seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
706855437
def delit(a): res = [] i = 1 while i * i < a + 1: if a % i == 0: res.append(i) if i != a // i: res.append(a // i) i += 1 return sorted(res) # Возращает делители числа print(delit(48))
Apersant1/Algorithms-for-EGE
task25INFO.py
task25INFO.py
py
281
python
ru
code
0
github-code
6
31111080784
#https://leetcode.com/problems/longest-consecutive-sequence/submissions/ """ Q)Given an unsorted array of integers, find the length of the longest consecutive elements sequence. 1)Iterate over the array 2)If the for every element i if i-1 is not in the set, make curr = 1, and curr_streak = 1 3)If curr+1 is in set increment curr_streak 4)Update longest streak Time Complexity: O(n)Amortised Space Complexity: O(n) """ def longestConsecutive(nums): num_set = set(nums) longest_streak=0 for i in nums: if i-1 not in num_set: curr=i curr_streak=1 while curr+1 in num_set: curr+=1 curr_streak+=1 longest_streak=max(longest_streak, curr_streak) return longest_streak nums = [4,5,6,345,7,5,8,12,9] print(longestConsecutive(nums))
sparsh-m/30days
d4_3.py
d4_3.py
py
830
python
en
code
0
github-code
6
8599562923
import webbrowser import msal import logging import requests import json from msal import PublicClientApplication APPLICATION_ID = '31a4641c-9cae-4d30-a2d4-c104bf383785' CLIENT_SECRET = '5M78Q~QVl-rib2HqHVJ4xhRe-XWcGySwtZMgPbjz' authority_url = 'https://login.microsoftonline.com/common/' base_url = 'https://graph.microsoft.com/v1.0/' endpoint = base_url + 'me' SCOPES = ['User.Read', 'User.Export.All'] # # # method 2: Login to acquire access_token # # client = PublicClientApplication(client_id=APPLICATION_ID, # authority=authority_url) # # flow = client.initiate_device_flow(scopes=SCOPES) # print(flow['user_code']) # webbrowser.open(flow['verification_uri']) # # token_response = client.acquire_token_by_device_flow(flow) # print(token_response['access_token']) def email_sender(destinatario, nome_superior=None, nome_demitido=None, dt_demissao=None, modelo_equipamento=None, patrimonio_equipamento=None): f = open('parameters.json') config = json.load(f) app = msal.ConfidentialClientApplication( config["client_id"], authority=config["authority"], client_credential=config["secret"], # token_cache=... # Default cache is in memory only. # You can learn how to use SerializableTokenCache from # https://msal-python.rtfd.io/en/latest/#msal.SerializableTokenCache ) # The pattern to acquire a token looks like this. result = None # Firstly, looks up a token from cache # Since we are looking for token for the current app, NOT for an end user, # notice we give account parameter as None. result = app.acquire_token_silent(config["scope"], account=None) if not result: logging.info("No suitable token exists in cache. Let's get a new one from AAD.") result = app.acquire_token_for_client(scopes=config["scope"]) if "access_token" in result: # Calling graph using the access token request_body = { 'message': { # recipient list 'toRecipients': [ { 'emailAddress': { 'address': f'{destinatario}' } } ], # email subject 'subject': 'TESTE - Transferência de Equipamentos', 'importance': 'normal', 'body': { 'contentType': 'HTML', 'content': f'<b>Prezado {nome_superior}, \n ex-colaborador:{nome_demitido} desligado em ' f'{dt_demissao}, favor 'f'transferir equipamento{modelo_equipamento},' f' patrimônio {patrimonio_equipamento}'f' para outro colaborador ativo</b>' }, } } graph_response = requests.post(config['endpoint'], headers={'Authorization': 'Bearer ' + result['access_token']}, json=request_body) print("Graph API call result: ") print(graph_response) else: print(result.get("error")) print(result.get("error_description")) print(result.get("correlation_id")) # You may need this when reporting a bug # request_body = { # 'message': { # # recipient list # 'toRecipients': [ # { # 'emailAddress': { # 'address': '<recipient email address>' # } # } # ], # # email subject # 'subject': 'You got an email', # 'importance': 'normal', # 'body': { # 'contentType': 'HTML', # 'content': '<b>Be Awesome</b>' # }, # # include attachments # 'attachments': [ # draft_attachment('hello.txt'), # draft_attachment('image.png') # ] # } # } if __name__ == '__main__': email_sender('[email protected]')
tvcastro1/projetos-analise-dados
citrix-podio/demitidos/emailer.py
emailer.py
py
3,963
python
en
code
0
github-code
6
5140782550
# Requirements: # Device needs to lock on to their system # Add subroutine to detect a start-of-the-packet marker # Four chars that are all different # Find number of characters from the beginning of the buffer to the end of first four-char marker class DayFive: def __init__(self): text_file = open("../inputs/daySix.txt", 'r') self.data = text_file.read() text_file.close() def say_state(self): print("Data split {}".format(self.dataSplit)) def separate(self): data_split = list(self.data) n = 3 print("len(data_split) {}".format(len(data_split))) print("data_split {}".format(data_split)) while n < len(data_split): one = data_split[n - 3] two = data_split[n - 2] three = data_split[n - 1] four = data_split[n] print("values {} {} {} {}".format(one, two, three, four)) if one == two or one == three or one == four or two == three or two == four or three == four: print("n {}".format(n)) else: print("Result {}".format(n + 1)) return n n += 1 def separate_two(self): start = 0 end = start + 15 while end <= len(self.data): data_split = list(self.data[start:end]) one = data_split[0] two = data_split[1] three = data_split[2] four = data_split[3] five = data_split[4] six = data_split[5] seven = data_split[6] eight = data_split[7] nine = data_split[8] ten = data_split[9] eleven = data_split[10] twelve = data_split[11] thirteen = data_split[12] fourteen = data_split[13] if one == two or one == three or one == four or one == five or one == six or one == seven or one == eight or one == nine or one == ten or one == eleven or one == twelve or one == thirteen or one == fourteen: print("one {}".format(data_split)) elif two == three or two == four or two == five or two == six or two == seven or two == eight or two == nine or two == ten or two == eleven or two == twelve or two == thirteen or two == fourteen: print("two {}".format(data_split)) elif three == four or three == five or three == six or three == seven or three == eight or three == nine or three == ten or three == eleven or three == twelve or three == thirteen or three == fourteen: print("three {}".format(data_split)) elif four == five or four == six or four == seven or four == eight or four == nine or four == ten or four == eleven or four == twelve or four == thirteen or four == fourteen: print("four {}".format(data_split)) elif five == six or five == seven or five == eight or five == nine or five == ten or five == eleven or five == twelve or five == thirteen or five == fourteen: print("five {}".format(data_split)) elif six == seven or six == eight or six == nine or six == ten or six == eleven or six == twelve or six == thirteen or six == fourteen: print("six {}".format(data_split)) elif seven == eight or seven == nine or seven == ten or seven == eleven or seven == twelve or seven == thirteen or seven == fourteen: print("seven {}".format(data_split)) elif eight == nine or eight == ten or eight == eleven or eight == twelve or eight == thirteen or eight == fourteen: print("eight {}".format(data_split)) elif nine == ten or nine == eleven or nine == twelve or nine == thirteen or nine == fourteen: print("nine {}".format(data_split)) elif ten == eleven or ten == twelve or ten == thirteen or ten == fourteen: print("ten {}".format(data_split)) elif eleven == twelve or eleven == thirteen or eleven == fourteen: print("eleven {}".format(data_split)) elif twelve == thirteen or twelve == fourteen: print("twelve {}".format(data_split)) elif thirteen == fourteen: print("thirteen {}".format(data_split)) else: print("Result {}".format(end - 1)) return end start += 1 end += 1 if __name__ == '__main__': day = DayFive() print("Day five exercise!") result = day.separate_two() # print("Result".format(result))
nunenoriu/advent-of-code-2022
day01-10/daySix.py
daySix.py
py
4,579
python
en
code
0
github-code
6
9063496529
# -*- coding: utf-8 -*- # --- # @Software: PyCharm # @Site: # @File: num_clustering.py # @Author: Alan D.Chen # @E-mail: [email protected] # @Time: 2020,八月 07 # --- import pandas as pd from sklearn.cluster import KMeans, MeanShift, AgglomerativeClustering, DBSCAN, spectral_clustering from sklearn import metrics from sklearn.metrics import calinski_harabasz_score import matplotlib.pyplot as plt from xml_extract2 import xml_extract from DBSCAN2x import dbscanx import numpy as np from mean_shiftx import mean_shift from k_meansx import mainx from prettytable import PrettyTable import math path = '/home/alanc/Documents/faster-rcnn.pytorch-pytorch-1.0/data/VOCdevkit2007/VOC2007/Annotations' m = num_items_selected = 500 Zdata = xml_extract(path, m) ## just for AgglomerativeClustering linkages = ['ward', 'average', 'complete'] ## just for spectral_clustering ##变换成矩阵,输入必须是对称矩阵 metrics_metrix = (-1 * metrics.pairwise.pairwise_distances(Zdata)).astype(np.int32) metrics_metrix += -1 * metrics_metrix.min() ## SSE sum of the squared errors sse_list = [] sse_list2 = [] sse_list3 = [] K = range(1, 15) for k in range(1,15): kmeans=KMeans(n_clusters=k) kmeans.fit(Zdata) sse_list.append([k, kmeans.inertia_, 0]) #model.inertia_返回模型的误差平方和,保存进入列表 # Calculate the slope difference between the two sides of a point # for i in range(1,13): sse_list[i][2] = (sse_list[i][1]-sse_list[i-1][1])/(sse_list[i][0]-sse_list[i-1][0]) - (sse_list[i+1][1]-sse_list[i][1])/(sse_list[i+1][0]-sse_list[i][0]) for i in range(len(sse_list)-1): # 获得第一个元素,将其与剩余的元素进行比较,如果大于即交换位置 for j in range(i+1,len(sse_list)): if sse_list[i][2]>sse_list[j][2]: temp=sse_list[j] sse_list[j]=sse_list[i] sse_list[i]=temp #print("The best number for K-means clustering by SSE(sum of the squared errors) is ", sse_list[0][0]) ## 轮廓系数 ## silhouette_score & Calinski-Harabaz Index clusters = range(2,15) sc_scores = [] sc_scores2 = [] ac_scores = [] ac_scores2 = [] pc_scores = [] pc_scores2 = [] for k in clusters: kmeans_model = KMeans(n_clusters=k).fit(Zdata) ac_model = AgglomerativeClustering(linkage=linkages[2], n_clusters=k).fit(Zdata) pc_model = spectral_clustering(metrics_metrix, n_clusters=k) sc_score = metrics.silhouette_score(Zdata, kmeans_model.labels_,sample_size=10000, metric='euclidean') sc_scores.append([k, sc_score]) sc_score2 = metrics.calinski_harabasz_score(Zdata, kmeans_model.labels_) sc_scores2.append([k, sc_score2]) ## Agglomerative ac_score = metrics.silhouette_score(Zdata, ac_model.labels_, sample_size=10000, metric='euclidean') ac_scores.append([k, ac_score]) ac_score2 = metrics.calinski_harabasz_score(Zdata, ac_model.labels_) ac_scores2.append([k, ac_score2]) ## spectral_clustering pc_score = metrics.silhouette_score(Zdata, pc_model, sample_size=10000, metric='euclidean') pc_scores.append([k, pc_score]) pc_score2 = metrics.calinski_harabasz_score(Zdata, pc_model) pc_scores2.append([k, pc_score2]) for i in range(len(sc_scores)-1): # 获得第一个元素,将其与剩余的元素进行比较,如果小于即交换位置 for j in range(i+1,len(sc_scores)): if sc_scores[i][1]<sc_scores[j][1]: temp=sc_scores[j] sc_scores[j]=sc_scores[i] sc_scores[i]=temp if sc_scores2[i][1] < sc_scores2[j][1]: temp = sc_scores2[j] sc_scores2[j] = sc_scores2[i] sc_scores2[i] = temp if ac_scores[i][1]<ac_scores[j][1]: temp=ac_scores[j] ac_scores[j]=ac_scores[i] ac_scores[i]=temp if ac_scores2[i][1] < ac_scores2[j][1]: temp = ac_scores2[j] ac_scores2[j] = ac_scores2[i] ac_scores2[i] = temp if pc_scores[i][1]<pc_scores[j][1]: temp=pc_scores[j] pc_scores[j]=pc_scores[i] pc_scores[i]=temp if pc_scores2[i][1] < pc_scores2[j][1]: temp = pc_scores2[j] pc_scores2[j] = pc_scores2[i] pc_scores2[i] = temp # if sc_scores3[i][1] < sc_scores3[j][1]: # temp = sc_scores3[j] # sc_scores3[j] = sc_scores3[i] # sc_scores3[i] = temp num_cluster, cluster_ids = mean_shift(Zdata, 70.0) num_cluster_dbscanx = dbscanx(path, m) # #print(sc_scores) # print("The best number for K-means clustering by Silhouette Coefficient is ", sc_scores[0][0]) # #print(sc_scores2) # print("The best number for K-means clustering by Calinski-Harabaz Index is ", sc_scores2[0][0]) # # #print(ac_scores) # print("The best number for Agglomerative clustering by Silhouette Coefficient is ", ac_scores[0][0]) # #print(ac_scores2) # print("The best number for Agglomerative clustering by Calinski-Harabaz Index is ", ac_scores2[0][0]) # # #print(pc_scores) # print("The best number for Spectral clustering by Silhouette Coefficient is ", pc_scores[0][0]) # #print(pc_scores2) # print("The best number for Spectral clustering by Calinski-Harabaz Index is ", pc_scores2[0][0]) # # print("The best number for DBSCAN clustering is ", num_cluster_dbscanx) num_clusterx = (sse_list[0][0] + sc_scores[0][0] + sc_scores2[0][0] + ac_scores[0][0] + ac_scores2[0][0] + pc_scores[0][0] + pc_scores2[0][0] + num_cluster_dbscanx)/8 num_clusterx = int(math.ceil(num_clusterx)) ################################# x = PrettyTable(["Method for clustering", "Automatic presentation", "SSE(sum of the squared errors)", "Silhouette Coefficient", "Calinski-Harabaz Index"]) x.align["Method for clustering"] = "l" # Left align city names x.padding_width = 1 # One space between column edges and contents (default) x.add_row(["K-means/PAM",0,sse_list[0][0],sc_scores[0][0],sc_scores2[0][0]]) x.add_row(["Hierarchical",0, 0,ac_scores[0][0],ac_scores2[0][0]]) x.add_row(["Spectral",0,0,pc_scores[0][0],pc_scores2[0][0]]) x.add_row(["DBSCANx",num_cluster_dbscanx,0,0,0]) x.add_row(["Mean-shift", num_cluster, 0, 0,0]) print(x) print("Based on the above information, the following suggestions by the clustering system are : \n ") nx, centerx = mainx(num_clusterx) print("Plan 1:\n", "Number of clusters(K-means/PAM):",nx,"\n Cluster center:") for l in range(len(centerx)): print(centerx[l]) print("Plan 2:\n", "Number of clusters(mean shift):",num_cluster,"\n Cluster center:") for l in range(len(cluster_ids)): print(cluster_ids[l])
Alan-D-Chen/CDIoU-CDIoUloss
anchor_generater/num_clustering.py
num_clustering.py
py
6,580
python
en
code
25
github-code
6
2894455012
import numpy as np import matplotlib.pyplot as plt def gaussEliminationLS( m, n, a, x): for i in range(m-1): for k in range(m): if abs(a[i][i]<abs(a[k][i])): for j in range(n): temp= a[i][j] a[i][j]= a[k][j] a[k][j]= temp for k in range(i+1,m): term = a[k][i]/a[i][i] for j in range(n): a[k][j]= a[k][j]-term*a[i][j] for i in range(m-1,-1,-1): x[i] = a[i][n-1] for j in range(i+1,n-1): x[i] = x[i]-a[i][j]*x[j] x[i]= x[i]/a[i][i] return x def cSCoeffCalc(n,h,sig,y,a,b,c,d): for i in range(n): d[i]=y[i] b[i]=sig[i]/2.0 a[i]=(sig[i+1]-sig[i])/(h[i]*6.0) c[i]=(y[i+1]-y[i])/h[i]-h[i]*(2*sig[i]+sig[i+1])/6.0 def tridiagonalCubicSplineGen(n,h,a,y): for i in range(n-1): a[i][i]=2*(h[i]+h[i+1]) for i in range(n-2): a[i][i+1]=h[i+1] a[i+1][i]=h[i+1] for i in range(1,n): a[i-1][n-1]=(y[i+1]-y[i])*6/h[i]-(y[i]-y[i-1])*6/h[i-1] def printMatrix(m, n, matrix): ss="" for i in range(m): for j in range(n): ss+=str(matrix[i][j])+" " print(ss); def copyMatrix( m, n, matrix1, matrix2): for i in range(m): for j in range(n): matrix2[i][j]=matrix1[i][j] #x= np.array([-3,-2 ,-1, 0, 1, 2, 3]) #y= np.array([-1, -1, -1, 0, 1, 1, 1]) x= np.array([0,1,2.5,3.6,5,7,8.1,10]) y= np.array([0,.8,.6,-.44,-.96,.66,.97,-.54]) m= x.shape[0] n= m-1 h = np.zeros((n,1)) for i in range(n): h[i]=x[i+1]-x[i] a = np.zeros((n,1)) b = np.zeros((n,1)) c = np.zeros((n,1)) d = np.zeros((n,1)) sig = np.zeros((n+1,1)) sigTemp = np.zeros((n-1,1)) sig[0]=0 sig[n]=0 tri = np.zeros((n-1,n)) tridiagonalCubicSplineGen(n,h,tri,y) print("The tridiagonal system for the Natural spline is:\n\n") printMatrix(n-1,n,tri) # Perform Gauss Elimination gaussEliminationLS(n-1,n,tri,sigTemp) for i in range(1,n): sig[i]=sigTemp[i-1] # Print the values of Si's for i in range(n+1): print("\nSig["+str(i)+"]= " +str(sig[i])) # calculate the values of ai's, bi's, ci's, and di's cSCoeffCalc(n,h,sig,y,a,b,c,d); print("The equations of cubic interpolation polynomials between the successive intervals are:\n\n") for i in range(n): print("P"+str(i)+"(x) b/w ["+str(x[i])+","+str(x[i+1])+"] = "+str(a[i])+"*(x-"+str(x[i])+")^3+"+str(b[i])+"*(x-"+str(x[i])+")^2+"+str(c[i])+"*(x-"+str(x[i])+")+"+str(d[i])+"\n") function = lambda x: (a[i]*(x-x[i])**3+b[i]*(x-x[i])**2+c[i]*(x-x[i])+d[i]) X= np.linspace(x[i],x[i+1]) plt.plot(X,function(X)) plt.show()
meheraj2325/CSE-3212-Numerical-Methods-Lab
lab4/cubic_spline2.py
cubic_spline2.py
py
2,688
python
en
code
0
github-code
6
30763331030
import sys import torch import ool.picture.models.thirdparty.space.model as spc from ool.picture.models.thirdparty.space.model import Space from oolexp import OOLLayeredBoxExp class MultipleOptimizer(torch.optim.Optimizer): def __init__(self, *optimisers): self.opts = optimisers self.defaults = self.opts[0].defaults self.state = self.opts[0].state self.param_groups = [] for opt in self.opts: self.param_groups.extend(opt.param_groups) def __getstate__(self): return { 'defaults': self.defaults, 'state': self.state, 'param_groups': self.param_groups, } def __setstate__(self, state): self.__dict__.update(state) def __repr__(self): return f"Multi:{' '.join(str(opt) for opt in self.opts)}" def state_dict(self): return { 'opts': [ opt.state_dict() for opt in self.opts ] } def load_state_dict(self, state_dict): for opt, sd in zip(self.opts, state_dict['opt']): opt.load_state_dict(sd) def zero_grad(self, set_to_none: bool = False): for opt in self.opts: opt.zero_grad(set_to_none) def step(self, closure): for opt in self.opts: opt.step(closure) def add_param_group(self, param_group): raise NotImplementedError() class LitSPACE(OOLLayeredBoxExp): def __init__(self, tag='test', seed=None, data='clevr-crop-(128, 128)', batch_size=16, grad_clip=1.0, # learning_rate=1e-4, max_steps=160000, fg_std = 0.15, bg_std = 0.15, ): super(LitSPACE, self).__init__(seed, 'mse', 'min') self.save_hyperparameters() spc.arch.fg_sigma = fg_std spc.arch.bg_sigma = bg_std self.model = Space() def training_step(self, batch, batch_idx): batch = self.accelated_batch_postprocessing(batch) img, *other = batch output = self.model(img, self.trainer.global_step) self.maybe_log_training_outputs(output) return output['loss'] def configure_optimizers(self): adam = torch.optim.Adam(list(self.model.bg_module.parameters()), lr=1e-3) rms = torch.optim.RMSprop(list(self.model.fg_module.parameters()), lr=1e-5) return MultipleOptimizer(rms, adam) # def trainer_kwargs(self): # return dict(accumulate_grad_batches=3) def validation_step(self, batch, batch_idx, dataloader_idx=None): prefix = '' if dataloader_idx is None else f"v{dataloader_idx}/" batch = self.accelated_batch_postprocessing(batch) img, *other = batch output = self.model(img, self.trainer.global_step) self.maybe_log_validation_outputs(batch, batch_idx, output, prefix) if __name__ == '__main__': print(' '.join(sys.argv)) LitSPACE.parse_args_and_execute()
karazijal/clevrtex
experiments/space.py
space.py
py
3,054
python
en
code
8
github-code
6
39567195381
def main(filepath): with open(filepath) as file: rows = [int(x.strip())for x in file.readlines()] for i in range(25,len(rows)): condition_met = False for j in range(i-25,i): for k in range(i-25,i): if (rows[k] + rows[j]) == rows[i] and not rows[k] == rows[j]: condition_met = True if not condition_met: b_target = rows[i] print("Part a solution: "+ str(b_target)) break for i in range(len(rows)): for j in range(i,len(rows)): if sum(rows[i:j]) == b_target and not len(rows[i:j])==1: print("Part b solution: "+ str(max(rows[i:j])+min(rows[i:j])))
Burntmace/AdventOfCode2020
AOC-2020/days/nine.py
nine.py
py
727
python
en
code
0
github-code
6
6972201686
import os import argparse #from tools import train_net from tools.lib import init_lr import random import numpy as np from tools.classification import classification from tools.classification_multi import classification_multi import torch def seed_torch(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False #torch.backends.cudnn.enabled = False seed_torch(0) root_path = os.getcwd() #'/data2/lqm/pytorch_interpretable/py_icnn' parser = argparse.ArgumentParser('parameters') #info:gpu parser.add_argument('--gpu_id',type=int,default=0,help='select the id of the gpu') #info:task parser.add_argument('--task_name',type=str,default='classification',help='select classification or classification_multi') parser.add_argument('--task_id',type=int,default=0,help='0,1,2..') parser.add_argument('--dataset',type=str,default='voc2010_crop',help='select voc2010_crop, helen, cub200,cubsample' 'celeba, vocpart, ilsvrcanimalpart') parser.add_argument('--imagesize',type=int,default=224,help='') parser.add_argument('--label_name',type=str,default='bird',help='if voc2010_crop, set bird, cat, cow, dog, horse or sheep;' 'else, it does not matter') parser.add_argument('--label_num',type=int,default=1,help='keep the same number of label_name') parser.add_argument('--model',type=str,default='resnet_18',help='select vgg_vd_16, vgg_m, vgg_s, ' 'alexnet, resnet_18, resnet_50, densenet_121') parser.add_argument('--losstype',type=str,default='logistic',help='select logistic or softmax') #info:hyper-parameter parser.add_argument('--batchsize',type=int,default=8,help='select more than 8 may cause out of cuda memory, ' 'when you want to choose different batchsize, you also need to adjust line 94 of /tools/sgd.py at the same time to make them consistent') parser.add_argument('--dropoutrate',type=int,default=0,help='select the number between 0 and 1') parser.add_argument('--lr',type=int,default=0,help='see function init_lr in /tools/lib.py for details') parser.add_argument('--epochnum',type=int,default=0,help='see function init_lr in /tools/lib.py for details') parser.add_argument('--weightdecay',type=int,default=0.0005,help='0.02,0.002') parser.add_argument('--momentum',type=int,default=0.09,help='0.02,0.002') args = parser.parse_args() args.lr, args.epochnum = init_lr(args.model,args.label_num,args.losstype) #init lr and epochnum if(args.task_name=='classification'): if args.dataset == 'celeba': args.label_num = 40 classification(root_path, args) else: if args.dataset == 'vocpart': args.label_name = ['bird','cat','cow','dog','horse','sheep'] args.label_num = 6 classification_multi(root_path,args)
ada-shen/ICNN
demo.py
demo.py
py
3,178
python
en
code
59
github-code
6
3438970081
class Solution: def minCostII(self, costs: List[List[int]]) -> int: k = len(costs[0]) dp1 = [0] * k dp2 = [0] * k smallest1 = [0] * 2 smallest2 = [sys.maxsize] * 2 for cost in costs: for i in range(k): if dp1[i] == smallest1[1]: dp2[i] = cost[i] + smallest1[0] else: dp2[i] = cost[i] + smallest1[1] if dp2[i] <= smallest2[1]: smallest2[0] = smallest2[1] smallest2[1] = dp2[i] elif dp2[i] < smallest2[0]: smallest2[0] = dp2[i] dp1 = dp2 dp2 = [0] * k smallest1 = smallest2 smallest2 = [sys.maxsize] * 2 return min(dp1)
cuiy0006/Algorithms
leetcode/265. Paint House II.py
265. Paint House II.py
py
833
python
en
code
0
github-code
6
20804943026
import pickle from sklearn import model_selection from sklearn.linear_model import LinearRegression model = LinearRegression() loaded_model = pickle.load(open('model', 'rb')) val = "sssfAfsDfe%%%{dInIisdChdh*e]DHSdbeTNhfhdyeSSWTTFSSSllfjdjs{\\#3fdas34df7adJHHstcsdDFur3sfj_1mdfneypcs0KJDsrsFs7sd4nfec3_sdrufdl35}453" print(len(val)) res = "" for pos, i in enumerate(loaded_model.coef_): print(i) if i == 1: res += val[pos] print(res) print(len(loaded_model.coef_)) print(loaded_model)
MysterionRise/ai-ctf-2022-solutions
stegano-regression/stegano.py
stegano.py
py
502
python
en
code
0
github-code
6
73486867709
''' @Jailson Data: 17-11-2022 ''' import requests from csv import writer from datetime import datetime data_e_hora_atuais = datetime.now() data_e_hora_em_texto = data_e_hora_atuais.strftime('%d/%m/%Y %H:%M') ################################################################################# # Emon service info emon_ip = "193.136.227.157" emon_apikey = "95ca8292ee40f87f6ff0d1a07b2dca6f" # emon ecopool node_id = "ecopool" ################################################################################## API_KEY = "23ffbe727b2bee451d3dc7b37ad2b813" API_KEY_PRO = "5c27c543425c4d4a1efc3c6bee965937" cidade = "faro" code = "351" link = "https://api.openweathermap.org/data/2.5/forecast?q="+str(cidade)+"&appid="+str(API_KEY) def main(): requisicao = requests.get(link) # faz a requisição para o site(api) requisicao_dic = requisicao.json() # armazena os valores solicitado num dicionario print(requisicao_dic) temp = requisicao_dic['list'][0]['main']['temp'] - 273.15 humidade = requisicao_dic['list'][0]['main']['humidity'] veloc_vent = ((requisicao_dic['list'][0]['wind']['speed']) / (1000)) * 3600 velocidade = '{:.0f}'.format(veloc_vent) temperatura = '{:.0f}'.format(temp) #print(temperatura,velocidade,humidade) # enviar para emoncms data_json = '{"TemperaturaExt":' + str(temperatura) + ',"HumidadeExt":' + str(humidade) + ',"VelocidadeExt":' + str(velocidade) +'}' emon_link = 'http://' + emon_ip + '/emoncms/input/post?node=' + node_id + '&fulljson=' + str(data_json) + "&apikey=" + str(emon_apikey) request = requests.get(emon_link) # enviar para arquivo csv # The data assigned to the list list_data = [data_e_hora_em_texto,temperatura, velocidade, humidade] with open('files/files.csv', 'a', newline='') as f_object: # Pass the CSV file object to the writer() function writer_object = writer(f_object) # Result - a writer object # Pass the data in the list as an argument into the writerow() function writer_object.writerow(list_data) # Close the file object f_object.close() if __name__ == "__main__": main()
marcelo-m7/EcoPool
varexternas.py
varexternas.py
py
2,070
python
en
code
0
github-code
6
31534411526
characters = input() command = input() while command != "End": command = command.split() the_command = command[0] if the_command == "Translate": char = command[1] replacement = command[2] if char in characters: characters = characters.replace(char, replacement) print(characters) elif the_command == "Includes": substring = command[1] if substring in characters: print("True") elif substring not in characters: print("False") elif the_command == "Start": substring = command[1] if characters[:len(substring)] == substring: print("True") else: print("False") elif the_command == "Lowercase": characters = characters.lower() print(characters) elif the_command == "FindIndex": char = command[1] index = characters.rfind(char) print(index) elif the_command == "Remove": start_index = int(command[1]) count = int(command[2]) characters = characters.replace(characters[start_index:start_index+count], "") print(characters) command = input()
iliyan-pigeon/Soft-uni-Courses
programming_fundamentals_python/exams/fundamentals_the_final_exam/string_manipulator.py
string_manipulator.py
py
1,188
python
en
code
0
github-code
6
23748731008
# !/usr/bin/env python # -*- coding: utf-8 -*- """Entry point for the server application.""" import json import logging import traceback from datetime import datetime from flask import Response, jsonify, current_app from flask_jwt_simple import (JWTManager, jwt_required, get_jwt_identity, get_jwt) from gevent.wsgi import WSGIServer from backend.flask_app.api.user import user from backend.flask_app.api.home import home from .factory import create_app, create_user from .http_codes import Status logger = logging.getLogger(__name__) app = create_app() jwt = JWTManager(app) @app.before_first_request def init(): """Initialize the application with defaults.""" create_user(app) @jwt.jwt_data_loader def add_claims_to_access_token(identity): """Explicitly set identity and claims for jwt.""" print("identita data loader %s" % identity) if identity == '[email protected]': roles = 'admin' else: roles = 'user' now = datetime.utcnow() return { 'exp': now + current_app.config['JWT_EXPIRES'], 'iat': now, 'nbf': now, 'sub': identity, 'roles': roles } def main(): """Main entry point of the app.""" try: port = 8080 ip = '0.0.0.0' http_server = WSGIServer((ip, port), app,log=logging,error_log=logging) print("Server started at: {0}:{1}".format(ip, port)) http_server.serve_forever() except Exception as exc: # logger.error(exc.message) logger.exception(traceback.format_exc()) finally: # Do something here, vykresleni nejakeho mainu pass @app.route('/', methods=['GET']) def test_connection(): ret = {'msg': 'Is okey'} return jsonify(ret), 200 app.register_blueprint(user, url_prefix='/api/user') app.register_blueprint(home, url_prefix='/api/home')
zIPjahoda/Flask-Angular
backend/flask_app/server.py
server.py
py
1,852
python
en
code
0
github-code
6
16312489701
from flask import Blueprint, render_template, request, flash, redirect shared_file = Blueprint('shared_file', __name__) @shared_file.route('/') def get__(): from models import File, User files = File.query.filter(File.shared).all() users = list(User.get_by(id_=file.creator_id) for file in files) list_ = list((file.filename, user.username) for file, user in zip(files, users)) return render_template('shared_file.html', list=list_) @shared_file.route('/download') def get__download(): from models import User, File try: filename = request.args.get('filename') assert filename, 'missing filename' username = request.args.get('username') assert username, 'missing username' type_ = request.args.get('type') assert type_, 'missing type' assert type_ in ('encrypted', 'signature'), 'unknown type' user = User.get_by(username=username) return File.download_file(user, filename, type_) except AssertionError as e: message = e.args[0] if len(e.args) else str(e) flash('下载失败!' + message) return redirect('/shared_file')
TheMasterOfMagic/ac
views/shared_file.py
shared_file.py
py
1,156
python
en
code
1
github-code
6
20844418825
