort_list
item_list = []
for item in self.itemList:
if item is None:
continue
if item['info'].get('title', '') == '':
continue
if hide_watched and item['info']['playcount'] != 0:
continue
cm = []
try:
name = tools.display_string(item['info']['title'])
if not self.is_aired(item['info']) and hide_unaired is True:
continue
elif not self.is_aired(item['info']):
name = tools.colorString(name, 'red')
name = tools.italic_string(name)
item['info']['title'] = name
item['info'] = tools.clean_air_dates(item['info'])
args = {'trakt_id': item['showInfo']['ids']['trakt'],
'season': item['info']['season'],
'episode': item['info']['episode'],
'item_type': 'episode'}
args = tools.quote(json.dumps(args, sort_keys=True))
if tools.getSetting('smartplay.playlistcreate') == 'true' and smartPlay is False:
action = 'smartPlay'
playable = False
else:
playable = True
action = 'getSources'
if self.title_appends == 'true':
name = "%s: %sx%s %s" % (tools.colorString(item['showInfo']['info']['tvshowtitle']),
tools.display_string(item['info']['season']).zfill(2),
tools.display_string(item['info']['episode']).zfill(2),
tools.display_string(item['info']['title']))
if prepend_date:
release_day = tools.datetime_workaround(item['info']['aired'])
release_day = release_day.strftime('%d %b')
name = '[%s] %s' % (release_day, name)
cm.append((tools.lang(32069),
'XBMC.Container.Update(%s?action=showSeasons&actionArgs=%s)' %
(sysaddon, tools.quote(json.dumps({'trakt_id': item['showInfo']['ids']['trakt'],
'item_type': 'show'})))))
cm.append(('Browse Season',
'XBMC.Container.Update(%s?action=seasonEpisodes&actionArgs=%s)' %
(sysaddon,
tools.quote(json.dumps({'trakt_id': item['showInfo']['ids']['trakt'],
'season': item['info']['season'],
'item_type': 'season'})))))
cm.append((tools.lang(32070),
'XBMC.PlayMedia(%s?action=shufflePlay&actionArgs=%s)' % (sysaddon, args)))
cm.append((tools.lang(32066),
'PlayMedia(%s?action=getSources&source_select=true&actionArgs=%s)' % (sysaddon, args)))
cm.append((tools.lang(33022),
'PlayMedia(%s?action=getSources&seren_reload=true&actionArgs=%s)' % (sysaddon, args)))
if tools.getSetting('trakt.auth') != '':
cm.append(('Trakt Manager', 'RunPlugin(%s?action=traktManager&actionArgs=%s)'
% (sysaddon, tools.quote(json.dumps(item['trakt_object'])))))
if tools.context_addon():
cm = []
if tools.getSetting('premiumize.enabled') == 'true' and tools.getSetting('premiumize.pin') != '':
cm.append((tools.lang(32068),
'XBMC.RunPlugin(%s?action=filePicker&actionArgs=%s)' % (sysaddon, args)))
item['info']['title'] = item['info']['originaltitle'] = name
item_list.append(tools.addDirectoryItem(name, action, item['info'], item['art'], isFolder=False,
isPlayable=playable, actionArgs=args, bulk_add=True,
set_ids=item['ids'], cm=cm))
except:
import traceback
traceback.print_exc()
continue
if smartPlay is True:
return item_list
else:
tools.addMenuItems(syshandle, item_list, len(item_list))
except:
import traceback
traceback.print_exc()
def showListBuilder(self, trakt_list, forceResume=False, info_only=False):
try:
if len(trakt_list) == 0:
tools.log('We received no titles to build a list', 'error')
return
except:
import traceback
traceback.print_exc()
return
if 'show' in trakt_list[0]:
trakt_list = [i['show'] for i in trakt_list]
show_ids = [i['ids']['trakt'] for i in trakt_list]
self.itemList = trakt_database.get_show_list(show_ids)
self.itemList = [x for x in self.itemList if x is not None and 'info' in x]
self.itemList = tools.sort_list_items(self.itemList, trakt_list)
item_list = []
for item in self.itemList:
try:
# Add Arguments to pass with items
args = {'trakt_id': item['ids']['trakt'], 'item_type': 'show'}
args = tools.quote(json.dumps(args, sort_keys=True))
cm = []
name = tools.display_string(item['info']['tvshowtitle'])
if info_only == True:
return args
if not self.is_aired(item['info']):
if tools.getSetting('general.hideUnAired') == 'true':
continue
name = tools.colorString(name, 'red')
name = tools.italic_string(name)
item['info'] = tools.clean_air_dates(item['info'])
if 'setCast' in item:
set_cast = item['setCast']
else:
set_cast = False
if tools.getSetting('smartplay.clickresume') == 'true' or forceResume is True:
action = 'playbackResume'
else:
action = 'showSeasons'
# Context Menu Items
cm.append((tools.lang(32070),
'XBMC.PlayMedia(%s?action=shufflePlay&actionArgs=%s)' % (sysaddon, args)))
cm.append((tools.lang(32020),
'Container.Update(%s?action=showsRelated&actionArgs=%s)' % (sysaddon, item['ids']['trakt'])))
cm.append((tools.lang(32069),
'XBMC.Container.Update(%s?action=showSeasons&actionArgs=%s)' % (sysaddon, args)))
if tools.getSetting('trakt.auth') != '':
cm.append(('Trakt Manager', 'RunPlugin(%s?action=traktManager&actionArgs=%s)' % (sysaddon, args)))
cm.append((tools.lang(40153),
'XBMC.PlayMedia(%s?action=playFromRandomPoint&actionArgs=%s' % (sysaddon, args)))
if tools.context_addon():
cm = []
except:
import traceback
traceback.print_exc()
continue
item_list.append(tools.addDirectoryItem(name, action, item['info'], item['art'], cm=cm, isFolder=True,
isPlayable=False, actionArgs=args, bulk_add=True, set_cast=set_cast,
set_ids=item['ids']))
tools.addMenuItems(syshandle, item_list, len(item_list))
def runThreads(self, join=True):
for thread in self.threadList:
thread.start()
if join == True:
for thread in self.threadList:
thread.join()
def _start_queue_workers(self):
self.queue_finished = False
for i in range(40):
self.threadList.append(Thread(target=self._queue_worker))
for i in self.threadList:
i.start()
def _finish_queue_workers(self):
self.queue_finished = True
for i in self.threadList:
i.join()
self.threadList = []
def _queue_worker(self):
while not self.task_queue.empty() or not self.queue_finished:
try:
target = self.task_queue.get(timeout=3)
except:
continue
try:
target[0](*target[1])
except:
import traceback
traceback.print_exc()
pass
def is_aired(self, info):
try:
try:air_date = info['aired']
except: air_date = info.get('premiered')
if air_date == '' or air_date is None:
return False
if int(air_date[:4]) < 1970:
return True
time_format = tools.trakt_gmt_format
if len(air_date) == 10:
time_format = '%Y-%m-%d'
air_date = tools.gmt_to_local(air_date, format=time_format)
if tools.getSetting('general.datedelay') == 'true':
air_date = tools.datetime_workaround(air_date, time_format, False)
air_date += datetime.timedelta(days=1)
else:
air_date = tools.datetime_workaround(air_date, time_format, False)
if air_date > datetime.datetime.now():
return False
else:
return True
except:
import traceback
traceback.print_exc()
# Assume an item is not aired if we do not have any information on it or fail to identify
return False
|
Ed57/plugin.video.seren
|
resources/lib/gui/tvshowMenus.py
|
tvshowMenus.py
|
py
| 39,641 |
python
|
en
|
code
| null |
github-code
|
6
|
32466001503
|
from tech_news.database import find_news
# Requisito 10
def top_5_news():
"""Seu código deve vir aqui"""
news_list = find_news()
classified_news = sorted(
news_list, key=lambda news: news["comments_count"], reverse=True
)
return [
(news["title"], news["url"])
for news in classified_news
if classified_news.index(news) < 5
]
# Requisito 11
def top_5_categories():
"""Seu código deve vir aqui"""
news_list = find_news()
categories = {news["category"]: 0 for news in news_list}
classified_categories = sorted(categories, key=lambda category: category)
categories = {key: 0 for key in classified_categories}
for news in news_list:
categories[news["category"]] += 1
ordered_categories = sorted(
categories.items(), key=lambda category: (category[1]), reverse=True
)
return [
category
for category, qnt in ordered_categories
if ordered_categories.index((category, qnt)) < 5
]
|
janaolive/phyton_raspagem_de_dados
|
tech_news/analyzer/ratings.py
|
ratings.py
|
py
| 1,013 |
python
|
en
|
code
| 1 |
github-code
|
6
|
37950984200
|
import pykka
import re
import json
from gpt_connection import GPT_Connection
from tools import ToolRunner
from frontend_utils import initial_request
from bots.Dispatcher import Dispatcher
from bots.Workflow import Workflow
from prompts import DISPATCHER_PROMPT_TEMPLATE, INITIAL_PROMPT_TEMPLATE, ITERATING_ACTION_PROMPT_TEMPLATE, FORCE_END_ITERATION_PROMPT, \
PLANT_HEALTH_BOT_DESCRIPTION, PRODUCTION_OUTPUT_BOT_DESCRIPTION, DISTRIBUTION_BOT_DESCRIPTION, \
ONT_PRODUCTION_PLANT, ONT_MACHINES, ONT_WORK_ORDERS, ONT_PRODUCTION_ALLOCATION_PLAN, ONT_DISTRIBUTION_WAREHOUSE, ONT_TRANSIT_ORDER, \
GET_OBJECTS, MODIFY_OBJECT, CREATE_OBJECT
from string import Template
"""
Main Execution Code
"""
gpt_connection = GPT_Connection()
tool_runner = ToolRunner()
plant_health_ref = Workflow.start(
name="Plant Health Bot",
id=2,
dispatcher_id=1,
bot_description=PLANT_HEALTH_BOT_DESCRIPTION,
initial_prompt_template=INITIAL_PROMPT_TEMPLATE,
iteration_prompt_template=ITERATING_ACTION_PROMPT_TEMPLATE,
force_end_prompt_template=FORCE_END_ITERATION_PROMPT,
information=[ONT_PRODUCTION_PLANT, ONT_MACHINES, ONT_WORK_ORDERS],
readtools=[GET_OBJECTS],
writetools=[MODIFY_OBJECT, CREATE_OBJECT],
gpt_connection=gpt_connection,
tool_runner=tool_runner
)
production_output_ref = Workflow.start(
name="Production Output Bot",
id=3,
dispatcher_id=1,
bot_description=PRODUCTION_OUTPUT_BOT_DESCRIPTION,
initial_prompt_template=INITIAL_PROMPT_TEMPLATE,
iteration_prompt_template=ITERATING_ACTION_PROMPT_TEMPLATE,
force_end_prompt_template=FORCE_END_ITERATION_PROMPT,
information=[ONT_PRODUCTION_PLANT, ONT_MACHINES, ONT_PRODUCTION_ALLOCATION_PLAN],
readtools=[GET_OBJECTS],
writetools=[MODIFY_OBJECT, CREATE_OBJECT],
gpt_connection=gpt_connection,
tool_runner=tool_runner
)
distribution_ref = Workflow.start(
name="Distribution Bot",
id=4,
dispatcher_id=1,
bot_description=DISTRIBUTION_BOT_DESCRIPTION,
initial_prompt_template=INITIAL_PROMPT_TEMPLATE,
iteration_prompt_template=ITERATING_ACTION_PROMPT_TEMPLATE,
force_end_prompt_template=FORCE_END_ITERATION_PROMPT,
information=[ONT_PRODUCTION_PLANT, ONT_DISTRIBUTION_WAREHOUSE, ONT_PRODUCTION_ALLOCATION_PLAN, ONT_TRANSIT_ORDER],
readtools=[GET_OBJECTS],
writetools=[MODIFY_OBJECT, CREATE_OBJECT],
gpt_connection=gpt_connection,
tool_runner=tool_runner
)
workflows = {
"Plant Health Bot": plant_health_ref,
"Production Output Bot": production_output_ref,
"Distribution Bot": distribution_ref
}
workflow_ids = {
"Plant Health Bot": 2,
"Production Output Bot": 3,
"Distribution Bot": 4
}
dispatcher_ref = Dispatcher.start(
id=1,
prompt_template=DISPATCHER_PROMPT_TEMPLATE,
workflows=workflows,
workflow_ids=workflow_ids,
gpt_connection=gpt_connection)
initial_ask = "We just got a message that the ocelot making machine has broken at Stuffed Animal Plant 8"
# initial_ask = "Our trucks carrying transit order T0030 got into an accident."
# initial_ask = "Alice has left the company"
initial_request(initial_ask)
dispatcher_ref.ask(initial_ask)
dispatcher_ref.stop()
|
nhuang25/llm-composition
|
stuffed_animal_llc/stuffed_animal_llc.py
|
stuffed_animal_llc.py
|
py
| 3,203 |
python
|
en
|
code
| 0 |
github-code
|
6
|
75125706747
|
# # 8/19/2020
# You will work with a binary classification problem on a subsample from Kaggle playground competition. The objective of this competition is to predict whether a famous basketball player Kobe Bryant scored a basket or missed a particular shot.
# Train data is available in your workspace as bryant_shots DataFrame. It contains data on 10,000 shots with its properties and a target variable "shot\_made\_flag" -- whether shot was scored or not.
# One of the features in the data is "game_id" -- a particular game where the shot was made. There are 541 distinct games. So, you deal with a high-cardinality categorical feature. Let's encode it using a target mean!
# Suppose you're using 5-fold cross-validation and want to evaluate a mean target encoded feature on the local validation.
# Create 5-fold cross-validation
kf = KFold(n_splits=5, random_state=123, shuffle=True)
# For each folds split
for train_index, test_index in kf.split(bryant_shots):
cv_train, cv_test = bryant_shots.iloc[train_index], bryant_shots.iloc[test_index]
# Create mean target encoded feature
cv_train['game_id_enc'], cv_test['game_id_enc'] = mean_target_encoding(train=cv_train,
test=cv_test,
target='shot_made_flag',
categorical='game_id',
alpha=5)
# Look at the encoding
print(cv_train[['game_id', 'shot_made_flag', 'game_id_enc']].sample(n=1))
# <script.py> output:
# game_id shot_made_flag game_id_enc
# 7106 20500532 0.0 0.361914
# game_id shot_made_flag game_id_enc
# 5084 20301100 0.0 0.568395
# game_id shot_made_flag game_id_enc
# 6687 20500228 0.0 0.48131
# game_id shot_made_flag game_id_enc
# 5046 20301075 0.0 0.252103
# game_id shot_made_flag game_id_enc
# 4662 20300515 1.0 0.452637
|
AndrewAct/DataCamp_Python
|
Winning a Kaggle Competition in Python/3 Feature Engineering/06_KFold_CrossValidation.py
|
06_KFold_CrossValidation.py
|
py
| 2,188 |
python
|
en
|
code
| 0 |
github-code
|
6
|
2896601636
|
from dotenv import load_dotenv
import discord
from discord.ext import commands
import os
import re
load_dotenv()
token = os.getenv('DISCORD_TOKEN')
commMark = os.getenv('COMMAND_MARKER')
description = 'Discord administration bot'
intents = discord.Intents.default()
intents.message_content = True
intents.members = True
bot = commands.Bot(command_prefix=commMark, description=description, intents=intents)
#posts log in message on log in
@bot.event
async def on_ready():
print('Logged on as {bot.user} (ID {bot.user.id})')
print('-----------')
#------------------------------------------------Functions---------------------------------------------------#
def get_rid(ctx, role_input):
print("get_rid starting") #debugging - prints once function is called
#cleans input and assigns to role_name
role_name = role_input.strip()
print(role_name)
#first trying regext to get the id from the message itself
role_id = re.search(r'\d{18}', role_name)
roles_list = [] #initializing return list
if role_id != None: #checking if re found something
role_id = role.id.group(0) # getting readable id
roles_list.append(int(role_id)) #getting and appending role-id to list
else:
#iterating through roles, searching for name match
for g_role in ctx.guild.roles:
if role_name in str(g_role.name):
roles_list.append(int(g_role.id)) #appending to list
print(roles_list) #debugging - prints roles_list
roleLen = len(roles_list)
print('length: ' + str(roleLen)) #debugging - prints length of roles_list
print('get_rid finishing')
return roles_list, len(roles_list)
#similar function to get_rid, but for retrieving user ID
def getuid(ctx, user_input):
print("get_uid starting") #debugging - prints once function is called
#cleans input and assigns to role_name
users_list = []
user_name = user_input.strip()
print("uid start " + user_name)
for g_user in ctx.guild.members:
print( "uid for " + str(g_user))
if user_name in str(g_user):
users_list.append(int(g_user.id))
print("username match")
print("appended " + str(g_user.id)) #appending to list
print("get_uid users list " + str(users_list))
else:
print("Not a match")
print("get_uid list" + str(users_list)) #debugging - prints roles_list
userLen = len(users_list)
print(userLen)
print('get_uid finishing')
return users_list, len(users_list)
#----------------------------------------- Commands below, functions above-----------------------------------------------------------#
#------------------------------------------testing/troubleshooting commands----------------------------------------------------------#
#@bot.command()
#async def hello(ctx):
# await ctx.send(f'Hello {ctx.author.display_name}.')
#test command, just echoes the argument
#@bot.command()
#async def test(ctx, content):
# await ctx.send(content)
#-----------------------------------------------administrative commands---------------------------------------------------------------#
#command to get role ID
@bot.command()
async def roleid(ctx, role_name: str):
try:
role, le = get_rid(ctx, role_name)
print(role)
print(le)
if le == 1:
roleAdd = role[0]
await ctx.send(roleAdd)
except:
emby = discord.Embed(title="", color=discord.Color.red())
emby.add_field(name="Something went wrong", value="Please check your given argument")
await ctx.send(embed=emby)
#command to add role to user
@bot.command()
async def addrole(ctx, role_name: str, user):
try:
role, le = get_rid(ctx, role_name)
print(role)
print(le)
if le == 1:
roleAdd = role[0]
print(roleAdd)
getuid(user)
await ctx.send('Adding role %s to user %s' % (role_name, user))
except:
print("except")
#command to feth user id's
@bot.command()
async def userid(ctx, user):
print('User ID command called by %s Requesting UserID for %s' % (ctx.author, user ))
try:
#calls function to get user ID by username, then prints variables for debugging/logging
userN, leU = getuid(ctx, user)
#outputs all user IDs to chat
if leU == 0:
await ctx.send("No user found with that name")
else:
for i in userN:
await ctx.send(i)
except:
emby = discord.Embed(title="", color=discord.Color.red())
emby.add_field(name="Something went wrong", value="Please check your given argument")
await ctx.send(embed=emby)
#starts the bot
bot.run(token)
|
Srs2311/gene.py
|
gene.py
|
gene.py
|
py
| 4,778 |
python
|
en
|
code
| 0 |
github-code
|
6
|
37520613786
|
import pandas as pd
import redis
from redisgraph import Graph
from config import redisgraph_config
from pathlib import Path
def redisgraph_import_csv(output: Path) -> None:
r = redis.Redis(host=redisgraph_config['host'], port=redisgraph_config['port'])
graph_name = 'movie_graph'
redis_graph = Graph(graph_name, r)
import_csv = pd.read_csv(output / 'neo4j_export.csv')
break_column_name = '_start'
nodes = pd.DataFrame()
relations = pd.DataFrame()
active_df = nodes
for idx, col in enumerate(import_csv.columns):
if col == break_column_name:
active_df = relations
active_df[col] = import_csv[col]
nodes.dropna(how='all', subset=None, inplace=True)
relations.dropna(how='all', subset=None, inplace=True)
# relations.to_csv('../out/Relations.csv')
node_values = nodes['_labels'].unique()
rows_to_drop = [node_value for node_value in node_values if 'UNIQUE IMPORT LABEL' in node_value]
for row_to_drop in rows_to_drop:
nodes = nodes[nodes["_labels"].str.contains(row_to_drop) == False]
node_values = nodes['_labels'].unique()
for node_type in node_values:
node_data = nodes[nodes['_labels'] == node_type]
filename = f'../out/{node_type.replace(":", "")}.csv'
node_data.dropna(how='all', axis=1, inplace=True)
# node_data.to_csv(filename)
for node in node_data.iloc:
params = ''
for param in node_data.columns:
if not param.startswith('_'):
val = node[param]
if not pd.isna(val):
try:
val = float(val)
except:
val = f'"{val}"'
params = params + f', {param}: {val}'
query = f'MERGE ({node["_labels"]} {{id: {node["_id"]} {params} }})'
redis_graph.query(query)
for node in relations.iloc:
query = f"""
MATCH (a), (b) WHERE a.id = {node["_start"]} AND b.id = {node["_end"]} CREATE (a)-[:{node['_type']}]->(b)
"""
redis_graph.query(query)
|
Wojaqqq/graph_data_exchange_tool
|
imports/redisgraph_import_csv.py
|
redisgraph_import_csv.py
|
py
| 2,156 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30353175971
|
import sys
import os
from os.path import splitext
import glob
from common import TestCase
def get_tests():
"""Get all the tests to run.
"""
files = glob.glob('test_*.py')
return files
def run_all(tests):
"""Run the given tests.
"""
args = ' '.join(sys.argv[1:])
success = []
fail = []
for test in tests:
cmd = 'python %s %s'%(test, args)
print(cmd)
status = os.system(cmd)
if status == 0:
print("OK")
success.append(test)
else:
print("FAIL: %s"%test)
fail.append(test)
print('-'*70)
print("%d successful tests, %d failures"%(len(success), len(fail)))
for test in fail:
print(test)
print('-'*70)
return len(fail) != 0
class RunAllTests(TestCase):
"""Runs all the tests in one go, instead of running each test
separately. This speeds up the testing.
