seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
71133547387
from Logic.crud import add_cheltuiala, delete_cheltuiala from Domain.cheltuiala import to_str def new_menu(): ''' Meniu pentru consola noua :return: ''' print(''' Tasteaza comenzile separate prin ";". Comenzi acceptate: add, delete, showall, exit, help. Tasteaza "help" pentru a afla detalii despre comenzi. ''') def help(): ''' Functie prin intermediul careia se definesc comenzile: add, :return: ''' print(''' help: arata meniu add, <id>,<nr_ap>,<suma>,<data>,<tipul>: adauga cheltuiala delete,<id>: sterge cheltuiala showall: arata toate cheltuielile exit: inchidere program ''') def show_all(cheltuieli): for cheltuiala in cheltuieli: print(to_str(cheltuiala)) def run_comenzi(cheltuieli): while True: print(new_menu()) exit = False comanda = input("Tastati comenzile despartite de ';': ").split(';') for i in range(len(comanda)): action = comanda[i].split(',') if action[0] == 'help': help() elif action[0] == 'add': try: cheltuieli = add_cheltuiala(cheltuieli, action[1], action[2], action[3], action[4], action[5], [], []) except IndexError as ie: print(f"Eroare: {ie}") elif action[0] == 'delete': cheltuieli = delete_cheltuiala(cheltuieli, action[1], [], []) elif action[0] == 'showall': show_all(cheltuieli) elif action[0] == 'exit': exit = True break if exit is True: print("Programul s-a oprit") break
AP-MI-2021/lab-567-mirunaxb
UI/command_line_console.py
command_line_console.py
py
1,700
python
en
code
0
github-code
6
14593025601
from Atum.models.hpo import HPOManageService if __name__ == '__main__': hpo_service = HPOManageService() config = dict() config['search_space'] = { 'learning_rate': {'_type': 'uniform', '_value': [0.001, 0.005]}, 'batch_size': {'_type': 'choice', '_value': [32, 64, 128]} } config['parallel_search'] = 8 config['gpu_number_per_task'] = 1 config['optimize_mode'] = 'maximize' config['search_time'] = '1h' config['task_command'] = "python /mnt/beegfs/ssd_pool/docker/user/hadoop-automl/wengkaiheng/code/infra-mt-cvzoo-classification/tools/automl_tools/train_hpo.py /mnt/beegfs/ssd_pool/docker/user/hadoop-automl/wengkaiheng/code/infra-mt-cvzoo-classification/configs/custom/Res18_cifar.py --hpo" hpo_service.update_config(config) hpo_service.start()
TrellixVulnTeam/classification_LJ3O
tools/automl_tools/run_hpo.py
run_hpo.py
py
809
python
en
code
0
github-code
6
34660221121
print('Are you ready to play!') start=input('Yes(or)No :').lower() score=0 if start !='yes': quit() print("let's play :)") ans=input("which is the smallest ocean in the world? ").lower() if ans=='arctic': print('correct!') score +=1 else: print('incorrect!') ans=input("which is the oldest language in the world? ").lower() if ans=='tamil': print('correct!') score +=1 else: print('incorrect!') ans=input("brain of computer is? ").lower() if ans=='cpu': print('correct!') score +=1 else: print('incorrect!') ans=input("1024 kilobytes is equal to? ").lower() if ans=='1 mb': print('correct!') score +=1 else: print('incorrect!') print('your score: '+str(score)) print('your percentage :'+str((score/4)*100)+'%')
Itischandru/quiz_game
quiz game.py
quiz game.py
py
773
python
en
code
0
github-code
6
31501456333
from django.urls import path, include from . import views from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path("", views.index, name='index'), path("news/<int:id>/", views.see_full_news), path("main_page/", views.main_page, name='main_page'), path("dataselect/", views.dataselect, name='dataselect'), path("station/", views.station, name='station'), path("geofrom", views.geoform, name='geofrom'), path('captcha/', include('captcha.urls')), path("req_form", views.requsets_list, name = 'req_form'), path("structure", views.struct, name= "structure"), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) + [path('captcha/', include('captcha.urls')),]
AlekseiMuryskin/SiteGS
gsras/urls.py
urls.py
py
809
python
en
code
0
github-code
6
44900991873
import torch import torch.nn as nn from argparse import Namespace from layers.Layers import DualAttenion, Transpose class CARD(nn.Module): def __init__(self, args: Namespace) -> None: super(CARD, self).__init__() self.patch_len = args.patch_len self.stride = args.stride self.embed_dim = args.embed_dim self.task_name = args.task_name patch_num = int((args.seq_len - self.patch_len)/self.stride + 1) self.patch_num = patch_num self.pos_embed = nn.Parameter( torch.randn(patch_num, args.embed_dim)*1e-2) self.total_token_number = self.patch_num + 1 args.total_token_number = self.total_token_number # embeding layer related self.input_projection = nn.Linear(self.patch_len, args.embed_dim) self.input_dropout = nn.Dropout(args.dropout) self.cls = nn.Parameter(torch.randn(1, args.embed_dim)*1e-2) # mlp decoder self.out_proj = nn.Linear( (patch_num+1+self.model_token_number)*args.embed_dim, args.pred_len) # dual attention encoder related self.Attentions_over_token = nn.ModuleList( [DualAttenion(args) for i in range(args.hiden_layer_num)]) self.Attentions_over_channel = nn.ModuleList( [DualAttenion(args, over_channel=True) for i in range(args.hiden_layer_num)]) self.Attentions_mlp = nn.ModuleList( [nn.Linear(args.embed_dim, args.embed_dim) for i in range(args.hiden_layer_num)]) self.Attentions_dropout = nn.ModuleList( [nn.Dropout(args.dropout) for i in range(args.hiden_layer_num)]) self.Attentions_norm = nn.ModuleList([nn.Sequential(Transpose(1, 2), nn.BatchNorm1d(args.embed_dim, momentum=args.momentum), Transpose(1, 2)) for i in range(args.hiden_layer_num)]) def forward(self, z: torch.Tensor): b, c, s = z.shape # inputs nomralization z_mean = torch.mean(z, dim=(-1), keepdims=True) z_std = torch.std(z, dim=(-1), keepdims=True) z = (z - z_mean)/(z_std + 1e-4) # tokenization zcube = z.unfold(dimension=-1, size=self.patch_len, step=self.stride) z_embed = self.input_dropout( self.input_projection(zcube)) + self.pos_embed cls_token = self.cls.repeat(z_embed.shape[0], z_embed.shape[1], 1, 1) z_embed = torch.cat((cls_token, z_embed), dim=-2) # dual attention encoder inputs = z_embed b, c, t, h = inputs.shape for a_2, a_1, mlp, drop, norm in zip(self.Attentions_over_token, self.Attentions_over_channel, self. Attentions_mlp, self.Attentions_dropout, self.Attentions_norm): output_1 = a_1(inputs.permute(0, 2, 1, 3)).permute(0, 2, 1, 3) output_2 = a_2(output_1) outputs = drop(mlp(output_1+output_2))+inputs outputs = norm(outputs.reshape(b*c, t, -1)).reshape(b, c, t, -1) inputs = outputs # mlp decoder z_out = self.out_proj(outputs.reshape(b, c, -1)) # denomrlaization z = z_out * (z_std+1e-4) + z_mean return z
Jarlene/AlgoRepo
models/ts/card.py
card.py
py
3,357
python
en
code
0
github-code
6
9202556126
#!/usr/bin/env python # -*- coding: utf-8 -*- from PIL import Image def make_data_index(args, index): ''' :param args: :param index: :return: ''' # K is for K-fold cross-validation # k is The k-th fold used for test K = args.K_fold # Here, we don't use this because we use 10-fold cross-validation in default k = args.k_test # print('The index is ', index, 'Length of Index', len(index)) # Here we assume to use 10-fold Cross-validation, i.e., K = 10 # Approximately 60% Training set, 20% Validation set, 20% Testing set num_test_ref = int(len(index) * 0.2) num_val_ref = int(len(index) * 0.2) num_train_ref = len(index) - num_test_ref - num_val_ref # Assume k = 1 : 10 for 10-fold Cross-validation threshold = int(len(index) / num_test_ref) if k < threshold: testindex = index[(k - 1) * num_test_ref: k * num_test_ref] valindex = index[k * num_val_ref: (k + 1) * num_val_ref] elif k == threshold: testindex = index[(k - 1) * num_test_ref: k * num_test_ref] # Check if the index num of validation set is less than num_val_ref valindex = index[k * num_val_ref: (k + 1) * num_val_ref] if len(valindex) < num_val_ref: valindex = valindex.tolist() for i in range(0, num_val_ref - len(valindex)): valindex.append(index[i]) elif k == threshold + 1: testindex = index[k * num_test_ref: (k + 1) * num_test_ref] if len(testindex) < num_test_ref: testindex = testindex.tolist() for i in range(0, num_test_ref - len(testindex)): testindex.append(index[i]) k -= threshold valindex = index[(k + 2) * num_val_ref: (k + 3) * num_val_ref] else: k -= threshold testindex = index[k * num_test_ref: (k + 1) * num_test_ref] if len(testindex) < num_test_ref: testindex = testindex.tolist() for i in range(0, num_test_ref - len(testindex)): testindex.append(index[i + num_test_ref]) valindex = index[(k + 2) * num_val_ref: (k + 3) * num_val_ref] if len(valindex) < num_val_ref: valindex = valindex.tolist() for i in range(0, num_val_ref - len(valindex)): valindex.append(index[i]) return valindex, testindex def default_loader(path, channel=3): """ :param path: image path :param channel: # image channel :return: image """ if channel == 1: return Image.open(path).convert('L') else: assert (channel == 3) return Image.open(path).convert('RGB')
SuperBruceJia/NLNet-IQA
Cross Database Evaluations/lib/make_index.py
make_index.py
py
2,658
python
en
code
8
github-code
6
29969829561
""" MongoDB Interaction - A simple example for future developments Fabio Bove | [email protected] """ #!/usr/bin/env python # coding: utf-8 # Imports from pymongo import MongoClient class MongoUtils: def __init__(self, auth_param: str, collection_name: str, database_name: str, data: dict) -> None: self.mongo_client = None self.last_op_status = None self.database = None self.collection = None self.database_list = None self.collections_list = None self.auth_param = auth_param self.collection_name = collection_name self.database_name = database_name self.data = data def get_last_op_status(self) -> str: """ get_last_op_status, this method returns a string containing the status of the last operation made by this class param: None return: last_op_status: A string containing the status of the last operation made by this class """ return self.last_op_status def connect_to_cluster(self) -> None: """ connect_to_cluster, this method allow to instantiate a new cluster Connection using the pymongo lib pram: None return: None """ try: self.mongo_client = MongoClient(self.auth_param) self.last_op_status = "Successfully connected to Mongo Cluster" except Exception as e: self.last_op_status = f"Something went wrong during cluster connection: \n {e}" self.mongo_client = None def init_dabase(self, database_name:str) -> None: """ init_dabase method, creates (if don't exists yet) a new database with name <database_name> param: database_name: A string with the name of the new database return: Nothing """ try: # Get the list of databases for the current cluster self.database_list = self.mongo_client.list_database_names() self.last_op_status = f"Got the list of active databases: \n {self.database_list}" except Exception as e: self.last_op_status = f"Can't get the list of databases: \n {e}" self.database_list = None try: if self.database_list is not None and database_name in self.database_list: self.last_op_status = f"Database {database_name} already exists." self.database = self.mongo_client.get_database(database_name) else: self.database = self.mongo_client[database_name] self.last_op_status = f"Database <{database_name}> created successfully." except Exception as e: self.last_op_status = f"Something went wrong during database creation: \n {e}" self.database = None def init_collection(self, collection_name:str): """ init_collection method, initialize a collection if doesn't exists already otherwhise returns the existing one param: collection_name: The name of the collection return: Nothing """ try: self.collections_list = self.database.list_collection_names() except Exception as e: self.last_op_status = f"Can't get the list of collection: \n {e}" self.collection = None self.collections_list = None try: if self.collections_list is not None and collection_name in self.collections_list: self.last_op_status = f"Collection already exists." self.collection = self.database.get_collection(collection_name) else: self.collection = self.database[collection_name] self.last_op_status = f"Collection <{collection_name}> created successfully." except Exception as e: self.last_op_status = f"Something went wrong during collection creation: \n {e}" self.collection = None def init_documents(self, data:dict) -> None: """ init_documents method, inserts the documents into our collection taken from the given data param: data: a dict containing all the data to load in the collection return: Nothing """ try: self.collection.insert_many(data) # [self.collection.insert_one(elem) for elem in data] self.last_op_status = f"Documents loaded successfully." except Exception as e: self.last_op_status = f"Something went wrong during document insertion: \n {e}" def clean_collection(self, collection_name: str) -> None: """ clean_collection method, remove all the documents of a collection param: collection_name: A string containing the name of the collection. return: Nothing """ if collection_name is not None: # Load the desired collection, if collection_name is empty use the last collection connected to the class self.init_collection(collection_name) if self.collection is not None: if self.collection.count_documents({}) > 0: # Remove the old documents self.collection.delete_many({}) self.last_op_status = f"Removed old files from the collection." def init_cluster(self): self.connect_to_cluster() self.init_dabase(self.database_name) self.init_collection(self.collection_name) self.init_documents(self.data)
fabiobove-dr/mongo-db-interaction-utils
src/MongoUtils.py
MongoUtils.py
py
5,532
python
en
code
0
github-code
6
71357251707
import socket from _thread import * import json def global_logging(type_d, data): if type_d == "v": print("[*] VERBOSE :" + str(data)) elif type_d == "i": print("[I] INFO :" + str(data)) elif type_d == 'd': print("[D] DEBUG :" + str(data)) elif type_d == "a": print("[A] AERLT :" + str(data)) elif type_d == "e": print("[E] ERROR :" + str(data)) else: print("로깅 예외") class Menu: def __init__(self): self.menu = """Welcome, It's Server.\n\n 1. Start up server\n 2. Exit """ self.choice = None def show_menu(self): print(self.menu) def select_menu(self): self.choice = input("> ") def return_choice(self): return self.choice class Server: def __init__(self): self.SERVER_IP = '127.0.0.1' self.SERVER_PORT = 8820 self.server_data_buffer_size = 1024 self.server_socket = None def __del__(self): # Closing communication if self.server_socket is not None: self.server_socket.close() def start_server(self): global_logging("v", "Start up Server") self.server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) global_logging("v", "BIND IP") self.server_socket.bind((self.SERVER_IP, self.SERVER_PORT)) self.server_socket.listen() global_logging("i", "Server State : listening") def thread_communication_main(self, client_socket, addr): global_logging("i", ("Connected by :" + str(addr[0]) + ":" + str(addr[1]))) while True: try: data = client_socket.recv(self.server_data_buffer_size) if not data: global_logging("i", ("Disconnected by " + str(addr[0]) + ":" + str(addr[1]))) break global_logging("i", ("Received from " + str(addr[0]) + ":" + str(addr[1]) + " data:" + data.decode())) client_socket.send(data) except ConnectionResetError as e: global_logging("i", ("Disconnected by " + str(addr[0]) + ":" + str(addr[1]))) break client_socket.close() def run_loop(self): while True: global_logging("v", "Server State: Waiting for client") client_socket, addr = self.server_socket.accept() start_new_thread(self.thread_communication_main, (client_socket, addr)) def received_data(self): pass def parsing_data(self): pass if __name__ == "__main__": menu = Menu() server = Server() ch = None while True: menu.show_menu() menu.select_menu() ch = menu.return_choice() if ch == "1": server.start_server() server.run_loop() elif ch == "2": global_logging("v", "exit program bye!") break else: pass
HyeonBell/Tool
python/simple_socket_server/server.py
server.py
py
3,051
python
en
code
0
github-code
6
25069811529
"""TC:O(n*m),SC:O(m or n)""" class Solution(object): def matrixReshape(self, mat, r, c): """ :type mat: List[List[int]] :type r: int :type c: int :rtype: List[List[int]] """ result = [[0 for _ in range(c)]for _ in range(r)] if (r*c)!=(len(mat)*len(mat[0])): return mat else: for i in range(r*c): result[i//c][i%c]=mat[i//len(mat[0])][i%len(mat[0])] return result if __name__== "__main__": mat = [[1,2],[3,4]] r = 1 c = 4 a=Solution() ans=a.matrixReshape(mat,r,c) print(ans)
ankitarm/Leetcode
Python/566.Reshapethematrix.py
566.Reshapethematrix.py
py
705
python
en
code
0
github-code
6
31263506941
from selenium import webdriver from ordered_set import OrderedSet import time import os import csv os.system("cls") f=open("99acres.csv","w",encoding='utf-8') csv_writer= csv.writer(f) csv_writer.writerow(['Project', 'specification', 'area','Value']) driver = webdriver.Chrome('D:/virtualenvs_muthu/selenium_twitter/chromedriver_win32/chromedriver.exe') os.system("cls") scroll_list=OrderedSet() for x in range(1,3): driver.get(f"https://www.99acres.com/property-in-hadapsar-pune-ffid-page-{x}") try: mutiple_properties=driver.find_elements_by_class_name('srpTuple__tupleDetails') time.sleep(2) for elem in (mutiple_properties): scroll_list.add(elem.text) except: continue temp=list(scroll_list) my_actual_list=[] for x in temp: xt=x.split("\n") print(xt) try: if xt!=['']: my_actual_list=[xt[2],xt[1],xt[4],xt[3]] except: temp_i=temp.index(x) os.system("cls") print("previous:") print(temp[temp_i-1]) print("error:") print(xt) print(my_actual_list) csv_writer.writerow(my_actual_list) my_actual_list.clear() f.close()
Muthu1612/Optimizing-real-estate-price-prediction-with-various-machine-learning-algorithms
Data extraction/extract_data.py
extract_data.py
py
1,450
python
en
code
1
github-code
6
10917250777
from collections import namedtuple from backend.DBEntry import DBEntry, to_db_obj_name from backend.Ingredient import Ingredient class Recipe(DBEntry): """A recipe of a dish. Consists of ingredients with optional amount (in optional units).""" table_main = "recipes" associations = [ ("user_meals","recipe_id", False), ("recipe_contents","recipe_id", True) ] def __init__(self, name, instructions="", contents=set(), db=None, id=None): """Constructor. Returns functional object. :param name: Inherits from DBEntry. :param instructions: A string, instructios on how to cook the dish. :param contents: A set of Content namedtuples - ingredients and their amounts that comprise the dish. :param db: Inherits from DBEntry. :param id: Inherits from DBEntry. """ super().__init__(name=name, db=db, id=id) self.instructions = instructions self.contents = contents @classmethod def from_db(cls, db, id=None, name=None): """Search db for recipe entry by id or name (in that priority) and return constructed object. Returns None if id is not found. """ recipe = super().from_db(db=db, id=id, name=name) if not recipe: return None id = recipe.id # Constructing contents set needle = (id,) db.c.execute( 'SELECT ingredient_id, amount, units FROM recipe_contents ' 'WHERE recipe_id = ?', needle ) rows = db.c.fetchall() contents = set() for row in rows: ingredient = Ingredient.from_db(db, row["ingredient_id"]) content = Content(ingredient, row["amount"], row["units"]) contents.add(content) recipe.contents = contents return recipe def new_to_db(self): """Write a new recipe entry to the DB. Return id assigned by the DB.""" table_main = to_db_obj_name(self.table_main) # Inserting values to the main table recipe = (self.name, self.instructions) self.db.c.execute(f'INSERT INTO "{table_main}" (name, instructions) VALUES (?, ?)', recipe) # Remembering id assigned by the DB new_row_id = (self.db.c.lastrowid,) self.db.c.execute(f'SELECT id FROM "{table_main}" WHERE rowid = ?', new_row_id) row = self.db.c.fetchone() id = row["id"] # inserting contents to the associative table contents = {(id, c.ingredient.id, c.amount, c.units) for c in self.contents} self.db.c.executemany( 'INSERT INTO recipe_contents (recipe_id, ingredient_id, amount, units) ' ' VALUES (?, ?, ?, ?)', contents ) return id def edit_in_db(self): """Edit existing DB recipe to match current object state. Return number of affected rows. """ table_main = to_db_obj_name(self.table_main) rows_affected = 0 # Updating values to the main table recipe = (self.name, self.instructions, self.id) self.db.c.execute(f'UPDATE "{table_main}" SET name = ?, instructions = ? WHERE id = ?', recipe) rows_affected += self.db.c.rowcount # Constructing sets of the recipe's old and new contents' ingredient ids new_ingredient_ids = {c.ingredient.id for c in self.contents} needle = (self.id,) old_contents = self.db.c.execute('SELECT ingredient_id as id FROM recipe_contents WHERE ' 'recipe_id = ?', needle).fetchall() old_ingredient_ids = {c["id"] for c in old_contents} # Removing contents missing in the new set to_remove = {(self.id, i_id) for i_id in old_ingredient_ids - new_ingredient_ids} self.db.c.executemany('DELETE FROM recipe_contents WHERE recipe_id = ? AND ingredient_id = ?', to_remove) rows_affected += self.db.c.rowcount # Adding contents missing in the old set new_contents = {c for c in self.contents if c.ingredient.id in new_ingredient_ids - old_ingredient_ids} to_add = {(self.id, c.ingredient.id, c.amount, c.units) for c in new_contents} self.db.c.executemany( 'INSERT INTO recipe_contents (recipe_id, ingredient_id, amount, units) ' ' VALUES (?, ?, ?, ?)', to_add ) rows_affected += self.db.c.rowcount # Updating contents present in both the old and the new sets updated_contents = self.contents - new_contents to_update = {(c.amount, c.units, self.id, c.ingredient.id) for c in updated_contents} self.db.c.executemany( 'UPDATE recipe_contents SET amount = ?, units = ? ' ' WHERE recipe_id = ? AND ingredient_id = ?', to_update ) return rows_affected @classmethod def get_summary(cls, db, name_sort=False): """"Return summary table for Recipe objects in DB as dictionary list. id: recipe db_id. name: recipe name. instructions: instructions on how to prepare the dish. contents: list of contents (ingredient name, amount, units). dependents: number of other class entries referencing this id as a foreign key. param name_sort: A boolean. If True, summary will be recursively sorted by object name ascending. """ summary = [] # Get main table data db.c.execute('SELECT id, name, instructions ' 'FROM recipes ' 'ORDER BY id ASC' ) for db_row in db.c.fetchall(): row = {x: y for x, y in zip(db_row.keys(), db_row)} summary.append(row) # Get content lists db.c.execute( 'SELECT recipe_contents.recipe_id, ingredients.name as ingredient, ' ' recipe_contents.amount, recipe_contents.units ' 'FROM recipe_contents ' 'LEFT JOIN ingredients ON recipe_contents.ingredient_id = ingredients.id ' 'ORDER BY recipe_id ASC' ) db_rows = db.c.fetchall() if db_rows: it_summary = iter(summary) s_row = next(it_summary) for db_row in db_rows: while not db_row["recipe_id"] == s_row["id"]: # Ensure at least an empty 'cell' exists for this recipe before moving to next try: s_row["contents"] except KeyError: s_row["contents"] = [] s_row = next(it_summary) content = { "ingredient": db_row["ingredient"], "amount" : db_row["amount"], "units" : db_row["units"], } try: s_row["contents"].append(content) except KeyError: s_row["contents"] = [content] # Fill remaining rows with empty content lists finished = False while not finished: try: s_row = next(it_summary) s_row["contents"] = [] except StopIteration: finished = True # Get dependents db.c.execute( 'SELECT recipe_id, COUNT(user_id) as dependents FROM user_meals ' 'GROUP BY recipe_id ' 'ORDER BY recipe_id ASC' ) db_rows = db.c.fetchall() if db_rows: it_summary = iter(summary) s_row = next(it_summary) for db_row in db_rows: while not db_row["recipe_id"] == s_row["id"]: # Set dependents = 0 for ingredients that don't exist in recipe_contents table try: s_row["dependents"] except KeyError: s_row["dependents"] = 0 s_row = next(it_summary) s_row["dependents"] = db_row["dependents"] # Fill remaining rows with dependents = 0 finished = False while not finished: try: s_row = next(it_summary) s_row["dependents"] = 0 except StopIteration: finished = True if name_sort: summary.sort(key=lambda x: x["name"].lower()) for row in summary: try: row["contents"].sort(key=lambda x: x["ingredient"].lower()) except KeyError: pass return summary def toJSONifiable(self): dct = super().toJSONifiable() contents_list = [item._asdict() for item in self.contents] dct["contents"] = contents_list return dct # constructor validation from kindall"s answer at # https://stackoverflow.com/a/42146452 ContentTuple = namedtuple("ContentTuple", "ingredient amount units") class Content(ContentTuple): """Represents quantity or amount of a specific ingredient in a dish""" __slots__ = () def __new__(cls, ingredient, amount, units=None): try: if not amount >= 0: raise ValueError("amount must be a positive number") except TypeError: raise RuntimeError("amount must be a positive number") return ContentTuple.__new__(cls, ingredient, amount, units) def _replace(self, **kwargs): try: if not kwargs["amount"] >= 0: raise ValueError("amount must be a positive number") except ValueError: raise RuntimeError("amount must be a positive number") except KeyError: pass return super()._replace(**kwargs) def toJSONifiable(self): return self._asdict()
Longneko/demo_food_app
backend/Recipe.py
Recipe.py
py
10,035
python
en
code
0
github-code
6
6951483307
def plot_sine_1D(amp,wavelength,phase): x = np.arange(-500, 501, 1) y = np.sin((2 * np.pi * x / wavelength)+phase) plt.plot(x, y) plt.show() plot_sine_1D(1,300,0) def plot_sine_2D(amp,wavelength,phase,angle): x = np.arange(-500, 501, 1) X, Y = np.meshgrid(x, x) wavelength = 100 sine_2D = np.sin( 2*np.pi*(X*np.cos(angle) + Y*np.sin(angle)) / wavelength ) plt.set_cmap("gray") plt.imshow(sine_2D) plot_sine_2D(1,200,0,np.pi) def compute_fft(f): ft = np.fft.fft2(f) ft = np.fft.fftshift(ft) return ft sin = plot_sine_2D(1,200,0,np.pi,False) ft = compute_fft(sin) plt.xlim([480,520]) plt.ylim([520,480]) plt.imshow(abs(ft)) sin = plot_sine_2D(1,200,0,np.pi/6,False) ft = compute_fft(sin) plt.xlim([480,520]) plt.ylim([520,480]) plt.imshow(abs(ft)) f,ax = plt.subplots(1,2,figsize=(15,20)) ax = ax.flatten() im = cv2.imread('/kaggle/input/randomimages/pic2.jpeg',-1) im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) ax[0].imshow(im,cmap='gray') ax[1].imshow(20*np.log(abs(compute_fft(im))),cmap='gray') # Plotting image and its blurred version f,ax = plt.subplots(1,2,figsize=(15,20)) ax = ax.flatten() im = cv2.imread('../input/randomimages/pic1.jpeg',-1) im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) im_blur = cv2.GaussianBlur(im,(7,7), 5, 5) ax[0].imshow(im,cmap='gray') ax[1].imshow(im_blur,cmap='gray') def gaussian_filter(kernel_size,img,sigma=1, muu=0): x, y = np.meshgrid(np.linspace(-1, 1, kernel_size), np.linspace(-1, 1, kernel_size)) dst = np.sqrt(x**2+y**2) normal = 1/(((2*np.pi)**0.5)*sigma) gauss = np.exp(-((dst-muu)**2 / (2.0 * sigma**2))) * normal gauss = np.pad(gauss, [(0, img.shape[0] - gauss.shape[0]), (0, img.shape[1] - gauss.shape[1])], 'constant') return gauss def fft_deblur(img,kernel_size,kernel_sigma=5,factor='wiener',const=0.002): gauss = gaussian_filter(kernel_size,img,kernel_sigma) img_fft = np.fft.fft2(img) gauss_fft = np.fft.fft2(gauss) weiner_factor = 1 / (1+(const/np.abs(gauss_fft)**2)) if factor!='wiener': weiner_factor = factor recon = img_fft/gauss_fft recon*=weiner_factor recon = np.abs(np.fft.ifft2(recon)) return recon recon = fft_deblur(im_blur,7,5,factor=1) plt.subplots(figsize=(10,8)) plt.imshow(recon,cmap='gray') noise = np.random.rand(100,100) noise_fft = np.fft.fft2(noise) noise_fft = np.fft.fftshift(noise_fft) f,ax = plt.subplots(1,2,figsize=(15,20)) ax = ax.flatten() ax[0].imshow(noise,cmap='gray') ax[0].set_title('Original Image') ax[1].imshow(20*np.log(abs(compute_fft(noise_fft))),cmap='gray') ax[1].set_title('Fourier Transform') gauss = gaussian_filter(7,im,5) gauss_fft = np.fft.fft2(gauss) gauss_fft = np.fft.fftshift(gauss_fft) f,ax = plt.subplots(1,2,figsize=(15,20)) ax = ax.flatten() ax[0].imshow(gauss,cmap='gray') ax[0].set_title('Original Image') ax[1].imshow(np.abs(gauss_fft),cmap='gray') ax[1].set_title('Fourier Transform') f,ax = plt.subplots(1,2,figsize=(15,20)) recon = fft_deblur(im_blur,7,5,factor='wiener') ax[0].imshow(im_blur,cmap='gray') ax[1].imshow(recon) ax[0].set_title('Blurry Image') ax[1].set_title('Image reconstruction') plt.show() f,ax = plt.subplots(1,2,figsize=(15,20)) recon = fft_deblur(im_blur,7,5,factor='wiener',const=0.5) ax[0].imshow(im_blur,cmap='gray') ax[1].imshow(recon) ax[0].set_title('Blurry Image') ax[1].set_title('Image reconstruction') plt.show()
rvats/PyRAVE
UnBlurImage.py
UnBlurImage.py
py
3,425
python
en
code
0
github-code
6
73876831548
from os import path from .dictbuilder import DictBuilder # Dictionary is an in-memory representation of the dictionary of terms for a given corpus # Internally, we represent the volume as a set, since that gives us O(1) access, which makes # constructing an index much faster. class Dictionary: # key = dictionary path, value = set of terms dictionary = {} class __Dictionary: def __init__(self, ctx): self.ctx = ctx self.terms = set() if not path.exists(ctx.dict_path()): DictBuilder(ctx).build() with open(self.ctx.dict_path(), "r") as terms: for term in terms: self.terms.add(term.rstrip()) # remove trailing newline def add(self, term): self.terms.add(term) def contains(self, term): return term in self.terms def __init__(self, ctx): self.ctx = ctx if ctx.dict_path() not in Dictionary.dictionary: Dictionary.dictionary[ctx.dict_path()] = Dictionary.__Dictionary(ctx)
tsontario/minerva
pkg/dictionary/dictionary.py
dictionary.py
py
1,072
python
en
code
2
github-code
6
39991774220
import os from glob import glob from pathlib import Path SOURCE_DIRECTORY = "CSVdatabases" TARGET_DIRECTORY = "cleaned_databases" CURRENT_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) DATABASES_FOLDER = f"{CURRENT_DIRECTORY}/{SOURCE_DIRECTORY}" CLEANED_FOLDER = f"{CURRENT_DIRECTORY}/{TARGET_DIRECTORY}" def clean_file_contents(contents: list[str]): return contents[4:-2] def clean_all_databases(): database_files = glob(f"{DATABASES_FOLDER}/**/*.csv") for raw_data_file in database_files: target_directory = os.path.dirname(raw_data_file).replace( SOURCE_DIRECTORY, TARGET_DIRECTORY) target_file = raw_data_file.replace(SOURCE_DIRECTORY, TARGET_DIRECTORY) if not os.path.exists(target_directory): os.makedirs(target_directory) with open(raw_data_file, 'r') as source: with open(target_file, 'w') as destination: destination.writelines(clean_file_contents(source.readlines())) def remove_empty_databases(): cleaned_data_files = glob(f"{CLEANED_FOLDER}/**/*.csv") for cleaned_data_file in cleaned_data_files: delete = False with open(cleaned_data_file, 'r') as f: if len(f.readlines()) < 2: delete = True if delete: Path(cleaned_data_file).unlink() if __name__ == '__main__': clean_all_databases() remove_empty_databases()
DekunZhang/UCL_IFRC_IXN_PUBLIC
DesInventar/data_cleaner.py
data_cleaner.py
py
1,417
python
en
code
0
github-code
6
44904287123
import torch from experiment import Experiment, AutoDateSet, train, get_args from model.Tree import Tree from dataset.criteo import CriteoDataset def get_model(args): model = Tree(args) return model def get_dataset(args): dataset = CriteoDataset(dataset_path=args.dataset_paths[0]) train_length = int(len(dataset) * 0.9) valid_length = len(dataset) - train_length train_dataset, valid_dataset = torch.utils.data.random_split(dataset, (train_length, valid_length)) test_dataset = CriteoDataset(dataset_path=args.dataset_paths[1]) return [train_dataset, valid_dataset, test_dataset], dataset.field_dims def main(): args = get_args() args.hidden= [1024,512,256,128,64] args.embed_dim = 16 args.activation='relu' args.label='y' args.num_class = 2 args.dataset_paths= ['data/criteo/train.txt', 'data/criteo/test.txt'] datasets, field_dims= get_dataset(args) print(field_dims) args.field_dims = field_dims model = get_model(args) experiment = Experiment(model=model, args=args) data = AutoDateSet(datasets, args.batch_size, args.batch_size, args.num_workers, args.pin_memory) train(args, experiment, data) if __name__ == "__main__": main()
Jarlene/Experiment
tree_main.py
tree_main.py
py
1,237
python
en
code
0
github-code
6
74416657149
# Ten program dzieli jedną liczbę przez drugą. def main(): # Pobranie dwóch liczb. num1 = int(input('Podaj liczbę : ')) num2 = int(input('Podaj następną liczbę: ')) # Jeżeli wartość num2 jest inna niż 0, następuje # podzielenie num1 przez num2 i wyświetlenie wyniku. if num2 != 0: result = num1 / num2 print(num1, 'dzielone przez', num2, 'daje', result) else: print('Nie można dzielić przez zero.') # Wywołanie funkcji main(). main()
JeanneBM/Python
Owoce Programowania/R06/06. Division2.py
06. Division2.py
py
506
python
pl
code
0
github-code
6
18598085905
from __future__ import annotations from .base import BaseDAO from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from dto import PlayerDTO class PlayerDAO(BaseDAO): def create(self, data: PlayerDTO) -> None: self._db_gateway.cursor.execute("INSERT INTO profiles (phone, username, description, age, height, weight) " "VALUES (?, ?, ?, ?, ?, ?);", (data.profile.phone, data.profile.username, data.profile.description, data.profile.age, data.profile.height, data.profile.weight)) profile_id = self._db_gateway.cursor.lastrowid self._db_gateway.cursor.execute("INSERT INTO players (email, name, surname, country_id, sport_type_id, " "team_id, profile_id) VALUES (?, ?, ?, ?, ?, ?, ?);", (data.email, data.name, data.surname, data.country_id, data.sport_type_id, data.team_id, profile_id)) self._db_gateway.connection.commit() def get_ids_list(self) -> list[int]: result = self._db_gateway.cursor.execute("SELECT id FROM players;") return result.fetchall() def get_list(self) -> list[tuple]: result = self._db_gateway.cursor.execute("SELECT players.id, players.name, players.surname, profiles.age, countries.name, teams.name " "FROM players JOIN profiles ON players.profile_id = profiles.id JOIN countries ON " "players.country_id = countries.id JOIN teams ON players.team_id = teams.id;") return result.fetchall()
pyteacher123/py35-onl
sports_db_project/data_access/dao/player.py
player.py
py
1,747
python
en
code
2
github-code
6
2298576928