import tensorflow as tf def multiclass_non_max_suppression( boxes, scores, score_threshold, iou_threshold, max_boxes_per_class): """Multi-class version of non maximum suppression. It operates independently for each class. Also it prunes boxes with score less than a provided threshold prior to applying NMS. Arguments: boxes: a float tensor with shape [N, num_classes, 4]. scores: a float tensor with shape [N, num_classes]. score_threshold: a float number. iou_threshold: a float number. max_boxes_per_class: an integer, maximum number of retained boxes per class. Returns: selected_boxes: a float tensor with shape [M, 4], where 0 <= M <= max_boxes_per_class * num_classes. selected_scores: a float tensor with shape [M]. selected_classes: an int tensor with shape [M]. . """ boxes_list = tf.unstack(boxes, axis=1) scores_list = tf.unstack(scores, axis=1) selected_boxes, selected_scores, selected_classes = [], [], [] for i, (b, s) in enumerate(zip(boxes_list, scores_list)): selected_indices = tf.image.non_max_suppression( boxes=b, scores=s, max_output_size=max_boxes_per_class, iou_threshold=iou_threshold, score_threshold=score_threshold, ) selected_boxes += [tf.gather(b, selected_indices)] selected_scores += [tf.gather(s, selected_indices)] selected_classes += [i * tf.ones_like(selected_indices)] selected_boxes = tf.concat(selected_boxes, axis=0) selected_scores = tf.concat(selected_scores, axis=0) selected_classes = tf.to_int32(tf.concat(selected_classes, axis=0)) return selected_boxes, selected_scores, selected_classes def batch_multiclass_non_max_suppression( boxes, scores, num_boxes_per_image, score_threshold, iou_threshold, max_boxes_per_class): """Same as multiclass_non_max_suppression but for a batch of images. Arguments: boxes: a float tensor with shape [N, num_classes, 4]. scores: a float tensor with shape [N, num_classes]. num_boxes_per_image: an int tensor with shape [batch_size], where N = sum(num_boxes_per_image). Returns: boxes: a float tensor with shape [M, 4]. scores: a float tensor with shape [M]. classes: an int tensor with shape [M]. num_boxes_per_image: an int tensor with shape [batch_size]. """ batch_size = num_boxes_per_image.shape[0].value boxes_list = tf.split(boxes, num_or_size_splits=num_boxes_per_image, axis=0) scores_list = tf.split(scores, num_or_size_splits=num_boxes_per_image, axis=0) selected_boxes, selected_scores, selected_classes = [], [], [] num_selected_boxes_per_image = [] for i in range(batch_size): b, s, c = multiclass_non_max_suppression( boxes_list[i], scores_list[i], score_threshold, iou_threshold, max_boxes_per_class ) n = tf.to_int32(tf.shape(b)[0]) selected_boxes.append(b) selected_scores.append(s) selected_classes.append(c) num_selected_boxes_per_image.append(n) boxes = tf.concat(selected_boxes, axis=0) scores = tf.concat(selected_scores, axis=0) classes = tf.concat(selected_classes, axis=0) num_boxes_per_image = tf.stack(num_selected_boxes_per_image) return boxes, scores, classes, num_boxes_per_image
TropComplique/light-head-rcnn
detector/utils/nms.py
nms.py
py
3,483
python
en
code
23
github-code
6
74743637626
import re from PyQt4 import QtGui from PyQt4 import QtCore from PyQt4.QtCore import Qt from customeditor import CustomEditor from camelot.view.art import Icon import camelot.types class VirtualAddressEditor(CustomEditor): def __init__(self, parent=None, editable=True, address_type=None, **kwargs): CustomEditor.__init__(self, parent) self._address_type = address_type self.layout = QtGui.QHBoxLayout() self.layout.setMargin(0) self.combo = QtGui.QComboBox() self.combo.addItems(camelot.types.VirtualAddress.virtual_address_types) self.combo.setEnabled(editable) if address_type: self.combo.setVisible(False) self.layout.addWidget(self.combo) self.editor = QtGui.QLineEdit() self.editor.setEnabled(editable) self.layout.addWidget(self.editor) self.setFocusProxy(self.editor) self.editable = editable nullIcon = Icon('tango/16x16/apps/internet-mail.png').getQIcon() self.label = QtGui.QToolButton() self.label.setIcon(nullIcon) self.label.setAutoFillBackground(False) self.label.setAutoRaise(True) self.label.setEnabled(False) self.label.setToolButtonStyle(Qt.ToolButtonIconOnly) self.layout.addWidget(self.label) self.editor.editingFinished.connect(self.emit_editing_finished) self.editor.textEdited.connect(self.editorValueChanged) self.combo.currentIndexChanged.connect(self.comboIndexChanged) self.setLayout(self.layout) self.setAutoFillBackground(True) self.checkValue(self.editor.text()) @QtCore.pyqtSlot() def comboIndexChanged(self): self.checkValue(self.editor.text()) self.emit_editing_finished() def set_value(self, value): value = CustomEditor.set_value(self, value) if value: self.editor.setText(value[1]) idx = camelot.types.VirtualAddress.virtual_address_types.index(self._address_type or value[0]) self.combo.setCurrentIndex(idx) icon = Icon('tango/16x16/devices/printer.png').getQIcon() # These icons don't exist any more in the new tango icon set # if str(self.combo.currentText()) == 'phone': # icon = Icon('tango/16x16/devices/phone.png').getQIcon() if str(self.combo.currentText()) == 'fax': icon = Icon('tango/16x16/devices/printer.png').getQIcon() # if str(self.combo.currentText()) == 'mobile': # icon = Icon('tango/16x16/devices/mobile.png').getQIcon() # if str(self.combo.currentText()) == 'im': # icon = Icon('tango/16x16/places/instant-messaging.png').getQIcon() # if str(self.combo.currentText()) == 'pager': # icon = Icon('tango/16x16/devices/pager.png').getQIcon() if str(self.combo.currentText()) == 'email': icon = Icon('tango/16x16/apps/internet-mail.png').getQIcon() #self.label.setFocusPolicy(Qt.StrongFocus) self.label.setAutoRaise(True) #self.label.setAutoFillBackground(True) self.label.setIcon(icon) self.label.setEnabled(self.editable) self.label.clicked.connect( lambda:self.mailClick(self.editor.text()) ) else: self.label.setIcon(icon) #self.label.setAutoFillBackground(False) self.label.setAutoRaise(True) self.label.setEnabled(self.editable) self.label.setToolButtonStyle(Qt.ToolButtonIconOnly) # self.update() # self.label.update() # self.layout.update() self.checkValue(value[1]) def get_value(self): value = (unicode(self.combo.currentText()), unicode(self.editor.text())) return CustomEditor.get_value(self) or value def set_enabled(self, editable=True): self.combo.setEnabled(editable) self.editor.setEnabled(editable) if not editable: self.label.setEnabled(False) else: if self.combo.currentText() == 'email': self.label.setEnabled(True) def checkValue(self, text): if self.combo.currentText() == 'email': email = unicode(text) mailCheck = re.compile('^\S+@\S+\.\S+$') if not mailCheck.match(email): palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 0, 0)) self.editor.setPalette(palette) else: palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 255, 255)) self.editor.setPalette(palette) elif self.combo.currentText() == 'phone' \ or self.combo.currentText() == 'pager' \ or self.combo.currentText() == 'fax' \ or self.combo.currentText() == 'mobile': number = unicode(text) numberCheck = re.compile('^[0-9 ]+$') if not numberCheck.match(number): palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 0, 0)) self.editor.setPalette(palette) else: palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 255, 255)) self.editor.setPalette(palette) else: Check = re.compile('^.+$') if not Check.match(unicode(text)): palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 0, 0)) self.editor.setPalette(palette) else: palette = self.editor.palette() palette.setColor(QtGui.QPalette.Active, QtGui.QPalette.Base, QtGui.QColor(255, 255, 255)) self.editor.setPalette(palette) def editorValueChanged(self, text): self.checkValue(text) def mailClick(self, adress): url = QtCore.QUrl() url.setUrl('mailto:%s?subject=Subject'%str(adress)) QtGui.QDesktopServices.openUrl(url) def emit_editing_finished(self): self.value = [] self.value.append(str(self.combo.currentText())) self.value.append(str(self.editor.text())) self.set_value(self.value) self.label.setFocus() # emiting editingFinished without a value for the mechanism itself will lead to # integrity errors if self.value[1]: self.editingFinished.emit() def set_background_color(self, background_color): if background_color: palette = self.editor.palette() palette.setColor(self.backgroundRole(), background_color) self.editor.setPalette(palette) else: return False
kurtraschke/camelot
camelot/view/controls/editors/virtualaddresseditor.py
virtualaddresseditor.py
py
7,474
python
en
code
4
github-code
6
34084173801
from django.conf.urls.defaults import patterns, url from django.template.defaultfilters import slugify from rc.resources.views import ResourceItemListView from rc.resources.apps.operations import models def green_building_url(url_string, building_type, image_url=None, image_alt=None, image_caption=None, buildings_name=None, model=models.CampusGreenBuilding): if not buildings_name: buildings_name = ' '.join(building_type.split()[1:]).lower() return url(url_string, ResourceItemListView.as_view( model=model, queryset=model.objects.published().filter( type__type=building_type).order_by( 'type', 'certification', 'organization__name'), template_name='operations/campusgreenbuilding_list.html'), name=slugify(building_type), kwargs={'cert_order': dict(models.CampusGreenBuilding.LEED_LEVELS), 'title': building_type, 'image_url': image_url, 'image_alt': image_alt, 'image_caption': image_caption, 'buildings_name': buildings_name, 'member_only': True}) urlpatterns = patterns('', url(r'^campus-alternative-transportation-websites$', ResourceItemListView.as_view( model=models.TransportationWebsite, queryset=models.TransportationWebsite.objects.published().order_by( 'organization__name')), name='transportation-websites', kwargs={'member_only': True, 'title': 'Campus Alternative Transportation Websites'}), url(r'^bottled-water-elimination-and-reduction$', ResourceItemListView.as_view( model=models.BottledWaterBan, queryset=models.BottledWaterBan.objects.published().order_by( 'type', 'organization__name')), name='bottled-water-bans', kwargs={'type_list': [ level[0] for level in models.BottledWaterBan.BAN_TYPES ], 'type_dict': dict(models.BottledWaterBan.BAN_TYPES), 'title': 'Campus Bottled Water Bans and Reduction Campaigns', 'member_only': True}), url(r'^campus-building-energy-dashboards$', ResourceItemListView.as_view( model=models.BuildingDashboard, queryset=models.BuildingDashboard.objects.published().order_by( 'partner__name', 'organization__name')), name='building-dashboards', kwargs={'title': 'Campus Building Energy Dashboards', 'member_only': True}), url(r'^biodiesel-campus-fleets$', ResourceItemListView.as_view( model=models.BiodieselFleet, queryset=models.BiodieselFleet.objects.published().order_by( 'production', 'organization__country', 'organization__name')), name='biodiesel-fleets', kwargs={'member_only': True, 'production_types': dict(models.BiodieselFleet.PRODUCTION_TYPE)}), url(r'^campus-bicycle-plans$', ResourceItemListView.as_view( model=models.BicyclePlan, queryset=models.BicyclePlan.objects.published().order_by( 'organization__name')), name='bicycle-plans', kwargs={'member_only': True}), url(r'^campus-car-bans$', ResourceItemListView.as_view( model=models.CarBan, queryset=models.CarBan.objects.published().order_by( '-type', 'organization__name')), name='car-bans', kwargs={'ban_types': dict(models.CarBan.BAN_TYPES)}), url(r'^campus-commuter-surveys$', ResourceItemListView.as_view( model=models.CommuterSurvey, queryset=models.CommuterSurvey.objects.published().order_by( 'type', 'organization__name')), name='commuter-surveys', kwargs={'survey_types': dict(models.CommuterSurvey.SURVEY_TYPES), 'member_only': True}), url(r'^campus-electric-vehicle-fleets$', ResourceItemListView.as_view( model=models.ElectricFleet, queryset=models.ElectricFleet.objects.published().order_by( 'organization__country', 'organization__name')), name='electric-fleets', kwargs={'member_only': True}), url(r'^campus-energy-plans$', ResourceItemListView.as_view( model=models.EnergyPlan, queryset=models.EnergyPlan.objects.published().order_by( 'organization__name')), name='energy-plans', kwargs={'member_only': True}), url(r'^campus-energy-plans$', ResourceItemListView.as_view( model=models.EnergyPlan, queryset=models.EnergyPlan.objects.published().order_by( 'organization__name')), name='energy-plans', kwargs={'member_only': True}), url(r'^campus-energy-websites$', ResourceItemListView.as_view( model=models.EnergyWebsite, queryset=models.EnergyWebsite.objects.published().order_by( 'organization__name')), name='energy-websites'), url(r'^campus-global-warming-commitments$', ResourceItemListView.as_view( model=models.GlobalWarmingCommitment, queryset=models.GlobalWarmingCommitment.objects.published().order_by( 'organization__name', 'date')), kwargs={'member_only': True}, name='global-warming-commitments', ), url(r'^campus-hybrid-vehicle-fleets$', ResourceItemListView.as_view( model=models.HybridFleet, queryset=models.HybridFleet.objects.published().order_by( 'organization__country', 'organization__name')), name='hybrid-fleets', kwargs={'member_only': True}), url(r'^campus-recycling-and-waste-minimization-websites$', ResourceItemListView.as_view( model=models.RecyclingWebsite, queryset=models.RecyclingWebsite.objects.published().order_by( 'organization__name')), name='recycling-websites', kwargs={'title': 'Campus Recycling & Waste Minimization Websites', 'member_only': True}), url(r'^campus-water-conservation-efforts$', ResourceItemListView.as_view( model=models.WaterConservationEffort, queryset=models.WaterConservationEffort.objects.published().order_by( 'organization__country', 'organization__name')), name='water-conservation-efforts', kwargs={'member_only': True}), url(r'^wind-power-campus-1$', ResourceItemListView.as_view( model=models.WindTurbine, queryset=models.WindTurbine.objects.published().order_by( '-size', 'organization__name')), name='wind-turbines', kwargs={'member_only': True, 'title': 'Wind Turbine Installations on Campus'}), url(r'^carsharing-campus$', ResourceItemListView.as_view( model=models.CarShare, queryset=models.CarShare.objects.published().order_by( 'partner__name', 'organization__name')), name='car-shares', kwargs={'member_only': True}), url(r'^renewable-energy-research-centers$', ResourceItemListView.as_view( model=models.RenewableResearchCenter, queryset=models.RenewableResearchCenter.objects.published().order_by( 'organization__name')), name='renewable-research-centers', kwargs={ 'title': 'Renewable Energy Research Centers', 'member_only': True, }), url(r'^campus-installations-stationary-fuel-cells$', ResourceItemListView.as_view( model=models.FuelCell, queryset=models.FuelCell.objects.published().order_by('-size', 'organization__name')), name='fuel-cells', kwargs={ 'title': 'Campus Installations of Stationary Fuel Cells', 'member_only': True, }), url(r'^sustainable-dining-initiatives-campus$', ResourceItemListView.as_view( model=models.DiningInitiative, queryset=models.DiningInitiative.objects.published().order_by( 'ownership', 'organization__name')), name='dining-initiatives', kwargs={'owners': dict(models.DiningInitiative.OWNERS), 'member_only': True}), url(r'^campus-greenhouse-gas-emissions-inventories$', ResourceItemListView.as_view( model=models.GHGInventory, queryset=models.GHGInventory.objects.published().order_by( 'methodology', 'organization__name')), name='ghg-inventories', kwargs={'methodology_types': dict(models.GHGInventory.METHODOLOGY_TYPES), 'member_only': False}), url(r'^sustainable-landscaping-campus$', ResourceItemListView.as_view( model=models.SustainableLandscape, queryset=models.SustainableLandscape.objects.published().order_by( 'organization__name')), name='sustainable-landscapes', kwargs={ 'title': 'Sustainable Landscaping Initiatives on Campus', 'member_only': True, }), url(r'^links-related-sustainable-purchasing-campus$', ResourceItemListView.as_view( model=models.PurchasingLink, queryset=models.PurchasingLink.objects.published().order_by( 'type', 'organization__name')), name='purchasing-links', kwargs={'type_list': dict(models.PurchasingLink.LINK_TYPES), 'title': 'Sustainable Purchasing Initiatives on Campus', 'member_only': True}), url(r'^campus-universal-transit-passes$', ResourceItemListView.as_view( model=models.TransitPass, queryset=models.TransitPass.objects.published().order_by( '-type', 'organization__country', 'organization__name')), name='transit-passes', kwargs={ 'type_list': dict(models.TransitPass.PASS_TYPES), 'member_only': True, }), green_building_url( url_string=r'^athletic-recreation-centers-stadiums$', building_type='Green Athletic Buildings', image_url='http://www.aashe.org/files/univ_of_arizona_rec_center_0.jpg', image_alt='Univ Arizona', image_caption='University of Arizona Recreation Center'), green_building_url( url_string=r'^green-student-centers$', building_type='Green Student Centers', image_url='http://www.aashe.org/files/sju_mckeown_0.jpg', image_alt='SJU McKeown', image_caption='St. John\'s University McKeown Center', ), green_building_url( url_string=r'^green-libraries-campus$', building_type='Green Libraries on Campus', image_url='http://www.aashe.org/files/thompson_library_1.jpg', image_alt='OSU Thompson Library', image_caption='Ohio State University Thompson Library', buildings_name='libraries', ), green_building_url( url_string=r'^green-residence-halls$', building_type='Green Residence Halls', image_url='http://www.aashe.org/files/ashdown_house_mit.jpg', image_alt='MIT Ashdown House', image_caption='MIT Ashdown House', # Model is empty, dunno why (mt) model=models.GreenResidenceHall, ), green_building_url( url_string=r'^green-science-buildings$', building_type='Green Science Buildings', image_url='http://www.aashe.org/files/brandeis.jpg', image_alt='Brandeis University Shapiro Science Center', image_caption='Brandeis University Shapiro Science Center', ), )
AASHE/django-irc
rc/resources/apps/operations/urls.py
urls.py
py
12,244
python
en
code
0
github-code
6
35862928120
import json import redis from flask import Flask, request, Response, make_response import base64 from jwt.api_jwt import PyJWT app = Flask(__name__) d = {'write': '1', 'read': '2', 'delete': '3'} HOST = 'rediska' Key = '12345' @app.route('/auth/') def requestic4(): user = request.authorization.username password = request.authorization.password if d.get(user) != None and d[str(user)] == password: payload = {"role": str(user)} jwt_Obj = PyJWT() jwt_token = jwt_Obj.encode(payload=payload, key=Key) rez = make_response(str(jwt_token, 'UTF-8'), 200) rez.headers['Authorization'] = str(jwt_token, 'UTF-8') return rez else: return make_response("invalid user or password" + str(user) + ' ' + str(password), 400) @app.route('/<key>/', methods=['PUT']) def requestic1(key): key = int("{}".format(key)) data = json.loads(request.data) Jwt1 = request.headers['Authorization'] message = data.get("message") try: jwt_Obj = PyJWT() decode_token = jwt_Obj.decode(str(Jwt1), key=Key) if decode_token['role'] == "write": if key == None or message == None: return Response(status=400) else: cache = redis.Redis(host=HOST, port=6379) cache.ping() if cache.exists(key): cache.delete(key) cache.set(key, json.dumps(message)) return make_response("changed", 200) else: cache.set(key, json.dumps(message)) return make_response({key: message}, 201) else: return make_response("invalid1 tiket", 400) except Exception: return make_response("invalid2 tiket", 400) @app.route('/<key>/', methods=['GET']) def requestic2(key): key=int("{}".format(key)) Jwt1 = request.headers['Authorization'] try: jwt_Obj = PyJWT() decode_token = jwt_Obj.decode(str(Jwt1), key=Key) if decode_token['role'] == "read": cache = redis.Redis(host = HOST, port=6379) cache.ping() if cache.exists(key): res = json.loads(cache.get(key)) return make_response({"message": res}, 200) else: return Response(status=400) else: return make_response("invalid1 tiket", 400) except Exception: return make_response("invalid2 tiket", 400) @app.route('/<key>/', methods=['DELETE']) def requestic3(key): key=int("{}".format(key)) Jwt1 = request.headers['Authorization'] try: jwt_Obj = PyJWT() decode_token = jwt_Obj.decode(str(Jwt1), key=Key) if decode_token['role'] == "delete": cache = redis.Redis(host = HOST, port=6379) cache.ping() if key == None: return Response(status = 400) else: if cache.exists(key): res = json.loads(cache.get(key)) cache.delete(key) return make_response({"message": res}, 204) else: return Response(status=404) else: return make_response("invalid1 tiket", 400) except Exception: return make_response("invalid2 tiket", 400) if __name__ == '__main__': app.run(host = '0.0.0.0')
ZharkovMihail/server_with_jwt
server.py
server.py
py
2,843
python
en
code
0
github-code
6
43073911588
""" 年化因子 """ def annualization_factor(period): """ 返回对应周期(period)所需的年化因子 Parameters --------- period: str [daily, weekly, monthly, yearly] 定义调仓周期 Returns ------- annualization_factor : float 年化因子 """ try: factor = ANNUALIZATION_FACTORS[period] except KeyError: raise ValueError( "Period应当为daily, weekly, monthly, yearly中的一种" ) return factor BDAYS_PER_YEAR = 244 BDAYS_PER_MONTH = 20 MONTHS_PER_YEAR = 12 WEEKS_PER_YEAR = 52 YEAR_PER_YEAR = 1 ANNUALIZATION_FACTORS = { 'daily': BDAYS_PER_YEAR, 'weekly': WEEKS_PER_YEAR, 'monthly': MONTHS_PER_YEAR, 'yearly': YEAR_PER_YEAR }
SkyBlueRW/PortAttribute
portattr/const/annualization.py
annualization.py
py
769
python
en
code
0
github-code
6
23113245409
#-*- coding: utf-8 -*- #-----------------------------------------------------------------------# # Autor: Luis Enrique Rojas Desales # #-----------------------------------------------------------------------# # Este codigo esta liberado bajo licencia GPL. # #-----------------------------------------------------------------------# ''' Descarga Masiva SAT Luis E. Rojas Desales ''' from Interfaz import ListaRFC from PySide2.QtGui import QIcon from PySide2.QtWidgets import QMainWindow from PySide2 import QtCore import os import configparser class ListaC(QMainWindow): def __init__(self, parent): self.parent = parent super().__init__() self.ui = ListaRFC.Ui_MainWindow() self.ui.setupUi(self) self.setWindowModality(QtCore.Qt.ApplicationModal) self.setWindowIcon(QIcon('cfdi.ico')) self.inicio() def inicio(self): contenido = os.listdir('C:/CFDIs/') for i in range(len(contenido)): self.ui.lista.addItem(contenido[i]) self.ui.lista.itemDoubleClicked.connect(self.onClicked) self.ui.aceptar.clicked.connect(self.aceptar) def onClicked(self, item): #QMessageBox.information(self, "Info", item.text()) self.close() configuracion = configparser.ConfigParser() configuracion.read('C:/CFDIs/' + item.text() + '/datos.cfg') self.parent.ui.lrfc.setText(configuracion['Contribuyente']['rfc']) self.parent.ui.lrazon.setText(configuracion['Contribuyente']['razon']) self.parent.cargar(configuracion['Contribuyente']['rfc']) def aceptar(self): item = self.ui.lista.currentItem() self.close() configuracion = configparser.ConfigParser() configuracion.read('C:/CFDIs/' + item.text() + '/datos.cfg') self.parent.ui.lrfc.setText(configuracion['Contribuyente']['rfc']) self.parent.ui.lrazon.setText(configuracion['Contribuyente']['razon']) self.parent.cargar(configuracion['Contribuyente']['rfc'])
ikiex/CFDIMasivo
CFDI/Controlador/lista.py
lista.py
py
2,079
python
es
code
3
github-code
6
3654388040
import re import time from threading import Lock from mycroft.configuration import Configuration from mycroft.metrics import report_timing, Stopwatch from mycroft.tts import TTSFactory from mycroft.util import create_signal, check_for_signal from mycroft.util.log import LOG from mycroft.messagebus.message import Message from mycroft.tts.remote_tts import RemoteTTSTimeoutException from mycroft.tts.mimic_tts import Mimic bus = None # Mycroft messagebus connection config = None tts = None tts_hash = None lock = Lock() mimic_fallback_obj = None _last_stop_signal = 0 def _start_listener(message): """ Force Mycroft to start listening (as if 'Hey Mycroft' was spoken) """ create_signal('startListening') def handle_speak(event): """ Handle "speak" message """ config = Configuration.get() Configuration.init(bus) global _last_stop_signal # Get conversation ID if event.context and 'ident' in event.context: ident = event.context['ident'] else: ident = 'unknown' start = time.time() # Time of speech request with lock: stopwatch = Stopwatch() stopwatch.start() utterance = event.data['utterance'] if event.data.get('expect_response', False): # When expect_response is requested, the listener will be restarted # at the end of the next bit of spoken audio. bus.once('recognizer_loop:audio_output_end', _start_listener) # This is a bit of a hack for Picroft. The analog audio on a Pi blocks # for 30 seconds fairly often, so we don't want to break on periods # (decreasing the chance of encountering the block). But we will # keep the split for non-Picroft installs since it give user feedback # faster on longer phrases. # # TODO: Remove or make an option? This is really a hack, anyway, # so we likely will want to get rid of this when not running on Mimic if (config.get('enclosure', {}).get('platform') != "picroft" and len(re.findall('<[^>]*>', utterance)) == 0): # Remove any whitespace present after the period, # if a character (only alpha) ends with a period # ex: A. Lincoln -> A.Lincoln # so that we don't split at the period utterance = re.sub(r'\b([A-za-z][\.])(\s+)', r'\g<1>', utterance) chunks = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\;|\?)\s', utterance) for chunk in chunks: # Check if somthing has aborted the speech if (_last_stop_signal > start or check_for_signal('buttonPress')): # Clear any newly queued speech tts.playback.clear() break try: mute_and_speak(chunk, ident) except KeyboardInterrupt: raise except Exception: LOG.error('Error in mute_and_speak', exc_info=True) else: mute_and_speak(utterance, ident) stopwatch.stop() report_timing(ident, 'speech', stopwatch, {'utterance': utterance, 'tts': tts.__class__.__name__}) def mute_and_speak(utterance, ident): """ Mute mic and start speaking the utterance using selected tts backend. Args: utterance: The sentence to be spoken ident: Ident tying the utterance to the source query """ global tts_hash # update TTS object if configuration has changed if tts_hash != hash(str(config.get('tts', ''))): global tts # Stop tts playback thread tts.playback.stop() tts.playback.join() # Create new tts instance tts = TTSFactory.create() tts.init(bus) tts_hash = hash(str(config.get('tts', ''))) LOG.info("Speak: " + utterance) try: tts.execute(utterance, ident) except RemoteTTSTimeoutException as e: LOG.error(e) mimic_fallback_tts(utterance, ident) except Exception as e: LOG.error('TTS execution failed ({})'.format(repr(e))) def mimic_fallback_tts(utterance, ident): global mimic_fallback_obj # fallback if connection is lost config = Configuration.get() tts_config = config.get('tts', {}).get("mimic", {}) lang = config.get("lang", "en-us") if not mimic_fallback_obj: mimic_fallback_obj = Mimic(lang, tts_config) tts = mimic_fallback_obj LOG.debug("Mimic fallback, utterance : " + str(utterance)) tts.init(bus) tts.execute(utterance, ident) def handle_stop(event): """ handle stop message """ global _last_stop_signal if check_for_signal("isSpeaking", -1): _last_stop_signal = time.time() tts.playback.clear() # Clear here to get instant stop bus.emit(Message("mycroft.stop.handled", {"by": "TTS"})) def init(messagebus): """ Start speech related handlers. Arguments: messagebus: Connection to the Mycroft messagebus """ global bus global tts global tts_hash global config bus = messagebus Configuration.init(bus) config = Configuration.get() bus.on('mycroft.stop', handle_stop) bus.on('mycroft.audio.speech.stop', handle_stop) bus.on('speak', handle_speak) bus.on('mycroft.mic.listen', _start_listener) tts = TTSFactory.create() tts.init(bus) tts_hash = config.get('tts') def shutdown(): if tts: tts.playback.stop() tts.playback.join() if mimic_fallback_obj: mimic_fallback_obj.playback.stop() mimic_fallback_obj.playback.join()
injones/mycroft_ros
scripts/mycroft/audio/speech.py
speech.py
py
5,795
python
en
code
5
github-code
6
72435188028
import requests import json URL = "http://localhost:8000/auth/users/" def post_data(): # data = { # "emial":"[email protected]", # "name":"AdityaRokade", # "password":"djangoroot", # "re_password":"djangoroot", # "first_name":"adi", # "last_name":"rokade" # } # data ={ # 'email':'[email protected]', # 'name':'AdityaRokade', # 'password':'djangoroot', # 're_password':'djangoroot', # 'first_name':'adi', # 'last_name':'rokade' # } # print(type(data)) # print("myapp1") # json_data = json.dumps(data) # print("myapp2",json_data) # print(type(json_data)) r = requests.post(url = URL, data = data) data = r.json() print(data) post_data()
adityarokade/social_book
social_book/myapp.py
myapp.py
py
805
python
en
code
0
github-code
6
39129545830