"""
def get_tests(self):
tests = get_tests()
tests = [splitext(t)[0] for t in tests]
klasses = []
for test in tests:
# Find test.
m = __import__(test)
m.mayavi = self.script
m.application = self.application
for name in dir(m):
klass = getattr(m, name)
try:
if issubclass(klass, TestCase) and klass is not TestCase:
mod_name = '%s.%s'%(test, name)
klasses.append((mod_name, klass))
break
except TypeError:
continue
return klasses
def do(self):
klasses = self.get_tests()
for name, klass in klasses:
# Close existing scenes.
e = self.script.engine
for scene in e.scenes:
e.close_scene(scene)
print('*'*80)
print(name)
obj = klass()
obj.trait_set(script=self.script)
obj.test()
def main():
argv = ' '.join(sys.argv)
if '--one-shot' in argv:
argv = argv.replace('--one-shot', '')
sys.argv = argv.split()
t = RunAllTests()
t.main()
else:
tests = get_tests()
status = run_all(tests)
sys.exit(status)
if __name__ == "__main__":
main()
|
enthought/mayavi
|
integrationtests/mayavi/run.py
|
run.py
|
py
| 2,323 |
python
|
en
|
code
| 1,177 |
github-code
|
6
|
39227047564
|
import os
import numpy as np
import scipy.io.wavfile as wavfile
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import normalize
from utils import read_textgrid
from numpy_operation import get_martix
from python_speech_features import mfcc
from python_speech_features import delta
#from python_speech_features import fbank
def to_one_hot(labels, dimension=5):
results = np.zeros((len(labels),dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results
def read_wav(filename):
rate, data = wavfile.read(filename)
#only use the 1st channel if stereo
if len(data.shape) > 1:
data = data[:,0]
data = data.astype(np.float32)
data = data / 32768 #convert PCM int16 to float
return data, rate
def feature_extract(filename, wavpath, tgpath):
wav_filename = os.path.join(wavpath,filename+'.wav')
print(wav_filename)
tg_filename = os.path.join(tgpath,filename+'.textgrid')
y,sr = read_wav(wav_filename)
mfccs = mfcc(signal=y,samplerate=sr,winlen=0.02,winfunc=np.hamming)
delta1 = delta(mfccs,1)
delta2 = delta(mfccs,2)
_mfccs = np.concatenate((mfccs,delta1,delta2),1)
_mfccs = normalize(_mfccs)
_mfccs = get_martix(_mfccs,30,10)
_labels = None
if(os.path.exists(tg_filename)):
_labels = read_textgrid(tg_filename,len(_mfccs))
_labels = to_one_hot(_labels)
return _mfccs,_labels
|
MakerFace/voice-activation-system
|
feature_extractor.py
|
feature_extractor.py
|
py
| 1,510 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17007537325
|
T = int(input())
for _ in range(T):
N, K = [int(x) for x in input().split()]
time = [int(x) for x in input().split()]
levels = [[0]]
for __ in range(K):
f, t = [int(x) - 1 for x in input().split()]
level = 0
for i in range(len(levels)):
if f in levels[i]:
level = i
break
try:
if t not in levels[level+1]:
levels[level+1].append(t)
except:
levels.append([])
if t not in levels[level+1]:
levels[level+1].append(t)
W = int(input()) - 1
level = 0
for i in range(len(levels)):
if W in levels[i]:
level = i
break
cost = 0
for l in levels[:level+1]:
cost += max([time[i] for i in l])
print(cost)
|
masonHong/INU-Study
|
Backjoon/HTJ/동적 계획법 기초 단계/1005 ACM Craft.py
|
1005 ACM Craft.py
|
py
| 835 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21766876312
|
#! /usr/bin/python3
# id-DNA.py
# http://rosalind.info/problems/dna/
dna_file = open('/home/steve/Dropbox/Rosalind/rosalind_dna.txt', 'r')
dna_string = str(dna_file.readlines())
base_count = {"A": 0, "G": 0, "C": 0, "T": 0}
for base in dna_string:
base_count[base] += 1
print(base_count)
|
shuysman/Rosalind
|
id-DNA.py
|
id-DNA.py
|
py
| 295 |
python
|
en
|
code
| 0 |
github-code
|
6
|
13255530705
|
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from math import sqrt
from scipy import stats
import warnings
warnings.filterwarnings("ignore")
from statsmodels.formula.api import ols
from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score, mean_absolute_error
from sklearn.feature_selection import f_regression, SelectKBest, RFE
from sklearn.linear_model import LinearRegression, LassoLars, TweedieRegressor
from sklearn.preprocessing import PolynomialFeatures
from numpy import mean
from numpy import std, absolute
from sklearn.datasets import make_blobs
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
def feature_ranking(X_train_scaled, y_train):
lm = LinearRegression()
rfe = RFE(lm, 1)
rfe.fit(X_train_scaled, y_train)
ranks = rfe.ranking_
names = X_train_scaled.columns.tolist()
rankdf = pd.DataFrame({'features': names, 'rank': ranks}).set_index('rank').sort_values('rank')
return rankdf
def cvLinearReg(X_train, y_train):
# create loocv procedure
cvLR = LeaveOneOut()
# create model
modelLR = LinearRegression()
# evaluate model
scoresLR = cross_val_score(modelLR, X_train, y_train, scoring='neg_mean_absolute_error', cv=cvLR, n_jobs=-1)
# force positive
scoresLR = absolute(scoresLR)
# report performance
print('MAE: %.3f (%.3f)' % (mean(scoresLR), std(scoresLR)))
meanMAE = mean(scoresLR)
stddevMAE = std(scoresLR)
return meanMAE
def cvLassoLars(X_train, y_train, x):
# LassoLars
# create loocv procedure
cvLL = LeaveOneOut()
# create model
modelLL = LassoLars(alpha=x)
# evaluate model
scoresLL = cross_val_score(modelLL, X_train, y_train, scoring='neg_mean_absolute_error', cv=cvLL, n_jobs=-1)
# force positive
scoresLL = absolute(scoresLL)
# report performance
print('MAE: %.3f (%.3f)' % (mean(scoresLL), std(scoresLL)))
meanMAE = mean(scoresLL)
stddevMAE = std(scoresLL)
return meanMAE
def cvTweedie(X_train, y_train, pwr, alf):
# Tweedie Regressor
# create loocv procedure
cvTW = LeaveOneOut()
# create model
modelTW = TweedieRegressor(power=pwr, alpha=alf) # 0 = normal distribution
# evaluate model
scoresTW = cross_val_score(modelTW, X_train, y_train, scoring='neg_mean_absolute_error', cv=cvTW, n_jobs=-1)
# force positive
scoresTW = absolute(scoresTW)
# report performance
print('MAE: %.3f (%.3f)' % (mean(scoresTW), std(scoresTW)))
meanMAE = mean(scoresTW)
stddevMAE = std(scoresTW)
return meanMAE
def cvRandomForest(X_train, y_train, x):
# Random Forest Regressor
# create loocv procedure
cvRF = LeaveOneOut()
# create model
modelRF = RandomForestRegressor(n_estimators=x, random_state = 123)
# evaluate model
scoresRF = cross_val_score(modelRF, X_train, y_train, scoring='neg_mean_absolute_error', cv=cvRF, n_jobs=-1)
# force positive
scoresRF = absolute(scoresRF)
# report performance
print('MAE: %.3f (%.3f)' % (mean(scoresRF), std(scoresRF)))
meanMAE = mean(scoresRF)
stddevMAE = std(scoresRF)
return meanMAE
def cvSVR(X_train, y_train, x):
# Support Vector Regressor
# create loocv procedure
cvSVR = LeaveOneOut()
# create model
modelSVR = SVR(kernel = x)
# evaluate model
scoresSVR = cross_val_score(modelSVR, X_train, y_train, scoring='neg_mean_absolute_error', cv=cvSVR, n_jobs=-1)
# force positive
scoresSVR = absolute(scoresSVR)
# report performance
print('MAE: %.3f (%.3f)' % (mean(scoresSVR), std(scoresSVR)))
meanMAE = mean(scoresSVR)
stddevMAE = std(scoresSVR)
return meanMAE
def get_baseline_mean(y_train):
'''
Using mean gets baseline for y dataframe
'''
# determine Baseline to beat
rows_needed = y_train.shape[0]
# create array of predictions of same size as y_train.logerror based on the mean
y_hat = np.full(rows_needed, np.mean(y_train))
# calculate the MSE for these predictions, this is our baseline to beat
baseline = mean_absolute_error(y_train, y_hat)
print("Baseline MAE:", baseline)
return baseline, y_hat
def get_baseline_median(y_train):
'''
Using median gets baseline for y dataframe
'''
# determine Baseline to beat
rows_needed = y_train.shape[0]
# create array of predictions of same size as y_train.logerror based on the median
y_hat = np.full(rows_needed, np.median(y_train))
# calculate the MSE for these predictions, this is our baseline to beat
baseline = mean_absolute_error(y_train, y_hat)
print("Baseline MAE:", baseline)
return baseline, y_hat
def linear_reg_train(x_scaleddf, target):
'''
runs linear regression algorithm
'''
lm = LinearRegression()
lm.fit(x_scaleddf, target)
y_hat = lm.predict(x_scaleddf)
LM_MAE = mean_absolute_error(target, y_hat)
return LM_MAE
def lasso_lars(x_scaleddf, target):
'''
runs Lasso Lars algorithm
'''
# Make a model
lars = LassoLars(alpha=1)
# Fit a model
lars.fit(x_scaleddf, target)
# Make Predictions
lars_pred = lars.predict(x_scaleddf)
# Computer root mean squared error
lars_MAE = mean_absolute_error(target, lars_pred)
return lars_MAE
def polynomial2(X_trainsdf, target):
'''
runs polynomial algorithm
'''
# Make a model
pf = PolynomialFeatures(degree=2)
# Fit and Transform model to get a new set of features...which are the original features squared
X_train_squared = pf.fit_transform(X_trainsdf)
# Feed new features in to linear model.
lm_squared = LinearRegression(normalize=True)
lm_squared.fit(X_train_squared, target)
# Make predictions
lm_squared_pred = lm_squared.predict(X_train_squared)
# Compute root mean squared error
pf2_MAE = mean_absolute_error(target, lm_squared_pred)
return pf2_MAE
def tweedie05(X_train_scaled, y_train):
'''
runs tweedie algorithm
'''
# Make Model
tw = TweedieRegressor(power=0, alpha=.5) # 0 = normal distribution
# Fit Model
tw.fit(X_train_scaled, y_train)
# Make Predictions
tw_pred = tw.predict(X_train_scaled)
# Compute root mean squared error
tw_MAE = mean_absolute_error(y_train, tw_pred)
return tw_MAE
def randomforest_test(x_scaleddf, target, X_test, y_test, est):
'''
runs random forest regressor
'''
# make model
regressor = RandomForestRegressor(n_estimators = est, random_state = 123)
# fit the model
regressor.fit(x_scaleddf, target)
# make predictions
y_pred = regressor.predict(X_test)
# calculate MAE
randMAE = mean_absolute_error(y_test, y_pred)
return randMAE, regressor
def lasso_lars_test(x_scaleddf, target, X_test, y_test):
'''
runs Lasso Lars algorithm
'''
# Make a model
lars = LassoLars(alpha=1)
# Fit a model
lars.fit(x_scaleddf, target)
# Make Predictions
lars_pred = lars.predict(X_test)
# calculate MAE
lars_MAE = mean_absolute_error(y_test, lars_pred)
return lars_MAE, lars, lars_pred
def linear_test(x_scaleddf, target, X_test, y_test):
'''
runs Lasso Lars algorithm
'''
# Make a model
lm = LinearRegression()
# Fit model on train dataset
lm.fit(x_scaleddf, target)
# Make Predictions on test dataset
y_hat = lm.predict(X_test)
# calculate MAE
LM_MAE = mean_absolute_error(y_test, y_hat)
return LM_MAE, lm, y_hat
def SVR_test(x_scaleddf, target, X_test, y_test, kern):
'''
runs Support Vector Regressor algorithm
'''
# Make a model
regressor = SVR(kernel = kern)
# Fit model on train dataset
regressor.fit(x_scaleddf, target)
# Make Predictions on test dataset
y_hat = sc_y.inverse_transform(regressor.predict(sc_X.transform(X_test)))
# calculate MAE
svr_MAE = mean_absolute_error(y_test, y_hat)
return svr_MAE, regressor
def tweedie_test(X_train, y_train, X_test, y_test, pwr, alf):
'''
runs tweedie algorithm
'''
# Make Model
tw = TweedieRegressor(power=pwr, alpha=alf) # 0 = normal distribution
# Fit Model
tw.fit(X_train, y_train)
# Make Predictions
tw_pred = tw.predict(X_test)
# Compute root mean squared error
tw_MAE = mean_absolute_error(y_test, tw_pred)
return tw_MAE, tw, tw_pred
def create_visualdf(y_test, y_train, y_test_predLL, y_test_predLR, y_test_predTW, y_test_predrTW):
'''
creates dataframe for making visualizations
'''
visualdf = pd.DataFrame()
visualdf['actual'] = y_test.tract_cases_per_100k
visualdf['baseline'] = y_train.tract_cases_per_100k.mean()
visualdf['TWpred'] = y_test_predTW
visualdf['LRpred'] = y_test_predLR
visualdf['LLpred'] = y_test_predLL
visualdf['SVI_only'] = y_test_predrTW
return visualdf
def plot_actual_vs_predicted(visualdf):
'''
Produces subplots of actual VS predicted for the top models
'''
plt.figure(figsize=(16,8))
#plt.suptitle('Plotting Actual Cases per 100K vs Predicted Cases per 100K')
plt.plot(visualdf.actual, visualdf.baseline, alpha=.5, color="gray", label='_nolegend_')
#plt.annotate("Baseline: Predict Using Mean", (15, 8))
plt.plot(visualdf.actual, visualdf.actual, alpha=.5, color="blue", label='_nolegend_')
#plt.annotate("The Ideal Line: Predicted = Actual", (.5, 1), rotation=15.5)
#plt.subplot(1,3,1,)
plt.scatter(visualdf.actual, visualdf.SVI_only,
alpha=.5, color="blue", s=50, label="Model: TW SVI only")
#plt.subplot(1,3,2)
plt.scatter(visualdf.actual, visualdf.TWpred,
alpha=.5, color="green", s=100, label="Model: TW Top 4 Features")
#plt.subplot(1,3,3)
# plt.scatter(visualdf.actual, visualdf.LLpred,
# alpha=.5, color="orange", s=75, label="Model: LassoLars")
plt.legend()
plt.xlabel("Actual Cases per 100K")
plt.ylabel("Predicted Cases per 100K")
# plt.annotate("The polynomial model appears to overreact to noise", (2.0, -10))
# plt.annotate("The OLS model (LinearRegression)\n appears to be most consistent", (15.5, 3))
plt.show()
def plotting_errors(visualdf):
'''
Plots the errors of the top models with zero error line
'''
# plotting Errors in Predictions
plt.figure(figsize=(16,8))
plt.axhline(label="No Error")
plt.scatter(visualdf.actual, visualdf.SVI_only-visualdf.actual,
alpha=.5, color="blue", s=50, label="Model: TW SVI only")
plt.scatter(visualdf.actual, visualdf.TWpred-visualdf.actual,
alpha=.5, color="green", s=100, label="Model: TW Top 4 Features")
# plt.scatter(visualdf.actual, visualdf.LLpred-visualdf.actual,
# alpha=.5, color="orange", s=75, label="Model: LassoLars")
plt.legend()
plt.xlabel("Actual Cases per 100K")
plt.ylabel("Residual/Error: Predicted Cases per 100K - Actual Cases per 100K")
plt.title("Do the size of errors change as the actual value changes?")
# plt.annotate("The polynomial model appears to overreact to noise", (2.0, -10))
# plt.annotate("The OLS model (LinearRegression)\n appears to be most consistent", (15.5, 3))
plt.show()
def plotting_histograms(visualdf):
'''
Plots Histograms of top models, currently only shows actual vs best performing
'''
plt.figure(figsize=(16,8))
plt.hist(visualdf.actual, color='blue', alpha=.5, label="Actual Cases per 100K", histtype=u'step', linewidth=5)
plt.hist(visualdf.LRpred, color='orange', alpha=.5, label="Model: TW SVI only")
plt.hist(visualdf.TWpred, color='green', alpha=.5, label="Model: TW Top 4 Features")
#plt.hist(visualdf.LLpred, color='red', alpha=.5, label="Model: LassoLars")
plt.xlabel("Actual Cases per 100K")
plt.ylabel("predictions")
plt.title("SVI alone is not enough")
plt.legend()
plt.show()
|
RyvynYoung/COVID
|
svi_capstone/scripts_python/model_MAE.py
|
model_MAE.py
|
py
| 12,076 |
python
|
en
|
code
| 0 |
github-code
|
6
|
13919172422
|
from odoo import api, fields, models
class ProjectTask(models.Model):
_inherit = "project.task"
@api.depends(
"stage_id",
"timesheet_ids.unit_amount",
"estimate_adjustment",
"planned_hours",
"child_ids.timesheet_ids.unit_amount",
"child_ids.planned_hours",
"child_ids.effective_hours",
"child_ids.subtask_effective_hours",
"child_ids.stage_id",
"product_backlog_id.task_hours",
)
def _compute_hours_get(self):
""" This method is used to calculate weightage based on task stage,
timesheet amount, estimate adjustment, planned hours,
child task planned hours, backlog task hours,
child task effective hours etc """
for task in self:
weightage = children_hours = 0
for child_task in task.child_ids:
if child_task.stage_id and child_task.stage_id.fold:
children_hours += (
child_task.effective_hours + child_task.subtask_effective_hours
)
else:
children_hours += max(
child_task.planned_hours,
child_task.effective_hours + child_task.subtask_effective_hours,
)
task.subtask_effective_hours = children_hours
task.effective_hours = sum(task.sudo().timesheet_ids.mapped("unit_amount"))
task.remaining_hours = (
task.planned_hours - task.effective_hours - task.subtask_effective_hours
)
# Commented this line as total hours replaced as total hours spent in v15
# here both line added total hours and total hours spent
# task.total_hours = max(task.planned_hours, task.effective_hours)
task.total_hours_spent = task.effective_hours + task.subtask_effective_hours
# task.delay_hours = max(-task.remaining_hours, 0.0)
story_estimated_hours = task.product_backlog_id.expected_hours
planned_hours = task.planned_hours
estimate_adjustment = task.estimate_adjustment
if story_estimated_hours > 0.0:
weightage = planned_hours / story_estimated_hours
hours = planned_hours + estimate_adjustment
# hours = hours if hours > 0 else 1
task.weightage = weightage
if task.product_backlog_id.task_hours > 0:
# New weightage calculation in Version 2
task.weightage = hours / task.product_backlog_id.task_hours
# New progress calculation in Version 2
if task.effective_hours and hours > 0:
task.progress = (task.effective_hours / hours) * 100
name = fields.Char("Homework", size=256, translate=True)
email = fields.Char(
"Send mail",
size=256,
help="An email will be sent upon completion and upon validation of the"
"Task to the following recipients. Separate with comma (,)"
"each recipient ex: [email protected], [email protected]",
)
task_number = fields.Char(
"Task Number",
readonly=True,
copy=False,
size=64,
help="Sequence of the task number",
)
estimate_adjustment = fields.Float()
weightage = fields.Float(compute="_compute_hours_get")
schedule_date = fields.Datetime(help="Date scheduled for task")
def _valid_field_parameter(self, field, name):
return name == 'size' or super()._valid_field_parameter(field, name)
@api.model
def create(self, vals):
result = super(ProjectTask, self).create(vals)
if result.manager_id:
result.message_unsubscribe(partner_ids=[result.manager_id.id])
return result
|
onesteinbv/ProjectManagement
|
project_scrum_agile_extended/models/project_task.py
|
project_task.py
|
py
| 3,845 |
python
|
en
|
code
| 1 |
github-code
|
6
|
38611022
|
import sys
import math
def list_mean(L):
'''Compute the mean of an array. Expects a non-empty array.
Parameters
----------
L : list of int
array containing numbers whose mean is desired.
Returns
-------
m
Arithmetic mean of the values in V
'''
if L is None:
return None
if len(L) == 0:
return None
s = 0
for line in L:
s += line
m = sum(L)/len(L)
return m
def list_stdev(L):
'''Compute the standard deviation of an array. Expects a non-empty array.
Parameters
----------
L : list of int
Non-empty array containing numbers whose standard deviation is desired.
Returns
-------
sd
Standard deviation of the values in V
'''
if L is None:
return None
if len(L) == 0:
return None
else:
mean = list_mean(L)
sd = math.sqrt(sum([(mean-x)**2 for x in L]) / len(L))
return sd
|
cu-swe4s-fall-2019/test-driven-development-adziulko
|
math_lib.py
|
math_lib.py
|
py
| 969 |
python
|
en
|
code
| 0 |
github-code
|
6
|
36956862348
|
from angle_controller import *
from x_controller import *
from z_controller import *
from multirotore import *
class Autopilot:
def __init__(self, x_target, z_target):
self.drone = Multirotore(1.0, 0.25, 7.0*(10.0**(-5)))
self.angle_controller = Angle_Controller(4.0, 1.57, 2.0, 0.2, 15.0)
self.x_controller = X_Controller(0.4, 2.0, 0.5, 0.2, 0.52)
self.z_controller = Z_Controller(4.0, 2.0, 20.0, 40.0, 15.0)
self.x_target = x_target
self.z_target = z_target
def evaluate(self, delta_t):
theta_target = (-1)*self.x_controller.evaluate(delta_t, self.x_target, self.drone.x, self.drone.vx)
out_1 = self.angle_controller.evaluate(delta_t, theta_target, self.drone.theta, self.drone.omega)
out_2 = self.z_controller.evaluate(delta_t, self.z_target, self.drone.z, self.drone.vz)
f1 = out_2 - out_1
f2 = out_2 + out_1
self.drone.evaluate(delta_t, f1, f2)
|
SalvoScan/Progetto-Sistemi-Robotici
|
Sorgenti Progetto/autopilot.py
|
autopilot.py
|
py
| 881 |
python
|
en
|
code
| 0 |
github-code
|
6
|
88489070
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2018-19: Homework 5
model_embeddings.py: Embeddings for the NMT model
Pencheng Yin <[email protected]>
Sahil Chopra <[email protected]>
Anand Dhoot <[email protected]>
Michael Hahn <[email protected]>
"""
import torch.nn as nn
# Do not change these imports; your module names should be
# `CNN` in the file `cnn.py`
# `Highway` in the file `highway.py`
# Uncomment the following two imports once you're ready to run part 1(j)
from cnn import CNN
from highway import Highway
# End "do not change"
class ModelEmbeddings(nn.Module):
"""
Class that converts input words to their CNN-based embeddings.