#!/usr/bin/env python import sys import logging import time import argparse import pyBigWig import math import numpy as np from sklearn import preprocessing from MSTS.version import __version__ from MSTS.Parser.SimpleGffParser import SimpleGffParser from MSTS.Db.FeatureDB import FeatureDB from MSTS.Graphics import Graphics def getCoordinatesFreeFromOtherGenes(lFeatures,feature,start, pivot='start'): "...." startNew = start endNew = start for feat in lFeatures: if feature.strand == 1: if pivot == 'start': if feat.end <= feature.start and feat.end > startNew: startNew = feat.end elif pivot == 'end': if feat.start >= feature.end and feat.start < endNew: endNew = feat.start elif feature.strand == -1: if pivot == 'start': if feat.start >= feature.end and feat.start < startNew: startNew = feat.start elif pivot == 'end': if feat.end <= feature.start and feat.end > endNew: endNew = feat.end if pivot == 'start': return startNew elif pivot == 'end': return endNew def getBasesOverlappingOtherGenes(lOverlappingFeatures,Start, End, regionStart, regionEnd): """....""" lOtherFeatures = [] for feat in lOverlappingFeatures: if feat.start <= Start and feat.end >= End: pass else: lOtherFeatures.append(feat) dBases = {} for val in range(regionStart, regionEnd): dBases[val] = 0 for feat in lOtherFeatures: for base in range(feat.start,feat.end): if base in dBases: dBases[base] += 1 return [value for (key,value) in sorted(dBases.items())] def gaussianSmoothing(data, windowWidth=3, stdev=20): """smoothing""" windowWidth = windowWidth stdev = stdev filter = [None]*(2*windowWidth*stdev+1) sumt = 0.0; for i in range(0,len(filter)): x = float(i - 3 * stdev) value = math.exp(-(x * x) / (2 * stdev * stdev)) filter[i] = value sumt += value for i in range(0,len(filter)): filter[i] /=sumt smoothed = [0]*len(data) ltmp = [0.0]*(windowWidth*stdev) data.extend(ltmp) ltmp.extend(data) data = ltmp for i in range(0,len(smoothed)): for j in range(0,len(filter)): smoothed[i] += data[i + j] * filter[j] smoothed[0:windowWidth*stdev] = [np.nan]*(windowWidth*stdev) smoothed[-(windowWidth*stdev):] = [np.nan]*(windowWidth*stdev) return smoothed def readFeatureIds(lIdsFile): """Read feature Ids from file""" lIds = [] try: with open(lIdsFile, 'r') as f: for line in f: line = line.rstrip() if line: lIds.append(line) f.close() logging.info("{} features to analyze".format(len(lIds))) except Exception as e: logging.error("Can not read feature file: {}".format(lIdsFile)) sys.exit(1) return lIds def getMeanValue(bw): """Normalize with mean""" lValues = [] for chrom in db.selectReferences(): logging.info('Requesting genes in sequence: {}'.format(chrom)) lFeatures = db.selectFeatureTypeFromReference(chrom, featType) for feat in lFeatures: values = bw.values(chrom,feat.start,feat.end) lValues.extend(values) return np.mean(lValues) if __name__ == "__main__": program = sys.argv[0] version = __version__ description = 'todo, \ ...' parser = argparse.ArgumentParser(prog=program) parser = argparse.ArgumentParser(description=description) parser.add_argument('--version', action='version', version='{} {}'.format(program,version)) parser.add_argument("bigWig", help="Input bigWig File", type=str) parser.add_argument("gff3", help="Input genome annotation in gff3 format", type=str) parser.add_argument("-wb","--windowBefore", help="window size to analyze before the feature, default=1000", type=int, default=1000) parser.add_argument("-wa","--windowAfter", help="window size to analyez after the feature, default=1000", type=int, default=1000) parser.add_argument("-ft","--featureType", help="feature type to analyze, default=gene", type=str, default='gene') parser.add_argument("-p", "--pivot", help="feature bound to use, default=start, possible values=[start,end]",type=str,default='start') parser.add_argument("--context", help="if set, defined features in context matter", action="store_true", default=False) parser.add_argument("-o", "--out", help="name of output graph", type=str, default="graph.png") parser.add_argument("-t", "--title", help="title text", type=str, default="title") parser.add_argument("-x", "--xax", help="x axis text", type=str, default="window, bp") parser.add_argument("-y", "--yax", help="y axis text", type=str, default="nb bases") parser.add_argument("-z", "--zax", help="z axis text", type=str, default="signal coverage") parser.add_argument("-d", "--sqliteDB", help="provide sqlite DB to avoid insertion, usefull for multi-analysis", type=str, default=None) parser.add_argument("-n", "--noDeleteDB", help="Do not delete SQLite DB", action="store_true", default=False) parser.add_argument("-s","--GaussianSmoothing", help="Perform Gaussian Smoothing on data, ", action="store_true", default=False) parser.add_argument("-w","--windowWidth", help="window size for Gaussian smoothing, default=3", type=int, default=3) parser.add_argument("-sd","--stdev", help="stdev for Gaussian smoothing, default=20", type=int, default=20) parser.add_argument("--norm", help="Normalize signal value with the average signal of all features of the same type", action="store_true", default=False) parser.add_argument("--flush",help="print phases on stdout to save in file, > phases.out", action="store_true", default=False) parser.add_argument("-l","--lIds", help="txt file with ID list (one ID per line), limit phasogram to the features specified in the file. Features must be of the same type as featureType", type=str, default=None) parser.add_argument("--heatmap", help="export coresponding heatmap", action="store_true", default=False) parser.add_argument("--heatmapsmooth", help="Perform Gaussian smoothing on each feature (time consuming)", action="store_true", default=False) parser.add_argument("--keepLIdOrder", help="export heatmap with respect to LIds order if supplied", action="store_true", default=False) parser.add_argument("-v", "--verbosity", type=int, choices=[1,2,3], help="increase output verbosity 1=error, 2=info, 3=debug") args = parser.parse_args() logLevel='ERROR' if args.verbosity == 1: logLevel = 'ERROR' if args.verbosity == 2: logLevel = 'INFO' if args.verbosity == 3: logLevel = 'DEBUG' logging.getLogger().setLevel(logLevel) featType = args.featureType featTypeContext = featType pivot = args.pivot if pivot not in ['start','end']: logging.error("Provided pivot: '{}' not allowed, choose 'start' or 'end'".format(pivot)) sys.exit(1) context = args.context if not args.sqliteDB: logging.info("Parsing gff3 gene file") parser = SimpleGffParser(args.gff3, logLevel) lFeatures = [] for feat in parser.parse(): lFeatures.append(feat) logging.info("{} features parsed".format(parser.nbFeatures)) logging.info("Inserting features in SQLite DB") timestamp = int(time.time()) db = FeatureDB('sqlite-{}.db'.format(timestamp),False,logLevel) db.insertlFeatures(lFeatures) logging.info("Insertion done") else: logging.info("Using {} file as SQLite db".format(args.sqliteDB)) db = FeatureDB(args.sqliteDB,noCreate=True,logLevel=logLevel) bw = pyBigWig.open(args.bigWig) winBefore = args.windowBefore winAfter = args.windowAfter lPhases = [0]*(1+winBefore+winAfter) lAllPhases = [] lPhasesNb = [0]*(1+winBefore+winAfter) lOtherGenesNb = [0]*(1+winBefore+winAfter) lIds = [] d = {} if args.lIds: lIds = readFeatureIds(args.lIds) #lIds = ['Avrlm3_Lema_T200610.1', 'lm_SuperContig_0_v2_lmctg_0007_v2_egn4_orf_Lema_T000020.1'] for chrom in db.selectReferences(): logging.info('Requesting genes in sequence: {}'.format(chrom)) if len(lIds) > 0: lFeatures = db.selectFeatureFromIdListAndType(chrom, lIds, featType) else: lFeatures = db.selectFeatureTypeFromReference(chrom, featType) nbAnalyzedFeat = len(lAllPhases) for ftIdx, feat in enumerate(lFeatures): #print(feat.id) if args.keepLIdOrder: d[feat.id] = ftIdx+nbAnalyzedFeat lAllPhases.append([0]*(1+winBefore+winAfter)) if feat.strand == 1: if pivot == 'start': start = max(1,feat.start-winBefore) end = min(bw.chroms(chrom),feat.start+winAfter) elif pivot == 'end': start = max(1,feat.end-winBefore) end = min(bw.chroms(chrom),feat.end+winAfter) elif feat.strand == -1: if pivot == 'start': start = min(bw.chroms(chrom),feat.end+winBefore) end = max(1,feat.end-winAfter) elif pivot == 'end': start = min(bw.chroms(chrom),feat.start+winBefore) end = max(1,feat.start-winAfter) else: logging.error("Cannot perform analysis on feature witout strand") sys.exit(1) startNew = start endNew = end if pivot == 'start': lOverlappingFeatures = db.selectFeatureTypeFromCoordinates(featTypeContext,chrom,min(start,end),max(start, end)) if context: startNew = getCoordinatesFreeFromOtherGenes(lOverlappingFeatures,feat,start) elif pivot == 'end': lOverlappingFeatures = db.selectFeatureTypeFromCoordinates(featTypeContext,chrom,min(start,end),max(start, end)) if context: endNew = getCoordinatesFreeFromOtherGenes(lOverlappingFeatures,feat,end,pivot='end') index = 0 lOtherGenesBases = [] if feat.strand == 1: if pivot == 'start': lValues = bw.values(chrom,startNew-1,end) decal = 0 if context: lValues = bw.values(chrom,startNew-1,feat.end) decal = (startNew-start) for i in range(0+decal,min(len(lValues)+decal,winBefore+winAfter+1)): lPhases[i] += lValues[i-decal] lAllPhases[ftIdx+nbAnalyzedFeat][i] = lValues[i-decal] lPhasesNb[i] += 1 index = i for i in range(0,0+decal): lAllPhases[ftIdx+nbAnalyzedFeat][i] = np.nan for i in range(min(len(lValues)+decal,winBefore+winAfter+1), winBefore+winAfter+1): lAllPhases[ftIdx+nbAnalyzedFeat][i] = np.nan lOtherGenesBases = getBasesOverlappingOtherGenes(lOverlappingFeatures,feat.start,feat.end,start,end) elif pivot == 'end': lValues = bw.values(chrom,start-1,endNew) decal=0 if context: lValues = bw.values(chrom,feat.start-1,endNew) decal = max((winBefore-(feat.end-feat.start)),0) for i in range(decal,min(decal+len(lValues),winBefore+winAfter+1)): lPhases[i] += lValues[i-decal] lAllPhases[ftIdx+nbAnalyzedFeat][i] = lValues[i-decal] lPhasesNb[i] += 1 index = i for i in range(0,decal): lAllPhases[ftIdx+nbAnalyzedFeat][i] = np.nan for i in range(min(len(lValues)+decal,winBefore+winAfter+1), winBefore+winAfter+1): lAllPhases[ftIdx+nbAnalyzedFeat][i] = np.nan lOtherGenesBases = getBasesOverlappingOtherGenes(lOverlappingFeatures,feat.start,feat.end,start,end) elif feat.strand == -1: if pivot == 'start': lValues = bw.values(chrom,end,startNew) decal = 0 if context: lValues = bw.values(chrom,feat.start-1,startNew) decal = (startNew-start) for i in range(-1+decal,max(-len(lValues)+decal-1,(-winAfter)+(-winBefore)+(-1)-1),-1): lPhases[-i-1] += lValues[i-decal] lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = lValues[i-decal] lPhasesNb[-i-1] += 1 index = i for i in range(-1,-1+decal, -1): lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = np.nan for i in range( max(-len(lValues)+decal-1,(-winAfter)+(-winBefore)+(-1)-1),(-winAfter)+(-winBefore)+(-1)-1 ,-1): lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = np.nan lOtherGenesBases = getBasesOverlappingOtherGenes(lOverlappingFeatures,feat.start,feat.end,end,start)[::-1] elif pivot == 'end': lValues = bw.values(chrom,endNew-1,start) decal = 0 if context: lValues = bw.values(chrom,endNew-1,feat.end) decal = max((winBefore-(feat.end-feat.start)),0) for i in range(-1-decal,max(-len(lValues)-decal,(-winAfter)+(-winBefore)+(-1)-1), -1): lPhases[-i-1] += lValues[i+decal] lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = lValues[i-decal] lPhasesNb[-i-1] += 1 index = i for i in range(-1,-1+decal, -1): lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = np.nan for i in range( max(-len(lValues)+decal-1,(-winAfter)+(-winBefore)+(-1)-1),(-winAfter)+(-winBefore)+(-1)-1 ,-1): lAllPhases[ftIdx+nbAnalyzedFeat][-i-1] = np.nan lOtherGenesBases = getBasesOverlappingOtherGenes(lOverlappingFeatures,feat.start,feat.end,end,start)[::-1] else: pass for i in range(0,len(lOtherGenesBases)): lOtherGenesNb[i] += lOtherGenesBases[i] # print(lPhases) lAveragePhases = [0]*(1+winBefore+winAfter) # print(len(d.keys())) # print(len(lIds)) if args.keepLIdOrder: lSortedAllPhases = [] for i in lIds: #print(i) lSortedAllPhases.append(lAllPhases[d[i]]) lAllPhases = lSortedAllPhases # for idx,feature_phase in enumerate(lAllPhases): # lSmoothedAllPhases.append(gaussianSmoothing(feature_phase, args.windowWidth, args.stdev)) # if not (idx+1)%1000: # logging.info("{} feature values smoothed on {}".format(idx+1, len(lAllPhases))) # heatvalues = np.array(lSmoothedAllPhases, dtype=np.float) heatvalues = np.array(lAllPhases, dtype=np.float64) lAllPhasesNorm = [] for u,s in enumerate(lAllPhases): mi= np.nanmin(s) ma = np.nanmax(s) l = [] for x in s: if np.isnan(np.array([x])): l.append(np.nan) else: l.append((x-mi*1.0)/(ma-mi)) lAllPhasesNorm.append(l) heatvalues = np.array(lAllPhasesNorm, dtype=np.float) lSmoothedAllPhases = [] if args.heatmapsmooth: heatvaluesNoNaN = np.nan_to_num(heatvalues) for idx,feature_phase in enumerate(heatvaluesNoNaN): lSmoothedAllPhases.append(gaussianSmoothing(list(feature_phase), args.windowWidth, args.stdev)) if not (idx+1)%1000: logging.info("{} feature values smoothed on {}".format(idx+1, len(lAllPhases))) for i,s in enumerate(heatvalues): for j,x in enumerate(s): if np.isnan(x): lSmoothedAllPhases[i][j] = np.nan for a,b in enumerate(lPhases): if lPhasesNb[a] != 0: lAveragePhases[a] = lPhases[a]/lPhasesNb[a] if args.norm: mean = getMeanValue(bw) lAveragePhases = [v/mean for v in lAveragePhases] logging.info("Normalizing values with average coverage of {}: {}".format(args.featureType,mean)) if args.GaussianSmoothing: logging.info("Smoothing data with Gaussian blur, window: {}, stdev: {}".format(args.windowWidth, args.stdev)) lAveragePhases = gaussianSmoothing(lAveragePhases, args.windowWidth, args.stdev) lenFilter = 2*args.windowWidth*args.stdev+1 if args.noDeleteDB: logging.info('SQLite db: {} not removed'.format(db.getDbFileName())) else: logging.info('SQLite db: {} removed'.format(db.getDbFileName())) db.deleteDB() logging.info("Drawing graph in {}".format(args.out)) if args.GaussianSmoothing: Graphics.plotDistributionWithGeneHistogram([x for x in range(-winBefore,winAfter+1)],lAveragePhases[0:(winBefore+winAfter+1)],lPhasesNb[0:(winBefore+winAfter+1)],lOtherGenesNb[0:(winBefore+winAfter+1)],out=args.out, title=args.title, xax=args.xax, yax=args.yax, yax2=args.zax) else: Graphics.plotDistributionWithGeneHistogram([x for x in range(-winBefore,winAfter+1)],lAveragePhases[0:(winBefore+winAfter+1)],lPhasesNb[0:(winBefore+winAfter+1)],lOtherGenesNb[0:(winBefore+winAfter+1)],out=args.out, title=args.title, xax=args.xax, yax=args.yax, yax2=args.zax) if args.heatmap: if args.heatmapsmooth: Graphics.plotHeatmap(lSmoothedAllPhases, out="heatmap-{}".format(args.out), title="Heatmap - {}".format(args.title), xax="position bp", yax="#features", mi=args.windowBefore, ma=args.windowAfter) else: Graphics.plotHeatmap(heatvalues, out="heatmap-{}".format(args.out), title="Heatmap - {}".format(args.title), xax="position bp", yax="#features", mi=args.windowBefore, ma=args.windowAfter) if args.flush: for x in range(0,winBefore+winAfter+1): print("{}\t{}".format(x-winBefore,lAveragePhases[x]))
nlapalu/MSTS
bin/MSTS_feature_phasogram.py
MSTS_feature_phasogram.py
py
18,845
python
en
code
0
github-code
6
6365552957
import threading from flask import Flask, jsonify, Response import asyncio from camera import Camera from websocketServer import VideoWs from flask_cors import CORS from config import ip, http_port from queue import Queue app = Flask(__name__) CORS(app) camera = Camera() event = threading.Event() queue = Queue() @app.route('/open') def open_camera(): open_ws_conn() dic = { 'code': 1, 'msg': 'open camera success' } return jsonify(dic) @app.route('/close') def close_camera(): camera.close_camera() return jsonify({ 'code': 1 }) def open_ws_conn(): openWs() def run(): print('执行') app.run(host=ip, port=http_port) def main(): flask_thread = threading.Thread(target=run, name='flask thread') flask_thread.start() def openWs(): t = threading.Thread(target=openws1, name='ws thread', args=(1, event, queue)) t1 = threading.Thread(target=openVideo1, name='video thread', args=(1, event, queue)) t.start() t1.start() def openws1(args, event, queue): openws2(args, event, queue).send(None) def openws2(args, event, queue): asyncio.run(VideoWs.start(args, event, queue)) def openVideo1(args, event, queue): openVideo(args, event, queue).send(None) def openVideo(args, event, queue): asyncio.run(camera.open_camera(args, event, queue)) if __name__ == '__main__': main()
l5769389/py-vue-ws-camera
router.py
router.py
py
1,400
python
en
code
0
github-code
6
27215468512
# # Dependency for album cover download # from urllib import request # # thumbnail_path = "https://i.ytimg.com/vi/uijHb5U1pD8/default.jpg" # album_cover = request.urlretrieve(thumbnail_path, "albumcover.jpg") import requests f = open('image.jpg', 'wb') f.write(requests.get('https://i.ytimg.com/vi/uijHb5U1pD8/default.jpg').content) f.close()
iostate/PythonProjects
DownloadMP4/open_image.py
open_image.py
py
343
python
en
code
0
github-code
6
23753938918
# -*- coding: utf-8 -*- ''' Created on 2019��3��5�� @author: Administrator ''' def is_palindrome(n): str_n = str(n) half_length = len(str_n)/2 for i in range(half_length): if str_n[i] != str_n[len(str_n)-1-i]: return False return True if __name__ == '__main__': output = filter(is_palindrome, range(1, 1000)) print('1~1000:', list(output)) if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]: print('测试成功!') else: print('测试失败!')
chptcleo/PythonPractice
com/list/palindrome/palindrome_num.py
palindrome_num.py
py
637
python
en
code
0
github-code
6
71897328507
import os import time import psutil def run_excel(): while True: os.system(f'start excel possible_duplicate_people.xlsx') while True: time.sleep(1) excel_running = False for process in psutil.process_iter(attrs=['pid', 'name']): if "EXCEL.EXE" in process.info['name']: excel_running = True break if not excel_running: break break print("Excel file has been closed. Now, running additional code.")
FrontendPony/XML-parser
open_excel.py
open_excel.py
py
550
python
en
code
0
github-code
6
72489782587
# This program computes hardcoded values with 4th-order Rutta-Kunge for testing. # It takes reference from the below link, but is modified to converge on a solution # and uses two differentials instead of one. # https://www.codesansar.com/numerical-methods/runge-kutta-fourth-order-rk4-python-program.htm import math def f(a,u,z): return z def g(a,u,z): #du/da return -u + (3/2)*pow(u,2) def rk4(a0,u0,z0,an,n): h = (an-a0)/n for i in range(n): k1 = h * (f(a0, u0, z0)) l1 = h * (g(a0, u0, z0)) k2 = h * (f((a0+h/2), (u0+k1/2), (z0+l1/2))) l2 = h * (g((a0+h/2), (u0+k1/2), (z0+l1/2))) k3 = h * (f((a0+h/2), (u0+k2/2), (z0+l2/2))) l3 = h * (g((a0+h/2), (u0+k2/2), (z0+l2/2))) k4 = h * (f((a0+h), (u0+k3), (z0+l3))) l4 = h * (g((a0+h), (u0+k3), (z0+l3))) k = (k1+2*k2+2*k3+k4)/6 l = (l1+2*l2+2*l3+l4)/6 un = u0 + k print('%.4f\t%.4f\t%.4f\t%.4f\t(%.4f)'% (a0,u0,z0,un,1/un) ) print('-------------------------') u0 = un a0 = a0+h z0 = z0 + l print('\nAt a=%.4f, u=%.4f, z=%.4f' %(an,un,z0)) print('1 / un = %.4f' % (1/un)) def rk4_step(a,u,z,h): k1 = h * (f(a, u, z)) l1 = h * (g(a, u, z)) k2 = h * (f((a+h/2), (u+k1/2), (z+l1/2))) l2 = h * (g((a+h/2), (u+k1/2), (z+l1/2))) k3 = h * (f((a+h/2), (u+k2/2), (z+l2/2))) l3 = h * (g((a+h/2), (u+k2/2), (z+l2/2))) k4 = h * (f((a+h), (u+k3), (z+l3))) l4 = h * (g((a+h), (u+k3), (z+l3))) k = (k1+2*k2+2*k3+k4)/6 l = (l1+2*l2+2*l3+l4)/6 return a+h,u+k,z+l def rk4_r0(a0,u0,z0,u_max,da_target): """ Use 4th-order Rutta-Kunge with an adaptive stepsize to find the u=1/r_0 for du/da = g(a, u, z). """ MIN_ITER = 30 MAX_ITER = 100 h = 0.5 al, ul = a0, u0 for i in range(MAX_ITER): #max iterations a0,u0,z0 = rk4_step(a0,u0,z0,h) print(f"{i: >2}: {a0:.3f} {u0:.5f} {z0:.5f}") if u0>u_max: return a0,-1,z0 if i>MIN_ITER and abs(al-a0)<da_target: return a0,u0,z0 if ul>u0: h = -h/2 al, ul = a0, u0 return a0,u0,z0 b = 3 print(f"Impact parameter (b) = {b}") a0,u0,z0 =0,0,1/b print(" ai ui zi") an,un,zn = rk4_r0(a0,u0,z0,10,0.00000001) print("done:") print(f"{an:.10f}\t{un:.10f}\t{zn:.3f}")
curz46/bholetrace
rk4_r0.py
rk4_r0.py
py
2,381
python
en
code
1
github-code
6
11740151374
''' Author: Ganesh Manal Example code: Check if text is palindrome ''' def is_palindrome(input_string): ''' check if input text is palindrome Input: text Output: boolean - True if text is palindrome ''' start_index, last_index = 0, len(input_string)-1 while start_index <= last_index: if input_string[start_index].lower() != input_string[last_index].lower(): return False start_index += 1 last_index -= 1 return True if __name__ == "__main__": text_inputs = [ "madam", "racecar", "level", "mom", "rotator", "wow", "No lemon, no melon" ] for text in text_inputs: RESULT = is_palindrome(text.replace(" ", "")) print(f"\ninput string: {text} \nis palindrome: {RESULT}")
GaneshManal/TestCodes
python/training/module-01/03-check_palindrome.py
03-check_palindrome.py
py
823
python
en
code
2
github-code
6
12161841216
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 26 14:10:45 2021 @author: manssandsjo """ import matplotlib.animation as ani import matplotlib.pyplot as plt import numpy as np import pandas as pd lstm_lw = pd.read_pickle('./pickle_graphs/totValueLSTM_LW.pkl') #.to_numpy() lstm_scm = pd.read_pickle('./pickle_graphs/totValueLSTM_SCM.pkl') #.to_numpy() sma_scm = pd.read_pickle('./pickle_graphs/totValueSMA_SCM.pkl') #.to_numpy() df = pd.DataFrame(columns=['SMA_SCM','LSTM_LW','LSTM_SCM']) df['LSTM_LW'] = lstm_lw.iloc[:,0] df['LSTM_SCM'] = lstm_scm.iloc[:,0] df['SMA_SCM'] = sma_scm.iloc[:,0] color = ['red', 'green', 'blue'] fig = plt.figure() plt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screen plt.ylabel('Total value of portfolio, SEK') plt.xlabel('Year') def buildmebarchart(i=int): plt.legend(df.columns) p = plt.plot(df[:i].index, df[:i].values) #note it only returns the dataset, up to the point i for i in range(0,3): p[i].set_color(color[i]) #set the colour of each curve anim = ani.FuncAnimation(fig, buildmebarchart, interval = 100) from matplotlib import rc # equivalent to rcParams['animation.html'] = 'html5' rc('animation', html='html5') anim
MansSandsjo/StockBot
src/Data/testGraphs.py
testGraphs.py
py
1,267
python
en
code
0
github-code
6
10012294494
#!/usr/bin/python # coding=utf-8 import paramiko import xlrd import time import os import handle_file server_info_list = handle_file.read_excel_xlsx('documents/server_info.xlsx', 'Sheet1') Host = server_info_list[0][0] Port = server_info_list[0][1] Username = server_info_list[0][2] Password = server_info_list[0][3] def ssh_exec_cmd(): '''ssh远程登录:windows客户端连接Linux服务器,并输入指令''' ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #连接Linux服务器 #ssh.connect('10.20.24.89', 22, 'root', 'Cfcs2@07380') ssh.connect(Host, Port, Username, Password) #执行Linux相关命令 #不管环境上是否存在kafka进程,都kill -9 kafka进程 stdin, stdout, stderr = ssh.exec_command("ps -ef | grep kafka | grep -v grep | awk '{print $2}' | xargs kill -9") #不管环境上是否存在zookeeper进程,都kill -9 zookeeper进程 stdin, stdout, stderr = ssh.exec_command("ps -ef | grep zookeeper | grep -v grep | awk '{print $2}' | xargs kill -9") #不管环境上是否存在redis进程,都kill -9 redis进程 stdin, stdout, stderr = ssh.exec_command("ps -ef | grep redis | grep -v grep | awk '{print $2}' | xargs kill -9") #不管环境上是否存在nginx进程,都kill -9 nginx进程 stdin, stdout, stderr = ssh.exec_command("ps -ef | grep nginx | grep -v grep | awk '{print $2}' | xargs kill -9") """ 解压zookeeper安装包,并启动zookeeper服务 """ stdin, stdout, stderr = ssh.exec_command("cd /usr/local && rm -rf zookeeper " ) stdin, stdout, stderr = ssh.exec_command("cd /usr/local && unzip -o zookeeper-3.4.12.zip -d /usr/local ") time.sleep(3) stdin, stdout, stderr = ssh.exec_command("cd /usr/local && mv zookeeper-3.4.12 zookeeper && chmod -R 777 zookeeper ") stdin, stdout, stderr = ssh.exec_command("source .bash_profile; sh /usr/local/zookeeper/bin/zkServer.sh start ") time.sleep(3) """ 解压kafka安装包,并修改kafka配置文件,然后启动kafka服务 """ stdin, stdout, stderr = ssh.exec_command("cd /usr/local && rm -rf kafka ") stdin, stdout, stderr = ssh.exec_command("cd /usr/local && unzip -o kafka_2.11-0.11.0.3.zip -d /usr/local") time.sleep(3) stdin, stdout, stderr = ssh.exec_command("cd /usr/local && mv kafka_2.11-0.11.0.3 kafka && chmod -R 777 kafka") #修改kafka配置文件 # stdin, stdout, stderr = ssh.exec_command("cd /usr/local/kafka/config; sed -i 's#zookeeper.connect=.*#zookeeper.connect=10.20.158.33:2181#g' server.properties") # stdin, stdout, stderr = ssh.exec_command("cd /usr/local/kafka/config; sed -i 's#listeners=.*#listeners=PLAINTEXT://10.20.158.33:9092#g' server.properties") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/kafka/config; sed -i " + "'" + "s#zookeeper.connect=.*#zookeeper.connect=" + Host + ":2181#g" + "'" + " server.properties") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/kafka/config; sed -i " + "'" + "s#listeners=.*#listeners=PLAINTEXT://" + Host + ":9092#g" + "'" + " server.properties") #启动kafka服务 stdin, stdout, stderr = ssh.exec_command("source .bash_profile; sh /usr/local/kafka/bin/kafka-server-start.sh -daemon /usr/local/kafka/config/server.properties") time.sleep(3) """ 解压redis安装包,并修改redis.conf配置文件,然后启动redis服务 """ stdin, stdout, stderr = ssh.exec_command("cd /usr/local && rm -rf redis ") print("删除redis文件夹") stdin, stdout, stderr = ssh.exec_command("cd /usr/local && tar xzvf redis-4.0.14.tar.gz -C /usr/local" ,get_pty=True) time.sleep(3) print("成功解压redis包") stdin, stdout, stderr = ssh.exec_command("cd /usr/local && mv redis-4.0.14 redis && chmod -R 777 redis") print("redis文件夹赋予权限777") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/redis && make > log_make.log", get_pty=True) time.sleep(100) print("make命令执行结束") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/redis && make install PREFIX=/usr/local/redis > log_makeinstall.log", get_pty=True) time.sleep(100) print("make install命令执行结束") # 修改redis.conf配置文件 stdin, stdout, stderr = ssh.exec_command("cd /usr/local/redis && sed -i " + "'" + "s#bind 127.0.0.1#bind " +'"' + Host +'"' + "#g' redis.conf", get_pty=True) time.sleep(5) stdin, stdout, stderr = ssh.exec_command("cd /usr/local/redis && sed -i 's/# requirepass .*/requirepass taredis/g' redis.conf", get_pty=True) time.sleep(5) print("修改redis.conf文件成功") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/redis/bin ; ./redis-server ../redis.conf >> redis.log 2>&1 &") time.sleep(5) print("启动redis服务成功") """ 解压nginx安装包 """ stdin, stdout, stderr = ssh.exec_command("cd /usr/local && rm -rf nginx") stdin, stdout, stderr = ssh.exec_command("cd /usr/local && tar xzvf nginx-1.12.2.tar.gz -C /usr/local", get_pty=True) time.sleep(3) stdin, stdout, stderr = ssh.exec_command("cd /usr/local && mv nginx-1.12.2 nginx && chmod -R 777 nginx") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/nginx; ./configure --prefix=/usr/local/nginx --conf-path=/usr/local/nginx/nginx.conf > log_configure.log", get_pty=True) time.sleep(3) err = stderr.readlines() #out = stdout.readlines() print("./configure命令输出结果打印开始:") if (err): print('error:') print(err) # else: # print('out:') # print(out) print("./configure命令输出结果打印结束!") print("ending") stdin, stdout, stderr = ssh.exec_command("cd /usr/local/nginx; make > log_make.log", get_pty=True) time.sleep(30) stdin, stdout, stderr = ssh.exec_command("cd /usr/local/nginx; make install > log_make_install.log", get_pty=True) time.sleep(30) #将环境变量/etc/profile中删除包含的NGINX_HOME变量的行 stdin, stdout, stderr = ssh.exec_command("sed -i '/export NGINX_HOME=/d' /etc/profile") #将环境变量/etc/profile中使用到$NGINX_HOME变量的地方删除,主要目的是删除;$NGINX_HOME/sbin字符串 stdin, stdout, stderr = ssh.exec_command("sed -i 's#;$NGINX_HOME/sbin##g' /etc/profile") #在环境变量/etc/profile中添加NGINX_HOME变量 stdin, stdout, stderr = ssh.exec_command("sed -i '/export PATH=/i\export NGINX_HOME=/usr/local/nginx' /etc/profile") #在环境变量PATH路径末尾添加;$NGINX_HOME/sbin内容 stdin, stdout, stderr = ssh.exec_command("sed -i 's#export PATH=.*#&;$NGINX_HOME/sbin#g' /etc/profile") #本地上传一份nginx.conf模板,并修改里面的IP信息 ############################### sftp_upload_file() ############################### #修改nginx.conf配置文件 stdin, stdout, stderr = ssh.exec_command("cd /usr/local/nginx/conf; sed -i " + "'" + "s#server 10.20.24.89#server " + Host + "#g' nginx.conf", get_pty=True) time.sleep(5) stdin, stdout, stderr = ssh.exec_command("source /etc/profile; /usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx.conf", get_pty=True) time.sleep(5) err = stderr.readlines() #out = stdout.readlines() if (err): print('error:') print(err) # else: # print('out:') # print(out) print("ending") ssh.close() def sftp_upload_file(): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #ssh.connect(Host, Port, Username, Password) #连接Linux服务器 ssh.connect(Host, Port, Username, Password) transport = paramiko.Transport((Host, Port)) transport.banner_timeout = 10 transport.connect(username=Username, password=Password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put('./documents/nginx.conf', '/usr/local/nginx/conf/nginx.conf') print("上传成功") except Exception as e: print(e) transport.close() if __name__ == '__main__': ssh_exec_cmd()
July666/python_workspace_component
main.py
main.py
py
8,134
python
en
code
0
github-code
6
41675461400
# 전역 임무 """ 1. 기지에 진입 2. 숫자가 작은 순서대로 정렬한다. 3. -1의 숫자를 저장해놓고 제일 약한 몬스터부터 조진다. 4. 몬스터를 죽일 파워가 부족하다면 -1을 하나 소비한다. 5. 파워가 부족하고 소비할 -1이 없다면 임무 달성 실패 6. 끝까지 올라간다면 기지 파괴 성공 (나가기 전에 가진 아이템을 모두 소진한다) """ import sys input = sys.stdin.readline N, M, power = map(int, input().split()) bases = [list(map(int, input().split())) for _ in range(N)] for base in bases: base.sort() item_cnt = 0 start_i = 0 for i in range(len(base)): if base[i] == -1: item_cnt += 1 else: start_i = i break i = start_i while i < len(base): if power >= base[i]: power += base[i] i += 1 else: if item_cnt > 0: power *= 2 item_cnt -= 1 else: print(0) exit(0) for _ in range(item_cnt): power *= 2 print(1)
jisupark123/Python-Coding-Test
contest/제2회 보라매컵 본선/30205.py
30205.py
py
1,124
python
ko
code
1
github-code
6
3668384154
#!/usr/local/bin/python3 import boto3 networkAclId = 'acl-26cc1243' ignoreEntries = [100, 32767] session = boto3.Session() client = session.client('ec2') acls = client.describe_network_acls() def getMaxOfRuleNumbers(): result = [0] for acl in acls['NetworkAcls']: if acl['NetworkAclId'] == networkAclId: for entries in acl['Entries']: if entries['RuleNumber'] not in ignoreEntries: if entries['RuleAction'] == 'deny': result.append(entries['RuleNumber']) return max(result) def existEntry(cidrBlock): for acl in acls['NetworkAcls']: if acl['NetworkAclId'] == networkAclId: for entries in acl['Entries']: if entries['RuleNumber'] not in ignoreEntries: if entries['RuleAction'] == 'deny': if cidrBlock == entries['CidrBlock']: return True return False def createNetworkAclIngressEntry(ruleNumber, cidrBlock): params = {} params["NetworkAclId"] = networkAclId params["RuleNumber"] = ruleNumber params["Protocol"] = '-1' params["CidrBlock"] = cidrBlock params["Egress"] = False params["RuleAction"] = "DENY" client.create_network_acl_entry(**params) def blockIp(ip): ip = ip + '/32' if not existEntry(ip): maxId = getMaxOfRuleNumbers() maxId = maxId + 1 if maxId not in ignoreEntries: createNetworkAclIngressEntry(maxId, ip) print("BlockIP: %s" % ip) blockIp('174.129.214.250')
debeando/MyScripts
aws/aws_network_acl_block_ip.py
aws_network_acl_block_ip.py
py
1,606
python
en
code
1
github-code
6
71750331067
from flask import Flask, render_template, request, session, redirect, url_for from flask_session import Session import sqlite3 from ast import literal_eval import datetime app = Flask(__name__) # Set the secret key to some random bytes. Keep this really secret! app.secret_key = b'_5#y2L"F4Q8z\n\xec]/' @app.route('/') def index(): if session.get("user_id") is None: session["user_id"]=[] #Get settings conn = sqlite3.connect('my_database.db') settings = conn.execute("select start,stop from settings order by rowid DESC limit 1").fetchone() try: start = literal_eval(settings[0]) stop = literal_eval(settings[1]) start = datetime.time(start[0],start[1],start[2]) stop = datetime.time(stop[0],stop[1],stop[2]) recent_settings = (str(start),str(stop)) conn.close() print(recent_settings) return render_template('index.html', username=session["user_id"], settings=recent_settings) except: return render_template('index.html', username=session["user_id"]) @app.route('/login', methods=["POST", "GET"]) def login(): if session.get("user_id") is None: session["user_id"]=[] if request.method == 'POST': conn = sqlite3.connect('my_database.db') username = request.form.get('username') # access the data inside password = request.form.get('password') if conn.execute("SELECT * FROM users WHERE user=?", (username,)).fetchone() is None: return render_template("login.html", message="Username not found.", username=session["user_id"]) else: # Username exists, check pw user = conn.execute("SELECT * FROM users where user=?", (username,)).fetchone() print(user, user[0], user[1]) if user[1] == password: session["user_id"] = user[0] print(session["user_id"],'test') return render_template("login.html", message=f"Logged in as {user[0]}.", username=session["user_id"]) else: return render_template("login.html", message="Incorrect password, try again", username=session["user_id"]) else: return render_template("login.html", username=session["user_id"]) @app.route('/update', methods=["POST", "GET"]) def update_settings(): if session.get("user_id") is None: session["user_id"]=[] #Get current settings conn = sqlite3.connect('my_database.db') message = '' if request.method == 'POST': start_time = request.form.get('start_time').split(':') # access the data inside stop_time = request.form.get('stop_time').split(':') print(start_time) try: start_time = [int(i) for i in start_time] stop_time = [int(i) for i in stop_time] conn.execute("insert into settings(start, stop) values (?,?)", (str(start_time), str(stop_time))) conn.commit() message="Updated successfully" times = (start_time,stop_time) except: message = "Failed to split into datetime format, make sure to use format HH:MM:SS" settings = conn.execute("select start,stop from settings order by rowid DESC limit 1").fetchone() try: start = literal_eval(settings[0]) stop = literal_eval(settings[1]) start = datetime.time(start[0],start[1],start[2]) stop = datetime.time(stop[0],stop[1],stop[2]) current_settings = (str(start),str(stop)) print(current_settings) conn.close() return render_template("update_settings.html", username=session["user_id"], settings=current_settings, message=message) except: return render_template("update_settings.html", username=session["user_id"], message=message) @app.route('/logout') def logout(): # remove the username from the session if it's there session.pop('user_id', None) return redirect(url_for('index')) if __name__ == '__main__': app.run(host='127.0.0.1', port=8000, debug=True)
mason-landry/lighttimer
lighttimer_app/app.py
app.py
py
4,048
python
en
code
0
github-code
6
73307642428
import pandas as pd import psycopg2 as ps import datetime as dt from datetime import datetime from dateutil import tz from config import POSTGRES_DBNAME, POSTGRES_PASSWORD, POSTGRES_USERNAME, POSTGRES_PORT, POSTGRES_ADDRESS, API_KEY """ Functions for Flask App """ # dict with available exchange/trading pair for trade predictions exchanges={'bitfinex': ['btc_usd', 'eth_usd', 'ltc_usd'], 'coinbase_pro': ['btc_usd', 'eth_usd', 'ltc_usd'], 'hitbtc': ['btc_usdt', 'eth_usdt', 'ltc_usdt']} # Insert DB Credentials - Don't push to GH credentials = {'POSTGRES_ADDRESS': POSTGRES_ADDRESS, 'POSTGRES_PORT': POSTGRES_PORT, 'POSTGRES_USERNAME': POSTGRES_USERNAME, 'POSTGRES_PASSWORD': POSTGRES_PASSWORD, 'POSTGRES_DBNAME': POSTGRES_DBNAME, 'API_KEY': API_KEY } # dictionary used to rename column values with correct time period model_periods = {'bitfinex_ltc_usd': '1440T', 'bitfinex_btc_usd':'1200T', 'bitfinex_eth_usd': '1200T', 'hitbtc_ltc_usdt': '1440T', 'hitbtc_btc_usdt': '360T', 'hitbtc_eth_usdt': '1440T', 'coinbase_pro_btc_usd': '960T', 'coinbase_pro_eth_usd': '960T', 'coinbase_pro_ltc_usd': '960T'} def create_conn(credentials): """ Function that creates a connection with DB """ # creating connection conn = ps.connect(host=credentials['POSTGRES_ADDRESS'], database=credentials['POSTGRES_DBNAME'], user=credentials['POSTGRES_USERNAME'], password=credentials['POSTGRES_PASSWORD'], port=credentials['POSTGRES_PORT']) # creating cursor cur = conn.cursor() return conn, cur def retrieve_one_trp(exchange, trading_pair, model_periods): """ Retrieve the last trade recommender prediction from DB """ # to retrieve period of trp model period = model_periods[exchange + '_' + trading_pair] # create connection and cursor conn, cur = create_conn(credentials) # Change limit number to whatever amount of rows you want to retrieve cur.execute("""SELECT * FROM prediction.trp WHERE exchange = '{exchange}' AND trading_pair = '{trading_pair}' ORDER by p_time desc limit 1;""".format(trading_pair=trading_pair, exchange=exchange)) result = cur.fetchall() # creates dataframe from results and rename columns result = pd.DataFrame(result) result = result.rename( columns={0: 'p_time', 1: 'c_time', 2: 'exchange', 3: 'trading_pair', 4: 'prediction'}) # get the one value in p_time pt = result['p_time'].values # get UTC timezone from_zone = tz.gettz('UTC') # get PST timezone to_zone = tz.gettz('US/Pacific') utc = datetime.strptime(str(pt[0]), '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) pcf = utc.astimezone(to_zone) # returning new timezone value to the df result['p_time'] = str(pcf)[:-6] # creating df to dictionary result = result.to_dict() # add the new period key and value to dictionary result.update({'period': period}) # close connection conn.close() return result # This is for retrieving arbitrage predictions from DB def retrieve_one_arb(exchange_1, exchange_2, trading_pair): ''' Retrieve the last arbitrage prediction from DB ''' # create connection and cursor conn, cur = create_conn(credentials) try: cur.execute("""SELECT * FROM prediction.arp WHERE exchange_1 = '{exchange_2}' AND exchange_2 = '{exchange_1}' AND trading_pair = '{trading_pair}' OR exchange_1 = '{exchange_1}' AND exchange_2 = '{exchange_2}' AND trading_pair = '{trading_pair}' ORDER by p_time desc limit 1;""".format(trading_pair=trading_pair, exchange_2=exchange_2, exchange_1=exchange_1)) result = cur.fetchall() # creates dataframe from results and rename columns result = pd.DataFrame(result) result = result.rename( columns={0: 'p_time', 1: 'c_time', 2: 'exchange_1', 3: 'exchange_2', 4: 'trading_pair', 5: 'prediction'}) # get the one value in p_time pt = result['p_time'].values # get UTC time zone from_zone = tz.gettz('UTC') # get PST time zone to_zone = tz.gettz('US/Pacific') utc = datetime.strptime(str(pt[0]), '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) pcf = utc.astimezone(to_zone) # returning new timezone value to the df result['p_time'] = str(pcf)[:-6] # creating df to dictionary result = result.to_dict() # closing connection conn.close() return result except: pass def retrieve_tr_pred(): """ Retrieves trade recommender predictions from DB and returns result in JSON format """ # create connection and cursor conn, cur = create_conn(credentials) # Gets last 20 prediction results from trp table cur.execute("""SELECT * FROM prediction.trp ORDER by p_time desc limit 500;""") result = cur.fetchall() # creates dataframe from results and rename columns result = pd.DataFrame(result) result = result.rename(columns={0: 'p_time', 1: 'c_time', 2: 'exchange', 3: 'trading_pair', 4: 'prediction'}) # filter predictions to get one for each combination result = result.drop_duplicates(subset=['exchange','trading_pair']) # creating new column with exchange_trading_pair name combined result['period'] = result['exchange'] +'_'+ result['trading_pair'] # use the values in period to rename them with the dict 'model_periods' values result['period'] = result['period'].apply(lambda x: model_periods[x]) # drop unnecessary columns result.drop(columns=['c_time'], inplace=True) # Creating List of prediction time values pt = result['p_time'].values # getting UTC timezone from_zone = tz.gettz('UTC') # getting PST timezone to_zone = tz.gettz('US/Pacific') nt = [] # Looping thru 'p_time' values to change time to PST for p in pt: utc = datetime.strptime(str(p), '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) pcf = utc.astimezone(to_zone) # append new PST time to nt list nt.append(str(pcf)[:-6] + ' PST') # Give new PST time value to 'p_time" column result['p_time'] = nt # Create json output result = (result.groupby(['exchange', 'trading_pair'], as_index=True) .apply(lambda x: x[['p_time', 'period', 'prediction']].to_dict('r')).to_dict()) # close connection conn.close() return result def retrieve_arb_pred(): """ Retrieves arbitrage predictions from DB and returns result in JSON format """ # create connection and cursor conn, cur = create_conn(credentials) # Gets last 500 prediction results from arp table cur.execute("""SELECT * FROM prediction.arp ORDER by p_time desc limit 500;""") result = cur.fetchall() # creates dataframe from results and rename columns result = pd.DataFrame(result) result = result.rename( columns={0: 'p_time', 1: 'c_time', 2: 'exchange_1', 3: 'exchange_2', 4: 'trading_pair', 5: 'prediction'}) # result = result.drop(columns='c_time') result = result.drop_duplicates(subset=['exchange_1', 'exchange_2', 'trading_pair']) # converts p_time column to datetime result['datetime'] = pd.to_datetime(result['p_time']) # create time threshold to 15 minutes, to only return results in the last 15 min # filters result to the last 15 min t = dt.datetime.now() - dt.timedelta(minutes=15) result = result[result['datetime'] > t] # drop unnecessary columns result.drop(columns=['datetime', 'c_time'], inplace=True) # creating a list of prediction time values pt = result['p_time'].values # Getting UTC timezone from_zone = tz.gettz('UTC') # Getting PST timezone to_zone = tz.gettz('US/Pacific') nt = [] # Looping thru 'p_time' values to change time to PST for p in pt: utc = datetime.strptime(str(p), '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) pcf = utc.astimezone(to_zone) # appends new time to nt list nt.append(str(pcf)[:-6] + ' PST') # give new PST time value to 'p_time" column result['p_time'] = nt # Create json output result = (result.groupby(['exchange_1', 'exchange_2', 'trading_pair'], as_index=True) .apply(lambda x: x[['p_time', 'prediction']].to_dict('r')).to_dict()) # close connection to DB conn.close() return result