from __future__ import absolute_import, division, print_function import os from subprocess import check_call import logging import importlib import tempfile import yaml from datetime import datetime import numpy as np import dask import xarray as xr import cftime import esmlab import data_catalog #-- settings (move to config.yml or similar) USER = os.environ['USER'] dirout = f'/glade/scratch/{USER}/calcs' if not os.path.exists(dirout): os.makedirs(dirout) tmpdir = f'{dirout}/work' if not os.path.exists(tmpdir): os.makedirs(tmpdir) logging.basicConfig(level=logging.INFO) #------------------------------------------------------------------------------- #-- methods #------------------------------------------------------------------------------- def pop_calc_zonal_mean(file_in): ''' compute zonal mean of POP field in lieau of wrapping klindsay's zon_avg program so as to operate on an `xarray` dataset: write to file, compute, read back. ''' za = '/glade/u/home/klindsay/bin/za' fid,file_out = tempfile.mkstemp(dir=tmpdir, prefix='za-', suffix='.nc') rmask_file = '/glade/work/mclong/grids/PacAtlInd_REGION_MASK_gx1v6.nc' check_call([za,'-O','-rmask_file',rmask_file,'-o',file_out,file_in]) return file_out class yaml_operator(yaml.YAMLObject): '''A wrapper used for defining callable functions in YAML. For example: !operator module: esmlab.climatology function: compute_mon_climatology kwargs: {} ''' yaml_tag = u'!operator' def __init__(self, module, function, kwargs={}): '''Initialize attributes''' self.module = module self.func = function self.kwargs = kwargs def __repr__(self): '''Return string represention.''' return getattr(importlib.import_module(self.module), self.function).__repr__() def __call__(self, val): '''Call the function!''' return getattr(importlib.import_module(self.module), self.function)(val, **self.kwargs) class process_data_source(object): '''Class to support preprocessing operations.''' def __init__(self, analysis_name, analysis_recipes, isderived=False, clobber=False, **query_kwargs): import popeos importlib.reload(popeos) #-- parse query: hardwired now for certain fields self.experiment = query_kwargs['experiment'] self.variable = query_kwargs.pop('variable') # get the analysis definition self.analysis_name = analysis_name with open(analysis_recipes) as f: analysis_defs = yaml.load(f) analysis = analysis_defs[analysis_name] if 'description' in analysis: self.analysis_description = analysis['description'] self.operators = analysis.pop('operators', [lambda ds: ds]) self.sel_kwargs = analysis.pop('sel_kwargs', {}) self.isel_kwargs = analysis.pop('isel_kwargs', {}) self.derived_var_def = analysis.pop('derived_var_def', None) self.file_format = analysis.pop('file_format', 'nc') if self.file_format not in ['nc','zarr']: raise ValueError(f'unknown file format: {self.file_format}') if isderived: with open('derived_variable_definitions.yml') as f: derived_var_defs = yaml.load(f) derived_var_def = derived_var_defs[self.variable] self.vars_dependent = derived_var_def['vars_dependent'] self.operators = derived_var_def['methods'] + self.operators #-- set some attrs self.dirout = os.path.join(dirout, 'processed_collections') #-- pull specified dataset from catalog self.catalog = data_catalog.get_catalog() ensembles = data_catalog.find_in_index(**query_kwargs).ensemble.unique() if len(ensembles) == 0: raise ValueError(f'catalog contains no data for this query:\n' f'{query_kwargs}') self.n_members = len(ensembles) self.cache_locations = [] self.input = [] # if the cached_locations are present, # then this list will be empty in the returned # object. Could be that the orig files are gone, # (off disk) but the cache remains. for ens_i in ensembles: file_out = '.'.join([self.catalog, self.experiment, '%03d'%ens_i, self.analysis_name, self.variable, self.file_format]) file_out = os.path.join(self.dirout,file_out) self.cache_locations.append(file_out) if os.path.exists(file_out) and clobber: check_call(['rm','-fr',file_out]) # zarr files are directories if not os.path.exists(file_out): if not isderived: data_desc = data_catalog.get_entries(ensemble=ens_i, variable=self.variable, **query_kwargs) n_files = len(data_desc['files']) else: data_desc = [data_catalog.get_entries(ensemble=ens_i, variable=v, **query_kwargs) for v in self.vars_dependent] n_files = len(data_desc[0]['files']) if n_files > 0: self._process(file_out, data_desc) else: self.cache_locations.pop(-1) logging.warning(f'No data to generate {file_out}.') self.input.append(data_desc) def __repr__(self): '''Return compact string represention of self.''' ens_str = '000' if self.n_members > 1: ens_str = f'000-{self.n_members:03d}' return '.'.join([self.experiment, ens_str, self.analysis_name, self.variable]) def load(self, **kwargs): '''Load the cached data.''' # QUESTION: whats the right thing to do if there are no files? # some datasets might not have some variables if not self.cache_locations: return xr.Dataset() option = kwargs.pop('option',None) if option not in [None, 'za']: raise ValueError(f'Unrecognized option: {option}') if option == 'za' and self.file_format == 'zarr': raise ValueError(f'File format = zarr is incompatible with za') ds_list = [] for f in self.cache_locations: # NOTE: this is probably not the right way to do this if option == 'za': f = pop_calc_zonal_mean(f) ds_list.append(self._open_cached_dataset(f)) return xr.concat(ds_list, dim='ens', data_vars=[self.variable]) def _process(self, file_out, data_input): '''Apply a preprocessing workflow to specified datasets and save a cached file.''' # if files_in is a 2D list, merge the files if isinstance(data_input,list): year_offset = data_input[0]['year_offset'][0] dsi = xr.Dataset() for v, d in zip(self.vars_dependent, data_input): f = d['files'] dsi = xr.merge((dsi,xr.open_mfdataset(f, decode_times=False, decode_coords=False, data_vars=[v], chunks={'time':1}))) else: # concat with time files_input = data_input['files'] year_offset = data_input['year_offset'][0] dsi = xr.open_mfdataset(files_input, decode_times=False, decode_coords=False, data_vars=[self.variable], chunks={'time': 1}) tb_name, tb_dim = esmlab.utils.time_bound_var(dsi) if tb_name and tb_dim: dso = esmlab.utils.compute_time_var(dsi, tb_name, tb_dim, year_offset=year_offset) if self.sel_kwargs: logging.info(f'Applying sel_kwargs: {self.sel_kwargs}') dso = dso.sel(**self.sel_kwargs) if self.isel_kwargs: logging.info(f'Applying isel_kwargs: {self.isel_kwargs}') dso = dso.isel(**self.isel_kwargs) for op in self.operators: logging.info(f'Applying operator: {op}') dso = op(dso) dso = esmlab.utils.uncompute_time_var(dso, tb_name, tb_dim) self._write_output(dso, file_out) dsi.close() def _open_cached_dataset(self,filename): '''Open a dataset using appropriate method.''' if self.file_format == 'nc': ds = xr.open_mfdataset(filename, decode_coords=False, data_vars=[self.variable], chunks={'time':1}) elif self.file_format == 'zarr': ds = xr.open_zarr(filename, decode_coords=False) #-- fix time? return ds def _write_output(self, ds, file_out): '''Function to write output: - add file-level attrs - switch method based on file extension ''' if not os.path.exists(self.dirout): logging.info(f'creating {self.dirout}') os.makedirs(self.dirout) if os.path.exists(file_out): logging.info(f'removing old {file_out}') check_call(['rm','-fr',file_out]) # zarr files are directories dsattrs = { 'history': f'created by {USER} on {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}', } for k,v in self.__dict__.items(): dsattrs[k] = repr(v) ds.attrs.update(dsattrs) if self.file_format == 'nc': logging.info(f'writing {file_out}') ds.to_netcdf(file_out) elif self.file_format == 'zarr': logging.info(f'writing {file_out}') ds.to_zarr(file_out)
NCAR/cmip6_cesm
project.py
project.py
py
10,694
python
en
code
1
github-code
6
22290772593
import streamlit as st import pandas as pd st.title("Upload CSV project") uploaded_csv = st.file_uploader('選擇CSV檔') if uploaded_csv is not None: df = pd.read_csv(uploaded_csv,encoding='utf-8') st.header('CSV檔內容:') st.dataframe(df)
chiangcw0410/mysql_test
test/upload.py
upload.py
py
259
python
en
code
0
github-code
6
70282380348
import src.globe as globe from src.constants import * from src.tile import * class Room: def __init__(self): self.areaId = '' self.roomId = '' globe.Updater.registerDrawee(self.draw, ['nominal'], [], 'back') globe.Updater.registerUpdatee(self.update, ['nominal'], ['paused']) self.tiles = [] self.backgroundTiles = [] self.entities = [] self.hasBackground = False def populateTiles(self): rows = self.roomData['data']['tiles'] rCounter = 0 cCounter = 0 for row in rows: self.tiles.append([]) for tile in row: tileData = globe.Loader.getTile(tile) tileX = cCounter*TILE_SIZE tileY = rCounter*TILE_SIZE if(tileData['Default']): t = LevelBlock((tileX, tileY),(rCounter, cCounter), tileData) else: t = Tile((tileX, tileY),(rCounter, cCounter), tileData, tileData['data'], False, tileData['animationTime']) self.tiles[rCounter].append(t) cCounter += 1 rCounter += 1 cCounter = 0 def populateBackgroundTiles(self): sets = self.roomData['data']['bgTiles'] rCounter = 0 cCounter = 0 for row in sets: self.backgroundTiles.append([]) for tile in row: tileData = globe.Loader.getTile(tile) tileX = cCounter*TILE_SIZE tileY = rCounter*TILE_SIZE newTile = BackgroundTile((rCounter, cCounter),(tileX,tileY),tileData['data'],tileData['animationTime']) self.backgroundTiles[rCounter].append(newTile) cCounter += 1 rCounter+=1 cCounter = 0 def load(self, areaId, roomId): self.areaId = areaId self.roomId = roomId self.tiles = [] self.backgroundTiles = [] self.hasBackground = False for item in self.entities: item.unRegister() #globe.Updater.removeEntity(item) self.entities = [] self.roomData = globe.Loader.getData(self.areaId, 'Rooms', self.roomId) self.roomData.update(self.roomData['data']) self.populateTiles() if('bgTiles' in self.roomData): if(len(self.roomData['bgTiles'])>0): self.hasBackground = True self.populateBackgroundTiles() globe.Camera.newRoom() if(self.roomData['doEntities']): for entity in self.roomData['entities']: if(not 'posX' in entity): entity['posX'] = 0 if(not 'posY' in entity): entity['posY'] = 0 if(not 'action' in entity): entity['action'] = '' baby = globe.Loader.getNewEntity(entity['name']) baby.addData(entity) baby.register() baby.spawn((entity['posX'],entity['posY'])) self.entities.append(baby) #globe.Updater.addEntity(baby) def update(self, elapsed_time): if(self.hasBackground): for row in self.backgroundTiles: for tile in row: tile.update(elapsed_time) for row in self.tiles: for tile in row: tile.update(elapsed_time) def draw(self): if(self.hasBackground): for row in self.backgroundTiles: for tile in row: tile.draw() for row in self.tiles: for tile in row: tile.draw() def getHeight(self): return len(self.tiles)*TILE_SIZE def getWidth(self): return len(self.tiles[0])*TILE_SIZE def getTile(self, tileIndex): if(tileIndex[0] < 0 or tileIndex[1]<0): return False if(tileIndex[1] < len(self.tiles) and tileIndex[0] < len(self.tiles[0])): return self.tiles[tileIndex[1]][tileIndex[0]] return False #returns a subset of tiles around a point, allowing for more efficient collision detection def getTilesAround(self, pos, TilesAround=2): xBot = int(TILE_SIZE * round(float(pos[0])/TILE_SIZE) / TILE_SIZE) - 2 xTop = xBot + 5 yBot = int(TILE_SIZE * round(float(pos[1])/TILE_SIZE) / TILE_SIZE) - 2 yTop = yBot + 5 if(xBot < 0): xBot = 0 if(yBot < 0): yBot = 0 if(yTop > len(self.tiles)): yTop = len(self.tiles) if(yTop < 2): yTop = 2 if(xTop > len(self.tiles[0])): xTop = len(self.tiles[0]) if(xTop < 2): xTop = 2 rets = [] for item in self.tiles[yBot:yTop]: rets += item[xBot:xTop] return rets def getPref(self, pref): return self.roomData[pref] def getDisplayName(self): if(self.getPref('displayName')): return self.getPref('displayName') else: return "Unknown Room" def getEntities(self): return self.entities
Dieff/pygame_platform_engine
src/room.py
room.py
py
5,398
python
en
code
1
github-code
6
27581741716
# -*- coding: utf-8 -*- """ Created on Wed Oct 4 13:56:32 2017 @author: hannu """ import numpy as np import matplotlib.pyplot as plt import random import scipy.constants as const from constants import * ####### Functions for KMC ###### def f(sigma, x): normal = (1/(2*const.pi*sigma**2))*np.exp(-(x**2)/(2*sigma**2)) return normal #function to calculate the recombinations def recombination(vacx,vacy,intx,inty,N,rates,defs): distvac=distances(vacx,vacy,N) distint=distances(intx,inty,N) for i in range(N): for j in range(N): #distvac=distances(vacx,vacy,N) #distint=distances(intx,inty,N) if(abs((distvac[i]-distint[j]))<=recomb): vacx[i]=np.NaN vacy[i]=np.NaN rates[i]=0 defs=defs-2 intx[j]=np.NaN inty[j]=np.NaN rates[j+299]=0 distvac[i]=np.sqrt((vacx[i]**2+vacy[i]**2)) distint[j]=np.sqrt((intx[j]**2+inty[j]**2)) return(defs,vacx,vacy,intx,inty) #calculates the distance from the origin def distances(x,y,N): distances = np.linspace(-70*10**-10,70*10**-10, num=N) for i in range(N): distances[i]=np.sqrt(x[i]**2+y[i]**2) return distances def cum(rates): R=[0 for i in range(600)] for i in range(600): R[i]=sum(R)+rates[i] return(R)
hpelttari/Kinetic-Monte-Carlo
Si_migration/functions.py
functions.py
py
1,456
python
en
code
1
github-code
6
32640335090
# AUTHOR: Louis Tsiattalou # DESCRIPTION: Match list items to closest tf-idf match in second list. import pandas as pd from tfidf_matcher.ngrams import ngrams from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import NearestNeighbors def matcher(original=[], lookup=[], k_matches=5, ngram_length=3): """Takes two lists, returns top `k` matches from `lookup` dataset. This function does this by: - Splitting the `lookup` list into ngrams. - Transforming the resulting ngram list into a TF-IDF Sparse Matrix. - Fit a NearestNeighbours Model to the matrix using the lookup data. - Transform the `original` list into a TF-IDF Sparse Matrix. - Calculates distances to all the `n-matches` nearest neighbours - Then extract the `original`, `n-matches` closest lookups, and calculate a match score (abs(1 - Distance to Nearest Neighbour)) :param original: List of strings to generate ngrams from. :type original: list (of strings), or Pandas Series. :param lookup: List of strings to match against. :type lookup: list (of strings), or Pandas Series. :param k_matches: Number of matches to return. :type k_matches: int :param ngram_length: Length of Ngrams returned by `tfidf_matcher.ngrams` callable :type ngram_length: int :raises AssertionError: Throws an error if the datatypes in `original` aren't strings. :raises AssertionError: Throws an error if the datatypes in `lookup` aren't strings. :raises AssertionError: Throws an error if `k_matches` isn't an integer. :raises AssertionError: Throws an error if k_matches > len(lookup) :raises AssertionError: Throws an error if ngram_length isn't an integer :return: Returns a Pandas dataframe with the `original` list, `k_matches` columns containing the closest matches from `lookup`, as well as a Match Score for the closest of these matches. :rtype: Pandas dataframe """ # Assertions assert all( [type(x) == type("string") for x in original] ), "Original contains non-str elements!" assert all( [type(x) == type("string") for x in lookup] ), "Lookup contains non-str elements!" assert type(k_matches) == type(0), "k_matches must be an integer" assert k_matches < len( lookup ), "k_matches must be shorter than the total length of the lookup list" assert type(ngram_length) == type(0), "ngram_length must be an integer" # Enforce listtype, set to lower original = list(original) lookup = list(lookup) original_lower = [x.lower() for x in original] lookup_lower = [x.lower() for x in lookup] # Set ngram length for TfidfVectorizer callable def ngrams_user(string, n=ngram_length): return ngrams(string, n) # Generate Sparse TFIDF matrix from Lookup corpus vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams_user) tf_idf_lookup = vectorizer.fit_transform(lookup_lower) # Fit KNN model to sparse TFIDF matrix generated from Lookup nbrs = NearestNeighbors(n_neighbors=k_matches, n_jobs=-1, metric="cosine").fit( tf_idf_lookup ) # Use nbrs model to obtain nearest matches in lookup dataset. Vectorize first. tf_idf_original = vectorizer.transform(original_lower) distances, lookup_indices = nbrs.kneighbors(tf_idf_original) # Extract top Match Score (which is just the distance to the nearest neighbour), # Original match item, and Lookup matches. original_name_list = [] confidence_list = [] index_list = [] lookup_list = [] # i is 0:len(original), j is list of lists of matches for i, lookup_index in enumerate(lookup_indices): original_name = original[i] # lookup names in lookup list lookups = [lookup[index] for index in lookup_index] # transform distances to confidences and store confidence = [1 - round(dist, 2) for dist in distances[i]] original_name_list.append(original_name) # store index index_list.append(lookup_index) confidence_list.append(confidence) lookup_list.append(lookups) # Convert to df df_orig_name = pd.DataFrame(original_name_list, columns=["Original Name"]) df_lookups = pd.DataFrame( lookup_list, columns=["Lookup " + str(x + 1) for x in range(0, k_matches)] ) df_confidence = pd.DataFrame( confidence_list, columns=["Lookup " + str(x + 1) + " Confidence" for x in range(0, k_matches)], ) df_index = pd.DataFrame( index_list, columns=["Lookup " + str(x + 1) + " Index" for x in range(0, k_matches)], ) # bind columns matches = pd.concat([df_orig_name, df_lookups, df_confidence, df_index], axis=1) # reorder columns | can be skipped lookup_cols = list(matches.columns.values) lookup_cols_reordered = [lookup_cols[0]] for i in range(1, k_matches + 1): lookup_cols_reordered.append(lookup_cols[i]) lookup_cols_reordered.append(lookup_cols[i + k_matches]) lookup_cols_reordered.append(lookup_cols[i + 2 * k_matches]) matches = matches[lookup_cols_reordered] return matches
LouisTsiattalou/tfidf_matcher
tfidf_matcher/matcher.py
matcher.py
py
5,188
python
en
code
41
github-code
6
2296903682
# is user1 = { "name": "Jean", "age": 33 } user2 = { "name": "Jean", "age": 33 } print(user1 == user2) print(user1 is user1) print(user1 is user2) mon_tableau = [3] print(mon_tableau is mon_tableau) # Un tableau étant caché derrière une réference, le comportement est un peu différent, # il faut garder ca en tête. print([3] is [3]) # is not print([3] is not [3]) print(True is not False) var = 4 def plus_three(n): return n + 3 var = plus_three(var) print(var)
Alikae/PythonFormation
05 Operateurs/4_identité.py
4_identité.py
py
493
python
en
code
1
github-code
6
23235971280
""" __/\\\\\\\\\\\\______________________/\\\\\\\\\\\____/\\\________/\\\_ _\/\\\////////\\\__________________/\\\/////////\\\_\/\\\_______\/\\\_ _\/\\\______\//\\\________________\//\\\______\///__\/\\\_______\/\\\_ _\/\\\_______\/\\\_____/\\\\\______\////\\\_________\/\\\_______\/\\\_ _\/\\\_______\/\\\___/\\\///\\\_______\////\\\______\/\\\_______\/\\\_ _\/\\\\\\\\\\\\/____\///\\\\\/___\///\\\\\\\\\\\/____\///\\\\\\\\\/___ _\////////////________\/////_______\///////////________\/////////_____ Created by Tomáš Sandrini """ from . import __version__ import argparse import os import shutil import sys from datetime import datetime from . import handler from .actions import ValidateMonths, ValidateYears def get_args(args): """ Get the script arguments. """ description = "DoSU - pandoc note writing utility" arg = argparse.ArgumentParser(description=description) arg.add_argument( '-M', metavar='make', nargs='+', help="Make (create) given subjects" ) arg.add_argument( '-C', metavar='compile', nargs='+', help="Compile notes for a given subjects" ) arg.add_argument( '-W', metavar='write', help="Start note taking for a subject" ) arg.add_argument( '-D', metavar='delete', nargs='+', help="Delete subjects" ) arg.add_argument( '-m', metavar='month', nargs='+', action=ValidateMonths, help="months" ) arg.add_argument( '-y', metavar='year', nargs='+', action=ValidateYears, help="years" ) arg.add_argument( '-v', action='store_true', help="Print current dosu version" ) arg.add_argument( '-l', action='store_true', help="List all subjects" ) arg.add_argument( '-q', action='store_true', help="Quiet mode, don't print anything and \ don't display notifications." ) return arg.parse_args(args) def process_args(args): """ Process args. """ if not len(sys.argv) > 1 and False: print("error: dosu needs to be given arguments to run.\n" " Refer to \"dosu -h\" for more info.") sys.exit(1) if args.q: sys.stdout = sys.stderr = open(os.devnull, 'w') if args.M: handler.make(args.M) if args.D: handler.delete(args.D) if args.W: handler.write(args.W) if args.C: today = datetime.today() years = args.y if args.y != None else [today.year] months = args.m if args.m != None else [today.month] if args.y: months = args.m if args.m else [i for i in range(13)][1:] else: months = args.m if args.m else [today.month] handler.compile(subjects=args.C, years=years, months=months) if args.l: handler.list() if args.v: print("DoSU ", __version__) sys.exit(0) def main(): """ Main script function """ args = get_args(sys.argv[1:]) process_args(args) if __name__ == "__main__": main()
tsandrini/dosu
dosu/__main__.py
__main__.py
py
3,242
python
en
code
0
github-code
6
5366659164
import datetime import logging import os.path import x509 LOG = logging.getLogger(__name__) class CertWatcher(object): def __init__(self, key_path, cert_path, common_name, ca_driver, on_refresh_success=None, on_refresh_failure=None, refresh_window=None): if not os.path.isfile(key_path): raise Exception("key needs to exist") self.key_path = key_path self.cert_path = cert_path self.ca_driver = ca_driver self.on_refresh_success = on_refresh_success self.on_refresh_failure = on_refresh_failure self.common_name = common_name self.refresh_window = refresh_window @property def key(self): return open(self.key_path).read() @property def cert(self): return open(self.cert_path).read() def get_expire_date(self): return x509.get_expire_date(self.cert) def seconds_until_expiry(self): diff = self.get_expire_date() - datetime.datetime.now() return diff.total_seconds() def _replace_cert(self, cert_contents): LOG.info("Replacing certificate at %s" % self.cert_path) cert = open(self.cert_path, "w") cert.write(cert_contents) cert.close() def _will_be_expired(self, date): return date > self.get_expire_date() def _expires_in_window(self): now = datetime.datetime.now() if not self.refresh_window: LOG.debug("No refresh window set, assuming expired") return True window = now + datetime.timedelta(0, self.refresh_window) if self._will_be_expired(window): LOG.info("%s is expired inside window of %s" % (self.cert_path, self.refresh_window)) return True LOG.info("Certificate valid within window of %s seconds" % self.refresh_window) return False def _cert_exists(self): if not os.path.isfile(self.cert_path): LOG.info("No cert found at %s" % self.cert_path) return False return True def is_invalid_cert(self): return not self._cert_exists() or self._expires_in_window() def check_and_update(self): LOG.info('Checking validity of certificate %s' % self.cert_path) if self.is_invalid_cert(): csr = x509.generate_csr(self.key, self.common_name) cert = None try: cert = self.ca_driver.sign(csr) except Exception as e: LOG.exception("Could not retrieve cert\n%s", e) if cert: self._replace_cert(cert) self.on_refresh_success() else: self.on_refresh_failure()
takac/cathead
cathead/certwatch.py
certwatch.py
py
2,756
python
en
code
3
github-code
6
8105270111
# coding=utf-8 import click import MeCab from transformers import BertJapaneseTokenizer, BertForMaskedLM @click.command() @click.option('--text', '-t', default='') def main(text): tokenizer = BertJapaneseTokenizer.from_pretrained('bert-base-japanese-whole-word-masking') tokenized_text = tokenizer.tokenize(text) print('bert wakatigaki:{}'.format(tokenized_text)) mecab = MeCab.Tagger("-Owakati") mecab_text = mecab.parse(text) print('mecab wakatigaki:{}'.format(mecab_text.split())) if __name__ == '__main__': main()
ys201810/bert_work
src/compare_mecab_bert_wakatigaki.py
compare_mecab_bert_wakatigaki.py
py
551
python
en
code
0
github-code
6
27614075468
# Your BSTIterator will be called like this: # i, v = BSTIterator(root), [] # while i.hasNext(): v.append(i.next()) from queue import Queue from queue import LifoQueue class BSTIterator(object): def __init__(self, root): """ :type root: TreeNode """ self.next = None self.S = LifoQueue() if root: self.S.put(root) def _inorder(self): if not self.S.empty(): top = self.S.get() while top.left: self.S.put(top) top = top.left if top.right: self.S.put(top.right) return top def hasNext(self): """ :rtype: bool """ self.next = self._inorder() return True if self.next else False def next(self): """ :rtype: int """ return self.next.val # Your BSTIterator will be called like this: # i, v = BSTIterator(root), [] # while i.hasNext(): v.append(i.next())
abhishekvaid/leetcode
_1008_bst_iterator.py
_1008_bst_iterator.py
py
1,030
python
en
code
0
github-code
6
22084110585
# def fact(base): # return 1 if (n == 1 or n ==0 ) else n * fact(n-1) # number , n = map(int,input().split()) # qw = (x**fact(n))%10 # print(po) # import numpy as np # x , n = map(int,input().split()) # a = np.math.factorial(n) # if n >=2: # print(pow(x,a/2,10)) # else: # print(pow(x,a,10)) # def boost(n,x): # result = 1 # while x > 0: # if x %2 == 1: # result *= ((n**(x-1))*n) # result *= ((n*n)**(x//2)) # return result # print(boost(2,2)) # def fast_power(base, power): # """ # Returns the result of a^b i.e. a**b # We assume that a >= 1 and b >= 0 # Remember two things! # - Divide power by 2 and multiply base to itself (if the power is even) # - Decrement power by 1 to make it even and then follow the first step # """ # def fast_power(base, power): # result = 1 # while power > 0: # if power % 2 == 0: # power = power // 2 # base = base * base # else: # power = power - 1 # result = result * base # power = power // 2 # base = base * base # return result # import numpy as np # x , n = map(int,input().split()) # mod = np.math.factorial(n)%10 # po = (x**mod)%10 # print(po) # print(24%10) number, base = map(int,input().split()) if base == 0 or base == 1: power = 1 elif base == 2: power = 2 elif base == 3: power = 6 elif base == 4: power = 4 else: power = 0 print(pow(number,power)%10)
vamshipv/code-repo
may circuits/fact.py
fact.py
py
1,532
python
en
code
0
github-code
6
28151900553
import collections import matplotlib.pyplot as plt import numpy as np import os import cv2 import time from DQN_RGB import DQN_RGB from DQN import DQN from FifaEnv import FifaEnv from scipy.stats import wilcoxon from DynamicMLP import MLP import scipy.misc from scipy.misc import imresize # Initialize Global Parameters DATA_DIR = "Models/" NUM_ACTIONS = 4 # number of valid actions MAX_ACTIONS = 6 # If execute MAX_ACTIONS, then it's considered a loop GAMMA = 0.9 # decay rate of past observations INITIAL_EPSILON = 1 # starting value of epsilon FINAL_EPSILON = 0.1 # final value of epsilon NUM_EPOCHS_OBSERVE = 200 NUM_EPOCHS_TRAIN = 5000 NUM_EPOCHS_TEST = 100 STEPS_TARGET_NETWORK = 1 BATCH_SIZE = 32 NUM_EPOCHS = NUM_EPOCHS_OBSERVE + NUM_EPOCHS_TRAIN def train_dqn_free_kicks(): game_env = FifaEnv() dqn = DQN_RGB(NUM_ACTIONS) #dqn = DQN(NUM_ACTIONS) dqn.save_model('target_network') dqn.update_target_network() num_goals = 0 num_steps = 0 epochs = [] avg_goals = [] epsilon = INITIAL_EPSILON print('----- STARTING DQN AGENT -----') for e in range(NUM_EPOCHS): history_actions = [] game_over = False goal = 0 loss = 0.0 time.sleep(1.5) # Verifies if it's an end of the training session (Time is over) or if there's a bug end_training_session = game_env.check_end_of_episode() bug = game_env.check_bug() if end_training_session or bug: game_env.hard_reset() while bug: bug = game_env.check_bug() # get first state #frames = collections.deque(maxlen=4) x_t = game_env.observe_state() #frames.append(x_t) #s_t = dqn.preprocess_images(np.array(list(frames))) s_t = dqn.preprocess_image(x_t) while not game_over: # Updates the previous state (previous state = current state) s_tm1 = s_t #### Get next action #### # if len(history_actions) > MAX_ACTIONS, there's a movement loop. So shoot the ball if len(history_actions) < MAX_ACTIONS: # Observation action (random) if e < NUM_EPOCHS_OBSERVE: a_t = np.random.randint(low=0, high=NUM_ACTIONS, size=1)[0] # Random or the best current action based on q-value (dqn model) else: # Random (exploration) if np.random.rand() <= epsilon: a_t = np.random.randint(low=0, high=NUM_ACTIONS, size=1)[0] # Best action (exploitation) else: q = dqn.model.predict(s_t)[0] a_t = np.argmax(q) history_actions.append(a_t) else: a_t = np.random.randint(low=2, high=NUM_ACTIONS, size=1)[0] # apply action, get reward x_t, r_t, game_over = game_env.step(a_t) #frames.append(x_t) #s_t = dqn.preprocess_images(np.array(list(frames))) s_t = dqn.preprocess_image(x_t) # increment goal if it's a goal if r_t == 1: goal += 1 # store experience dqn.experience.append((s_tm1, a_t, r_t, s_t, game_over)) if e >= NUM_EPOCHS_OBSERVE: # finished observing, now start training # get next batch num_steps += 1 X, Y = dqn.get_next_batch(NUM_ACTIONS, GAMMA, BATCH_SIZE) #X, Y = dqn.get_next_batch_2(NUM_ACTIONS, GAMMA, BATCH_SIZE) loss += dqn.model.train_on_batch(X, Y) if num_steps == STEPS_TARGET_NETWORK and STEPS_TARGET_NETWORK != 1: num_steps = 0 dqn.update_target_network() # reduce epsilon gradually if epsilon > FINAL_EPSILON and e >= NUM_EPOCHS_OBSERVE: #epsilon = 4 / ((e - NUM_EPOCHS_OBSERVE + 1) ** (1/2)) epsilon -= ((INITIAL_EPSILON - FINAL_EPSILON) / (NUM_EPOCHS_TRAIN / 1.5)) #if e >= NUM_EPOCHS_OBSERVE: num_goals += goal epochs.append((e + 1)) avg_goals.append(float(num_goals / (e + 1))) print("Epoch {:04d}/{:d} | Loss {:.5f} | Epsilon: {:.3f} | Total Goals: {:d} | Epoch Goal: {:d}" .format(e + 1, NUM_EPOCHS, loss, epsilon, num_goals, goal)) if ((e + 1) % NUM_EPOCHS_OBSERVE == 0 and e >= NUM_EPOCHS_OBSERVE): dqn.model.save(os.path.join(DATA_DIR, "drl-network-fifa-final.h5"), overwrite=True) dqn.model.save(os.path.join(DATA_DIR, "drl-network-fifa-final.h5"), overwrite=True) np.save("epochs.npy",np.array(epochs)) np.save("avg_goals.npy",np.array(avg_goals)) for layer in dqn.model.layers: print(layer.get_weights()) def test_dqn_free_kicks(): game_env = FifaEnv() dqn = DQN_RGB(NUM_ACTIONS) #dqn = DQN(NUM_ACTIONS) data = [] dqn.load_model("drl-network-fifa-final") '''for layer in dqn.model.layers: print(layer.get_weights())''' num_goals = 0 print('----- TESTING DQN AGENT -----') time.sleep(3) for e in range(NUM_EPOCHS_TEST): history_actions = [] game_over = False goal = 0 # Verifies if it's an end of the training session (Time is over) or if there's a bug end_training_session = game_env.check_end_of_episode() if end_training_session: game_env.hard_reset() time.sleep(2) # get first state #frames = collections.deque(maxlen=4) x_t = game_env.observe_state() #frames.append(x_t) #s_t = dqn.preprocess_images(np.array(list(frames))) s_t = dqn.preprocess_image(x_t) while not game_over: # Updates the previous state (previous state = current state) s_tm1 = s_t #### Get next action #### # if len(history_actions) > MAX_ACTIONS, there's a movement loop. So shoot the ball if len(history_actions) < MAX_ACTIONS: # Random (exploration) if np.random.rand() <= 0.05: a_t = np.random.randint(low=0, high=NUM_ACTIONS, size=1)[0] # Best action (exploitation) else: q = dqn.model.predict(s_t)[0] a_t = np.argmax(q) history_actions.append(a_t) else: a_t = np.random.randint(low=2, high=NUM_ACTIONS, size=1)[0] # apply action, get reward x_t, r_t, game_over = game_env.step(a_t) #frames.append(x_t) #s_t = dqn.preprocess_images(np.array(list(frames))) s_t = dqn.preprocess_image(x_t) # increment goal if it's a goal if r_t == 1: goal += 1 time.sleep(2) num_goals += goal print("Epoch {:04d}/{:d} | Total Goals: {:d} | Epoch Goal: {:d}" .format(e + 1, NUM_EPOCHS_TEST, num_goals, goal)) return float(num_goals / NUM_EPOCHS_TEST) def calculate_avg_goals(): avg_goals = np.load("avg_goals.npy") epochs = np.load("epochs.npy") epochs = epochs - NUM_EPOCHS_OBSERVE print(len(epochs)) plt.plot(epochs[NUM_EPOCHS_OBSERVE:], avg_goals[NUM_EPOCHS_OBSERVE:], color='black') plt.xlabel('Epochs') plt.ylabel('Avg Goals') plt.savefig('training_rmsprop_drl.png') train_dqn_free_kicks() test_dqn_free_kicks() calculate_avg_goals()
matheusprandini/FifaFreeKickLearning2019
Main.py
Main.py
py
7,635
python
en
code
0
github-code
6
5461309461