"""
def __init__(self, embed_size, vocab):
"""
Init the Embedding layer for one language
@param embed_size (int): Embedding size (dimensionality) for the output
@param vocab (VocabEntry): VocabEntry object. See vocab.py for documentation.
"""
super(ModelEmbeddings, self).__init__()
## A4 code
# pad_token_idx = vocab.src['<pad>']
# self.embeddings = nn.Embedding(len(vocab.src), embed_size, padding_idx=pad_token_idx)
## End A4 code
### YOUR CODE HERE for part 1j
self.e_char = 50
self.w_word = 21 # same as max_word_length. same value (21) used in function pad_sents_char in utils.py
self.embed_size = embed_size # same as e_word
self.char_embedding = nn.Embedding(len(vocab.char2id), self.e_char, vocab.char2id['<pad>'])
self.cnn = CNN(self.e_char, self.embed_size, self.w_word)
self.highway = Highway(self.embed_size)
### END YOUR CODE
def forward(self, input):
"""
Looks up character-based CNN embeddings for the words in a batch of sentences.
@param input: Tensor of integers of shape (sentence_length, batch_size, max_word_length) where
each integer is an index into the character vocabulary
@param output: Tensor of shape (sentence_length, batch_size, embed_size), containing the
CNN-based embeddings for each word of the sentences in the batch
"""
## A4 code
# output = self.embeddings(input)
# return output
## End A4 code
### YOUR CODE HERE for part 1j
# x_padded has shape : (sentence_length, batch_size, max_word_length)
x_padded = input
# x_emb has shape : (sentence_length, batch_size, max_word_length, e_char)
x_emb = self.char_embedding(x_padded)
# x_reshape_4D has shape : (sentence_length, batch_size, e_char, max_word_length)
x_reshape_4D = x_emb.permute(0, 1, 3, 2)
sentence_length, batch_size, e_char, max_word_length = x_reshape_4D.shape
# x_reshape has shape : (-1, e_char, max_word_length)
x_reshape = x_reshape_4D.view(-1, e_char, max_word_length)
# x_conv_out has shape : (-1, e_word)
x_conv_out = self.cnn(x_reshape)
# x_word_embed has shape : (-1, e_word)
x_word_embed = self.highway(x_conv_out)
output = x_word_embed.view(sentence_length, batch_size, self.embed_size)
return output
### END YOUR CODE
|
abgoswam/CS224N-Natural-Language-Processing-with-Deep-Learning
|
a5/model_embeddings.py
|
model_embeddings.py
|
py
| 3,223 |
python
|
en
|
code
| 18 |
github-code
|
6
|
14254090936
|
from __future__ import division, print_function
from __future__ import absolute_import, unicode_literals
from _GTW import GTW
from _TFL import TFL
from _TFL.defaultdict import defaultdict
import _GTW._OMP._PAP._E164.Country
class Country_33 (GTW.OMP.PAP.E164.Country_M) :
"""Provide phone number mapping for France."""
generated_from = \
"https://en.wikipedia.org/wiki/Telephone_numbers_in_France"
generation_date = "2015-07-27 10:05"
formatted_sn = GTW.OMP.PAP.E164.Country_M.formatted_sn_4x2
ndc_info_map = \
{ "1" : "Île-de-France"
, "2" : "Northwest France"
, "3" : "Northeast France"
, "4" : "Southeast France"
, "5" : "Southwest France"
, "6" : "Mobile phone services"
, "7" : "Mobile phone services"
, "8" : "Freephone (numéro vert) and shared-cost services."
, "9" : "Non-geographic number (used by VoIP services)"
}
ndc_max_length = 1
ndc_types_normal = {"geographic", "mobile", "voip"}
ndc_usage_map = \
{ "1" : "geographic"
, "2" : "geographic"
, "3" : "geographic"
, "4" : "geographic"
, "5" : "geographic"
, "6" : "mobile"
, "7" : "mobile"
, "8" : "service"
, "9" : "voip"
}
sn_max_length_map = defaultdict (lambda : 8)
sn_mix_length_map = defaultdict (lambda : 8)
Country = Country_33 # end class
### __END__ GTW.OMP.PAP.E164._Country__33
|
xiaochang91/tapyr
|
_GTW/_OMP/_PAP/_E164/_Country__33.py
|
_Country__33.py
|
py
| 1,578 |
python
|
en
|
code
| 0 |
github-code
|
6
|
5381080252
|
from socket import *
class sending():
def __init__(self, ip):
# Opens the socket(connection)
self.host = ip
self.port = 13000
self.addr = (self.host, self.port)
self.UDPSock = socket(AF_INET, SOCK_DGRAM)
def send(self, data):
# Sends parameter data to other user
self.UDPSock.sendto(data.encode(), self.addr)
def const_send(self, data):
# Sends parameter data to other user
global stop
while stop == False:
self.UDPSock.sendto(data.encode(), self.addr)
def close():
#Closes the socket
self.UDPSock.close()
os._exit()
class recieving():
def __init__(self):
# Opens your socket the recieving data
self.host = ""
self.port = 13000
self.buf = 320
self.addr = (self.host, self.port)
self.UDPSock = socket(AF_INET, SOCK_DGRAM)
self.UDPSock.bind(self.addr)
def recieve(self, select, attack, player, other, active):
# Function to recieve data and call function
recieved = "None"
while True:
while len(recieved) != 2:
(data,addr) = self.UDPSock.recvfrom(self.buf)
recieved = data.decode()
recieved = recieved.split()
return recieved
def connect(self):
# Function to recieve data and call function
recieved = None
while recieved == None:
(data,addr) = self.UDPSock.recvfrom(self.buf)
recieved = data.decode()
return(recieved)
def exit(self):
# Closes Socket
self.UDPSock.close()
os._exit()
other_ip = " " #Put ip address of other person here
Sender = sending(other_ip)
Recieve = recieving()
|
NightHydra/ColorCardBasic
|
Color CardPVP/Networking.py
|
Networking.py
|
py
| 1,901 |
python
|
en
|
code
| 0 |
github-code
|
6
|
36321645754
|
import pygame
from dino_runner.components.dinosaur import Dinosaur
from dino_runner.components.obstacles.obstacle_manager import ObstacleManager
from dino_runner.components.player_hearts.player_heart_manager import PlayerHeartManager
from dino_runner.components.power_ups.power_up_manager import PowerUpManager
from dino_runner.utils.constants import BG, DEFAULT_TYPE, DIE_IMG, HAMMER_TYPE, ICON, RUNNING, SCREEN_HEIGHT, SCREEN_WIDTH, SHIELD_TYPE, TITLE, FPS
from .score import Score
from dino_runner.utils.constants import FONT_STYLE
class Game:
def __init__(self):
pygame.init()
pygame.display.set_caption(TITLE)
pygame.display.set_icon(ICON)
self.screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
self.clock = pygame.time.Clock()
self.playing = False
self.executing = False
self.game_speed = 15
self.x_pos_bg = 0
self.y_pos_bg = 380
self.player= Dinosaur()
self.obstacle_manager = ObstacleManager()
self.power_up_manager = PowerUpManager()
self.heart_manager = PlayerHeartManager()
self.death_count=0
self.score = Score()
def execute(self):
self.executing = True
while self.executing:
if not self.playing:
self.show_menu()
pygame.quit()
def run(self):
self.game_speed = 15
self.playing = True
self.obstacle_manager.reset_obstacles()
self.score.reset_score()
self.power_up_manager.reset_power_ups()
self.heart_manager.reset_hearts()
while self.playing:
self.events()
self.update()
self.draw()
def events(self):
for event in pygame.event.get():
if event.type == pygame.QUIT:
self.playing = False
def update(self):
user_input = pygame.key.get_pressed()
self.player.update(user_input)
self.obstacle_manager.update(self.game_speed, self.player, self.on_death)
self.score.update(self)
self.power_up_manager.update(self.game_speed, self.player, self.score.score)
def draw(self):
self.clock.tick(FPS)
self.screen.fill((255, 255, 255))
self.draw_background()
self.player.draw(self.screen)
self.obstacle_manager.draw(self.screen)
self.score.draw(self.screen)
self.power_up_manager.draw(self.screen)
self.draw_power_up_active(self.screen)
self.heart_manager.draw(self.screen)
pygame.display.update()
pygame.display.flip()
def draw_background(self):
image_width = BG.get_width()
self.screen.blit(BG, (self.x_pos_bg, self.y_pos_bg))
self.screen.blit(BG, (image_width + self.x_pos_bg, self.y_pos_bg))
if self.x_pos_bg <= -image_width:
self.screen.blit(BG, (image_width + self.x_pos_bg, self.y_pos_bg))
self.x_pos_bg = 0
self.x_pos_bg -= self.game_speed
def show_menu(self):
self.screen.fill((127,255,212))#pintar mi ventana
half_screen_height = SCREEN_HEIGHT //2
half_screen_width = SCREEN_WIDTH //2
font = pygame.font.SysFont(FONT_STYLE, 30)
if self.death_count == 0:#mostrar mensaje bienvenida
self.screen.blit(RUNNING[0],(half_screen_width -35, half_screen_height -140))#mostrar icono
text_component = font.render("Press any key to start", True, (20,51,51))
else:
self.screen.blit(DIE_IMG,(half_screen_width -35, half_screen_height -140))
text_component = font.render(f"Number of deaths : {self.death_count}", True, (20,51,51))#mostrar el numero de muertes actuales
self.screen.blit(text_component, (half_screen_width -300 , half_screen_height +30))
text_component = font.render(f"You die, press any key to restart", True, (20,51,51)) #mostrar mensaje de volver a jugar
self.score.show_score(self.screen) # mostrar el puntaje
text_rect = text_component.get_rect()
text_rect.center = (half_screen_width, half_screen_height)
self.screen.blit(text_component, text_rect)
pygame.display.update()#actualizar ventana
self.handle_key_events_on_menu() #escuchar eventos
def handle_key_events_on_menu(self):
for event in pygame.event.get():
if event.type == pygame.QUIT:
self.executing = False
elif event.type == pygame.KEYDOWN:
self.run()
def on_death(self):
has_shield = self.player.type == SHIELD_TYPE
is_invencible = has_shield or self.heart_manager.heart_count > 0
has_hammer = self.player.type == HAMMER_TYPE
is_revitalizing = has_hammer or self.heart_manager.heart_count > 0
if has_hammer:
if self.heart_manager.heart_count < 6 :
self.heart_manager.increase_heart()
if not has_shield and not has_hammer:
self.heart_manager.reduce_heart()
if not is_invencible and not is_revitalizing:
pygame.time.delay(500)
self.playing = False
self.death_count += 1
return is_invencible and is_revitalizing
def draw_power_up_active(self, screen):
if self.player.has_power_up:
time_to_show = round ((self.player.power_up_time_up - pygame.time.get_ticks()) / 1000, 2)
if time_to_show >= 0:
font = pygame.font.SysFont(FONT_STYLE, 18)
text_component = font.render(f"{self.player.type.capitalize()} enabled for {time_to_show} seconds", True, (0,0,0))
text_rect = text_component.get_rect()
text_rect.center = (500, 40)
screen.blit(text_component, text_rect)
else:
self.player.has_power_up = False
self.player.type = DEFAULT_TYPE
|
Shrinmi/JS-Dino-Runner-Grupo-1
|
dino_runner/components/game.py
|
game.py
|
py
| 5,940 |
python
|
en
|
code
| null |
github-code
|
6
|
26040479196
|
from __future__ import annotations
from dataclasses import dataclass
from typing import Iterable
from pants.backend.javascript import install_node_package
from pants.backend.javascript.install_node_package import (
InstalledNodePackageRequest,
InstalledNodePackageWithSource,
)
from pants.backend.javascript.nodejs_project_environment import NodeJsProjectEnvironmentProcess
from pants.backend.javascript.package_json import (
NodeBuildScriptEntryPointField,
NodeBuildScriptExtraEnvVarsField,
NodePackageDependenciesField,
)
from pants.core.goals.run import RunFieldSet, RunInSandboxBehavior, RunRequest
from pants.core.util_rules.environments import EnvironmentField
from pants.engine.env_vars import EnvironmentVars, EnvironmentVarsRequest
from pants.engine.internals.selectors import Get
from pants.engine.process import Process
from pants.engine.rules import Rule, collect_rules, rule
from pants.engine.unions import UnionRule
@dataclass(frozen=True)
class RunNodeBuildScriptFieldSet(RunFieldSet):
required_fields = (NodeBuildScriptEntryPointField, NodePackageDependenciesField)
run_in_sandbox_behavior = RunInSandboxBehavior.RUN_REQUEST_HERMETIC
entry_point: NodeBuildScriptEntryPointField
extra_env_vars: NodeBuildScriptExtraEnvVarsField
environment: EnvironmentField
@rule
async def run_node_build_script(
field_set: RunNodeBuildScriptFieldSet,
) -> RunRequest:
installation = await Get(
InstalledNodePackageWithSource, InstalledNodePackageRequest(field_set.address)
)
target_env_vars = await Get(
EnvironmentVars, EnvironmentVarsRequest(field_set.extra_env_vars.value or ())
)
process = await Get(
Process,
NodeJsProjectEnvironmentProcess(
installation.project_env,
args=("--prefix", "{chroot}", "run", str(field_set.entry_point.value)),
description=f"Running {str(field_set.entry_point.value)}.",
input_digest=installation.digest,
extra_env=target_env_vars,
),
)
return RunRequest(
digest=process.input_digest,
args=process.argv,
extra_env=process.env,
immutable_input_digests=process.immutable_input_digests,
)
def rules() -> Iterable[Rule | UnionRule]:
return [*collect_rules(), *install_node_package.rules(), *RunNodeBuildScriptFieldSet.rules()]
|
pantsbuild/pants
|
src/python/pants/backend/javascript/run/rules.py
|
rules.py
|
py
| 2,379 |
python
|
en
|
code
| 2,896 |
github-code
|
6
|
41464745589
|
# Works with Microsoft Windows dos box
# Shows some use of WConio written by Chris Gonnerman
# Written by Priyend Somaroo
# Copyright (c) 2008 Vardaan Enterprises, www.vardaan.com
# Use and distribute freely.
# No liability for any use of this code will be accepted. Use is
# without any warranty whatsoever
# Requires the package WConio by Chris Gonnerman
# E-Mail : [email protected]
# Web : http://newcenturycomputers.net/projects/wconio.html
import WConio
#Store current attribute settings
old_setting = WConio.gettextinfo()[4] & 0x00FF
#Clear the screen
WConio.clrscr()
#Display something in low video
WConio.lowvideo()
WConio.cputs("Low video\r\n")
#Display something in high video
WConio.highvideo()
WConio.cputs("High video\r\n")
#Display something in normal video
WConio.normvideo()
WConio.cputs("Normal video\r\n")
#Display some text in color
WConio.textattr(WConio.LIGHTRED)
WConio.cputs("Light Red text\r\n")
#Display some more text in color
WConio.textattr(WConio.LIGHTBLUE)
WConio.cputs("Light BLUE text\r\n")
#leave a blank line - this shows you that print still works
print
#Set heading colour but using print
WConio.textattr(WConio.LIGHTGREEN)
print("Times table\r\n")
#Back to normal intensity for white
WConio.normvideo()
for i in range(12) :
WConio.textattr(WConio.WHITE)
a = "%2d * 2 = " % (i)
WConio.cputs(a)
WConio.textattr(WConio.YELLOW)
a = "%2d\r\n" % (i*2)
WConio.cputs(a)
WConio.textattr(WConio.CYAN)
WConio.cputs("\n\nPress any key to end\r\n")
#Wait for a key to be pressed
WConio.getch()
#Retore old attribute settings
WConio.textattr(old_setting)
|
egigoka/test
|
just_learning_some_new_stuff/WConioExample.py
|
WConioExample.py
|
py
| 1,700 |
python
|
en
|
code
| 2 |
github-code
|
6
|
27009635088
|
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
def run(x_train, y_train, x_test, y_test,
base_estimator, estimator_params, n_estimators, learning_rate, loss, random_state):
base_estimator = getEstimator(base_estimator, estimator_params)
reg = AdaBoostRegressor(base_estimator=base_estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
loss=loss,
random_state=random_state).fit(x_train, y_train)
return {'train_predict': reg.predict(x_train).tolist(),
'test_predict': reg.predict(x_test).tolist(),
'train_score': reg.score(x_train, y_train),
'test_score': reg.score(x_test, y_test),
'estimator_weights_': reg.estimator_weights_.tolist(),
'estimator_errors_': reg.estimator_errors_.tolist(),
'feature_importances_': reg.feature_importances_.tolist()
}
def getEstimator(base_estimator, estimator_params):
if base_estimator is None:
return base_estimator
base_estimator.replace("(", "").replace(")", "")
if estimator_params is None:
estimator_params = {}
return {
'GradientBoostingRegressor': GradientBoostingRegressor(*estimator_params),
'ExtraTreesRegressor': ExtraTreesRegressor(*estimator_params),
'RandomForestRegressor': RandomForestRegressor(*estimator_params)
}.get(base_estimator, RandomForestRegressor(max_depth=3))
|
lisunshine1234/mlp-algorithm-python
|
machine_learning/regression/Ensemble methods/AdaBoostRegressor/run.py
|
run.py
|
py
| 1,615 |
python
|
en
|
code
| 0 |
github-code
|
6
|
6513615937
|
from unittest import TestCase
from app import app, games
# Make Flask errors be real errors, not HTML pages with error info
app.config["TESTING"] = True
# This is a bit of hack, but don't use Flask DebugToolbar
app.config["DEBUG_TB_HOSTS"] = ["dont-show-debug-toolbar"]
class BoggleAppTestCase(TestCase):
"""Test flask app of Boggle."""
def setUp(self):
"""Stuff to do before every test."""
self.client = app.test_client()
app.config["TESTING"] = True
def test_homepage(self):
"""Make sure information is in the session and HTML is displayed"""
with self.client as client:
response = client.get("/")
...
# test that you're getting a template
html = response.get_data(as_text=True)
# top view verification that route works
self.assertEqual(response.status_code, 200)
# verify unique html is loading
self.assertIn('<table class="board">', html)
def test_api_new_game(self):
"""Test starting a new game."""
with self.client as client:
# write a test for this route
# save response from get reqeust to route
resp = client.get("/api/new-game")
data = resp.json
# top view cert
self.assertEqual(resp.status_code, 200)
# is game id a string in json respo
self.assertIsInstance(data["gameId"], str)
# is board a list on json respo
self.assertIsInstance(data["board"], list)
# is games in json respon
self.assertIn(data["gameId"], games)
def test_score_word(self):
""" the way a word is validated with defined class methods """
with self.client as client:
resp = client.get("api/new-game")
# get the json from resp
data = resp.json
# generate mock board (5x5)
gameId = data["gameId"]
game = games[gameId]
# mock board hard code
game.board[0] = ["W", "O", "R", "D", "S"]
game.board[1] = ["S", "H", "O", "E", "S"]
game.board[2] = ["L", "I", "G", "H", "T"]
game.board[3] = ["K", "I", "D", "S", "A"]
game.board[4] = ["I", "R", "A", "W", "R"]
# high level cert
self.assertEqual(resp.status_code, 200)
# verify post request from /score-word
resp = client.post(
"/api/score-word", json={"gameId": gameId, "word": "AXYSB"}
)
self.assertEqual(resp.json, {"result": "not_a_word"})
# not on board
resp = client.post(
"/api/score-word", json={"gameId": gameId, "word": "ROCKS"}
)
self.assertEqual(resp.json, {"result": "not_on_board"})
# valid
resp = client.post(
"/api/score-word", json={"gameId": gameId, "word": "WORDS"}
)
self.assertEqual(resp.json, {"result": "word_OK"})
|
gary-rivera/flask-boggle
|
test_app.py
|
test_app.py
|
py
| 3,070 |
python
|
en
|
code
| 0 |
github-code
|
6
|
44191894536
|
from django.conf.urls import url # include is adding then
from django.contrib import admin
from .views import(
post_home,
post_delete,
post_update,
post_edit,
post_create,
post_save,
)
urlpatterns = [
url(r'^$',post_home),
url(r'^delete/$',post_delete),
url(r'^update/$',post_update),
url(r'^edit/$',post_edit),
url(r'^create/$',post_create),
url(r'^save/$',post_save),
]
|
hmoshabbar/DjangoProject
|
posts/urls.py
|
urls.py
|
py
| 442 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70510668989
|
# -------------------------------
# 스코프(scope) 존재할 수 있는 범위
# -------------------------------
# 변수 종류
# - 전역변수(Global Variable) : 파일 전체에서 사용되는 변수, 같은파일에 존재하는 함수, 클래스 등등 함께사용
# - 지역변수(Local Variable) : 특정 영역 안에서만 사용 가능
#
# 전역변수와 지역변수의 변수명이 동일한 경우
# - 같은 영역안에 있는 변수 우선
# -------------------------------
year = 2022
month = 12
def showToday(day):
#전역변수 사용 알림
global year
year+=1
print(f'오늘은 {year}년 {month}월 {day}일 입니다.')