dbreddyAI/cryptolyticapp
api_source_code/Flask_App/utils.py
utils.py
py
9,012
python
en
code
2
github-code
6
20955203674
from selenium import webdriver from selenium.webdriver.common.by import By import time # from selenium.webdriver.common.keys import Keys # from selenium.webdriver.support import expected_conditions as EC # from selenium.webdriver.support.ui import WebDriverWait def Scrape(today): # setup chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--mute-audio") driver = webdriver.Chrome(options=chrome_options) driver.get(f"https://nytcrosswordanswers.org/nyt-crossword-answers-{today}/") print(driver.title) time.sleep(3) uls = driver.find_elements(By.TAG_NAME, "ul") across = uls[1].find_elements(By.TAG_NAME, "li") down = uls[2].find_elements(By.TAG_NAME, "li") across_clues = [] across_answers = [] for group in across: clue = group.find_element(By.TAG_NAME, "a").get_attribute('innerText') answer = group.find_element(By.TAG_NAME, "span").get_attribute('innerText') across_clues.append(clue) across_answers.append(answer) down_clues = [] down_answers = [] for group in down: clue = group.find_element(By.TAG_NAME, "a").get_attribute('innerText') answer = group.find_element(By.TAG_NAME, "span").get_attribute('innerText') down_clues.append(clue) down_answers.append(answer) driver.quit() return across_clues, across_answers, down_clues, down_answers
colin-lankau/Crossword-Practice-Tool
Scrape.py
Scrape.py
py
1,416
python
en
code
0
github-code
6
21700191213
# Reference : https://textgears.com/api/ import requests text = input() text = text.replace(' ','+') url = "https://api.textgears.com/check.php?text=" + text + "&key=DEMO_KEY" resp = requests.get(url) resp = resp.json() if resp['result']: for err in resp['errors']: print("Error at position : ",err['offset']+1) print("Error : ",err['bad']) print("Possible corrections are : ") for corr in err['better']: print(corr) print() else: print(resp['description'])
kapoor-rakshit/pyfiddle
grammar.py
grammar.py
py
475
python
en
code
0
github-code
6
13638156261
#!/usr/bin/env python import RPi.GPIO as GPIO import time # Pin Definitions output_pins = [17 , 22, 6, 19] # BCM pin def main(): # Pin Setup: # Board pin-numbering scheme GPIO.setmode(GPIO.BCM) # set pin as an output pin with optional initial state of HIGH for p in output_pins: GPIO.setup(p, GPIO.OUT, initial=GPIO.HIGH) print("Starting demo now! Press CTRL+C to exit") curr_value = GPIO.HIGH try: while True: time.sleep(1) # Toggle the output every second for p in output_pins: GPIO.output(p, curr_value) print("Outputting {} to pin {}".format(curr_value, p)) curr_value ^= GPIO.HIGH finally: GPIO.cleanup() if __name__ == '__main__': main()
p513817/Custom_Coral_Teachable_Machine
project_teachable_v3/check_leds.py
check_leds.py
py
806
python
en
code
1
github-code
6
3037264375
import os import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt import seaborn as sns; sns.set() from sklearn.manifold import TSNE from sklearn.manifold import Isomap from sklearn.decomposition import PCA from sklearn.cluster import KMeans from matplotlib import offsetbox #directory = './avatars' directory = '/home/kayla/pylearn/manifold/cupcakes' pics = [] data = pd.DataFrame() count = 0 for filename in os.listdir(directory): f = os.path.join(directory, filename) # checking if it is a file if os.path.isfile(f): # creating a object pics.append(Image.open(f)) pics[count] = pics[count].resize((100,100)) image = pd.Series(np.asarray(pics[count]).ravel()) data = pd.concat([data,image.to_frame().T],ignore_index=True) count += 1 dims = np.asarray(pics[0]).shape data = data.fillna(data.mean()) model = Isomap(n_components=10) proj = model.fit_transform(data) kmeans = KMeans(n_clusters=10) kmeans.fit(proj) clusters = kmeans.predict(proj) data['cluster'] = clusters #avg_data = data.groupby(by=['cluster']).sample().drop(['cluster'], \ # axis=1) avg_data = data.groupby(by=['cluster']).median() avg_image = [] for i in avg_data.index.astype('int'): avg_image.append(avg_data.loc[i].to_numpy().reshape(dims).astype('int')) fig, ax = plt.subplots(2,5,figsize=(8,3)) for axi, img in zip(ax.flat, avg_image): axi.set(xticks=[],yticks=[]) axi.imshow(img,interpolation='nearest') plt.show()
estimatrixPipiatrix/decision-scientist
pythonCode/kmeans/kmeans_avatars.py
kmeans_avatars.py
py
1,534
python
en
code
0
github-code
6
72528403069
import os, csv from random import sample import nltk as nlp import pandas as pd import matplotlib.pyplot as plt sampleSize = 200 sampleTimes = 50 TTR = [] years =[] # Iterate through word count/list file with open('wordCountsNLTK.csv', 'r', encoding="ISO-8859-1") as csvFile: reader = csv.reader(csvFile) next(reader) for row in reader: tokens = nlp.word_tokenize(row[2]) TTRSampled =[] print(row[0] + " " + row[1] + " " + "Population: " + str(len(tokens))) if len(tokens) > sampleSize: for i in range(sampleTimes): tokensSample = sample(tokens,sampleSize) types = nlp.Counter(tokensSample) TTRSampled.append(len(types)/len(tokensSample)*100) years.append(row[0]) TTR.append(sum(TTRSampled)/sampleTimes) else: pass # Store values into PD dataframe and plot average word count values dfTTR = pd.DataFrame({"Year": years, "TTR": TTR}) print(dfTTR) dfTTR.groupby(["Year"]).mean().plot() plt.xlabel('Year', fontsize=15) plt.ylabel('TTR', fontsize=15) plt.ylim([30, 90]) plt.title("Sampled Type Token Ratio per year") plt.show()
stkeller/Replication-Thesis
Code/LexicalTTRSampling.py
LexicalTTRSampling.py
py
1,075
python
en
code
0
github-code
6
23559591731
import numpy as np import matplotlib.pyplot as plt N = 1000 #Nombre de tirages X = np.random.rand(N) #Tirages independants de la loi uniforme sur [0,1] ##################################### # But: calculer la suite des moyennes # empiriques pour n de 1 a N ##################################### ## Calcul de la moyenne empirique: ## avec une boucle ##################################### sumEmp = X[0] moyenneEmp = X[0] * np.ones(N) for i in range(1,N): sumEmp = sumEmp + X[i] moyenneEmp[i] = sumEmp / (i+1) ###################################### ### Calcul de la moyenne empirique: ### avec des fonctions numpy ###################################### integers1toN = np.arange(1,N+1) #Un array contenant les entiers de 1 a N moyenneEmp = np.cumsum(X) / integers1toN ###################################### ## Affichage ###################################### plt.plot(integers1toN, moyenneEmp, color="b", label="Moyenne empirique") plt.axhline(0.5, color="r", label="Esperance") plt.legend(loc="best") plt.show()
FanJiang718/Courses-Exercises
MAP556/TP1/TP1 Python solutions-20181211/MAP556_PC1_Exo1_1_sol.py
MAP556_PC1_Exo1_1_sol.py
py
1,073
python
fr
code
0
github-code
6
27281672101
import math import time import sys import numpy as np import operator import random import os from kll import KLL random.seed(30) #def get_approx_res(value, i): def get_approx_res(value, true_median, true_avg, true_tail): #global all_median #global all_avg #global all_tail #Using sketch to store digests kll = KLL(sketch_size) for v in value: kll.update(v) min_diff_50 = 1000 min_diff_99 = 1000 pint_median = 0 pint_tail = 0 for (ii, quantile) in kll.cdf(): diff = quantile - 0.5 if diff < 0: diff = diff * -1 if diff<min_diff_50: min_diff_50 = diff pint_median = ii diff = quantile - 0.99 if diff < 0: diff = diff * -1 if diff<min_diff_99: min_diff_99 = diff pint_tail = ii pint_avg=sum(value)/float(len(value)) #if all_median[i]!=0: # error_median=(all_median[i]-pint_median)/float(all_median[i])*100 #if all_median[i]==0: # error_median=0 #error_avg=(all_avg[i]-pint_avg)/float(all_avg[i])*100 #error_tail=(all_tail[i]-pint_tail)/float(all_tail[i])*100 if true_median != 0: error_median = (true_median-pint_median)/float(true_median)*100 else: error_median = 0 if true_avg != 0: error_avg = (true_avg-pint_avg)/float(true_avg)*100 else: error_avg = 0 if true_tail != 0: error_tail = (true_tail-pint_tail)/float(true_tail)*100 else: error_tail = 0 if error_median<0: error_median=error_median*-1 if error_avg<0: error_avg=error_avg*-1 if error_tail<0: error_tail=error_tail*-1 return error_median, error_avg, error_tail def get_final_res(packet_results_res): res_map = {} for packets in packets_range: res_map[packets] = {} for ap in all_approx: res_map[packets][ap] = 0 for i in range(5): for packets in packets_range: for ap in all_approx: if ap not in packet_results_res[i][packets]: continue res = packet_results_res[i][packets][ap] res_map[packets][ap] += (round(sum(res)/float(len(res)),2)) # Average of independently repeating experiments #res_map[packets][ap] += np.median(res) # Median of independently repeating experments for packets in packets_range: for ap in all_approx: res_map[packets][ap] = round(res_map[packets][ap]/5.0, 2) # Average relative error return res_map # Constant variables dint_threshold = 1 #dint_threshold = 5 #dint_threshold = 10 sketch_size=100 #packets_range=list(range(100,1100,100)) # Use 5-hop Fat Tree Topology with one flow packets_range=[100, 500, 1000, 5000, 10000] all_approx=set() # Approximate coefficient approx_map={} # Approximate coefficiet -> bit number for packets in packets_range: for bits in [4,8]: if bits==4: ap=0.42 if bits==8: ap=0.022 all_approx.add(ap) approx_map[ap]=bits # dev:packetnum:ap:approximate_values approx={} for i in range(5): approx[i] = {} for packets in packets_range: approx[i][packets]={} for ap in all_approx: approx[i][packets][ap] = [] # dev:pktnum:ap:relative_errors packet_results_avg={} packet_results_median={} packet_results_tail={} for i in range(5): packet_results_avg[i] = {} packet_results_median[i] = {} packet_results_tail[i] = {} # dev:latencies all_data = {} for i in range(5): all_data[i] = [] f=open("experiments/delays/processed_data","r") for line in f: digests=line.strip().split(" ") assert(len(digests)>0 and len(digests)<=5) iscontinue = False for digest in digests: if int(digest) < 0: iscontinue = True break if iscontinue: continue for i in range(len(digests)): all_data[i].append(int(digests[i])) f.close() all_median, all_avg, all_tail = [], [], [] for i in range(5): all_data[i] = sorted(all_data[i]) all_median.append(np.median(all_data[i])) all_avg.append(sum(all_data[i])/float(len(all_data[i]))) all_tail.append(np.percentile(all_data[i],99)) for packets in packets_range: for i in range(5): if packets not in packet_results_avg[i]: packet_results_avg[i][packets]={} if packets not in packet_results_median[i]: packet_results_median[i][packets]={} if packets not in packet_results_tail[i]: packet_results_tail[i][packets]={} truth, pint, dint_prev1, dint_prev2 = {}, {}, {}, {} for i in range(5): truth[i] = [] #pint[i] = [] dint_prev1[i], dint_prev2[i] = 0, 0 f=open("experiments/delays/processed_data","r") for line in f: digests=line.strip().split(" ") assert(len(digests)>0 and len(digests)<=5) iscontinue = False for digest in digests: if int(digest) < 0: iscontinue = True break if iscontinue: continue for i in range(len(digests)): digest = int(digests[i]) truth[i].append(digest) if (random.randint(1, 2) == 1) or (i==len(digests)-1): # Sampling by global hashing for PINT # PINT #pint[i].append(digest) for ap in all_approx: # Value approximation if digest==0: approx[i][packets][ap].append(0) continue range_1=int(math.log(digest, (1+ap)**2)) range_2=int(math.log(digest, (1+ap)**2)+0.5) approx_value_1=(1+ap)**(2*range_1) approx_value_2=(1+ap)**(2*range_2) diff_1=digest-approx_value_1 if diff_1<0: diff_1=-1*diff_1 diff_2=digest-approx_value_2 if diff_2<0: diff_2=-1*diff_2 if diff_1<=diff_2: approx[i][packets][ap].append(int(approx_value_1)) if diff_1>diff_2: approx[i][packets][ap].append(int(approx_value_2)) #if len(pint[i])==packets: # E.g., Collect every 100 packets for dev i if len(truth[0])==packets: # E.g., Collect every 100 INT events for i in range(len(digests)): true_median=np.median(truth[i]) true_avg=sum(truth[i])/float(len(truth[i])) true_tail=np.percentile(truth[i],99) for ap in all_approx: value=sorted(approx[i][packets][ap]) if len(value)<=1: continue ##error_median, error_avg, error_tail = get_approx_res(value, i) error_median, error_avg, error_tail = get_approx_res(value, true_median, true_avg, true_tail) #error_median, error_avg, error_tail = get_approx_res(value, all_median[i], all_avg[i], all_tail[i]) if ap not in packet_results_avg[i][packets]: packet_results_avg[i][packets][ap]=[] packet_results_avg[i][packets][ap].append(error_avg) if ap not in packet_results_median[i][packets]: packet_results_median[i][packets][ap]=[] packet_results_median[i][packets][ap].append(error_median) if ap not in packet_results_tail[i][packets]: packet_results_tail[i][packets][ap]=[] packet_results_tail[i][packets][ap].append(error_tail) approx[i][packets]={} for ap in all_approx: approx[i][packets][ap]=[] #pint[i]=[] truth[i] = [] f.close() avg_map = get_final_res(packet_results_avg) os.system("mkdir -p final_results/delays_PINT/") fw=open("final_results/delays_PINT/avg_delay","w") fw.write("# of packets,PINT4,value,PINT8,value\n") for k,v in avg_map.items(): packets = k write_string=str(packets) for ap,res in v.items(): write_string=write_string+","+"PINT"+str(approx_map[ap])+","+str(res) fw.write(write_string+"\n") fw.close() median_map = get_final_res(packet_results_median) fw=open("final_results/delays_PINT/median_delay","w") fw.write("# of packets,PINT4,value,PINT8,value\n") for k,v in median_map.items(): packets=k write_string=str(packets) for ap,res in v.items(): write_string=write_string+","+"PINT"+str(approx_map[ap])+","+str(res) fw.write(write_string+"\n") fw.close() tail_map = get_final_res(packet_results_tail) #packet_results_tail=sorted(packet_results_tail.items(),key=operator.itemgetter(0)) fw=open("final_results/delays_PINT/tail_delay","w") fw.write("# of packets,PINT4,value,PINT8,value\n") for k,v in tail_map.items(): packets=k write_string=str(packets) for ap,res in v.items(): write_string=write_string+","+"PINT"+str(approx_map[ap])+","+str(res) fw.write(write_string+"\n") fw.close()
deltaint-project/deltaint
Mininet-DINT/generate_delay_results_PINT.py
generate_delay_results_PINT.py
py
9,232
python
en
code
1
github-code
6
16233043242
from flask import Flask, url_for, request, json, session from flask_cors import CORS from flask_sqlalchemy import SQLAlchemy import random from passlib.hash import sha256_crypt app = Flask(__name__) app.secret_key = "alon" app.config.from_object(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///site.db" app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False CORS(app) db = SQLAlchemy(app) def generate_pin(digits): pin = "" for k in range(digits): pin += str(random.randint(0, 9)) return pin class User(db.Model): __tablename__ = "user" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(100), unique=True, nullable=False) password = db.Column(db.String(100), nullable=False) quizzes_done = db.Column(db.Integer, default=0) correct_answers = db.Column(db.Integer, default=0) # relationship with Quiz quizzes = db.relationship("Quiz", backref="author", lazy=True, cascade="all, delete-orphan") class Quiz(db.Model): __tablename__ = "quiz" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), default=f"Quiz{id}") pin = db.Column(db.String(8), unique=True) published = db.Column(db.Boolean, default=False, nullable=False) # connection with user user_id = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=False) # relationship with ChoiceQuestion choice_questions = db.relationship("ChoiceQuestion", backref="author", lazy=True, cascade="all, delete-orphan") # relationship with Status statuses = db.relationship("Status", backref="author", lazy=True, cascade="all, delete-orphan") def __repr__(self): return f"{self.name}, pin={self.pin}" def get_json(self, with_answers=False): my_json = {"name": self.name, "pin": self.pin, "published": self.published, "choice_questions": []} for choice_question in self.choice_questions: my_json["choice_questions"].append(choice_question.get_json(with_answers)) return my_json def get_statuses_json(self): statuses_json = [] for status in self.statuses: statuses_json.append(status.get_json()) return statuses_json class ChoiceQuestion(db.Model): __tablename__ = "choice_question" id = db.Column(db.Integer, primary_key=True) number = db.Column(db.Integer) question = db.Column(db.String(120)) # connection to quiz quiz_id = db.Column(db.Integer, db.ForeignKey("quiz.id"), nullable=False) # relationship with choice choices = db.relationship("Choice", backref="author", lazy=True, cascade="all, delete-orphan") def __repr__(self): string = f"Q{self.number}" string += f"\nquestion: {self.question}" for choice in self.choices: string += "\n" + choice.__repr__() return string def get_json(self, with_answers=False): my_json = {"number": self.number, "question": self.question, "choices": []} for choice in self.choices: my_json["choices"].append(choice.get_json(with_answers)) return my_json class Choice(db.Model): __tablename__ = "choice" id = db.Column(db.Integer, primary_key=True) text = db.Column(db.String(120)) correct = db.Column(db.Boolean) # connection to question choice_question_id = db.Column(db.Integer, db.ForeignKey("choice_question.id"), nullable=False) def __repr__(self): return f"text={self.text}, correct={self.correct}" def get_json(self, with_answers=False): if not with_answers: return {"text": self.text} else: return {"text": self.text, "correct": self.correct} class Status(db.Model): __tablename__ = "status" id = db.Column(db.Integer, primary_key=True) grade = db.Column(db.Integer) amount_played = db.Column(db.Integer, default=1) user_id = db.Column(db.Integer, nullable=False) # connection to quiz quiz_id = db.Column(db.Integer, db.ForeignKey("quiz.id"), nullable=False) def get_json(self): user = User.query.filter_by(id=self.user_id).first() return {"username": user.username, "grade": self.grade, "amount": self.amount_played} # create a new user. Return true if created, false otherwise @app.route("/user/signup", methods=["POST"]) def sign_up(): response = request.get_json() username = response["username"] password = response["password"] hashed_password = sha256_crypt.encrypt(password) user = User.query.filter_by(username=username).first() if user is not None: return {"created": "false"} new_user = User(username=username, password=hashed_password) db.session.add(new_user) db.session.commit() return {"created": "true"} # try to login. Return user id if able to login @app.route("/user/login", methods=["GET"]) def login(): data = json.loads(request.args.get("data")) username = data["username"] password = data["password"] user = User.query.filter_by(username=username).first() if user is None or not sha256_crypt.verify(password, user.password): return {"user_id": "None"} return {"user_id": user.id} # get user id. Returns stats of user with this id @app.route("/home/userinfo", methods=["GET"]) def user_info(): user_id = json.loads(request.args.get("data")) user = User.query.filter_by(id=user_id).first() if user is None: return {"found": "false"} return_data = {"username": user.username, "quizzes_done": user.quizzes_done, "correct_answers": user.correct_answers, "quizzes_made": len(user.quizzes), "found": "true" } return return_data # create a new quiz for user with given id. Returns the pin. @app.route("/create/newQuiz", methods=["GET"]) def new_quiz(): user_id = json.loads(request.args.get("data")) pin = generate_pin(8) while Quiz.query.filter_by(pin=pin).first() is not None: pin = generate_pin(8) quiz = Quiz(name="MyQuiz", pin=pin, user_id=user_id) db.session.add(quiz) db.session.commit() return {"pin": pin} # get current state of quiz questions and update quiz accordingly for user. @app.route("/create/postQuestions", methods=["POST"]) def post_questions(): response = request.get_json()["quiz"] user_id = request.get_json()["user_id"] pin = response["pin"] quiz = Quiz.query.filter_by(pin=pin, user_id=user_id).first() if quiz is None or quiz.published: return {"posted": "false"} questions = response["questions"] quiz.name = response["name"] quiz.choice_questions = [] for question in questions: if question["type"] == "ChoiceQuestion": number = question["number"] question_text = question["question"] question_db = ChoiceQuestion(number=number, question=question_text, quiz_id=quiz.id) db.session.add(question_db) db.session.commit() for choice in question["choices"]: text = choice["text"] correct = choice["correct"] choice_db = Choice(text=text, correct=correct, choice_question_id=question_db.id) db.session.add(choice_db) db.session.commit() return {"posted": "true"} # publish quiz of certain pin, allowing others to play it. @app.route("/create/publishQuiz", methods=["POST"]) def publish_quiz(): pin = request.get_json()["pin"] user_id = request.get_json()["user_id"] quiz = Quiz.query.filter_by(pin=pin, user_id=user_id).first() if quiz is None: return {"published": "false"} quiz.published = True db.session.commit() return {"published": "true"} # get pin of quiz and return whether a quiz with that pin exists and was published @app.route("/enterPin/quizExists", methods=["GET"]) def quiz_exists(): data = json.loads(request.args.get("data")) pin = data["pin"] quiz = Quiz.query.filter_by(pin=pin).first() if (quiz is None) or (not quiz.published): return {"exists": "false", "pin": pin} return {"exists": "true", "pin": pin} # get pin and return a published quiz with that pin @app.route("/play/getQuiz", methods=["GET"]) def get_quiz(): data = json.loads(request.args.get("data")) pin = data["pin"] quiz = Quiz.query.filter_by(pin=pin).first() if (quiz is None) or (not quiz.published): return {"exists": "false", "pin": pin} return quiz.get_json() # gets pin of quiz, user and what player answered. Returns number of questions he got right. # also updates user stats accordingly @app.route("/play/correctAnswers", methods=["POST"]) def correct_answers(): response = request.get_json()["quiz"] user_id = request.get_json()["user_id"] pin = response["pin"] quiz = Quiz.query.filter_by(pin=pin).first() if (quiz is None) or (not quiz.published): return {"error": "cannot play quiz"} correct = 0 # go over each question sent for question in response["questions"]: if question["type"] == "ChoiceQuestion": is_correct = True # find matching question in quiz number = question["number"] question_text = question["question"] quiz_question = ChoiceQuestion.query.filter_by(quiz_id=quiz.id, number=number, question=question_text).first() # go over each choice in question sent for choice in question["choices"]: # find matching choice in question text = choice["text"] question_choice = Choice.query.filter_by(text=text, choice_question_id=quiz_question.id).first() if choice["correct"] != question_choice.correct: is_correct = False break if is_correct: correct += 1 user = User.query.filter_by(id=user_id).first() grade = (correct * 100) / len(quiz.choice_questions) # update user stats user.correct_answers += correct user.quizzes_done += 1 # create new status status = Status.query.filter_by(user_id=user_id, quiz_id=quiz.id).first() if status is None: new_status = Status(grade=grade, user_id=user_id, quiz_id=quiz.id) db.session.add(new_status) else: status.amount_played += 1 status.grade = max(grade, status.grade) db.session.commit() return {"correctAnswers": correct} # gets quiz pin and returns all user statuses for that quiz @app.route("/leaderboard/getStatuses", methods=["GET"]) def get_statuses(): data = json.loads(request.args.get("data")) pin = data["pin"] quiz = Quiz.query.filter_by(published=True, pin=pin).first() if quiz is None: return {"found": "false"} return {"found": "true", "statuses": quiz.get_statuses_json()} # get list of all quizzes this user has creates and not published @app.route("/edit/getUserQuizzes", methods=["GET"]) def get_user_quizzes(): data = json.loads(request.args.get("data")) user = User.query.filter_by(id=data).first() json_to_return = [] for quiz in user.quizzes: if not quiz.published: json_to_return.append(quiz.get_json()) return {"quizzes": json_to_return} # get quiz with answers for user to edit @app.route("/create/getQuizWithAnswers", methods=["GET"]) def get_quiz_with_answers(): data = json.loads(request.args.get("data")) user_id = data["user_id"] pin = data["pin"] quiz = Quiz.query.filter_by(user_id=user_id, pin=pin, published=False).first() return {"quiz": quiz.get_json(True)} # delete quiz of certain pin created by user @app.route("/edit/deleteQuiz", methods=["GET"]) def delete_quiz(): data = json.loads(request.args.get("data")) user_id = data["user_id"] pin = data["pin"] quiz = Quiz.query.filter_by(user_id=user_id, pin=pin, published=False).first() if quiz is not None: db.session.delete(quiz) db.session.commit() return {"deleted": "true", "pin": pin} return {"deleted": "false", "pin": pin} if __name__ == "__main__": app.run() db.create_all()
nivschuman/QuizServer
main.py
main.py
py
12,314
python
en
code
0
github-code
6
22449340075
""" Реализация программу взаимодействия виджетов друг с другом: Форма для приложения (ui/d_eventfilter_settings.ui) Программа должна обладать следующим функционалом: 1. Добавить для dial возможность установки значений кнопками клавиатуры(+ и -), выводить новые значения в консоль 2. Соединить между собой QDial, QSlider, QLCDNumber (изменение значения в одном, изменяет значения в других) 3. Для QLCDNumber сделать отображение в различных системах счисления (oct, hex, bin, dec), изменять формат отображаемого значения в зависимости от выбранного в comboBox параметра. 4. Сохранять значение выбранного в comboBox режима отображения и значение LCDNumber в QSettings, при перезапуске программы выводить в него соответствующие значения """ from PySide6 import QtWidgets, QtCore, QtGui from PySide6.QtCore import Qt class Window(QtWidgets.QWidget): def __init__(self, parent=None): super().__init__(parent) self.initUi() self.initSignal() self.settings = QtCore.QSettings('Data') self.loadData() def initUi(self): self.dial = QtWidgets.QDial() self.dial.setRange(0, 100) self.dial.installEventFilter(self) self.comboBox = QtWidgets.QComboBox() self.comboBox.addItem("dec") self.comboBox.addItem("hex") self.comboBox.addItem("oct") self.comboBox.addItem("bin") self.LCDNumber = QtWidgets.QLCDNumber() self.slider = QtWidgets.QSlider() self.slider.setOrientation(Qt.Orientation.Horizontal) layout1 = QtWidgets.QVBoxLayout() layout2 = QtWidgets.QHBoxLayout() layout3 = QtWidgets.QVBoxLayout() layout1.addWidget(self.comboBox) layout1.addWidget(self.LCDNumber) layout2.addWidget(self.dial) layout2.addLayout(layout1) layout3.addLayout(layout2) layout3.addWidget(self.slider) self.setLayout(layout3) def initSignal(self): self.slider.valueChanged.connect(self.dial.setValue) self.slider.valueChanged.connect(self.LCDNumber.display) self.dial.valueChanged.connect(self.slider.setValue) self.dial.valueChanged.connect(self.LCDNumber.display) self.comboBox.currentTextChanged.connect(self.updateLcd) def keyPressEvent(self, event: QtGui.QKeyEvent): if event.key() == QtCore.Qt.Key_Plus: self.dial.setValue(self.dial.value() + 1) elif event.key() == QtCore.Qt.Key_Minus: self.dial.setValue(self.dial.value() - 1) else: super().keyPressEvent(event) def updateLcd(self): if self.comboBox.currentText() == "dec": self.LCDNumber.setDecMode() elif self.comboBox.currentText() == "bin": self.LCDNumber.setBinMode() elif self.comboBox.currentText() == "oct": self.LCDNumber.setOctMode() elif self.comboBox.currentText() == "hex": self.LCDNumber.setHexMode() def loadData(self): self.LCDNumber.display(self.settings.value("Value", "")) self.comboBox.setCurrentText(self.settings.value("Text", "")) def closeEvent(self, event: QtGui.QCloseEvent): self.settings.setValue("Value", self.LCDNumber.intValue()) self.settings.setValue("Text", self.comboBox.currentText()) if __name__ == "__main__": app = QtWidgets.QApplication() window = Window() window.show() app.exec()
julsmi/DevPyQt
scripts/Практика 2/b_Самостоятельная + домашняя работа/d_eventfilter_settings.py
d_eventfilter_settings.py
py
3,953
python
ru
code
null
github-code
6
18211764194
import argparse import os import unittest from bin.get_alleles_from_srst2_mlst import get_mismatch_and_depth, get_new_and_existing_alleles, write_alleles_file, get_arguments class TestProcessResults(unittest.TestCase): TEST_OUTPUT_PREFIX = 'test' TEST_FILE = 'tests/test_data/input/test__mlst__Streptococcus_agalactiae_MLST_alleles__results.txt' TEST_OUT1 = 'tests/test_data/output/test_mlst_alleles.txt' TEST_OUT2 = 'tests/test_data/output/test_mlst_alleles2.txt' def test_get_mismatch_and_depth(self): actual = get_mismatch_and_depth(self.TEST_FILE) self.assertEqual(actual, ('adhP_1/1snp', 173.614142857, 'ST-1')) def test_get_new_and_existing_alleles(self): actual = get_new_and_existing_alleles(('adhP_1/1snp', 173.614142857, 'ST-1'), 30, self.TEST_OUTPUT_PREFIX) f = open(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt', "r") actual = "".join(f.readlines()) self.assertEqual(actual, """Alleles found\nadhP_1\n""") os.remove(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt') def test_get_new_and_existing_alleles_low_depth(self): actual = get_new_and_existing_alleles(('adhP_1/1snp', 29.99, 'ST-1'), 30, self.TEST_OUTPUT_PREFIX) f = open(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt', "r") actual = "".join(f.readlines()) self.assertEqual(actual, """test: No new MLST alleles were found with sufficient read depth above 30.\n""") os.remove(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt') def test_get_new_and_existing_alleles_multi_alleles(self): actual = get_new_and_existing_alleles(('adhP_1/1snp;pheS_1/1snp', 173.614142857, 'ST-1'), 30, self.TEST_OUTPUT_PREFIX) f = open(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt', "r") actual = "".join(f.readlines()) self.assertEqual(actual, """Alleles found\nadhP_1\npheS_1\n""") os.remove(self.TEST_OUTPUT_PREFIX + '_new_mlst_alleles.txt') def test_get_new_and_existing_alleles_no_mismatches(self): actual = get_new_and_existing_alleles(('0', 173.614142857, 'ST-1'), 30, self.TEST_OUTPUT_PREFIX) f = open(self.TEST_OUTPUT_PREFIX + '_existing_mlst_alleles.txt', "r") actual = "".join(f.readlines()) self.assertEqual(actual, """ID\tST\ntest\tST-1\n""") os.remove(self.TEST_OUTPUT_PREFIX + '_existing_mlst_alleles.txt') def test_alleles_file(self): write_alleles_file(['Alleles found', 'adhP_1', 'pheS_1'], self.TEST_OUT1) f = open(self.TEST_OUT1, "r") actual = "".join(f.readlines()) self.assertEqual(actual, """Alleles found\nadhP_1\npheS_1\n""") def test_alleles_file_without_alleles(self): write_alleles_file(['No new MLST alleles were found.'], self.TEST_OUT2) f = open(self.TEST_OUT2, "r") actual = "".join(f.readlines()) self.assertEqual(actual, """No new MLST alleles were found.\n""") def test_arguments(self): actual = get_arguments().parse_args( ['--mlst_results_file', 'mlst_file', '--min_read_depth', '30', '--output_prefix', 'out']) self.assertEqual(actual, argparse.Namespace(mlst='mlst_file', min_depth=30, output='out')) def test_arguments_short_options(self): actual = get_arguments().parse_args( ['-m', 'mlst_file', '-d', '30', '-o', 'out']) self.assertEqual(actual, argparse.Namespace(mlst='mlst_file', min_depth=30, output='out'))
sanger-bentley-group/GBS-Typer-sanger-nf
tests/get_alleles_from_srst2_mlst_test.py
get_alleles_from_srst2_mlst_test.py
py
3,532
python
en
code
0
github-code
6
72931175228
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns #Leio os datasets e retiro o que preciso df= pd.read_csv('DATASET_MobileRobotNav.csv', sep=';') #Mostra a descrição do dataset (Média, Conta o número de tuplas, min, máx, etc) print(df.describe()) #print(df) #Separa o modelo para fazer a from sklearn.model_selection import train_test_split #labels = np.array(df['Out_Vel_Linear(m/s)','Out_Vel_Angula(rad/s)']) features= df.drop(columns=['Out_Vel_Linear(m/s)','Out_Vel_Angula(rad/s)'], axis = 1) #print(features) labels= df['Out_Vel_Linear(m/s)'] #y2= df['Out_Vel_Angula(rad/s)'] features_list = list(features.columns) print(features_list) features_train, features_test, labels_train, labels_test= train_test_split(features,labels,test_size= 0.3) print('Training Features Shape:', features_train.shape) print('Training Labels Shape:', labels_train.shape) print('Testing Features Shape:', features_train.shape) print('Testing Labels Shape:', labels_test.shape) from sklearn.neural_network import MLPRegressor mlp = MLPRegressor(hidden_layer_sizes=(8,8,8), activation='tanh', solver='adam', max_iter=500, alpha = 0.001) mlp.fit(features_train,labels_train) #Faz os testes separados anteriormente predictions= mlp.predict(features_test) print("a" ,predictions, "B:" ,labels_test) #Calcula erros absolutos (mudar pra erro quadrático depois?) errors = abs(predictions - labels_test) print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.') #Calcula qtd de erros mape = 100 * (errors / labels_test) #Mostra a precisão accuracy = 100 - np.mean(mape) print('Accuracy:', round(accuracy, 2), '%.')