from django.db import models # Create your models here. class Category(models.Model): slug = models.SlugField(max_length=30, primary_key=True) name = models.CharField(max_length=50) image = models.ImageField(upload_to='categories', blank=True) class Meta: verbose_name = 'Kategorya' verbose_name_plural = 'Kategorya' def __str__(self): return self.name class Product(models.Model): title = models.CharField(max_length=100) description = models.TextField() price = models.DecimalField(max_digits=10, decimal_places=2) category= models.ForeignKey(Category, on_delete=models.CASCADE, related_name='products') create_at = models.DateTimeField(auto_now_add=True) image = models.ImageField(upload_to='products', blank=True) class Meta: verbose_name = 'Producty' verbose_name_plural = 'Producty' def __str__(self): return f'{self.title} Opisanie: {self.description[0:20]}'
izumichiDana/djangoModels
main/models.py
models.py
py
1,010
python
en
code
0
github-code
6
1277452974
"""Default settings.""" import logging settings = { 'log': { 'level': "debug", # log level }, 'auth': { 'required': False, # set to `True` to enable authentication 'basic_auth': { 'path': '/dev/null', # path to htpasswd file }, }, 'server': { 'port': 1779, # port :-P }, 'staticpath': '/dev/null', # path to static files 'packagepath': '/dev/null', # path to qgis plugins } logging.basicConfig( level=getattr(logging, settings['log']['level'].upper()), )
t4k1t/qgisrv
qgisrv/settings.py
settings.py
py
552
python
en
code
0
github-code
6
24255720694
import pandas as pd import os import time from xlrd import XLRDError start_time = time.time() # list of paths to ebay files ebay_files = [] # searching all excel files in the folder for root, dirs, files in os.walk(r'D:\Projects\shopContent\ebay'): ebay_files.extend([os.path.join(root, file) for file in files if file.endswith('.xlsx')]) dirs.clear() # creating dataframe ebay_df = pd.DataFrame() # appending tables from all source ebay files to one dataframe skipping first 2 rows print("Creating ebay dataframe!") for file in ebay_files: try: ebay_df = ebay_df.append(pd.read_excel(file, sheet_name="Listings", skiprows=2)) except XLRDError: print(f"No sheet named \'Listings\' in file - {file}") # create dataframe from csv file print("Creating shopify dataframe!") shopify_df = pd.read_csv(r'D:\Projects\shopContent\shopify\shopify.csv', sep=',', encoding="utf-8", header=0) # replace '||' symbols to ', ' in column 'C:Season' print("Replacing '||' symbols in ebay dataframe!") ebay_df['C:Season'] = ebay_df['C:Season'].str.replace("\|\|", ', ') # enable only 'Custom Label (SKU)', 'C:Brand', 'C:Type', 'C:Season' columns in dataframe print("Excluding columns in ebay dataframe!") ebay_df = ebay_df[['Custom Label (SKU)', 'C:Brand', 'C:Type', 'C:Season']] # export ebay_df and shopify_df to excel files print("Export ebay and shopify dataframes to xlsx!") ebay_df.to_excel(r'D:\Projects\shopContent\ebay\ebay.xlsx', index=False, header=True, encoding="utf-8") shopify_df.to_excel(r'D:\Projects\shopContent\shopify\shopify.xlsx', index=False, header=True, encoding="utf-8") # rename columns name in ebay dataframe print("Renaming columns in ebay dataframe!") ebay_df.rename(columns={'Custom Label (SKU)': 'Variant SKU', 'C:Brand': 'Vendor', 'C:Type': 'Type', 'C:Season': 'Tags'}, inplace=True) # exclude columns 'Vendor', 'Type', 'Tags' in shopify dataframe print("Excluding columns in shopify dataframe!") shopify_df = shopify_df[['Handle', 'Title', 'Body (HTML)', 'Published', 'Option1 Name', 'Option1 Value', 'Option2 Name', 'Option2 Value', 'Option3 Name', 'Option3 Value', 'Variant SKU', 'Variant Grams', 'Variant Inventory Tracker', 'Variant Inventory Qty', 'Variant Inventory Policy', 'Variant Fulfillment Service', 'Variant Price', 'Variant Compare At Price', 'Variant Requires Shipping', 'Variant Taxable', 'Variant Barcode', 'Image Src', 'Image Position', 'Image Alt Text', 'Gift Card', 'SEO Title', 'SEO Description', 'Google Shopping / Google Product Category', 'Google Shopping / Gender', 'Google Shopping / Age Group', 'Google Shopping / MPN', 'Google Shopping / AdWords Grouping', 'Google Shopping / AdWords Labels', 'Google Shopping / Condition', 'Google Shopping / Custom Product', 'Google Shopping / Custom Label 0', 'Google Shopping / Custom Label 1', 'Google Shopping / Custom Label 2', 'Google Shopping / Custom Label 3', 'Google Shopping / Custom Label 4', 'Variant Image', 'Variant Weight Unit', 'Variant Tax Code', 'Cost per item']] # replace unnecessary characters with blank in ebay dataframe print("Replacing unnecessary symbols in ebay dataframe!") ebay_df['Variant SKU'] = ebay_df['Variant SKU'].str.replace("-", '') ebay_df['Variant SKU'] = ebay_df['Variant SKU'].str.replace("A", '') ebay_df['Variant SKU'] = ebay_df['Variant SKU'].str.replace("B", '') ebay_df['Variant SKU'] = ebay_df['Variant SKU'].str[:6] # replace unnecessary characters with blank in shopify dataframe print("Replacing unnecessary symbols in shopify dataframe!") shopify_df['Variant SKU'] = shopify_df['Variant SKU'].str.replace("-", '') shopify_df['Variant SKU'] = shopify_df['Variant SKU'].str.replace("\'", '') shopify_df['Variant SKU'] = shopify_df['Variant SKU'].str.replace("A", '') shopify_df['Variant SKU'] = shopify_df['Variant SKU'].str.replace("B", '') shopify_df['Variant SKU'] = shopify_df['Variant SKU'].str[:6] # delete rows-duplicates in ebay dataframe print("Deleting duplicates in ebay dataframe!") ebay_df = ebay_df.drop_duplicates(subset=['Variant SKU'], keep='first') # left join shopify_df to ebay_df using column 'Variant SKU' print('Joining shopify_df and ebay_df') join_ebay_shopify_df = pd.merge(shopify_df, ebay_df, on='Variant SKU', how='left') # set blank value in cell where 'Variant SKU' is null print("Setting blank value in cell where 'Variant SKU' is null") for index, row in join_ebay_shopify_df.iterrows(): if row.isnull()['Variant SKU']: join_ebay_shopify_df.at[index, 'Vendor'] = '' join_ebay_shopify_df.at[index, 'Type'] = '' join_ebay_shopify_df.at[index, 'Tags'] = '' # export join dataframe to excel file print("Export final dataframe to xlsx!") join_ebay_shopify_df.to_excel(r'D:\Projects\shopContent\final.xlsx', index=False, header=True, encoding="utf-8") # time spent for execution end_time = time.time() print(f"\nTime spent: {end_time-start_time}")
bfesiuk/shopContent
creating.py
creating.py
py
4,995
python
en
code
0
github-code
6
70380481467
import os import re import sys import json import tempfile import urllib.parse import urllib.request import http.cookiejar import dotenv def _read_json(url, params=None): url = f'{url}?{urllib.parse.urlencode(params)}' request = urllib.request.Request(url) response = urllib.request.urlopen(request) data = json.loads(response.read().decode('utf-8')) return data def main(): dotenv.load_dotenv() args = sys.argv[1:] CODIGO_RASTREAMENTO = os.getenv('CODIGO_RASTREAMENTO') if len(args) > 1: print(f'[!] Erro: Esperei 1 argumento, mas recebi {len(args)}') exit(1) codigo_rastreamento = None if len(args) == 1: codigo_rastreamento = args[0] elif CODIGO_RASTREAMENTO is not None: codigo_rastreamento = CODIGO_RASTREAMENTO else: print(f'[!] Erro: Nenhum código de rastreamento encontrado') exit() codigo_rastreamento = codigo_rastreamento.strip() if not re.match(r'[A-Z]{2}[0-9]{9}BR', codigo_rastreamento): print(f'[!] Erro: Código de rastreamento inválido ({codigo_rastreamento})') exit(1) # Define uma sessão HTTP cookie_jar = http.cookiejar.CookieJar() cookie_processor = urllib.request.HTTPCookieProcessor(cookie_jar) opener = urllib.request.build_opener(cookie_processor) urllib.request.install_opener(opener) # Carrega o captcha para ser utilizado request = urllib.request.Request('https://rastreamento.correios.com.br/core/securimage/securimage_show.php') response = urllib.request.urlopen(request) with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f: f.write(response.read()) try: os.startfile(f.name) valor_captcha = input('[?] Digite o captcha exibido: ').strip() finally: os.remove(f.name) # Utiliza o valor do captcha na requisição do primeiro resultado data = _read_json( 'https://rastreamento.correios.com.br/app/resultado.php', {'objeto': codigo_rastreamento, 'captcha': valor_captcha, 'mqs': 'S'}, ) if data.get('erro', 'false') == 'true': print('[!] Erro: O captcha inserido está incorreto') exit(1) output_dir = os.path.join('outputs', codigo_rastreamento) try: os.makedirs(output_dir) except FileExistsError: pass with open(os.path.join(output_dir, 'resultado.json'), 'w+', encoding='utf-8') as f: json.dump(data, f, indent=2, ensure_ascii=False) # Utiliza o valor do finalizador mais recente na requisição do segundo resultado dados_eventos = data.get('eventos') if dados_eventos: tipo_postal = dados_eventos[0].get('finalizador') if tipo_postal: data = _read_json( 'https://rastreamento.correios.com.br/app/dataMaxima.php', {'objeto': codigo_rastreamento, 'tipoPostal': tipo_postal}, ) with open(os.path.join(output_dir, 'dataMaxima.json'), 'w+', encoding='utf-8') as f: json.dump(data, f, indent=2, ensure_ascii=False) print('[#] Código obtido com sucesso') main()
enzo-santos/publicapi-correios
main.py
main.py
py
3,135
python
pt
code
0
github-code
6
16645086609
# !/usr/bin/python # -*- coding: utf-8 -*- """ __author__ = 'qing.li' """ # 执行系统命令 import os import subprocess # print(os.system("adb devices")) # # # 收集结果 # print(os.popen("adb devices").readlines()) class Command: def excute_command_result(self, cmd): result_list = [] result = os.popen(cmd).readlines() for i in result: if i == '\n': continue result_list.append(i.strip('\n')) return result_list def excute_command(self, cmd): # os.system(cmd) subprocess.Popen(cmd, shell=True, stdout=open('appium.log', 'a'), stderr=subprocess.STDOUT) if __name__ == '__main__': c = Command() print(c.excute_command_result("adb devices"))
QingqinLi/ui_project
util/command.py
command.py
py
739
python
en
code
0
github-code
6
34529796403
import tensorflow as tf import numpy as np from collections import namedtuple from .interpolate_tf import InterpolatorTF, nonzero InterpolatorsTuple = namedtuple( "InterpolatorsTuple", [ "quantiles_to_references_forward", "quantiles_to_references_backward", "references_to_quantiles", "low_quantile", "high_quantile" ]) class QuantileTransformerTF(): """sklearn.preprocessing.QuantileTransformer that can be applied in Tensorflow From the sklean documentation: Transform features using quantiles information. This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme. The transformation is applied on each feature independently. The cumulative density function of a feature is used to project the original values. Features values of new/unseen data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort linear correlations between variables measured at the same scale but renders variables measured at different scales more directly comparable. """ scope = "QuantileTransformerTF" def in_tf_scope(function): def res(self, *args, **kwargs): with tf.name_scope(self.scope): return function(self, *args, **kwargs) return res @in_tf_scope def __init__(self, sklearn_transformer, sklearn_indices=None, dtype=None): """ Args: sklearn_transformer: instance of fitted sklearn.preprocessing.QuantileTransformer sklearn_indices: list of feature indices to use. E. g. if you trained a transformer for features+outputs, here you can get separate ones. If None, takes all the features dtype: np.float32/np.float64, the dtype the transformer expects and outputs. If None defaults to the sklearn_transformer.quantiles_.dtype """ if sklearn_transformer.output_distribution != 'normal': raise ValueError("Only normal distribution is supported") if dtype is None: dtype = sklearn_transformer.quantiles_.dtype.type self.output_distribution = tf.distributions.Normal( dtype(0), dtype(1), name="output_distribution") if sklearn_indices is not None: selected_quantiles = sklearn_transformer.quantiles_[:, sklearn_indices] else: selected_quantiles = sklearn_transformer.quantiles_ self._quantiles = tf.constant(selected_quantiles.astype(dtype), name="quantiles") self._references = tf.constant(sklearn_transformer.references_.astype(dtype), name="references") self.n_colunms = selected_quantiles.shape[1] self.interpolators_by_index = [] for index in range(self.n_colunms): interpolator_quantiles_to_references_forward = InterpolatorTF().fit( self._quantiles[:, index], self._references) interpolator_quantiles_to_references_backward = InterpolatorTF().fit( -self._quantiles[::-1, index], -self._references[::-1]) interpolator_references_to_quantiles = InterpolatorTF().fit( self._references, self._quantiles[:, index]) self.interpolators_by_index.append(InterpolatorsTuple( interpolator_quantiles_to_references_forward, interpolator_quantiles_to_references_backward, interpolator_references_to_quantiles, self._quantiles[0, index], self._quantiles[-1, index])) self.BOUNDS_THRESHOLD = dtype(1e-7) self.dtype = dtype @in_tf_scope def transform(self, data, inverse): """ Builds a graph for transformation Args: data - tf.Tensor[n_examples, n_features] inverse - bool, whether inverse or forward transform is desired Returns: tf.Tensor[n_examples, n_features] - transformed data """ if inverse: data = self.output_distribution.cdf(data) per_feature_transformed = [] for i in range(self.n_colunms): this_transformed = self._transform_col(data[:, i], self.interpolators_by_index[i], inverse) this_transformed.set_shape([data.shape[0]]) per_feature_transformed.append(this_transformed) return tf.stack(per_feature_transformed, axis=1) def inverse_transform(self, data): """ Builds a graph for inverse transformation Args: data - tf.Tensor[n_examples, n_features] Returns: tf.Tensor[n_examples, n_features] - transformed data """ return self.transform(data, inverse=True) @in_tf_scope def _transform_col(self, data, interpolators, inverse): if not inverse: lower_bound_x = interpolators.low_quantile upper_bound_x = interpolators.high_quantile lower_bound_y = self.dtype(0) upper_bound_y = self.dtype(1) else: lower_bound_x = self.dtype(0) upper_bound_x = self.dtype(1) lower_bound_y = interpolators.low_quantile upper_bound_y = interpolators.high_quantile lower_bounds_mask = (data - self.BOUNDS_THRESHOLD < lower_bound_x) upper_bounds_mask = (data + self.BOUNDS_THRESHOLD > upper_bound_x) in_range_mask = tf.logical_not(tf.logical_or(lower_bounds_mask, upper_bounds_mask)) data_in_range = tf.boolean_mask(data, in_range_mask) if not inverse: interpolated = 0.5*( interpolators.quantiles_to_references_forward.interp(data_in_range) - interpolators.quantiles_to_references_backward.interp(-data_in_range)) else: interpolated = interpolators.references_to_quantiles.interp(data_in_range) res = tf.dynamic_stitch( [nonzero(upper_bounds_mask), nonzero(in_range_mask), nonzero(lower_bounds_mask)], [tf.fill(tf.count_nonzero(upper_bounds_mask, keepdims=True), upper_bound_y), interpolated, tf.fill(tf.count_nonzero(lower_bounds_mask, keepdims=True), lower_bound_y)]) if not inverse: res = self.output_distribution.quantile(res) clip_min = self.output_distribution.quantile(tf.constant( self.BOUNDS_THRESHOLD - np.spacing(1), dtype=self.dtype)) clip_max = self.output_distribution.quantile(tf.constant( 1 - (self.BOUNDS_THRESHOLD - np.spacing(1)), dtype=self.dtype)) res = tf.clip_by_value(res, clip_min, clip_max) return res
yandexdataschool/QuantileTransformerTF
quantile_transformer_tf/quantile_transform_tf.py
quantile_transform_tf.py
py
7,127
python
en
code
7
github-code
6
1064969872
import pygame from pygame.locals import * # define constants BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) CYAN = (0, 255, 255) VIOLET = (148, 0, 211) width,height = 600,600 # set up display pygame.init() #in case you use fonts: pygame.font.init() myfont = pygame.font.SysFont('Consolas', 24) scorefont = pygame.font.SysFont('Consolas', 72) screen = pygame.display.set_mode([width,height]) pygame.display.set_caption('Pygame Window') #add your own caption! FPS = 60 # frames per second clock = pygame.time.Clock() counter = 0 #frame count # loop until user clicks the close button done = False while not done: for event in pygame.event.get(): if event.type == QUIT: # if pygame window is closed by user done = True if event.type == KEYDOWN: if event.key == K_SPACE: if FPS == 60: FPS = 300 #faster display else: FPS = 60 # fill the screen with background color screen.fill(CYAN) counter += 1 pygame.display.update() # for saving screenshots: # if counter %5 == 0: # Capture(screen, 'Capture{}.png'.format(counter), (0, 0), (600, 600)) clock.tick(FPS) pygame.quit()
hackingmath/pygame_sketches
pygame_template.py
pygame_template.py
py
1,334
python
en
code
4
github-code
6
3407354621
from queue import Queue from adjacencyset import * def distance_table(graph, start_node): queue = Queue() distance_table_map = {} for v in range(graph.numVertices): distance_table_map[v] = (None,None) distance_table_map[start_node] = (0, None) queue.put(start_node) while not queue.empty(): vertex = queue.get() vertex_distance = distance_table_map[vertex][0] for v in graph.get_adjacent_vertices(vertex): if distance_table_map[v][0] is None: distance_table_map[v] = (vertex_distance + 1, vertex) queue.put(v) return distance_table_map # Backtracking.. uses stack(simulated using list and always prepend) def get_shortest_path(distance_table, source, destination): path = [destination] prev_vertex = distance_table[destination][1] while prev_vertex is not None and prev_vertex is not source: path = [prev_vertex] + path prev_vertex = distance_table[prev_vertex][1] if prev_vertex is None: print("There is no path from %d to %d " % (source, destination)) else: path = [source] + path print(path) a = AdjacencyGraphSet(5,True) a.add_edge(0,1) a.add_edge(0,2) a.add_edge(1,3) a.add_edge(2,4) a.add_edge(4,1) a.add_edge(1,3) n = distance_table(a, 2) print(n) get_shortest_path(n, 2, 3)
VimleshS/python-graph-ds
shortest_path_unweighted.py
shortest_path_unweighted.py
py
1,361
python
en
code
0
github-code
6
3357759046
#item应该从data中提取的 item = ['西红柿','排骨','鸡蛋','茄子','袜子','酸奶','土豆','鞋子'] import pandas as pd import numpy as np #header = None 属性可以将第一行数据加载到第二行,第一行就是index 1 2 3 ect. data = pd.read_excel('tr.xlsx',header = None) #删去I1 I2 I3第一列这些项集的编号 data = data.iloc[:,1:] #为啥创建D呢? D = dict() for i in range (len(item)): for t in range (len(item)): z = np.zeros(len(data)) li = list() for k in range(len(data.iloc[0,:])): s=data.iloc[:,k]==item[t] li.extend(list(s[s.values == True].index)) z[li]=1 D.setdefault(item[t],z) Data = pd.DataFrame(D) c= list(Data.columns) c0=0.5 s0=0.2 list1 = [] list2 = [] list3 = [] for k in range(len(c)): for q in range(len(c)): # 对第c[k]个项与第c[q]个项挖掘关联规则,前件为c[k],后件为c[q],且要求前件和后件不相等 if c[k] != c[q]: c1 = Data[c[k]] c2 = Data[c[q]] I1 = c1.values == 1 I2 = c2.values == 1 t12 = np.zeros((len(c1))) t1 = np.zeros((len(c1))) t12[I1 & I2] = 1 t1[I1] = 1 sp = sum(t12) / len(c1) # 支持度 co = sum(t12) / sum(t1) # 置信度 # 取置信度大于等于C0的关联规则 if co >= c0 and sp >= s0: list1.append(c[k] + '--' + c[q]) list2.append(sp) list3.append(co) R = {'rule':list1,'support':list2,'confidence':list3} R = pd.DataFrame(R) R.to_excel('rule2.xlsx')
0303yk/python-
金融数据分析课程知识/购物搭配关联规则挖掘.py
购物搭配关联规则挖掘.py
py
1,625
python
en
code
0
github-code
6
62345004
from django.urls import path, include from core import views urlpatterns = [ path('', views.index, name='index'), path('register/',views.register, name='register'), path('home/',views.home, name='home'), path('history/', views.history, name='history'), path('generate-new-label/', views.generate_new_label, name='generate-new-label'), path('edit-label/<int:id>/', views.edit_label, name='edit-label'), path('delete-label/<int:id>/', views.delete_label, name='delete-label'), path('print-label/<int:id>/', views.print_label, name='print-label'), path('logout/', views.logout, name='logout'), ]
lquresh52/shipping-label-generaor
core/urls.py
urls.py
py
636
python
en
code
0
github-code
6
42743009421
from setuptools import find_packages from setuptools import setup package_name = 'camera_calibration' setup( name=package_name, version='1.12.23', packages=find_packages(exclude=['test']), data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], author='James Bowman', author_email='[email protected]', zip_safe=True, keywords=['ROS', 'camera_calibration'], classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development', ], description=( 'camera_calibration for ROS2' ), license='Apache License, Version 2.0', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'cameracalibrator = camera_calibration.nodes.cameracalibrator:main', 'cameracheck = camera_calibration.nodes.cameracheck:main', ], }, )
ahuizxc/ros2_camera_calibration
setup.py
setup.py
py
1,118
python
en
code
2
github-code
6
11623004632
import tkinter as tk from tkinter import filedialog, messagebox from selenium import webdriver from selenium.webdriver.common.keys import Keys import pandas as pd from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.service import Service from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException from tkinter import ttk import requests from bs4 import BeautifulSoup import time from requests.exceptions import SSLError, ConnectTimeout class App: def __init__(self, root): self.root = root self.root.geometry("300x220") # Cadre pour le menu self.menu_frame = tk.Frame(root, width=150, bg="grey", height=50, relief='sunken') self.menu_frame.grid(row=0, column=0, sticky='ns') # Boutons du menu self.simple_search_button = tk.Button(self.menu_frame, text="Recherche Simple", command=self.show_simple_search) self.simple_search_button.pack(fill='both') self.identity_search_button = tk.Button(self.menu_frame, text="Recherche Identité", command=self.show_identity_search) self.identity_search_button.pack(fill='both') # Cadre pour le contenu self.content_frame = tk.Frame(root) self.content_frame.grid(row=0, column=1, sticky='nsew') # Sous-interfaces pour chaque type de recherche self.simple_search_interface = self.create_simple_search_interface() self.identity_search_interface = self.create_identity_search_interface() last_row_index = 6 # Remplacez cette valeur par l'index de la dernière ligne souhaitée. self.progress = ttk.Progressbar(self.simple_search_interface, orient='horizontal', length=100, mode='determinate') self.progress.grid(row=last_row_index, column=0) # Utilisez last_row_index pour positionner la barre de progression. # Ajustement automatique de la taille des colonnes et des lignes root.grid_columnconfigure(1, weight=1) root.grid_rowconfigure(0, weight=1) self.df = None self.filename = None self.current_row = 0 self.driver = webdriver.Chrome(service=Service(r'C:\Users\maxime.cedelle\Desktop\AISearch-2\chromedriver')) def create_simple_search_interface(self): frame = tk.Frame(self.content_frame) self.upload_button = tk.Button(frame, text="Upload Excel", command=self.upload_file) self.upload_button.grid(row=0, column=0) self.start_button = tk.Button(frame, text="Commencer la recherche", command=self.start_search, state=tk.DISABLED) self.start_button.grid(row=1, column=0) self.update_button = tk.Button(frame, text="Mise à jour Excel", command=self.update_excel) self.update_button.grid(row=2, column=0) return frame def create_identity_search_interface(self): frame = tk.Frame(self.content_frame) # Bouton pour uploader un fichier Excel self.upload_button_identity = tk.Button(frame, text="Upload Excel", command=self.upload_file) self.upload_button_identity.pack() # Zone de texte pour le nom self.name_label = tk.Label(frame, text="Nom") self.name_label.pack() self.name_entry = tk.Entry(frame) self.name_entry.pack() # Zone de texte pour le prénom self.surname_label = tk.Label(frame, text="Prénom") self.surname_label.pack() self.surname_entry = tk.Entry(frame) self.surname_entry.pack() # Checkbox pour afficher ou cacher la zone de texte pour l'année de naissance self.show_birth_year_check = tk.Checkbutton(frame, text="Inclure l'année de naissance", command=self.toggle_birth_year) self.show_birth_year_check.pack() # Zone de texte pour l'année de naissance (cachée par défaut) self.birth_year_label = tk.Label(frame, text="Année de naissance") self.birth_year_entry = tk.Entry(frame) self.birth_year_entry.pack() self.birth_year_label.pack() self.birth_year_label.pack_forget() self.birth_year_entry.pack_forget() # Bouton pour lancer la recherche self.start_identity_search_button = tk.Button(frame, text="Commencer la recherche", command=self.start_identity_search) self.start_identity_search_button.pack() return frame def start_identity_search(self): name = self.name_entry.get() surname = self.surname_entry.get() if name and surname: # Effectue une recherche SerpAPI pour les données entrées results = self.search_person(name, surname) # Affiche les résultats dans une fenêtre contextuelle self.show_results(results) elif self.df is not None: for _, row in self.df.iterrows(): name = row['nom'] surname = row['prenom'] # Effectue une recherche SerpAPI pour chaque personne results = self.search_person(name, surname) # Affiche les résultats dans une fenêtre contextuelle self.show_results(results) # Affiche une pop-up pour informer l'utilisateur que toutes les recherches sont terminées messagebox.showinfo("Information", "Toutes les recherches sont terminées.") else: messagebox.showinfo("Information", "Veuillez d'abord uploader un fichier Excel ou entrer des données dans les champs de texte.") def search_person(self, name, surname): social_info = {"Nombre": 0, "Liens": [], "Noms": []} digital_life = {"Nombre": 0, "Liens": [], "Noms": []} digital_life_news = {"Nombre": 0, "Liens": [], "Noms": []} # Nouvelle catégorie pour les actualités de la vie numérique company_info = {"Nombre": 0, "Liens": [], "Noms": []} company_sites = ['societe.com', 'infogreffe.fr', 'b-reputation.com', 'verif.com'] params = { "engine": "google", "q": f"{name} {surname}", "api_key": "9b0d4c0366546a7bd81c14d13ae3f304ea744bff2faa67fab9eed518194b7f40", "hl": "fr", "gl": "fr", "google_domain": "google.com", "location": "France" } for i in range(2): # limitez à 2 pages params["start"] = i*10 try: response = requests.get('https://serpapi.com/search', params) data = response.json() except Exception as e: print(f"Erreur lors de la récupération des résultats de recherche : {e}") continue for result in data.get('organic_results', []): url = result['link'] title = result.get('title', '').lower() if name.lower() in title and surname.lower() in title: if 'linkedin.com' in url or 'facebook.com' in url or 'twitter.com' in url or 'instagram.com' in url or 'pinterest.com' in url or 'tiktok.com' in url: social_info["Nombre"] += 1 social_info["Liens"].append(url) social_info["Noms"].append(name + " " + surname) elif any(company_site in url for company_site in company_sites): company_info["Nombre"] += 1 company_info["Liens"].append(url) company_info["Noms"].append(name + " " + surname) else: digital_life["Nombre"] += 1 digital_life["Liens"].append(url) digital_life["Noms"].append(name + " " + surname) params["tbm"] = "nws" params["start"] = 0 try: response = requests.get('https://serpapi.com/search', params) data = response.json() except Exception as e: print(f"Erreur lors de la récupération des résultats de recherche d'actualités : {e}") return for result in data.get('organic_results', []): url = result['link'] title = result.get('title', '').lower() if f"{name.lower()} {surname.lower()}" in title: digital_life_news["Nombre"] += 1 # Mettez à jour la catégorie 'Vie numerique actualites' digital_life_news["Liens"].append(url) digital_life_news["Noms"].append(name + " " + surname) results = { "Reseaux sociaux": social_info, "Vie numerique": digital_life, "Vie numerique actualites": digital_life_news, # Ajoutez cette nouvelle catégorie aux résultats "Entreprise": company_info } return results def show_results(self, results): # Créer une nouvelle fenêtre pour afficher les résultats de la recherche results_window = tk.Toplevel(self.root) results_window.title("Résultats de la recherche") # Créer un widget texte pour afficher les nombres de résultats results_text = tk.Text(results_window) results_text.pack() # Insérer les nombres de résultats dans le widget texte for key, value in results.items(): results_text.insert(tk.END, f"{key}: {value['Nombre']}\n") detail_button = tk.Button(results_window, text=f"Voir détails de {key}", command=lambda value=value, key=key: self.show_details(value, key)) detail_button.pack() results_window.geometry("300x200") # Ajuster la taille de la fenêtre def show_details(self, value, category): # Créer une nouvelle fenêtre pour afficher les détails details_window = tk.Toplevel(self.root) details_window.title(f"Détails de {category}") if 'Liens' in value: links_label = tk.Label(details_window, text=f"Liens:") links_label.pack() links_text = tk.Text(details_window) links_text.pack() for link in value['Liens']: links_text.insert(tk.END, f"{link}\n") if 'Noms' in value: names_label = tk.Label(details_window, text=f"Noms:") names_label.pack() names_text = tk.Text(details_window) names_text.pack() for name in value['Noms']: names_text.insert(tk.END, f"{name}\n") width = 600 height = 100 + len(value.get('Liens', [])) * 20 + len(value.get('Noms', [])) * 20 height = min(height, 800) details_window.geometry(f"{width}x{height}") # Définir la taille de la fenêtre def show_simple_search(self): self.hide_all() self.simple_search_interface.pack() def show_identity_search(self): self.hide_all() self.identity_search_interface.pack() def hide_all(self): self.simple_search_interface.pack_forget() self.identity_search_interface.pack_forget() def toggle_birth_year(self): if self.birth_year_label.winfo_ismapped(): self.birth_year_label.pack_forget() self.birth_year_entry.pack_forget() else: self.birth_year_label.pack() self.birth_year_entry.pack() def upload_file(self): self.filename = filedialog.askopenfilename(initialdir = "/", title = "Sélectionner un fichier", filetypes = (("Excel files", "*.xlsx"), ("all files", "*.*"))) if self.filename: self.df = pd.read_excel(self.filename) self.current_row = 0 self.start_button['state'] = tk.NORMAL def start_search(self): if self.df is not None: self.progress['maximum'] = len(self.df) # Configurer le maximum de la barre de progression while self.current_row < len(self.df): self.driver.get("https://dirigeant.societe.com/pages/recherchedir.html") WebDriverWait(self.driver, 10).until(EC.presence_of_element_located((By.ID, "entrepdirig"))) self.driver.find_element(By.ID, "entrepdirig").send_keys(self.df.iloc[self.current_row]["nom"]) # 'nom' WebDriverWait(self.driver, 10).until(EC.presence_of_element_located((By.ID, "entreppre"))) self.driver.find_element(By.ID, "entreppre").send_keys(self.df.iloc[self.current_row]["prenom"]) # 'prenom' # Insérer l'année de naissance WebDriverWait(self.driver, 10).until(EC.presence_of_element_located((By.ID, "entrepann"))) # "entrepann" est l'ID de l'élément de saisie de l'année de naissance self.driver.find_element(By.ID, "entrepann").send_keys(self.df.iloc[self.current_row]["date_naissance"]) # 'date_naissance' self.driver.find_element(By.XPATH, "//a[contains(text(), 'Rechercher les dirigeants')]").click() # Attendre que les résultats soient chargés try: WebDriverWait(self.driver, 1).until(EC.presence_of_element_located((By.CLASS_NAME, "bloc-print"))) except TimeoutException: print("Temps d'attente dépassé en attendant le chargement des résultats. Passage à la recherche suivante.") try: num_results_element = self.driver.find_element(By.CSS_SELECTOR, ".nombre.numdisplay") num_results = int(num_results_element.text) except NoSuchElementException: num_results = 0 # Mettre à jour le DataFrame self.df.at[self.current_row, "nombre de sociétés"] = num_results # 'nombre de sociétés' # Mettre à jour la barre de progression self.progress['value'] = self.current_row self.progress.update() # Passer à la prochaine recherche self.current_row += 1 # Sauvegarder les résultats dans le fichier Excel une fois toutes les recherches terminées self.update_excel() # Reset de la barre de progression après la recherche self.progress['value'] = 0 self.progress.update() # Afficher une pop-up pour informer l'utilisateur que toutes les recherches sont terminées messagebox.showinfo("Information", "Toutes les recherches sont terminées.") else: messagebox.showinfo("Information", "Veuillez d'abord uploader un fichier Excel.") def update_excel(self): if self.df is not None: self.df.to_excel("Resultats.xlsx", index=False) messagebox.showinfo("Information", "Fichier Excel mis à jour.") root = tk.Tk() app = App(root) root.mainloop()