print(f'[Before] year=>{year}')
showToday(26)
print(f'[After] year=>{year}')
|
CieData/Study
|
Python,Pandas/ex_scope.py
|
ex_scope.py
|
py
| 740 |
python
|
ko
|
code
| 1 |
github-code
|
6
|
7961667082
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import sys
from . import api
from . import gui
try:
import urllib.parse as urllib
except:
import urllib
def play(**kwargs):
import xbmcaddon
addon = xbmcaddon.Addon(id='plugin.video.ran_de')
height = (234, 270, 396, 480, 540, 720)[int(addon.getSetting('video.quality'))]
resource = urllib.unquote_plus(kwargs['resource'])
video = api.get_video_url(resource, height)
if video:
gui.play(video)
def videos(**kwargs):
resource = urllib.unquote_plus(kwargs['resource'])
reliveOnly = kwargs['reliveOnly']
api.list_videos(resource, reliveOnly)
def index():
from . import thumbnails
live_caption = api.get_number_livestreams()
if live_caption:
live_caption = '[B]Live (%s)[/B]' % live_caption
else:
live_caption = 'Live (%s)' % live_caption
gui.add_folder(live_caption, thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/livestreams.json', 'reliveOnly': False}, 'aktuelle Live Streams')
gui.add_folder('Neueste Videos', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos.json', 'reliveOnly': False}, 'Liste der neuesten Videos - über alle Kategorien')
gui.add_folder('Neueste Videos - [COLOR blue] Re-Live only [/COLOR]', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos.json', 'reliveOnly': True}, 'Liste der neuesten Re-Lives - über alle Kategorien')
gui.add_folder('Fussball', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/fussball.json', 'reliveOnly': False}, 'Liste der neuesten Fussball-Videos')
gui.add_folder('US-Sports', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/us-sport.json', 'reliveOnly': False}, 'Liste der neuesten US-Sport-Videos (NBA, NFL, NHL)')
gui.add_folder('US-Sports: [COLOR blue] Re-Live only [/COLOR]', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/us-sport.json', 'reliveOnly': True}, 'Liste der neuesten Re-Live-Videos des US-Sports auf ran.de (NBA, NFL, NHL)')
gui.add_folder('Tennis', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/tennis.json', 'reliveOnly': False}, 'Liste der neuesten Tennis-Videos')
gui.add_folder('Handball', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/handball.json', 'reliveOnly': False}, 'Liste der neuesten Handball-Videos')
gui.add_folder('Boxen', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/boxen.json', 'reliveOnly': False}, 'Liste der neuesten Box-Videos')
gui.add_folder('Darts', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/darts.json', 'reliveOnly': False}, 'Liste der neuesten Darts-Videos')
gui.add_folder('eSports', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/esport.json', 'reliveOnly': False}, 'Liste der neuesten eSports-Videos')
gui.add_folder('DTM', thumbnails.THUMB_MAIN, {'f': 'videos', 'resource': '/ran-mega/mobile/v1/videos/dtm.json', 'reliveOnly': False}, 'Liste der neuesten Videos der Deutschen Tourenwagen Meisterschaft (DTM)')
gui.end_listing()
d = dict(p.split('=') for p in sys.argv[2][1:].split('&') if len(p.split('=')) == 2)
f = d.pop('f', 'index')
exec('{0}(**d)'.format(f))
|
Maven85/plugin.video.ran_de
|
resources/lib/index.py
|
index.py
|
py
| 3,418 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8665336110
|
from selenium import webdriver
import time
from selenium.webdriver.common.action_chains import ActionChains
browser = webdriver.Chrome()
browser.get("http://www.baidu.com/")
browser.maximize_window()
time.sleep(3)
browser.find_element_by_id("kw").send_keys("哈哈")
# 定位百度一下按钮
name = browser.find_element_by_id("su")
# 右击
# ActionChains(browser).context_click(name).perform()
# 双击
ActionChains(browser).double_click(name).perform()
time.sleep(3)
|
Zshuangshuang/Reload
|
2021_03_12自动化学习/src2021_03_12/testDemo12.py
|
testDemo12.py
|
py
| 472 |
python
|
en
|
code
| 0 |
github-code
|
6
|
36040788296
|
from ParadoxTrading.Chart import Wizard
from ParadoxTrading.Fetch.ChineseFutures import FetchDominantIndex
from ParadoxTrading.Indicator import ZigZag
fetcher = FetchDominantIndex()
market = fetcher.fetchDayData('20100701', '20170101', 'rb')
zigzag = ZigZag(0.1).addMany(market).getAllData()
wizard = Wizard()
price_view = wizard.addView('price', _adaptive=True)
price_view.addLine('market', market.index(), market['closeprice'])
price_view.addLine('zigzag', zigzag.index(), zigzag['zigzag'])
wizard.show()
|
ppaanngggg/ParadoxTrading
|
samples/indicator/zigzag_test.py
|
zigzag_test.py
|
py
| 510 |
python
|
en
|
code
| 51 |
github-code
|
6
|
30650525881
|
# Matrix Game experiment
# Author: Lucas Cassano
# Paper: "Logical Team Q-learning"
# ===================================
# Import necessary packages
from absl import app
from absl import flags
import numpy as np
import matplotlib.pyplot as plt
import q_mix
flags.DEFINE_string('save_path', '/tmp/', 'directory to save results.')
def main(argv):
"""Run simple 2 agent matrix game."""
nmbr_games = 500
seed = 1
mu = 1e-1
nmbr_agents = 2
qmix_extra_iters = 100
np.random.seed(seed)
payoff = np.array([[0, 2, 0], [0, 1, 2]]) #np.array([[8, -12, -12], [-12, 0, 0], [-12, 0, 0]]) #
q_joint = np.zeros_like(payoff)
nmbr_actions_1, nmbr_actions_2 = payoff.shape
q_logic_b = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
q_logic_u = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
q_dist = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
q_ind = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
q_tran = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
q_mix_class = q_mix.Qmix(payoff.shape, mu/2)
q_mix_out = {0: np.zeros([nmbr_games, nmbr_actions_1]), 1: np.zeros([nmbr_games, nmbr_actions_2])}
for n in range(nmbr_games - 1):
actions = np.array([np.random.randint(nmbr_actions_1), np.random.randint(nmbr_actions_2)]) #Pick actions uniformly
r = payoff[actions[0]][actions[1]]
# Logic Team Q-learning
for agent in range(nmbr_agents):
q_logic_b[agent][n + 1] = q_logic_b[agent][n]
q_logic_u[agent][n + 1] = q_logic_u[agent][n]
chosen_action = actions[agent]
if actions[nmbr_agents - 1 - agent] == np.argmax(q_logic_b[nmbr_agents - 1 - agent][n]):
q_logic_b[agent][n + 1][chosen_action] += mu * (r - q_logic_b[agent][n][chosen_action])
q_logic_u[agent][n + 1][chosen_action] += mu * (r - q_logic_u[agent][n][chosen_action])
elif r > q_logic_b[agent][n][chosen_action]:
q_logic_b[agent][n + 1][chosen_action] += mu * (r - q_logic_b[agent][n][chosen_action])
# Independent Q-learning
for agent in range(nmbr_agents):
q_ind[agent][n + 1] = q_dist[agent][n]
chosen_action = actions[agent]
q_ind[agent][n + 1][chosen_action] += mu * (r - q_dist[agent][n][chosen_action])
# Distributed Q-learning
for agent in range(nmbr_agents):
q_dist[agent][n + 1] = q_dist[agent][n]
chosen_action = actions[agent]
if r > q_dist[agent][n][chosen_action]:
q_dist[agent][n + 1][chosen_action] += mu * (r - q_dist[agent][n][chosen_action])
# Qtran-base
q_joint[actions[0], actions[1]] -= (q_joint[actions[0], actions[1]] - r)
q_j = q_joint[actions[0], actions[1]]
q_tilde = q_tran[0][n][actions[0]] + q_tran[1][n][actions[1]]
for agent in range(nmbr_agents):
q_tran[agent][n + 1] = q_tran[agent][n]
chosen_action = actions[agent]
if q_tran[0][n][actions[0]] == np.max(q_tran[0][n]) and q_tran[1][n][actions[1]] == np.max(q_tran[1][n]):
q_tran[agent][n + 1][chosen_action] -= mu * (q_tilde - q_j)
else:
q_tran[agent][n + 1][chosen_action] -= mu * np.minimum(q_tilde - q_j, 0)
# Qmix
q_mix_out[0][n + 1] = q_mix_out[0][n]
q_mix_out[1][n + 1] = q_mix_out[1][n]
for _ in range(qmix_extra_iters): #Needs far extra iters to converge XD
actions = np.array([np.random.randint(nmbr_actions_1), np.random.randint(nmbr_actions_2)])
r = payoff[actions[0]][actions[1]]
q1, q2, qmix = q_mix_class.learn(actions, r)
q_mix_out[0][n + 1][actions[0]] = q1
q_mix_out[1][n + 1][actions[1]] = q2
# Print final Qmix matrices
qmix1 = np.zeros([nmbr_actions_1])
qmix2 = np.zeros([nmbr_actions_2])
qmix_total = np.zeros([nmbr_actions_1, nmbr_actions_2])
for a1 in range(nmbr_actions_1):
for a2 in range(nmbr_actions_2):
qmix1[a1], qmix2[a2], qmix_total[a1, a2] = q_mix_class.obtain_q([a1, a2])
print(qmix1)
print(qmix2)
print(qmix_total)
# Plot results
fig1, ax1 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax1.plot(np.arange(start=0, stop=nmbr_games), q_logic_b[0], 'b')
ax1.plot(np.arange(start=0, stop=nmbr_games), q_logic_b[1], 'r')
ax1.set_yticks(np.arange(0, 2.01, step=0.5))
ax1.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig1.savefig(fname='biased_logic_matrix_game_1', bbox_inches='tight')
fig2, ax2 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax2.plot(np.arange(start=0, stop=nmbr_games), q_logic_u[0], 'b')
ax2.plot(np.arange(start=0, stop=nmbr_games), q_logic_u[1], 'r')
ax2.set_yticks(np.arange(0, 2.01, step=0.5))
ax2.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig2.savefig(fname='unbiased_logic_matrix_game_1', bbox_inches='tight')
fig3, ax3 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax3.plot(np.arange(start=0, stop=nmbr_games), q_dist[0], 'b')
ax3.plot(np.arange(start=0, stop=nmbr_games), q_dist[1], 'r')
ax3.set_yticks(np.arange(0, 2.01, step=0.5))
ax3.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig3.savefig(fname='q_dist_matrix_game_1', bbox_inches='tight')
fig4, ax4 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax4.plot(np.arange(start=0, stop=nmbr_games * qmix_extra_iters, step=qmix_extra_iters), q_mix_out[0], 'b')
ax4.plot(np.arange(start=0, stop=nmbr_games * qmix_extra_iters, step=qmix_extra_iters), q_mix_out[1], 'r')
ax4.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig4.savefig(fname='q_mix_matrix_game_1', bbox_inches='tight')
fig5, ax5 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax5.plot(np.arange(start=0, stop=nmbr_games), q_ind[0], 'b')
ax5.plot(np.arange(start=0, stop=nmbr_games), q_ind[1], 'r')
ax5.set_yticks(np.arange(0, 2.01, step=0.5))
ax5.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig5.savefig(fname='ind_q_matrix_game_1', bbox_inches='tight')
fig6, ax6 = plt.subplots()
plt.xlabel('Games', fontsize=25)
plt.ylabel('Q-values', fontsize=25)
ax6.plot(np.arange(start=0, stop=nmbr_games), q_tran[0], 'b')
ax6.plot(np.arange(start=0, stop=nmbr_games), q_tran[1], 'r')
ax6.set_yticks(np.arange(0, 2.01, step=0.5))
ax6.tick_params(axis='both', which='major', labelsize=15)
plt.grid()
fig6.savefig(fname='q_tran_matrix_game_1', bbox_inches='tight')
print(np.expand_dims(q_tran[0][-1], axis=1))
print(np.expand_dims(q_tran[1][-1], axis=0))
print(np.expand_dims(q_tran[0][-1], axis=1) + np.expand_dims(q_tran[1][-1], axis=0))
return 1
if __name__ == '__main__':
app.run(main)
|
lcassano/Logical_Team_Q_Learning_paper
|
matrix_game/run_matrix_exp.py
|
run_matrix_exp.py
|
py
| 6,910 |
python
|
en
|
code
| 0 |
github-code
|
6
|
15720162505
|
from collections import deque
def solution(msg):
answer = []
ord_index = 64
cach = dict()
queue = deque()
cach_index = 27
for string in msg:
if len(queue) == 0:
queue.append(string)
elif len(queue) != 0:
queue.append(string)
queue_string = ''.join(queue)
if queue_string not in cach.keys():
cach[queue_string] = cach_index
cach_index += 1
tmp = queue.popleft()
if len(tmp) == 1:
answer.append(ord(tmp) - ord_index)
else:
answer.append(cach[tmp])
else:
queue.clear()
queue.append(queue_string)
tmp = queue.popleft()
if len(tmp) == 1:
answer.append(ord(tmp) - ord_index)
else:
answer.append(cach[tmp])
return answer
print(solution("KAKAO"))
print(solution("TOBEORNOTTOBEORTOBEORNOT"))
print(solution("ABABABABABABABAB"))
|
grohong/Beajoon_Algorism
|
프로그래머즈/[3차]압축/main.py
|
main.py
|
py
| 1,011 |
python
|
en
|
code
| 1 |
github-code
|
6
|
14037338740
|
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family']='serif'
plt.rcParams['font.serif']=['Times New Roman'] + plt.rcParams['font.serif']
plt.rcParams['mathtext.fontset']='stix'
plt.rcParams['font.size']=10
cm = 1/2.54
Bubble0 = np.genfromtxt("Bubble_0/KellerMiksis_R5.000e-06_fa1.570e+04_pa-1.200e+05.txt", delimiter=" ")
Bubble1 = np.genfromtxt("Bubble_1/KellerMiksis_R1.000e-05_fa1.570e+04_pa-1.200e+05.txt", delimiter=" ")
fig1 = plt.figure(figsize=(17*cm,5*cm))
ax1 = plt.subplot2grid((1,3),(0,0),colspan=1)
ax2 = plt.subplot2grid((1,3),(0,1),colspan=1)
ax3 = plt.subplot2grid((1,3),(0,2),colspan=1)
plt.subplots_adjust(wspace=1.2*cm,hspace=1.2*cm)
ax1.set(xlabel=r'$t$ [$\mu$s]',ylabel=r'$R(t)$ [$\mu$m]')
ax1.set_xlim(xmin=600,xmax=750)
ax1.set_ylim(ymin=0,ymax=60)
ax1.grid(color='gainsboro', linestyle='-', linewidth=0.5)
ax1.plot(Bubble0[:, 1]*1e6, Bubble0[:, 3]*1e6, linestyle='solid', linewidth=1,color='steelblue', label=r'$R_0 = 5 \ \mu \mathrm{m}$')
ax1.plot(Bubble1[:, 1]*1e6, Bubble1[:, 3]*1e6, linestyle='solid', linewidth=1,color='goldenrod', label=r'$R_0 = 10 \ \mu \mathrm{m}$')
ax1.legend(ncol=1,labelspacing=0.2,markerfirst=True,loc='upper right',fontsize='x-small',facecolor='None',edgecolor='None',framealpha=1,frameon=True,bbox_to_anchor=(1, 1))
ax2.set(xlabel=r'$t$ [$\mu$s]',ylabel=r'$\dot{R}(t)$[m/s]')
ax2.set_xlim(xmin=600,xmax=750)
ax2.set_ylim(ymin=-400,ymax=300)
ax2.grid(color='gainsboro', linestyle='-', linewidth=0.5)
ax2.plot(Bubble0[:, 1]*1e6, Bubble0[:, 4], linestyle='solid', linewidth=1,color='steelblue')
ax2.plot(Bubble1[:, 1]*1e6, Bubble1[:, 4], linestyle='solid', linewidth=1,color='goldenrod')
ax3.set_yscale('log')
ax3.set(xlabel=r'$t$ [$\mu$s]',ylabel=r'$p_\mathrm{G}(t)$ [Pa]')
ax3.set_xlim(xmin=600,xmax=750)
ax3.set_ylim(ymin=1e1,ymax=1e10)
ax3.grid(color='gainsboro', linestyle='-', linewidth=0.5)
ax3.plot(Bubble0[:, 1]*1e6, Bubble0[:, 5], linestyle='solid', linewidth=1.0,color='steelblue')
ax3.plot(Bubble1[:, 1]*1e6, Bubble1[:, 5], linestyle='solid', linewidth=1.0,color='goldenrod')
ax1.xaxis.set_label_coords(0.5,-0.24)
ax2.xaxis.set_label_coords(0.5,-0.24)
ax3.xaxis.set_label_coords(0.5,-0.24)
ax1.yaxis.set_label_coords(-0.25, 0.5)
ax2.yaxis.set_label_coords(-0.25, 0.5)
ax3.yaxis.set_label_coords(-0.25, 0.5)
fig1.savefig('binaryinteraction.pdf', bbox_inches='tight',pad_inches=0.035)
|
polycfd/apecss
|
examples/binaryinteraction/plot_result.py
|
plot_result.py
|
py
| 2,384 |
python
|
en
|
code
| 13 |
github-code
|
6
|
36702590099
|
# import os and csv
import os
import csv
# variables to be used later
total_months = 0
old_profit = 0
month_change = []
profit_change_list = []
max_increase = ['', 0]
max_decrease = ['', 10000000000000000000000000000000000000]
total_profit = 0
# open csv file and create csv reader
csvpath = os.path.join("/Users/tincho/Desktop/Challenge Reps/Python_Challenge/PyBank/resources/budget_data.csv")
with open(csvpath) as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
# calc total months and total profit
total_months = total_months + 1
total_profit = total_profit + int(row['Profit/Losses'])
# calculate profit change
profit_change = int(row['Profit/Losses']) - old_profit
old_profit = int(row['Profit/Losses'])
profit_change_list = profit_change_list + [profit_change]
month_change = month_change + [row['Date']]
# calculate max increase
if (profit_change > max_increase[1]):
max_increase[0] = row['Date']
max_increase[1] = profit_change
# calculate max decrease
if (profit_change < max_decrease[1]):
max_decrease[0] = row['Date']
max_decrease[1] = profit_change
# calculate average profit change
profit_change = round(sum(profit_change_list) / len(profit_change_list), 2)
# create output chart
output = (
f'\nFinancial Analysis\n'
f'--------------------------\n'
f'Total Months: {total_months}\n'
f'total Profit: ${total_profit}\n'
f'Profit change: ${profit_change}\n'
f'Biggest Increase in Profit: {max_increase[0]} (${max_increase[1]})\n'
f'Biggest decrease in Profit: {max_decrease[0]} (${max_decrease[1]})\n'
)
print(output)
# create text file
with open("PyBank_Output", 'w') as txt_file:
txt_file.write(output)
|
mbedino99/Python_Challenge
|
Pybank/main.py
|
main.py
|
py
| 1,834 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70547983867
|
"""
Python-Rightscale
A stupid wrapper around rightscale's HTTP API
"""
import types
from .actions import RS_DEFAULT_ACTIONS, COLLECTIONS
from .httpclient import HTTPClient
from .util import get_rc_creds, HookList
# magic strings from the 1.5 api
DEFAULT_API_PREPATH = '/api'
# authenticate here
OAUTH2_RES_PATH = '/'.join((DEFAULT_API_PREPATH, 'oauth2'))
# start hypermedia searches here
ROOT_RES_PATH = '/'.join((DEFAULT_API_PREPATH, 'sessions'))
# these *should* be discoverable from the '/api/sessions' route above, but they
# are not. there is an open ticket filed with rightscale. until it gets
# addressed, it's just more magic:
ACCOUNT_INFO_RES_PATH = '/'.join((DEFAULT_API_PREPATH, 'sessions/accounts'))
HEALTH_CHECK_RES_PATH = '/'.join((DEFAULT_API_PREPATH, 'health-check'))
COLLECTION_TYPE = 'type=collection'
def get_resource_method(name, template):
"""
Creates a function that is suitable as a method for ResourceCollection.
"""
def rsr_meth(self, **kwargs):
http_method = template['http_method']
extra_path = template.get('extra_path')
if extra_path:
fills = {'res_id': kwargs.pop('res_id', '')}
path = self.path + (extra_path % fills)
else:
path = self.path
response = self.client.request(http_method, path, **kwargs)
loc = response.headers.get('location', None)
if loc:
# If the returned code is a 201, then there should be a location
# header in the response that we can use to re-get the newly created
# resource.
loc = response.headers.get('location')
response = self.client.get(loc, **kwargs)
# At this point, we better have a valid JSON response object
try:
obj = response.json()
except:
# The response had no JSON ... not a resource object
return
if COLLECTION_TYPE in response.content_type:
ret = HookList(
[Resource(r, path, response, self.client) for r in obj],
response=response
)
else:
ret = Resource(obj, path, response, self.client)
return ret
rsr_meth.__name__ = name
return rsr_meth
class Resource(object):
"""
A single resource.
:param dict soul: The essence of the resource as returned by the RightScale
API. This is the dictionary of attributes originally returned as the
JSON body of the HTTP response from RightScale.
:param str path: The path portion of the URL. E.g. ``/api/clouds/1``.
:param rightscale.httpclient.HTTPResponse response: The raw response object
returned by :meth:`HTTPClient.request`.
"""
def __init__(self, soul=None, path='', response=None, client=None):
if soul is None:
soul = {}
self.soul = soul
self.path = path
self.collection_actions = {}
self.response = response
self.client = client
self._links = None
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, self.soul)
def __str__(self):
return str(self.soul)
def __cmp__(self, other):
return cmp(self.soul, other.soul)
@property
def content_type(self):
if self.response:
return self.response.content_type[0]
return ''
def _get_rel_hrefs(self):
rel_hrefs = self.soul.get('links', [])
return dict((raw['rel'], raw['href']) for raw in rel_hrefs)
@property
def href(self):
return self._get_rel_hrefs().get('self', '')
@property
def links(self):
# only initialize once, not if empty
if self._links is None:
_links = self._get_rel_hrefs()
collection_actions = COLLECTIONS.get(self.content_type, {})
self.collection_actions = collection_actions
for name, action in collection_actions.iteritems():
if action is None and name in _links:
del _links[name]
continue
if name not in _links:
_links[unicode(name)] = unicode(
'%s/%s' % (self.path, name)
)
self._links = _links
return self._links
def __dir__(self):
return self.links.keys()
def __getattr__(self, name):
path = self.links.get(name)
if not path:
raise AttributeError('%s object has no attribute %s' % (
self.__class__.__name__,
name,
))
actions = RS_DEFAULT_ACTIONS.copy()
tpl = self.collection_actions.get(name)
if tpl:
actions.update(tpl)
return ResourceCollection(path, self.client, actions)
class ResourceCollection(object):
def __init__(self, path, client, actions):
self.path = path
self.client = client
for name, template in actions.items():
if not template:
continue
method = get_resource_method(name, template)
setattr(self, name, types.MethodType(method, self, self.__class__))
class RightScale(Resource):
def __init__(
self,
path=DEFAULT_API_PREPATH,
refresh_token=None,
api_endpoint=None,
):
"""
Creates and configures the API object.