jpavargasf/ML_RandomForest_ANN
Pedro/neural_network.py
neural_network.py
py
1,716
python
en
code
0
github-code
6
31824180951
import tarfile def extract(tar_path, target_path): try: tar = tarfile.open(tar_path, "r:gz") filenames = tar.getnames() for filename in filenames: tar.extract(filename, target_path) tar.close() except Exception as e: print('extract error %s' %e) extract('/tmp/tarball.tar.gz', '/tmp/x')
Jerry-Luo/geek-python
stdlib/UnCompressFile.py
UnCompressFile.py
py
351
python
en
code
0
github-code
6
41550685644
import os, sys, serial, time, traceback from . codes import CMDTYPE, LEDTYPE, SPIChipsets, BufferChipsets from . devices import Devices from . import io from .. channel_order import ChannelOrder from .. driver_base import DriverBase from ... util import exception, log, util from ... drivers.return_codes import ( RETURN_CODES, print_error, raise_error, BiblioSerialError) class Serial(DriverBase): """Main driver for Serial based LED strips and devices like the AllPixel Provides the same parameters of :py:class:`bibliopixel.drivers.driver_base.DriverBase` as well as those below: :param ledtype: LED protocol type. One of :py:func:`bibliopixel.drivers.ledtype.LEDTYPE` :param str dev: Serial device address/path. If left empty, first device found will be used. :param int spi_speed: SPI datarate for applicable LED types, in MHz :param int restart_timeout: Seconds to wait between reconfigure reboot and reconnection attempt :param int device_id: Device ID to connect to. :param str hardwareID: A valid USB VID:PID pair such as "1D50:60AB" :param int baudrate: Baud rate to connect to serial device """ def __init__(self, ledtype=None, num=0, dev='', c_order='RGB', spi_speed=2, gamma=None, restart_timeout=3, device_id=None, hardwareID="1D50:60AB", baudrate=921600, **kwds): if ledtype is None: raise ValueError('Must provide ledtype value!') if num == 0: raise ValueError('Must provide num value >0!') super().__init__(num, c_order=c_order, gamma=gamma, **kwds) self.devices = Devices(hardwareID, baudrate) if not (1 <= spi_speed <= 24 and ledtype in SPIChipsets): spi_speed = 1 self._spi_speed = spi_speed self._com = None self._ledtype = ledtype self._bufPad = 0 self.dev = dev self.device_version = 0 self.device_id = device_id self._sync_packet = util.generate_header(CMDTYPE.SYNC, 0) if self.device_id is not None and not (0 <= self.device_id <= 255): raise ValueError("device_id must be between 0 and 255") resp = self._connect() if resp == RETURN_CODES.REBOOT: # reboot needed log.info(REBOOT_MESSAGE) self._close() time.sleep(restart_timeout) resp = self._connect() if resp != RETURN_CODES.SUCCESS: raise_error(resp) else: log.info("Reconfigure success!") elif resp != RETURN_CODES.SUCCESS: raise_error(resp) if type in SPIChipsets: log.info("Using SPI Speed: %sMHz", self._spi_speed) def cleanup(self): if self._com: log.info("Closing connection to: %s", self.dev) exception.report(self._close) self._com = None def _connect(self): try: if not self.dev: self.devices.find_serial_devices() idv = self.devices.get_device(self.device_id) self.device_id, self.dev, self.device_version = idv try: self._com = serial.Serial( self.dev, baudrate=self.devices.baudrate, timeout=5) except serial.SerialException: ports = self.devices.devices.values() error = "Invalid port specified. No COM ports available." if ports: error = ("Invalid port specified. Try using one of: \n" + "\n".join(ports)) log.info(error) raise BiblioSerialError(error) packet = util.generate_header(CMDTYPE.SETUP_DATA, 4) packet.append(self._ledtype) # set strip type byteCount = self.bufByteCount() if self._ledtype in BufferChipsets: if self._ledtype == LEDTYPE.APA102 and self.device_version >= 2: pass else: self._bufPad = BufferChipsets[ self._ledtype](self.numLEDs) * 3 byteCount += self._bufPad packet.append(byteCount & 0xFF) # set 1st byte of byteCount packet.append(byteCount >> 8) # set 2nd byte of byteCount packet.append(self._spi_speed) self._write(packet) code = self._read() if code is None: self.devices.error() return code except serial.SerialException as e: error = ("Unable to connect to the device. Please check that " "it is connected and the correct port is selected.") log.error(traceback.format_exc()) log.error(error) raise e def set_device_brightness(self, brightness): packet = util.generate_header(CMDTYPE.BRIGHTNESS, 1) packet.append(self._brightness) self._write(packet) code = self._read() if code == RETURN_CODES.SUCCESS: return True print_error(code) def _send_packet(self): if not self._com: return self._write(self._packet) code = self._read() if code is None: self.devices.error(fail=False) elif code != RETURN_CODES.SUCCESS: print_error(code) else: self._flushInput() return True def _compute_packet(self): count = self.bufByteCount() + self._bufPad self._packet = util.generate_header(CMDTYPE.PIXEL_DATA, count) self._render() self._packet.extend(self._buf) self._packet.extend([0] * self._bufPad) def _send_sync(self): self._write(self._sync_packet) def _read(self): return io.read_byte(self._com) def _close(self): try: return self._com and self._com.close() except Exception: log.exception('Serial exception in close') finally: self._com = None def _write(self, packet): try: return self._com and self._com.write(packet) except Exception: log.exception('Serial exception in write') def _flushInput(self): try: return self._com and self._com.flushInput() except Exception: log.exception('Serial exception in flushInput') class TeensySmartMatrix(Serial): """Variant of :py:class:`Serial` for use with the Teensy and SmartMatrix library. The following provides compatible firmware: https://github.com/ManiacalLabs/BiblioPixelSmartMatrix All parameters are the same as with :py:class:`Serial`, except the default hardwareID is changed to match the Teensy. The main difference is that SmartMatrix requires a sync command to keep multiple instances of this driver running smoothly. """ def __init__(self, width, height, dev="", device_id=None, hardwareID="16C0:0483", **kwds): super().__init__(ledtype=LEDTYPE.GENERIC, num=width * height, device_id=device_id, hardwareID=hardwareID, **kwds) self.sync = self._send_sync REBOOT_MESSAGE = """Reconfigure and reboot needed! Waiting for controller to restart...""" from ... util import deprecated if deprecated.allowed(): # pragma: no cover DriverSerial = Serial DriverTeensySmartMatrix = TeensySmartMatrix
ManiacalLabs/BiblioPixel
bibliopixel/drivers/serial/driver.py
driver.py
py
7,526
python
en
code
263
github-code
6
70292952188
# define the function def hi(lang): # function body if lang=="en": print("Hello!!!") elif lang=="ro": print("Salut!!!") elif lang=="ru": print("Привет!!!") else: print(lang,":SORRY, WE DON'T KNOW THIS LANGUAGE") def bye(lang): if lang=="en": print("Good bye!!!") elif lang=="ro": print("O zi buna!!!") elif lang=="ru": print("Досвидания!!!") else: print(lang,":THIS LANGUAGE IS UNKNOWN FOR US. WE ARE SORRY!!!") # call the function hi("ru") hi("ro") hi("en") hi("fr") bye("ru") bye("ro") bye("en") bye("fr")
Axelum-tech/functions
function_ex1.py
function_ex1.py
py
670
python
en
code
0
github-code
6
29358752973
from math import sqrt from Qt import QtCore, QtGui, QtWidgets, Qt from ts2 import utils from ts2.routing import position from ts2.scenery import lineitem, enditem from ts2.scenery.signals import signalaspect, signalitem translate = QtWidgets.qApp.translate class TrainStatus(QtCore.QObject): """Holds the enum describing the status of a :class:`~ts2.trains.train.Train`""" INACTIVE = 0 """Not yet entered on the scene""" RUNNING = 10 """Running with a positive speed""" STOPPED = 20 """Scheduled stop, e.g. at a station""" WAITING = 30 """Unscheduled stop, e.g. at a red signal""" OUT = 40 """Exited the area""" END_OF_SERVICE = 50 """Ended its service and no new service assigned""" @classmethod def text(cls, status): """ :return: Text corresponding to each status to display in the application :rtype: str """ if status == cls.INACTIVE: return translate("TrainStatus", "Inactive") elif status == cls.RUNNING: return translate("TrainStatus", "Running") elif status == cls.STOPPED: return translate("TrainStatus", "Stopped at station") elif status == cls.WAITING: return translate("TrainStatus", "Waiting at red signal") elif status == cls.OUT: return translate("TrainStatus", "Exited the area") elif status == cls.END_OF_SERVICE: return translate("TrainStatus", "End of service") else: return "" class TrainListModel(QtCore.QAbstractTableModel): """Model for displaying trains as a list during the game. """ def __init__(self, simulation): """Constructor for the TrainListModel class""" super().__init__() self.simulation = simulation def rowCount(self, parent=QtCore.QModelIndex(), *args): """Returns the number of rows of the model, corresponding to the number of trains of the simulation""" return len(self.simulation.trains) def columnCount(self, parent=QtCore.QModelIndex(), *args): """Returns the number of columns of the model @TODO ?? wtf """ return 8 def data(self, index, role=Qt.DisplayRole): """Returns the data at the given index""" train = self.simulation.trains[index.row()] if train.nextPlaceIndex is not None: line = train.currentService.lines[train.nextPlaceIndex] else: line = None if role == Qt.DisplayRole: if index.column() == 0: return train.serviceCode elif index.column() == 1: return TrainStatus.text(train.status) elif index.column() == 2 and train.currentService: return train.currentService.entryPlaceName elif index.column() == 3 and train.currentService: return train.currentService.exitPlaceName elif index.column() == 4 and line is not None: return line.place.placeName elif index.column() == 5 and line is not None: return line.trackCode elif index.column() == 6 and line is not None: if line.mustStop: return line.scheduledArrivalTime.toString("hh:mm:ss") else: return self.tr("Non-stop") elif index.column() == 7 and line is not None: return line.scheduledDepartureTime.toString("hh:mm:ss") else: return "" elif role == Qt.ForegroundRole: if train.status == TrainStatus.RUNNING: return QtGui.QBrush(Qt.darkGreen) elif train.status == TrainStatus.STOPPED: return QtGui.QBrush(Qt.darkBlue) elif train.status == TrainStatus.WAITING: return QtGui.QBrush(Qt.red) else: return QtGui.QBrush(Qt.darkGray) return None def headerData(self, column, orientation, role=Qt.DisplayRole): """Returns the column headers to display""" if orientation == Qt.Horizontal and role == Qt.DisplayRole: if column == 0: return self.tr("Code") elif column == 1: return self.tr("Status") elif column == 2: return self.tr("Entry Point") elif column == 3: return self.tr("Exit Point") elif column == 4: return self.tr("Next place") elif column == 5: return self.tr("Track") elif column == 6: return self.tr("Arrival time") elif column == 7: return self.tr("Departure time") else: return "" return None def flags(self, index): """Returns the flags of the model""" return Qt.ItemIsSelectable | Qt.ItemIsEnabled @QtCore.pyqtSlot(str) def update(self, trainId): """Emits the dataChanged signal for the train defined by trainId.""" row = int(trainId) self.dataChanged.emit(self.index(row, 0), self.index(row, 7)) class TrainsModel(QtCore.QAbstractTableModel): """Model for displaying trains as a list in the editor """ def __init__(self, editor): """Constructor for the TrainsModel class""" super().__init__() self._editor = editor def rowCount(self, parent=None, *args): """Returns the number of rows of the model, corresponding to the number of trains of the editor""" return len(self._editor.trains) def columnCount(self, parent=None, *args): """Returns the number of columns of the model""" return 7 def data(self, index, role=Qt.DisplayRole): """Returns the data at the given index""" if role == Qt.DisplayRole or role == Qt.EditRole: train = self._editor.trains[index.row()] if index.column() == 0: return index.row() elif index.column() == 1: return train.serviceCode elif index.column() == 2: return train.trainTypeCode elif index.column() == 3: return train.appearTimeStr elif index.column() == 4: return train.trainHeadStr elif index.column() == 5: return train.initialSpeed elif index.column() == 6: return train.initialDelayStr else: return "" return None def headerData(self, column, orientation, role=Qt.DisplayRole): """Returns the column headers to display""" if orientation == Qt.Horizontal and role == Qt.DisplayRole: if column == 0: return self.tr("id") elif column == 1: return self.tr("Service code") elif column == 2: return self.tr("Train type") elif column == 3: return self.tr("Entry time") elif column == 4: return self.tr("Entry position") elif column == 5: return self.tr("Entry speed") elif column == 6: return self.tr("Initial Delay") else: return "" return None def setData(self, index, value, role=None): """Updates data when modified in the view""" if role == Qt.EditRole: if index.column() == 1: self._editor.trains[index.row()].serviceCode = value elif index.column() == 2: self._editor.trains[index.row()].trainTypeCode = value elif index.column() == 3: self._editor.trains[index.row()].appearTimeStr = value elif index.column() == 4: self._editor.trains[index.row()].trainHeadStr = value elif index.column() == 5: self._editor.trains[index.row()].initialSpeed = value elif index.column() == 6: self._editor.trains[index.row()].initialDelayStr = value else: return False self.dataChanged.emit(index, index) return True return False def flags(self, index): """Returns the flags of the model""" flags = Qt.ItemIsSelectable | Qt.ItemIsEnabled if index.column() != 0: flags |= Qt.ItemIsEditable return flags @property def simulation(self): """Returns the simulation this model is attached to.""" return self._editor class TrainInfoModel(QtCore.QAbstractTableModel): """Model for displaying a single service information in a view """ def __init__(self, simulation): """Constructor for the TrainInfoModel class""" super().__init__() self.simulation = simulation self._train = None def rowCount(self, parent=None, *args, **kwargs): """Returns the number of rows in the model""" if self._train is not None: return 12 else: return 0 def columnCount(self, parent=None, *args, **kwargs): """Returns the number of columns of the model""" if self._train is not None: return 2 else: return 0 def data(self, index, role=Qt.DisplayRole): """Returns the data at the given index""" if self._train is not None: nextPlaceIndex = self._train.nextPlaceIndex if nextPlaceIndex is not None: line = self._train.currentService.lines[nextPlaceIndex] else: line = None if role == Qt.DisplayRole: if index.column() == 0: if index.row() == 0: return self.tr("Service Code:") elif index.row() == 1: return self.tr("Status") elif index.row() == 2: return self.tr("Speed:") elif index.row() == 3: return self.tr("Train Type:") elif index.row() == 4: return "" elif index.row() == 5: return self.tr("Entry point:") elif index.row() == 6: return self.tr("Exit point:") elif index.row() == 7: return "" elif index.row() == 8: return self.tr("Next:") elif index.row() == 9: return self.tr("Track:") elif index.row() == 10: return self.tr("Arrival time:") elif index.row() == 11: return self.tr("Departure time:") elif index.column() == 1: if index.row() == 0: return self._train.serviceCode elif index.row() == 1: return TrainStatus.text(self._train.status) elif index.row() == 2: return self.tr("%3.0d km/h") % \ (float(self._train.speed) * 3.6) elif index.row() == 3: return self._train.trainType.description elif index.row() == 4: return "" elif index.row() == 5: return self._train.currentService.entryPlaceName elif index.row() == 6: return self._train.currentService.exitPlaceName elif index.row() == 7: return "" elif index.row() == 8 and line is not None: return line.place.placeName elif index.row() == 9 and line is not None: return line.trackCode elif index.row() == 10 and line is not None: if line.mustStop: return \ line.scheduledArrivalTime.toString("hh:mm:ss") else: return self.tr("Non-stop") elif index.row() == 11 and line is not None: return \ line.scheduledDepartureTime.toString("hh:mm:ss") else: return "" elif role == Qt.ForegroundRole: if index.row() == 1 and index.column() == 1: if self._train.status == TrainStatus.RUNNING: return QtGui.QBrush(Qt.darkGreen) elif self._train.status == TrainStatus.STOPPED: return QtGui.QBrush(Qt.darkBlue) elif self._train.status == TrainStatus.WAITING: return QtGui.QBrush(Qt.red) else: return QtGui.QBrush(Qt.darkGray) return QtGui.QBrush() return None def headerData(self, column, orientation, role=Qt.DisplayRole): """Returns the headers for this model""" if self._train is not None \ and orientation == Qt.Horizontal \ and role == Qt.DisplayRole: if column == 0: return self.tr("Key") elif column == 1: return self.tr("Value") else: return "" return None def flags(self, index): """Returns the flags of the model""" return Qt.ItemIsEnabled @property def train(self): """Returns the train instance associated with this model""" return self._train @QtCore.pyqtSlot(str) def setTrainByTrainId(self, trainId): """Sets the train instance associated with this model from its trainId""" self.beginResetModel() self._train = self.simulation.trains[int(trainId)] self.endResetModel() @QtCore.pyqtSlot() def update(self): """Emits the dataChanged signal for the lines that may change.""" self.dataChanged.emit(self.index(1, 1), self.index(2, 1)) self.dataChanged.emit(self.index(8, 1), self.index(11, 1)) @QtCore.pyqtSlot() def updateSpeed(self): """Emits the dataChanged signal for the speed only.""" self.dataChanged.emit(self.index(2, 1), self.index(2, 1)) class Train(QtCore.QObject): """A ``Train`` is a stock running on a track at a certain speed and to which is assigned a :class:`~ts2.trains.service.Service` . """ def __init__(self, parameters): """ :param dict paramaters: """ super().__init__() self._parameters = parameters self.simulation = None self._serviceCode = parameters["serviceCode"] self._trainType = None self._speed = parameters.get('speed') self._initialSpeed = parameters.get("initialSpeed", 0.0) self._accel = 0 self._trainHead = parameters["trainHead"] self._status = parameters.get("status", TrainStatus.INACTIVE) self._lastSignal = None self._signalActions = [(0, 999)] self._applicableActionIndex = 0 self._actionTime = 0 self._nextPlaceIndex = None self._stoppedTime = 0 if "stoppedTime" in parameters: self._stoppedTime = parameters["stoppedTime"] self._minimumStopTime = 0 self._initialDelayProba = \ utils.DurationProba(parameters["initialDelay"]) self._initialDelay = 0 self._appearTime = QtCore.QTime.fromString(parameters["appearTime"]) self._shunting = False # FIXME Throw back all these actions to MainWindow self.assignAction = QtWidgets.QAction(self.tr("Reassign service..."), self) self.assignAction.triggered.connect(self.reassignService) self.resetServiceAction = QtWidgets.QAction(self.tr("Reset service"), self) self.resetServiceAction.triggered.connect(self.resetService) self.reverseAction = QtWidgets.QAction(self.tr("Reverse"), self) self.reverseAction.triggered.connect(self.reverse) self.splitAction = QtWidgets.QAction(self.tr("Split train"), self) self.splitAction.triggered.connect(self.splitTrainPopUp) self.proceedAction = QtWidgets.QAction(self.tr("Proceed with caution"), self) self.proceedAction.triggered.connect(self.proceedWithCaution) def initialize(self, simulation): """Initialize the train once everything else is loaded. :param simulation: The simulation on which to initialize this Train :type simulation: simulation.Simulation""" if not self._parameters: raise Exception("Internal error: Train already initialized !") params = self._parameters self.simulation = simulation self._trainType = simulation.trainTypes[params["trainTypeCode"]] self.trainHead.initialize(simulation) if self.simulation.context == utils.Context.GAME: self.trainStatusChanged.connect(simulation.trainStatusChanged) self.reassignServiceRequested.connect( simulation.simulationWindow.openReassignServiceWindow ) self.splitTrainRequested.connect( simulation.simulationWindow.openSplitTrainWindow ) self._parameters = None def updateData(self, msg): self.nextPlaceIndex = msg["nextPlaceIndex"] self.serviceCode = msg["serviceCode"] self._speed = msg["speed"] self._status = msg["status"] self._trainType = self.simulation.trainTypes[msg["trainTypeCode"]] self._trainHead = position.Position(parameters=msg["trainHead"]) self._trainHead.initialize(self.simulation) self.trainStatusChanged.emit(self.trainId) def for_json(self): """Dumps this train to JSON.""" if self.simulation.context != utils.Context.GAME or \ self.status == TrainStatus.INACTIVE: speed = self.initialSpeed appearTime = self.appearTimeStr initialDelay = self.initialDelay elif self.status == TrainStatus.OUT: speed = 0 appearTime = "00:00:00" initialDelay = 0 else: speed = self.speed appearTime = self.simulation.currentTime.toString("hh:mm:ss") initialDelay = 0 return { "__type__": "Train", "trainId": self.trainId, "serviceCode": self.serviceCode, "trainTypeCode": self.trainTypeCode, "status": self.status, "speed": speed, "initialSpeed": self.initialSpeed, "trainHead": self.trainHead, "appearTime": appearTime, "initialDelay": initialDelay, "nextPlaceIndex": self.nextPlaceIndex, "stoppedTime": self.stoppedTime } trainStoppedAtStation = QtCore.pyqtSignal(str) trainDepartedFromStation = QtCore.pyqtSignal(str) trainStatusChanged = QtCore.pyqtSignal(str) trainExitedArea = QtCore.pyqtSignal(str) reassignServiceRequested = QtCore.pyqtSignal(str) splitTrainRequested = QtCore.pyqtSignal(str) # ## Properties ###################################################### @property def trainId(self): """Returns the train Id which is index of this train inside the train list of the simulation.""" try: trainId = str(self.simulation.trains.index(self)) except ValueError: trainId = "" return trainId @property def initialDelay(self): """ :return: the number of seconds of delay that this train had when it was activated. :rtype: int """ return self._initialDelay @property def minimumStopTime(self): """ :return: the minimum stopping time for next station :rtype: int """ return self._minimumStopTime @property def stoppedTime(self): """ :return: the number of seconds that this train is stopped at then current station. :rtype: int """ return self._stoppedTime @property def serviceCode(self): """ :return: the service code of this train :rtype: str """ return self._serviceCode @serviceCode.setter def serviceCode(self, serviceCode): """Changes the train current service code to serviceCode""" if serviceCode not in self.simulation.services: raise Exception(self.tr("No service with code %s") % serviceCode) self._serviceCode = serviceCode @property def status(self): """ :return: the status of the train :rtype: :class:`~ts2.trains.train.TrainStatus` """ return self._status @property def currentService(self): """Returns the Service object assigned to this train""" if self._serviceCode is not None: return self.simulation.service(self._serviceCode) @property def nextPlaceIndex(self): """Returns the index of the next place, that is the index of the ServiceLine of the current service pointing to the next place the train is scheduled to. :rtype : int""" return self._nextPlaceIndex @nextPlaceIndex.setter def nextPlaceIndex(self, index): """Setter function for the nextPlaceIndex property.""" if index is None or \ index < 0 or \ index >= len(self.currentService.lines): self._nextPlaceIndex = None else: self._nextPlaceIndex = index @property def trainType(self): """ :return: The TrainType of this Train :rtype: :class:`~ts2.trains.traintype.TrainType` """ return self._trainType @property def trainTypeCode(self): """Returns the code of the train type""" """ :return: The code of this trains type :rtype: str """ return self._trainType.code @trainTypeCode.setter def trainTypeCode(self, value): """Setter function for the trainTypeCode property""" if self.simulation.context == utils.Context.EDITOR_TRAINS: try: self._trainType = self.simulation.trainTypes[value] except KeyError: pass @property def speed(self): """Returns the current speed of the Train.""" return self._speed @property def signalActions(self): """Returns the list of actions asked by the last seen signal. List of (target, speed) tuples.""" return self._signalActions @property def applicableActionIndex(self): """Returns the applicable action in the action list.""" return self._applicableActionIndex @property def actionTime(self): """ :return: the time at which the current action has been achieved or 0. :rtype: ``QTime`` or 0 """ return self._actionTime @property def initialSpeed(self): """Returns the initial speed of the train, i.e. the speed it has when it appears on the scene""" return self._initialSpeed @initialSpeed.setter def initialSpeed(self, value): """Setter function for the initialSpeed property""" if self.simulation.context == utils.Context.EDITOR_TRAINS: if value is None or value == "": value = "0.0" self._initialSpeed = float(value) @property def trainHead(self): """ :return: the Position of the head of this train. :rtype: :class:`~ts2.routing.position.Position` """ return self._trainHead @trainHead.setter def trainHead(self, value): """Setter function for the trainHead property""" if self.simulation.context == utils.Context.EDITOR_TRAINS: self._trainHead = value def _getTrainHeadStr(self): """ :return: the Position of the head of this train. :rtype: `str` """ return str(self._trainHead) def _setTrainHeadStr(self, value): """Setter function for the trainHeadStr property.""" if self.simulation.context == utils.Context.EDITOR_TRAINS: values = eval(value.strip('()')) if len(values) != 3: return tiId, ptiId, posOnTI = eval(value.strip('()')) trackItem = self.simulation.trackItem(str(tiId)) previousTI = self.simulation.trackItem(str(ptiId)) self.trainHead = position.Position(trackItem, previousTI, posOnTI) trainHeadStr = property(_getTrainHeadStr, _setTrainHeadStr) @property def lastSignal(self): """Returns the last signal that the driver has seen, which may be the one just in front.""" return self._lastSignal @property def initialDelayStr(self): """Returns the initialDelay probability function as a string.""" return str(self._initialDelayProba) @initialDelayStr.setter def initialDelayStr(self, value): """Setter function for the initialDelayStr property.""" if self.simulation.context == utils.Context.EDITOR_TRAINS: self._initialDelayProba = utils.DurationProba(value) @property def appearTimeStr(self): """Returns the time at which this train appears on the scene as a String.""" return self._appearTime.toString("HH:mm:ss") @appearTimeStr.setter def appearTimeStr(self, value): """Setter function for the appearTime property""" if self.simulation.context == utils.Context.EDITOR_TRAINS: self._appearTime = QtCore.QTime.fromString(value) @property def shunting(self): """ :return: True if the train is shunting False otherwise """ return self._shunting # ## Methods ######################################################## def isOut(self): """ :return: True if the train exited the area :rtype: bool """ return \ self._trainHead.isOut() and \ self._trainHead.positionOnTI() > self._trainType.length() def isActive(self): """ :return: ``True`` if the train is in the area and its current service is not finished :rtype: bool""" return \ self._status != TrainStatus.INACTIVE and \ self._status != TrainStatus.OUT and \ self._status != TrainStatus.END_OF_SERVICE def isOnScenery(self): """ :return: True if the train is on the scenery :rtype: bool """ return \ self._status != TrainStatus.INACTIVE and \ self._status != TrainStatus.OUT def showTrainActionsMenu(self, widget, pos): """Pops-up the train actions menu on the given QWidget""" contextMenu = QtWidgets.QMenu(widget) contextMenu.addAction(self.proceedAction) contextMenu.addAction(self.reverseAction) contextMenu.addAction(self.assignAction) contextMenu.addAction(self.resetServiceAction) # contextMenu.addAction(self.splitAction) contextMenu.exec_(pos) @QtCore.pyqtSlot() def reverse(self): """Reverses the train direction.""" self.simulation.simulationWindow.webSocket.sendRequest("train", "reverse", {'id': int(self.trainId)}) @QtCore.pyqtSlot() def reassignService(self): """ Pops up a dialog for the user to choose the new service and reassign it to this train, if the service is not already assigned to another train""" self.reassignServiceRequested.emit(self.trainId) @QtCore.pyqtSlot() def resetService(self): """Resets the service, i.e. sets the pointer to the first station.""" if QtWidgets.QMessageBox.question( self.simulation.simulationWindow, self.tr("Reset a service"), self.tr("Are you sure you really " "want to reset service %s?" % self.serviceCode), QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel ) == QtWidgets.QMessageBox.Ok: self.simulation.simulationWindow.webSocket.sendRequest("train", "resetService", {'id': int(self.trainId)}) @QtCore.pyqtSlot() def proceedWithCaution(self): self.simulation.simulationWindow.webSocket.sendRequest("train", "proceed", {'id': int(self.trainId)}) @QtCore.pyqtSlot() def splitTrainPopUp(self): """Pops up a dialog for the user to choose where to split the train and then split it.""" reason = None if len(self.trainType.elements) < 2: reason = self.tr("This train cannot be split") if self.speed != 0: reason = self.tr("This train is not stopped") if reason: QtWidgets.QMessageBox.warning( self.simulation.simulationWindow, self.tr("Unable to split train"), reason, QtWidgets.QMessageBox.Ok ) else: self.splitTrainRequested.emit(self.trainId) def splitTrain(self, splitIndex): """Splits this train at the given index. :param splitIndex: The index at which to split the train. 1 is between the first and second element, 2 between the second and third, etc. counting from the train head.""" headElements = self.trainType.elements[:splitIndex] tailElements = self.trainType.elements[splitIndex:] headTrainType = None tailTrainType = None for trainType in self.simulation.trainTypes.values(): if headElements == trainType.elements or \ (len(headElements) == 1 and headElements[0] == trainType): headTrainType = trainType if tailElements == trainType.elements or \ (len(tailElements) == 1 and tailElements[0] == trainType): tailTrainType = trainType if headTrainType and tailTrainType: break # Check if there exists a new train type for the head and tail trains if not headTrainType or not tailTrainType: QtWidgets.QMessageBox.warning( self.simulation.simulationWindow, self.tr("Unable to split train"), self.tr("This train cannot be split"), QtWidgets.QMessageBox.Ok ) return # Change our own train type to the head type self._trainType = headTrainType # Create a new train for the tail parameters = { "__type__": "Train", "serviceCode": None, "trainTypeCode": tailTrainType.code, "status": TrainStatus.INACTIVE, "speed": 0.0, "initialSpeed": 0.0, "trainHead": self.trainHead - headTrainType.length - 1.0, "appearTime": self.simulation.currentTime.toString(), "initialDelay": 0, "nextPlaceIndex": None, "stoppedTime": 1.0 } newTrain = Train(parameters) self.simulation.addTrain(newTrain) newTrain.initialize(self.simulation) newTrain.reassignService()
ts2/ts2
ts2/trains/train.py
train.py
py
31,937
python
en
code
43
github-code
6
36414916188
# Solution1 class Solution: def isRobotBounded(self, instructions: str) -> bool: directions = [1, 1, -1, -1] cur_direction = 0 cur_position = [0, 0] for instruction in instructions: if instruction == "G": cur_position[(cur_direction % 2 + 1)%2] += directions[cur_direction] elif instruction == "L": cur_direction -= 1 if cur_direction < 0: cur_direction = 3 elif instruction == "R": cur_direction = (cur_direction + 1) % 4 cur_position = tuple(cur_position) return cur_position == (0, 0) or cur_direction != 0 # Solution2 class Solution: def isRobotBounded(self, instructions: str) -> bool: horizontal_dir = 0 vertical_dir = 1 cur_position = [0, 0] for instruction in instructions: if instruction == "G": cur_position[0] += horizontal_dir cur_position[1] += vertical_dir elif instruction == "L": horizontal_dir, vertical_dir = -1*vertical_dir, horizontal_dir else: horizontal_dir, vertical_dir = vertical_dir, -1*horizontal_dir cur_position = tuple(cur_position) return cur_position == (0, 0) or (horizontal_dir, vertical_dir) != (0, 1)
eyosiasbitsu/Competitive-programming-A2SV
A2SV - Squid Game/Robot Bounded In Circle/robot-bounded-in-circle.py
robot-bounded-in-circle.py
py
1,458
python
en
code
3
github-code
6
31886163933
import random class ValueHighError(Exception): def __init__(self, msg, value): self.msg = msg self.value = value class ValueLowError(Exception): def __init__(self, msg, value): self.msg = msg self.value = value def test_input_value(value: str, desired_range: tuple): try: int(value) except ValueError as e: raise Exception(random_error_msg(value)) from e if int(value) < desired_range[0]: raise ValueLowError( f'Error: {value} is not in presented options! Should be between {desired_range[0]} and {desired_range[1]}', value) if int(value) > desired_range[1]: raise ValueLowError( f'Error: {value} is not in presented options! The number should be between {desired_range[0]} and {desired_range[1]}', value) def random_error_msg(value): msg = [ f"Error: This '{value}' should be number not a string!", f"Error: Why you wouldn't understand '{value}' should be number not a string!", f"Error: Dude are you fucking stupid? Why you wouldn't understand '{value}' should be number not a string!", ] return random.choice(msg)
NikolaVasilev/WeaponFactoryOOP
validations.py
validations.py
py
1,199
python
en
code
0
github-code
6
18100446664
""" https://leetcode.com/problems/jump-game-iv/ 1345. Jump Game IV Given an array of integers arr, you are initially positioned at the first index of the array. In one step you can jump from index i to index: i + 1 where: i + 1 < arr.length. i - 1 where: i - 1 >= 0. j where: arr[i] == arr[j] and i != j. Return the minimum number of steps to reach the last index of the array. Notice that you can not jump outside of the array at any time. """ from typing import List, Deque, DefaultDict, Tuple from collections import deque, defaultdict from unittest import TestCase, main class Solution: def minJumps(self, arr: List[int]) -> int: # Edge case if len(arr) == 1: return 0 steps = 0 visited = [True] + [False] * (len(arr) - 1) q: Deque[int] = deque() q.append(0) hm: DefaultDict[int, List[int]] = defaultdict(list) # Create hash map for i in range(len(arr)): hm[arr[i]].append(i) while q: for _ in range(len(q)): i = q.popleft() # If i is the last index, return steps if i == len(arr) - 1: return steps # Search i - 1 if 0 <= i - 1 and not visited[i - 1]: visited[i - 1] = True q.append(i - 1) # Search i + 1 if i + 1 < len(arr) and not visited[i + 1]: visited[i + 1] = True q.append(i + 1) # Search hm[arr[i]] while hm[arr[i]]: j = hm[arr[i]].pop() if not visited[j]: visited[j] = True q.append(j) steps += 1 raise ValueError("Could't find the answer") class Test(TestCase): cases: List[Tuple[List[int], int]] = [ ([7, 7, 2, 1, 7, 7, 7, 3, 4, 1], 3), ] def test_solution(self): solution = Solution() for arr, expected in self.cases: self.assertEqual(solution.minJumps(arr), expected) if __name__ == "__main__": main()
hirotake111/leetcode_diary
leetcode/1345/solution.py
solution.py
py
2,162
python
en
code
0
github-code
6
74180016507
import json poptab = [ x.split(', ') for x in open('country-list.csv').read().split('\n')] captab = [ x.split(', ') for x in open('country-capitals.csv').read().split('\n')] flgtab = [ x.split(', ') for x in open('country-flags.csv').read().split('\n')] curtab = [ x.split(', ') for x in open('country-currency.csv').read().split('\n')] popmap = dict([[x[1], { 'population': x[2], 'area': x[3], 'density': x[4]}] for x in poptab if len(x) > 1]) capmap = dict([[x[0], x[1:]] for x in captab if len(x) > 1]) curmap = dict([[x[0], { 'currency': x[1], 'code': x[2]}] for x in curtab if len(x) > 1]) flgmap = dict([[x[1], x[0]] for x in flgtab if len(x) > 1]) countries = [x[1] for x in poptab if len(x) > 1] res = [{ 'serial': i+1, 'name': countries[i], 'capitals': capmap[countries[i]], 'currency': curmap[countries[i]]['currency'], 'currency_code': curmap[countries[i]]['code'], 'population': popmap[countries[i]]['population'], 'area': popmap[countries[i]]['area'], 'population_density': popmap[countries[i]]['density'], 'flag': flgmap[countries[i]] } for i in range(len(countries))] print(json.dumps(res, indent=4))
GnsP/countries
assemble.py
assemble.py
py
1,156
python
en
code
0
github-code
6
34570396569