Boo4S/AISearch
main.py
main.py
py
15,301
python
fr
code
0
github-code
6
16551902324
import string, random, json, sys, os.path, uuid sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) # from models import sesion # import models.models as database from sqlalchemy.exc import IntegrityError from sqlalchemy.sql.functions import func from sqlalchemy import desc import uuid from config.config import env from werkzeug.utils import secure_filename from flask import flash, redirect, url_for, jsonify, render_template,send_from_directory, request from ml_algos import PdfHandler, CommentHandler, CsvHandler from models import tables import datetime import numpy as np ## Chequear que solo existe una extension def allowed_file(file, type): if type == 'img' and file == None: return True return '.' in file.filename and \ file.filename.rsplit('.', 1)[1].lower() in (env['ALLOWED_EXTENSIONS_BOOKS'] if type == 'book' else env['ALLOWED_EXTENSIONS_IMG']) def id_generator(size=150, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def get_count(q): count_q = q.statement.with_only_columns([func.count()]).order_by(None) count = q.session.execute(count_q).scalar() return count class LibrosCtrl(object): @staticmethod def all(page_num): try: res = { 'success': False, } total = tables.Libro.query.filter(tables.Libro.li_activo == True) books = tables.Libro.activeBooks(page_num) if books == None: res['books'] = [] else: # print(books.comentarios) serialized = [ { 'id': i.li_id, 'name': i.li_titulo, 'file': i.li_archivo, # 'likes': i.likes, 'licencia': i.li_licencia, 'autor': tables.Libro.getAuthor(i.li_id), 'image': i.li_imagen } for i in books ] res['books'] = serialized res['success'] = True res['total'] = get_count(total) except Exception as e: print(e) # db.session.rollback() res['msg'] = 'Hubo un error al obtener los tables.Libros, inténtelo nuevamente' finally: resp = jsonify(res) return resp, 200 @staticmethod def getBook(book_id): try: res = { 'success': False, } book = tables.Libro.exists(book_id) if not book: return render_template('errors/404.html'), 404 # book = tables.Libro.get_book(book_id) book.update_num_views() book_body = { 'id': book.li_id, 'keywords': [ { 'text': word.pc_palabra, 'weight': word.pc_ocurrencia } for word in book.palabras_clave ], 'title': book.li_titulo, 'image': book.li_imagen, 'downloads': book.li_num_descargas, 'file': book.li_archivo, 'language': book.li_idioma, 'created_at': datetime.datetime.strftime(book.li_fecha_creacion, '%Y-%m-%d'), 'comments': [ { 'text': comment.cm_texto, 'date': comment.cm_fecha_creacion, 'autor': comment.autor.usuario.complete_name(), 'username': comment.autor.usuario.us_nombre_usuario, 'autor_id': comment.autor.ai_id, } for comment in book.comentarios ], 'genre': [ { 'id': word.ge_id, 'desc': word.ge_descripcion, } for word in book.generos ], } res['success'] = True res['book'] = book_body resp = jsonify(res) return resp, 200 except Exception as e: print(e) # db.session.rollback() res['msg'] = 'Hubo un error al cargar el Libro, inténtelo nuevamente' resp = jsonify(res) return resp, 500 @staticmethod def getBookStatistics(book_id): try: res = { 'success': False, } book = tables.Libro.exists(book_id) if not book: return render_template('errors/404.html'), 404 # book = tables.Libro.get_book(book_id) book_body = { 'id': book.li_id, 'keywords': [ { 'text': word.pc_palabra, 'weight': word.pc_ocurrencia } for word in book.palabras_clave ], 'comments': [ { 'text': comment.cm_texto, 'date': comment.cm_fecha_creacion, 'autor': comment.autor.usuario.complete_name(), 'username': comment.autor.usuario.us_nombre_usuario, 'autor_id': comment.autor.ai_id, } for comment in book.comentarios ], 'title': book.li_titulo, 'image': book.li_imagen, 'downloads': book.li_num_descargas, 'views': book.li_numero_vistas, 'file': book.li_archivo, 'language': book.li_idioma, 'genre': [ { 'id': word.ge_id, 'desc': word.ge_descripcion, } for word in book.generos ], } commentTf = CommentHandler.CommentHandler('es', book_body['comments']) res['success'] = True res['book'] = book_body res['comment_wc'] = [{'text': word[0], 'weight': word[1]} for word in commentTf.get_word_cloud(0.5)] resp = jsonify(res) return resp, 200 except Exception as e: print(e) # db.session.rollback() res['msg'] = 'Hubo un error al cargar el Libro, inténtelo nuevamente' resp = jsonify(res) return resp, 500 @staticmethod def getBooksStatistics(autor_id): try: res = { 'success': False, } autor = tables.AutorIndie.exists(autor_id) if not autor: return render_template('errors/404.html'), 404 books = autor.publicacion report_body = [ { 'id': book.li_id, 'title': book.li_titulo, 'image': book.li_imagen, 'downloads': book.li_num_descargas, 'views': book.li_numero_vistas, 'likes': int(np.sum([ like.lk_puntaje for like in book.likes ])) } for book in books ] keywords = [] for book in books: _keywords = [ {'text': keyword.pc_palabra, 'weight': keyword.pc_ocurrencia } for keyword in book.palabras_clave ] keywords.extend(_keywords) res['word_cloud_keywords'] = keywords res['success'] = True res['books'] = report_body resp = jsonify(res) return resp, 200 except Exception as e: print(e) # db.session.rollback() res['msg'] = 'Hubo un error al cargar el Libro, inténtelo nuevamente' resp = jsonify(res) return resp, 500 @staticmethod def searchBook(query_p, db, response): try: res = { 'success': False, } books = tables.Libro.query.filter( tables.Libro.autor.like('%{}%'.format(query_p)) | tables.Libro.nombre_tables.Libro.like('%{}%'.format(query_p)), tables.Libro.activo == 1 ).all() if books == None: res['books'] = [] else: # print(books.comentarios) serialized = [ { 'id': i.id, 'name': i.nombre_tables.Libro, 'file': i.nombre_archivo, 'author': i.autor, 'likes': i.likes, 'licencia': i.licencia, 'image': i.imagen } for i in books ] res['books'] = serialized res['success'] = True except Exception as e: print(e) # db.session.rollback() res['msg'] = 'Hubo un error al cargar el tables.Libro, inténtelo nuevamente' finally: return response(json.dumps(res), mimetype='application/json') @staticmethod def denounceBook(book_id): try: res = { 'success': False, } req = request.get_json() print(req) denounce = tables.Denuncias( de_descripcion=req['desc'], autor_id=req['autor_id'], libro_id=book_id ) print(denounce) denounce.save() res['success'] = True res['msg'] = 'El libro acaba de ser denunciado, revisaremos su solicitud para tomar las acciones pertinentes, gracias' return jsonify(res), 200 except Exception as e: print(e) res['msg'] = 'Hubo un error al procesar su solicitud, inténtelo nuevamente' return jsonify(res), 500 @staticmethod def rateBook(book_id): try: res = { 'success': False, } req = request.get_json() rate = tables.Like.exists(req['autor_id'], book_id) if not rate: like = tables.Like( autor_id=req['autor_id'], libro_id=book_id, lk_puntaje=req['rating'] ) like.save() else: rate.lk_puntaje = req['rating'] rate.save() res['success'] = True res['msg'] = 'Se agrego su puntuación' return jsonify(res), 200 except Exception as e: print(e) res['msg'] = 'Hubo un error al agregar su puntuacion' return jsonify(res), 500 @staticmethod def getRating(book_id, autor_id): try: res = { 'success': False, } rate = tables.Like.exists(autor_id, book_id) res['rating'] = rate.lk_puntaje if rate else 0 res['success'] = True res['msg'] = 'Se agrego su puntuación' return jsonify(res), 200 except Exception as e: print(e) res['msg'] = 'Hubo un error al agregar su puntuacion' return jsonify(res), 500 @staticmethod def uploadBook(db, request, response): try: res = { 'success': False, } if request.method == 'POST': if 'filebook' not in request.files: res['success'] = False res['msg'] = 'Debe seleccionar un archivo del escrito' res['code'] = 400 bookfile = request.files['filebook'] imgfile = request.files['fileimg'] if 'fileimg' in request.files else None if bookfile.filename == '': res['success'] = False res['msg'] = 'Debe seleccionar un archivo del escrito' res['code'] = 400 if (bookfile and allowed_file(bookfile, 'book')) and (imgfile or allowed_file(imgfile, 'img')): bookfilename = uuid.uuid4().hex + secure_filename(bookfile.filename) imgfilename = uuid.uuid4().hex + secure_filename(imgfile.filename) if imgfile else None autor = tables.AutorIndie.exists(request.form['autor_id']) newBook = tables.Libro( li_titulo=request.form['book'], li_idioma=request.form['language'], li_licencia=request.form['licence'], li_archivo=bookfilename, li_imagen=imgfilename, ) autor.publicacion.append(newBook) tables.AutorIndie.save(autor) # db.session.add(autor) genero = tables.Genero(ge_descripcion = request.form['genre']) newBook.generos.append(genero) path_book = os.path.join(env['UPLOADS_DIR'] + '/books', bookfilename) bookfile.save(path_book) pdfHandler = PdfHandler.PdfHandler(request.form['language'], path_book) # pdfHandler = PdfHandler(request.form['language']) word_cloud, df = pdfHandler.get_word_cloud(0.15) # csv = CsvHandler.CsvHandler(bookfilename.replace('.pdf', '.csv')) # newBook.li_keywords_csv = csv_file newBook.saveKeyWords(word_cloud) # tables.Libro.save(newBook) newBook.save() if imgfilename != None: imgfile.save(os.path.join(env['UPLOADS_DIR'] + '/images', imgfilename)) res['success'] = True res['route'] = 'libro-exito' res['book_id'] = newBook.li_id else: print('err') res['success'] = False res['msg'] = 'Formato no aceptado' res['code'] = 400 resp = jsonify(res) return resp, 200 except Exception as e: db.session.rollback() res['route'] = 'libro-error' resp = jsonify(res) return resp, 500 @staticmethod def downloadBook(book_id): res = { 'success': False } try: book = tables.Libro.exists(book_id) if not book: return render_template('errors/404.html'), 404 book.update_num_downloads() res['success'] = True res['downloads_counter'] = book.li_num_descargas return jsonify(res), 200 except Exception as e: print(e) res['msg'] = 'Hubo un error al actualizar el contador de descargas' return jsonify(res), 200 @staticmethod def commentBook(): res = { 'success': False } try: req = request.get_json() book = tables.Libro.exists(req['book_id']) if not book: return render_template('errors/404.html'), 404 comment = tables.Comentario( libro_id=req['book_id'], autor_id=req['autor_id'], cm_texto=req['text'], ) book.comentarios.append(comment) book.save() res['success'] = True res['comment'] = { 'text': comment.cm_texto, 'date': comment.cm_fecha_creacion, 'autor': comment.autor.usuario.complete_name(), 'username': comment.autor.usuario.us_nombre_usuario, 'autor_id': comment.autor.ai_id, } # res['downloads_counter'] = book.li_num_descargas return jsonify(res), 200 except Exception as e: print(e) res['msg'] = 'Hubo un error al actualizar el contador de descargas' return jsonify(res), 200
pabloIO/LIBREria_bo
controllers/libros_ctrl.py
libros_ctrl.py
py
16,176
python
en
code
0
github-code
6
37511806658
from invimg.scripts.inference import invert import math import os import torch import torchvision from tqdm import tqdm import numpy as np from optimclip.criteria.clip_loss import CLIPLoss from optimclip.criteria.id_loss import IDLoss from optimclip.models.stylegan2.model import Generator import clip from faceparsing.test import evaluate from PIL import Image from torchvision import transforms from run_config.config import Options STYLESPACE_DIMENSIONS = [512 for _ in range(15)] + [256, 256, 256] + [128, 128, 128] + [64, 64, 64] + [32, 32] # invert() STYLESPACE_INDICES_WITHOUT_TORGB = [i for i in range(len(STYLESPACE_DIMENSIONS)) if i not in list(range(1, len(STYLESPACE_DIMENSIONS), 3))] def get_ganmodel(opts): generator = Generator(opts.size, 512, 8, channel_multiplier=2) # TODO 看看generator model = torch.load(opts.gan_model)['g_ema'] generator.load_state_dict(model, strict=True) generator = generator.eval().cuda() return generator def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): lr_ramp = min(1, (1 - t) / rampdown) lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) lr_ramp = lr_ramp * min(1, t / rampup) return initial_lr * lr_ramp def get_init_latent(orig_pic): latent_path = 'result/inv/latents.npy' try: latents = np.load(latent_path, allow_pickle=True).item() latent_code = np.expand_dims(np.array(latents[orig_pic]), axis=0) except FileNotFoundError: invert() # 没有当前图片的latent code,再invert一遍 latents = np.load(latent_path, allow_pickle=True).item() latent_code = np.expand_dims(np.array(latents[orig_pic]), axis=0) latent_code_init = torch.tensor(latent_code).cuda() deltas_path = 'result/inv/weight_deltas/' + orig_pic.split('.')[0] + '.npy' deltas = np.load(deltas_path, allow_pickle=True) deltas = [torch.from_numpy(w).cuda() if w is not None else None for w in deltas] return latent_code_init, deltas def get_imgloss(region, orig_img, img_gen, mask): img_loss_sum = torch.sum(torch.square(orig_img - img_gen)) img_loss = 0 if region: if 'bbox' in region: bbox = region['bbox'] crop_area = (orig_img - img_gen)[:][:][bbox[0]:bbox[1]][bbox[2]:bbox[3]] img_loss = img_loss_sum - torch.sum(torch.square(crop_area)) area = opts.size ** 2 - abs(bbox[0] - bbox[1]) * abs(bbox[2] - bbox[3]) # 剩余的面积 img_loss /= area elif 'organ' in region: # print(mask.shape) img_loss = torch.sum(torch.square(orig_img * mask - img_gen * mask)) area = mask.norm(1) # 1的个数即为他的一范数 img_loss /= area else: print('region输入错误') else: img_loss = img_loss_sum / (opts.size ** 2) return img_loss def optim(text, input_img, opts, region): # 分词并拼接 edit_text = torch.cat([clip.tokenize(text)]).cuda() orig_img = Image.open(input_img) convert = transforms.ToTensor() normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) orig_img = normalize(convert(orig_img)) orig_img = orig_img.unsqueeze(0).cuda() orig_pic = str(input_img).split('/')[-1] latent_code_init, deltas = get_init_latent(orig_pic) os.makedirs(opts.results, exist_ok=True) gan_generator = get_ganmodel(opts) with torch.no_grad(): latent_code_init = gan_generator([latent_code_init], input_is_latent=True, return_latents=True) # 生成初始图片 with torch.no_grad(): inv_img, _ = gan_generator([latent_code_init], input_is_latent=True,input_is_stylespace=True, randomize_noise=True, ) latent = [s.detach().clone() for s in latent_code_init] for c, s in enumerate(latent): if c in STYLESPACE_INDICES_WITHOUT_TORGB: s.requires_grad = True latent = latent_code_init.clone().detach() latent.requires_grad = True clip_loss = CLIPLoss(opts) id_loss = IDLoss(opts) optimizer = torch.optim.Adam(latent, lr=opts.alpha) # 得到感兴趣的区域的mask mask = None if region and 'organ' in region: evaluate(region['organ'], 'result/faceparsing/', dspth='input_img/', cp='./faceparsing/res/cp/79999_iter.pth') mask = Image.open('result/faceparsing/' + orig_pic) mask = convert(mask).cuda() mask = mask.repeat(3, 1, 1) mask = mask.unsqueeze(0) pbar = tqdm(range(opts.step)) for i in pbar: t = i / opts.step lr = get_lr(t, opts.alpha) optimizer.param_groups[0]["lr"] = lr img_gen, _ = gan_generator([latent], input_is_latent=True, input_is_stylespace=True, randomize_noise=True) c_loss = clip_loss(img_gen, edit_text) if opts.id_lambda > 0: i_loss = id_loss(img_gen, inv_img)[0] else: i_loss = 0 # 不需要idloss就不跑模型了,节省时间 latent_loss = sum([((latent_code_init[c] - latent[c]) ** 2).sum() for c in range(len(latent_code_init))]) img_loss = get_imgloss(region, orig_img, img_gen, mask) # print('latent_loss', latent_loss) # print('img_loss', img_loss) loss = c_loss + opts.latent_lambda * latent_loss + opts.id_lambda * i_loss + opts.img_lambda * img_loss optimizer.zero_grad() loss.backward() optimizer.step() pbar.set_description( ( f"loss: {loss.item():.4f};" ) ) if opts.save_intermediate_image_every > 0 and i % opts.save_intermediate_image_every == 0: with torch.no_grad(): img_gen, _ = gan_generator([latent], input_is_latent=True, input_is_stylespace=True, randomize_noise=True) torchvision.utils.save_image(img_gen, f"result/opt/{str(i).zfill(5)}.jpg", normalize=True, range=(-1, 1)) final_result = torch.cat([orig_img, inv_img, img_gen, mask]) torchvision.utils.save_image(final_result.detach().cpu(), os.path.join(opts.results, "final_result.jpg"), normalize=True, scale_each=True, range=(-1, 1)) return final_result if __name__ == '__main__': opts = Options().get_args() result = optim(text='blue eyes', input_img='input_img/img1.png', opts=opts, region={'organ': ['hair']}) from torchvision.utils import make_grid from torchvision.transforms import ToPILImage result_image = ToPILImage()( make_grid(result.detach().cpu(), normalize=True, scale_each=True, range=(-1, 1), padding=0)) h, w = result_image.size result_image.resize((h // 2, w // 2)) import matplotlib.pyplot as plt plt.imshow(result_image) plt.show()
wangyuchi369/makeup-clip
test.py
test.py
py
6,753
python
en
code
0
github-code
6
16897266155
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.13.8 # kernelspec: # display_name: Python [conda env:root] * # language: python # name: conda-root-py # --- import os import requests from bs4 import BeautifulSoup from io import BytesIO import PyPDF2 import pandas as pd """Scrapes UNCTAD website for all international investment agreemets.""" url = "https://investmentpolicy.unctad.org/international-investment-agreements/iia-mapping" key = "treaty-files/" soup = BeautifulSoup(requests.get(url).content, "html.parser") def parse_iia_txt(link): pdf_bytes = requests.get(link).content p = BytesIO(pdf_bytes) try: read_pdf = PyPDF2.PdfFileReader(p, strict=False) count = read_pdf.numPages print(link) treaty_txt = '' for page_number in range(count): page = read_pdf.getPage(page_number) page_content = page.extractText() treaty_txt += '\n ' + page_content return treaty_txt except: bad_links.append(link) #return None pass # + data = [] bad_links = [] table = soup.find('table', attrs={'class':'table ajax'}) table_body = table.find('tbody') rows = table_body.find_all('tr') total = len(rows) for num, row in enumerate(rows): print(f"Now on treaty {num} out of {total}.") row_dict = {'link': None, 'parties': None, 'status': None, 'language': None, 'sign_date': None, 'entry_force_date': None, 'termination_date': None, 'text': None} for link in row.find_all('a'): if key in link.get("href", ""): row_dict['link'] = ("https://investmentpolicy.unctad.org" + link.get("href")) row_dict['text'] = parse_iia_txt(row_dict['link']) row_dict['title'] = row.find_all("td", {'data-index' : "2"})[0].text row_dict['parties'] = row.find_all("td", {'data-index' : "5"})[0].text row_dict['status'] = row.find_all("td", {'data-index' : "4"})[0].text row_dict['sign_date'] = row.find_all("td", {'data-index' : "6"})[0].text row_dict['entry_force_date'] = row.find_all("td", {'data-index' : "7"})[0].text row_dict['termination_date'] = row.find_all("td", {'data-index' : "8"})[0].text row_dict['language'] = row.find_all("td", {'data-index' : "9"})[0].text data.append(row_dict) # - treaty_df = pd.DataFrame(data) treaty_df treaty_df.to_csv("raw_iia.csv",index=False)
amvelazquez/iia-analysis
scrape_treaty_db.py
scrape_treaty_db.py
py
2,671
python
en
code
0
github-code
6
71404988987
from selenium import webdriver from selenium.webdriver.chrome.options import Options from contextlib import contextmanager import pathlib import shutup # shut those annoying warnings shutup.please() # configure selenium chromedriver_location = f"{next(pathlib.Path('.').glob('**/chromedriver'))}" #dynamically find chromedriver chrome_options = Options() chrome_options.add_argument('--headless') def constructUrl(start): """Construct urls from start string.""" constructed_url = list() for c in start[1:]: # avoid the initial double quote # append valid url characters if c.isalnum() or c in ['-','.','_','~',':','/','?','#','[',']','@','!','$','&',"'",'(',')','*','+',',',';','=']: constructed_url.append(c) else: break return ''.join(constructed_url) def extractUrls(driver, extract_from='https://www.google.com/', query='', debug=False): """Extract urls from page.""" url_initial = '"https' se_url = 'search?q='.join([extract_from, query]) driver.get(se_url) response_html = str(driver.page_source.encode('utf-8')) #assign bytes in string format url_list = list() for url in range(response_html.count(url_initial)): if debug: print(f'{len(url_list)} urls extracted from {se_url}\r', end='', flush=True) if url == 0: url_list.append(constructUrl(start=response_html[response_html.find(url_initial):])) continue response_html = response_html.split(url_initial, 1)[1] url_list.append(constructUrl(start=response_html[response_html.find(url_initial):])) url_list_no_duplicates = list(dict.fromkeys(url_list)) if debug: print(f'\nwithout duplicates: {len(url_list_no_duplicates)}', end='') return url_list_no_duplicates
ihiiro/Intelligence
intel_engine/url_extractor.py
url_extractor.py
py
1,803
python
en
code
0
github-code
6
373981387
from app import app from flask import render_template,flash, request, redirect, url_for from .forms import CalculatorForm, ButtonForm from app import db, models import datetime @app.route('/') def index(): greeting = "Hello World!!!" title = "Homepage" # return redirect(url_for('create_assessment')) return render_template('index.html', title=title, greeting=greeting) @app.route('/create_assessment', methods=['GET','POST']) def create_assessment(): title = "Create Assessment" header = "Create Assessment" form = CalculatorForm() if request.method == 'POST': if form.validate_on_submit(): p = models.Assessments(title=form.title.data, module_code=form.module_code.data, deadline=form.deadline.data, description=form.description.data) db.session.add(p) db.session.commit() flash('Succesfully submitted data') return redirect(url_for('create_assessment')) return render_template('create_assessment.html', title=title, header=header, form=form) @app.route('/all_assessments') def all_assessments(): title = "All Assessment" header = "All Assessments" form = CalculatorForm() data = models.Assessments.query.all() return render_template('all_assessments.html', title=title, header=header, form=form, data=data) @app.route('/completed_assessments', methods=['GET', 'POST']) def completed_assessments(): title = "Completed Assessments" header = "Completed Assessments" data = models.Assessments.query.filter_by(status='Completed').all() form = CalculatorForm() #check if request method is POST if request.method == 'POST': try: #get the button id & convert it to an integer id = request.form['button'] id = int(id) #retrieve the id from the button & update assessment status p = models.Assessments.query.get(id) p.status = 'Uncompleted' db.session.commit() flash("Assessment Marked As 'Incomplete'") return redirect(url_for('completed_assessments')) except: flash("Unable to mark assessment as 'Incomplete'", "danger") return redirect(url_for('completed_assessments')) return render_template('completed_assessments.html', title=title, header=header, form=form, data=data) @app.route('/uncompleted_assessments', methods=['GET', 'POST']) def uncompleted_assessments(): title = "Uncompleted Assessments" header = "Uncompleted Assessments" data = models.Assessments.query.filter_by(status='Uncompleted').all() form = CalculatorForm() #check if request methos is POST if request.method == 'POST': # when a specific button is clicked on, mark as completed & reload the page try: #get the button id & convert it to an integer id = request.form['button'] id = int(id) #retrieve the id from the button & update assessment status p = models.Assessments.query.get(id) p.status = 'Completed' db.session.commit() flash("Assessment Marked As 'Complete'") #refreshs the page after adding to database return redirect(url_for('uncompleted_assessments')) except: flash("Unable to mark assessment as 'Complete'", "danger") return redirect(url_for('uncompleted_assessments')) return render_template('uncompleted_assessments.html', title=title, header=header, form=form, data=data)
Lanrayy/web-app-development-comp2011-cwk1
app/views.py
views.py
py
4,045
python
en
code
0
github-code
6
10625323914
import boto3 access_key = '' secret_access_key = '' def get_all_clusters(): ecs_client = boto3.client('ecs', aws_access_key_id=access_key, aws_secret_access_key=secret_access_key) response = ecs_client.list_clusters() cluster_arns = response['clusterArns'] return cluster_arns # print(get_all_regions()) # Get all clusters clusters = get_all_clusters() print(clusters) # Print the clusters for cluster_arn in clusters: print(cluster_arn)
PrantaChakraborty/boto3
s3/ecs.py
ecs.py
py
462
python
en
code
0
github-code
6
16442943983
#!/usr/bin/env python """ Created on Wed Jan 20 20:53:20 2020 @author: yuweiwu Usage: This is the script to create the node lidar_processing and three topic:closest_point, farthest_point and scan_range """ import rospy #import math import numpy as np import std_msgs.msg from sensor_msgs.msg import LaserScan from yuweiwu_roslab.msg import scan_range def lidar_processing(): #initial the node rospy.init_node("lidar_processing", anonymous = True) #create topic closest_point closest_pub = rospy.Publisher('closest_point', std_msgs.msg.Float64, queue_size = 10) #create topic farthest_point farthest_pub = rospy.Publisher('farthest_point', std_msgs.msg.Float64, queue_size = 10) #create topic scan_range scan = rospy.Publisher('scan_range', scan_range, queue_size = 10) def callback(msg): #rate = rospy.Rate(1) # if want to control it data = scan_range() data.header = std_msgs.msg.Header(stamp = rospy.Time.now(), frame_id="base") #if not math.isnan(max(msg.ranges)) and not math.isinf(max(msg.ranges)): #we can use isnan and isinf to check the data if needed data.scan_max = np.float64(max(msg.ranges)) #if not math.isnan(min(msg.ranges)) and not math.isinf(min(msg.ranges)): data.scan_min = np.float64(min(msg.ranges)) # publish all closest_pub.publish(data.scan_min) farthest_pub.publish(data.scan_max) scan.publish(data) rospy.Subscriber("scan", LaserScan, callback) rospy.spin() if __name__ == "__main__": lidar_processing()
yuwei-wu/F110-autonomous-racing
yuweiwu_roslab/scripts/lidar_processing.py
lidar_processing.py
py
1,597
python
en
code
0
github-code
6
26257817866