:param str refresh_token: The refresh token provided by Rightscale when
API access is enabled.
:param api_endpoint: The rightscale subdomain to be hit with API
requests.
:param str path: The path portion of the URL.
E.g. ``/api``.
"""
super(RightScale, self).__init__({}, path)
self.auth_token = None
rc_creds = get_rc_creds()
# prevent dumb leakage from the environment by only grabbing creds from
# rc file if they are not specified to the constructor.
if api_endpoint is None:
api_endpoint = rc_creds[0]
if not api_endpoint:
raise ValueError("Can't login with no api endpoint.")
self.api_endpoint = api_endpoint
if refresh_token is None:
refresh_token = rc_creds[1]
if not refresh_token:
raise ValueError("Can't login. Need refresh token!")
self.client = HTTPClient(
api_endpoint,
{'X-API-Version': '1.5'},
OAUTH2_RES_PATH,
refresh_token,
)
def health_check(self):
# only in 1.5 api docs, not discoverable via href
return self.client.get(HEALTH_CHECK_RES_PATH).json()
@property
def links(self):
if not self.soul:
try:
response = self.client.get(ROOT_RES_PATH)
self.response = response
self.soul = response.json()
except:
self.soul = {}
return super(RightScale, self).links
|
brantai/python-rightscale
|
rightscale/rightscale.py
|
rightscale.py
|
py
| 7,065 |
python
|
en
|
code
| 7 |
github-code
|
6
|
72851324029
|
import tensorflow as tf
import numpy as np
class Estimator:
"""Estimator class implements the function approximation for DQN.
The Estimator class defines a NN that is used
by DQN to estimate the Q-function values.
It takes the classification state
as input, followed by a fully connected layer with
sigmoid activation of dimensionality 10. The output is then
concatenates with action representations followed by
a fully connected layers with sigmoid activation of size
5 and then last linear fully connceted layer with 1 output.
Attributes:
classifier_placeholder: A TF placeholder of shape any x classifier_state_length for the classification state.
action_placeholder: A TF placeholder of shape any x action_state_length for the action (datapoint) state.
predictions: A tensor of size any x 1 that contains predictions of the approximation by Q-network
summaries: A TF summary object that will contain the stats for result analysis
"""
def __init__(self, classifier_state_length, action_state_length, is_target_dqn, var_scope_name, bias_average):
"""Initialises the estimator.
A computational graph that computes Q-values starting from
classification state and action state.
Args:
classifier_state_length: An integer indicating the number of features in classifier state.
action_state_length: An integer indicating the number of features in action state.
is_target_dqn: A boolean indicating if the Estimator is a target network.
Only normal (not target) network is trained, the other one is a lagging copy.
var_scope_name: A string, can be "dqn" or "target_dqn", for example.
bias_average: A float that is used to initialize the bias in the last layer.
"""
self.classifier_placeholder = tf.placeholder(tf.float32, shape=[None, classifier_state_length], name="X_classifier")
self.action_placeholder = tf.placeholder(tf.float32, shape=[None, action_state_length], name="X_datapoint")
with tf.variable_scope(var_scope_name):
# A fully connected layers with classifier_placeholder as input
fc1 = tf.contrib.layers.fully_connected(
inputs=self.classifier_placeholder,
num_outputs=10,
activation_fn=tf.nn.sigmoid,
trainable=not is_target_dqn,
variables_collections=[var_scope_name],
)
# Concatenate the output of first fully connected layer with action_placeholder
fc2concat = tf.concat([fc1, self.action_placeholder], 1)
# A fully connected layer with fc2concat as input
fc3 = tf.contrib.layers.fully_connected(
inputs=fc2concat,
num_outputs=5,
activation_fn=tf.nn.sigmoid,
trainable=not is_target_dqn,
variables_collections=[var_scope_name]
)
# The last linear fully connected layer
# The bias on the last layer is initialized to some value
# normally it is the - average episode duriation / 2
# like this NN find optimum better even as the mean is not 0
self.predictions = tf.contrib.layers.fully_connected(
inputs=fc3,
num_outputs=1,
biases_initializer=tf.constant_initializer(bias_average),
activation_fn=None,
trainable=not is_target_dqn,
variables_collections=[var_scope_name],
)
# Summaries for tensorboard
# Can write weights to check how they are developed,
# but it takes more space and used only for debugging
#tf.summary.histogram("estimator/fc1", fc1)
#tf.summary.histogram("estimator/fc2", fc2)
#tf.summary.histogram("estimator/fc3", fc3)
tf.summary.histogram("estimator/q_values", self.predictions)
self.summaries = tf.summary.merge_all()
|
ksenia-konyushkova/LAL-RL
|
estimator.py
|
estimator.py
|
py
| 4,139 |
python
|
en
|
code
| 11 |
github-code
|
6
|
3955950488
|
# -*- coding: utf-8 -*-
"""check cache status
* check cache status
* this file uses standalone
"""
import sys
import os
import json
import time
import subprocess
import configparser
from glob import glob
from state_list import get_error_message, DONE
config = configparser.ConfigParser()
config.read("config.ini")
MAIL_ADDRESS = config.get("general", "mail_address")
CACHE_PATH = "./cache"
def create_filter_caches(span):
"""filtered caches to cache list in span
Args:
span (int): cache check span
Returns:
filtered_cache_paths (list): cache paths in span
"""
all_caches = glob(CACHE_PATH + "/*.json")
if not all_caches:
return False
sorted_caches = sorted(all_caches, key=lambda x: os.path.getctime(x), reverse=True)
filtered_cache_paths = []
current_time = time.time()
for cache in sorted_caches:
cache_time = os.path.getctime(cache)
if current_time - cache_time < span:
filtered_cache_paths.append(cache)
else:
break
return filtered_cache_paths
def create_cache_statuses(cache_paths):
"""create status list from cache_list
Args:
cache_paths (list): cache paths in span
Returns:
statuses (list): status list
"""
statuses = []
try:
for cache in cache_paths:
ret = json.load(open(cache))
status = ret[-1]
statuses.append(str(status))
except FileNotFoundError:
# not found cache
return False
return statuses
def create_count_statuses(statuses):
"""count status appeared times
Args:
statuses (list): status list
Returns:
status_counts (list): status key with appeared times
"""
status_counts = {}
for status in statuses:
if status in status_counts:
# already found, count up
status_counts[status] += 1
else:
status_counts[status] = 1
return status_counts
def create_messages(counts):
"""status counts to messages
Args:
counts (collection): status key with appeared times
Returns:
messages (list): messages
"""
messages = []
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
sorted_keys = [key[0] for key in sorted_counts]
if str(DONE) in sorted_keys:
messages.append("Good")
else:
messages.append("*Careful*")
for key in sorted_keys:
error_message = get_error_message(int(key), 2)
messages.append(key + " : " + str(counts[key]) + " " + error_message + "\n")
return messages
def create_mail_title(span, condition):
"""time to messages
Args:
span (int): cache check span
condition (str): server condition
Returns:
title (string): time and conditions to mail title
"""
span_hour = str(int(span / 3600))
return condition + " " + span_hour + "h"
def create_mail_body(messages):
"""status counts to messages
Args:
messages (list): messages
Returns:
body (string): statuses to mail body
"""
body_message = messages[1:]
body = "".join(body_message)
return body
def create_mail(span):
"""create mail from caches which made in span
Args:
span (int): cache check span
Returns:
title (string): time and conditions to mail title
body (string): statuses to mail body
"""
cache_paths = create_filter_caches(span)
if not cache_paths:
title = create_mail_title(span, "***Bad***")
body = "no cache available"
return title, body
statuses = create_cache_statuses(cache_paths)
if not statuses:
title = create_mail_title(span, "***Bad***")
body = "may move cache"
return title, body
counts = create_count_statuses(statuses)
messages = create_messages(counts)
title = create_mail_title(span, messages[0])
body = create_mail_body(messages)
return title, body
def main():
"""main function
Args:
Returns:
"""
# if no args, then exit
if not sys.argv[1]:
return
span = int(sys.argv[1])
title, body = create_mail(span)
cmd = 'echo "' + body + '" | mail -s "' + title + '" ' + MAIL_ADDRESS
subprocess.call(cmd, shell=True)
if __name__ == "__main__":
main()
|
Neilsaw/PriLog_web
|
watchdog_status.py
|
watchdog_status.py
|
py
| 4,426 |
python
|
en
|
code
| 30 |
github-code
|
6
|
35848057912
|
import matplotlib.pyplot as plt
def visualize(n, x, y, file_name):
plt.scatter(x, y)
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.title(file_name + ': Number of points: %d' % n)
plt.show()
def read_from_file(file_name):
coord_x = []
coord_y = []
with open(file_name, 'r') as file:
n = int(file.readline())
for i in range(n):
line = [float(i) for i in file.readline().split()]
coord_x.append(line[0])
coord_y.append(line[1])
visualize(n, coord_x, coord_y, file_name)
if __name__ == "__main__":
files = ['001.dat', '002.dat', '003.dat', '004.dat', '005.dat']
for file_name in files:
read_from_file('data_1tsk/' + file_name)
|
klauchek/Python_3sem
|
matplotlib_lab/task1.py
|
task1.py
|
py
| 744 |
python
|
en
|
code
| 0 |
github-code
|
6
|
33850689871
|
# 第 0012 题:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,
# 则用 星号 * 替换
def replaceword(path):
word_list = []
with open(path, 'r') as f:
for word in f.read().split():
word_list.append(word)
# print(word_list)
inp = input('请输入一个句子:')
for i in word_list:
if i in inp:
print(inp.replace(i, '*'))
if __name__ == '__main__':
replaceword('filted_words.txt')
|
akenYu/learnpy
|
showme/12/replaceword.py
|
replaceword.py
|
py
| 433 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19271968449
|
import MDAnalysis
import satoshi_pca as SAS
path = "/lustre7/home/lustre3/satoshi/MED"
TRR = ["/aff4/test_all.trr", "/eaf1/test_all.trr", "/taf7/test_all.trr",
"/aff4_kai/run_all.trr", "/eaf1_kai/run_all.trr",
"/taf7_kai/run_all.trr"]
PDB = ["/aff4/HEN.pdb", "/eaf1/HEN.pdb", "/taf7/HEN.pdb",
"/aff4_kai/aff4kai.pdb", "/eaf1_kai/eaf1kai.pdb",
"/taf7_kai/taf7kai.pdb"]
PROB = ["/aff4/prob.txt", "/eaf1/prob.txt", "/taf7/prob.txt",
"/aff4_kai/prob.dat", "/eaf1_kai/prob.dat", "/taf7_kai/prob.dat"]
def PDB_cal(num1):
num_pdb = []
RESIDUE = ["N", "C"]
for i in open(path + PDB[num1]):
f = i.split()
if f[2] in RESIDUE:
num_pdb.append(int(f[1]))
print(len(num_pdb))
return num_pdb
def PROB_cal(num1):
num_prob = []
num2 = 0
for i in open(path + PROB[num1], "r"):
if float(i) != 0:
num_prob.append(num2)
num2 += 1
return num_prob
def TRR_cal():
kai_zahyou = []
for trr in range(6):
num_pdb = PDB_cal(trr)
num_prob = PROB_cal(trr)
u = MDAnalysis.Universe(path + TRR[trr])
frm = u.trajectory
frm_itr = iter(frm)
del frm, u
print(len(num_prob))
"""
for i in num_prob:
kai = []
x = float(frm[i][0][0])
y = float(frm[i][0][1])
z = float(frm[i][0][2])
for j in num_pdb:
kai.append(str(float(frm[i][j][0]) - x))
kai.append(str(float(frm[i][j][1]) - y))
kai.append(str(float(frm[i][j][2]) - z))
kai_zahyou.append(kai)
print("kai", len(kai), " kai_zahyou", len(kai_zahyou), "/",
len(num_prob), " num_pdb", len(num_pdb))
num2 = 0
while True:
try:
kai = []
FRM = next(frm_itr)
if num2 in num_prob:
x = float(FRM[0][0])
y = float(FRM[0][1])
z = float(FRM[0][2])
for j in num_pdb:
kai.append(str(float(FRM[j][0]) - x))
kai.append(str(float(FRM[j][1]) - y))
kai.append(str(float(FRM[j][2]) - z))
kai_zahyou.append(kai)
print("kai", len(kai), " kai_zahyou", len(kai_zahyou), "/",
len(num_prob), " num_pdb", len(num_pdb))
del x, y, z, FRM
except StopIteration:
break
num2 += 1
"""
for i in safe_mem(frm_itr, num_prob, num_pdb):
kai_zahyou.append(i)
print("kai_zahyou", len(kai_zahyou), "/",
len(num_prob), " num_pdb", len(num_pdb))
del frm_itr, num_prob, num_pdb
return kai_zahyou
def safe_mem(frm_itr, num_prob, num_pdb):
num2 = 0
while True:
try:
kai = []
FRM = next(frm_itr)
if num2 in num_prob:
x = float(FRM[0][0])
y = float(FRM[0][1])
z = float(FRM[0][2])
for j in num_pdb:
kai.append(str(float(FRM[j][0]) - x))
kai.append(str(float(FRM[j][1]) - y))
kai.append(str(float(FRM[j][2]) - z))
yield kai
# del x, y, z, FRM, kai
except StopIteration:
del kai
break
num2 += 1
def PPP():
kai = [0]
num1 = 0
for i in range(6):
for i in open(path + PROB[i], "r"):
if float(i) != 0:
num1 += 1
kai.append(num1)
return kai
if __name__ == '__main__':
kai = SAS.pca(TRR_cal())
kai = kai.tolist()
path1 = "/lustre7/home/lustre3/satoshi/ALL_PCA/txt/"
ttt = "_20201207_2.txt"
ligands = ["aff", "eaf", "taf", "affkai", "eafkai", "tafkai"]
num = PPP()
for i in range(6):
f = open(path1+ligands[i]+ttt, "w")
for j in range(int(num[i]), int(num[i+1])):
f.write(str(kai[j][0]))
f.write(" ")
f.write(str(kai[j][1]))
f.write("\n")
f.close()
|
satoshi-python/Desktop
|
all_pca_kai.py
|
all_pca_kai.py
|
py
| 4,342 |
python
|
en
|
code
| 0 |
github-code
|
6
|
37857057401
|
#! /usr/bin/env python3
from uuid import uuid4 as uuid
import argparse
import pika
from protos import events
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument("--exchange", required=True)
p.add_argument("--pretty-print", default=False, action='store_true')
args = p.parse_args()
conn = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
channel = conn.channel()
channel.exchange_declare(exchange=args.exchange, exchange_type='fanout')
queue_name = f"manual_{uuid().hex}"
queue = channel.queue_declare(queue=queue_name, exclusive=True)
channel.queue_bind(exchange=args.exchange, queue=queue.method.queue)
def print_message(ch, method, properties, body):
event: events.Event = events.Event().FromString(body)
print(event)
channel.basic_consume(queue=queue_name, auto_ack=True, on_message_callback=print_message)
channel.start_consuming()
|
cjmcgraw/studious-carnival
|
rabbitmq/read-from-exchange.py
|
read-from-exchange.py
|
py
| 959 |
python
|
en
|
code
| 0 |
github-code
|
6
|
34321388716
|
from datetime import datetime, timedelta
import os
from airflow import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators import (StageToRedshiftOperator,
LoadFactOperator,
DataQualityOperator)
from airflow.operators.subdag_operator import SubDagOperator
from subdags.subdag_for_dimensions import load_dimension_subdag
from helpers import SqlQueries
from quality_checks.sql_queries import QualityChecks
AWS_KEY = os.environ.get('AWS_KEY')
AWS_SECRET = os.environ.get('AWS_SECRET')
# set default args
default_args = {
'owner': 'udacity',
'start_date': datetime(2018, 1, 1),
'end_date': datetime(2018, 12, 1),
'email_on_retry': False,
'retries': 3,
'catchup': False,
'retry_delay': timedelta(minutes=5),
'depends_on_past': False,
'wait_for_downstream': True
}
# dag is complete
dag = DAG('udac_example_dag',
default_args=default_args,
description='Load and transform data in Redshift with Airflow',
schedule_interval='@hourly'
)
# dummy for node 0
start_operator = DummyOperator(task_id='Begin_execution', dag=dag)
# stage events
stage_events_to_redshift = StageToRedshiftOperator(
task_id='Stage_events',
dag=dag,
redshift_conn_id="redshift",
aws_credentials_id="aws_default",
table="staging_events",
s3_bucket="udacity-dend",
s3_key="log_data",
sql_stmt=SqlQueries.log_copy_command,
provide_context=True,
json_format="s3://udacity-dend/log_json_path.json"
)
# stage songs
stage_songs_to_redshift = StageToRedshiftOperator(
task_id='Stage_songs',
dag=dag,
redshift_conn_id="redshift",
aws_credentials_id="aws_default",
table="staging_songs",
s3_bucket="udacity-dend",
s3_key="song_data",
sql_stmt=SqlQueries.song_copy_command,
json_format="auto"
)
# load dimensions
load_dimension_subdag_task = SubDagOperator(
subdag=load_dimension_subdag(
parent_dag_name="udac_example_dag",
task_id="load_dimensions",
redshift_conn_id="redshift",
start_date=datetime(2018, 1, 1)
),
task_id="load_dimensions",
dag=dag,
)
# load fact
load_songplays_table = LoadFactOperator(
task_id='Load_songplays_fact_table',
dag=dag,
redshift_conn_id="redshift",
table="songplays",
sql_stmt=SqlQueries.songplay_table_insert
)
# run quality check
run_quality_checks = DataQualityOperator(
task_id='Run_data_quality_checks',
dag=dag,
redshift_conn_id="redshift",
sql_stmt=QualityChecks.count_check,
tables=['songs', 'time', 'users', 'artists', 'songplays'],
)
# dummy for node end
end_operator = DummyOperator(task_id='Stop_execution', dag=dag)
"""
An Overview of the implemented dag:
--> stage_events -->
// \\
start --> --> load_facts --> load_dimensions --> quality_check --> end
\\ //
--> stage_songs -->
"""
# sequence of airflow operations
start_operator >> stage_events_to_redshift
start_operator >> stage_songs_to_redshift
stage_events_to_redshift >> load_songplays_table
stage_songs_to_redshift >> load_songplays_table
load_songplays_table >> load_dimension_subdag_task
load_dimension_subdag_task >> run_quality_checks
run_quality_checks >> end_operator
|
supratim94336/SparkifyDataPipelineWithAirflow
|
airflow/dags/udacity_dag.py
|
udacity_dag.py
|
py
| 3,401 |
python
|
en
|
code
| 0 |
github-code
|
6
|
13879858183
|
import math
N = int(input())
muscle = list(map(int, input().split()))
muscle = sorted(muscle, reverse=False)
max_muscle = 0
pt = math.ceil(N/2)
i = 0
ans_list = []
if N % 2 != 0: # 홀수
max_muscle = muscle[N-1]
while i <= N-i-2:
ans_list.append(muscle[i]+muscle[N-i-2])
i += 1
ans_list.append(max_muscle)
else:
while i <= N-i-1:
ans_list.append(muscle[i]+muscle[N-i-1])
i += 1
print(max(ans_list))
|
codusl100/algorithm
|
백준/그리디/서강근육맨.py
|
서강근육맨.py
|
py
| 456 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40687860073
|