from django import forms from .models import Post, Comment, Category2 from treebeard.forms import movenodeform_factory, MoveNodeForm # from markdownx.fields import MarkdownxFormField class CategoryForm(MoveNodeForm): class Meta: model = Category2 exclude = ('sib_order', 'parent') class PostCreateUpdateForm(forms.ModelForm): class Meta: model = Post fields = ('body','title', 'category2', 'is_published' ) labels = { 'category2': 'دسته بندی', 'is_published': ' پست منتشر شود؟', } widgets = { 'body': forms.Textarea(attrs={'id':'markdown_input' , 'class':'form-control shadow-lg'}), 'category2': forms.Select(attrs={'class':'form-control shadow-lg'}), 'title': forms.TextInput(attrs={'class':'form-control shadow-lg'}), # 'is_published': forms.BooleanField(), # 'title': forms.TextInput(attrs={'class':'form-control shadow-lg'}), } class CommentCreateForm(forms.ModelForm): class Meta: model = Comment fields = ('body',) widgets = { 'body': forms.Textarea(attrs={'class':'form-control'}) } class CommentReplyForm(forms.ModelForm): class Meta: model = Comment fields = ('body',) class PostSearchForm(forms.Form): search = forms.CharField()
MohammadGoodarzi/hamkav_core
HamkavBlog/forms.py
forms.py
py
1,271
python
en
code
0
github-code
6
71992716667
# -*- coding: utf-8 -*- # python3 from loguru import logger import time import socket import re import psycopg2 from psycopg2 import Error from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT import time logger.add("/var/log/cdr_collector/cdr_collector_{time:DD-MM-YYYY}.log", format="{time:DD-MM-YYYY at HH:mm:ss} {level} {message}", rotation="20 MB", compression="zip") serv_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, proto=0) serv_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serv_sock.bind(('', 9000)) serv_sock.listen(10) def recieve_msg(client_sock): while True: len_msg = 102 len_msg_socket = len_msg * 9000 valid_msg = [] msg = client_sock.recv(len_msg_socket) #.decode("utf-8") # I got the error when I put server.recv if len(msg) == len_msg: logger.debug(f"Received {len(msg)} byte") global start_time start_time = time.time() msg = msg.decode("utf-8") valid_msg.append(msg) msg = valid_msg return msg elif len(msg) > len_msg: logger.debug(f"Received {len(msg)} byte") i = r"b'\d{9}" ls = [msg[i:i+len_msg] for i in range(0,len(msg),len_msg)] for i in ls: if len(i) == len_msg: i = i.decode("utf-8") valid_msg.append(i) msg = valid_msg return msg break elif len(msg) == 0: logger.info(f"Received {len(msg)} byte client DISCONNECTED!!!") timing = start_time - time.time() logger.info(f"Время обработки = {timing}") return False break else: logger.info(f"ACM is CONNECTED, time {msg.decode('utf-8')}") def start(serv_sock): serv_sock.listen(1) while True: logger.info(f"waiting connection, socket is OPEN!!!") client_sock, client_addr = serv_sock.accept() logger.info(f"Connected to socket by, {client_addr}") while True: msg = recieve_msg(client_sock) if msg == False: client_sock.close() break else: put_to_db(msg) logger.info(f"Socket connection by {client_addr} is CLOSED!!!") client_sock.close() def put_to_db(msg): try: # Подключение к существующей базе данных connection = psycopg2.connect(user="user", # пароль, который указали при установке PostgreSQL password="password", host="127.0.0.1", port="5432") connection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) # Курсор для выполнения операций с базой данных cursor = connection.cursor() #sql_insert_query = f"SELECT cdr_unformatted_func_py({tst})" sql_insert_query = f"SELECT cdr_unformatted_func_py(VARIADIC ARRAY{msg!r})" # !r для того чтобы строка передавалась с ковычками. cursor.execute(sql_insert_query) connection.commit() except (Exception, Error) as error: logger.error(f"Error at work PostgreSQL, {error}") finally: if connection: cursor.close() connection.close() logger.debug(f"Data length={len(msg)} has been successfully written to the database") start(serv_sock)
jgnom/avaya_cdr_collector
main.py
main.py
py
3,660
python
en
code
0
github-code
6
35384638116
from setuptools import setup with open('README.md', 'r') as f: readme = f.read() if __name__ == '__main__': setup( name='youtube-dl-service', version='0.0.2', author='Dmitriy Pleshevskiy', author_email='[email protected]', description='Using youtube-dl as service in python code', long_description=readme, long_description_content_type='text/markdown', package_data={'': ['LICENSE', 'README.md']}, include_package_data=True, license='MIT', packages=['youtube_dl_service'], install_requires=[ 'youtube-dl==2020.12.29', ] )
pleshevskiy/youtube-dl-service
setup.py
setup.py
py
655
python
en
code
0
github-code
6
32149738267
# Upload BOJ Gold-3 Topological Sorting & Graph 2252번 줄세우기 # https://velog.io/@kimdukbae/%EC%9C%84%EC%83%81-%EC%A0%95%EB%A0%AC-Topological-Sorting # 참고 링크 from collections import deque N, M = map(int,input().split()) graph = [ [] for _ in range(N+1)] indegree = [0]*(N+1) result = [] for i in range(M): A, B = map(int,input().split()) graph[A].append(B) indegree[B] += 1 def topology_sort(): q = deque() for i in range(1,N+1): if not indegree[i]: q.append(i) while q: num = q.popleft() result.append(num) for value in graph[num]: indegree[value] -= 1 if not indegree[value]: q.append(value) topology_sort() print(*result)
HS980924/Algorithm
src/14.그래프/B#2252_줄세우기.py
B#2252_줄세우기.py
py
808
python
en
code
2
github-code
6
30338343377
key = [[0,0,0],[1,0,0],[0,1,1]] lock = [[1,1,1],[1,1,0],[1,0,1]] def rotate(arr): for i in range(len(arr)): tmp = arr[i][0] arr[i][0] = arr[i][1] arr[i][1] = len(arr)-1-tmp key_one = [] lock_zero = [] for i, n in enumerate(key): for j, num in enumerate(n): if num == 1: key_one.append([i,j]) for i, n in enumerate(lock): for j, num in enumerate(n): if num == 0: lock_zero.append([i,j]) r_cnt = 0 while r_cnt < 4: for i in range(len(key_one)): p = key_one[i] key_one[i][0],key_one[i][1] = p[1], len(key)-1-p[0] #key_one[i] = (p[1], len(key)-1-p[0]) print(key_one[i]) r_cnt += 1 for i in range(-(len(lock)-1), len(key)+len(lock)): for j in range(-(len(lock)-1), len(key)+len(lock)): z_cnt = len(lock_zero) for row, col in key_one: row += i col += j if (0<=row<len(lock)) and (0<=col<len(lock)): if [row,col] in lock_zero: z_cnt -= 1 else: break if z_cnt == 0: print(True) exit(0) print(False)
minju7346/CordingTest
programmers/60059.py
60059.py
py
1,226
python
en
code
0
github-code
6
16319784906
"""ZIP - Compactando / Descompactando arquivos""" from zipfile import ZipFile import os """ Este módulo fornece ferramentas para: criar, ler, escrever, adicionar, e listar um arquivo ZIP -https://docs.python.org/pt-br/3/library/zipfile.html """ way = (r'C:\Users\Igor\Desktop\Estudos\Programação-em-Python' r'\Mundo-invertido\Udemy\4-Módulos-Python') # Cria um arquivo e colocar arquivos num zip with ZipFile('file.zip', 'w') as zip: for file in os.listdir(way): full_path = os.path.join(way, file) zip.write(full_path, file) with ZipFile('file.zip', 'r') as zip: # Exibi os arquivos dentro no zip for file in zip.namelist(): print(file) with ZipFile('file.zip', 'r') as zip: # Descompacta os arquivos do zip zip.extractall(f'{way}/unzipped') # descompactado
igorfreits/Studies-Python
Udemy/4-Módulos-Python/aula 87 - ZIP.py
aula 87 - ZIP.py
py
814
python
pt
code
1
github-code
6
33526996747
''' 测试预训练VGG文件,与CNN_DPL为同一预训练模型 ''' import torch as t import torch.optim as optim from torch.utils.data import Dataset, DataLoader import data from torchvision import transforms, datasets import model import warnings warnings.filterwarnings('ignore') batch_size = 128 test_dataset = datasets.ImageFolder(root='/data2/ci2p_user_data/kwei/Caltech101/test', transform=data.transform) test_loader = DataLoader(dataset=test_dataset, shuffle=True, batch_size=batch_size, ) device = t.device("cuda:1" if t.cuda.is_available() else "cpu") net = model.VGG_Test() net = net.to(device) def test(): net.eval() correct = 0 total = 0 with t.no_grad(): for data in test_loader: images, labels = data images = images.to(device) labels = labels.to(device) outputs = net(images) _, pred = t.max(outputs.data, dim=1) total += labels.size(0) correct += (pred == labels).sum().item() print('正确率:{}%'.format(100 * correct / total)) if __name__ == '__main__': test()
huifeidetiaotu96/CNN_DPL
test_VGG.py
test_VGG.py
py
1,266
python
en
code
0
github-code
6
21359432660
"""Clean Code in Python - Chapter 5: Decorators Composition over inheritance, tests for examples 1 & 2 """ import unittest from composition_1 import Customer as Customer1 from composition_2 import Customer as Customer2 class BaseTestMixin: def test_resolver_finds_attributes(self): with self.subTest(test_class=self._CLASS_TO_TEST): customer = self._CLASS_TO_TEST(1, "foo", "address") self.assertEqual(customer.resolve_customer_id, 1) self.assertEqual(customer.resolve_name, "foo") self.assertEqual(customer.resolve_address, "address") self.assertEqual(customer.customer_id, 1) def test_resolver_attribute_error(self): with self.subTest(test_class=self._CLASS_TO_TEST): customer = self._CLASS_TO_TEST(1, "foo", "address") self.assertEqual(customer.name, "foo") with self.assertRaises(AttributeError): customer.resolve_foo class TestInheritance(BaseTestMixin, unittest.TestCase): _CLASS_TO_TEST = Customer1 class TestDecorator(BaseTestMixin, unittest.TestCase): _CLASS_TO_TEST = Customer2 if __name__ == "__main__": unittest.main()
rmariano/Clean-code-in-Python
book/src/ch05/tests/test_composition.py
test_composition.py
py
1,193
python
en
code
145
github-code
6
3337691584
''' reres替换本地文件有问题 起一个端口用http试一试 ''' from flask import Flask app = Flask(__name__) @app.route("/udc.js") def udc(): fill=open('/Users/xiaodu/Desktop/udc2.js','r',encoding='utf-8') js_dt=fill.read() return js_dt if __name__ == '__main__': app.run()
zml1996/learn_record
myflask/file2link.py
file2link.py
py
307
python
en
code
2
github-code
6
17510524283
''' 2. use BFS to find shortest length a. establish neighbors: go through alphabet, change 1 letter, if in wordList, add neighbor to dict for this word b. BFS -- add that nb word to queue c. stop BFS when endWord is found. d. return length 3. use DFS to find routes with shortest length optimization detail: - i --> nbs(i) ==> consider neighbors that are distance one further away from start ''' class Solution: def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]: def bfs(): todo = set(wordList) todo.add(beginWord) allwords = set(wordList) count = 0 level = deque([beginWord]) todo.remove(beginWord) length = None while level: for _ in range(len(level)): word = level.popleft() distance[word] = count if word == endWord: length = count + 1 for letidx in range(len(word)): for alphidx in range(ord('a'), ord('z') + 1): ch = chr(alphidx) otherword = word[:letidx] + ch + word[letidx + 1:] if otherword in allwords - set([word]): nblookup[word].add(otherword) nblookup[otherword].add(word) if otherword in todo: level.append(otherword) todo.remove(otherword) count += 1 return length def dfs(word, path): nonlocal length if length == 1: if word == endWord: result.append(path + [endWord]) return todo.remove(word) path.append(word) length -= 1 for otherword in nblookup[word]: if otherword in todo and distance[otherword] == distance[word] + 1: dfs(otherword, path) length += 1 path.pop() todo.add(word) from pprint import pprint result = [] nblookup = defaultdict(set) distance = {} length = bfs() if length is None: return [] todo = set(wordList) todo.add(beginWord) dfs(beginWord, []) return result
soji-omiwade/cs
dsa/before_rubrik/word_ladder_ii.py
word_ladder_ii.py
py
2,654
python
en
code
0
github-code
6
42931952334
import re class Solution: def trailingZeros(self, num): ans, i, div = 0, 5, num/5 while div > 0: ans += div i *= 5 div = num/i return int(ans) obj = Solution() print(obj.trailingZeros(25))
shwetakumari14/Practice-Problems
Pythons Solutions/Trailing Zeros in Factorial.py
Trailing Zeros in Factorial.py
py
265
python
en
code
0
github-code
6
21864334971
"""9-3: Users 1. Make a class called User. Create two attributes called first_name and last_name, and then 2. create several other attributes that are typically stored in a user profile. 3. Make a method called describe_user() that prints a summary of the user’s information. 4. Make another method called greet_user() that prints a personalized greeting to the user. 5. Create several instances representing different users, and call both methods for each user.""" class User(): # step 1. """Represent a simple user profile.""" def __init__(self, first_name, last_name, username, email, location, age: int): """Initialize the user.""" self.first_name = first_name.title() # Step 2. (Line12 to Line 17) self.last_name = last_name.title() self.username = username self.email = email self.location = location.title() self.age = age def describe_user(self): # Step 3. """Display a summary of the user's information.""" print("Profile as follows:") print(f"\n {self.first_name} {self.last_name}") print(f" Username: {self.username}") print(f" Email: {self.email}") print(f" Location: {self.location}") print(f" Age:{self.age}") def greet_user(self): # Step 4. """Display a personalized greeting to the user.""" print("\nWelcome back, " + self.username + "!") albert = User('albert', 'joes', 'a_joes', '[email protected]', 'brooklyn', 18) albert.describe_user() albert.greet_user() bonnie = User('bonnie', 'greenman', 'bgreen', '[email protected]', '', 30) bonnie.describe_user() bonnie.greet_user()
kawing13328/Basics
My Homework/Ex_9-3.py
Ex_9-3.py
py
1,656
python
en
code
0
github-code
6
39861129033
"""Imports xml statements from privatbank, optained via p24-cli. See https://github.com/dimboknv/p24-cli The xml format is identical to that of p24 merchant api. """ import datetime from xml.etree import ElementTree as ET import beangulp import dateutil.parser from beancount.core import data, flags from beancount.core.number import D from uabean.importers.mixins import IdentifyMixin class Importer(IdentifyMixin, beangulp.Importer): FLAG = flags.FLAG_OKAY matchers = [ ("content", "<statements status="), ("mime", "application/xml"), ] unknown_account = "Assets:Unknown" def __init__( self, card_to_account_map, *args, fee_account="Expenses:Fees:Privatbank", **kwargs ): self.card_to_account_map = card_to_account_map self.fee_account = fee_account super().__init__(*args, **kwargs) def date_from_elem(self, elem): return dateutil.parser.parse(" ".join(elem.attrib["trandate"].split(" ")[:2])) def account(self, _): return "privatbank" def extract(self, filename, existing_entries=None): entries = [] tree = ET.parse(filename) root = tree.getroot() assert root.tag == "statements" max_date = None max_elem = None for elem in root: meta = data.new_metadata(filename, 0) entries.append(self.entry_from_elem(meta, elem)) date = self.date_from_elem(elem) if max_date is None or date > max_date: max_date = date max_elem = elem if max_elem is not None: rest_num, rest_currency = max_elem.attrib["rest"].split(" ", 1) amount = data.Amount(D(rest_num), rest_currency) entries.append( data.Balance( data.new_metadata(filename, 0), max_date.date() + datetime.timedelta(days=1), self.card_to_account_map[max_elem.attrib["card"]], amount, None, None, ) ) return entries def entry_from_elem(self, meta, elem): dt = self.date_from_elem(elem) meta["time"] = dt.strftime("%H:%M:%S") account = self.card_to_account_map.get( elem.attrib["card"], self.unknown_account ) num, currency = elem.attrib["amount"].split(" ", 1) num = D(num) card_num, card_currency = elem.attrib["cardamount"].split(" ", 1) card_num = D(card_num) postings = [ data.Posting( account, data.Amount(card_num, card_currency), None, None, None, None ) ] if currency != card_currency: meta["converted"] = elem.attrib["amount"] elif abs(card_num) != num: fee_amount = data.Amount(abs(card_num) - num, currency) postings.append( data.Posting(self.fee_account, fee_amount, None, None, None, None) ) return data.Transaction( meta, dt.date(), self.FLAG, None, elem.attrib["description"], data.EMPTY_SET, data.EMPTY_SET, postings, ) def get_test_importer(): return Importer( { "1234": "Assets:Privatbank:Universal", "5678": "Assets:Privatbank:Social", } ) if __name__ == "__main__": from beangulp.testing import main main(get_test_importer())
OSadovy/uabean
src/uabean/importers/privatbank_xml.py
privatbank_xml.py
py
3,577
python
en
code
18
github-code
6
71567935547
class Library: def __init__(self): self.user_records = [] self.books_available = {} self.rented_books = {} def get_book(self, author: str, book_name: str, days_to_return: int, user): if author in self.books_available and book_name in self.books_available[author]: user.books.append(book_name) self.books_available[author].remove(book_name) if user.username not in self.rented_books: self.rented_books[user.username] = {} self.rented_books[user.username][book_name] = days_to_return return f"{book_name} successfully rented for the next {days_to_return} days!" for user_books in self.rented_books.values(): if book_name in user_books: return f'The book "{book_name}" is already rented and will be available in ' \ f'{user_books[book_name]} days!' def return_book(self, author: str, book_name: str, user): if book_name not in user.books: return f"{user.username} doesn't have this book in his/her records!" user.books.remove(book_name) self.books_available[author].append(book_name) self.rented_books[user.username].pop(book_name)
lorindi/SoftUni-Software-Engineering
Python-OOP/Classes and Objects - Exercise/08_library/project/library.py
library.py
py
1,255
python
en
code
3
github-code
6
7035699251
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 21 13:24:47 2018 @author: kausic """ import os import cv2 import numpy as np from tqdm import tqdm root="/home/kausic/Desktop/My_research/dataset/sunrgbd/SUNRGBD" save_location="/home/kausic/ASU_MS/SML/project/sunrgbd_images/" data_file=open(save_location+"data.txt",'w') count=0 for dirn,subn,fileList in tqdm(os.walk(root,True),desc="Files recorded"): if('annotation' in subn): #print (subn) (_,__,files)=os.walk(dirn +'/image/').__next__() image_path=dirn+'/image/'+files[0] (_,__,files)=os.walk(dirn +'/depth/').__next__() depth_path=dirn+'/depth/'+files[0] scene_file=open(dirn+'/scene.txt') scene=scene_file.read() scene_file.close() rgb_img=cv2.imread(image_path) depth_img=cv2.imread(depth_path) if rgb_img is None or depth_img is None: continue final_string="img_{0:05d} ".format(count) img_name="rgb_img_{0:05d}.jpg".format(count) depth_name="depth_img_{0:05d}.jpg".format(count) final_string+=scene data_file.write(final_string+'\n') cv2.imwrite(save_location+img_name,rgb_img) cv2.imwrite(save_location+depth_name,depth_img) count+=1 data_file.close()
Bharathgc/Evaluating-Fusion-points-for-multi-stream-networks-handling-cross-modal-data
data_extractor_script.py
data_extractor_script.py
py
1,306
python
en
code
11
github-code
6
24176685864
import paho.mqtt.client as mqtt from Adafruit_IO import * import time broker_address = "192.168.82.100" broker_port = 1883 topic_gas = "sensor/gas" topic_flame = "sensor/flame" topic_control = "control" ADAFRUIT_IO_USERNAME = "chovy96de" ADAFRUIT_IO_KEY = "aio_DbIt49hzcNtwelmritEnVKmugtTL" aio = Client(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY) def on_message(client, userdata, msg): if msg.topic == topic_gas: gas_reading = int(msg.payload) print("Gas Sensor Reading:", gas_reading) # Check if gas reading exceeds 50 if gas_reading > 50: aio.send_data('gas-reading', gas_reading) # Send message to 2nd Arduino to turn on LED client.publish(topic_control, "LED_ON") else: aio.send_data('gas-reading', gas_reading) # Send message to 2nd Arduino to turn off LED client.publish(topic_control, "LED_OFF") elif msg.topic == topic_flame: flame_reading = int(msg.payload) print("Flame Sensor Reading:", flame_reading) # Check if flame reading exceeds 50 if flame_reading > 50: aio.send_data('flame-reading', flame_reading) # Send message to 2nd Arduino to turn on buzzer client.publish(topic_control, "BUZZER_ON") else: aio.send_data('flame-reading', flame_reading) # Send message to 2nd Arduino to turn off buzzer client.publish(topic_control, "BUZZER_OFF") client = mqtt.Client() client.on_message = on_message client.connect(broker_address, broker_port) client.subscribe(topic_gas) client.subscribe(topic_flame) client.loop_start() # Function to send command to the 2nd Arduino def send_command_to_arduino(command): client.publish(topic_control, command) # Example usage: Send command to turn on the LED send_command_to_arduino("LED_ON") # Example usage: Send command to turn on the buzzer send_command_to_arduino("BUZZER_ON") # Delay between each data transmission transmission_interval = 5 # 5 seconds transmission_count = 0 transmission_limit = 12 # 12 transmissions within 1 minute while True: client.loop() # Send data to Adafruit IO gas = 100 # Replace with your actual gas sensor reading flame = 200 # Replace with your actual flame sensor reading aio.send_data('gas-reading', gas) aio.send_data('flame-reading', flame) transmission_count += 1 if transmission_count >= transmission_limit: # Pause for 1 minute after reaching the transmission limit time.sleep(60) transmission_count = 0 else: time.sleep(transmission_interval)
Shihab-007/Advanced-Embedded-System-Hardware-Enginnering
Advanced Embedded System/Codes/adafruit.py
adafruit.py
py
2,679
python
en
code
1
github-code
6
31454964996
from typing import Any from django.db.models import ( Model, CharField, ForeignKey, BooleanField, ManyToManyField, UniqueConstraint, DateTimeField, CASCADE, ) from abstracts.models import AbstractDateTime from subjectss.models import Topic from subjectss.models import Student class QuizType(AbstractDateTime): SUBJECT_QUIZ_TYPE = 1 TOPIC_QUIZ_TYPE = 2 CLASS_QUIZ_TYPE = 3 QUIZ_NAME_LIMIT = 100 name: CharField = CharField( max_length=QUIZ_NAME_LIMIT, unique=True, db_index=True, verbose_name="Наименование типа теста" ) class Meta: verbose_name: str = "Тип теста" verbose_name_plural: str = "Типы тестов" ordering: tuple[str] = ("-datetime_updated",) def __str__(self) -> str: return self.name class Question(AbstractDateTime): TEST_NAME_LIMIT = 240 name: CharField = CharField( max_length=TEST_NAME_LIMIT, unique=True, db_index=True, verbose_name="Наименование" ) attached_subject_class: Topic = ForeignKey( to=Topic, on_delete=CASCADE, related_name="questions", verbose_name="Вопрос к теме" ) class Meta: verbose_name_plural: str = "Вопросы" verbose_name: str = "Вопрос" ordering: tuple[str] = ("-datetime_updated",) def __str__(self) -> str: return self.name class Answer(AbstractDateTime): ANSWER_NAME_LIMIT = 250 name: CharField = CharField( max_length=ANSWER_NAME_LIMIT, verbose_name="Ответ" ) question: Question = ForeignKey( to=Question, on_delete=CASCADE, related_name="answers", verbose_name="Ответ к вопросу" ) is_correct: BooleanField = BooleanField( default=False, verbose_name="Правильный ответ?" ) class Meta: verbose_name_plural: str = "Ответы" verbose_name: str = "Ответ" ordering: tuple[str] = ("-datetime_updated",) constraints: tuple[Any] = ( UniqueConstraint( fields=['name', 'question'], name="unique_asnwer_name_question" ), ) def __str__(self) -> str: return self.name class Quiz(Model): QUIZ_MAX_NAME = 250 name: CharField = CharField( max_length=QUIZ_MAX_NAME, verbose_name="Название теста" ) student: Student = ForeignKey( to=Student, on_delete=CASCADE, related_name="subject_quizes", verbose_name="Зарегестрированный стедент" ) quiz_type: QuizType = ForeignKey( to=QuizType, on_delete=CASCADE, related_name="quizes", verbose_name="Тип куиза" ) questions: ManyToManyField = ManyToManyField( to=Question, through="QuizQuestionAnswer", through_fields=["quiz", "question"], verbose_name="Вопросы на теста" ) datetime_created: DateTimeField = DateTimeField( verbose_name="время и дата создания", auto_now_add=True ) attached_questions: ManyToManyField = ManyToManyField( to=Question, blank=True, related_name="quizess", verbose_name="Прикрепленные вопросы теста (для чтения)" ) class Meta: verbose_name: str = "Тест" verbose_name_plural: str = "Тесты" def __str__(self) -> str: return f"Студент: '{self.student}' Тип теста: '{self.quiz_type}'" class QuizQuestionAnswer(Model): quiz: Quiz = ForeignKey( to=Quiz, on_delete=CASCADE, related_name="quiz_questions", verbose_name="Тест" ) question: Question = ForeignKey( to=Question, on_delete=CASCADE, related_name="quiz_questions", verbose_name="Вопрос" ) user_answer: Answer = ForeignKey( to=Answer, on_delete=CASCADE, related_name="user_answer", verbose_name="Ответ пользователя" ) class Meta: verbose_name: str = "Ответ на вопрос теста" verbose_name_plural: str = "Ответы на вопросы тестов" constraints: tuple[Any] = ( UniqueConstraint( fields=['quiz', 'question'], name="unique_quiz_question" ), ) def __str__(self) -> str: return f"{self.quiz} {self.question} {self.user_answer}"
NNaraB/education_site_back
apps/tests/models.py
models.py
py
4,723
python
en
code
0
github-code
6
9699684266
import tkinter from initController import * from tkinter import Menu from tkinter.ttk import * from bridge import MouseMotionToController from controller.canvasController import CanvasController from controller.modeController import CompositionObjectController top = tkinter.Tk() buttonsContainer = tkinter.Frame(top) buttonsContainer.pack(side = tkinter.LEFT) def create_window(): window = tkinter.Toplevel(top) window.geometry('{}x{}'.format(200 , 100)) def close(): window.destroy() def getText(event): CanvasController.canvasContainer.itemconfig(MouseMotionToController.singleClickedObj[-2].text, text = e.get()) button1 = tkinter.Button(window, text="Close", command=close, width = 50) button2 = tkinter.Button(window, text="OK", command=close, width = 50) button1.pack(side = tkinter.BOTTOM) button2.pack(side = tkinter.BOTTOM) e = tkinter.Entry(window) e.bind("<Return>", getText) e.pack() def createNewGroup(): CompositionObjectController.createNewGroup() def killAGroup(): CompositionObjectController.killAGroup() menubar = Menu(top) editMenu = Menu(menubar, tearoff=0) editMenu.add_command(label="Group", command=createNewGroup) editMenu.add_command(label="UnGroup", command=killAGroup) editMenu.add_command(label="Change Object Name", command=create_window) menubar.add_cascade(label="Edit Menu", menu=editMenu) initAllButtons(buttonsContainer) initCanvasContainer(top) initModeControllers() top.config(menu = menubar) top.mainloop()
j611062000/umlEditorByPython
main.py
main.py
py
1,545
python
en
code
0
github-code
6
9000442932
# 测试 # 开发时间:2022/8/5 9:26 from thop import profile # import torchvision.models as models # import torch from ptflops import get_model_complexity_info from models.basicblock import DRB, PALayer, CALayer, CCALayer, SRB from models.SwinT import SwinT # from .FCVit import fcvit_block # from .FCA import MultiSpectralAttentionLayer import math import torch import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import functional as trans_fn from torchvision.transforms import InterpolationMode from models.fusion import iAFF ,AFF, MS_CAM # 双三次上采样 # img = trans_fn.resize(img, size, InterpolationMode.BICUBIC) def channel_shuffle(x, groups=4): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups# reshape x = x.view(batchsize, groups,channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x def conv_layer(in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): padding = int((kernel_size - 1) / 2) * dilation return nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, bias=bias, dilation=dilation, groups=groups) class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) class UpsampleOneStep(nn.Sequential): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): self.num_feat = num_feat self.input_resolution = input_resolution m = [] m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) m.append(nn.PixelShuffle(scale)) super(UpsampleOneStep, self).__init__(*m) def flops(self): H, W = self.input_resolution flops = H * W * self.num_feat * 3 * 9 return flops class myModel(nn.Module): def __init__(self, img_size=64, num_heads=8, upscale=4, window_size=8, num_in_ch=3, nf=64, embed_dim=64, depth=4, upsampler='pixelshuffledirect', img_range=1.): super(myModel, self).__init__() num_feat = 64 num_out_ch = 3 self.upsampler = upsampler self.window_size = window_size self.img_range = img_range self.upscale = upscale if num_in_ch == 3: rgb_mean = (0.4488, 0.4371, 0.4040) self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) else: self.mean = torch.zeros(1, 1, 1, 1) ##################################################################################################### ################################### 1, shallow feature extraction ################################### self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) ##################################################################################################### ################################### 2, deep feature extraction ###################################### self.num_layers = depth self.layers = nn.ModuleList() # 存放HRBCT模块 for i_layer in range(self.num_layers): layer = HRBCT(embed_dim, nf, num_heads) self.layers.append(layer) ##################################################################################################### ################################### 2.2, 深度特征融合模块 ###################################### self.conv1 = nn.Conv2d(depth*embed_dim, embed_dim, kernel_size=1) # depth*embed_dim self.conv3 = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1, bias=True) self.PA = PALayer(embed_dim) # ##################################################################################################### ################################ 3, high quality image reconstruction ################################ if self.upsampler == 'pixelshuffle': # for classical SR self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) elif self.upsampler == 'pixelshuffledirect': # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, (img_size, img_size)) def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.window_size - h % self.window_size) % self.window_size mod_pad_w = (self.window_size - w % self.window_size) % self.window_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') return x def forward_shallow_features(self, x): x1 = self.RRDB(x) x1 = self.firstUp(x1) x1 = self.conv_end1(x1) return x1 def forward_features(self, x): retainV = [] for layer in self.layers: x = layer(x) retainV.append(x) x1 = torch.cat((retainV[0], retainV[1], retainV[2], retainV[3]), 1).contiguous() return x1 def DFF(self, x): x1 = self.conv1(x) x1 = self.conv3(x1) x1 = self.PA(x1) return x1 def forward(self, x): H, W = x.shape[2:] self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range if self.upsampler == 'pixelshuffle': x = self.conv_first(x) x = self.conv_before_upsample(x) x = self.conv_last(self.upsample(x)) elif self.upsampler == 'pixelshuffledirect': x = self.conv_first(x) # 经过浅层特征提取 x = self.DFF(self.forward_features(x)) + x # 经过深层特征提取和特征融合 x = self.upsample(x) # 图像上采样重建 x = x / self.img_range + self.mean return x[:, :, :H * self.upscale, :W * self.upscale] class HRBCT(nn.Module): def __init__(self, embed_dim=64, nf=64, num_heads=8,distillation_rate=0.50): super(HRBCT, self).__init__() # 知识蒸馏 self.distilled_channels = int(embed_dim * distillation_rate) self.remaining_channels = int(embed_dim - self.distilled_channels) self.distillation_rate = distillation_rate self.Conv3_D1 = nn.Conv2d(self.distilled_channels, self.distilled_channels, 3, 1, 1) self.Conv3_D2 = nn.Conv2d(int(self.remaining_channels * self.distillation_rate), int(self.remaining_channels * self.distillation_rate), 3, 1, 1) self.ST = SwinT(embed_dim=self.remaining_channels, heads=num_heads) self.SRB = SRB(int(nf*(1-distillation_rate)**2)) # self.BSRB = BSConvURB( int(nf*(1-distillation_rate)**2), int(nf*(1-distillation_rate)**2), kernel_size=3) # DRB # self.DRB = DRB(int(nf*(1-distillation_rate)**2)) # ESA # self.ESA = ESA(n_feats=nf, conv=nn.Conv2d) # 输出通道 输入通道 self.CCA = CCALayer(nf) def forward(self, x): distilled_c1, remaining_c1 = torch.split(x, (self.distilled_channels, self.remaining_channels), dim=1) distilled_c1 = self.Conv3_D1(distilled_c1) out1 = self.ST(remaining_c1) distilled_c2, remaining_c2 = torch.split(out1, (int(self.remaining_channels*self.distillation_rate), int(self.remaining_channels*(1-self.distillation_rate))), dim=1) distilled_c2 = self.conv1_D2(distilled_c2) # distilled_c2 = self.Conv3_D2(distilled_c2) # out2 = self.SRB(remaining_c2) out = torch.cat([distilled_c1, distilled_c2, out2], dim=1) x1 = self.CCA(out) # x_4 = x + x1 return x_4 if __name__ == '__main__': x = torch.randn((1, 3, 64, 64)) model = myModel() y = model(x) print(y.shape) device = torch.device('cuda:0') input = x.to(device) model.eval() model = model.to(device) macs, params = get_model_complexity_info(model, (3, 64, 64), as_strings=True, print_per_layer_stat=True, verbose=True) print('{:<30} {:<8}'.format('Computational complexity: ', macs)) print('{:<30} {:<8}'.format('Number of parameters: ', params))
sad192/LISN-Infrared-Image-SR
models/network_hybrid.py
network_hybrid.py
py
9,368
python
en
code
0
github-code
6
34596295886
import argparse import itertools import re import sys from typing import Optional from graphviz import Digraph import numpy as np import wandb from app.type import APPSProblem, Node from app.const import ( CONCURRENCY_LIMIT, DEFAULT_WANDB_PROJECT_NAME, K, NO_CUDA, NUM_ROLLOUTS, TERMINAL_TOKEN, PROBLEM_INDEX, ) from app.config import experiments sys.path.append("Code-AI-Tree-Search/eval") from compute_reward import compute_reward as _compute_reward # type: ignore def extract_code(text: str, terminal_token: str = TERMINAL_TOKEN) -> str: pattern = rf"ANSWER:\n(.*?){re.escape(terminal_token)}" match = re.search(pattern, text, re.DOTALL) return match.group(1).strip() if match else "" def compute_reward(code: str, problem: APPSProblem, mode: str = "train") -> int: return _compute_reward( problem.dir, code + "\n", mode=mode, public_test_cases="half" ) def log_info( num_actions: int, node: Node, token: Optional[str], elapsed: Optional[float], ): print( f"Step: {('Prediction' if elapsed is not None else 'Selection'):<10} |", f"Action #: {num_actions:<2} |", f"Action: {node.display_action if node else 'N/A':<6} |", f"Token: {repr(token) if token is not None else 'N/A':<8} |", f"Elapsed: {(str(np.round(elapsed, 3)) + 's' if elapsed is not None else 'N/A'):<7} |", ) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--remote", action="store_true", default=False) parser.add_argument( "--debug", action="store_true", help="Debug mode", default=False ) parser.add_argument("--dry", action="store_true", default=False) parser.add_argument("--no_cuda", action="store_true", default=NO_CUDA) parser.add_argument("--K", type=int, help="Number of expanded children", default=K) parser.add_argument("--num_rollouts", type=int, default=NUM_ROLLOUTS) parser.add_argument("--concurrency_limit", type=int, default=CONCURRENCY_LIMIT) parser.add_argument("--experiment_name", type=str, default=None) parser.add_argument( "--problem_index", type=str, default=PROBLEM_INDEX, choices=APPSProblem.problem_indices, ) args, _ = parser.parse_known_args() return args def traverse_and_visualize(node, graph, tokenizer, node_id=0): if node is None: return node_id # Create a label for the node with its statistics action = tokenizer.decode([node.action]) if node.action != "root" else "root" label = f"Action ID: {node.action}\n Action: {action}\nVisits: {node.visits}\nSelected: {node.selected}" if node.action != "root": label += f"\nProb: {node.prob:.2f}\nValue: {node.value:.2f}" graph.node(str(node_id), label) current_id = node_id children = [c for c in node.children if c.selected > 0 or c.visits > 0] for child in children: next_id = node_id + 1 graph.edge(str(current_id), str(next_id)) node_id = traverse_and_visualize(child, graph, tokenizer, next_id) return node_id def visualize_tree(root, tokenizer): graph = Digraph(comment="Tree Visualization") traverse_and_visualize(root, graph, tokenizer) graph.render("tree", format="png") def get_wandb_runs(experiment_name, project_name=DEFAULT_WANDB_PROJECT_NAME): return wandb.Api().runs(project_name, filters={"group": experiment_name}) def compose_configs( problem_indices, experiment_name, dry, project_name=DEFAULT_WANDB_PROJECT_NAME ): runs = get_wandb_runs(experiment_name, project_name) already_run = [run.config for run in runs] exp = experiments[experiment_name] configs = [] for idx in problem_indices: for cfg in list(itertools.product(*exp.values())): cfg = { **dict(zip(exp.keys(), cfg)), "problem_index": idx, } if cfg not in already_run or dry: configs.append(cfg) return configs
cavaunpeu/mcts-llm-codegen
app/util.py
util.py
py
4,017
python
en
code
1
github-code
6
26804269841