# Imports import users import find_athlete import sys import sqlalchemy as sa from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base import uuid import datetime # Global variables task = """ Задание №1: Напишите модуль users.py, который регистрирует новых пользователей. Скрипт должен запрашивать следующие данные: * имя * фамилию * пол * адрес электронной почты * дату рождения * рост ------------------ Задание 2 Напишите модуль find_athlete.py поиска ближайшего к пользователю атлета. Логика работы модуля такова: * запросить идентификатор пользователя; * если пользователь с таким идентификатором существует в таблице user, то вывести на экран двух атлетов: ближайшего по дате рождения к данному пользователю и ближайшего по росту к данному пользователю; * если пользователя с таким идентификатором нет, вывести соответствующее сообщение. """ DB_PATH = "sqlite:///sochi_athletes.sqlite3" Base = declarative_base() # Class definitions class bcolors: HEADER = '\033[96m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' # Function definitions def connect_db(): # create connection engine = sa.create_engine(DB_PATH) # create tables Base.metadata.create_all(engine) # create session fabric session = sessionmaker(engine) # Return session return session() def choose_mode(): print(bcolors.HEADER + "\n---------------------------------------------") print("   Модуль B4, домашнее задание: \n") print(bcolors.BOLD + " [1] Добавить пользователя в базу /задание №1/") print(bcolors.BOLD + " [2] Похожие на пользователя атлеты /задание №2/\n " + bcolors.ENDC) print(bcolors.HEADER + " [3] Найти пользователя по ID") print(" [4] Найти атлета похожего по возрасту на пользователя") print(" [5] Найти атлета похожего по росту на пользователя\n ") print(" [6] Вывести условия задачи\n ") print(" [7] Выход\n") print("---------------------------------------------" + bcolors.ENDC) while True: mode = input("\nВыберите, пожалуйста, пункт меню: ") try: mode = int(mode) except ValueError: print(bcolors.FAIL + "ERROR: Необходимо ввести номер пункта" + bcolors.ENDC) continue if 1 <= mode <= 7: break else: print(bcolors.FAIL + "ERROR: Такого пункта не существует" + bcolors.ENDC) return mode def input_request(mode): """" Запрашивает и результирует данные """ session = connect_db() if mode == 1: """ Пункт меню: добавление пользователя в базу """ # DONE users.add(session, bcolors()) if mode == 2: """ Вывод по заданию """ print(bcolors.OKGREEN + "\n Ищем атлетов - ближайших ровесников пользователя," + "\n а также атлетов одинакового с пользователем роста.\n" + bcolors.ENDC) id = id_ask() res = users.find_id(id, session) if res: print(bcolors.OKGREEN + f"\n Найден пользователь: {res}" + bcolors.ENDC) # Ищем ближайших ровесников ath_str = find_athlete.bday_compare(id, session) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) print(bcolors.OKGREEN + f"\n Самые близкие ровесники - атлеты: \n{ath_str}" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) ath_str = find_athlete.height_compare(id, session, bcolors()) if ath_str != "": print(bcolors.OKGREEN + f" Атлеты с одинаковым ростом:\n" + bcolors.ENDC) # input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) print(bcolors.OKGREEN + f"{ath_str}" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: print(bcolors.FAIL + f"ERROR: Пользователь с ID:{id} не найден" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) if mode == 3: """ Пункт меню: поиск пользователя по ID """ # DONE print(bcolors.OKGREEN + "\n Ищем пользователя по ID:\n" + bcolors.ENDC) id = id_ask() res = users.find_id(id, session) if res: print(bcolors.OKGREEN + f"\n Найден пользователь: {res}" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: print(bcolors.FAIL + f"\nERROR: Пользователь с ID:{id} не найден" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) if mode == 4: """ Поиск атлета по параметрам даты рождения пользователя """ print(bcolors.OKGREEN + "\n Ищем атлета по параметрам даты рождения пользователя:\n" + bcolors.ENDC) id = id_ask() res = users.find_id(id, session) if res: print(bcolors.OKGREEN + f"\n Найден пользователь: {res}" + bcolors.ENDC) # Ищем подходящих атлетов: ath = find_athlete.bday_compare(id, session) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) print(bcolors.OKGREEN + f"\n Самые близкие ровесники: \n{ath}" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: print(bcolors.FAIL + f"\nERROR: Пользователь с ID:{id} не найден" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) if mode == 5: """ Поиск атлета по параметрам роста пользователя """ print(bcolors.OKGREEN + "\n Ищем атлета по параметрам пользователя:\n" + bcolors.ENDC) id = id_ask() res = users.find_id(id, session) if res: print(bcolors.OKGREEN + f"\n Найден пользователь: {res}" + bcolors.ENDC) # Ищем подходящего атлета: ath = find_athlete.height_compare(id, session, bcolors()) if ath != "": input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) print(bcolors.OKGREEN + f"{ath}" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) else: print(bcolors.FAIL + f"\nERROR: Пользователь с ID:{id} не найден" + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) if mode == 6: print(bcolors.OKBLUE + "\n" + task + bcolors.ENDC) input(bcolors.WARNING + "\n [Enter]\n" + bcolors.ENDC) if mode == 7: print(bcolors.WARNING + bcolors.BOLD + "\nХорошего дня!\n" + bcolors.ENDC) sys.exit(0) return 0 def id_ask(): """ Проверка корректности введенного ID """ while True: id_raw = input("Введите ID пользователя: ") try: answer = int(id_raw) except ValueError: print(bcolors.FAIL + "ERROR: Необходимо ввести номер ID\n" + bcolors.ENDC) continue if answer > 0: break else: print(bcolors.FAIL + "ERROR: Такого ID не существует\n" + bcolors.ENDC) return answer def main(): """ Launcher. """ while True: input_request(choose_mode()) if __name__ == "__main__": main() # DEBUG
vsixtynine/sf-sql-task
start.py
start.py
py
9,483
python
ru
code
0
github-code
6
29643349641
# -*- coding: utf-8 -*- # (c) 2015 Alfredo de la Fuente - AvanzOSC # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from openerp import models, fields, api, _ class MrpProduction(models.Model): _inherit = 'mrp.production' plan = fields.Many2one('procurement.plan', string='Plan') @api.multi def action_confirm(self): proc_obj = self.env['procurement.order'] res = super(MrpProduction, self).action_confirm() for production in self: if (production.project_id and production.plan and not production.sale_id): old_project = production.plan.project_id if old_project.id != production.project_id.id: production.plan.project_id = production.project_id.id old_project.unlink() cond = [('production_id', '=', production.id)] proc = proc_obj.search(cond, limit=1) if proc: self._treat_procurements_reservations(proc) return res @api.multi def _treat_procurements_reservations(self, proc): self.ensure_one() reservation_obj = self.env['stock.reservation'] proc_obj = self.env['procurement.order'] level = 1 if proc.level: level = proc.level + 1 cond = [('parent_procurement_id', 'child_of', proc.id), ('id', '!=', proc.id), ('level', '=', level)] procs = proc_obj.search(cond) if procs: for proc in procs: cond = [('procurement_from_plan', '=', proc.id)] reservation = reservation_obj.search(cond, limit=1) reservation.release() @api.multi def button_create_plan(self): plan_obj = self.env['procurement.plan'] proc_obj = self.env['procurement.order'] project_obj = self.env['project.project'] warehouse_obj = self.env['stock.warehouse'] for production in self: project_vals = { 'name': _('Generated from MO: ') + production.name} project = project_obj.create(project_vals) proc_vals = { 'name': _('Generated from MO: ') + production.name, 'product_id': production.product_id.id, 'location_id': production.location_src_id.id, 'product_qty': production.product_qty, 'product_uom': production.product_uom.id} proc = proc_obj.create(proc_vals) date_planned = fields.Datetime.from_string( production.date_planned).date() warehouse = warehouse_obj.search([], limit=1) plan_vals = { 'name': _('Generated from MO: ') + production.name, 'warehouse_id': warehouse.id, 'from_date': date_planned, 'to_date': date_planned, 'project_id': project.id, 'procurement_ids': [(4, proc.id)]} plan = plan_obj.create(plan_vals) production.plan = plan proc._create_procurement_lower_levels(plan.id) for procurement in plan.procurement_ids: if procurement.show_button_create: procurement.button_create_lower_levels()
odoomrp/odoomrp-wip
procurement_plan_mrp/models/mrp_production.py
mrp_production.py
py
3,308
python
en
code
119
github-code
6
24442654174
import argparse import logging import sys import pandas as pd import requests key = ' ' def get_recent_headlines(key: str): r = requests.get(url=f'https://newsapi.org/v2/top-headlines?country=us&apiKey={key}') return r.json() def get_headlines_to_certain_category(key: str, category: str): r = requests.get(url=f'https://newsapi.org/v2/top-headlines?country=us&category={category}&apiKey={key}') return r.json() def json_to_dataframe(json): return pd.DataFrame.from_dict(pd.json_normalize(json), orient='columns') def get_news(): parser = argparse.ArgumentParser() logging.basicConfig(level=logging.INFO) parser.add_argument('--key', type=str, required=True, help='News API key, necessary to access the API') parser.add_argument('--category', type=str, required=False, help='Category of news') args = parser.parse_args() # not null check recent_news = get_recent_headlines(key=args.key) logging.info('Request status: {}'.format(recent_news['status'])) logging.info(f'Fetched {recent_news["totalResults"]} new entries') # drop rows with null values recent_news = json_to_dataframe(recent_news['articles']) recent_news = recent_news.dropna() recent_news = recent_news.drop(columns=['urlToImage', 'publishedAt', 'source.id']) if args.category is not None: category_news = get_headlines_to_certain_category(key=args.key, category=args.category) category_news = json_to_dataframe(category_news['articles']) category_news = category_news.dropna() category_news = category_news.drop(columns=['urlToImage', 'publishedAt', 'source.id']) return recent_news, category_news return recent_news if __name__ == "__main__": sys.exit(get_news())
novatc/sent-news
news_api.py
news_api.py
py
1,768
python
en
code
0
github-code
6
72044818108
# RENAMING A FILE/FOLDER # syntax: # os.rename("path_of_file_with_oldname","path_of_file_with_newname") os.rename("/home/hidayat7z/first.txt","/home/hidayat7z/phaast.txt") # RENAMING MULTIPLE FILES ##for 2nd Sem_res.jpeg and 3rd Sem_res.jpeg RENAME it to 2nd Semester Result.jpeg & 3rd Semester Result.jpeg ## we need to make # Sem_res.jpeg -> Semester Result.jpeg ##that means we need to make # /home/hidayat7z/2nd Sem_res.jpeg -> /home/hidayat7z/2nd Semester Result.jpeg #creating a list of the files re_files=["/home/hidayat7z/2nd Sem_res.jpeg","/home/hidayat7z/3rd Sem_res.jpeg"] for i in re_files: j=i.split(" ")#splitting across a space new_path=j[0]+' Semester Result.jpeg' # concatenating to get the new path os.rename(i,new_path)
hidayat7z/Python
Manipulating Files and Folders/4. Renaming a file.py
4. Renaming a file.py
py
760
python
en
code
1
github-code
6
73694875709
'''compute CCS in multi-step experiments ''' import traceback import time import glob import os from pathlib import Path from sys import platform as sys_pf if sys_pf == 'darwin': import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import seaborn as sns from utils import * from shortest_for_ccs import get_possible_ccs_values import argparse ########################################################################## # ArgumentParser ########################################################################## parser = argparse.ArgumentParser() parser.add_argument( '--target_list_file', type=str, default='TargetList.txt', help='Target list file (Tab-delimited text format)') parser.add_argument( '--config_file', type=str, default='config.xml', help='Configuration file') # parser.add_argument( # '--data_folder', type=str, default='./', # help='Data folder containing all the cef and meta data files') parser.add_argument( '--feature_files', type=str, help='feature files to calibrate CCS values') parser.add_argument( '--framemeta_files', type=str, help='frame meta info file for samples') parser.add_argument( '--output', type=str, default='ccs_table.tsv', help='Output file to save a output table') parser.add_argument( '--r2_threshold', type=float, default=0.99, help='threshold value for r2') parser.add_argument( '--num_isotopes_threshold', type=int, default=1, help='threshold value for num_isotopes') parser.add_argument( '--intensity_rank_threshold', type=int, default=3, help='threshold value for peak intensity rank in m/z window') parser.add_argument( '--threshold_n_fields', type=int, default=3, help='threshold value for the minimum number of fields for linear regression') parser.add_argument( '--maxint', action='store_true', help='select max intensive peaks for ccs computation') parser.add_argument( '--format', type=str, choices=['cef','mzmine'], default='mzmine', help='file format for the features, e.g., cef or mzmine') parser.add_argument( '--output_dir', type=str, default='./', help='a directory to store output files') FLAGS = {} ########################################################################## def get_metadata(mfile, offset, ax=None, label=None): '''read metadata file and extract the field information for each frame TODO: offset method (choose one frame by offset) or average in a range Return a pandas dataframe having a field information for each frame ''' try: metadata = pd.read_csv(mfile, sep='\t') _list = list(metadata.drop_duplicates(subset='FrameMethodId').FrameId+offset-1) filtered = metadata[metadata.FrameId.isin(_list)] ################################################## if ax is not None: ax[0].plot(metadata.FrameId, metadata.ImsTemperature, label=label) ax[0].scatter(filtered.FrameId, filtered.ImsTemperature, label=None) ax[0].set_ylabel('Temperature (C)') ax[1].plot(metadata.FrameId, metadata.ImsPressure) ax[1].scatter(filtered.FrameId, filtered.ImsPressure) ax[1].set_ylabel('Pressure (torr)') ax[2].plot(metadata.FrameId, metadata.ImsField) ax[2].scatter(filtered.FrameId, filtered.ImsField) ax[2].set_ylabel('E (V/cm)') ax[2].set_xlabel('Frame ID') ################################################## return filtered except Exception as e: return None def get_target_info(target_list_file): '''read the target_list_file target_list_file: file path for a config file Return a pandas dataframe containing target information ''' return pd.read_csv(target_list_file, sep='\t').fillna(method='ffill') def get_adducts(exact_mass, adducts): '''get the adducts mass exact_mass: exact mass of the target adducts: configuration for adducts in config_file Return adducts2mass: a dict containing information of positive and negative adducts ''' adducts2mass = {'pos':{}, 'neg':{}} for adduct in adducts: charges = adduct['charges'].replace(' ','').split(',') for c in charges: charge = int(c) name = '[M'+c+adduct['name']+']' if abs(charge)>1 else '[M'+c[0]+adduct['name']+']' mass = (exact_mass + charge * adduct['mass'])/abs(charge) if charge > 0: adducts2mass['pos'][name] = (mass, charge) elif charge < 0: adducts2mass['neg'][name] = (mass, charge) return adducts2mass def get_features(file, max_normalize=True, fformat='cef'): if fformat=='cef': return get_features_from_cef(file, max_normalize) elif fformat=='mzmine': return get_features_from_mzmine_csv(file, max_normalize) else: print('File format: {0}. This tool doesn\'t support this file format.'.format(fformat)) return None, None def get_adducts_colors(adduct): colors = {'[M+.]':'m', '[M+H]':'b', '[M+2H]':'c', '[M+Na]':'r', '[M+K]':'g', '[M-H]':'y'} if adduct in colors: return colors[adduct] else: return 'k' def is_in_tolerance(x, mass, ppm): delta = mass * ppm * 1.0e-6 #print(mass, delta, mass-delta, mass+delta) return (x >= mass - delta) & (x <= mass + delta) def mass_error(x, mass): return abs(x - mass) / mass * 1e6 def find_features_maxint(features, metadata, ion_mz, z, ppm): df = features[is_in_tolerance(features.mz, ion_mz, ppm) & (features.z==z)] if df.shape[0] == 0: return df # if 'frame' column in metadata, delete it if 'frame' in metadata.columns: del metadata['frame'] df = df.sort_values(by='intensity_z').drop_duplicates(subset='frame', keep='last') df = df.merge(metadata, left_on='frame', right_on='FrameMethodId', how='inner') df = df.sort_values(by='frame') return df def find_features(features, metadata, ion_mz, z, ppm, threshold_num_isotopes=2, threshold_intensity_rank=3): if 'num_isotopes' in features.columns: df = features[is_in_tolerance(features.mz, ion_mz, ppm) & \ (features.z==z) & \ (features.num_isotopes>=threshold_num_isotopes)] else: df = features[is_in_tolerance(features.mz, ion_mz, ppm) & (features.z==z)] if df.shape[0] == 0: return df # filter out small peaks by ranking threshold rankings = df.groupby('frame')['intensity_org'].rank(ascending=False) df = df[rankings<=threshold_intensity_rank] # for f in frames_too_many_features: # filter_by_intensity_rank(df, f, threshold_intensity_rank) # if 'frame' column in metadata, delete it if 'frame' in metadata.columns: del metadata['frame'] # df = df.sort_values(by='intensity_z').drop_duplicates(subset='frame', keep='last') df = df.merge(metadata, left_on='frame', right_on='FrameMethodId', how='inner') # df = df.sort_values(by='frame') # df.to_csv("test_{0:.5f}.txt".format(ion_mz),sep="\t") return df def filter_by_intensity_rank(df, frame, threshold_intensity_rank=3): temp = df[df.frame == frame] # print(df) # print(frame, temp.intensity_org) np.argsort(temp.intensity_org) def ccs_filter(ccs_list): # remove the redundant regression lines which share the same start nodes(features) first_peaks = [] last_peaks = [] for ccs in ccs_list: first_peaks.append(int(ccs.mppid[0])) last_peaks.append(int(ccs.mppid[-1])) ufirst_peaks = list(np.unique(first_peaks)) ulast_peaks = list(np.unique(last_peaks)) if len(ufirst_peaks) < len(ccs_list): print("len(ufirst_peaks) < len(ccs_list)", len(ufirst_peaks),len(ccs_list)) _ccs_list = [] for u in ufirst_peaks: idx_list = np.where(first_peaks == u)[0] if idx_list.shape[0] > 1: best_r2 = 0 best_ccs_u = None for ii in idx_list: if (best_r2 < ccs_list[ii].r2): best_ccs_u = ccs_list[ii] best_r2 = ccs_list[ii].r2 if best_ccs_u != None: _ccs_list.append(best_ccs_u) else: _ccs_list.append(ccs_list[idx_list[0]]) return _ccs_list elif len(ulast_peaks) < len(ccs_list): print("len(ulast_peaks) < len(ccs_list)", len(ulast_peaks),len(ccs_list)) print("ulast_peaks", ulast_peaks) print("last_peaks", last_peaks) _ccs_list = [] for u in ulast_peaks: idx_list = np.where(last_peaks == u)[0] print('idx_list',u, idx_list) if idx_list.shape[0] > 1: best_r2 = 0 best_ccs_u = None for ii in idx_list: if (best_r2 < ccs_list[ii].r2): best_ccs_u = ccs_list[ii] best_r2 = ccs_list[ii].r2 if best_ccs_u != None: _ccs_list.append(best_ccs_u) else: _ccs_list.append(ccs_list[idx_list[0]]) return _ccs_list else: return ccs_list # find the ccs values of earlist molecules pass def files_not_enough(fname, config_params, fformat='cef'): # meta_file = (fname + '{0}.txt').format(config_params['suffix_meta']) # if not os.path.isfile(meta_file): # print("[ERROR] a metadata file doesn't exist:", meta_file) # return True for step in range(config_params['num_fields']): if fformat=='cef': ffile = (fname + '{0}.cef').format(config_params['suffix_raw'].format(step+1)) else: ffile = (fname + '{0}.csv').format(config_params['suffix_raw'].format(step+1)) if not os.path.isfile(ffile): print("[ERROR] a feature file doesn't exist:", ffile) return True return False def get_ccs(FLAGS, comp_id, target_list, config_params): ''' Return a list ''' ccs_results = [] # time_for_feature_finding = 0 # find the target files by the unique id for a compound target_info = target_list[target_list.ID==comp_id] if target_info.shape[0]==0: return ccs_results # get file names for multiple runs rep_files = target_info.RawFileName.tolist() rep_files.sort() num_reps = len(rep_files) # get the unique information for each target unique_target_info = target_info.drop(['RawFileName', 'FrameMetaName'], axis=1).drop_duplicates() if unique_target_info.shape[0] > 1: print("[ERROR] There are more than one targets for this comp_id. comp_id:{}, and unique_target_info:".format(comp_id)) print(unique_target_info) compound_id = unique_target_info.iloc[0].CompoundID exact_mass = unique_target_info.iloc[0].ExactMass ionization = unique_target_info.iloc[0].Ionization neutral_name = unique_target_info.iloc[0].CompoundName print(compound_id, neutral_name, ionization, exact_mass) # get adducts adducts = get_adducts(target_info.ExactMass.tolist()[0], config_params['adducts'])[target_info.Ionization.tolist()[0]] # get file informations tdf = target_info[['RawFileName', 'FrameMetaName']].dropna() if tdf.shape[0] == 0: print("[ERROR] cannot find any metadata files for", comp_id) return ccs_results rawFile2Framemeta = pd.Series(tdf.FrameMetaName.values, index=tdf.RawFileName).to_dict() print(rawFile2Framemeta) ################################################## plt.close('all') figs = {} is_filled = {} axis = {} for adduct in adducts: figs[adduct], axis[adduct] = plt.subplots(num_reps, sharex=True, sharey=True, figsize=(8,3*num_reps)) is_filled[adduct] = False figs['meta'], axis['meta'] = plt.subplots(3, sharex=True, sharey=False, figsize=(8,8)) figs['intdist'], axis['intdist'] = plt.subplots(config_params['num_fields'], num_reps, sharex=True, sharey=False, figsize=(6*num_reps, 2*config_params['num_fields'])) ################################################## # compute CCS for each replicate try: for r, rep_file in enumerate(rep_files): if files_not_enough(rep_file, config_params, FLAGS.format): ccs_prop = dict() tokens = comp_id.rsplit('_', 1) ccs_prop['Compound_id'] = compound_id ccs_prop['Ionization'] = ionization ccs_prop['replicate'] = rep_file ccs_prop['name'] = neutral_name # ccs_prop['CAS'] = list(target_info.CAS)[0] ccs_prop['comments'] = "couldn't find some files to compute CCS" ccs_results.append(ccs_prop) continue # meta_file = (fname + '{0}.txt').format(config_params['suffix_meta']) meta_file = rawFile2Framemeta[rep_file] metadata = get_metadata(meta_file, config_params['frame_offset'], ax=axis['meta'], label=rep_file.split('/')[-1]) # collecting features features = [] for step in range(config_params['num_fields']): if FLAGS.format=='cef': ffile = (rep_file + '{0}.cef').format(config_params['suffix_raw'].format(step+1)) else: ffile = (rep_file + '{0}.csv').format(config_params['suffix_raw'].format(step+1)) _features, _ = get_features(ffile, fformat=FLAGS.format) if _features.shape[0] > 0: _features['frame'] = np.ones(_features.shape[0], dtype=np.int32) * (step+1) features.append(_features) ## draw m/z vs intensity if num_reps == 1: ax = axis['intdist'][step] else: ax = axis['intdist'][step, r] plot_intensity_distribution(_features, adducts, ax, config_params['mz_tolerance']) else: print("[ERROR] This file has no features: {0}".format(ffile)) if len(features) == 0: continue features = pd.concat(features) # compute CCS for each adducts print("#"*150) print("# features") print("#"*150) print(features) print("features size:", features.shape) for adduct in adducts: adduct_mass, charge_state = adducts[adduct] start_time = time.time() if (FLAGS.maxint): ccs_features_within_mz = find_features_maxint(features, metadata, adduct_mass, abs(charge_state), config_params['mz_tolerance']) else: ccs_features_within_mz = find_features(features, metadata, adduct_mass, abs(charge_state), config_params['mz_tolerance'], threshold_num_isotopes=FLAGS.num_isotopes_threshold, threshold_intensity_rank=FLAGS.intensity_rank_threshold) if ccs_features_within_mz.shape[0] > 0: print("#"*150) print("# ccs_features_within_mz") print("#"*150) print(ccs_features_within_mz) print("ccs_features_within_mz size:", ccs_features_within_mz.shape) ccs_list = get_possible_ccs_values(ccs_features_within_mz, adduct_mass, abs(charge_state), old_drift_tube_length=config_params['old_drift_tube_length'], drift_tube_length=config_params['drift_tube_length'], neutral_mass=config_params['neutral_mass'], threshold_n_fields=FLAGS.threshold_n_fields, threshold_r2=FLAGS.r2_threshold) # filtering should be done based on ccs values of across all 3 replicates # Note: i am not sure if r2 is a good metric to do this. ccs_list = ccs_filter(ccs_list) if len(ccs_list) > 0: tokens = comp_id.rsplit('_', 1) for ccs in ccs_list: ccs_prop = ccs.to_dict() print("[{0}] {1} ({2}), CCS: {3}({4})".format(comp_id, adduct, rep_file, ccs_prop['ccs'], ccs_prop['r2'])) ccs_prop['Compound_id'] = compound_id ccs_prop['Ionization'] = ionization ccs_prop['adduct'] = adduct ccs_prop['replicate'] = rep_file ccs_prop['name'] = neutral_name ccs_results.append(ccs_prop) if num_reps == 1: _tmp_ax = axis[adduct] else: _tmp_ax = axis[adduct][r] ################################################## plot_ccs_regression_lines2( _tmp_ax, adduct, adduct_mass, ccs_features_within_mz, ccs_list, title=Path(rep_file).name, drift_tube_length=config_params['drift_tube_length']) is_filled[adduct] = True ################################################## ################################################## for adduct in adducts: if is_filled[adduct]: figs[adduct].tight_layout() figs[adduct].savefig(FLAGS.output_dir+"/"+comp_id+"_"+adduct+".pdf", dpi=300) axis['meta'][0].legend() figs['meta'].tight_layout() figs['meta'].savefig(FLAGS.output_dir+"/"+comp_id+"_meta.pdf", dpi=300) figs['intdist'].tight_layout() figs['intdist'].savefig(FLAGS.output_dir+"/"+comp_id+'_intensity_dist.pdf') ################################################## except Exception as e: traceback.print_exc() if hasattr(e, 'strerror'): print ("[ERROR]: {0} ({1})".format(e.strerror, rep_file)) else: print ("[ERROR]: ", e) # print('Total time for feature finding: {0} sec/compound(e.g., 3 reps and 6 adducts)'.format(time_for_feature_finding)) return ccs_results def compute(df, ion_mz, config_params): '''compute ccs ''' params = {} params['temp'] = df.ImsTemperature.tolist() params['pressures'] = df.ImsPressure.tolist() params['voltages'] = (df.ImsField*config_params['old_drift_tube_length']).tolist() ## 10.869 * (78.12 / 78.236) = 10.853 for correction params['arrival_time'] = df.dt.tolist() params['neutral_mass'] = config_params['neutral_mass'] params['drift_tube_length'] = config_params['drift_tube_length'] params['mz'] = ion_mz # print(params) ccs, prop = SteppedFieldCCS(params=params).compute() # print("CCS:", ccs) return prop def plot_ccs_regression_lines(axis, adduct, adduct_mass, df, prop, title, drift_tube_length=78.236): addmass = adduct_mass color = get_adducts_colors(adduct) p_v = df.ImsPressure / (df.ImsField * drift_tube_length) p_vmax = p_v.max() p_vmin = p_v.min() axis.scatter(p_v, df.dt, c=color) axis.text(0.05, 0.8, '{0} {1:.6f}'.format(adduct, addmass), verticalalignment='bottom', horizontalalignment='left', transform=axis.transAxes, color='k', fontsize=15) for r in df.itertuples(): axis.text((r.ImsPressure / (r.ImsField * drift_tube_length) + (p_vmax - p_vmin)/7), r.dt, # '{0:.3f}ppm, {1:.2f}(z_score={2:.3f})'.format(mass_error(r.mass, addmass), r.intensity, r.intensity_z), '{0:.3f}ppm, z_score={1:.2f}'.format(mass_error(r.mz, addmass), r.intensity_z), color='k', fontsize=10) axis.plot(p_v, 1000 * (prop['intercept'] + prop['slope']*p_v), 'r', label='fitted line') axis.text(0.05, 0.65, 'r-squared:{0:.5f}'.format(prop['r_value']**2), verticalalignment='bottom', horizontalalignment='left', transform=axis.transAxes, color='k', fontsize=15) axis.text(0.05, 0.5, 'CCS:{0:.4f}'.format(prop['ccs']), verticalalignment='bottom', horizontalalignment='left', transform=axis.transAxes, color='k', fontsize=15) axis.set_title(title) axis.set_xlabel('Pressure/Voltages (Torr/V)') axis.set_ylabel('Arrival time (ms)') # def plot_ccs_regression_lines2(axis, adduct, adduct_mass, df, prop, title, drift_tube_length=78.236): def plot_ccs_regression_lines2( axis, adduct, adduct_mass, df, ccs_list, title, drift_tube_length): addmass = adduct_mass color = get_adducts_colors(adduct) p_v = df.ImsPressure / (df.ImsField * drift_tube_length) p_vmax = p_v.max() p_vmin = p_v.min() pv_width = p_vmax - p_vmin for r in df.itertuples(): axis.scatter(r.ImsPressure / (r.ImsField * drift_tube_length), r.dt, c=color, s=1000*r.intensity, alpha=0.2) axis.text(0.05, 0.8, '{0} {1:.5f}'.format(adduct, addmass), verticalalignment='bottom', horizontalalignment='left', transform=axis.transAxes, color='k', fontsize=10) for ccs in ccs_list: prop = ccs.to_dict() pv = [ccs.pressures[i] / (ccs.fields[i] * drift_tube_length) for i in range(len(ccs.pressures))] dt_diff = [abs(ccs.arrival_time[i-1]-ccs.arrival_time[i]) for i in range(1,len(ccs.arrival_time))] for i, f in enumerate(ccs.fields): axis.text((pv[i] + (p_vmax - p_vmin)/7), ccs.arrival_time[i], '{0:.3f}ppm, z_score={1:.2f}'.format(ccs.mass_ppm_error[i], ccs.intensity_z[i]), color='k', fontsize=10) # axis.scatter(pv[i], ccs.arrival_time[i], s=np.log(ccs.intensity_org[i]), c=color) axis.scatter(pv[i], ccs.arrival_time[i], s=1000*ccs.intensity[i], c=color, alpha=0.8) axis.text(min(pv)-2*(p_vmax - p_vmin)/7, min(ccs.arrival_time)-0.8*min(dt_diff), 'CCS:{0:.4f}(r2:{1:.5f})'.format(prop['ccs'], prop['r2']), color='r', fontsize=10) axis.plot(p_v, 1000 * (prop['intercept'] + prop['slope']*p_v), 'r', label='fitted line') axis.set_title(title) axis.set_xlim(left=p_vmin-pv_width*0.5, right=p_vmax+pv_width) axis.set_xlabel('Pressure/Voltages (Torr/V)') axis.set_ylabel('Arrival time (ms)') def plot_intensity_distribution(features, adducts_mass, ax, ppm=50): if features.shape[0] > 0: ddata = np.log(features.intensity_org) g = sns.kdeplot(ddata, shade=True, color="b", ax=ax) ax.axvline(np.log(np.median(features.intensity_org)), linestyle=':') ax.axvline(np.log(10*np.median(features.intensity_org)), linestyle=':') ax.axvline(np.log(np.mean(features.intensity_org)+2*np.std(features.intensity_org)), linestyle='-.') for adduct in adducts_mass: sel = features[is_in_tolerance(features.mz, adducts_mass[adduct][0], ppm)] if sel.shape[0] > 0: ax.scatter(np.log(sel['intensity_org']), np.zeros(sel.shape[0]), c=get_adducts_colors(adduct)) ax.set_xlabel('log(Intensity)') ax.set_ylabel('Density') ax.set_xlim([np.min(ddata), np.max(ddata)]) def report(FLAGS, ccs_table, target_list): if ccs_table.shape[0] == 0: print("Unfortunately, we couldn't find any good CCS values.") return def get_stats_adduct(group): return {'ccs_avg_adduct': group.mean(), 'ccs_rsd_adduct': 100*group.std()/group.mean(), 'ccs_count_adduct': group.count()} def get_stats_file(group): return {'ccs_count_file': group.count()} ccs_avg = ccs_table.groupby(['Compound_id', 'adduct'])['ccs'].apply(get_stats_adduct).unstack() ccs_table = pd.merge(ccs_table, ccs_avg.reset_index(), on=['Compound_id','adduct'], how='left') ccs_count_file = ccs_table.groupby(['Compound_id', 'adduct', 'replicate'])['ccs'].apply(get_stats_file).unstack() ccs_table = pd.merge(ccs_table, ccs_count_file.reset_index(), on=['Compound_id', 'adduct','replicate'], how='left') print(ccs_table.head()) # save to a csv file after reordering the columns cols = list(ccs_table.columns) if 'ccs_avg_adduct' in cols: cols.pop(cols.index('ccs_avg_adduct')) else: ccs_table['ccs_avg_adduct'] = np.nan if 'ccs_rsd_adduct' in cols: cols.pop(cols.index('ccs_rsd_adduct')) else: ccs_table['ccs_rsd_adduct'] = np.nan cols.pop(cols.index('Compound_id')) cols.pop(cols.index('Ionization')) cols.pop(cols.index('adduct')) cols.pop(cols.index('ccs')) cols.pop(cols.index('adduct_mz')) cols.pop(cols.index('name')) newcols = ['Compound_id','name','Ionization','adduct','adduct_mz','ccs_avg_adduct','ccs_rsd_adduct','ccs']+cols df = ccs_table[newcols] # df = ccs_table df.to_csv(FLAGS.output_dir+'/'+FLAGS.output, sep='\t') def multi(FLAGS, config_params): if FLAGS.ppm: config_params['mz_tolerance'] = FLAGS.ppm os.makedirs(FLAGS.output_dir, exist_ok=True) # read a list of targets if FLAGS.target_list_file.endswith('.csv'): target_list = pd.read_csv(FLAGS.target_list_file) else: target_list = pd.read_csv(FLAGS.target_list_file, sep='\t') num_targets = target_list.shape[0] if "Ionization" not in target_list.columns: target_list = pd.concat([target_list]*2, ignore_index=True) target_list['Ionization'] = ['pos']*num_targets+['neg']*num_targets target_list['ID']= target_list.CompoundID.str.cat("_"+target_list.Ionization) target_list = target_list.fillna(method='ffill') # find RawFileName import re suffix_header = config_params['suffix_raw'].split('{',1)[0] print(suffix_header) uniqueIDs = set(target_list.UniqueID4DfileNames.drop_duplicates().tolist()) print(uniqueIDs) if ("RawFileName" not in target_list.columns) or ("FrameMetaName" not in target_list.columns): feature_files = set(glob.glob(FLAGS.feature_files)) framemeta_files = set(glob.glob(FLAGS.framemeta_files)) uniqueIDs_list = [] for _f in feature_files: for uid in uniqueIDs: if bool(re.search('[-_]?{}[-_]'.format(uid), _f)): if bool(re.search('[-_]?pos[-_]', _f.lower())): _ion = 'pos' else: _ion = 'neg' print(_f, uid, _ion) # prefix of file names filename = os.path.basename(_f).split(suffix_header)[0] framemeta_name = "" for framemeta in framemeta_files: if filename in framemeta: framemeta_name = framemeta prefix = _f.split(suffix_header)[0] uniqueIDs_list.append({'RawFileName':prefix, 'FrameMetaName':framemeta_name, 'uid':uid, 'ionizations':_ion}) # break print(uniqueIDs_list) tdf = pd.DataFrame(uniqueIDs_list).drop_duplicates() target_list = target_list.merge(tdf, left_on=['Ionization','UniqueID4DfileNames'], right_on=['ionizations','uid']) del target_list['ionizations'] del target_list['uid'] # target_list.to_csv('temp.csv') ## e.g., S00001.b if you have a same compound id but different versions. # num_comp = list(pd.DataFrame(target_list.CompoundID.str.split('\.').tolist(), columns = ['CompoundID','ver']).CompoundID.drop_duplicates()) compound_ids = target_list.ID.drop_duplicates().tolist() num_pos = (target_list.drop_duplicates(subset='ID').Ionization=='pos').sum() num_neg = (target_list.drop_duplicates(subset='ID').Ionization=='neg').sum() # compounds assert len(compound_ids) == num_pos+num_neg,\ "Please check if there are duplicates in CompoundID and its Ionization" print('Number of compounds: {0} (pos:{1}, neg:{2})'.format(len(compound_ids), num_pos, num_neg)) print(compound_ids) ccs_results = [] start_time = time.time() for cid in compound_ids: # compute ccs for this compound ccs_results += get_ccs(FLAGS, cid, target_list, config_params) print('[{0}] {1:.2f} sec'.format(cid, (time.time()-start_time))) print('Total time: {0:.2f} sec/compound(e.g., 3 reps)'.format((time.time()-start_time)/len(compound_ids))) ccs_table = pd.DataFrame(ccs_results) report(FLAGS, ccs_table, target_list) if __name__ == '__main__': FLAGS = parser.parse_args() print("options:", FLAGS) # read a set of configuration parameters config_params = get_config(FLAGS.config_file) print(config_params) multi(FLAGS, config_params)