import wsgiserver
from flask import Flask, jsonify
def check_quota_response(**kwargs):
response = kwargs['response']
return jsonify({
'version': 1,
'payload': {
'emptyWallet': not response,
},
})
def setup_flask_server(json_response):
app = Flask(__name__)
app.add_url_rule(
'/', 'index', check_quota_response,
defaults={'response': json_response},
)
app.add_url_rule(
'/<path:dummy>', 'index', check_quota_response,
defaults={'response': json_response},
)
return app
def run_flask(ip, port, response, exit_callback):
app = setup_flask_server(response)
server = wsgiserver.WSGIServer(app, host=ip, port=port)
try:
server.start()
finally:
# When the flask server finishes running, do any other cleanup
exit_callback()
|
magma/magma
|
lte/gateway/python/magma/pipelined/check_quota_server.py
|
check_quota_server.py
|
py
| 868 |
python
|
en
|
code
| 1,605 |
github-code
|
6
|
32144143111
|
from datetime import date
from twilio.rest import TwilioRestClient
# To find these visit https://www.twilio.com/user/account
ACCOUNT_SID = "AC937af250fc201a2c44aad667cf309fa4"
AUTH_TOKEN = "6a8accce5860c8f18391bf4ec809d84b"
client = TwilioRestClient(ACCOUNT_SID, AUTH_TOKEN)
for message in client.messages.list():
message.body
def filtering(to_txt):
messages = client.messages.list(
to=to_txt,
date_sent=date(2015,1,8),
)
for message in messages:
return message.body
#filtering(mbl_no)
|
suparna-ghanvatkar/EBMP
|
show_text.py
|
show_text.py
|
py
| 515 |
python
|
en
|
code
| 0 |
github-code
|
6
|
39227052944
|
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import os
import numpy as np
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.constraints import maxnorm
from sklearn.cross_validation import StratifiedKFold
from python_speech_features import mfcc
from python_speech_features import delta
from prepare_data import serialize_data
from prepare_data import load_data_from_npy
npy_path = './Audio Data/npy data'
train_wav_npy_filename = 'train_wav.npy'
train_tg_npy_filename = 'train_label.npy'
test_wav_npy_filename = 'test_wav.npy'
test_tg_npy_filename = 'test_label.npy'
val_wav_npy_filename = 'val_wav.npy'
val_tg_npy_filename = 'val_label.npy'
x_train = load_data_from_npy(os.path.join(npy_path,train_wav_npy_filename))
y_train = load_data_from_npy(os.path.join(npy_path,train_tg_npy_filename))
x_test = load_data_from_npy(os.path.join(npy_path,test_wav_npy_filename))
y_test = load_data_from_npy(os.path.join(npy_path,test_tg_npy_filename))
x_val = load_data_from_npy(os.path.join(npy_path,val_wav_npy_filename))
y_val = load_data_from_npy(os.path.join(npy_path,val_tg_npy_filename))
model = Sequential()
model.add(Dropout(0.2, input_shape=(39*41,)))
model.add(Dense(39*41,init='normal',activation='relu',W_constraint=maxnorm(3)))
model.add(Dropout(0.2))
model.add(Dense(128,activation='relu',W_constraint=maxnorm(3)))
model.add(Dropout(0.2))
model.add(Dense(128,activation='relu',W_constraint=maxnorm(3)))
model.add(Dropout(0.2))
model.add(Dense(5,activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) # Fit the model
history = model.fit(x_train, y_train, epochs=10, batch_size=512,validation_data=(x_val,y_val))
with open('./log_history.txt') as log:
log.write(str(history.history))
model.save('./Audio Data/model/model-test1.h5')
#plot train and validation loss
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label = 'Training loss')
plt.plot(epochs, val_loss, 'b', label = 'Validation loss')
plt.title('Traing and validtion loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('./Traing and validtion loss.png')
plt.clf()
acc = history.history['acc']
val_acc = history.history['val_acc']
plt.plot(epochs, acc, 'bo', label='Traing acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Traing and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('Traing and validation accuracy')
results = model.evaluate(x_test, y_test)
print(results)
|
MakerFace/voice-activation-system
|
mfcc-model.py
|
mfcc-model.py
|
py
| 2,823 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32839631812
|
import torch
from diffusers import DiffusionPipeline
def torch_device():
if torch.cuda.is_available():
return "cuda"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
return "mps"
return "cpu"
def pipeline(model="stabilityai/stable-diffusion-xl-base-0.9", device=torch_device()):
torch_dtype = torch.float16
variant = "fp16"
# MacOS can only use fp32
if device == "mps":
torch_dtype = torch.float32
variant = "fp32"
pipe = DiffusionPipeline.from_pretrained(
model,
torch_dtype=torch_dtype,
use_safetensors=True,
variant=variant,
)
if device == "cpu":
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
# 20-30% inference speed up for torch >= 2.0
pipe.unit = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
return pipe
|
2132660698/sdxl-demos
|
utils.py
|
utils.py
|
py
| 906 |
python
|
en
|
code
| null |
github-code
|
6
|
43589412425
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
df = None
# In[2]:
from reaktoro import *
import numpy as np
from natsort import natsorted
from tqdm.notebook import tqdm
import os
from bokeh.io import show, output_notebook
from bokeh.layouts import column
from bokeh.plotting import figure
from bokeh.models import Range1d, ColumnDataSource
from bokeh.layouts import gridplot
# In[3]:
second = 1
minute = 60
hour = 60 * minute
day = 24 * hour
week = 7 * day
year = 365 * day
# In[4]:
xl = 0.0
xr = 0.5
ncells = 100
nsteps = 200
dx = (xr - xl) / ncells
dt = 60 * minute
# 7el Cl H N Na O Z
# D = [ 2.032*1.0e-9, 9.311*10.0e-9, 1.902*1.0e-9,1.334*1.0e-9, 1.0e-9, 1.0e-9]
D = 1.0e-09
v = 1.0 / week
T = 60.0 + 273.15
P = 100 * 1e5
phi = 0.1
# In[5]:
xcells = np.linspace(xl, xr, ncells + 1)
# In[6]:
dirichlet = False
# In[7]:
output_quantities = """
pH
speciesMolality(H+)
speciesMolality(Cl-)
speciesMolality(Na+)
speciesMolality(NO3-)
speciesMolarity(OH-)
""".split()
# In[8]:
column_quantities = """
pH
Hcation
Clanion
Nacation
NO3anion
OHanion
""".split()
# In[9]:
# Create the list of columns stored in dataframes
columns = ['step', 'x'] + column_quantities
import pandas as pd
# In[10]:
# Initialize dataframes with above defined columns
df = pd.DataFrame(columns=columns)
# In[11]:
folder_results = 'results-rt-calcite-dolomite'
def make_results_folders():
os.system('mkdir -p ' + folder_results)
# In[12]:
def simulate():
# Construct the chemical system with its phases and species
system = define_chemical_system()
# Define the initial condition of the reactive transport modeling problem
state_ic = define_initial_condition(system)
# Define the boundary condition of the reactive transport modeling problem
state_bc = define_boundary_condition(system)
# Generate indices of partitioning fluid and solid species
nelems, ifluid_species, isolid_species = partition_indices(system)
# Partitioning fluid and solid species
b, bfluid, bsolid, b_bc = partition_elements_in_mesh_cell(ncells, nelems, state_ic, state_bc)
# Create a list of chemical states for the mesh cells (one for each cell, initialized to state_ic)
states = [state_ic.clone() for _ in range(ncells + 1)]
# Create the equilibrium solver object for the repeated equilibrium calculation
solver = EquilibriumSolver(system)
# Running the reactive transport simulation loop
step = 0 # the current step number
t = 0.0 # the current time (in seconds)
# Output the initial state of the reactive transport calculation
outputstate_df(step, system, states)
with tqdm(total=nsteps, desc="Reactive transport simulations") as pbar:
while step <= nsteps:
# Perform transport calculations
bfluid, bsolid, b = transport(states, bfluid, bsolid, b, b_bc, nelems, ifluid_species, isolid_species)
# Perform reactive chemical calculations
states = reactive_chemistry(solver, states, b)
# Increment time step and number of time steps
t += dt
step += 1
# Output the current state of the reactive transport calculation
outputstate_df(step, system, states)
# Update a progress bar
pbar.update(1)
# In[ ]:
# In[13]:
def define_chemical_system():
# Construct the chemical system with its phases and species
db = Database('supcrt98.xml')
editor = ChemicalEditor(db)
editor.addAqueousPhaseWithElements('H N O Na Cl') .setChemicalModelPitzerHMW() .setActivityModelDrummondCO2()
system = ChemicalSystem(editor)
return system
# In[14]:
def define_initial_condition(system):
problem_ic = EquilibriumProblem(system)
problem_ic.setTemperature(T)
problem_ic.setPressure(P)
problem_ic.add('H2O', 0.001, 'kg')
problem_ic.add('NaCl', 1e-4, 'mol')
problem_ic.add('HNO3', 1e-4, 'mol')
# Calculate the equilibrium states for the initial conditions
state_ic = equilibrate(problem_ic)
# Scale the volumes of the phases in the initial condition
state_ic.scalePhaseVolume('Aqueous', 1.0, 'm3')
return state_ic
# In[15]:
def define_boundary_condition(system):
# Define the boundary condition of the reactive transport modeling problem
problem_bc = EquilibriumProblem(system)
problem_bc.setTemperature(T)
problem_bc.setPressure(P)
problem_bc.add('H2O', 0.001, 'kg')
problem_bc.add('NaCl', 1e-4, 'mol')
problem_bc.add('HNO3', 1e-6, 'mol')
# Calculate the equilibrium states for the boundary conditions
state_bc = equilibrate(problem_bc)
# Scale the boundary condition state to 1 m3
state_bc.scaleVolume(1.0, 'm3')
return state_bc
# In[16]:
def partition_indices(system):
nelems = system.numElements()
els = system.elements()
for el in els:
print('elements', el.name())
ifluid_species = system.indicesFluidSpecies()
isolid_species = system.indicesSolidSpecies()
return nelems, ifluid_species, isolid_species
# In[17]:
def partition_elements_in_mesh_cell(ncells, nelems, state_ic, state_bc):
# The concentrations of each element in each mesh cell (in the current time step)
b = np.zeros((ncells, nelems))
# Initialize the concentrations (mol/m3) of the elements in each mesh cell
b[:] = state_ic.elementAmounts()
# The concentrations (mol/m3) of each element in the fluid partition, in each mesh cell
bfluid = np.zeros((ncells, nelems))
# The concentrations (mol/m3) of each element in the solid partition, in each mesh cell
bsolid = np.zeros((ncells, nelems))
# Initialize the concentrations (mol/m3) of each element on the boundary
b_bc = state_bc.elementAmounts()
return b, bfluid, bsolid, b_bc
# In[18]:
def transport(states, bfluid, bsolid, b, b_bc, nelems, ifluid_species, isolid_species):
# Collect the amounts of elements from fluid and solid partitions
for icell in range(ncells):
bfluid[icell] = states[icell].elementAmountsInSpecies(ifluid_species)
bsolid[icell] = states[icell].elementAmountsInSpecies(isolid_species)
# Get the porosity of the boundary cell
bc_cell = 0
phi_bc = states[bc_cell].properties().fluidVolume().val / states[bc_cell].properties().volume().val
# print(nelems)
# Transport each element in the fluid phase
for j in range(nelems):
transport_fullimplicit(bfluid[:, j], dt, dx, v, D, phi_bc * b_bc[j])
# Update the amounts of elements in both fluid and solid partitions
b[:] = bsolid + bfluid
return bfluid, bsolid, b
# In[19]:
def transport_fullimplicit(u, dt, dx, v, D, ul):
# Number of DOFs
n = len(u)
alpha = D * dt / dx ** 2
beta = v * dt / dx
# Upwind finite volume scheme
a = np.full(n, -beta - alpha)
b = np.full(n, 1 + beta + 2 * alpha)
c = np.full(n, -alpha)
# Set the boundary condition on the left cell
if dirichlet:
# Use Dirichlet BC boundary conditions
b[0] = 1.0
c[0] = 0.0
u[0] = ul
else:
# Flux boundary conditions (implicit scheme for the advection)
# Left boundary
b[0] = 1 + alpha + beta
c[0] = -alpha # stays the same as it is defined -alpha
u[0] += beta * ul # = dt/dx * v * g, flux that we prescribe is equal v * ul
# Right boundary is free
a[-1] = - beta
b[-1] = 1 + beta
# Solve a tridiagonal matrix equation
thomas(a, b, c, u)
# In[20]:
def thomas(a, b, c, d):
n = len(d)
c[0] /= b[0]
for i in range(1, n - 1):
c[i] /= b[i] - a[i] * c[i - 1]
d[0] /= b[0]
for i in range(1, n):
d[i] = (d[i] - a[i] * d[i - 1]) / (b[i] - a[i] * c[i - 1])
x = d
for i in reversed(range(0, n - 1)):
x[i] -= c[i] * x[i + 1]
return x
# In[21]:
def reactive_chemistry(solver, states, b):
for icell in range(ncells):
solver.solve(states[icell], T, P, b[icell])
return states
# In[22]:
def outputstate_df(step, system, states):
quantity = ChemicalQuantity(system)
values = [None] * len(columns)
for state, x in zip(states, xcells):
values[0] = step
values[1] = x
quantity.update(state)
for quantity_name, i in zip(output_quantities, range(2, len(states))):
values[i] = quantity.value(quantity_name) * (100 / (1 - phi) if "phaseVolume" in quantity_name else 1)
df.loc[len(df)] = values
# In[23]:
def titlestr(t):
t = t / minute
h = int(t) / 60
m = int(t) % 60
return 'Time: %2dh %2dm' % (h, m)
# In[24]:
def plot_figures_ph(steps, files):
plots = []
for i in steps:
t = i * dt
source = ColumnDataSource(df[df['step'] == i])
p = figure(plot_width=600, plot_height=250)
p.line(source.data['x'], source.data['pH'], color='teal', line_width=2, legend_label='pH')
p.x_range = Range1d(-0.001, 1.001)
p.y_range = Range1d(2.5, 12.0)
p.xaxis.axis_label = 'Distance [m]'
p.yaxis.axis_label = 'pH'
p.legend.location = 'bottom_right'
p.title.text = titlestr(t)
plots.append([p])
grid = gridplot(plots)
show(grid)
# In[25]:
def plot_figures_aqueous_species(steps, files):
plots = []
for i in steps:
t = i * dt
source = ColumnDataSource(df[df['step'] == i])
p = figure(plot_width=600, plot_height=300)
p.line(source.data['x'], source.data['Nacation'], color='orange', line_width=2, legend_label='Na')
p.line(source.data['x'], source.data['NO3anion'], color='green', line_width=2, legend_label='NO3-')
p.line(source.data['x'], source.data['Clanion'], color='red', line_width=2, legend_label='Cl')
p.line(source.data['x'], source.data['Hcation'], color='darkviolet', line_width=2, legend_label='H+')
# p.x_range = Range1d(-0.001, 1.0)
# p.y_range = Range1d(1e-9, 1e-2)
p.xaxis.axis_label = 'Distance [m]'
p.yaxis.axis_label = 'Concentration [molal]'
p.legend.location = 'top_right'
p.title.text = titlestr(t)
p.legend.click_policy = 'mute'
plots.append([p])
grid = gridplot(plots)
show(grid)
# In[26]:
make_results_folders()
# In[27]:
simulate()
# In[28]:
step = 0
df_step = df[df['step'] == step].loc[:, ['x'] + column_quantities]
df_step
# In[29]:
df.shape
# In[30]:
selected_steps_to_plot = [10, 20]
assert all(step <= nsteps for step in selected_steps_to_plot), f"Make sure that selceted steps are less than " f"total amount of steps {nsteps}"
# In[31]:
print("Collecting files...")
files = [file for file in natsorted(os.listdir(folder_results))]
# In[32]:
output_notebook()
# In[33]:
plot_figures_ph(selected_steps_to_plot, files)
# In[34]:
plot_figures_aqueous_species(selected_steps_to_plot, files)
|
nimaamp/Reactive-transport
|
Nima Benchmark!.py
|
Nima Benchmark!.py
|
py
| 11,252 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35227671174
|
#!/usr/bin/python
import argparse
def find_max_profit(prices):
max = 0
for i, price in enumerate(prices):
for j in range(i + 1, len(prices)):
profit = prices[j] - price
if max == 0 or profit > max:
max = profit
return max
stocks = [1050, 270, 1540, 3800, 2]
print(find_max_profit(stocks))
|
glweems/python-algorithms
|
stock_prices/stock_prices.py
|
stock_prices.py
|
py
| 354 |
python
|
en
|
code
| 0 |
github-code
|
6
|
648716471
|
import glob
import logging
import os
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
logfilepath = "" # 따로 지정하지 않으면 terminal에 뜸
if os.path.isfile(logfilepath):
os.remove(logfilepath)
logging.basicConfig(filename=logfilepath, level=logging.INFO)
class DetectionDataset(Dataset):
"""
Parameters
----------
path : str(jpg)
Path to input image directory.
transform : object
"""
CLASSES = ['ng', 'ok']
def __init__(self, path='Dataset/train', transform=None, sequence_number=1, test=False):
super(DetectionDataset, self).__init__()
if sequence_number < 1 and isinstance(sequence_number, float):
logging.error(f"{sequence_number} Must be greater than 0")
return
self._name = os.path.basename(path)
self._sequence_number = sequence_number
self._class_path_List = sorted(glob.glob(os.path.join(path, "*")), key=lambda path: self.key_func(path))
self._transform = transform
self._items = []
self._itemname = []
self._test = test
self._make_item_list()
def key_func(self, path):
return path
def _make_item_list(self):
if self._class_path_List:
for path in self._class_path_List:
class_name = os.path.basename(path)
image_path_list = sorted(glob.glob(os.path.join(path, "*")), key=lambda path: self.key_func(path))
for i in tqdm(range(len(image_path_list) - (self._sequence_number - 1))):
image_path = image_path_list[i:i + self._sequence_number]
self._items.append((image_path, class_name))
base_image = os.path.basename(image_path[-1])
self._itemname.append(base_image)
else:
logging.info("The dataset does not exist")
def __getitem__(self, idx):
images = []
image_sequence_path, label = self._items[idx]
for image_path in image_sequence_path:
image = cv2.imread(image_path, flags=-1)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images.append(image)
images = np.concatenate(images, axis=-1)
origin_images = images.copy()
if self._transform:
one_hot_label = self._one_hot(label)
result = self._transform(images, one_hot_label, self._itemname[idx])
if self._test:
return result[0], result[1], result[2], torch.as_tensor(origin_images)
else:
return result[0], result[1], result[2]
else:
return origin_images, label, self._itemname[idx]
def _one_hot(self, label):
unit_matrix = np.eye(len(self.CLASSES))
if label == 'ng':
label=unit_matrix[0]
elif label == 'ok':
label=unit_matrix[1]
return label
@property
def classes(self):
return self.CLASSES
@property
def num_class(self):
"""Number of categories."""