import sys from bisect import bisect_left input = sys.stdin.readline num_gates = int(input()) num_planes = int(input()) undocked = [gate + 1 for gate in range(num_gates)] def binary_search(max_dock): idx = bisect_left(undocked, max_dock) if idx == len(undocked) or undocked[idx] > max_dock and idx > 0: return idx - 1 if undocked[idx] == max_dock: return idx raise ValueError for plane in range(num_planes): max_dock = int(input()) try: undocked.pop(binary_search(max_dock)) except: break print(num_gates - len(undocked))
Stevan-Zhuang/DMOJ
CCC/CCC '15 S3 - Gates.py
CCC '15 S3 - Gates.py
py
574
python
en
code
1
github-code
6
5430829069
#CODING BY ARYAN KHAN import os import random try: color_table = "#00FF00" except FileNotFoundError: color_table = "#00FF00" #--(Dark@Colours)---# r="\033[1;91m" g="\033[1;92m" y="\033[1;93m" b="\033[1;94m" p="\033[1;95m" c="\033[1;96m" l="\033[1;97m" s="\033[0m" #--(light@Colours)---# lr="\033[0;91m" lg="\033[0;92m" ly="\033[0;93m" lb="\033[0;94m" lp="\033[0;95m" lc="\033[0;96m" ll="\033[38;5;208m" #--(rare-colors)--# holaa="38;5" ro=(f"\033[{holaa};208") rb=(f"\033[{holaa};32") rc=(f"\033[{holaa};122m") rg= (f"\033[{holaa};112m") rp=(f"\033[{holaa};147m") os.system ("clear") logo = (""" \033[1;33m 888 d8P 8888888b. .d8888b. \033[1;33m 888 d8P 888 Y88b d88P Y88b \033[1;32m 888 d8P 888 888 Y88b. \033[1;33m 888d88K 888 d88P "Y888b. \033[1;33m 8888888b 8888888P" "Y88b. \033[1;32m 888 Y88b 888 T88b "888 \033[1;33m 888 Y88b 888 T88b Y88b d88P \033[1;33m 888 Y88b 888 T88b "Y8888P" \033[1;32m========================================== \033[1;32m \033[1;33mCREATED BY : \033[1;33mKASHIF \033[1;32m&& \033[1;33mARYAN \033[1;32m \033[1;32mFACEBOK : \033[1;34m ArYan KhAn \033[1;32m \033[1;35mGITHUB : \033[1;35mTEAM-KRS \033[1;32m \033[1;36mTOOL STATUS : \033[1;36mTOOL IS FREE \033[1;32m \033[1;35mTEAM : \033[1;35mKRS \033[1;32m \033[1;36mTOOL VIRSION : \033[1;36mUAGENTS \033[1;32m==========================================\n""") def linex(): print('\033[1;32m==========================================') def lines(): print('\033[1;32m==========================================') os.system("clear") print(logo) def generate_samsung_user_agent(): samsung_models = [ "Galaxy S21", "Galaxy S20", "Galaxy Note 20", "Galaxy Note 10", "Galaxy A71", "Galaxy A51", "Galaxy Tab S7", "Galaxy Tab S6", "Galaxy Watch 4", "Galaxy Watch Active 2", ] android_versions = [ "10.0; Android", "11.0; Android", "12.0; Android", ] samsung_browsers = [ "Chrome/90.0.4430.93", "Chrome/91.0.4472.164", "Firefox/89.0", "Firefox/90.0", "SamsungBrowser/14.0", "SamsungBrowser/15.0", ] model = random.choice(samsung_models) android_version = random.choice(android_versions) browser = random.choice(samsung_browsers) user_agent = f"Mozilla/5.0 ({model}; {android_version}; SM-G977B) AppleWebKit/537.36 (KHTML, like Gecko) {browser} Safari/537.36" return user_agent def generate_user_agents(num_agents): user_agents = [] for _ in range(num_agents): user_agent = generate_samsung_user_agent() user_agents.append(user_agent) return user_agents # Option 1: Generate a specific number of user agents num_agents = int(input("Enter LIMIT: ")) user_agents = generate_user_agents(num_agents) print("Generated User Agents:") for ua in user_agents: print(ua) # Option 2: Generate unlimited user agents unlimited_option = input("Do you want to create unlimited user agents? (yes/no): ") if unlimited_option.lower() == "yes": while True: user_agent = generate_samsung_user_agent() print(user_agent) next_option = input("Generate another user agent? (yes/no): ") if next_option.lower() != "yes": break else: print("Script execution completed.") user_agent = f"{logo}\nMozilla/5.0 ({model};"
TEAM-KRS/Useragents
ua.py
ua.py
py
3,522
python
en
code
1
github-code
6
41039653002
from __future__ import annotations import json import atexit import datetime import functools import logging import multiprocessing import os import shutil import signal import socket import subprocess import tempfile import threading import time import webbrowser from collections import namedtuple from contextlib import closing from enum import Enum, auto from io import BufferedWriter from logging.handlers import QueueHandler from multiprocessing import Queue from os import path from typing import Dict, List, Optional, Set import docker import grpc import requests import toml from urllib3.exceptions import MaxRetryError import vega_sim.api.governance as gov import vega_sim.grpc.client as vac from vega_sim import vega_bin_path, vega_home_path from vega_sim.service import VegaService from vega_sim.tools.load_binaries import download_binaries from vega_sim.tools.retry import retry from vega_sim.wallet.base import DEFAULT_WALLET_NAME, Wallet from vega_sim.wallet.slim_wallet import SlimWallet from vega_sim.wallet.vega_wallet import VegaWallet logger = logging.getLogger(__name__) PortUpdateConfig = namedtuple( "PortUpdateConfig", ["file_path", "config_path", "key", "val_func"] ) PORT_DIR_NAME = "market_sim_ports" class Ports(Enum): DATA_NODE_GRPC = auto() DATA_NODE_REST = auto() DATA_NODE_POSTGRES = auto() FAUCET = auto() WALLET = auto() VEGA_NODE = auto() CORE_GRPC = auto() CORE_REST = auto() BROKER = auto() METRICS = auto() DATA_NODE_METRICS = auto() PPROF = auto() CONSOLE = auto() PORT_UPDATERS = { Ports.DATA_NODE_GRPC: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["API"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "data-node", "config.toml"), ["Gateway", "Node"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "wallet-service", "networks", "local.toml"), ["API", "GRPC"], "Hosts", lambda port: [f"localhost:{port}"], ), ], Ports.DATA_NODE_REST: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["Gateway"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "wallet-service", "networks", "local.toml"), ["API", "REST"], "Hosts", lambda port: [f"localhost:{port}"], ), PortUpdateConfig( ("config", "wallet-service", "networks", "local.toml"), ["API", "GraphQL"], "Hosts", lambda port: [f"localhost:{port}"], ), ], Ports.DATA_NODE_POSTGRES: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["SQLStore", "ConnectionConfig"], "Port", lambda port: port, ), ], Ports.FAUCET: [ PortUpdateConfig( ("config", "faucet", "config.toml"), [], "Port", lambda port: port ), ], Ports.WALLET: [ PortUpdateConfig( ("config", "wallet-service", "config.toml"), ["Server"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "wallet-service", "networks", "local.toml"), [], "Port", lambda port: port, ), ], Ports.VEGA_NODE: [ PortUpdateConfig( ("config", "node", "config.toml"), ["Blockchain", "Null"], "Port", lambda port: port, ), ], Ports.CORE_GRPC: [ PortUpdateConfig( ("config", "faucet", "config.toml"), ["Node"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "node", "config.toml"), ["API"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "data-node", "config.toml"), ["API"], "CoreNodeGRPCPort", lambda port: port, ), ], Ports.CORE_REST: [ PortUpdateConfig( ("config", "node", "config.toml"), ["API", "REST"], "Port", lambda port: port, ), ], Ports.BROKER: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["Broker", "SocketConfig"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "node", "config.toml"), ["Broker", "Socket"], "Port", lambda port: port, ), ], Ports.DATA_NODE_METRICS: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["Metrics"], "Port", lambda port: port, ), ], Ports.METRICS: [ PortUpdateConfig( ("config", "node", "config.toml"), ["Metrics"], "Port", lambda port: port, ), ], Ports.PPROF: [ PortUpdateConfig( ("config", "data-node", "config.toml"), ["Pprof"], "Port", lambda port: port, ), PortUpdateConfig( ("config", "node", "config.toml"), ["Pprof"], "Port", lambda port: port, ), ], Ports.CONSOLE: [ PortUpdateConfig( ("config", "wallet-service", "networks", "local.toml"), ["Console"], "LocalPort", lambda port: port, ), ], } class VegaStartupTimeoutError(Exception): pass class ServiceNotStartedError(Exception): pass class SocketNotFoundError(Exception): pass def logger_thread(q): while True: record = q.get() if record is None: break logger = logging.getLogger(record.name) logger.handle(record) def find_free_port(existing_set: Optional[Set[int]] = None): ret_sock = 0 existing_set = ( existing_set.union(set([ret_sock])) if existing_set is not None else set([ret_sock]) ) # Synchronisation to try to avoid using the same ports across processes # launching at very similar times dated_path_dir = path.join( tempfile.gettempdir(), PORT_DIR_NAME, datetime.date.today().strftime("%Y-%d-%m-%H-%M"), ) os.makedirs(dated_path_dir, exist_ok=True) existing_set.update(set(int(x) for x in os.listdir(dated_path_dir))) num_tries = 0 while ret_sock in existing_set: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) ret_sock = s.getsockname()[1] num_tries += 1 if num_tries >= 100: # Arbitrary high number. If we try 100 times and fail to find # a port it seems reasonable to give up raise SocketNotFoundError("Failed finding a free socket") open(path.join(dated_path_dir, str(ret_sock)), "x") return ret_sock def _terminate_proc( proc: subprocess.Popen[bytes], out_file: BufferedWriter, err_file: BufferedWriter ) -> None: proc.terminate() out_file.close() err_file.close() def _popen_process( popen_args: List[str], dir_root: str, log_name: str, env: Optional[Dict[str, str]] = None, ) -> subprocess.Popen[bytes]: out = open(path.join(dir_root, f"{log_name}.out"), "wb") err = open(path.join(dir_root, f"{log_name}.err"), "wb") sub_proc = subprocess.Popen( popen_args, stdout=out, stderr=err, env=env, close_fds=True ) atexit.register(functools.partial(_terminate_proc, sub_proc, out, err)) return sub_proc def _update_node_config( vega_home: str, port_config: Dict[Ports, int], transactions_per_block: int = 1, block_duration: str = "1s", use_docker_postgres: bool = False, ) -> None: config_path = path.join(vega_home, "config", "node", "config.toml") config_toml = toml.load(config_path) config_toml["Blockchain"]["Null"]["GenesisFile"] = path.join( vega_home, "genesis.json" ) config_toml["Blockchain"]["Null"]["BlockDuration"] = block_duration config_toml["Blockchain"]["Null"]["TransactionsPerBlock"] = transactions_per_block existing_ports = set(port_config.values()) for port in Ports: if port in port_config: continue new_port = find_free_port(existing_ports) existing_ports.add(new_port) port_config[port] = new_port with open(config_path, "w") as f: toml.dump(config_toml, f) for port_key, update_configs in PORT_UPDATERS.items(): for config in update_configs: file_path = path.join(vega_home, *config.file_path) config_toml = toml.load(file_path) elem = config_toml for k in config.config_path: elem = elem[k] elem[config.key] = config.val_func(port_config[port_key]) if port_key == Ports.DATA_NODE_POSTGRES: config_toml["SQLStore"]["UseEmbedded"] = not use_docker_postgres with open(file_path, "w") as f: toml.dump(config_toml, f) def manage_vega_processes( child_conn: multiprocessing.Pipe, log_queue, vega_path: str, data_node_path: str, vega_wallet_path: str, vega_console_path: Optional[str] = None, run_with_console: bool = False, port_config: Optional[Dict[Ports, int]] = None, transactions_per_block: int = 1, block_duration: str = "1s", run_wallet: bool = False, retain_log_files: bool = False, log_dir: Optional[str] = None, replay_from_path: Optional[str] = None, store_transactions: bool = True, log_level: Optional[int] = None, genesis_time: Optional[datetime.datetime] = None, ) -> None: logger.addHandler(QueueHandler(log_queue)) logger.setLevel(log_level if log_level is not None else logging.INFO) port_config = port_config if port_config is not None else {} try: docker_client = docker.from_env() use_docker_postgres = True except: use_docker_postgres = False # Explicitly not using context here so that crashed logs are retained tmp_vega_dir = tempfile.mkdtemp(prefix="vega-sim-") if log_dir is None else log_dir logger.info(f"Running NullChain from vegahome of {tmp_vega_dir}") if port_config.get(Ports.CONSOLE): logger.info(f"Launching Console at port {port_config.get(Ports.CONSOLE)}") if port_config.get(Ports.DATA_NODE_REST): logger.info( "Launching Datanode REST + GRAPHQL at port" f" {port_config.get(Ports.DATA_NODE_REST)}" ) if port_config.get(Ports.DATA_NODE_GRPC): logger.info( f"Launching Datanode GRPC at port {port_config.get(Ports.DATA_NODE_GRPC)}" ) if port_config.get(Ports.CORE_REST): logger.info(f"Launching Core REST at port {port_config.get(Ports.CORE_REST)}") if port_config.get(Ports.CORE_GRPC): logger.info(f"Launching Core GRPC at port {port_config.get(Ports.CORE_GRPC)}") dest_dir = f"{tmp_vega_dir}/vegahome" shutil.copytree(vega_home_path, dest_dir) for dirpath, _, filenames in os.walk(dest_dir): os.utime(dirpath, None) for file in filenames: os.utime(os.path.join(dirpath, file), None) if genesis_time is not None: with open(f"{dest_dir}/genesis.json", "r") as file: data = json.load(file) data["genesis_time"] = genesis_time.isoformat() + "Z" with open(f"{dest_dir}/genesis.json", "w") as file: json.dump(data, file, indent=2) tmp_vega_home = tmp_vega_dir + "/vegahome" _update_node_config( tmp_vega_home, port_config=port_config, transactions_per_block=transactions_per_block, block_duration=block_duration, use_docker_postgres=use_docker_postgres, ) if use_docker_postgres: data_node_docker_volume = docker_client.volumes.create() data_node_container = docker_client.containers.run( "timescale/timescaledb:2.11.2-pg15", command=[ "-c", "max_connections=50", "-c", "log_destination=stderr", "-c", "work_mem=5MB", "-c", "huge_pages=off", "-c", "shared_memory_type=sysv", "-c", "dynamic_shared_memory_type=sysv", "-c", "shared_buffers=2GB", "-c", "temp_buffers=5MB", ], detach=True, ports={5432: port_config[Ports.DATA_NODE_POSTGRES]}, volumes=[f"{data_node_docker_volume.name}:/var/lib/postgresql/data"], environment={ "POSTGRES_USER": "vega", "POSTGRES_PASSWORD": "vega", "POSTGRES_DB": "vega", }, remove=False, ) dataNodeProcess = _popen_process( [ data_node_path, "start", "--home=" + tmp_vega_home, "--chainID=CUSTOM", ], dir_root=tmp_vega_dir, log_name="data_node", ) vega_args = [ vega_path, "start", "--nodewallet-passphrase-file=" + tmp_vega_home + "/passphrase-file", "--home=" + tmp_vega_home, ] if store_transactions: replay_file = ( replay_from_path if replay_from_path is not None else tmp_vega_home + "/replay" ) vega_args.extend( [ f"--blockchain.nullchain.replay-file={replay_file}", "--blockchain.nullchain.record", ] ) if replay_from_path is not None: vega_args.extend( [ f"--blockchain.nullchain.replay-file={replay_from_path}", "--blockchain.nullchain.replay", ] ) vegaNodeProcess = _popen_process( vega_args, dir_root=tmp_vega_dir, log_name="node", ) for _ in range(500): try: requests.get( f"http://localhost:{port_config[Ports.CORE_REST]}/blockchain/height" ).raise_for_status() break except: pass vegaFaucetProcess = _popen_process( [ vega_path, "faucet", "run", "--passphrase-file=" + tmp_vega_home + "/passphrase-file", "--home=" + tmp_vega_home, ], dir_root=tmp_vega_dir, log_name="faucet", ) processes = { "data-node": dataNodeProcess, "faucet": vegaFaucetProcess, "vega": vegaNodeProcess, } if run_wallet: for _ in range(3000): try: requests.get( f"http://localhost:{port_config.get(Ports.DATA_NODE_REST)}/time" ).raise_for_status() requests.get( f"http://localhost:{port_config.get(Ports.CORE_REST)}/blockchain/height" ).raise_for_status() break except ( MaxRetryError, requests.exceptions.ConnectionError, requests.exceptions.HTTPError, ): time.sleep(0.1) subprocess.run( [ vega_wallet_path, "wallet", "api-token", "init", f"--home={tmp_vega_home}", f"--passphrase-file={tmp_vega_home}/passphrase-file", ], capture_output=True, ) subprocess.run( [ vega_wallet_path, "wallet", "create", "--wallet", DEFAULT_WALLET_NAME, "--home", tmp_vega_home, "--passphrase-file", tmp_vega_home + "/passphrase-file", "--output", "json", ], capture_output=True, ) subprocess.run( [ vega_wallet_path, "wallet", "api-token", "generate", "--home=" + tmp_vega_home, "--tokens-passphrase-file=" + tmp_vega_home + "/passphrase-file", "--wallet-passphrase-file=" + tmp_vega_home + "/passphrase-file", "--wallet-name=" + DEFAULT_WALLET_NAME, "--description=" + DEFAULT_WALLET_NAME, ], capture_output=True, ) wallet_args = [ vega_wallet_path, "wallet", "service", "run", "--network", "local", "--home=" + tmp_vega_home, "--automatic-consent", "--load-tokens", "--tokens-passphrase-file=" + tmp_vega_home + "/passphrase-file", ] vegaWalletProcess = _popen_process( wallet_args, dir_root=tmp_vega_dir, log_name="vegawallet", ) processes["wallet"] = vegaWalletProcess if run_with_console: env_copy = os.environ.copy() env_copy.update( { "NX_VEGA_URL": ( f"http://localhost:{port_config[Ports.DATA_NODE_REST]}/graphql" ), "NX_VEGA_WALLET_URL": f"http://localhost:{port_config[Ports.WALLET]}", "NX_VEGA_ENV": "CUSTOM", "NX_PORT": f"{port_config[Ports.CONSOLE]}", "NODE_ENV": "development", "NX_VEGA_NETWORKS": "{}", } ) console_process = _popen_process( [ "yarn", "--cwd", vega_console_path, "nx", "serve", "-o", "trading", "--port", f"{port_config[Ports.CONSOLE]}", ], dir_root=tmp_vega_dir, log_name="console", env=env_copy, ) processes["console"] = console_process # Send process pid values for resource monitoring child_conn.send({name: process.pid for name, process in processes.items()}) # According to https://docs.oracle.com/cd/E19455-01/806-5257/gen-75415/index.html # There is no guarantee that signal will be catch by this thread. Usually the # parent process catches the signal and removes it from the list of pending # signals, this leave us with memory leak where we have orphaned vega processes # and the docker containers. Below is hack to maximize chance by catching the # signal. # We call signal.signal method as a workaround to move this thread on top of # the catch stack, then sigwait waits until singal is trapped. # As last resort We catches the `SIGCHLD` in case the parent process exited # and this is the orphan now. # But to provide 100% guarantee this should be implemented in another way: # - Signal should be trapped in the main process, and this should be synced # the shared memory # - or this entire process manager should be incorporated in the VegaServiceNull # and containers/processes should be removed as inline call in the __exit__ # # # Important assumption is that this signal can be caught multiple times as well def sighandler(signal, frame, logger_): if signal is None: logger_.info("VegaServiceNull exited normally") else: logger_.info(f"VegaServiceNull exited after trapping the {signal} signal") logger_.info("Received signal from parent process") logger_.info("Starting termination for processes") for name, process in processes.items(): logger_.info(f"Terminating process {name}(pid: {process.pid})") process.terminate() for name, process in processes.items(): attempts = 0 while process.poll() is None: logger_.info(f"Process {name} still not terminated") time.sleep(1) attempts += 1 if attempts > 60: logger_.warning( "Gracefully terminating process timed-out. Killing process" f" {name}." ) process.kill() logger_.debug(f"Process {name} stopped with {process.poll()}") if process.poll() == 0: logger_.info(f"Process {name} terminated.") if process.poll() == -9: logger_.info(f"Process {name} killed.") if use_docker_postgres: def kill_docker_container() -> None: try: data_node_container.stop() with open(tmp_vega_home + "/postgres.out", "wb") as f: f.write(data_node_container.logs()) data_node_container.remove() except requests.exceptions.HTTPError as e: if e.response.status_code == 404: logger_.debug( f"Container {data_node_container.name} has been already" " killed" ) return else: raise e logger_.debug(f"Stopping container {data_node_container.name}") retry(10, 1.0, kill_docker_container) removed = False logger_.debug(f"Removing volume {data_node_docker_volume.name}") for _ in range(20): if data_node_container.status == "running": time.sleep(3) continue try: data_node_docker_volume.remove(force=True) removed = True break except requests.exceptions.HTTPError as e: if e.response.status_code == 404: removed = True logger_.debug( f"Data node volume {data_node_docker_volume.name} has been" " already killed" ) break else: time.sleep(1) except docker.errors.APIError: time.sleep(1) if not removed: logger_.exception( "Docker volume failed to cleanup, will require manual cleaning" ) if not retain_log_files and os.path.exists(tmp_vega_dir): shutil.rmtree(tmp_vega_dir) # The below lines are workaround to put the signal listeners on top of the stack, so this process can handle it. signal.signal(signal.SIGINT, lambda _s, _h: None) signal.signal(signal.SIGTERM, lambda _s, _h: None) # The process had previously created one or more child processes with the fork() function. # One or more of these processes has since died. signal.sigwait( [ signal.SIGKILL, # The process was explicitly killed by somebody wielding the kill program. signal.SIGTERM, # The process was explicitly killed by somebody wielding the terminate program. signal.SIGCHLD, ] ) sighandler(None, None, logger_=logger) class VegaServiceNull(VegaService): PORT_TO_FIELD_MAP = { Ports.CONSOLE: "console_port", Ports.CORE_GRPC: "vega_node_grpc_port", Ports.CORE_REST: "vega_node_rest_port", Ports.DATA_NODE_GRPC: "data_node_grpc_port", Ports.DATA_NODE_METRICS: "data_node_metrics_port", Ports.DATA_NODE_POSTGRES: "data_node_postgres_port", Ports.DATA_NODE_REST: "data_node_rest_port", Ports.FAUCET: "faucet_port", Ports.METRICS: "metrics_port", Ports.VEGA_NODE: "vega_node_port", Ports.WALLET: "wallet_port", } def __init__( self, vega_path: Optional[str] = None, data_node_path: Optional[str] = None, vega_wallet_path: Optional[str] = None, vega_console_path: Optional[str] = None, start_immediately: bool = False, run_with_console: bool = False, run_wallet_with_token_dapp: bool = False, port_config: Optional[Dict[Ports, int]] = None, warn_on_raw_data_access: bool = True, transactions_per_block: int = 1, seconds_per_block: int = 1, use_full_vega_wallet: bool = False, retain_log_files: bool = False, launch_graphql: bool = False, store_transactions: bool = True, replay_from_path: Optional[str] = None, listen_for_high_volume_stream_updates: bool = False, check_for_binaries: bool = False, genesis_time: Optional[datetime.datetime] = None, ): super().__init__( can_control_time=True, warn_on_raw_data_access=warn_on_raw_data_access, seconds_per_block=seconds_per_block, listen_for_high_volume_stream_updates=listen_for_high_volume_stream_updates, ) self.retain_log_files = retain_log_files self._using_all_custom_paths = all( [x is not None for x in [vega_path, data_node_path, vega_wallet_path]] ) self.vega_path = vega_path or path.join(vega_bin_path, "vega") self.data_node_path = data_node_path or path.join(vega_bin_path, "data-node") self.vega_wallet_path = vega_wallet_path or path.join(vega_bin_path, "vega") self.vega_console_path = vega_console_path or path.join( vega_bin_path, "console" ) self.proc = None self.run_with_console = run_with_console self.run_wallet_with_token_dapp = run_wallet_with_token_dapp self.genesis_time = genesis_time self.transactions_per_block = transactions_per_block self.seconds_per_block = seconds_per_block self._wallet = None self._use_full_vega_wallet = use_full_vega_wallet self.store_transactions = store_transactions self.log_dir = tempfile.mkdtemp(prefix="vega-sim-") self.launch_graphql = launch_graphql self.replay_from_path = replay_from_path self.check_for_binaries = check_for_binaries self.stopped = False self.logger_p = None self._assign_ports(port_config) if start_immediately: self.start() def __enter__(self): self.start() return self def __exit__(self, type, value, traceback): self.stop() def wait_fn(self, wait_multiple: float = 1) -> None: self.wait_for_core_catchup() self.forward(f"{int(wait_multiple * self.seconds_per_block)}s") self.wait_for_core_catchup() @property def wallet(self) -> Wallet: if self._wallet is None: if self._use_full_vega_wallet: self._wallet = VegaWallet( self.wallet_url, wallet_path=self.vega_wallet_path, vega_home_dir=path.join(self.log_dir, "vegahome"), passphrase_file_path=path.join( self.log_dir, "vegahome", "passphrase-file" ), ) else: self._wallet = SlimWallet( self.core_client, full_wallet=None, log_dir=self.log_dir, ) return self._wallet def _check_started(self) -> None: if self.proc is None: raise ServiceNotStartedError("NullChain Vega accessed without starting") def _generate_port_config(self) -> Dict[Ports, int]: return { Ports.CONSOLE: self.console_port, Ports.CORE_GRPC: self.vega_node_grpc_port, Ports.CORE_REST: self.vega_node_rest_port, Ports.DATA_NODE_GRPC: self.data_node_grpc_port, Ports.DATA_NODE_METRICS: self.data_node_metrics_port, Ports.DATA_NODE_POSTGRES: self.data_node_postgres_port, Ports.DATA_NODE_REST: self.data_node_rest_port, Ports.FAUCET: self.faucet_port, Ports.METRICS: self.metrics_port, Ports.VEGA_NODE: self.vega_node_port, Ports.WALLET: self.wallet_port, } # set ports from port_config or alternatively find a free port # to use def _assign_ports(self, port_config: Optional[Dict[Ports, int]]): self.console_port = 0 self.data_node_grpc_port = 0 self.data_node_metrics_port = 0 self.data_node_postgres_port = 0 self.data_node_rest_port = 0 self.faucet_port = 0 self.metrics_port = 0 self.vega_node_grpc_port = 0 self.vega_node_port = 0 self.vega_node_rest_port = 0 self.wallet_port = 0 for key, name in self.PORT_TO_FIELD_MAP.items(): if port_config is not None and key in port_config: setattr(self, name, port_config[key]) else: curr_ports = set( [getattr(self, port) for port in self.PORT_TO_FIELD_MAP.values()] ) setattr(self, name, find_free_port(curr_ports)) def start(self, block_on_startup: bool = True) -> None: if self.check_for_binaries and not self._using_all_custom_paths: download_binaries() parent_conn, child_conn = multiprocessing.Pipe() ctx = multiprocessing.get_context() port_config = self._generate_port_config() self.queue = Queue() self.logger_p = threading.Thread(target=logger_thread, args=(self.queue,)) self.logger_p.start() self.proc = ctx.Process( target=manage_vega_processes, kwargs={ "child_conn": child_conn, "log_queue": self.queue, "vega_path": self.vega_path, "data_node_path": self.data_node_path, "vega_wallet_path": self.vega_wallet_path, "vega_console_path": self.vega_console_path, "run_with_console": self.run_with_console, "port_config": port_config, "transactions_per_block": self.transactions_per_block, "block_duration": f"{int(self.seconds_per_block)}s", "run_wallet": self._use_full_vega_wallet, "retain_log_files": self.retain_log_files, "log_dir": self.log_dir, "store_transactions": self.store_transactions, "replay_from_path": self.replay_from_path, "log_level": logging.getLogger().level, "genesis_time": self.genesis_time, }, ) self.proc.start() if self.run_with_console: logger.info( "Vega Running. Console launched at" f" http://localhost:{self.console_port}" ) if block_on_startup: # Wait for startup started = False for _ in range(500): try: channel = grpc.insecure_channel( self.data_node_grpc_url, options=( ("grpc.enable_http_proxy", 0), ("grpc.max_send_message_length", 1024 * 1024 * 20), ("grpc.max_receive_message_length", 1024 * 1024 * 20), ), ) grpc.channel_ready_future(channel).result(timeout=5) trading_data_client = vac.VegaTradingDataClientV2( self.data_node_grpc_url, channel=channel, ) gov.get_blockchain_time(trading_data_client) requests.get( f"http://localhost:{self.data_node_rest_port}/time" ).raise_for_status() requests.get( f"http://localhost:{self.vega_node_rest_port}/blockchain/height" ).raise_for_status() requests.get( f"http://localhost:{self.faucet_port}/api/v1/health" ).raise_for_status() if self._use_full_vega_wallet: requests.get( f"http://localhost:{self.wallet_port}/api/v2/health" ).raise_for_status() started = True break except ( MaxRetryError, requests.exceptions.ConnectionError, requests.exceptions.HTTPError, grpc.RpcError, grpc.FutureTimeoutError, ): time.sleep(0.1) if not started: self.stop() raise VegaStartupTimeoutError( "Timed out waiting for Vega simulator to start up" ) # TODO: Remove this once datanode fixes up startup timing time.sleep(6) self.process_pids = parent_conn.recv() # Initialise the data-cache self.data_cache if self.run_with_console: webbrowser.open(f"http://localhost:{port_config[Ports.CONSOLE]}/", new=2) if self.launch_graphql: webbrowser.open( f"http://localhost:{port_config[Ports.DATA_NODE_REST]}/graphql", new=2 ) # Class internal as at some point the host may vary as well as the port @staticmethod def _build_url(port: int, prefix: str = "http://"): return f"{prefix}localhost:{port}" def stop(self) -> None: logger.debug("Calling stop for veganullchain") if self.stopped: return self.stopped = True if self._core_client is not None: self.core_client.stop() if self._core_state_client is not None: self.core_state_client.stop() if self._trading_data_client_v2 is not None: self.trading_data_client_v2.stop() if self.proc is None: logger.info("Stop called but nothing to stop") else: os.kill(self.proc.pid, signal.SIGTERM) if self.queue is not None: if self.proc is not None: attempts = 0 while self.proc.is_alive: if attempts > 5: break time.sleep(1) attempts += 1 self.queue.put(None) self.logger_p.join() if isinstance(self.wallet, SlimWallet): self.wallet.stop() super().stop() @property def wallet_url(self) -> str: return self._build_url(self.wallet_port) @property def data_node_rest_url(self) -> str: return self._build_url(self.data_node_rest_port) @property def data_node_grpc_url(self) -> str: return self._build_url(self.data_node_grpc_port, prefix="") @property def faucet_url(self) -> str: return self._build_url(self.faucet_port) @property def vega_node_url(self) -> str: return self._build_url(self.vega_node_port) @property def vega_node_grpc_url(self) -> str: return self._build_url(self.vega_node_grpc_port, prefix="") def clone(self) -> VegaServiceNull: """Creates a clone of the service without the handle to other processes. This is required as when spinning a Nullchain service out into separate processes we need to start the various components in the main thread (as daemon processes cannot spawn daemon processes), however want to maintain a handle to these in the child. """ return VegaServiceNull( self.vega_path, self.data_node_path, self.vega_wallet_path, start_immediately=False, port_config=self._generate_port_config(), use_full_vega_wallet=self._use_full_vega_wallet, warn_on_raw_data_access=self.warn_on_raw_data_access, )
vegaprotocol/vega-market-sim
vega_sim/null_service.py
null_service.py
py
36,719
python
en
code
19
github-code
6
27472315206
from flask import Flask, request,jsonify import util from flask_cors import CORS app= Flask(__name__) CORS(app) @app.route('/get_location_names',methods=['GET']) def get_location_names(): response = jsonify({ 'location': util.get_location() }) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/predict_home_price',methods=['GET','POST']) def predict_home_price(): toal_sqft=float(request.form['total_sqft']) bhk=int(request.form['bhk']) balcony=int(3) bath=int(request.form['bath']) location=request.form['location'] response=jsonify({ 'estimated_price':util.estimated_price(location,toal_sqft,bhk,bath,balcony) }) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == "__main__": print("staring the server") util.get_location() app.run()
Shinchan3/Home_price_linear_regression
server/server.py
server.py
py
922
python
en
code
0
github-code
6
42963274647
# 시퀀스형 # 컨테이너형 container : 서로다른 자료형을 담음. list , tuple , collections.deque # 플랫 flat : 한개의 자료형 str , bytes , bytearray , array.array , memoryview # 가변() mutable : list , bytearray , array.array, memoryview , deque # 불변() immutable : tuple , str , bytes # 해시 테이블 # key 에 value 를 저장하는 구조 # 키값의 연산결과에 따라 직접접근이 가능! # key 값을 해싱 함수 -> 해쉬 주소 -> key 에 대한 value 참조 # print(__builtins__.__dict__) t1 = (10, 20, (30, 40, 50)) t2 = (10, 20, [30, 40, 50]) print(hash(t1)) # immutable only!~ # print(hash(t2)) ## mutable 이라 해시불가 # Dict Setdefault 예제. recommended source = (('k1', 'val1'), ('k1', 'val2'), ('k2', 'val3'), ('k2', 'val4'), ('k2', 'val5')) new_dict1 = {} new_dict2 = {} # No setdefault for k, v in source: if k in new_dict1: new_dict1[k].append(v) else: new_dict1[k] = [v] print(new_dict1) # Use setdefault for k, v in source: new_dict2.setdefault(k, []).append(v) print(new_dict2) # wow!~ # 주의 new_dict3 = {k: v for k, v in source} print(new_dict3)
elbum/py_inter
chap04_03.py
chap04_03.py
py
1,202
python
ko
code
0
github-code
6
27132094648
import logging from operations.operation_manager import Operation from operations import * logging.config.fileConfig('/opt/TopPatch/conf/logging.config') logger = logging.getLogger('rvapi') #process that data!! def process_queue_data(rqueue, queue_exists, agent_id, username, customer_name, uri, method): if queue_exists: agent_queue = rqueue.get_all_objects_in_queue() for operation in agent_queue: if operation.get(OperationKey.OperationId): oper = ( Operation(username, customer_name, uri, method) ) oper.update_operation_pickup_time( operation[OperationKey.OperationId], agent_id, CHECKIN ) return agent_queue else: return([])
SteelHouseLabs/vFense
tp/src/receiver/corehandler.py
corehandler.py
py
837
python
en
code
5
github-code
6
70396698747
import lcqp_manip import casadi import numpy as np import lcqpow # create the objects box_ly = 0.15 vmax = 0.035 wmax = 0.035 box = lcqp_manip.Box(w=0.24, h=0.08, m=0.1, g=9.81, vmax=casadi.SX([vmax, vmax, wmax])) gripper = lcqp_manip.Gripper(h=0.08, rmax=0.115, rmin=0, vmax=casadi.SX([vmax, vmax, wmax, vmax])) ground = lcqp_manip.Ground() wall = lcqp_manip.Wall(-0.25) objects = [gripper, box, ground, wall] # create the contact points and surfaces box_TR_corner = lcqp_manip.BoxTopRightCorner(box) box_BR_corner = lcqp_manip.BoxBottomRightCorner(box) box_TL_corner = lcqp_manip.BoxTopLeftCorner(box) box_BL_corner = lcqp_manip.BoxBottomLeftCorner(box) box_T_surface = lcqp_manip.BoxTopSurface(box) box_B_surface = lcqp_manip.BoxBottomSurface(box) box_R_surface = lcqp_manip.BoxRightSurface(box) box_L_surface = lcqp_manip.BoxLeftSurface(box) gripper_BR_corner = lcqp_manip.GripperBottomRightCorner(gripper, offset=0.0035) gripper_BL_corner = lcqp_manip.GripperBottomLeftCorner(gripper, offset=0.0035) # create contacts fmax = casadi.SX([10*box.m*box.g, 10*box.m*box.g, 10*box.m*box.g]) mu_ground = 0.4 mu = 0.5 # contacts between the box (contact points) and ground (contact surface) contact_box_TR_ground = lcqp_manip.RelaxedContact(contact_point=box_TR_corner, contact_surface=ground, contact_name="box_TR_ground", mu=mu, fmax=fmax, inv_force_dir=False) contact_box_BR_ground = lcqp_manip.RelaxedContact(contact_point=box_BR_corner, contact_surface=ground, contact_name="box_BR_ground", mu=mu, fmax=fmax, inv_force_dir=False) contact_box_TL_ground = lcqp_manip.RelaxedContact(contact_point=box_TL_corner, contact_surface=ground, contact_name="box_TL_ground", mu=mu, fmax=fmax, inv_force_dir=False) contact_box_BL_ground = lcqp_manip.RelaxedContact(contact_point=box_BL_corner, contact_surface=ground, contact_name="box_BL_ground", mu=mu, fmax=fmax, inv_force_dir=False) # contacts between the box (contact points) and ground (contact surface) contact_box_TR_wall = lcqp_manip.RelaxedContact(contact_point=box_TR_corner, contact_surface=wall, contact_name="box_TR_wall", mu=mu, inv_force_dir=False) contact_box_BR_wall = lcqp_manip.RelaxedContact(contact_point=box_BR_corner, contact_surface=wall, contact_name="box_BR_wall", mu=mu, inv_force_dir=False) contact_box_TL_wall = lcqp_manip.RelaxedContact(contact_point=box_TL_corner, contact_surface=wall, contact_name="box_TL_wall", mu=mu, inv_force_dir=False) contact_box_BL_wall = lcqp_manip.RelaxedContact(contact_point=box_BL_corner, contact_surface=wall, contact_name="box_BL_wall", mu=mu, inv_force_dir=False) # contacts between the gripper (contact points) and box (contact surfaces) contact_gripper_BR_box_R = lcqp_manip.RelaxedContact(contact_point=gripper_BR_corner, contact_surface=box_R_surface, contact_name="gripper_BR_box_R", mu=mu, fmax=fmax, inv_force_dir=True) contact_gripper_BL_box_R = lcqp_manip.RelaxedContact(contact_point=gripper_BL_corner, contact_surface=box_R_surface, contact_name="gripper_BL_box_L", mu=mu, fmax=fmax, inv_force_dir=True) contacts = [contact_box_TL_ground, contact_box_BL_ground, contact_box_TR_ground, contact_box_BR_ground, contact_box_TL_wall, contact_box_BL_wall, contact_box_TR_wall, contact_box_BR_wall, contact_gripper_BR_box_R] # create an LCQP lcqp = lcqp_manip.LCQP(objects, contacts) lcqp.set_force_balance(box) lcqp.set_position_limit(gripper_BR_corner, box_T_surface, margin=0.02, inv_dir=True) lcqp.set_position_limit(gripper_BR_corner, box_B_surface, margin=0.02, inv_dir=True) box_x0 = 0.5 box_y0 = wall.w0 + box.w / 2 + 0.03 # goal configuration box_center_to_gripper_top = gripper.h / 2 goal_height = 0.0 goal_angle = np.pi / 2 gripper_z_start = box.h + box_center_to_gripper_top box_z_goal = box.w / 2 q_goal = np.array([box_y0, 0, -np.pi/6, 0.01, box_y0, box_z_goal, goal_angle]) # set config cost q_weight = np.array([0.0, 0.0, 0.001, 1000, 0, 1, 1000]) v_weight = 1.0e-02 f_weight = 1.0e-02 slack_penalty = 1.0e04 lcqp.set_config_cost(q_goal, q_weight, v_weight, f_weight, slack_penalty) # create the LCQP solver lcqp_solver = lcqp_manip.LCQPSolver(lcqp) lcqp_solver.options.setMaxRho(1.0e12) lcqp_solver.options.setComplementarityTolerance(1.0e-06) lcqp_solver.options.setStationarityTolerance(1.0e-04) # create the simulation environment sim = lcqp_manip.PyBulletSimulation(time_step=0.05, sim_time=30, gui=True) sim.robot_q0 = np.array([-np.pi/2, 0, -np.pi/2, np.pi/2, -np.pi/2, -np.pi/2, -np.pi/2, -0.01, 0.01]) sim.joint_rest_poses = sim.robot_q0.tolist() sim.add_box(lx=box_ly, ly=box.w, lz=box.h, mass=box.m, x=box_x0, y=box_y0) # create the controller controller = lcqp_manip.LCQPController(lcqp_solver=lcqp_solver, projection_axis='x', z_offset=sim.table_height) controller.joint_rest_poses = sim.robot_q0 controller.position_gain = np.concatenate([np.full(7, 1), np.full(2, 0.1)]) controller.op_space_gain = np.concatenate([np.full(3, 100), np.full(3, 100)]) # run a simulation pre_grasp_orn = np.array([[ 0, 1, 0], [ 0, 0, -1], [ -1, 0, 0]]) from scipy.spatial.transform import Rotation pre_grasp_orn = Rotation.from_matrix(pre_grasp_orn).as_quat() controller.set_pre_grasp(pre_grasp_pos=np.array([box_x0, box_y0+box.w/2+gripper.h, sim.table_surface_height+box.h/2+gripper.h/2]), pre_grasp_orn=pre_grasp_orn, pre_pre_grasp_dist=np.array([0.0, 0.1, 0.0]), pre_grasp_tol=0.01, pre_pre_grasp_tol=0.02) controller.set_post_grasp(post_grasp_pos=np.array([box_x0, 0.0, gripper_z_start+sim.table_surface_height+0.1]), post_grasp_tol=0.01) sim.set_camera_side() sim.run(controller, record=False) # sim.run(controller, anim_2D=False, record=True)