PNNL-Comp-Mass-Spec/AutoCCS
multiCCS.py
multiCCS.py
py
29,722
python
en
code
7
github-code
6
34131786759
import time import numpy as np def isleapyear(year): if year%4==0: if year%100==0: if year%400==0: return True elif year%400!=0: return False else: return True return False if __name__ == '__main__': num_sunday = 0 year = 1900 monthsdsnonleap = {'January':31,'February':28,'March':31, 'April':30,'May':31,'June':30, 'July':31,'August':31,'September':30, 'October':31,'November':30,'December':31} monthsdsleap = {'January':31,'February':29,'March':31, 'April':30,'May':31,'June':30, 'July':31,'August':31,'September':30, 'October':31,'November':30,'December':31} stime = time.time() numdays = 365 firstofeachmonth = [1] monthsds = monthsdsnonleap months = list(monthsds.keys()) for m in months[:-1]: firstofeachmonth.append((firstofeachmonth[-1]+monthsds[m]%7)%7) firstofeachmonth = dict(zip(months,firstofeachmonth)) #print(firstofeachmonth) firstofeachmonth = [(firstofeachmonth['December']+monthsds['December']%7)%7] #print(firstofeachmonth) year = 1901 while year<=2000: #print(isleapyear(year),year) if isleapyear(year): monthsds = monthsdsleap else: monthsds = monthsdsnonleap for m in months[:-1]: firstofeachmonth.append((firstofeachmonth[-1]+monthsds[m]%7)%7) #print(monthsds[m],firstofeachmonth) firstofeachmonth = dict(zip(months,firstofeachmonth)) #print(np.count_nonzero(np.array(list(firstofeachmonth.values()))==0)) num_sunday += np.count_nonzero(np.array(list(firstofeachmonth.values()))==0) year +=1 firstofeachmonth = [(firstofeachmonth['December']+monthsds['December']%7)%7] print(num_sunday) print("Time taken :: %.3f seconds"%(time.time()-stime))
sadimanna/project_euler
p19.py
p19.py
py
1,760
python
en
code
0
github-code
6
71791936828
from unittest import result import pyvo as vo import numpy as np import pandas as pd import re from typing import Optional, Tuple def simbad_tap(): return vo.dal.TAPService("http://simbad.u-strasbg.fr/simbad/sim-tap") def clean_str(obj_id: str) -> str: return ' '.join(obj_id.split()) def fetch_catalog_id(ids: str, catalog_identifier: str, verbose: bool = False): try: return re.findall(f'(?<={catalog_identifier} )\d+', ids)[0] except IndexError: if verbose: print(f'No {catalog_identifier} id for ids={ids}...') return np.nan def resolve_name(obj_identifier: str) -> Tuple[Optional[float], Optional[float], Optional[float]]: service = simbad_tap() try: resultset = service.search(f'''select ra, dec, plx_value, pmra, pmdec, rvz_radvel from basic where main_id='{obj_identifier}' ''').to_table().to_pandas().values if len(resultset) == 1: return tuple(resultset[0, :]) else: return None, None, None, None, None, None except Exception as e: print(f'Exception while querying: {e}') return None, None, None, None, None, None def fetch_object_children(obj_identifier: str) -> pd.DataFrame: service = simbad_tap() resultset = service.search(f''' SELECT main_id as child, oid, link_bibcode, membership, ra, dec, coo_bibcode, plx_value, plx_err, plx_bibcode, pmra, pmdec, pm_err_maj_prec, pm_bibcode, rvz_radvel, rvz_err, rvz_bibcode, ids.ids from h_link JOIN ident as p on p.oidref=parent JOIN basic on oid=child JOIN ids on ids.oidref=child WHERE p.id = '{obj_identifier}' and (membership >=95 or membership is null);''') obj_ids = resultset['child'].data oids = resultset['oid'].data bibcodes = resultset['link_bibcode'].data ras = resultset['ra'].data decs = resultset['dec'].data coo_bibcodes = resultset['coo_bibcode'].data plx_values = resultset['plx_value'].data plx_errs = resultset['plx_err'].data plx_bibcodes = resultset['plx_bibcode'].data pmras = resultset['pmra'].data pmdecs = resultset['pmdec'].data pm_errs = resultset['pm_err_maj_prec'].data pm_bibcodes = resultset['pm_bibcode'].data radvels = resultset['rvz_radvel'].data rvz_errs = resultset['rvz_err'].data rvz_bibcodes = resultset['rvz_bibcode'].data ids = resultset['ids'].data data = np.array([ np.array(list(map(clean_str, obj_ids))), oids.astype(int), bibcodes, ras.astype(float), decs.astype(float), coo_bibcodes, plx_values.astype(float), plx_errs.astype(float), plx_bibcodes, pmras.astype(float), pmdecs.astype(float), pm_errs.astype(float), pm_bibcodes, radvels.astype(float), rvz_errs.astype(float), rvz_bibcodes, ids ]) cluster_children: pd.DataFrame = pd.DataFrame( columns=['obj_id', 'oid', 'link_bibcode', 'ra', 'dec', 'coo_bibcode', 'parallax', 'parallax_err', 'parallax_bibcode', 'pmra', 'pmdec', 'pm_err', 'pm_bibcode', 'radvel', 'radvel_err', 'rvz_bibcode', 'ids'], data=data.T) cluster_children = cluster_children.dropna(subset=['ra', 'dec', 'link_bibcode']) cluster_children['EDR3 id'] = np.vectorize(fetch_catalog_id)(cluster_children.ids, 'EDR3') cluster_children['DR2 id'] = np.vectorize(fetch_catalog_id)(cluster_children.ids, 'DR2') cluster_children['TIC'] = np.vectorize(fetch_catalog_id)(cluster_children.ids, 'TIC') cluster_children['EDR3 id'] = pd.to_numeric(cluster_children['EDR3 id'], errors='coerce') cluster_children['DR2 id'] = pd.to_numeric(cluster_children['DR2 id'], errors='coerce') cluster_children['TIC'] = pd.to_numeric(cluster_children['TIC'], errors='coerce') cluster_children = cluster_children.dropna(subset=['EDR3 id']) edr_unique = np.unique(cluster_children['EDR3 id'].values) reported_counts = {x: len(np.nonzero(cluster_children['EDR3 id'].values==x)[0]) for x in edr_unique} cluster_children['reported'] = cluster_children['EDR3 id'].apply(lambda x: reported_counts[x]) cluster_children['parallax_year'] = cluster_children['parallax_bibcode'].apply(lambda x: x[:4]) cluster_children['pm_year'] = cluster_children['pm_bibcode'].apply(lambda x: x[:4]) cluster_children['rvz_year'] = cluster_children['rvz_bibcode'].apply(lambda x: x[:4]) cluster_children = cluster_children.sort_values(by=['EDR3 id', 'parallax_year', 'pm_year', 'rvz_year']) cluster_children = cluster_children.drop_duplicates(subset=['EDR3 id']) return cluster_children def title_and_authors(bibcode: str) -> str: URL = f'https://ui.adsabs.harvard.edu/abs/{bibcode}/abstract' website = requests.get(URL) results = BeautifulSoup(website.content, 'html.parser') title = ' '.join(results.find('h2', class_='s-abstract-title').text.split()) authors = [author.text.strip() for author in results.find_all('li', class_='author')] return f'{",".join(authors)}:\n {title}' def count_reportings(children, edr3_id): return len(children[children['EDR3 id'].astype(int)==edr3_id])
maja-jablonska/blue-stragglers-with-gaia
simbad_download.py
simbad_download.py
py
5,295
python
en
code
0
github-code
6
42360515633
## Using python3 ## https://open.kattis.com/problems/apaxiaaans name = input() last = '' c = '' for i in range(len(name)): c = name[i] if (c != last): print(c, end = '') last = c print()
Resethel/Kattis
Problems/apaxiaaans/Python3/apaxiaaans.py
apaxiaaans.py
py
214
python
en
code
1
github-code
6
33276100451
# coding: utf-8 # In[2]: import hashlib import json from datetime import datetime class Block: def calculateHash(self): return hashlib.sha256((self.timestamp+str(self.transaction)+self.previoushash+str(self.nonce)) .encode('utf-8')).hexdigest() # return hashlib.sha256(("abc").encode('utf-8')).hexdigest() def __init__(self, timestamp, transaction, previoushash=''): print("Constructing a new block") self.timestamp = timestamp self.transaction = transaction self.previoushash = previoushash self.nonce = 0 self.hash = self.calculateHash() #Proof of Work logic def mineBlock(self, newBlock, difficulty): #print(f"SubString {newBlock.hash[0:difficulty]}") while(str(newBlock.hash)[0:difficulty] != "0"*difficulty): newBlock.nonce += 1 #print(f"New Hash {newBlock.calculateHash()}") newBlock.hash = newBlock.calculateHash() return newBlock def __str__(self): return "Timestamp: "+self.timestamp+" transaction: "+self.transaction+" Hash: "+self.hash class BlockChain: def createGenesisBlock(self): initialTransactions=[Transaction("demo","XYZ", 0)] return Block("09-08-2018", initialTransactions) def __init__(self): self.chain = [self.createGenesisBlock()] self.difficulty = 2 self.pendingTransaction=[] self.reward=100 def minePendingTransactions(self,miningRewardAddress): newBlock=Block(str(datetime.now()),self.pendingTransaction) newBlock=newBlock.mineBlock(newBlock,self.difficulty) newBlock.previoushash=self.getLatestBlock().hash print("Block successfully mined!!") self.chain.append(newBlock) self.pendingTransaction=[ Transaction("System",miningRewardAddress,self.reward) ] def getLatestBlock(self): return self.chain[len(self.chain)-1] def createTransaction(self,transaction): self.pendingTransaction.append(transaction) def checkBalanceOfAddress(self,address): balance=0 for block in self.chain: for tran in block.transaction: if(tran.fromAddress==address): balance-=tran.amount elif(tran.toAddress==address): balance+=tran.amount return balance def validateBlockChain(self): i = 1 while(i < len(self.chain)): currblock = self.chain[i] prevBlock = self.chain[i-1] if(not currblock.hash == currblock.calculateHash()): return False if(not currblock.previoushash == prevBlock.hash): return False i += 1 return True class Transaction: def __init__(self,fromAddress,toAddress,amount): self.fromAddress=fromAddress self.toAddress=toAddress self.amount=amount def __str__(self): #return "From: "+self.fromAddress+" To: "+self.toAddress+" Amount: "+self.amount return self.__dict__ def obj_to_dict(obj): return obj.__dict__ blockChain = BlockChain() blockChain.createTransaction(Transaction("ckp","abc",10)) blockChain.createTransaction(Transaction("abc","ckp",100)) print(json.dumps(blockChain.chain, default=obj_to_dict)) print("Starting miner!!") blockChain.minePendingTransactions("ThePrime") print(json.dumps(blockChain.chain, default=obj_to_dict)) print(f"Balance of abc {blockChain.checkBalanceOfAddress('abc')}") print(f"Balance of ckp {blockChain.checkBalanceOfAddress('ckp')}") print(f"Balance of ThePrime {blockChain.checkBalanceOfAddress('ThePrime')}") print("Starting miner!!") blockChain.minePendingTransactions("ThePrime") print(f"Balance of ThePrime {blockChain.checkBalanceOfAddress('ThePrime')}")
cpandya231/Blockchain_Poc
Blockchain_poc_with miner and transactions.py
Blockchain_poc_with miner and transactions.py
py
3,935
python
en
code
0
github-code
6
37233125461
from naive_bayes import naive_bayes_run from naive_bayes import calc_prob from create_voc_functions import create_vocabulary from vector_functions import create_vectors from results import plot_results import pickle #for train path1 = pickle.load( open( "examples_edit\\training_path.p", "rb" ) ) typ1 = pickle.load( open( "examples_edit\\training_types.p", "rb" ) ) #for dev path2 = pickle.load( open( "examples_edit\\dev_path.p", "rb" ) ) typ2 = pickle.load( open( "examples_edit\\dev_types.p", "rb" ) ) #for test path3 = pickle.load( open( "examples_edit\\test_path.p", "rb" ) ) typ3 = pickle.load( open( "examples_edit\\test_types.p", "rb" ) ) max_acc = 0 max_m = 0 ms = [500,1000,1500] #vres max sundiasmo uperparametrwn for m in ms: Xs,voc_index,sum_mes,sum_ham_mes = create_vocabulary(m,True,10) path_train, vec_emails_train, typ_train = create_vectors(path1,typ1,voc_index) path_dev, vec_emails_dev, typ_dev = create_vectors(path2,typ2,voc_index) probs = calc_prob(Xs,sum_mes,sum_ham_mes)#dhmiourgia pithanothtwn prob_ham = sum_ham_mes/sum_mes res1 = naive_bayes_run(vec_emails_dev,typ_dev,probs,prob_ham,voc_index) acc = (res1[0][0]+res1[1][1])/(res1[0][0]+res1[0][1]+res1[1][0]+res1[1][1]) if acc>max_acc: max_acc = acc max_m = m print("Max uperparametros m: ",max_m) #apotelesmata sta test dedomena x=[] resTests = [] resTrains = [] print("Predict...") for i in range(10): Xs, voc_index,sum_mes,sum_ham_mes = create_vocabulary(max_m,True,i+1)#dhmiourgia vocabulary me vash to kalutero m #create vectors path_train, vec_emails_train, typ_train = create_vectors(path1,typ1,voc_index) path_testm, vec_emails_test, typ_test = create_vectors(path3,typ3,voc_index) x.append(sum_mes) probs = calc_prob(Xs,sum_mes,sum_ham_mes)#dhmiourgia pithanothtwn prob_ham = sum_ham_mes/sum_mes resTest = naive_bayes_run(vec_emails_test,typ_test,probs,prob_ham,voc_index) resTrain = naive_bayes_run(vec_emails_train[0:sum_mes],typ_train[0:sum_mes],probs,prob_ham,voc_index) resTests.append(resTest) resTrains.append(resTrain) plot_results("test","naive",x,resTests,resTrains)
ntinouldinho/Artificial-Intelligence-SpamHam-Classifier
naive_bayes_main.py
naive_bayes_main.py
py
2,271
python
en
code
1
github-code
6
35227184392
import glob import os import shutil from tqdm import tqdm from sklearn.model_selection import train_test_split import multiprocessing as mp from functools import partial def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def loop(images, source_dir, target_dir): for image in tqdm(images): #source = f"{source_dir}{image}" #target = f"{target_dir}{image}" shutil.copy(os.path.join(source_dir, "input", image), os.path.join(target_dir, "lr", image)) shutil.copy(os.path.join(source_dir, "target", image), os.path.join(target_dir, "hr", image)) if __name__ == "__main__": train_names = glob.glob("train_data/input/*.png") train_names = [f.replace("train_data/input/", "") for f in train_names] tr, val = train_test_split(train_names, test_size=0.1, random_state=42) print(train_names) assert len(tr) + len(val) == len(train_names) assert all([text not in tr for text in val]) #os.makedirs("val_data_srgan", exist_ok=True) #os.makedirs("val_data_srgan/lr", exist_ok=True) #os.makedirs("val_data_srgan/hr", exist_ok=True) os.makedirs("dataset_srgan3", exist_ok=True) os.makedirs("dataset_srgan3/train", exist_ok=True) os.makedirs("dataset_srgan3/train/lr", exist_ok=True) os.makedirs("dataset_srgan3/train/hr", exist_ok=True) os.makedirs("dataset_srgan3/test", exist_ok=True) os.makedirs("dataset_srgan3/test/lr", exist_ok=True) os.makedirs("dataset_srgan3/test/hr", exist_ok=True) cpus = mp.cpu_count() val_chunks = list(chunks(val, len(val) // cpus)) train_chunks = list(chunks(tr, len(tr) // cpus)) pool = mp.Pool(cpus) pool.map(partial(loop, source_dir="train_data", target_dir="dataset_srgan3/train"), train_chunks) pool.map(partial(loop, source_dir="train_data", target_dir="dataset_srgan3/test"), val_chunks) #for name in tqdm(val, desc="Saving val data..."): # shutil.move(, f"val_data_srgan/lr/{name}") # shutil.move(f"dataset_srgan/hr/{name}", f"val_data_srgan/hr/{name}")
avacaondata/SpainAI_Hackaton_ComputerVision
split_data_multiprocessing.py
split_data_multiprocessing.py
py
2,114
python
en
code
1
github-code
6
41460148421
#Python script to retrieve Top 10 performing Cryptocurrencies, ranked by Market capitalization #Import relevant modules to query API import requests, json #Define variables used to query API url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest' headers = { 'Accept': 'application/json', 'Accept-Encoding': 'deflate, gzip', 'X-CMC_PRO_API_KEY': '4831410c-b174-4908-819a-bb923176a2d7', } qs = {'start':'1','limit':'10','convert':'USD'} #Definte preogram variables counter = 0 topNum = range(0,10) table_title = " TOP 10 PERFORMING CRYPTOCURRENCIES -Ranked: Market capitalization-" table_header = ['#', 'Name', 'Market Cap ($)', 'Price ($)', 'Volume-24h ($)', 'Change-24h (%)', 'Circulating Supply'] data_keys = ['cmc_rank', 'name', 'quote', 'circulating_supply'] quote_keys = ['market_cap', 'price', 'volume_24h','percent_change_24h'] #Request data from CoinMarketCap API using GET function cmc_data = requests.get(url, headers=headers, params=qs) if cmc_data.status_code == 200: #Check if status is ok response = cmc_data.json() #use built-in json decoder to get json response content data = response['data'] if all(k in data[0] for k in data_keys): #Check if all 2nd level keys exist if all(k in data[0]['quote']['USD'] for k in quote_keys): #Check if all 3rd level keys exist print('All requested keys exist\n\n') print("{:^150}".format(table_title)) print('='*150) for i in table_header: print("{:<20s}".format(i),end='') print('\n') print('='*150) #Print # cryptocurrencies defined in topNum for x in topNum: for y in data_keys: if y == 'quote': for z in quote_keys: print("{:<20.2f}".format(data[x][y]['USD'][z]), end='') elif y == 'circulating_supply': symbol = data[x]['symbol'] print("{:>.2f}".format(data[x][y]), symbol, end='') else: print("{:<20}".format(data[x][y]), end='') print('\n') else: print('ERROR - check "qoute" keys') else: print('ERROR - check "data" keys') else : print('ERROR: Check status code: ',cmc_data.status_code)
lilokotze/CMC_assignment
CMC_assignment.py
CMC_assignment.py
py
2,542
python
en
code
0
github-code
6
27566260651
from django.shortcuts import render, HttpResponseRedirect from .forms import MeetingCreateForm from .models import Meeting from django.contrib.auth.decorators import login_required from django.urls import reverse from django.contrib import messages from datetime import datetime, timezone as tz from django.utils import timezone def home(request): form = MeetingCreateForm() if request.method == 'POST': form = MeetingCreateForm(request.POST) if form.is_valid(): fm = form.save(commit=False) # since in our form, we do not want to be selecting users, # we have to set the creator as the current user. fm.creator = request.user fm.save() return HttpResponseRedirect(reverse('meeting_list')) return render(request, 'onlinemeet/home.html', {'form': form}) @login_required() # to ensure only logged in user can view this page. def meeting_list(request): """We are going to filter the meeting, so only the registered user can view the page, and then all meeting created by such individual will be displayed""" user = request.user # meeting_url = request.build_absolute_uri() meetings = Meeting.objects.filter(creator=user) return render(request, 'onlinemeet/meeting_list.html', {'meetings': meetings}) def meeting(request, unique_meeting_name): message = None meeting = Meeting.objects.get(unique_meeting_name=unique_meeting_name) if not meeting.meeting_time: """ will check if it is not time for the meeting using the property we declared in the model. """ now = timezone.localtime() t = abs(now - meeting.starting_date_time).total_seconds() MinutesGet, SecondsGet = divmod(t, 60) HoursGet, MinutesGet = divmod(MinutesGet, 60) message = f"it is not the time for meeting {meeting.title_of_meeting}, Meeting starts in {HoursGet} Hours : {MinutesGet} Minutes : {'{:.2f}'.format(SecondsGet)} Seconds." # return render(request, 'onlinemeet/meeting_list.html', {'meetings': meetings}) print(now, message) messages.warning(request, message) # return render(request, 'onlinemeet/meeting_list.html', {'meetings': meetings}) return HttpResponseRedirect(reverse('home')) elif meeting.after_meeting: """ will check if the meeting time has passed""" now = timezone.localtime() t = abs(meeting.ending_date_time - now).total_seconds() MinutesGet, SecondsGet = divmod(t, 60) HoursGet, MinutesGet = divmod(MinutesGet, 60) message = f"The meeting {meeting.title_of_meeting}, ended {HoursGet} Hours : {MinutesGet} Minutes : {'{:.2f}'.format(SecondsGet)} Seconds." print(now, message) messages.warning(request, message) return HttpResponseRedirect(reverse('home')) if not request.user == meeting.creator: """check to know if the current user is the creator of the meeting if True, then the person will be redirected to a page that has moderator privileges, else, redirect the guest to the guest page.""" return render(request, 'onlinemeet/guest.html', {'meeting': meeting, "message": message}) return render(request, 'onlinemeet/meeting_page.html', {'meeting': meeting})
Afeez1131/Django-online-meeting
onlinemeet/views.py
views.py
py
3,327
python
en
code
2
github-code
6
30595009770
from random import randint count = 1; print('''Sou seu computador... Acabei de pensar em um Nº entre 0 e 10. Será que você consegue adivinhar qual foi?''') n = randint(0, 10) #print(n) tenta = int(input('Qual o seu palpite? ')) while tenta != n: count += 1 if tenta < n: print('Mais... Tente mais uma vez.') tenta = int(input('Qual é seu palpite? ')) elif tenta > n: print('Menos... Tente mais uma vez.') tenta = int(input('Qual é seu palpite? ')) print('Acertou com {} tentativas. Parabéns!'.format(count))
ErickFernan/Estudos-de-Pyhton
Estudo Python/Estruturas de Repetição/Estrutura repetição WHILE/ex058.py
ex058.py
py
559
python
pt
code
0
github-code
6
42831472759
from django.urls import path from . import views urlpatterns = [ path('',views.home,name='home'), path('<slug:c_slug>/',views.home,name='c_slug'), path('search',views.search_box,name='search'), path('<slug:c_slug>/<slug:p_slug>/',views.details,name='details') ]
muhammediyas786/Shopping-cart
ShopApp/urls.py
urls.py
py
279
python
en
code
0
github-code
6
6542821272
from student import Student from db import StudentRepository import csv class Gradebook: def __init__(self) -> None: self.__db = StudentRepository() self.__students: list[Student] = self.__db.getStudents() @property def students(self) -> list[Student]: return self.__students def addStudent(self, studentID: int, firstName: str, lastName:str): for student in self.__students: if student.studentID == studentID: raise KeyError("Duplicate Student ID") policies = self.readPolicies() numAssignments = policies[0] + policies[2] + policies[4] student = Student(studentID, firstName, lastName, [0] * numAssignments) print(student) self.__students.append(student) self.saveStudents() def saveStudents(self): self.__db.saveStudents(self.__students) def recordScores(self, type: str): policies = self.readPolicies() def findStudent(assignmentNumber: int): for student in self.__students: print("Student ID: " + str(student.studentID) + ", Student Name: " + student.firstName + " " + student.lastName) score = float(input("Input Score: ")) student.addscore(score, assignmentNumber) self.saveStudents() if type == 'P': number = int(input("Assignment number:")) if number > policies[0]: raise ValueError("Invalid Assignment Number") findStudent(number - 1) elif type == 'T': number = int(input("Test number: ")) if number > policies[2]: raise ValueError("Invalid Test Number") findStudent(number + policies[0] - 1) elif type == 'F': findStudent(policies[0] + policies[2] + policies[4] - 1) def changeScores(self): policies = self.readPolicies() studentID = int(input("Student ID: ")) newScore = float(input("New Score: ")) type = input("Type of Scores (P/T/F): ") for student in self.__students: if student.studentID == studentID: if type == 'P': number = int(input("Assignment number to change: ")) student.addscore(newScore, number - 1) elif type == 'T': number = int(input("Test number to change: ")) student.addscore(newScore, policies[0] + number - 1) elif type == 'F': student.addscore(newScore, policies[0] + policies[2] + policies[4] - 1) else: raise ValueError("Invalid input.") self.saveStudents() return raise KeyError("Student not found!") def finalScores(self): policies = self.readPolicies() numOfAssignment = policies[0] numOfTest = policies[2] numOfExam = policies[4] for student in self.__students: assignmentScore = 0 testScore = 0 examScore = 0 for x in range(numOfAssignment): assignmentScore = assignmentScore + float(student.scores[x]) assignmentScore = assignmentScore * (policies[1] / 100) / numOfAssignment for x in range(numOfTest): testScore += float(student.scores[x + numOfAssignment]) testScore = testScore * (policies[3] / 100) / numOfTest for x in range(numOfExam): examScore = float(student.scores[x + numOfAssignment + numOfTest]) * (policies[5] / 100) finalScore = assignmentScore + testScore + examScore student.finalScore = finalScore self.saveStudents() def readPolicies(self) -> list[int]: policies = [] with open('policies.csv', 'r', newline = "") as file: policiesInfo = file.readlines()[1] policiesArray = policiesInfo.split(",") for policy in policiesArray: policies.append(int(policy)) return policies def savePolicies(self, info: list[str]): header = ['Programming Assignment', 'Weight', 'Tests', 'Weight', 'Final Exam', 'Weight'] with open('policies.csv', 'w', newline = "") as file: writer = csv.writer(file) writer.writerow(header) writer.writerow(info) def newSemester(self): info: list[str] = [] programAssign = int(input("Please enter number of programming assignments (0-6): ")) pWeight = int(input("Total % weights for programming assignments: ")) print("Each programming assignment weight is (%): ", float(pWeight / programAssign)) tests = int(input("Please enter number of tests (0-4): ")) tWeight = int(input("Total % weights for tests: ")) print("Each test weight is (%): ", float(tWeight / tests)) finalExams = int(input("Please enter number of final exams (0-1): ")) info.append(programAssign) info.append(pWeight) info.append(tests) info.append(tWeight) info.append(finalExams) if finalExams == 0: if pWeight + tWeight != 100: raise ValueError("Relative Weights must add up to 100%") if finalExams == 1: fWeight = int(input("Total % weights for final exam: ")) if pWeight + tWeight + fWeight != 100: raise ValueError("Relative Weights must add up to 100%") info.append(fWeight) self.savePolicies(info) def outputData(self, method:str): policies = self.readPolicies() def lastName(student:Student) -> str: return student.lastName def id(student:Student) -> int: return student.studentID if method == 'Name': studentsInfo = sorted(self.__students, key=lastName) elif method == 'ID': studentsInfo = sorted(self.__students, key=id) # print(studentsInfo[0]) header0 = ['PA = Programming Assignment'] header1 = ['Student ID', 'First Name', 'Last Name'] for x in range(policies[0]): header1.append('PA' + str(x + 1)) for x in range(policies[2]): header1.append('Test' + str(x + 1)) for x in range(policies[4]): header1.append('Final Exam') header1.append('Final Score') with open('Grades_out.csv', 'w', newline = "") as file: writer = csv.writer(file) writer.writerow(header0) writer.writerow(header1) for student in studentsInfo: writer.writerow(student.getStudentInfo()) def main(): gb_b = Gradebook() # policies = gb_b.readPolicies('FA22') # print(policies) policies = gb_b.readPolicies() print(policies) gb_b.outputData('Name') if __name__ == "__main__": main()
kathyshe/gradebook-practice
gradebook.py
gradebook.py
py
6,949
python
en
code
0
github-code
6
3668865617
from typing import List class Solution: def solve(self, board: List[List[str]]) -> None: """ Do not return anything, modify board in-place instead. """ def dfs(i,j,m,n): if not (0 <= i < m and 0 <= j < n) or board[i][j] != 'O': return board[i][j] = 'Y' dfs(i-1,j,m,n) dfs(i+1,j,m,n) dfs(i,j-1,m,n) dfs(i,j+1,m,n) def map_board(x): if x == 'Y': return 'O' else: return 'X' m,n = len(board), len(board[0]) # horizonal boarders for col in range(n): if board[0][col] == 'O': dfs(0,col,m,n) if board[m-1][col] == 'O': dfs(m-1,col,m,n) # vertical boarders for row in range(m): if board[row][0] == 'O': dfs(row,0,m,n) if board[row][n-1] == 'O': dfs(row,n-1,m,n) for row in range(m): board[row] = list(map(lambda x: map_board(x), board[row]))
yingzixu15/leetcode
src/SurroundedRegions.py
SurroundedRegions.py
py
1,142
python
en
code
0
github-code
6
10353230480