return len(self.CLASSES)
def __str__(self):
return self._name + " " + "dataset"
def __len__(self):
return len(self._items)
# test
if __name__ == "__main__":
import random
from core.utils.util.utils import plot_bbox
sequence_number = 1
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
dataset = DetectionDataset(path=os.path.join(root, 'Dataset', 'train'), sequence_number=sequence_number)
length = len(dataset)
sequence_image, label, file_name = dataset[random.randint(0, length - 1)]
print('images length:', length)
print('sequence image shape:', sequence_image.shape)
if sequence_number > 1:
sequence_image = sequence_image[:,:,3*(sequence_number-1):]
file_name = file_name[-1]
plot_bbox(sequence_image, score=None, label=label,
class_names=dataset.classes, colors=None, reverse_rgb=True,
image_show=True, image_save=False, image_save_path="result", image_name=os.path.basename(file_name), gt=True)
'''
images length: 1499
sequence image shape: (720, 1280, 9)
'''
|
DeepFocuser/PyTorch-Detector-alpha
|
classification/core/utils/dataprocessing/dataset.py
|
dataset.py
|
py
| 4,393 |
python
|
en
|
code
| 4 |
github-code
|
6
|
41267173090
|
import csv
from getpass import getpass
import math
import controle
def _processa_csv(csv_f, delimiter):
# Formato do arquivo: data, aula, carga_horaria (opcional)
aulas = []
with open(csv_f, encoding='utf-8-sig') as csvfile:
aulas_reader = csv.reader(csvfile, delimiter=delimiter)
for linha in aulas_reader:
aulas.append(linha)
return aulas
def conv(dat):
if '-' in dat:
a, m, d = dat.split('-')
return '/'.join([d, m, a])
return dat
def processa_csv(codigo, turma, csv_f, delimiter=','):
data = controle.base(codigo, turma, 'ProfessorTurmaAulasConfirmar')
aulas = _processa_csv(csv_f, delimiter)
data["numAulas"] = str(len(aulas))
n = 0
for aula in aulas:
d = aula[0]
a = aula[1]
ch = "2" if len(aula) == 2 else aula[2]
data["d_" + str(n + 1)] = conv(str(d)) # 03/05/2017
data["h_" + str(n + 1)] = ch
data["a_" + str(n + 1)] = a.encode('iso8859-15')
n += 1
return data
def main():
# ICC: 1411001
# LP2: 1411181
# P2 : 1411168
# DevWeb: 1411335
# turma = "01"
login_ = input("LOGIN: ")
senha_ = getpass("SENHA: ")
disc = input("DISCIPLINA: ")
turma = input("TURMA: ")
arq = input("ARQUIVO: ")
jsessionid = controle.login(login_, senha_)
data = processa_csv(disc, turma, arq)
res = open("res.html", "wb")
res.write(controle.chamada(data, jsessionid).read())
res.close()
print("PROCESSAMENTO ENCERRADO... VERIFIQUE CONTROLE ACADEMICO OU ARQUIVO res.html POR ERROS")
if __name__ == '__main__':
main()
|
matheusgr/scripts-controle-academico-ufcg
|
aulas.py
|
aulas.py
|
py
| 1,624 |
python
|
en
|
code
| 0 |
github-code
|
6
|
44254934565
|
# GUI Notepad
from tkinter import *
from tkinter.messagebox import showinfo
from tkinter.filedialog import askopenfilename, asksaveasfilename
import os
def newFile():
global file
root.title("Untitled - Notepad")
file = None
TextArea.delete(1.0, END)
def openFile():
global file
file = askopenfilename(defaultextension=".txt", filetypes=[("All files", "*.*"), ("Text Documents", "*.txt")])
if file == "":
file = None
else:
root.title(os.path.basename(file) + "- Notepad")
TextArea.delete(1.0, END)
f = open(file, "r")
TextArea.insert(1.0, f.read())
f.close()
def saveFile():
global file
if file == None:
file = asksaveasfilename(initialfile="Untitled.txt", defaultextension=".txt",
filetypes=[("All files", "*.*"), ("Text Documents", "*.txt")])
if file == "":
file = None
else:
# Save it as a New File
f = open(file, "w")
f.write(TextArea.get(1.0, END))
f.close()
root.title(os.path.basename(file) + " - Notepad")
else:
f = open(file, "w")
f.write(TextArea.get(1.0, END))
f.close()
def quitApp():
root.destroy()
def cut():
TextArea.event_generate(("<<Cut>>"))
def copy():
TextArea.event_generate(("<<Copy>>"))
def paste():
TextArea.event_generate(("<<Paste>>"))
def about():
showinfo("About Notepad", "Notepad by Sajid Majeed")
if __name__ == '__main__':
# ---------------- Basic tkinter setup ----------------
# Creating an instance of tkinter
root = Tk()
# Adding title
root.title("Notepad")
# Setting icon
# root.iconbitmap("icon.ico")
# Setting default size
root.geometry("644x588")
# Setting minimum size
root.minsize(600, 500)
# ---------------- Creating a Menu Bar ----------------
MenuBar = Menu(root)
root.config(menu=MenuBar)
# File Menu
FileMenu = Menu(MenuBar, tearoff=0)
# To open a New File
FileMenu.add_command(label="New", command=newFile)
# To open already existing File
FileMenu.add_command(label="Open", command=openFile)
# To save the current file
FileMenu.add_command(label="Save", command=saveFile)
# To add a separating line
FileMenu.add_separator()
# To quit the notepad
FileMenu.add_command(label="Exit", command=quitApp)
MenuBar.add_cascade(label="File", menu=FileMenu)
# Edit Menu
EditMenu = Menu(MenuBar, tearoff=0)
# To give a feature of Cut, Copy, Paste
EditMenu.add_command(label="Cut", command=cut)
EditMenu.add_command(label="Copy", command=copy)
EditMenu.add_command(label="Paste", command=paste)
MenuBar.add_cascade(label="Edit", menu=EditMenu)
# Help Menu
HelpMenu = Menu(MenuBar, tearoff=0)
HelpMenu.add_command(label="About Notepad", command=about)
MenuBar.add_cascade(label="Help", menu=HelpMenu)
# ---------------- Creating a Text Area ----------------
# Text area for writing text
TextArea = Text(root, font="lucida 13")
file = None
TextArea.pack(expand=True, fill=BOTH)
# Adding Scrollbar using rules from tkinter
scroll = Scrollbar(TextArea)
scroll.pack(side=RIGHT, fill=Y)
scroll.config(command=TextArea.yview)
TextArea.config(yscrollcommand=scroll.set)
# ---------------- Creating a Bottom Status Bar ----------------
# line_col = StringVar()
# line_col.set("Ln 1, Col 1")
statusbar = Frame(root, bd=1, relief=SUNKEN)
statusbar.pack(side=BOTTOM, fill=X)
Label(statusbar, text="UTF-8", width=20).pack(side=RIGHT)
Label(statusbar, text="Windows(CRLF)", width=20).pack(side=RIGHT)
# Label(statusbar, textvariable=line_col, width=20).pack(side=RIGHT)
root.mainloop()
|
SajidMajeed92/Python_Tkinter
|
Tkinter/Notepad.py
|
Notepad.py
|
py
| 3,839 |
python
|
en
|
code
| 11 |
github-code
|
6
|
25793507679
|
# -*-coding:utf-8-*-
__author__ = 'BING'
from django.http import HttpResponse
from django.shortcuts import render,render_to_response
from zhihupaper import apiUse,singelNews,latestNews,beforeNews
import re
from getPic import GetPic
def home(request):
api = apiUse()
news = latestNews(api)
count = news.getnum()
stories = news.getstories()
return render_to_response('home.html',{'stories':stories})
def mobile(request):
api = apiUse()
news = latestNews(api)
topstories = news.gettopstories()
stories = news.getmobilestories()
return render_to_response('mobile.html',{'topstories':topstories, 'stories':stories})
def story(request, id):
api = apiUse()
singelnews = singelNews(api, int(id))
title = singelnews.gettitle()
body = singelnews.getbody()
image = singelnews.getimage()
source = singelnews.getsource()
body = replaceUrl(body)
body = replaceImg(body, image, title, source)
return render_to_response('story.html', {'title': title, 'body': body})
def ajax_morestory(request, date):
api = apiUse()
beforenews = beforeNews(api, date)
stories = beforenews.getstories()
return render_to_response('ajax_morestory.html', { 'stories': stories})
def m_ajax_morestory(request, date):
api = apiUse()
beforenews = beforeNews(api, date)
stories = beforenews.getmobilestories()
return render_to_response('m_ajax_morestory.html', { 'stories': stories})
def replaceImg(body, image, title, source):
pattern = re.compile('<div class=\"img-place-holder\"><\/div>',re.DOTALL)
replaceStr = r'<div class="img-wrap"><h1 class="headline-title">%s</h1><span class="img-source">%s</span><img src="/imgurl/url=%s" alt></div>' % (title, source, image)
return pattern.sub(replaceStr, body)
def replaceUrl(body):
pattern = re.compile(r'src=\"', re.DOTALL)
replaceStr = r'src="/imgurl/url='
return pattern.sub(replaceStr, body)
def get_pic(request, url):
url = url[4:]
getpic = GetPic(url)
req = getpic.get_pic()
pic = req.read()
return HttpResponse(pic)
|
codeBing/zhihudaily
|
paper/views.py
|
views.py
|
py
| 2,087 |
python
|
en
|
code
| 4 |
github-code
|
6
|
38120413849
|
#Simplex step using row operations
import numpy as np
from numpy.linalg import norm, inv
import sys
def pivot_step(A,i,j): #i=row number, j=column number
A[i] = A[i]/A[i,j]
for k in range(len(A[:])): #updating the column of the matrix so that they equal to 0
if k!=i:
A[k]=A[k]-A[k,j]*A[i]
def simplex_step(A,b,c,iB,iN,xB,Binv,irule):
coefficient_base = []
for i in (iB):
coefficient_base.append(c[0,i-1]) #getting CB^T(coefficient of the basic variables)
w = np.dot(coefficient_base,Binv) #getting w
z = np.matrix(np.copy(c))
for i in iN:
z[0,i-1] = np.dot(w,A[:,i-1])
if (irule == 0): #irule = 0 indicates that the smallest coefficient rule should be used
reduced_cost = 0
for i in iN: #finding the negative reduced cost from the reduced cost list of the non-basic variables
if c[0,i-1]-z[0,i-1]<reduced_cost:
reduced_cost = c[0,i-1]-z[0,i-1]
entering_variable = i
if reduced_cost == 0: #if there is none, we are at optimality
istatus = -1 #at optimality
print("OPTIMAL")
return [istatus,iB,iN,xB,Binv]
y = np.dot(Binv,A[:,entering_variable-1]) #entering column
current_ratio = float('inf') #negative constant
for i in range(y.size): #finding the minimum ratio
if y[i,:] > sys.float_info.epsilon: #greater than epsilon
if (xB[i,:]/y[i,:] >= 0) and (xB[i,:]/y[i,:] < current_ratio):
current_ratio = xB[i]/y[i,:]
leaving_index = i
if (current_ratio == float('inf')): #if there is no ratio >= 0, we return the program is unbounded
print("Program is unbounded")
istatus = 16 #program is unbounded
return [istatus,iB,iN,xB,Binv]
elif (irule == 1):
sorted_iN = iN
sorted_iN.sort()
reduced_cost = 0
for i in sorted_iN: #finding the negative reduced cost from the reduced cost list of the non-basic variables
if c[0,i-1]-z[0,i-1]<0:
reduced_cost = c[0,i-1]-z[0,i-1]
entering_variable = i
break
if reduced_cost == 0: #if there is none, we are at optimality
istatus = -1 #at optimality
return [istatus,iB,iN,xB,Binv]
y = np.dot(Binv,A[:,entering_variable-1]) #entering column
current_ratio = float('inf') #negative constant
for i in range(y.size): #finding the minimum ratio
if y[i,:] > sys.float_info.epsilon: #greater than epsilon
if (xB[i,:]/y[i,:] >= 0) and (xB[i,:]/y[i,:] < current_ratio):
current_ratio = xB[i]/y[i,:]
leaving_index = i
current_variable = iB[i]
elif (xB[i,:]/y[i,:] >= 0) and (xB[i,:]/y[i,:] == current_ratio):
if current_variable < iB[i]:
current_ratio = xB[i]/y[i,:]
leaving_index = i
current_variable = iB[i]
if (current_ratio == float('inf')): #if there is no ratio >= 0, we return the program is unbounded
istatus = 16 #program is unbounded
print("Program is unbounded")
return [istatus,iB,iN,xB,Binv]
entering_index = iN.index(entering_variable)
leaving_variable = iB[leaving_index]
print("leaving index = " + str(leaving_index))
print("entering index = " + str(entering_index))
print("leaving variable = " + str(leaving_variable))
print("entering variable = " + str(entering_variable))
iB.remove(leaving_variable) #removing the leaving variable from iB
iB.insert(leaving_index,entering_variable) #inserting the entering variable to iB
iN.remove(entering_variable) #removing the entering variable from iN
iN.insert(entering_index,leaving_variable) #inserting the leaving variable to iN
if (np.linalg.det(A[:,[index_B-1 for index_B in iB]]) == 0):
print("infeasible")
istatus = 16 #infeasible
return istatus,iB,iN,xB,A[:,[index_B-1 for index_B in iB]]
else:
Binv = np.concatenate((y, Binv), axis=1)
pivot_step(Binv,leaving_index,0)
Binv = Binv[:,1:]
xB = np.dot(Binv,b)
istatus = 0
return [istatus,iB,iN,xB,Binv]
|
yohanesusanto/Revised-Simplex-Algo
|
simplex_step1.py
|
simplex_step1.py
|
py
| 4,051 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17435427439
|
import pytest
import pdb
from typing import List
class Solution:
def fullJustify(self, words: List[str], maxWidth: int) -> List[str]:
"""
"""
def intertwine(ws, sps):
# one word + one sps appended
t = []
for w, s in zip(ws, sps):
t.extend([w, s])
t.append(ws[-1])
return ''.join(t)
# 1. Greedy pick words for each line
cur_count = 0
buffer = []
lines = []
for w in words:
if (cur_count + len(w) + (1 if cur_count else 0)) <= maxWidth:
cur_count += len(w) + (1 if cur_count else 0)
else:
lines.append(buffer)
cur_count = len(w)
buffer = []
buffer.append(w)
if buffer:
lines.append(buffer)
# 2. Justify spaces using divmod
for i in range(len(lines)):
remaining = maxWidth - (sum(len(w)+1 for w in lines[i]) - 1)
# Left justify last line
if i == len(lines)-1:
lines[i] = ' '.join(lines[i]) + ' '*remaining
# Full justify
else:
if len(lines[i]) > 1:
interval, left = divmod(remaining, len(lines[i])-1)
spaces = [' ' *(1+interval+ (1 if j < left else 0)) for j, w in enumerate(lines[i])][:-1]
lines[i] = intertwine(lines[i], spaces)
else:
# Left justfiy if only 1 word per line
lines[i] = ' '.join(lines[i]) + ' '*remaining
return lines
@pytest.mark.parametrize('input, length, output', [
(["This", "is", "an", "example", "of", "text", "justification."],16,["This is an", "example of text", "justification. "]),
(["Listen","to","many,","speak","to","a","few."], 6,["Listen","to ","many ,","speak ","to a","few. "])
])
def test(input, length, output):
Solution().fullJustify(input, length) == output
if __name__ == '__main__':
sys.exit(pytest.main(['-s', '-v'] + sys.argv))
|
naubull2/codingtests
|
leetcode/quick-prep/68_Text_Justification/solution.py
|
solution.py
|
py
| 2,224 |
python
|
en
|
code
| 0 |
github-code
|
6
|
16866363316
|
import pytorch_lightning as pl
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch
from torchmetrics import Accuracy
from loss import create_criterion
class Backbone(nn.Module):
def __init__(self):
super(Backbone, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(1, 32, (3, 3), (1, 1)),
nn.BatchNorm2d(32),
nn.Dropout(0.5),
nn.ReLU(),
nn.Conv2d(32, 64, (3, 3), (1, 1)),
nn.BatchNorm2d(64),
nn.Dropout(0.5),
nn.ReLU(),
)
self.avg = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(64, 10)
def forward(self, x):
x = self.feature(x)
x = self.avg(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
class MNISTModel(pl.LightningModule):
def __init__(self, loss, lr):
super(MNISTModel, self).__init__()
self.net = Backbone()
self._criterion = create_criterion(loss)
self.acc = Accuracy()
self.learning_rate = lr
self.save_hyperparameters(ignore="model")
def forward(self, x):
x = self.net(x)
x = F.softmax(x, dim=1)
return x
def training_step(self, batch, batch_idx):
preds, loss, acc, labels = self.__share_step(batch, 'train')
self.log("train_loss", loss)
self.log("train_accuracy", acc)
return {"loss": loss, "pred": preds.detach(), 'labels': labels.detach()}
def validation_step(self, batch, batch_idx):
preds, loss, acc, labels = self.__share_step(batch, 'val')
self.log("val_loss", loss)
self.log("val_accuracy", acc)
return {"loss": loss, "pred": preds, 'labels': labels}
def __share_step(self, batch, mode):
x, y = batch
y_hat = self.net(x)
loss = self._criterion(y_hat, y)
acc = self.acc(y_hat, y)
return y_hat, loss, acc, y
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(), lr=self.learning_rate)
scheduler = lr_scheduler.StepLR(
optimizer,
step_size=10, gamma=0.5
)
return [optimizer], [scheduler]
|
KyubumShin/MNIST_pl
|
model.py
|
model.py
|
py
| 2,306 |
python
|
en
|
code
| 0 |
github-code
|
6
|
4404685461
|
def users_list(users):
user_list = []
for user in users:
user_info = {'id': user.id, 'name': user.username, 'advertisements': len(user.advertisements)}
user_list.append(user_info)
return user_list
def advertisements_list(advertisements):
adv_list = []
for advertisement in advertisements:
adv = {'id': advertisement.id, 'title': advertisement.title, 'created': advertisement.created}
adv_list.append(adv)
return adv_list
|
gchernousov/advertisements_api_flask
|
functions.py
|
functions.py
|
py
| 481 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19400224964
|
import urllib.request
import re
import os
from datetime import datetime
contador = 1
def download(link, curso):
link_video = link
diretorio = get_diretorio(link_video, curso)
urllib.request.urlretrieve(link_video, diretorio)
def get_diretorio(link_video,curso):
padrao = "\w{1,50}.mp4"
curso = curso.replace(".txt", "")
#cria a pasta do video caso não exista
if not os.path.isdir(f'./video/{curso}'):
os.mkdir(f'./video/{curso}')
return f'./video/{curso}/Aula {contador} - '+re.search(padrao, link_video).group()
# faz download dos videos
for file in os.listdir("./links"):
if file.endswith(".txt"):
with open('./links/'+os.path.join(file), 'r', encoding='utf-8') as arquivo:
for link in arquivo:
download(link, file)
contador = contador + 1
contador = 1
|
jonassantos1000/robo_maximo_ibm
|
main.py
|
main.py
|
py
| 865 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
71958574589
|
from __future__ import unicode_literals
import frappe
import os
from frappe.custom.doctype.custom_field.custom_field import create_custom_fields
def setup(company=None, patch=True):
if not patch:
update_address_template()
make_custom_fields()
add_custom_roles_for_reports()
def make_custom_fields():
custom_fields = {
'Company': [
dict(fieldname='siren_number', label='SIREN Number',
fieldtype='Data', insert_after='website')
]
}
create_custom_fields(custom_fields)
def add_custom_roles_for_reports():
report_name = 'Fichier des Ecritures Comptables [FEC]'
if not frappe.db.get_value('Custom Role', dict(report=report_name)):
frappe.get_doc(dict(
doctype='Custom Role',
report=report_name,
roles= [
dict(role='Accounts Manager')
]
)).insert()
def update_address_template():
"""
Read address template from file. Update existing Address Template or create a
new one.
"""
dir_name = os.path.dirname(__file__)
template_path = os.path.join(dir_name, 'address_template.html')
with open(template_path, 'r') as template_file:
template_html = template_file.read()
address_template = frappe.db.get_value('Address Template', 'France')
if address_template:
frappe.db.set_value('Address Template', 'France', 'template', template_html)
else:
# make new html template for France
frappe.get_doc(dict(
doctype='Address Template',
country='France',
template=template_html
)).insert()
|
ektai/erpnext
|
erpnext/regional/france/setup.py
|
setup.py
|
py
| 1,447 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30575157530
|
from Domain.BuildEnumMethods import BuildEnumMethods
from .UtilityScriptBase import UtilityScriptBase
import logging
from .Exceptions.ArgNotFoundException import ArgNotFoundException
import json
from mongoengine import connect
import pandas
from Domain.EquityCorporateData import EquityCorporateData
class LoadNasdaqTickers(UtilityScriptBase):
def __init__(self):
UtilityScriptBase.__init__( self )
logging.debug("In Nasdaq Utility Script")
##Change Description
self.description = "Loads tickers from nasdaq csv"
##Init args
self.args["DB_CONNECTION"] = None
self.args["DB_HOST"] = None
self.args["DB_PORT"] = None
self.args["pathToCsv"] = None
def run(self):
logging.debug("Prompting for value")
self.queryArg("pathToCsv", self.args, "What is the path to the nasdaq csv??\nValue: \t")
self.queryArg("DB_CONNECTION", self.args, "What DB Connection?\nValue: \t")
self.queryArg("DB_HOST", self.args, "What DB Host?\nValue: \t")
self.queryArg("DB_PORT", self.args, "What DB Port?\nValue: \t")
connect(self.args["DB_CONNECTION"], host=self.args["DB_HOST"], port=int(self.args["DB_PORT"]))
nasdaqDF = self.fileToDf(self.args["pathToCsv"])
equities = EquityCorporateData.build(BuildEnumMethods.DF, DF=nasdaqDF)
equitiesInSystem = self.getEquityObjects()
for i in equities:
i.save()
def runWithArgFile(self, argFile):
self.parseArgFile(argFile)
self.validateArgs()
self.run()
def parseArgFile(self, argFile):
f = open(argFile)
data = json.load(f)
for i in data:
self.args[i] = data[i]
def validateArgs(self):
if(self.args["pathToCsv"] == None):
raise ArgNotFoundException("pathToCsv")
if(self.args["DB_CONNECTION"] == None):
raise ArgNotFoundException("DB_CONNECTION")
if(self.args["DB_PORT"] == None):
raise ArgNotFoundException("DB_PORT")
if(self.args["DB_HOST"] == None):
raise ArgNotFoundException("DB_HOST")
def fileToDf(self, filePath : str) -> pandas.DataFrame:
return pandas.read_csv(filePath)
def getEquityObjects(self) -> [EquityCorporateData]:
return EquityCorporateData.objects
|
jminahan/backtest_framework
|
UtilityRunner/UtilityScripts/LoadNasdaqTickers.py
|
LoadNasdaqTickers.py
|
py
| 2,352 |
python
|
en
|
code
| 0 |
github-code
|
6
|
234182160
|
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *
import math
class ListDock(QDockWidget):
def __init__(self, title, parent = None):
super().__init__(title, parent)
self.setMinimumWidth(150)
self.listwidget = Listbox(self)
self.listwidget.setDragEnabled(True)
self.layout_vbox = QVBoxLayout(self.listwidget)
self.layout_vbox.setContentsMargins(0,0,0,0)
self.setWidget(self.listwidget)
class Listbox(QListWidget):
def __init__(self, parent = None):
super().__init__(parent)
self.setSelectionMode(QAbstractItemView.SingleSelection)
self.setDragEnabled(True)
item = QListWidgetItem("test item", self)
item.setTextAlignment(Qt.AlignHCenter)
item.setSizeHint(QSize(80, 115))
item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsDragEnabled)
item.setData(Qt.UserRole + 1, "test item")
def startDrag(self, *args, **kwargs):
print("DragListbox::startDrag")
try:
item = self.currentItem()
name = item.data(Qt.UserRole + 1)
print("dragging item", name, item)
pixmap = QPixmap(item.data(Qt.UserRole))
itemData = QByteArray()
dataStream = QDataStream(itemData, QIODevice.WriteOnly)
dataStream << pixmap
dataStream.writeQString(name)
dataStream.writeQString(item.text())
mimeData = QMimeData()
mimeData.setData("text/plain", itemData)
drag = QDrag(self)
drag.setMimeData(mimeData)
drag.setHotSpot(QPoint(0, 0))
drag.setPixmap(pixmap)
drag.exec_(Qt.MoveAction)
except Exception as e:
pass
class Dock(QDockWidget):
def __init__(self, title, parent = None):
super().__init__(title,parent)
self.dockwidget = QWidget()
self.layout_vbox = QVBoxLayout(self.dockwidget)
self.layout_vbox.setContentsMargins(0,0,0,0)
self.grScene = DockGraph()
self.view = DockView(self.grScene, self)
self.layout_vbox.addWidget(self.view)
self.setWidget(self.dockwidget)
class DockView(QGraphicsView):
def __init__(self, grScene, parent=None):
super().__init__(parent)
self.grScene = grScene
self.initUI()
self.setScene(self.grScene)
self.setAcceptDrops(True)
self.zoomInFactor = 1.25
self.zoomClamp = True
self.zoom = 10
self.zoomStep = 1
self.zoomRange = [0, 10]
def dragEnterEvent(self, event):
print("dragEnter")
print(event.mimeData().text())
if event.mimeData().hasFormat('text/plain'):
print("accept item")
event.accept()
#event.acceptProposedAction()
else:
print("ignore item")
event.ignore()
def dragMoveEvent(self, event):
event.accept() if event.mimeData().hasText() else event.ignore()
def dropEvent(self, event):
print("drop")
print(event.mimeData().text())
def initUI(self):
self.setRenderHints(QPainter.Antialiasing | QPainter.HighQualityAntialiasing | QPainter.TextAntialiasing | QPainter.SmoothPixmapTransform)
self.setViewportUpdateMode(QGraphicsView.FullViewportUpdate)
self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.setTransformationAnchor(QGraphicsView.AnchorUnderMouse)
def mousePressEvent(self, event):
if event.button() == Qt.MiddleButton:
self.middleMouseButtonPress(event)
elif event.button() == Qt.LeftButton:
self.rightMouseButtonPress(event)
elif event.button() == Qt.RightButton:
self.rightMouseButtonPress(event)
else:
super().mousePressEvent(event)
def mouseReleaseEvent(self, event):
if event.button() == Qt.MiddleButton:
self.middleMouseButtonRelease(event)
elif event.button() == Qt.LeftButton:
self.leftMouseButtonRelease(event)
elif event.button() == Qt.RightButton:
self.rightMouseButtonRelease(event)
else:
super().mouseReleaseEvent(event)
def middleMouseButtonPress(self, event):
releaseEvent = QMouseEvent(QEvent.MouseButtonRelease, event.localPos(), event.screenPos(),
Qt.LeftButton, Qt.NoButton, event.modifiers())
super().mouseReleaseEvent(releaseEvent)
self.setDragMode(QGraphicsView.ScrollHandDrag)
fakeEvent = QMouseEvent(event.type(), event.localPos(), event.screenPos(),
Qt.LeftButton, event.buttons() | Qt.LeftButton, event.modifiers())
super().mousePressEvent(fakeEvent)
def middleMouseButtonRelease(self, event):
fakeEvent = QMouseEvent(event.type(), event.localPos(), event.screenPos(),
Qt.LeftButton, event.buttons() & ~Qt.LeftButton, event.modifiers())
super().mouseReleaseEvent(fakeEvent)
self.setDragMode(QGraphicsView.NoDrag)
def leftMouseButtonPress(self, event):
return super().mousePressEvent(event)
def leftMouseButtonRelease(self, event):
return super().mouseReleaseEvent(event)
def rightMouseButtonPress(self, event):
return super().mousePressEvent(event)
def rightMouseButtonRelease(self, event):
return super().mouseReleaseEvent(event)
def wheelEvent(self, event):
# calculate our zoom Factor
zoomOutFactor = 1 / self.zoomInFactor
# calculate zoom
if event.angleDelta().y() > 0:
zoomFactor = self.zoomInFactor
self.zoom += self.zoomStep
else:
zoomFactor = zoomOutFactor
self.zoom -= self.zoomStep
clamped = False
if self.zoom < self.zoomRange[0]: self.zoom, clamped = self.zoomRange[0], True
if self.zoom > self.zoomRange[1]: self.zoom, clamped = self.zoomRange[1], True
# set scene scale
if not clamped or self.zoomClamp is False:
self.scale(zoomFactor, zoomFactor)
class DockGraph(QGraphicsScene):
def __init__(self):
super().__init__()
# settings
self.gridSize = 20
self.gridSquares = 5
self._color_background = QColor("#393939")
self._color_light = QColor("#2f2f2f")
self._color_dark = QColor("#292929")
self._pen_light = QPen(self._color_light)
self._pen_light.setWidth(1)
self._pen_dark = QPen(self._color_dark)
self._pen_dark.setWidth(2)
self.setBackgroundBrush(self._color_background)
self.scene_width = 64000
self.scene_height = 64000
self.setSceneRect(-self.scene_width / 2, -self.scene_height / 2, self.scene_width, self.scene_height)
def drawBackground(self, painter, rect):
super().drawBackground(painter, rect)
# here we create our grid
left = int(math.floor(rect.left()))
right = int(math.ceil(rect.right()))
top = int(math.floor(rect.top()))
bottom = int(math.ceil(rect.bottom()))
first_left = left - (left % self.gridSize)
first_top = top - (top % self.gridSize)
# compute all lines to be drawn
lines_light, lines_dark = [], []
for x in range(first_left, right, self.gridSize):
if (x % (self.gridSize*self.gridSquares) != 0): lines_light.append(QLine(x, top, x, bottom))
else: lines_dark.append(QLine(x, top, x, bottom))
for y in range(first_top, bottom, self.gridSize):
if (y % (self.gridSize*self.gridSquares) != 0): lines_light.append(QLine(left, y, right, y))
else: lines_dark.append(QLine(left, y, right, y))
# draw the lines
painter.setPen(self._pen_light)
painter.drawLines(*lines_light)
painter.setPen(self._pen_dark)
painter.drawLines(*lines_dark)
|
glace158/Pyside_Test
|
test/dock.py
|
dock.py
|
py
| 8,154 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21998644026
|
from typing import List
class Trie:
def __init__(self):
self.L = 30
self.left = None
self.right = None
def insert(self, val: int):
node = self
for i in range(self.L, -1, -1):
bit = (val >> i) & 1
if bit == 0:
if not node.left:
node.left = Trie()
node = node.left
else:
if not node.right:
node.right = Trie()
node = node.right
def get_max_xor(self, val: int) -> int:
ans, node = 0, self
for i in range(self.L, -1, -1):
bit = (val >> i) & 1
check = False
if bit == 0:
if node.right:
node = node.right
check = True
else:
node = node.left
else:
if node.left:
node = node.left
check = True
else:
node = node.right
if check:
ans |= 1 << i
return ans
class Solution:
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
n, q = len(nums), len(queries),
nums.sort()
queries = [(x, m, i) for i, (x, m) in enumerate(queries)]
queries.sort(key=lambda query: query[1])
ans = [0] * q
t = Trie()
idx = 0
for x, m, qid in queries:
while idx < n and nums[idx] <= m:
t.insert(nums[idx])
idx += 1
if idx == 0:
ans[qid] = -1
else:
ans[qid] = t.get_max_xor(x)
return ans
|
hangwudy/leetcode
|
1700-1799/1707. 与数组中元素的最大异或值.py
|
1707. 与数组中元素的最大异或值.py
|
py
| 1,735 |
python
|
en
|
code
| 0 |
github-code
|
6
|
27577609762
|
import random
def coin():
if random.randint(0, 1) == 1:
return "heads"
else:
return "tails"
if __name__ == '__main__':
heads_tally = 0
tails_tally = 0
count = 0
for toss in range(10000):
if coin() == "heads":
heads_tally = heads_tally + 1
elif coin() == "tails":
tails_tally = tails_tally + 1
break
count = count + 1
print(f"{heads_tally} {tails_tally} {count}")
|
Micjohn01/C13-Python-Exercise
|
Practice/coin_simulation.py
|
coin_simulation.py
|
py
| 479 |
python
|
en
|
code
| null |
github-code
|
6
|
27259780990
|
"""We are the captains of our ships and we stay 'till the end. We see our stories through.