omron-sinicx/lcqp
examples/pivot.py
pivot.py
py
6,805
python
en
code
1
github-code
6
18537251439
# prob_link: https://www.codingninjas.com/studio/problems/rod-cutting-problem_8230727?challengeSlug=striver-sde-challenge&leftPanelTab=0 from sys import stdin import sys def cutRod(prices, n): # Write your code here. mat = [[0 for i in range(n+1)]for j in range(n+1)] for i in range(1, n+1): for j in range(1, n+1): if i == 1: mat[i][j] = j*prices[i-1] else: if i > j: mat[i][j] = mat[i-1][j] else: mat[i][j] = max(prices[i-1]+mat[i][j-i], mat[i-1][j]) return mat[n][n] # Taking input using fast I/O. def takeInput(): n = int(input()) price = list(map(int, input().strip().split(" "))) return price, n # Main. t = int(input()) while t: price, n = takeInput() print(cutRod(price, n)) t = t-1
Red-Pillow/Strivers-SDE-Sheet-Challenge
P181_Rod_cutting_problem.py
P181_Rod_cutting_problem.py
py
894
python
en
code
0
github-code
6
1101626454
import random def comparar_lista(): lista1=[] # Inicializamos dos listas vacías para almacenar los números generados lista2=[] n=int(input("ingrese el tamaño de la lista1:")) # El usuario ingresa el tamaño de ambas listas y=int(input("ingrese el tamaño de la lista2:")) for i in range(n): lista1.append(random.randint(1, 100)) # Generamos números aleatorios y los agregamos a lista1 print("La lista1 original es:", lista1) for i in range(y): lista2.append(random.randint(1, 100)) # Generamos números aleatorios y los agregamos a lista2 print("La lista2 original es:", lista2) suma_lista1 = sum(lista1) # Calculamos la suma de ambas listas suma_lista2 = sum(lista2) print("La suma de la lista 1 es:", suma_lista1) print("La suma de la lista 2 es:", suma_lista2) if suma_lista1 > suma_lista2: # Comparamos las sumas y mostramos un mensaje indicando cuál lista tiene la suma mayor, o si ambas sumas son iguales. print("La suma de la lista 1 es mayor que el de la lista 2.") elif suma_lista2 > suma_lista1: print("La suma de la lista 2 en mayor que el de la lista 1.") else: print("La suma de las dos listas son iguales.") def determinar_mayor_menor(lista1, lista2): menor_lista1=min(lista1) # Utilizamos la función min() para encontrar el número menor en lista1 y lo imprimimos print("El numero menor de la lista1 es:", menor_lista1) menor_lista2=min(lista2) print("El numero menor de la lista2 es:", menor_lista2) # Llamamos a la función comparar_lista() para ejecutar el programa y realizar las comparaciones entre las listas generadas aleatoriamente. comparar_lista()
Diego1229/mejoramiento_Gonzalez
listas/lista2.py
lista2.py
py
1,721
python
es
code
0
github-code
6
19240398722
N = int(input()) S = [] for _ in range(N): tot = 0 L = list(map(int, input().split())) L.sort() if L[0] == L[2]: tot = 10000 + 1000 * L[0] elif L[0] == L[1] or L[1] == L[2]: tot = 1000 + 100 * L[1] else: tot = L[2] * 100 S.append(tot) print(max(S))
sdh98429/dj2_alg_study
백준/Bronze/2476. 주사위 게임/주사위 게임.py
주사위 게임.py
py
291
python
en
code
0
github-code
6
28204866764
from automata.Automata import Automata from tokenizer.Tokenizer import tokenizerSimple ''' Leemos los datos necesarios para empezar a procesar el automata. Tokenizamos las entradas para obtenerlas en forma de array. ''' simbolos_entrada = tokenizerSimple(input("Simbolos de entrada >> ")) estados = tokenizerSimple(input("Estados >> ")) estado_inicial = tokenizerSimple(input("Estado inicial >> ")) estados_aceptacion = tokenizerSimple(input("Estados de Aceptacion >> ")) # Creamos una nueva instancia de tipo Automata. automata = Automata(simbolos_entrada, estados, estado_inicial, estados_aceptacion) #print("Entrada -->", automata.simbolos_entrada) #print("Estados -->", automata.estados) #print("Inicial -->", automata.estado_inicial) #print("Aceptacion -->", automata.estados_aceptacion)
ephelsa/Teoria_Lenguaje
1. Automata/proyecto/__init__.py
__init__.py
py
799
python
es
code
0
github-code
6
20512905913
def merge(arr,l,r): i = j = k = 0 while i < len(l) and j < len(r): if l[i] < r[j]: arr[k] = l[i] i += 1 else: arr[k] = r[j] j += 1 k += 1 if i == len(l) and j < len(r): while j < len(r): arr[k] = r[j] j += 1 k +=1 if j == len(r) and i < len(l): while i < len(l): arr[k] = l[i] i += 1 k += 1 def mergesort(arr): if len(arr) >1: m = len(arr)//2 l = arr[:m] r = arr[m:] mergesort(l) mergesort(r) merge(arr,l,r) arr = [100, 22, 5, 2, 6, 1] mergesort(arr) for i in arr: print(i,end=' ')
chaithanyasubramanyam/pythonfiles
mergesort.py
mergesort.py
py
721
python
en
code
0
github-code
6
349034442
import pandas as pd import numpy as np from zipfile import ZipFile import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from pathlib import Path import matplotlib.pyplot as plt from keras.layers import Concatenate, Dense, Dropout from keras.layers import Add, Activation, Lambda from keras.models import Model from keras.layers import Input, Reshape, Dot from keras.layers.embeddings import Embedding from keras.optimizers import Adam from keras.regularizers import l2 class RecommenderNet(keras.Model): def __init__(self, num_users, num_products, embedding_size, **kwargs): super(RecommenderNet, self).__init__(**kwargs) self.num_users = num_users self.num_products = num_products self.embedding_size = embedding_size self.user_embedding = layers.Embedding( num_users, embedding_size, embeddings_initializer="he_normal", embeddings_regularizer=keras.regularizers.l2(1e-6), ) self.user_bias = layers.Embedding(num_users, 1) self.product_embedding = layers.Embedding( num_products, embedding_size, embeddings_initializer="he_normal", embeddings_regularizer=keras.regularizers.l2(1e-6), ) self.product_bias = layers.Embedding(num_products, 1) def call(self, inputs): user_vector = self.user_embedding(inputs[:, 0]) user_bias = self.user_bias(inputs[:, 0]) product_vector = self.product_embedding(inputs[:, 1]) product_bias = self.product_bias(inputs[:, 1]) dot_user_product = tf.tensordot(user_vector, product_vector, 2) # Add all the components (including bias) x = dot_user_product + user_bias + product_bias # The sigmoid activation forces the rating to between 0 and 1 return tf.nn.sigmoid(x) class EmbeddingLayer: def __init__(self, n_items, n_factors): self.n_items = n_items self.n_factors = n_factors def __call__(self, x): x = Embedding(self.n_items, self.n_factors, embeddings_initializer='he_normal', embeddings_regularizer=l2(1e-6))(x) x = Reshape((self.n_factors,))(x) return x def ModRecommenderNet(n_users, n_movies, n_factors, min_rating, max_rating): user = Input(shape=(1,)) u = EmbeddingLayer(n_users, n_factors)(user) movie = Input(shape=(1,)) m = EmbeddingLayer(n_movies, n_factors)(movie) x = Concatenate()([u, m]) x = Dropout(0.05)(x) x = Dense(10, kernel_initializer='he_normal')(x) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(1, kernel_initializer='he_normal')(x) x = Activation('sigmoid')(x) x = Lambda(lambda x: x * (max_rating - min_rating) + min_rating)(x) model = Model(inputs=[user, movie], outputs=x) opt = Adam(lr=0.001) model.compile(loss='mean_squared_error', optimizer=opt) return model if __name__ == "__main__": print('main')
wmcfarlan/health_recommender
src/helper/keras_class.py
keras_class.py
py
3,069
python
en
code
0
github-code
6
17451718192
import numpy as np import pandas as pd from model_zoo.xgb import train_xgb from model_zoo.catboost import train_catboost from model_zoo.lgbm import train_lgbm from sklearn.metrics import roc_auc_score from sklearn.model_selection import KFold TRAIN_FCTS = { "lgbm": train_lgbm, "xgb": train_xgb, "catboost": train_catboost, } def k_fold( df, config, log_folder=None, ): train_fct = TRAIN_FCTS[config.model] ft_imps, models = [], [] pred_oof = np.zeros(len(df)) if config.split == "kf": kf = KFold(n_splits=config.n_folds, shuffle=True, random_state=13) splits = kf.split(df) elif config.split == "gkf": splits = [(i, i) for i in range(config.n_folds)] else: raise NotImplementedError() for fold, (train_idx, val_idx) in enumerate(splits): if fold in config.selected_folds: print(f"\n------------- Fold {fold + 1} / {config.n_folds} -------------\n") if config.split == "kf": df_train = df.iloc[train_idx].reset_index(drop=True) df_val = df.iloc[val_idx].reset_index(drop=True) else: df_train = df[ (df["fold_1"] != fold) & (df["fold_2"] != fold) ].reset_index(drop=True) df_val = df[(df["fold_1"] == fold) | (df["fold_2"] == fold)] val_idx = ( df_val.index.values if isinstance(df, pd.DataFrame) else df_val.index.values.get() ) print(f" -> {len(df_train)} training pairs") print(f" -> {len(df_val)} validation pairs\n") pred_val, model = train_fct( df_train, df_val.reset_index(drop=True), None, config.features, config.target, params=config.params, cat_features=config.cat_features, use_es=config.use_es, ) pred_oof[val_idx] += pred_val try: try: ft_imp = model.feature_importance except AttributeError: ft_imp = model.feature_importances_ ft_imp = pd.DataFrame( pd.Series(ft_imp, index=config.features), columns=["importance"] ) ft_imps.append(ft_imp) except Exception: pass models.append(model) if log_folder is None: return pred_oof, models, ft_imp if config.model == "xgb": model.save_model(log_folder + f"{config.model}_{fold}.json") elif config.model == "lgbm": try: model.booster_.save_model(log_folder + f"{config.model}_{fold}.txt") except Exception: model.save_model(log_folder + f"{config.model}_{fold}.txt") else: # catboost, verif model.save_model(log_folder + f"{config.model}_{fold}.txt") if config.split == "gkf": pred_oof = pred_oof / (1 + (df["fold_1"] != df["fold_2"])) y = df[config.target].values if isinstance(df, pd.DataFrame) else df[config.target].get() auc = roc_auc_score(y, pred_oof) print(f"\n Local CV is {auc:.4f}") ft_imp = pd.concat(ft_imps, axis=1).mean(1) ft_imp.to_csv(log_folder + "ft_imp.csv") np.save(log_folder + "pred_oof.npy", pred_oof) return pred_oof, models, ft_imp
TheoViel/kaggle_foursquare
src/training/main_boosting.py
main_boosting.py
py
3,551
python
en
code
13
github-code
6
34389873363
import sys import numpy as np def main(): import crayimage from crayimage.runutils import map_run, load_index data_root, index_file, run_name, bins, window = [ t(arg) for t, arg in zip([str, str, str, int, int], sys.argv[1:]) ] run = load_index(index_file, data_root)[run_name] sample_img = run.get_img(0) max_value = 256 if sample_img.dtype == np.uint8 else 1024 per_bin = max_value / bins counts = np.zeros( shape=sample_img.shape + (bins, ), dtype='uint16' ) print(counts.shape) for img in run[:10]: bins = img / per_bin counts[:, :, :, bins] += 1 print(counts) if __name__ == '__main__': main()
yandexdataschool/crayimage
examples/hotpixel_suppression.py
hotpixel_suppression.py
py
658
python
en
code
5
github-code
6
15819759637
HEX_CHARS = "0123456789ABCDEF" ZKARRAY = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_" SUN_MAGICS = [1030, 1029, 4088] def unhash_cell(raw_cell): return [ZKARRAY.index(i) for i in raw_cell] class Cell: def __init__(self, raw_data=None, index=-1): self.index = index self.entity = None self.color = 'black' self.dead = True self.text = ' ' self.posIJ = [] self.lineOfSight = False self.movement = 8 self.initialized = False if raw_data: self.parse_data(raw_data) self.set_default_display() def parse_data(self, raw_data): cd = unhash_cell(raw_data) self.isActive = (cd[0] & 32 >> 5) == 1 self.lineOfSight = (cd[0] & 1) == 1 self.layerGroundRot = cd[1] & 48 >> 4 self.groundLevel = cd[1] & 15 self.movement = ((cd[2] & 56) >> 3) self.layerGroundNum = (cd[0] & 24 << 6) + (cd[2] & 7 << 6) + cd[3] self.layerObject1Num = ((cd[0] & 4) << 11) + ((cd[4] & 1) << 12) + (cd[5] << 6) + cd[6] self.layerObject2Num = ((cd[0]&2)<<12) + ((cd[7]&1)<<12) + (cd[8]<<6) + cd[9] self.isSun = self.layerObject1Num in SUN_MAGICS or self.layerObject2Num in SUN_MAGICS self.text = str(self.movement) self.initialized = True def is_obstacle(self): return self.lineOfSight and not self.entity def set_default_display(self): self.text = str(self.movement) if self.isSun: self.color = 'yellow' self.dead = False elif self.movement == 0 and self.lineOfSight: self.color = 'grey' self.dead = False elif self.lineOfSight: self.color = 'white' def set_entity(self, entity): if not entity: self.entity = None self.set_default_display() elif not entity.dead: self.entity = entity self.color = 'red' self.text = self.entity.type[0] def __repr__(self): return str(self.__dict__) def __str(self): return self.__repr__()
XeLiT/retro-dbot
utils/cell.py
cell.py
py
2,203
python
en
code
11
github-code
6
37204907362
# 打开数据库连接 import pymysql as pymysql import math EARTH_REDIUS = 6378.137 pi = 3.1415926 def rad(d): return d * pi / 180.0 def getDistan(lat1, lng1, lat2, lng2): radLat1 = rad(lat1) radLat2 = rad(lat2) a = radLat1 - radLat2 b = rad(lng1) - rad(lng2) s = 2 * math.asin(math.sqrt(math.pow(math.sin(a / 2), 2) + math.cos(radLat1) * math.cos(radLat2) * math.pow( math.sin(b / 2), 2))) s = s * EARTH_REDIUS return s db = pymysql.connect(host='bj-cdb-cwu7v42u.sql.tencentcdb.com', port=62864, user='user', passwd='xmxc1234', db='test', charset='utf8') # charset='utf8'查询的有汉字此代码必须加上否则导出的是??? # 使用cursor()方法获取操作游标 cursor = db.cursor() # sql 查询语句 sql = "select id, client_name, latitude, longitude FROM t_client_elm limit 100" # 执行sql语句 cursor.execute(sql) # 获取所有记录列表 results = cursor.fetchall() a = [["酒仙桥",116.687288, 40.2342], ["望京",116.462054, 39.914102], ["三里屯",116.442054, 39.954102]] print(a.__len__()) for i in range(0, a.__len__()): i = 1 # 坐标定义 name: str = a[i][0] lat2: float = a[i][1] lng2: float = a[i][2] i = i + 1 for row in results: lat1=float(row[2]) lng1=float(row[3]) result = getDistan(lat1, lng1, lat2,lng2) if result <= 1: print(name + ":" + str(result))
tangleibest/untitled
test/a.py
a.py
py
1,444
python
en
code
0
github-code
6
72066473469
from .qtImport import * class NewNoteForm(QWidget): def __init__(self, parent, category_list): super().__init__() self._parent = parent self._category = category_list self.initUI() def initUI(self): layout = QGridLayout() self.setLayout( layout ) label = QLabel("In catergory ") layout.addWidget( label, 1, 1 ) self._list = QComboBox() layout.addWidget( self._list, 1, 2) for x in self._category: self._list.addItem( x ) self._newCategory = QCheckBox("Create a new category") layout.addWidget( self._newCategory , 2,1) self._newCategoryName = QLineEdit() layout.addWidget( self._newCategoryName, 2, 2) name = QLabel("The name of the new note ") layout.addWidget( name, 3, 1 ) self._inp_name = QLineEdit() layout.addWidget( self._inp_name, 3, 2) button = QPushButton("Create") button.clicked.connect( self._parent.create ) layout.addWidget( button, 4, 1, 1,2) def getInputs(self): data = {} data["category"] = self._list.currentIndex() data["new_category"] = self._newCategory.isChecked() data["new_category_name"] = self._newCategoryName.text() data["note_name"] = self._inp_name.text() return data class NewNoteWindow(QMainWindow): def __init__(self, parent): super(NewNoteWindow, self).__init__(parent) self._form = None self._parent = parent def setCategory(self, available ): self._category = available def initUI(self): self.setWindowTitle("Create a new notes") _widget = QWidget() windowLayout = QVBoxLayout(_widget) self._form = NewNoteForm( self, self._category ) windowLayout.addWidget( self._form ) self.setCentralWidget( _widget ) def create( self ): data = self._form.getInputs() self._parent.actionNewNote( data ) self.close() class DeleteNoteForm(QWidget): def __init__(self, parent, notes_tree): super().__init__() self._parent = parent self._notes_tree = notes_tree self.initUI() def initUI(self): layout = QGridLayout() self.setLayout( layout ) label = QLabel("Select the note or category you want to delete\n Becarefull it's a definitiv deletion") layout.addWidget( label, 1, 1, 2, 2 ) self._tree = QTreeWidget() headerItem = QTreeWidgetItem() item = QTreeWidgetItem() layout.addWidget( self._tree, 1, 2) for category, notes in self._notes_tree.items(): parent = QTreeWidgetItem(self._tree) parent.setText(0, category) parent.setFlags(parent.flags() | Qt.ItemIsTristate | Qt.ItemIsUserCheckable) for note in notes: child = QTreeWidgetItem(self._tree) child.setText(0, note) child.setFlags(child.flags() | Qt.ItemIsUserCheckable) child.setCheckState(0, Qt.Unchecked) button = QPushButton("Delete selection") button.clicked.connect( self._parent.delete ) layout.addWidget( button, 4, 1, 1,2) def getInputs(self): iterator = QTreeWidgetItemIterator(self._tree, QTreeWidgetItemIterator.Checked) while iterator.value(): item = iterator.value() print (item.text(0)) iterator += 1 data = {} return data class DeleteNoteWindow(QMainWindow): def __init__(self, parent): super(DeleteNoteWindow, self).__init__(parent) self._form = None self._parent = parent def setNotesTree(self, available ): self._category = available def initUI(self): self.setWindowTitle("Delete a note or a category") _widget = QWidget() windowLayout = QVBoxLayout(_widget) self._form = DeleteNoteForm( self, self._category ) windowLayout.addWidget( self._form ) self.setCentralWidget( _widget ) def delete( self ): data = self._form.getInputs() self._parent.actionDeleteNote( data ) self.close()
basileMarchand/wnm
wnm/forms.py
forms.py
py
4,370
python
en
code
0
github-code
6
13900998846
from flask import Flask,render_template,request,send_file; from flask_wtf import FlaskForm; from wtforms import FileField,SubmitField; import pandas as pd import logging as logger from werkzeug.utils import secure_filename from openpyxl.styles import Border, Side, Alignment,PatternFill from openpyxl.utils import get_column_letter from datetime import datetime import re import os import io app = Flask(__name__) app.config['SECRET_KEY'] = 'supersecretkey' app.config['UPLOAD_FOLDER'] = 'static/files' class UploadFileForm(FlaskForm): file = FileField("File") submit = SubmitField("Upload File") @app.route('/',methods = ['GET','POST']) @app.route('/download') def index(): form = UploadFileForm() # @app.route('/upload', methods=['GET', 'POST']) if form.validate_on_submit(): file = form.file.data df = pd.read_excel(file) unique_surveyor_names = df["Surveyor Name"].unique() # Create a dictionary to store the results for each surveyor name results = {} # Loop through each unique surveyor name for surveyor_name in unique_surveyor_names: # Filter the dataframe to only include data for the current surveyor name surveyor_data = df[df["Surveyor Name"] == surveyor_name] # Group the data by surveyor name and calculate the number of samples samples = len(surveyor_data) # Group the data by surveyor name and calculate the total audio duration duration = surveyor_data["Audio Duration (in secs)"].sum() # Calculate the starting time and ending time for each surveyor start_time = surveyor_data["Timestamp"].min() end_time = surveyor_data["Timestamp"].max() # Group the data by gender and calculate the percentage of male and female gender_group = surveyor_data.groupby("Gender").count()["Timestamp"] #print(gender_group) gender_percentage = (gender_group / len(surveyor_data) * 100).astype(float) def count_valid_contact_numbers(x): pattern = re.compile(r"^\d{10}$") mask = x.apply(lambda x: not bool(pattern.match(str(x)))) count = mask.sum() return count invalid_numbers = count_valid_contact_numbers(surveyor_data['Contact Number']) duplicate = surveyor_data.duplicated('Location').sum() # Group the data by age group and calculate the percentage of each age group age_group = surveyor_data.groupby("Age Group").count()["Timestamp"].astype(float) age_percentage = (age_group / len(surveyor_data) * 100) print(age_group) # Group the data by political party and calculate the percentage of each party party_group = surveyor_data.groupby('ఇప్పటికి ఇప్పుడు ఎన్నికలు జరిగితే మీరు ఏ పార్టీ కి మద్దతు ఇస్తారు ?').count()["Timestamp"] party_percentage = (party_group / len(surveyor_data) * 100).astype(float) party_group1 = surveyor_data.groupby('మీ MLA పరిపాలన పట్ల మీ అభిప్రాయం?').count()["Timestamp"] party_percentage2 = (party_group1 / len(surveyor_data) * 100).astype(float) party_group2 = surveyor_data.groupby('వైయెస్ జగన్మోహన్ రెడ్డిగారి పరిపాలన పట్ల మీ అభిప్రాయం ఏమిటి?').count()["Timestamp"] party_percentage3 = (party_group2 / len(surveyor_data) * 100).astype(float) # Save the results in the dictionary results[surveyor_name] = { "NO OF SAMPLES": samples, "DURATION": duration, "STARTING TIME": start_time, "ENDING TIME": end_time, "FEMALE": gender_percentage.get("Female", 0), "MALE": gender_percentage.get("Male", 0), "DUPLICATE LOCATION":duplicate, 'INVALID CONTACT': invalid_numbers, "18-30": age_percentage.get("18-30", 0), "30-45": age_percentage.get("30-45", 0), "45-60": age_percentage.get("45-60", 0), "60+": age_percentage.get("60+", 0), "YSRCP": party_percentage.get("YSRCP", 0), "TDP": party_percentage.get("TDP",0), "JSP": party_percentage.get("JSP", 0), "BJP": party_percentage.get("BJP", 0), "INC": party_percentage.get("INC", 0), "Not Decided": party_percentage.get("Not Decided", 0), "బాగుంది.":party_percentage3.get('బాగుంది' ,0), "బాగోలేదు.":party_percentage3.get('బాగోలేదు' ,0), "బాగా చేస్తున్నారు" : party_percentage2.get("బాగా చేస్తున్నారు" , 0), "బాగా చేయడం లేదు": party_percentage2.get("బాగా చేయడం లేదు" , 0), } #results[surveyor_name]['INVALID CONTACT'] = invalidnum.Contact_Number.apply(count_valid_contact_numbers).sum() def color_format(val): text_color = 'black' try: if val >= "60": color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' def color_format2(val): text_color = 'black' try: if val.endswith("%") and float(val.strip("%")) >= 30: color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' def color_format3(val): text_color = 'black' try: if val.endswith("%") and float(val.strip("%")) >= 50: color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' def color_format4(val): text_color = 'black' try: if val.endswith("%") and float(val.strip("%")) >= 60: color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' def duration_format(val): text_color = 'black' if val >= '05:00:00' : color = 'red' font_weight = 'bold' text_color = 'white' else: color= 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) def duplicate_location(val): text_color = 'black' try: if val >= 5: color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' def invalid_number(val): text_color = 'black' try: if val >= 5: color = 'red' font_weight = 'bold' text_color = 'white' else: color = 'white' font_weight = 'normal' return 'background-color: %s; font-weight: %s; color: %s' % (color, font_weight,text_color) except ValueError: return '' results_df = pd.DataFrame.from_dict(results, orient='index') #results_df = results_df.transpose() results_df.reset_index(inplace=True) results_df.rename(columns={"index": "Surveyor Name"}, inplace=True) results_df['BJP'] = results_df['BJP'].apply(lambda x: "{:.0f}%".format(x)) results_df['INC'] = results_df['INC'].apply(lambda x: "{:.0f}%".format(x)) results_df['JSP'] = results_df['JSP'].apply(lambda x: "{:.0f}%".format(x)) results_df['TDP'] = results_df['TDP'].apply(lambda x: "{:.0f}%".format(x)) results_df['YSRCP'] = results_df['YSRCP'].apply(lambda x: "{:.0f}%".format(x)) results_df['Not Decided'] = results_df['Not Decided'].apply(lambda x: "{:.0f}%".format(x)) results_df['18-30']= results_df['18-30'].apply(lambda x: "{:.0f}%".format(x)) results_df['30-45']= results_df['30-45'].apply(lambda x: "{:.0f}%".format(x)) results_df['45-60']= results_df['45-60'].apply(lambda x: "{:.0f}%".format(x)) results_df['60+']= results_df['60+'].apply(lambda x: "{:.0f}%".format(x)) results_df['MALE']= results_df['MALE'].apply(lambda x: "{:.0f}%".format(x)) results_df['FEMALE']= results_df['FEMALE'].apply(lambda x: "{:.0f}%".format(x)) results_df['బాగా చేయడం లేదు']= results_df['బాగా చేయడం లేదు'].apply(lambda x: "{:.0f}%".format(x)) results_df['బాగా చేస్తున్నారు']= results_df['బాగా చేస్తున్నారు'].apply(lambda x: "{:.0f}%".format(x)) results_df['బాగోలేదు.']= results_df['బాగోలేదు.'].apply(lambda x: "{:.0f}%".format(x)) results_df['బాగుంది.']= results_df['బాగుంది.'].apply(lambda x: "{:.0f}%".format(x)) results_df['STARTING TIME'] = results_df['STARTING TIME'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S.%f')) results_df['ENDING TIME'] = results_df['ENDING TIME'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S.%f')) results_df['DURATION'] = results_df['ENDING TIME'] - results_df['STARTING TIME'] results_df['DURATION'] = results_df['DURATION'].apply(lambda x: f"{x.days * 24 + x.seconds // 3600:0>2}:{(x.seconds % 3600) // 60:0>2}:{x.seconds % 60:0>2}") results_df = results_df.style.applymap(color_format, subset=['MALE', 'FEMALE']) \ .applymap(duration_format, subset=['DURATION']) \ .applymap(duplicate_location, subset=['DUPLICATE LOCATION']) \ .applymap(invalid_number, subset=['INVALID CONTACT']) \ .applymap(color_format2, subset=['18-30','30-45','45-60','60+'])\ .applymap(color_format3, subset=['YSRCP','TDP','JSP','BJP','INC','Not Decided'])\ .applymap(color_format4, subset=['బాగుంది.','బాగోలేదు.' ])\ .applymap(color_format4, subset=['బాగా చేస్తున్నారు', 'బాగా చేయడం లేదు' ]) #results_df.to_excel(r"C:\Users\dell\Downloads\Sai_Swapnill Cons_Results.xlsx") # Save the DataFrame to an Excel file writer = pd.ExcelWriter("result.xlsx", engine='openpyxl') results_df.to_excel(writer, index=False) # Get the active worksheet worksheet = writer.book.active worksheet.freeze_panes = worksheet.cell(1,2) # Set the column width to automatically adjust to the size of the contents in the column for column_cells in worksheet.columns: length = max(len(str(cell)) for cell in column_cells) worksheet.column_dimensions[column_cells[0].column_letter].width = length worksheet.insert_rows(1, 1) worksheet['C1']="TIME" worksheet.merge_cells('C1:E1') worksheet['F1']="GENDER" worksheet.merge_cells('F1:G1') worksheet['J1']="AGE GROUP" worksheet.merge_cells('J1:M1') worksheet['N1'] = 'ఇప్పటికి ఇప్పుడు ఎన్నికలు జరిగితే మీరు ఏ పార్టీ కి మద్దతు ఇస్తారు ?' worksheet.merge_cells('N1:S1') worksheet['T1']= "వైయెస్ జగన్మోహన్ రెడ్డిగారి పరిపాలన పట్ల మీ అభిప్రాయం ఏమిటి?""మీ MLA పరిపాలన పట్ల మీ అభిప్రాయం?" worksheet.merge_cells('T1:U1') worksheet['V1'] = "మీ MLA పరిపాలన పట్ల మీ అభిప్రాయం?" worksheet.merge_cells('V1:W1') fill_colors = ["D8E4BCFF", "D8E4BCFF", "D8E4BCFF", "D8E4BCFF", "D8E4BCFF","D8E4BCFF",] for i, merged_cell_range in enumerate(worksheet.merged_cell_ranges): range_string = str(merged_cell_range) merged_row = worksheet[range_string] for row in merged_row: for cell in row: cell.fill = PatternFill(start_color=fill_colors[i], end_color=fill_colors[i], fill_type="solid") for row in worksheet.iter_rows(): for cell in row: cell.border = cell.border + Border(left=Side(style='thin'), right=Side(style='thin'), top=Side(style='thin'), bottom=Side(style='thin')) cell.alignment = Alignment(horizontal='center') # Set the background color of the first row (the column names) for cell in worksheet[2]: cell.fill = PatternFill(start_color="B8CCE4FF", end_color="B8CCE4FF", fill_type = "solid") #Add filter to each column worksheet.auto_filter.ref = "A2:%s2" % (get_column_letter(worksheet.max_column)) # data = Reference(worksheet, min_col=2, min_row=1, max_row=worksheet.max_row, max_col=2) # Save the changes to the Excel file writer.save() print("Analysis complete!") # Convert categorical columns to numeric # Return the file for download return send_file("result.xlsx", mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", as_attachment=True) # rendered=render_template('data.html',res = res,length = length) # df1 = pd.DataFrame({'Data': [rendered]}) # output = io.BytesIO() # writer = pd.ExcelWriter(output, engine='xlsxwriter') # df1.to_excel(writer, index=False, sheet_name='Sheet1') # writer.save() # output.seek(0) # return send_file(output, # attachment_filename='combined.xlsx', # as_attachment=True) # result.to_excel("swapnil_New.xlsx", index=False) #return render_template('data.html',res = res,length = length) #result.to_excel(os.path.join(app.config['UPLOAD_FOLDER'], "swapnil_New.xlsx"), index=False) # return "Report Generated Successfully" return render_template('index.html',form = form) if __name__ == '__main__': app.run()
Swapnil-mindbrick-2022/reportgen
App.py
App.py
py
18,656
python
en
code
0
github-code
6
26703437835
import argparse from math import sqrt, floor, ceil from os import listdir import io from Player import Player import pygame import time from View import View import matplotlib.pyplot as plt import pandas as pd import numpy as np import cv2 BUTTONPRESS_CSV = "buttonpress.csv" GAME_CSV = "game.csv" FACE_FILES = ["faces_0.txt", "faces_1.txt"] class DummyClock: def __init__(self): pass def get_fps(self): return 60 def get_rawtime(self): return 1 def get_time(self): return 1 class GameReplay: def __init__(self, replay_dir): self.field = None self.players = [] self.boxes = set() self.bombs = dict() self.explosions = set() self.inactive_traps = dict() self.active_traps = set() self.falling_boxes = dict() self.crushing_boxes = dict() self.power_ups = dict() self.active_taunts = dict() self.view = View(32 * 15, 32 * 16, "Replay Bombangerman") self.plots = [] self.vlines = [] self.replay_dir = "../replays/" + replay_dir self.face_replay_file_handles = [None,None] self.next_faces = [[0,np.zeros((48,48))],[0,np.zeros((48,48))]] plt.ion() plt.show() self.figure = plt.figure() self.figure.autofmt_xdate() plt.xticks([]) plt.yticks([]) self.last_timestamp = None self.first_timestamp = None replay_files = listdir(self.replay_dir) if GAME_CSV in replay_files: with open(self.replay_dir + "/" + GAME_CSV) as f: lines = f.readlines() self.first_timestamp = float(lines[3].split(";")[0]) self.last_timestamp = float(lines[-1].split(";")[0]) # plot data files data_files = [f for f in replay_files if f not in [GAME_CSV, BUTTONPRESS_CSV] + FACE_FILES] self.nr_plots = len(data_files) for file in data_files: print("FILENAME:", file) self.replay_data(file) # Faces Replay display setup # Yes, this has constantly open file handles. but this is read only, so we will prolly get away with it. # Here, we preload the first entry in those files for i,filename in enumerate(FACE_FILES): if filename in replay_files: f = open(self.replay_dir + "/" + filename) self.face_replay_file_handles[i] = f print("Opened Face Data File for Player", i) self.load_next_image_and_timestamp(i,f) # prepare 2 windows if 2 players have replay data here for i,h in enumerate(self.face_replay_file_handles): if h is not None: cv2.namedWindow("Player " + str(i)) # buttonpress if BUTTONPRESS_CSV in replay_files: try: with open(self.replay_dir + "/" + BUTTONPRESS_CSV) as f: content = f.readlines() bps = [float(x) for x in content] for b in bps: for plot in self.plots: plot.axvline(x=b, c="b") except FileNotFoundError: print(BUTTONPRESS_CSV + " not found") # game replay if GAME_CSV in replay_files: with open(self.replay_dir + "/" + GAME_CSV) as f: for i, line in enumerate(f): if i == 0: self.field = eval(line) elif i == 1: for x, y, ticks in eval(line): self.inactive_traps[(x, y)] = [ticks, ticks] elif i == 2: player_data = eval(line) self.update_player_data(player_data) else: break def replay_data(self, filename): content = pd.read_csv(self.replay_dir + "/" + filename, delimiter=";", names=["time", "player0", "player1"], dtype="float") if self.last_timestamp is not None: content = content[content["time"] <= self.last_timestamp] if self.first_timestamp is not None: content = content[content["time"] >= self.first_timestamp] content = content.fillna(method='ffill').dropna() content = content.sort_values('time', axis=0) plot_nr = len(self.plots) + 1 nr_rows = ceil(sqrt(self.nr_plots)) nr_columns = ceil(sqrt(self.nr_plots)) plot = self.figure.add_subplot(nr_rows, nr_columns, plot_nr) plot.title.set_text(filename) self.plots.append(plot) content.plot(x="time", ax=plot) vline = plot.axvline(x=0, c="r") self.vlines.append(vline) def new_plot(self, x, ys, title): plot_nr = len(self.plots) + 1 nr_rows = floor(sqrt(self.nr_plots)) nr_columns = ceil(sqrt(self.nr_plots)) plot = self.figure.add_subplot(nr_rows, nr_columns, plot_nr) plot.title.set_text(title) self.plots.append(plot) for y in ys: plot.plot(x, y) vline = plot.axvline(x=x[0], c="r") self.vlines.append(vline) def replay(self): clock = DummyClock() run = True frame = 3 last_timestamp = None while run: events = pygame.event.get() for event in events: if event.type == pygame.QUIT: run = False if event.type == pygame.K_ESCAPE: run = False with open(self.replay_dir + "/" + GAME_CSV) as f: for i, line in enumerate(f): if i == frame: if line == "\n": # no idea why but needed in windows continue timestamp = eval(line.split(";")[0]) events = eval(line.split(";")[1]) self.handle_events(events) elif i < frame: continue else: break if frame % 30 == 0: for vline in self.vlines: vline.set_xdata(timestamp) # TODO what's this line for? plt.pause(1e-10) if not last_timestamp is None: time.sleep((timestamp - last_timestamp)/5) last_timestamp = timestamp # intermission: draw player face when present for i,h in enumerate(self.face_replay_file_handles): if h is not None: if timestamp >= self.next_faces[i][0]: img = self.next_faces[i][1] / 255.0 img = cv2.resize(img, dsize=(48*3, 48*3), interpolation=cv2.INTER_NEAREST) cv2.imshow("Player " + str(i), img) self.load_next_image_and_timestamp(i,h) # intermission end self.update_counters() self.view.draw_game(self.field, self.boxes, self.inactive_traps, self.active_traps, self.power_ups, self.bombs, self.explosions, self.falling_boxes, self.crushing_boxes, self.players, self.active_taunts, 0, clock) self.view.update() frame += 1 pygame.quit() def update_counters(self): """ Updates all tick counters for the client """ for bomb in self.bombs: self.bombs[bomb] -= 1 for x, y in self.inactive_traps: data = self.inactive_traps[(x, y)] data[1] -= 1 # [max_ticks, remaining_ticks] for falling_box in self.falling_boxes: self.falling_boxes[falling_box] -= 1 for crushing_box in self.crushing_boxes: self.crushing_boxes[crushing_box] -= 1 remove = [] for id, ticks in self.active_taunts.items(): if ticks <= 0: remove.append(id) else: self.active_taunts[id] -= 1 for id in remove: del self.active_taunts[id] def update_player_data(self, player_data): while len(self.players) < len(player_data): self.players.append(None) for d in player_data: pid = d["id"] x = d["x"] y = d["y"] lifes = d["l"] bombs = d["b"] power = d["p"] player = self.players[pid] if len(self.players) > pid else None if player == None: self.players[pid] = Player(pid, x, y, lifes, power, bombs) else: player.x = x player.y = y player.lifes = lifes player.bombs = bombs player.power = power def handle_events(self, events): for type, data in events: if type == 0: # GENERIC pass elif type == 1: # PLAYER_INIT # unused pass elif type == 2: # PLAYER_MORTAL self.players[data["id"]].immortal = False elif type == 3: # PLAYER_DAMAGED self.players[data["id"]].lifes -= data["dmg"] self.players[data["id"]].immortal = True elif type == 4: # PLAYER_MOVED p = self.players[data["id"]] p.x = data["x"] p.y = data["y"] p.facing = data["f"] elif type == 12: # PLAYER_NOT_SLIMEY self.players[data["id"]].slimey = False elif type == 13: # PLAYER_SLIMED self.players[data["id"]].slimey = True elif type == 5: # SPAWN_BOX self.boxes.add((data["x"], data["y"])) elif type == 6: # SPAWN_BOMB self.bombs[(data["x"], data["y"])] = data["t"] # x,y -> ticks elif type == 7: # SPAWN_EXPLOSION self.explosions.add((data["x"], data["y"])) elif type == 8: # UPDATE_TRAP # unused pass elif type == 9: # REMOVE_BOX self.boxes.discard((data["x"], data["y"])) elif type == 10: # REMOVE_BOMB self.bombs.pop((data["x"], data["y"]), None) elif type == 11: # REMOVE_EXPLOSION self.explosions.discard((data["x"], data["y"])) elif type == 15: # SPAWN_FALLING_BOX self.falling_boxes[(data["x"], data["y"])] = data["t"] # x,y -> ticks elif type == 16: # REMOVE_FALLING_BOX self.falling_boxes.pop((data["x"], data["y"]), None) elif type == 17: # SPAWN_CRUSHING_BOX self.crushing_boxes[(data["x"], data["y"])] = data["t"] elif type == 18: # REMOVE_CRUSHING_BOX self.crushing_boxes.pop((data["x"], data["y"]), None) elif type == 19: # PLAYER_TAUNT if data["id"] not in self.active_taunts: self.active_taunts[data["id"]] = data["t"] elif type == 20: # SPAWN_POWER_UP self.power_ups[(data["x"], data["y"])] = data["t"] # type elif type == 21: # REMOVE_POWER_UP self.power_ups.pop((data["x"], data["y"]), None) elif type == 22: # ANGER_INFO self.players[0].set_anger(data["0"]) self.players[1].set_anger(data["1"]) elif type == 23: # ACTIVATE_TRAP self.inactive_traps.pop((data["x"], data["y"]), None) self.active_traps.add((data["x"], data["y"])) elif type == 24: # RESET_TRAP self.inactive_traps[(data["x"], data["y"])] = [data["t"], data["t"]] # [max_ticks, remaining_ticks] self.active_traps.discard((data["x"], data["y"])) elif type == 25: # PLAYER_INVERT_KEYBOARD_ON self.players[data["id"]].inverted_keyboard = True elif type == 26: # PLAYER_INVERT_KEYBOARD_OFF self.players[data["id"]].inverted_keyboard = False elif type == 27: # PLAYER_CHANGE_BOMBS_COUNT self.players[data["id"]].bombs = data["b"] elif type == 28: # PLAYER_CHANGE_POWER_AMOUNT self.players[data["id"]].power = data["p"] elif type == 29: # PLAYER_AUTOWALK_ON self.players[data["id"]].autowalk = True elif type == 30: # PLAYER_AUTOWALK_OFF self.players[data["id"]].autowalk = False def load_next_image_and_timestamp(self, player_id, opened_handle): f = opened_handle timestamp = f.readline() if timestamp == "": self.face_replay_file_handles[player_id] = None f.close() return else: # print([timestamp]) timestamp = float(timestamp) self.next_faces[player_id][0] = timestamp image_data = [] for _ in range(48): line = f.readline() if line == "": self.face_replay_file_handles[player_id] = None f.close() return image_data.append(line.strip()) print(len(image_data)) image_data = "\n".join(image_data) image_data = io.StringIO(initial_value=image_data.strip() + "\n") img = np.loadtxt(image_data) self.next_faces[player_id][1] = img line = f.readline().strip() if line != "": print(line) print("ERROR: Wanted to jump empty line but was not empty") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-r", "--replay_dir", help="The directory containing the replays for this run.", type=str) args = vars(parser.parse_args()) gr = GameReplay(**args) gr.replay()