"""
"""701. Insert into a Binary Search Tree [Recursive]
"""
class TreeNode:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
class Solution:
def insertIntoBST(self, root, val):
if not root:
return TreeNode(val)
if val < root.val:
root.left = self.insertIntoBST(root.left, val)
else:
root.right = self.insertIntoBST(root.right, val)
return root
|
asperaa/back_to_grind
|
Trees/701. Insert into a Binary Search Tree_clean.py
|
701. Insert into a Binary Search Tree_clean.py
|
py
| 566 |
python
|
en
|
code
| 1 |
github-code
|
6
|
73769261309
|
import time
from Pages.CCTVCheckout import CCTV_Checkout
from TestData.Data import Testdata
from Utilities.BaseClass import BaseClass
class Test_two(BaseClass):
def test_CCTVCheckOut(self):
log = self.getlogger() # For log file
CCTV = CCTV_Checkout(self.driver) # Call the page class
log.info("Click CCTV menu button")
CCTV.get_CCTV_homeButton()
# CCTV.get_scroll()
log.info("Click CCTV View dates")
CCTV.get_ViewDate()
time.sleep(5)
CCTV.get_scroll()
time.sleep(5)
log.info("Click ON CCTV Book Button")
CCTV.get_ButtonBook()
time.sleep(9)
CCTV.get_scroll()
time.sleep(9)
log.info("Click on CCTV Package")
CCTV.get_select_package()
CCTV.get_Name()
CCTV.get_Email()
CCTV.get_Mobile()
log.info("Click on Next button for address")
time.sleep(5)
CCTV.get_Next()
# CCTV.get_postcode()
# CCTV.get_address()
CCTV.get_city()
time.sleep(3)
CCTV.get_AutoList()
time.sleep(5)
CCTV.get_Next2()
CCTV.get_stripe()
|
azmul94/Get-Licensed-web
|
Tests/test_2_CCTVCheckout.py
|
test_2_CCTVCheckout.py
|
py
| 1,161 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21471880105
|
import Picklizer
import sys
import time
#/home/nickshiell/storage/TestSet
inputCSVDir = ''
outputPKLDir = ''
# Make sure that the command line args are present
if len(sys.argv) == 3:
inputCSVDir = sys.argv[1]
outputPKLDir = sys.argv[2]
else:
print('ERROR: invalid command line args: ', sys.argv)
exit(0)
startTime = time.time()
Picklizer.PickleProductionRun(inputCSVDir,outputPKLDir)
executionTime = (time.time() - startTime)
print('Execution time for ', inputCSVDir,': ' + str(executionTime),'[s]')
|
ResearchComputingServices/NewspaperSortByTicker
|
Pickling/productionScript.py
|
productionScript.py
|
py
| 519 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10972428124
|
#
# train.py
# @author [email protected]
# @description
# @created 2020-12-09T16:35:56.524Z+05:30
# @last-modified 2020-12-11T20:05:30.671Z+05:30
#
########### Help ###########
'''
python train.py \
--data_dir /Users/aman.gupta/Documents/eagleview/utilities/onsite_data_fetch/fetched_images/annotated_combined_thumbnail_after_may_2020/splitted_letterbox_training_data \
--log_dir ./logs \
--epochs 1 \
--save_interval 5 \
--print_interval 1 \
--batch_size 64 \
--name exp0
'''
#############################
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import datasets, transforms, models
import argparse
import os
from utils import (load_split_train_test,
plot_classes_preds,
save_checkpoint)
from torch.utils.tensorboard import SummaryWriter
import time
from model import Model
import sys
import configs
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="this script trains the classification model")
parser.add_argument("--data_dir",required = True,help="training data path")
parser.add_argument("--log_dir",required=False,default="./logs",type=str,help="dir to save logs")
parser.add_argument("--epochs",default=10,type =int, help="number of epochs to train a model")
parser.add_argument("--save_interval",default=100,type = int,help="interval to save model")
parser.add_argument("--print_interval",default=10,type = int,help="interval to print log")
parser.add_argument("--lr",default=0.003,type = float,help="learning rate")
parser.add_argument("--batch_size",default=4,type = int,help="batch size")
parser.add_argument("--test_split",default=0.2,type = float,help="test split out of 1.0")
parser.add_argument("--name",default="exp0",type = str,help="experiment name")
args = parser.parse_args()
os.makedirs(args.log_dir,exist_ok=True)
#tensorboard writter
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter(args.log_dir)
##load data
data_dir = args.data_dir
trainloader, testloader = load_split_train_test(data_dir, args.batch_size)
print(trainloader.dataset.classes)
# sys.exit()
##load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_layers = len(configs.CLASSES)
model_obj = Model(output_layers,device,args.lr)
model,optimizer,criterion = model_obj.model,model_obj.optimizer,model_obj.criterion
## training loop
epochs = args.epochs
steps = 0
running_loss = 0
print_every = args.print_interval
train_losses, test_losses = [], []
try:
print("Training Started")
for epoch in range(epochs):
for inputs, labels in trainloader:
steps += 1
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logps = model.forward(inputs)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
test_loss = 0
accuracy = 0
model.eval()
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
logps = model.forward(inputs)
batch_loss = criterion(logps, labels)
test_loss += batch_loss.item()
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
train_losses.append(running_loss/len(trainloader))
test_losses.append(test_loss/len(testloader))
# ...log the running loss
writer.add_scalar('loss/training_loss',
running_loss / print_every,
global_step=epoch * len(trainloader) + steps)
# ...log the test loss
writer.add_scalar('loss/test_loss',
test_loss/len(testloader),
global_step=epoch * len(trainloader) + steps)
# ...log the test Accuracy
writer.add_scalar('test Accuracy',
accuracy/len(testloader),
global_step=epoch * len(trainloader) + steps)
# ...log a Matplotlib Figure showing the model's predictions on a
# random mini-batch
writer.add_figure('predictions vs. actuals',
plot_classes_preds(model, inputs, labels),
global_step=epoch * len(trainloader) + steps)
print(f"Epoch {epoch+1}/{epochs}.. "
f"Step :{steps}.. "
f"Train loss: {running_loss/print_every:.3f}.. "
f"Test loss: {test_loss/len(testloader):.3f}.. "
f"Test accuracy: {accuracy/len(testloader):.3f}")
running_loss = 0
model.train()
if steps % args.save_interval==0:
path = os.path.join(args.log_dir,"checkpoints",args.name,f"epochs-{epochs}-steps-{steps}")
save_checkpoint(path,epoch,model,optimizer,train_losses)
print(f"checkpoint saved at :{path}")
path = os.path.join(args.log_dir,"checkpoints",args.name,"last")
save_checkpoint(path,epoch,model,optimizer,train_losses)
print(f"checkpoint saved at :{path}")
except KeyboardInterrupt:
path = os.path.join(args.log_dir,"checkpoints",args.name,"last")
save_checkpoint(path,epoch,model,optimizer,train_losses)
print(f"Training interrupted checkpoint saved at :{path}")
|
aman0044/resnet-classifier
|
train.py
|
train.py
|
py
| 6,456 |
python
|
en
|
code
| 0 |
github-code
|
6
|
7160221934
|
# Answer to Lift queries
# https://www.hackerearth.com/practice/basic-programming/implementation/basics-of-implementation/practice-problems/algorithm/lift-queries
A, B = 0, 7
for _ in range(int(input())):
n = int(input())
if abs(n-A) < abs(n-B):
A = n
elif abs(n-A) > abs(n-B):
B = n
elif A < B:
A = n
else:
B = n
print('A' if A == n else 'B')
|
CompetitiveCode/HackerEarth
|
Basic Programming/Input Output/Lift queries.py
|
Lift queries.py
|
py
| 402 |
python
|
en
|
code
| 1 |
github-code
|
6
|
2140106274
|
import numpy as np
from pyqtgraph.Qt import QtGui, QtCore
import init_multi as im
import func_multi as fm
'''
BEGING PROGRAM
'''
# функция отрисовки изображения, использует convert() для получения данных из fifo
def showTrack(i):
x1, y1 = fm.ellipseCreate(20+5*i, 30, 50, 70-3*i, 0.05*i)
im.ellipse1.setData(x1, y1)
x2, y2 = fm.ellipseCreate(40-5*i, 20, 40, 80+3*i, 0.07*i)
im.ellipse2.setData(x2, y2)
tx, ty = fm.ellipseCross(x1, y1, x2, y2)
'''
tx = np.zeros((1))
ty = np.zeros((1))
tx[0] = 10 + i*5
ty[0] = 20 + i*6
'''
fm.plot2track(tx, ty)
im.cross.setData(tx, ty)
def showCfar(i):
data_target = fm.getFifoCfar()
print("\tdata_target", data_target.shape)
data_target[:, im.FNSAMPLES/2] = 1
im.img1.setImage(data_target)
im.img2.setImage(data_target)
def showAf(i):
data_af = fm.getFifoAf(2*im.AF_SIZE)
print("\tdata_af", data_af.shape)
#Z = np.sin(i*im.d_gl) / im.d2_gl
#im.plot_gl.setData(z=Z)
im.plot_gl.setData(z=data_af)
def updateData():
global i
showTrack(i)
#showCfar(i)
if im.AF_UDP == 1:
print("[%d]" % (i))
showAf(i)
# программирование таймера
# запуск этой же функции снова через 1 сек
#im.QtCore.QTimer.singleShot(0.1, updateData)
if i < im.frames - 1:
i += 1
t.start(100)
i = 0
t = QtCore.QTimer()
t.timeout.connect(updateData)
t.setSingleShot(True)
t.start(0)
if __name__ == '__main__':
print("Start")
# запуск в первый раз чтобы подхватить таймер
#updateData()
## Start Qt event loop unless running in interactive mode.
import sys
if (sys.flags.interactive != 1) or not hasattr(mi.QtCore, 'PYQT_VERSION'):
im.QtGui.QApplication.instance().exec_()
im.fifo.close()
exit(0)
'''
'''
|
NazimAliev/public
|
embedded/passive-radar-fpga-dsp-arm/multix86/main_multi.py
|
main_multi.py
|
py
| 1,879 |
python
|
ru
|
code
| 0 |
github-code
|
6
|
19346831151
|
import tensorflow as tf
import numpy as np
import pickle
import os
import re
import text2emotion as te
class EmotionRecognitionModel():
def __init__(self) -> None:
self.model = tf.keras.models.load_model(os.path.join(os.path.dirname(__file__), './trained_model/emotion_model.h5'))
self.index_to_classes = {0: 'fear', 1: 'anger', 2: 'sadness', 3: 'surprise', 4: 'joy', 5: 'love'}
self.classes_to_index = {'anger': 1, 'fear': 0, 'joy': 4, 'love': 5, 'sadness': 2, 'surprise': 3}
def preprocess(self, tweets):
whitelist = set('abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ$')
for tweet in tweets:
tweet = tweet.lower()
tweet = re.sub('http[s]?://\S+', '', tweet)
answer = ''.join(filter(whitelist.__contains__, tweet))
tweet = answer
return tweets
def get_sequences(self, tokenizer, tweets):
sequences = tokenizer.texts_to_sequences(tweets)
padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(sequences, truncating='post', maxlen=50, padding='post')
return padded_sequences
def create_tokenizer(self):
path = os.path.join(os.path.dirname(__file__), './trained_model/tokenizer.pickle')
with open(path, 'rb') as handle:
tokenizer = pickle.load(handle)
return tokenizer
def recognise_emotion(self, tweet):
tweet = self.preprocess(tweet)
tokenizer = self.create_tokenizer();
tweet_sequence = self.get_sequences(tokenizer, tweet)
predict_x= self.model(np.expand_dims(tweet_sequence, axis=-1))
classes_x= np.argmax(predict_x)
emotion = self.index_to_classes.get(classes_x)
tweet_and_emotion = {'tweet':tweet[0],'emotion':emotion}
return tweet_and_emotion
# second method
def preprocess_text2emotion(self, tweet):
whitelist = set('abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ$')
tweet = tweet.lower()
tweet = re.sub('http[s]?://\S+', '', tweet)
answer = ''.join(filter(whitelist.__contains__, tweet))
return answer
def recognize_emotion_text2emotion(self,text):
res_tweet=self.preprocess_text2emotion(text)
emotions=te.get_emotion(res_tweet)
return emotions
|
Socialet/web-backend
|
app/toolkit/EmotionRecognition/model.py
|
model.py
|
py
| 2,317 |
python
|
en
|
code
| 0 |
github-code
|
6
|
38447711574
|
import sys
import os
import json
from parse import validate_file
if __name__ == '__main__':
outputs_dir = sys.argv[1]
submission_name = sys.argv[2]
submission = {}
for input_path in os.listdir("inputs"):
graph_name = input_path.split('.')[0]
output_file = f'{outputs_dir}/{graph_name}.out'
if os.path.exists(output_file) and validate_file(output_file):
output = open(f'{outputs_dir}/{graph_name}.out').read()
submission[input_path] = output
with open(submission_name, 'w') as f:
f.write(json.dumps(submission))
|
Sea-Snell/170project
|
prepare_submission.py
|
prepare_submission.py
|
py
| 588 |
python
|
en
|
code
| 7 |
github-code
|
6
|
22094537095
|
import logging
import datetime
import sqlite3
import voluptuous as vol
from homeassistant.helpers.event import async_track_time_interval
from homeassistant.core import callback
from homeassistant.helpers import config_validation as cv
_LOGGER = logging.getLogger(__name__)
DOMAIN = 'hasentinel'
CONFIG_SCHEMA = vol.Schema({
DOMAIN: vol.Schema({
'entities': vol.All(cv.ensure_list, [{
vol.Required('entity_id'): cv.entity_id,
vol.Required('urgency'): cv.string
}])
})
}, extra=vol.ALLOW_EXTRA)
def setup(hass, config):
"""Set up the HASentinel component."""
conf = config[DOMAIN]
entities = conf.get('entities')
urgency_to_minutes = {
'low': 7*24*60, # 1 week
'medium': 48*60, # 48 hours
'high': 60 # 1 hour (For testing purposes, change this back to 24*60 for production)
}
conn = sqlite3.connect('/config/hasentinel.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS entity_states (
entity_id TEXT PRIMARY KEY,
device_id TEXT,
last_seen TEXT,
urgency_level TEXT,
reported INTEGER
)
''')
def check_entities(now):
"""Routine to check entities' availability."""
for entity in entities:
entity_id = entity['entity_id']
urgency = entity['urgency']
state = hass.states.get(entity_id)
if not state:
_LOGGER.error(f"Error fetching state for {entity_id}")
continue
last_seen_attribute = state.attributes.get("last_seen")
current_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
cursor.execute("SELECT last_seen, reported FROM entity_states WHERE entity_id = ?", (entity_id,))
record = cursor.fetchone()
if last_seen_attribute:
last_seen_dt = datetime.datetime.fromisoformat(last_seen_attribute.replace('Z', '+00:00'))
elif record:
last_seen_dt = datetime.datetime.strptime(record[0], '%Y-%m-%d %H:%M:%S')
else:
last_seen_dt = datetime.datetime.now()
delta = datetime.datetime.now() - last_seen_dt
if state.state != "unavailable" or (last_seen_attribute and delta.total_seconds() <= urgency_to_minutes[urgency] * 60):
if record:
cursor.execute("UPDATE entity_states SET last_seen = ?, reported = 0 WHERE entity_id = ?", (current_time, entity_id))
else:
cursor.execute("INSERT INTO entity_states (entity_id, device_id, last_seen, urgency_level, reported) VALUES (?, ?, ?, ?, 0)",
(entity_id, state.attributes.get("device_id", ""), current_time, urgency))
else:
if record and delta.total_seconds() > urgency_to_minutes[urgency] * 60 and record[1] == 0:
cursor.execute("UPDATE entity_states SET reported = 1 WHERE entity_id = ?", (entity_id,))
conn.commit()
# Set up the routine to run every minute
async_track_time_interval(hass, check_entities, datetime.timedelta(minutes=1))
return True
|
dennis-bell/HASentinel
|
custom_components/hasentinel/__init__.py
|
__init__.py
|
py
| 3,269 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17433146324
|
from sikuli import *
from test_helper import *
import os
def open_handler(event):
Debug.user("Successfully opened flex.")
event.stopObserver()
wait(45)
# Don't stop observer, to give it time to open before
# the next script runs.
# Open Flex from the start screen
def open_new_project(project_name="hello"):
wait("Createanewpr.png", 300)
click("Createanewpr.png")
type(project_name)
click("OK.png")
if exists(Pattern("OK-2.png").similar(0.88)):
click(Pattern("OK-1.png").similar(0.86))
else:
click(Pattern("Qpen.png").similar(0.80))
onAppear("1435347136957.png", open_handler)
observe(300)
|
sillsdev/FwIntegrationTests
|
general_tests/helpers/open_new_project.sikuli/open_new_project.py
|
open_new_project.py
|
py
| 661 |
python
|
en
|
code
| 1 |
github-code
|
6
|
10915507732
|
'''
problem:
You are given a string S and width w.
Your task is to wrap the string into a paragraph of width w.
Input Format--
The first line contains a string, S.
The second line contains the width, w.
Constraints--
0<len(s)<1000
0<=w<=len(s)
Output Format--
Print the text wrapped paragraph.
Sample Input 0
ABCDEFGHIJKLIMNOQRSTUVWXYZ
4
Sample Output 0
ABCD
EFGH
IJKL
IMNO
QRST
UVWX
YZ
'''
#code is here
import textwrap
def wrap(string, max_width):
l=[]
for i in range(len(string)):
l.append(string[i:max_width+i])
string=string[max_width-1:]
return "\n".join(l)
if __name__ == '__main__':
string, max_width = input(), int(input())
result = wrap(string, max_width)
print(result)
|
harshitbansal373/python
|
text-wrap.py
|
text-wrap.py
|
py
| 737 |
python
|
en
|
code
| 15 |
github-code
|
6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.