LanyK/TheAngerGames
bombangerman/client/GameReplay.py
GameReplay.py
py
14,488
python
en
code
1
github-code
6
71578351547
""" An example trainer for a simply policy gradient implementation. """ import time import json import torch from torch.optim import Adam import gym from oxentiel import Oxentiel from asta import dims, shapes from vpg import ( get_action, compute_policy_loss, compute_value_loss, finish, ActorCritic, RolloutStorage, ) SETTINGS_PATH = "settings_vpg.json" def train(ox: Oxentiel) -> None: """ Training loop. """ env: gym.Env = gym.make(ox.env_name) shapes.OB = env.observation_space.shape dims.N_ACTS = env.action_space.n ac = ActorCritic(shapes.OB[0], dims.N_ACTS, ox.hidden_dim) actor_optimizer = Adam(ac.pi.parameters(), lr=ox.lr) critic_optimizer = Adam(ac.v.parameters(), lr=ox.lr) rollouts = RolloutStorage() ob = env.reset() done = False t_start = time.time() for i in range(ox.iterations): ob_t = torch.Tensor(ob) act, val = get_action(ac, ob_t) # Critical: add prev ob to rollouts buffer. prev_ob = ob ob, rew, done, _ = env.step(act) rollouts.add(prev_ob, act, val, rew) # If we're done, or we finished a batch. if done or (i > 0 and i % ox.batch_size == 0): rews = rollouts.rews vals = rollouts.vals last_val = 0 if done else vals[-1] ep_weights, ep_rets = finish(ox, rews, vals, last_val) rollouts.rews = [] rollouts.vals = [] rollouts.lens.append(len(ep_weights)) rollouts.weights.extend(ep_weights) rollouts.rets.extend(ep_rets) ob, done = env.reset(), False if i > 0 and i % ox.batch_size == 0: mean_ret, mean_ep_len = rollouts.stats() obs, acts, weights, rets = rollouts.get() actor_optimizer.zero_grad() policy_loss = compute_policy_loss(ac, obs, acts, weights) policy_loss.backward() actor_optimizer.step() critic_optimizer.zero_grad() value_loss = compute_value_loss(ac, obs, rets) value_loss.backward() critic_optimizer.step() print(f"Iteration: {i} \t ", end="") print(f"Time: {time.time() - t_start:.3f} \t ", end="") print(f"Loss: {policy_loss:.3f} \t ", end="") print(f"Mean episode length: {mean_ep_len:.3f} \t ", end="\n") t_start = time.time() def main() -> None: """ Run the trainer. """ with open(SETTINGS_PATH, "r") as settings_file: settings = json.load(settings_file) ox = Oxentiel(settings) train(ox) if __name__ == "__main__": main()
langfield/polstead
demos/vpg/primitive/trainer.py
trainer.py
py
2,664
python
en
code
0
github-code
6
6118839537
# define a closer def charge(price) : def calc(num): return price * num return calc # new 2 closers child = charge(400) adult = charge(1000) price1 = child(3) price2 = adult(2) print(price1) print(price2)
longniu/pylesson
note/price.py
price.py
py
224
python
en
code
0
github-code
6
5484857647
import ROOT import uproot from hipe4ml.tree_handler import TreeHandler import numpy as np import argparse import yaml import sys sys.path.append('utils') import utils as utils utils.set_style() kBlueC = ROOT.TColor.GetColor('#1f78b4') kOrangeC = ROOT.TColor.GetColor('#ff7f00') ROOT.gROOT.SetBatch() ## create signal extraction class class SignalExtraction: def __init__(self, input_data_hdl, input_mc_hdl=None): ## could be either a pandas or a tree handler self.data_hdl = input_data_hdl self.mc_hdl = input_mc_hdl self.is_3lh = True self.bins = 40 self.n_evts = 1e9 self.is_matter = False self.signal_fit_func = 'dscb' self.bkg_fit_func = 'pol1' self.performance = False self.additional_pave_text = '' ## additional text to be added to the ALICE performance pave ## variables self.pdf = None self.roo_dataset = None ### frames to be saved to file self.mc_frame_fit = None self.data_frame_fit = None self.local_pvalue_graph = None def process_fit(self, extended_likelihood=True, rooworkspace_path=None): if self.is_3lh: self.inv_mass_string = '#it{M}_{^{3}He+#pi^{-}}' if self.is_matter else '#it{M}_{^{3}#bar{He}+#pi^{+}}' decay_string = '{}^{3}_{#Lambda}H #rightarrow ^{3}He+#pi^{-}' if self.is_matter else '{}^{3}_{#bar{#Lambda}}#bar{H} #rightarrow ^{3}#bar{He}+#pi^{+}' tree_var_name = 'fMassH3L' else: self.inv_mass_string = '#it{M}_{^{4}He+#pi^{-}}' if self.is_matter else '#it{M}_{^{4}#bar{He}+#pi^{+}}' decay_string = '{}^{4}_{#Lambda}H #rightarrow ^{4}He+#pi^{-}' if self.is_matter else '{}^{4}_{#bar{#Lambda}}#bar{H} #rightarrow ^{4}#bar{He}+#pi^{+}' tree_var_name = 'fMassH4L' # define signal and bkg variables if self.is_3lh: mass = ROOT.RooRealVar('m', self.inv_mass_string, 2.96, 3.04, 'GeV/c^{2}') mu = ROOT.RooRealVar('mu', 'hypernucl mass', 2.97, 2.992, 'GeV/c^{2}') else: mass = ROOT.RooRealVar('m', self.inv_mass_string, 3.89, 3.97, 'GeV/c^{2}') mu = ROOT.RooRealVar('mu', 'hypernucl mass', 3.9, 3.95, 'GeV/c^{2}') sigma = ROOT.RooRealVar('sigma', 'hypernucl width', 0.001, 0.004, 'GeV/c^{2}') a1 = ROOT.RooRealVar('a1', 'a1', 0, 5.) a2 = ROOT.RooRealVar('a2', 'a2', 0, 5.) n1 = ROOT.RooRealVar('n1', 'n1', 1, 5.) n2 = ROOT.RooRealVar('n2', 'n2', 1, 5.) c0 = ROOT.RooRealVar('c0', 'constant c0', -1., 1) c1 = ROOT.RooRealVar('c1', 'constant c1', -1., 1) if self.signal_fit_func == 'dscb': signal = ROOT.RooCrystalBall('cb', 'cb', mass, mu, sigma, a1, n1, a2, n2) elif self.signal_fit_func == 'gaus': signal = ROOT.RooGaussian('gaus', 'gaus', mass, mu, sigma) else: raise ValueError(f'Invalid signal fit function. Expected one of: dscb, gaus') # define background pdf if self.bkg_fit_func == 'pol1': background = ROOT.RooChebychev('bkg', 'pol1 bkg', mass, ROOT.RooArgList(c0)) elif self.bkg_fit_func == 'pol2': background = ROOT.RooChebychev('bkg', 'pol2 bkg', mass, ROOT.RooArgList(c0, c1)) else: raise ValueError(f'Invalid background fit function. Expected one of: pol1, pol2') if extended_likelihood: n_signal = ROOT.RooRealVar('n_signal', 'n_signal', 10., 1e6) n_background = ROOT.RooRealVar('n_background', 'n_background', 0., 1e6) else: f = ROOT.RooRealVar('f', 'fraction of signal', 0., 0.4) # fix DSCB parameters to MC if self.mc_hdl != None: mass_roo_mc = utils.ndarray2roo(np.array(self.mc_hdl['fMassH3L'].values, dtype=np.float64), mass, 'histo_mc') signal.fitTo(mass_roo_mc, ROOT.RooFit.Range(2.97, 3.01), ROOT.RooFit.PrintLevel(-1)) a1.setConstant() a2.setConstant() n1.setConstant() n2.setConstant() sigma.setRange(sigma.getVal(), sigma.getVal()*1.5) self.mc_frame_fit = mass.frame(80) self.mc_frame_fit.SetName('mc_frame_fit') mass_roo_mc.plotOn(self.mc_frame_fit) signal.plotOn(self.mc_frame_fit) fit_param = ROOT.TPaveText(0.6, 0.6, 0.9, 0.9, 'NDC') fit_param.SetBorderSize(0) fit_param.SetFillStyle(0) fit_param.SetTextAlign(12) fit_param.AddText('#mu = ' + f'{mu.getVal()*1e3:.2f} #pm {mu.getError()*1e3:.2f}' + ' MeV/#it{c}^{2}') fit_param.AddText('#sigma = ' + f'{sigma.getVal()*1e3:.2f} #pm {sigma.getError()*1e3:.2f}' + ' MeV/#it{c}^{2}') self.mc_frame_fit.addObject(fit_param) # define the fit function and perform the actual fit if extended_likelihood: self.pdf = ROOT.RooAddPdf('total_pdf', 'signal + background', ROOT.RooArgList(signal, background), ROOT.RooArgList(n_signal, n_background)) else: self.pdf = ROOT.RooAddPdf('total_pdf', 'signal + background', ROOT.RooArgList(signal, background), ROOT.RooArgList(f)) mass_array = np.array(self.data_hdl[tree_var_name].values, dtype=np.float64) self.roo_dataset = utils.ndarray2roo(mass_array, mass) self.pdf.fitTo(self.roo_dataset, ROOT.RooFit.Extended(extended_likelihood), ROOT.RooFit.Save(True), ROOT.RooFit.PrintLevel(-1)) ## get fit parameters fit_pars = self.pdf.getParameters(self.roo_dataset) sigma_val = fit_pars.find('sigma').getVal() sigma_val_error = fit_pars.find('sigma').getError() mu_val = fit_pars.find('mu').getVal() mu_val_error = fit_pars.find('mu').getError() if extended_likelihood: signal_counts = n_signal.getVal() signal_counts_error = n_signal.getError() background_counts = n_background.getVal() background_counts_error = n_background.getError() else: signal_counts = (1-f.getVal())*self.roo_dataset.sumEntries() signal_counts_error = (1-f.getVal()) * self.roo_dataset.sumEntries()*f.getError()/f.getVal() background_counts = f.getVal()*self.roo_dataset.sumEntries() background_counts_error = f.getVal() * self.roo_dataset.sumEntries()*f.getError()/f.getVal() self.data_frame_fit = mass.frame(self.n_bins) self.data_frame_fit.SetName('data_frame_fit') self.roo_dataset.plotOn(self.data_frame_fit, ROOT.RooFit.Name('data'), ROOT.RooFit.DrawOption('p')) self.pdf.plotOn(self.data_frame_fit, ROOT.RooFit.Components('bkg'), ROOT.RooFit.LineStyle(ROOT.kDashed), ROOT.RooFit.LineColor(kOrangeC)) self.pdf.plotOn(self.data_frame_fit, ROOT.RooFit.LineColor(kBlueC), ROOT.RooFit.Name('fit_func')) self.data_frame_fit.GetYaxis().SetTitleSize(0.06) self.data_frame_fit.GetYaxis().SetTitleOffset(0.9) self.data_frame_fit.GetYaxis().SetMaxDigits(2) self.data_frame_fit.GetXaxis().SetTitleOffset(1.1) # signal within 3 sigma mass.setRange('signal', mu_val-3*sigma_val, mu_val+3*sigma_val) signal_int = signal.createIntegral(ROOT.RooArgSet(mass), ROOT.RooArgSet(mass), 'signal') signal_int_val_3s = signal_int.getVal()*signal_counts signal_int_val_3s_error = signal_int_val_3s*signal_counts_error/signal_counts # background within 3 sigma mass.setRange('bkg', mu_val-3*sigma_val, mu_val+3*sigma_val) bkg_int = background.createIntegral(ROOT.RooArgSet(mass), ROOT.RooArgSet(mass), 'bkg') bkg_int_val_3s = bkg_int.getVal()*background_counts bkg_int_val_3s_error = bkg_int_val_3s*background_counts_error/background_counts significance = signal_int_val_3s / np.sqrt(signal_int_val_3s + bkg_int_val_3s) significance_err = utils.significance_error(signal_int_val_3s, bkg_int_val_3s, signal_int_val_3s_error, bkg_int_val_3s_error) s_b_ratio_err = np.sqrt((signal_int_val_3s_error/signal_int_val_3s)**2 + (bkg_int_val_3s_error/bkg_int_val_3s)**2)*signal_int_val_3s/bkg_int_val_3s # add pave for stats pinfo_vals = ROOT.TPaveText(0.632, 0.5, 0.932, 0.85, 'NDC') pinfo_vals.SetBorderSize(0) pinfo_vals.SetFillStyle(0) pinfo_vals.SetTextAlign(11) pinfo_vals.SetTextFont(42) pinfo_vals.AddText(f'Signal (S): {signal_counts:.0f} #pm {signal_counts_error:.0f}') pinfo_vals.AddText(f'S/B (3 #sigma): {signal_int_val_3s/bkg_int_val_3s:.1f} #pm {s_b_ratio_err:.1f}') pinfo_vals.AddText('S/#sqrt{S+B} (3 #sigma): ' + f'{significance:.1f} #pm {significance_err:.1f}') pinfo_vals.AddText('#mu = ' + f'{mu_val*1e3:.2f} #pm {mu.getError()*1e3:.2f}' + ' MeV/#it{c}^{2}') pinfo_vals.AddText('#sigma = ' + f'{sigma_val*1e3:.2f} #pm {sigma.getError()*1e3:.2f}' + ' MeV/#it{c}^{2}') ## add pave for ALICE performance if self.performance: pinfo_alice = ROOT.TPaveText(0.6, 0.5, 0.93, 0.85, 'NDC') else: pinfo_alice = ROOT.TPaveText(0.14, 0.6, 0.42, 0.85, 'NDC') pinfo_alice.SetBorderSize(0) pinfo_alice.SetFillStyle(0) pinfo_alice.SetTextAlign(11) pinfo_alice.SetTextFont(42) pinfo_alice.AddText('ALICE Performance') pinfo_alice.AddText('Run 3, pp #sqrt{#it{s}} = 13.6 TeV') if not self.performance: pinfo_alice.AddText('N_{ev} = ' f'{self.n_evts:.0f} ' '#times 10^{9}') pinfo_alice.AddText(decay_string) if self.additional_pave_text != '': pinfo_alice.AddText(self.additional_pave_text) if not self.performance: self.data_frame_fit.addObject(pinfo_vals) self.data_frame_fit.addObject(pinfo_alice) fit_stats = {'signal': [signal_counts, signal_counts_error], 'significance': [significance, significance_err], 's_b_ratio': [signal_int_val_3s/bkg_int_val_3s, s_b_ratio_err]} if rooworkspace_path != None: w = ROOT.RooWorkspace('w') sb_model = ROOT.RooStats.ModelConfig('sb_model', w) sb_model.SetPdf(self.pdf) sb_model.SetParametersOfInterest(ROOT.RooArgSet(n_signal)) sb_model.SetObservables(ROOT.RooArgSet(mass)) getattr(w, 'import')(sb_model) getattr(w, 'import')(self.roo_dataset) w.writeToFile(rooworkspace_path + '/rooworkspace.root', True) return fit_stats def compute_significance_asymptotic_calc(self, rooworkspace_path, do_local_p0plot=False): print("-----------------------------------------------") print("Computing significance with asymptotic calculator") ## get saved workspace workspace_file = ROOT.TFile(rooworkspace_path + '/rooworkspace.root', 'READ') w = workspace_file.Get('w') roo_abs_data = w.data('data') sb_model = w.obj('sb_model') poi = sb_model.GetParametersOfInterest().first() sb_model.SetSnapshot(ROOT.RooArgSet(poi)) ## create the b-only model b_model = sb_model.Clone() b_model.SetName('b_model') poi.setVal(0) b_model.SetSnapshot(poi) b_model.Print() # w.var('sigma').setConstant(True) w.var('mu').setConstant(True) asymp_calc = ROOT.RooStats.AsymptoticCalculator(roo_abs_data, sb_model, b_model) asymp_calc.SetPrintLevel(0) asymp_calc_result = asymp_calc.GetHypoTest() null_p_value = asymp_calc_result.NullPValue() null_p_value_err = asymp_calc_result.NullPValueError() significance = asymp_calc_result.Significance() significance_err = asymp_calc_result.SignificanceError() if do_local_p0plot: ### perform a scan in mass and compute the significance masses = [] p0_values = [] p0_values_expected = [] mass_array = np.linspace(w.var('mu').getMin(), w.var('mu').getMax(), 100) for mass in mass_array: w.var('mu').setVal(mass) w.var('mu').setConstant(True) asymp_calc_scan = ROOT.RooStats.AsymptoticCalculator(roo_abs_data, sb_model, b_model) asymp_calc_scan.SetOneSidedDiscovery(True) asym_calc_result_scan = asymp_calc_scan.GetHypoTest() null_p_value_scan = asym_calc_result_scan.NullPValue() masses.append(mass) p0_values.append(null_p_value_scan) print(f"Mass: {mass} MeV/c^2, p0: {null_p_value_scan:.10f}") ## create a graph with the p0 values self.local_pvalue_graph = ROOT.TGraph(len(masses), np.array(masses), np.array(p0_values)) self.local_pvalue_graph.SetName('p0_values') self.local_pvalue_graph.GetXaxis().SetTitle(self.inv_mass_string) self.local_pvalue_graph.GetYaxis().SetTitle('Local p-value') # log Y axis self.local_pvalue_graph.SetMarkerStyle(20) self.local_pvalue_graph.SetMarkerColor(kBlueC) self.local_pvalue_graph.SetMarkerSize(0) self.local_pvalue_graph.SetLineColor(kBlueC) self.local_pvalue_graph.SetLineWidth(2) print("****************************************************") print(f'p0: {null_p_value:.3E} +/- {null_p_value_err:.3E}') print(f'significance: {significance:.5f} +/- {significance_err:.5f}') print("****************************************************") if __name__ == '__main__': # set parameters parser = argparse.ArgumentParser( description='Configure the parameters of the script.') parser.add_argument('--config-file', dest='config_file', default='', help='path to the YAML file with configuration.') parser.add_argument('--nbins', dest='n_bins', default=30, help='number of bins in the final plot.') parser.add_argument('--performance', action='store_true', help="True for performance plot", default=False) args = parser.parse_args() config_file = open(args.config_file, 'r') config = yaml.full_load(config_file) input_parquet_data = config['input_parquet_data'] input_analysis_results = config['input_analysis_results'] input_parquet_mc = config['input_parquet_mc'] output_dir = config['output_dir'] output_file = config['output_file'] is_4lh = config['is_4lh'] matter_type = config['matter_type'] n_bins = config['n_bins'] performance = args.performance data_hdl = TreeHandler(input_parquet_data) mc_hdl = TreeHandler(input_parquet_mc) an_vtx_z = uproot.open(input_analysis_results)['hyper-reco-task']['hZvtx'] n_evts = an_vtx_z.values().sum() / 1e9 n_evts = round(n_evts, 0) signal_extraction = SignalExtraction(data_hdl, mc_hdl) signal_extraction.n_bins = n_bins signal_extraction.n_evts = n_evts signal_extraction.matter_type = matter_type signal_extraction.performance = performance signal_extraction.is_3lh = not is_4lh signal_extraction.bkg_fit_func = 'pol1' signal_extraction.process_fit(extended_likelihood=True, rooworkspace_path="../results") signal_extraction.compute_significance_asymptotic_calc(rooworkspace_path="../results", do_local_p0plot=True) # create output file and save frames out_file = ROOT.TFile(f'{output_dir}/{output_file}', 'recreate') out_file.cd() signal_extraction.data_frame_fit.Write() signal_extraction.mc_frame_fit.Write() signal_extraction.local_pvalue_graph.Write() out_file.Close() if is_4lh: state_label = '4lh' else: state_label = '3lh' cSignalExtraction = ROOT.TCanvas('cSignalExtraction', 'cSignalExtraction', 800, 600) signal_extraction.data_frame_fit.SetTitle('') signal_extraction.data_frame_fit.Draw() cSignalExtraction.SaveAs(f'{output_dir}/cSignalExtraction_{matter_type}_{state_label}.pdf')
lbariogl/HyperRoutine
signal_extraction.py
signal_extraction.py
py
16,102
python
en
code
0
github-code
6
73829652666
import asyncio import multiprocessing as mp import os import time from bs4 import BeautifulSoup from src.download_utils import download_page class DownloadRepository: def __init__(self, address: str): self.files = [] self.address = address self.queue = mp.Queue() self.process = mp.Process(target=self.start_download) async def start_collect(self, start_page: str) -> None: self.process.start() await self.search_repository(start_page) time.sleep(2) self.process.terminate() async def search_repository(self, url: str) -> None: raw_html = await download_page(self.address, url) is_file = self.check_page(raw_html) if not is_file: embedded_links = self.parse_html_code(raw_html) for link in embedded_links: await self.search_repository(link) def check_page(self, html_text: str) -> bool: soup = BeautifulSoup(html_text, 'lxml') tool_bar = soup.find( name='h4', attrs='file-header ui top attached header df ac sb', ) if tool_bar: tag = tool_bar.find('div', class_='ui buttons mr-2') if tag is None: return False link = tag.find('a', string='Raw').get('href') print(f'[+]Found file -> {self.address}{link}') self.queue.put(link) return True return False def parse_html_code(self, html_code: str) -> list[str]: soup = BeautifulSoup(html_code, 'lxml') links = [] if soup.tbody: for tag in soup.tbody.find_all('a'): link = tag.get('href') title = tag.get('title') if link and title: links.append(link) return links return [] def start_download(self): asyncio.run(self.save_file()) @staticmethod def create_temp_folder(): if not os.path.exists('repository'): os.mkdir('repository') @staticmethod def create_saving_directory(path: str) -> None: if not os.path.exists(path): os.makedirs(path) @staticmethod def extract_paths(link: str) -> tuple[str, str]: paths = link.split('/') project = paths[2] directory = '/'.join(paths[6:-1]) filename = paths[-1] folder = f'repository/{project}/{directory}' full_path = f'{folder}/{filename}' return full_path, folder async def save_file(self): """Download and save downloaded files to repository directory.""" self.create_temp_folder() while True: if not self.queue.empty(): link = self.queue.get() text = await download_page(self.address, link) full_path, directory = self.extract_paths(link) self.create_saving_directory(directory) with open(f'{full_path}', 'w') as repo_file: repo_file.write(text) print(f'[+]File saved in {full_path}')
FeltsAzn/TestTaskRadium
src/download_recursive.py
download_recursive.py
py
3,102
python
en
code
0
github-code
6
38049949342
from gtts import gTTS from pydub import AudioSegment from pydub.playback import play from screeninfo import get_monitors import numpy as np import cv2 import json import tempfile import os import time def get_screen_resolution(use_default): if use_default: return 640, 480 # Default resolution monitors = get_monitors() if monitors: return monitors[0].width, monitors[0].height else: print("Unable to determine screen resolution.") return None def text_to_speech(text, lang='en'): tts = gTTS(text=text, lang=lang, slow=False) with tempfile.NamedTemporaryFile(delete=False) as temp_audio: tts.save(temp_audio.name) audio_segment = AudioSegment.from_file(temp_audio.name) os.remove(temp_audio.name) return audio_segment input_file = 'results.json' with open(input_file, 'r') as f: results_data = json.load(f) use_default_resolution = 1 # 0 to use device's resolution screen_width, screen_height = get_screen_resolution(use_default_resolution) # Total duration of audio (in milliseconds) total_duration = 10000 # 10sec # Silent audio segment audio = AudioSegment.silent(duration=total_duration) for frame_idx, frame_results in enumerate(results_data): frame_duration = total_duration / len(results_data) frame_audio = AudioSegment.silent(duration=frame_duration) for obj_result in frame_results: bounding_box = obj_result['bounding_box'] class_name = obj_result['class_name'] # Adjusting amplitude based on distance between y-coordinates distance_y = bounding_box['y'] + bounding_box['height'] - bounding_box['y'] amplitude = np.clip(1 - distance_y / screen_height, 0.1, 1) # Amplitude range = [0.1, 1] # Midpoint of bounding box for panning audio midpoint_x = bounding_box['x'] + bounding_box['width'] / 2 midpoint_y = bounding_box['y'] + bounding_box['height'] / 2 # Distance between midpoints and pan accordingly distance_to_center = midpoint_x - screen_width / 2 pan = np.clip(distance_to_center / (screen_width / 2), -1, 1) # Pan range = [-1, 1] voice_audio = text_to_speech(class_name) voice_audio = voice_audio - (1 - amplitude) * 50 voice_audio = voice_audio.pan(pan) frame_audio = frame_audio.overlay(voice_audio) # print(f"Frame {frame_idx + 1}, Object: {class_name}, Pan: {pan}, Amplitude: {amplitude:.2f}") audio = audio.overlay(frame_audio, position=int(frame_idx * frame_duration)) if (frame_idx + 1) % 3 == 0: # Speak out the class name every 3 seconds text_to_speech("Attention, " + class_name).play() # Export the stereo audio to a file audio.export('stereo_audio_with_speech_amplitude.wav', format='wav')
aman071/Smartphone-audio-cues-for-visually-impaired
audio_generation.py
audio_generation.py
py
2,862
python
en
code
0
github-code
6
24348533870
import shutil import zipfile import os import sys import warnings from urllib.request import urlretrieve from tqdm import tqdm from zrp import about # This is used to show progress when downloading. # see here: https://github.com/tqdm/tqdm#hooks-and-callbacks class TqdmUpTo(tqdm): """Provides `update_to(n)` which uses `tqdm.update(delta_n)`.""" def update_to(self, b=1, bsize=1, tsize=None): """ b : int, optional Number of blocks transferred so far [default: 1]. bsize : int, optional Size of each block (in tqdm units) [default: 1]. tsize : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: self.total = tsize self.update(b * bsize - self.n) # will also set self.n = b * bsize def download_progress(url, fname): """ Download a file and show a progress bar. :param url: A string for the url of the release zip to download. :param fname: A string for the local file name under which the downloaded file can be found. :return: """ with TqdmUpTo(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t: # all optional kwargs print(f"Retrieving url at {url}") urlretrieve(url, filename=fname, reporthook=t.update_to, data=None) t.total = t.n return fname def download_and_clean_lookup_tables(url, lookup_tables_output_fname, lookup_tables_output_zip_fname, geo_yr="2019", acs_yr="2019", acs_range="5yr"): """ Downloads look up tables and file them within the module. This downloads the zip file from the repository, extracts it, renames it, then moves the tables to the correct directory, and removes large files not used at runtime. :param lookup_tables_output_fname: A string for the name of the file downloaded after unzipping. :param acs_range: A string for the year range the acs lookup table data will be from. :param acs_yr: A string for the year the acs lookup table data will be from. :param geo_yr: A string for the year the geo lookup table data will be from. :param url: A string for the url of the release zip to download. :param lookup_tables_output_zip_fname: A string for the name of the zip file downloaded. :return: """ cwd = os.path.dirname(os.path.abspath(__file__)) path_to_lt_zip = os.path.join(cwd, lookup_tables_output_zip_fname) print("Downloading zrp release...", file=sys.stderr) download_progress(url, path_to_lt_zip) print("Finished download") print("\n") print("Filing extras...") with zipfile.ZipFile(path_to_lt_zip, 'r') as zf: zf.extractall(cwd) os.remove(path_to_lt_zip) # Get rid of prefix that unzipping prepends # curr_folder = cwd.split("/")[-1] # unzipped_src_fname = curr_folder + "-" + lookup_tables_output_fname # path_to_unzipped_src = os.path.join(cwd, unzipped_src_fname) path_to_lookup_tables = os.path.join(cwd, lookup_tables_output_fname) # os.rename(path_to_unzipped_src, path_to_lookup_tables) # Clear old look up table directories data_dir = os.path.join(cwd, 'data') geo_data_dir = os.path.join(data_dir, f'processed/geo/{geo_yr}') acs_data_dir = os.path.join(data_dir, f'processed/acs/{acs_yr}/{acs_range}') if os.path.isdir(geo_data_dir): shutil.rmtree(geo_data_dir) if os.path.isdir(acs_data_dir): shutil.rmtree(acs_data_dir) print("Old geo lookup table data cleared out.") # Migrate lookup tables dl_geo_dir = os.path.join(cwd, lookup_tables_output_fname, f'geo/{geo_yr}') dl_acs_dir = os.path.join(cwd, lookup_tables_output_fname, f'acs/{acs_yr}/{acs_range}') if os.path.isdir(dl_geo_dir): shutil.move(dl_geo_dir, geo_data_dir) print(f"New geo lookup tables successfully migrated from {dl_geo_dir} to {geo_data_dir}.") else: warnings.warn(f"The geo lookup data was not found in {dl_geo_dir}. Ensure you're requesting a valid year. " "Consult the lookup_tables release to troubleshoot.") if os.path.isdir(dl_acs_dir): shutil.move(dl_acs_dir, acs_data_dir) print(f"New geo lookup tables successfully migrated from {dl_acs_dir} to {acs_data_dir}.") else: warnings.warn(f"The acs lookup data was not found in {dl_acs_dir}. Ensure you're requesting a valid year and" "year range. Consult the lookup_tables release to troubleshoot.") # Remove rest of lookup table folder shutil.rmtree(path_to_lookup_tables) # save a version file so we can tell what it is vpath = os.path.join(data_dir, 'version') with open(vpath, 'w') as vfile: vfile.write('zrp release --> {}'.format(lookup_tables_output_fname)) print("Filed lookup tables successfully,", file=sys.stderr) print(" to", data_dir) def download_and_clean_pipelines(url, pipelines_output_fname, pipelines_output_zip_fname): """ Downloads pipeline pickle files and file them within the module. This downloads the zip file from the repository, extracts it, renames it, then moves the tables to the correct directory, and removes large files not used at runtime. :param pipeline_output_fname: A string for the name of the file downloaded after unzipping. :param url: A string for the url of the release zip to download. :param pipelines_output_zip_fname: A string for the name of the zip file downloaded. :return: """ cwd = os.path.dirname(os.path.abspath(__file__)) path_to_ppln_zip = os.path.join(cwd, pipelines_output_zip_fname) print("Downloading zrp release...", file=sys.stderr) download_progress(url, path_to_ppln_zip) print("Finished download") print("\n") print("Filing extras...") with zipfile.ZipFile(path_to_ppln_zip, 'r') as zf: zf.extractall(cwd) os.remove(path_to_ppln_zip) # Get rid of prefix that unzipping prepends # curr_folder = cwd.split("/")[-1] # unzipped_src_fname = curr_folder + "-" + pipelines_output_fname # path_to_unzipped_src = os.path.join(cwd, unzipped_src_fname) path_to_pipelines = os.path.join(cwd, pipelines_output_fname) # os.rename(path_to_unzipped_src, path_to_pipelines) # Clear old look up table directories model_dir = os.path.join(cwd, 'modeling/models') block_group_dir = os.path.join(model_dir, 'block_group') census_tract_dir = os.path.join(model_dir, 'census_tract') zip_code_dir = os.path.join(model_dir, 'zip_code') block_group_pipeline = os.path.join(block_group_dir, 'pipe.pkl') census_tract_pipeline = os.path.join(census_tract_dir, 'pipe.pkl') zip_code_pipeline = os.path.join(zip_code_dir, 'pipe.pkl') if os.path.isfile(block_group_pipeline): os.remove(block_group_pipeline) if os.path.isfile(census_tract_pipeline): os.remove(census_tract_pipeline) if os.path.isfile(zip_code_pipeline): os.remove(zip_code_pipeline) print("Old pipelines cleared out.") # Migrate pipelines dl_bg_pipe_file = os.path.join(path_to_pipelines, 'block_group_pipe.pkl') dl_ct_pipe_file = os.path.join(path_to_pipelines, 'census_tract_pipe.pkl') dl_zp_pipe_file = os.path.join(path_to_pipelines, 'zip_code_pipe.pkl') if os.path.isfile(dl_bg_pipe_file): shutil.move(dl_bg_pipe_file, os.path.join(block_group_dir, 'pipe.pkl')) print("Block group pipeline successfully migrated.") else: warnings.warn(f"The block group pipeline was not found in {dl_bg_pipe_file}." "Consult the pipelines release to troubleshoot.") if os.path.isfile(dl_ct_pipe_file): shutil.move(dl_ct_pipe_file, os.path.join(census_tract_dir, 'pipe.pkl')) print("Census tract pipeline successfully migrated.") else: warnings.warn(f"The census tract pipeline was not found in {dl_ct_pipe_file}." "Consult the pipelines release to troubleshoot.") if os.path.isfile(dl_zp_pipe_file): shutil.move(dl_zp_pipe_file, os.path.join(zip_code_dir, 'pipe.pkl')) print("Zip code pipeline successfully migrated.") else: warnings.warn(f"The zip code pipeline was not found in {dl_zp_pipe_file}." "Consult the pipelines release to troubleshoot.") # Remove rest of pipelines folder shutil.rmtree(path_to_pipelines) # save a version file so we can tell what it is data_dir = os.path.join(cwd, 'data') vpath = os.path.join(data_dir, 'version') with open(vpath, 'w') as vfile: vfile.write('zrp release --> {}'.format(pipelines_output_fname)) print("Filed pipelines successfully", file=sys.stderr) print(" to", model_dir) def get_release(): version = about.__version__ dl_tpl = "{m}-{v}" return dl_tpl.format(m="zrp", v=version) def download(): release_pkg = get_release() # lookup_tables_output_fname = release_pkg + "_lookup_tables" lookup_tables_output_fname = "lookup_tables" lookup_tables_output_zip_fname = release_pkg + "_lookup_tables" + ".zip" lookup_table_url = about.__download_url_prefix__ + release_pkg + "/lookup_tables.zip" download_and_clean_lookup_tables(lookup_table_url, lookup_tables_output_fname, lookup_tables_output_zip_fname) pipelines_output_fname = "pipelines" pipelines_output_zip_fname = release_pkg + "_pipelines" + ".zip" pipelines_url = about.__download_url_prefix__ + release_pkg + "/pipelines.zip" download_and_clean_pipelines(pipelines_url, pipelines_output_fname, pipelines_output_zip_fname)
zestai/zrp
zrp/download.py
download.py
py
9,695
python
en
code
25
github-code
6
17436250579
import sys import pdb def count_primes(n): isPrime = [False] * 2 + [True] * (n - 2) i = 2 while i * i < n: if not isPrime[i]: i += 1 continue j = i * i while j < n: isPrime[j] = False j += i i += 1 print(isPrime) return isPrime.count(True) count_primes(10)
naubull2/codingtests
leetcode/test.py
test.py
py
361
python
en
code
0
github-code
6
70628519869
class NrPdu: def __init__(self, byteStream=None): if byteStream==None: self.PduByteArray = bytearray() else: if isinstance(byteStream, str): self.PduByteArray = bytearray.fromhex(byteStream) else: if hasattr(byteStream, 'decode'): self.PduByteArray = byteStream print(self.PduByteArray) else: print("argument must be hex string or bytearray") def getBitField(self, inputByte, bitMask, bitOffset): print('getBitField\t : inputByte = 0x{:02x} '.format(inputByte) \ + 'bitMask = ' + '0x{:02x} '.format(bitMask) \ + 'bitOffset = ' + '0x{:02x} '.format(bitOffset)) return (inputByte & bitMask) >> bitOffset
leoneilcdasco/5GNR-UserPlane-Utilities
nruplane/nrcommon/nrpdu.py
nrpdu.py
py
804
python
no
code
7
github-code
6
32740927638
#!/bin/python3 import re import getopt, sys from kazoo.client import KazooClient import json def getRollupRules(zookeeperHostsIn, zNodePath): zk = KazooClient(hosts=zookeeperHostsIn); zk.start(); result = {}; if zk.exists(zNodePath): for zookeeperChild in zk.get_children(zNodePath): zookeeperChildPath = zNodePath + "/" + zookeeperChild if zk.exists(zookeeperChildPath): Data, Stat = zk.get(zookeeperChildPath) result[zookeeperChild] = json.loads(Data) else: print("Reported ZK path no longer exists: " + Zookeeper_Child_Path) zk.stop(); return result;
ModdingFox/AutomaticDruidRollup
Zookeeper/Fetch_Druid_Rules.py
Fetch_Druid_Rules.py
py
682
python
en
code
0
github-code
6
37828901284
#!/usr/bin/env python3 import random import sys STRENGTH = { "All Star": 2, "Angry Bird": 1, "GOAT": 1, "MKatz": 3, "Pegasus": 1, "Piston": 4, } CARDIO = { 22: 2, "Abacus": 3, "Empire": 2, "Mont Blanc": 1, "MVP": 4, "Quarterbacks": 1, } def pick_random_vid(videos: dict) -> tuple[str, int]: key = random.choice(list(videos.keys())) idx = random.randint(0, videos[key] - 1) return key, idx args = sys.argv if len(args) == 2: arg = args[1] if arg == "cardio": video, idx = pick_random_vid(CARDIO) print(f"{video} video {idx + 1}") if arg == "strength": video, idx = pick_random_vid(STRENGTH) print(f"{video} video {idx + 1}") else: video, idx = pick_random_vid({**STRENGTH, **CARDIO}) print(f"{video} video {idx + 1}")
dbatten5/dotfiles
scripts/f45.py
f45.py
py
839
python
en
code
3
github-code
6
29785322466
import turtle as t import random t.colormode(255) def random_color_finder(): r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) random_color = (r, g, b) return random_color directions = [0, 90, 180, 270] t.pensize(15) t.speed('fastest') for _ in range(200): t.color(random_color_finder()) t.forward(30) t.setheading(random.choice(directions)) my_screen = t.Screen() my_screen.bgcolor('black') my_screen.exitonclick()
NiramayThaker/Python-Topics
turtle_graphics/turtle_random_walk_rgb.py
turtle_random_walk_rgb.py
py
486
python
en
code
1
github-code
6