import struct class ByteStream(object): """A seekable byte stream Expects a data object that provides integer values, such as a py3 byearray or array('B') """ def __init__(self, data): self.index = 0 self.data = data def read(self, n_bytes=None): """Read the requested number of bytes from this packet chain""" index = self.index if n_bytes is None: return self.data[index:] result = self.data[index:index + n_bytes] result[n_bytes-1] self.index += n_bytes return result def read_int8(self): """Read a 8-bit/one-byte integer from packet""" result = self.data[self.index] self.index += 1 return result def read_int16(self): """Read a 16-bit/two-byte integer from packet""" index = self.index self.data[index+1] # index error check self.index += 2 return struct.unpack('<H', self.data[index:index+2])[0] def read_int24(self): """Read a 24-bit/3-byte integer from packet""" index = self.index result = self.data[index:index+3] result[2] # length check result.append(0) self.index += 3 return struct.unpack('<I', result)[0] def read_int32(self): """Read a 32-bit/3 byte integer from packet""" index = self.index result = self.data[index:index+4] result[3] # length check self.index += 4 return struct.unpack('<I', result)[0] def read_int64(self): """Read a 64-bit/8 byte integer from packet""" index = self.index result = self.data[index:index+8] result[7] # length check self.index += 8 return struct.unpack('<Q', result)[0] def skip(self, n_bytes): """Skip the requested number of bytes in packet""" self.index += n_bytes def read_lcb(self): """Read length code binary from this packet""" data = self.data index = self.index first = data[index] if first == 251: # NULL self.index += 1 return None if first < 251: self.index += 1 return first size = first - 250 if size < 4: i_bytes = data[index+1:index+size+1] i_bytes[size-1] # length check # pad buffer to 4 bytes for struct.unpack i_bytes.extend([0]*(4 - size)) # consume first byte + size bytes (either 2 or 3) self.index += size + 1 return struct.unpack('<I', i_bytes)[0] else: # size > 250, but not null and not a 2 or 3 byte int # must be 64-bit integer i_bytes = data[index+1:index+8+1] i_bytes[7] # length check self.index += 8 + 1 return struct.unpack('<Q', i_bytes) def read_lcs(self): """Read a length coded binary from packet""" data = self.data first = data[self.index] self.index += 1 if first < 251: size = first elif first == 0xfb: # NULL return None elif first == 252: size = self.read_int16() elif first == 253: size = self.read_int24() elif first == 254: size = self.read_int64() if size: return self.read(size).tostring() # we try to be atomic here, largely for the compressed protocol # XXX: pretty this up def read_n_lcs(self, n_fields): data = self.data index = self.index results = [] append = results.append while n_fields: first = data[index] if first == 251: # NULL index += 1 n_fields -= 1 append(None) continue if first < 251: index += 1 size = first else: size = first - 250 if size < 4: i_bytes = data[index+1:index+size+1] i_bytes[size-1] # length check # pad buffer to 4 bytes for struct.unpack i_bytes.extend([0]*(4 - size)) # consume first byte + size bytes (either 2 or 3) index += size + 1 size = struct.unpack('<I', i_bytes)[0] else: # size > 250, but not null and not a 2 or 3 byte int # must be 64-bit integer i_bytes = data[index+1:index+8+1] i_bytes[7] # length check index += 8 + 1 size = struct.unpack('<Q', i_bytes) data[index+size - 1] index += size append(data[index-size:index].tostring()) n_fields -= 1 self.index = index return results def read_nullstr(self): """Read a null terminated string from this packet""" data = self.data index = self.index self.index = data.index(0x00) + 1 return self.data[index:self.index - 1].tostring()
abg/mysql4py
mysql4py/util.py
util.py
py
5,174
python
en
code
1
github-code
6
32988415640
import numpy as np from utils.DataProcess import RandomHSV, RandomBlur, RandomResize, RandomFlip, RandomRotate, ResizeOrCropToInputSize, BoxToTensor import os import random import tensorflow as tf class ImageData(): def __init__(self, input_shape, class_ls, anchor_ls, anchor_mask, reduce_ratio, hsv_delta, q_delta, resize_scale_range, flip_mode, angle_range, resize_method = "lanczos3", random = True, test_acc_mode = False): self.random = random self.test_acc_mode = test_acc_mode self.random_hsv = RandomHSV(hsv_delta) self.random_blur = RandomBlur(q_delta) self.random_resize = RandomResize(resize_scale_range, resize_method) self.random_flip = RandomFlip(flip_mode) self.random_rotate = RandomRotate(angle_range) self.img_box_to_inputsize = ResizeOrCropToInputSize(input_shape, resize_method, random) self.box_to_tensor = BoxToTensor(input_shape, class_ls, anchor_ls, anchor_mask, reduce_ratio) def TF_DataPreprocess(self, img, boxes): if self.random: img = self.random_hsv(img) img = self.random_blur(img) img, boxes = self.random_resize(img, boxes) img, boxes = self.random_flip(img, boxes) img, boxes = self.random_rotate(img, boxes) img, boxes = self.img_box_to_inputsize(img, boxes) img = tf.dtypes.cast(img, tf.float32) # img = tf.clip_by_value(img, 0., 255.) if self.test_acc_mode: return img / 255., boxes else: y_true_0, y_true_1, y_true_2 = self.box_to_tensor(boxes) return img / 255., (y_true_0, y_true_1, y_true_2) #boxes[:1,...] def TF_Parser(self, record): ''' TFRecordDataset 的解析器 ''' img_features = tf.io.parse_single_example( record, features = { 'height' : tf.io.FixedLenFeature([], tf.int64), 'width' : tf.io.FixedLenFeature([], tf.int64), 'depth' : tf.io.FixedLenFeature([], tf.int64), 'image_raw' : tf.io.FixedLenFeature([], tf.string), 'boxes_height': tf.io.FixedLenFeature([], tf.int64), 'boxes_weight': tf.io.FixedLenFeature([], tf.int64), 'boxes' : tf.io.VarLenFeature(tf.float32) } ) is_jpg = tf.io.is_jpeg(img_features['image_raw']) image = tf.cond( is_jpg, lambda: tf.io.decode_jpeg(img_features['image_raw']), lambda: tf.io.decode_png(img_features['image_raw']) ) boxes = tf.sparse.to_dense(img_features['boxes']) boxes = tf.reshape(boxes, [img_features['boxes_height'], img_features['boxes_weight']]) return image, boxes def CreateDataset(self, tfrecord_file, batch_size, epochs = 1, shuffle_size = None, train = True, num_parallel_reads = None, num_parallel_calls = None): # 讀取 TFRecord self.dataset = tf.data.TFRecordDataset(tfrecord_file, num_parallel_reads) # 解析 TFRecord self.dataset = self.dataset.map(self.TF_Parser) #.cache() # 資料前處理流程 self.dataset = self.dataset.map(self.TF_DataPreprocess, num_parallel_calls = num_parallel_calls) # 定義 epochs shuffle_size batch_size if train: self.dataset = self.dataset.shuffle(buffer_size=shuffle_size) self.dataset = self.dataset.batch(batch_size) #self.dataset = self.dataset.prefetch(buffer_size = batch_size * 1) if epochs > 1: self.dataset = self.dataset.repeat(epochs)
bardenthenry/YoloV3_TF2_Keras
utils/ReadDataFromTFRecord.py
ReadDataFromTFRecord.py
py
3,841
python
en
code
1
github-code
6
25278816523
from django.urls import path,re_path from . import views urlpatterns = [ path('',views.dummy), re_path('new_reg/',views.register,name='register'), re_path('login/',views.login,name='login'), path('index',views.index,name='index'), path('about',views.about, name='about'), path('contact',views.contact, name='contact'), path('connect',views.connect, name='connect') ]
mukhilvinod/E-cart
django_tutorial/products/urls.py
urls.py
py
408
python
en
code
0
github-code
6
9773008235
import os import threading import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt import pandas as pd results = {} sigmas = {} def gaussian(x, mu, sigma, A): return A * np.exp(-(x-mu)**2 / (2*sigma**2)) def find_peak(file_path, noise_range, plot=False): try: distribution = np.loadtxt(file_path) x_axis = np.linspace(4383.3411648850003, 7733.3411648850003, 136) x = np.arange(len(distribution)) noise_mask = (distribution >= noise_range[0]) & (distribution <= noise_range[1]) distribution[noise_mask] = 0 peak = np.argmax(distribution) mu, sigma = peak, len(distribution) // 10 A = np.max(distribution) params, _ = curve_fit(gaussian, x, distribution, p0=[mu, sigma, A]) area = np.sum(gaussian(x, *params)) if plot: plt.plot(x_axis, distribution, 'bo', label='Original Distribution') plt.plot(x_axis, gaussian(x, *params), 'r', label='Fitted Gaussian') plt.xlabel('Velocity (Km/s)') plt.ylabel('Flux (K)') plt.legend() plt.show() # print("mu: ", params[0]) # print("sigma: ", params[1]) # print("A: ", params[2], 'K') # print("Integrated Flux: ", area, 'K Km/s') results[file_path] = area sigmas[file_path] = params[1] return params[0] except: pass folder_path = 'C:/Users/mathe/OneDrive/Documents/PROJECTUGC2885-2022/CO files-20221207T192945Z-001/CO files/spectra10' files = [f for f in os.listdir(folder_path) if f.endswith('.txt')] valid_files = [] for file in files: file_path = os.path.join(folder_path, file) try: data = np.loadtxt(file_path) if not np.isnan(data).any(): valid_files.append(file) except: pass data = np.array(valid_files) # print(data) specs = [] threads = [] for d in data: x = threading.Thread(target=find_peak, args=(d, (-0.03, 0.01), False,)) threads.append(x) for thread in threads: thread.start() thread.join() print('End processing') # for r in results: # print(f"{r}: {results[r]}") df = pd.DataFrame({'files': results.keys(), 'values': results.values(), 'sigmas': sigmas.values()}) df.to_csv('testfluxes.csv') print(df)
mattcarv/RadioCUBE
SingleGaussianFitting.py
SingleGaussianFitting.py
py
2,424
python
en
code
0
github-code
6
16016777996
from scarf import app from core import SiteImage, NoImage from main import page_not_found, PageData import core from StringIO import StringIO from PIL import Image from flask import send_file import logging import base64 import cStringIO logger = logging.getLogger(__name__) """ image resizing is implemented via nginx on hosted instances, this stuff is just for dev """ def serve_pil_image(pil_img): img_io = StringIO() pil_img.save(img_io, 'PNG', quality=70) img_io.seek(0) return send_file(img_io, mimetype='image/png') def resize(image_string, maxwidth, maxheight): img = Image.open(image_string) hsize = img.size[0] vsize = img.size[1] factor = 1 if hsize > maxwidth or vsize > maxheight: hfactor = 1 if hsize > maxwidth: if vsize < hsize: hfactor = maxheight / vsize else: hfactor = maxwidth / hsize vfactor = 1 if vsize > maxheight: if vsize > hsize: vfactor = maxheight / vsize else: vfactor = maxwidth / hsize if vfactor < hfactor: factor = vfactor else: factor = hfactor return img.resize((int(hsize * factor), int(vsize * factor)), Image.ANTIALIAS) @app.route('/resize/<size>/<img_id>') def resize_image(size, img_id): try: logger.info('resize fallback URL called for imgid {} - {}'.format(img_id, size)) simg = SiteImage.create(img_id) image_string = cStringIO.StringIO(base64.b64decode(simg.image)) (x, y) = size.split('x') img = resize(image_string, float(x), float(y)) return serve_pil_image(img) except (IOError, NoImage, ValueError): return page_not_found(404)
oamike/scarfage
scarf/resize.py
resize.py
py
1,777
python
en
code
0
github-code
6
4970666838
import csv import matplotlib.pyplot as plt from datetime import datetime file_2 = 'data/sitka_weather_2018_simple.csv' with open(file_2) as f: reader = csv.reader(f) header_row = next(reader) dates, highs, lows = [], [], [] for x in reader: high = round(((int(x[5]) - 32) * (5/9)),0) date = datetime.strptime(x[2], '%Y-%m-%d') low = round(((int(x[6]) - 32) * (5/9)),0) highs.append(high) lows.append(low) dates.append(date) plt.style.use('seaborn') # fig, ax = plt.subplots(figsize=(10, 6), dpi=128) fig, ax = plt.subplots(figsize=(5,3)) ax.plot(dates, highs, c='crimson', alpha=0.6) ax.plot(dates, lows, c='turquoise', alpha=0.6) ax.fill_between(dates, highs, lows, facecolor='royalblue', alpha=0.2) ax.set_title('Daily high and low temperatures of 2018', fontsize = 12) ax.set_xlabel('Date', fontsize = 10) fig.autofmt_xdate() ax.set_ylabel('Temperature (°C)', fontsize = 10) ax.tick_params(axis='both', which='major', labelsize=8) plt.show() fig.savefig('../../outputs/downloading data/sitka_temp.png', bbox_inches = 'tight')
RaulMaya/Data-Visualization
python_programs/downloading data/sitka_temperatures.py
sitka_temperatures.py
py
1,108
python
en
code
0
github-code
6
14911244486
import unittest import time import ddt import json from Public.cogfig import EXECL_PATH from Interface.test_mock import test_mock_mi test_send = test_mock_mi() import math from Public.read_excel import read_excel from unittest import mock wenjian = EXECL_PATH + '\\jekn.xlsx' #查询到对应的case文件 index_excel = read_excel(wenjian, '指数价') #上一次指数价 last_prices=9409.9 @ddt.ddt() class TestClient(unittest.TestCase): def test_fail_request(self,test): # #调用方法实例化,f获得test_send的实例 # f=test_send.test_send_requestr() # #把返回值作为mock,mock # f=mock.Mock(return_value='404') # #调用属性实例化 # print(type(f)) # self.assertEqual(f(), '404') #指数价 #统计 sum = 0 #金额不为0的用户,保存进入prices prices = [] for i in range(len(test)): if float(test[i]) > 0: sum += float(test[i]) prices.append(test[i]) num = len(prices) #记录prices的总长度等于0直接返回0 if num == 0: return 0 ##记录prices的总长度等于1 elif num == 1: global last_prices # 计算当前价格-上一次的价格/上一次的价格是否大于0.25 if math.fabs(float(prices[0]) - float(last_prices)) / float(last_prices) > 0.25: # 直接返回上一次的价格,因为跑出来的指数价格跟上一次的指数价格差距太大 return last_prices else: # 返回当前的指数价格 prices[0] ##记录prices的总长度等于2 elif num == 2: #计算prices的第一个数值减去第二个数组 dp = float(prices[0]) - float(prices[1]) #计算出来的第一个数值减去第二个数组的总值是否小于0 if dp <= 0: #dp小于0是正常的 #1、把总值转成整数 #2、判断总值/价格1>0.25 if -dp / float(prices[0]) > 0.25: #如果值大于0.25就是异常 #价格1-上一次价格<=价格2-上一次价格 if math.fabs(float(prices[0]) - last_prices) <= math.fabs(float(prices[1]) - last_prices): print(prices[0]) #直接返回价格1 return prices[0] else: #返回价格2 return prices[1] else: #总的价格/平均价 index = sum / float(num) print("指数价", index) last_prices= index return index else: # if dp / float(prices[1]) > 0.25: if math.fabs(prices[0] - last_prices) <= math.fabs(prices[1] - last_prices): return prices[0] else: return prices[1] else: return sum / float(num) #数组里面有三个价格 avg = sum / float(num) #记录异常的价格 nums = 0 for i in range(len(prices)): dv = math.fabs((float(prices[i]) - avg) / avg) print(dv) if dv > 0.03: nums += 1 prices[i] = 0 if nums == 0: print(nums) return avg return self.test_fail_request(prices) # #正常的数值 # def test_1_average_value(self): # s=1 # while True: # if s <= 1: # test = test_send.test_send_requestr() # # if r_binance # print(test) # # price = self.test_fail_request(test) # print('指数值', price) # if price > 0: # last_prices = price # time.sleep(0.5) # s += 1 # else: # break #指标表价只有一个值 @ddt.data(*index_excel.next()) def test_2_to_value(self,data): s=1 test_list = data['指数价'] while True: if s <= 1: test = test_send.test_send_requestr() print("分割", type(test_list)) last_list=test_list.split(',') print("分割",type(last_list)) price_list=[] #计算取出来的值,若取出来的值偏差大于0.25,就返回上一次的指数价 for i in range(0,len(last_list)): global last_prices f=math.fabs(float(last_prices) - float(last_list[i])) / float(last_prices) print(f) if f> 0.25: price_list.append(0) else: #last_prices = last_list[i] price_list.append(last_list[i]) test = mock.Mock(return_value=price_list) # #调用属性实例化 test_list=test() price = self.test_fail_request(test_list) print('指数值',price) time.sleep(0.5) if float(price)>0: last_prices = price s += 1 else: break if __name__ == '__main__': unittest.main()
LiuYaowei-Geek/deep
test_Case/mock.py
mock.py
py
5,537
python
zh
code
1
github-code
6
71484374908
S = input() N = len(S) non_x = [] s_notx = [] for i, s in enumerate(S): if s != 'x': non_x.append(i) s_notx.append(s) s_notx = ''.join(s_notx) if s_notx != s_notx[::-1]: print(-1) quit() if not non_x: print(0) quit() ans = 0 L = len(non_x) if L % 2 == 0: left, right = L // 2 - 1, L // 2 else: left = right = L // 2 left, right = left - 1, right + 1 for i in range(left + 1): l, r = left - i, right + i ans += abs((non_x[l + 1] - non_x[l]) - (non_x[r] - non_x[r - 1])) ans += abs(non_x[0] - (N - non_x[-1] - 1)) print(ans)
knuu/competitive-programming
atcoder/corp/cf17_qc_c.py
cf17_qc_c.py
py
575
python
en
code
1
github-code
6
16669920694
from django.contrib.auth import get_user_model from django.test import TestCase from ..models import Comment, Follow, Group, Post User = get_user_model() class PostModelTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create_user(username='TestUsername') cls.author = User.objects.create_user(username='TestAuthor') cls.group = Group.objects.create( title='Тестовая группа', slug='test-slug', description='Тестовое описание', ) cls.post = Post.objects.create( author=cls.user, text='Тестовый пост', ) cls.comment = Comment.objects.create( text='Тестовый комментарий', author=cls.user, post_id=cls.post.id ) cls.follow = Follow.objects.create( user=cls.user, author=cls.author ) def test_models_Post_have_correct_object_names(self): """Проверяем, что у модели Post корректно работает __str__.""" post = PostModelTest.post expected_object_name = post.text[:15] self.assertEqual(expected_object_name, str(post)) def test_models_Group_have_correct_object_names(self): """Проверяем, что у модели Group корректно работает __str__.""" group = PostModelTest.group expected_object_name = group.title self.assertEqual(expected_object_name, str(group)) def test_models_Comment_have_correct_object_names(self): """Проверяем, что у модели Group корректно работает __str__.""" comment = PostModelTest.comment expected_object_name = comment.text self.assertEqual(expected_object_name, str(comment)) def test_models_Follow_have_correct_object_names(self): """Проверяем, что у модели Group корректно работает __str__.""" follow = PostModelTest.follow expected_object_name = str(follow.author) self.assertEqual(expected_object_name, str(follow))
Vilenor/hw05_final
yatube/posts/tests/test_models.py
test_models.py
py
2,247
python
ru
code
0
github-code
6
33087525996
import pygame from speedfighter.utils.app_base import AppBase from speedfighter.utils.file import File from speedfighter.utils.path import Path class SpeedSpeaker(AppBase): """ スピードスピーカー """ def __init__(self): super().__init__() pygame.mixer.init() pygame.mixer.music.set_volume(1.0) @property def is_busy(self) -> bool: """ 音声を再生中かどうか """ return pygame.mixer.music.get_busy() def play_sound(self, file_path: str): """ 音声を再生する Parameters ---------- file_path : str 音声ファイルのパス """ if File.exists(file_path): pygame.mixer.music.load(file_path) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pygame.time.wait(100) # ms # self._logger.info("Playing...") # self._logger.info("Finished.") else: self._logger.error("Sound file not found. {}".format(file_path)) def speak_number(self, number: int): """ 数字を読み上げる Parameters ---------- number : int 数字 """ file_path = Path.join( self.project_root_dir_path, "assets/voice/number/{:0=3}.mp3".format(number) ) self.play_sound(file_path) def speak_alphabet(self, alphabet: str): """ アルファベットを読み上げる Parameters ---------- alphabet : str アルファベット """ file_path = Path.join( self.project_root_dir_path, "assets/voice/alphabet/{}.mp3".format(alphabet) ) self.play_sound(file_path) def speak_text(self, text: str): """ テキストを読み上げる Parameters ---------- text : str テキスト """ file_path = Path.join( self.project_root_dir_path, "assets/voice/text/{}.mp3".format(text) ) self.play_sound(file_path)
curio184/speedfighter-nft
speedfighter/speed_monitor/speed_speaker.py
speed_speaker.py
py
2,159
python
en
code
1
github-code
6
3028976536
''' Description: Converts Gen I pokemon sprites to text for pokemonBatch Author: Soda Adlmayer Date: 2017.02.26 ''' from PIL import Image #set filepath filename = r"C:\Users\Rudi\Documents\SODA\BATCH\pokemonBatch\data\other\sprites\bulbasaur1.png" #open image im = Image.open(filename) width, height = im.size #set variables n = 1 list1 = [] list2 = [] #loop rows while n <= height: #empty lists del list1[:] del list2[:] #loop columns for i in range (width): xy = (i, n) px = im.getpixel(xy) #append pixel value to array list1.append(px) #choose text value based on pixel value if list1[i] == 255: list2.append(' ') if list1[i] == 170: list2.append('°') if list1[i] == 85: list2.append('±') if list1[i] == 0: list2.append('²') #write to text file f = open("BULBASAUR_frontSprite.txt", 'a') print(*list2, sep='', file=f) #progres n n += 1
Pokeconomist/pokemonBatch
assets/sprites/image_processor1.py
image_processor1.py
py
963
python
en
code
3
github-code
6
5479399707
""" TODO: Merge or improved with pytree in jax. """ from collections import defaultdict import numpy as np from functools import wraps from multiprocessing.shared_memory import SharedMemory from .array_ops import ( squeeze, unsqueeze, zeros_like, repeat, tile, shuffle, take, share_memory, concat, stack, arr_mean, to_item, select_with_mask, recover_with_mask, detach, get_nbytes, split, batch_shuffle, decode_np, to_two_dims, to_list, gather, reshape, transpose, contiguous, split_dim, to_item, to_cpu, to_cuda, allreduce, slice_item, deepcopy, ) from .converter import as_dtype, to_np, to_torch, slice_to_range, to_array from .type_utils import get_dtype, is_list_of, is_dict, is_h5, is_arr, is_num, is_np, is_str SMM, use_shared_mem = None, False def create_smm(): global SMM, use_shared_mem if not use_shared_mem: from multiprocessing.managers import SharedMemoryManager use_shared_mem = True SMM = SharedMemoryManager() SMM.start() def delete_smm(): global SMM, use_shared_mem if use_shared_mem: use_shared_mem = False SMM.shutdown() def replace_empty_with_none(*args): args = list(args) for i, x in enumerate(args): if x is not None and isinstance(x, (list, dict)) and len(x) == 0: x = None args[i] = x return args def count_none(*args): ret = 0 for _ in list(args): if _ is None: ret += 1 return ret def get_first_not_none(*args): for _ in list(args): if _ is not None: return _ return None class GDict: """ Generalized Dict(GDict) Unified interface for dict, single element, HDF5 File. GDict are defined with syntax: GDict = GDict-Final | GDict-List | GDict-Dict GDict-Final = Any object not with type list, tuple, dict GDict-Dict or GDict-List = Dict or List of GDict Examples: 1. GDict-Final: 1) np-array: x = np.zeros(100) 2) tensor: x = torch.tensor(100) 3) HDF5 File: x = File('tmp.h5', 'r') 4) Other python basic element: string, scalar, object. 3. GDict-Dict or GDict-List or GDict-Tuple: GDict-Dict: x = {'0': {'b': np.zeros(100)}} GDict-List: x = [{'b': np.zeros(100)}, ] x['0/b'][0] = 1 (x['0/b/0'] is wrong!) Rules: 1. No '\<>|:&?*"' in any keys (Compatible with filename rules in windows and unix) '/' is used to separate two keys between two layers. 2. All integer key will be converted to string 3. tuple object will be converted to list 4. key does not contain any index in GDict-Final (See example 3) 5. Rules for converting a GDict object to HDF5 1) any number in keys of GDict-Dict will be converted to 'int_hdf5_' + number 2) For GDict-List, the list will be converted to a dict with key 'list_int_hdf5_' + number 3) GDict-Final: 1) torch.Tensor will be converted to numpy array when is saved as HDF5 File and cannot be recovered. 2) np.array will be saved as h5py.Dataset 3) h5py object will be deep copied. 4) other object will be serialized with pickle More Examples: >>> GDict(np.ones(3)).memory array([1., 1., 1.]) >>> GDict(np.ones(3)).shape 3 >>> d={'a': np.ones([1,1]), 'b': np.ones([2,3])} >>> GDict(d).memory {'a': array([[1.]]), 'b': array([[1., 1., 1.], [1., 1., 1.]])} >>> GDict(d).shape {'a': (1, 1), 'b': (2, 3)} >>> l = [d,d] >>> GDict(l).memory [{'a': array([[1.]]), 'b': array([[1., 1., 1.], [1., 1., 1.]])}, {'a': array([[1.]]), 'b': array([[1., 1., 1.], [1., 1., 1.]])}] >>> GDict(l).shape [{'a': (1, 1), 'b': (2, 3)}, {'a': (1, 1), 'b': (2, 3)}] """ def __init__(self, item=None, faster=False, **kwargs): self.memory = item if faster else self.to_item(item) self.capacity = getattr(item, "capacity", None) @classmethod def _is_final(cls, item): return not isinstance(item, (list, dict)) @classmethod def to_item(cls, item): if isinstance(item, GDict): return cls.to_item(item.memory) elif is_dict(item): ret = {key: cls.to_item(item[key]) for key in item} return ret elif isinstance(item, (list, tuple)): return [cls.to_item(x) for x in item] else: return item @classmethod def check_item(cls, item): if isinstance(item, dict): for key in item: if not cls.check_item(item[key]): return False elif isinstance(item, list): for x in item: if not cls.check_item(x): return False elif isinstance(item, (tuple, GDict)): return False return True @classmethod def assert_item(cls, item): assert cls.check_item(item), "Tuple and GDict should be missing in self.memory" @classmethod def _recursive_do_on_memory(cls, memory, function, new=True, ignore_list=False, *args, **kwargs): """Apply an operation to all elements in GDict. The operator can be functions in array_ops.""" if isinstance(memory, dict): ret = {} if new else memory for key, value in memory.items(): if cls._is_final(value): ret[key] = function(value, *args, **kwargs) else: ret[key] = cls._recursive_do_on_memory(memory[key], function, new, ignore_list, *args, **kwargs) return ret elif isinstance(memory, list) and not ignore_list: ret = [None for x in memory] if new else memory for key, value in enumerate(memory): if cls._is_final(value): ret[key] = function(value, *args, **kwargs) else: ret[key] = cls._recursive_do_on_memory(memory[key], function, new, ignore_list, *args, **kwargs) return ret else: return function(memory, *args, **kwargs) @classmethod def _recursive_do(cls, memory, function, new=True, wrapper=True, capacity=None, *args, **kwargs): item = cls._recursive_do_on_memory(memory, function, new, *args, **kwargs) return cls(item, capacity=capacity, faster=True) if wrapper else item @classmethod def _recursive_do_gdict(cls, memory, function, new=True, wrapper=True, *args, **kwargs): item = cls._recursive_do_on_memory(memory, function, new, *args, **kwargs) return GDict(item, faster=True) if wrapper else item @classmethod def _recursive_compare(cls, a, b, function): if isinstance(a, dict): inter_set = set(a.keys()) & set(b.keys()) for key in inter_set: if not cls._recursive_compare(a[key], b[key], function): return False elif isinstance(a, list): for i in range(min(len(a), len(b))): if not cls._recursive_compare(a[i], b[i], function): return False else: return function(a, b) return True @classmethod def _get_item(cls, memory, keys): if len(keys) == 0 or memory is None: return memory elif is_dict(memory): key = keys[0] return cls._get_item(memory.get(key, None), keys[1:]) elif is_list_of(memory): key = eval(keys[0]) return cls._get_item(memory[key], keys[1:]) else: print(f"Error! Keys should not cover the item in {type(memory)}, recent keys {keys}.") @classmethod def _set_item(cls, memory, keys, value): if isinstance(memory, GDict): memory = memory.memory if len(keys) == 0: return value elif is_dict(memory): key = keys[0] memory[key] = cls._set_item(memory.get(key, None), keys[1:], value) elif is_list_of(memory): key = eval(keys[0]) if key > len(memory): for i in range(key - len(memory) + 1): memory.append(None) memory[key] = cls._set_item(memory[key], keys[1:], value) else: print(f"Error! Keys should not cover the item in {type(memory)}, recent keys {keys}.") return memory @classmethod def _update_memory(cls, target, other): if is_list_of(target): if len(other) > len(target): for i in range(len(other) - len(target)): target.append(None) for i in range(len(other)): target[i] = cls._update_memory(target[i], other[i]) elif is_dict(target): for key in other: target[key] = cls._update_memory(target.get(key, None), other[key]) else: target = other return target def update(self, other): if isinstance(other, GDict): other = other.memory self.memory = self._update_memory(self.memory, other) def compatible(self, other): if isinstance(other, GDict): other = other.memory def _compatible(a, b): return type(a) == type(b) return self._recursive_compare(self.memory, other, _compatible) def shared_memory(self, other): other = type(self)(other) return self._recursive_compare(self.memory, other.memory, share_memory) def copy(self, wrapper=True): return self._recursive_do(self.memory, deepcopy, wrapper=wrapper) def to_torch(self, use_copy=False, device="cpu", non_blocking=False, dtype=None, requires_grad=False, wrapper=True): return self._recursive_do( self.memory, to_torch, use_copy=use_copy, device=device, non_blocking=non_blocking, dtype=dtype, requires_grad=requires_grad, wrapper=wrapper, ) def to_array(self, wrapper=True): return self._recursive_do(self.memory, to_array, wrapper=wrapper) def to_numpy(self, use_copy=False, dtype=None, wrapper=True): return self._recursive_do(self.memory, to_np, use_copy=use_copy, dtype=dtype, wrapper=wrapper) def to_hdf5(self, file): from maniskill2_learn.utils.file import dump_hdf5 dump_hdf5(self.memory, file) @classmethod def from_hdf5(cls, file, keys=None, wrapper=True): from maniskill2_learn.utils.file import load_hdf5 ret = load_hdf5(file, keys) if wrapper: ret = cls(ret) return ret @property def shape(self): def get_shape(x): shape = getattr(x, "shape", None) if shape is not None and len(shape) == 1: shape = shape[0] return shape return self._recursive_do_on_memory(self.memory, get_shape) @property def list_shape(self): def get_shape(x): shape = getattr(x, "shape", None) if shape is not None and len(shape) == 1: shape = shape[0] else: shape = list(shape) # For torch.Size return shape return self._recursive_do_on_memory(self.memory, get_shape) @property def type(self): return self._recursive_do_on_memory(self.memory, type) @property def dtype(self): return self._recursive_do_on_memory(self.memory, get_dtype) @property def nbytes(self): return self._recursive_do_on_memory(self.memory, get_nbytes) @property def is_np(self): return self._recursive_do_on_memory(self.memory, is_np) @property def is_np_all(self): ret = self._flatten(self._recursive_do_on_memory(self.memory, is_np)) return np.alltrue([v for k, v in ret.items()]) if isinstance(ret, dict) else ret @property def nbytes_all(self): ret = self._flatten(self._recursive_do_on_memory(self.memory, get_nbytes)) return sum([v for k, v in ret.items()]) if isinstance(ret, dict) else ret @property def is_big(self): return self.nbytes_all / 1024 / 1024 > 1 @property def device(self): def get_device(x): device = getattr(x, "device", None) if device is not None: device = f"{device.type}:{device.index}" if device.index is not None else f"{device.type}" return device return self._recursive_do_on_memory(self.memory, get_device) def cpu(self, wrapper=True): return self._recursive_do_gdict(self.memory, to_cpu, wrapper=wrapper) def cuda(self, device="cuda", wrapper=True): return self._recursive_do_gdict(self.memory, to_cuda, device=device, wrapper=wrapper) def item(self, wrapper=True): return self._recursive_do_gdict(self.memory, to_item, wrapper=wrapper) def item(self, wrapper=True): return self._recursive_do_gdict(self.memory, to_item, wrapper=wrapper) def astype(self, dtype, wrapper=True): return self._recursive_do(self.memory, as_dtype, dtype=dtype, wrapper=wrapper, capacity=self.capacity) def float(self, wrapper=True): return self.astype("float32", wrapper=wrapper) def f64_to_f32(self, wrapper=True): from .compression import f64_to_f32 return self._recursive_do(self.memory, f64_to_f32, wrapper=wrapper, capacity=self.capacity) def squeeze(self, axis=None, wrapper=True): return self._recursive_do(self.memory, squeeze, axis=axis, wrapper=wrapper) def unsqueeze(self, axis, wrapper=True): return self._recursive_do(self.memory, unsqueeze, axis=axis, wrapper=wrapper, capacity=self.capacity if axis != 0 else 1) def detach(self, wrapper=True): return self._recursive_do(self.memory, detach, wrapper=wrapper, capacity=self.capacity) def to_zeros(self, wrapper=True): return self._recursive_do(self.memory, zeros_like, wrapper=wrapper, capacity=self.capacity) def repeat(self, rep, axis=None, wrapper=True): return self._recursive_do( self.memory, repeat, rep=rep, axis=axis, wrapper=wrapper, capacity=self.capacity if axis != 0 and axis is not None else None ) def reshape(self, newshape, wrapper=True): return self._recursive_do(self.memory, reshape, newshape=newshape, wrapper=wrapper, capacity=newshape) def split_dim(self, axis, newaxes, wrapper=True): assert isinstance(newaxes, (list, tuple)) return self._recursive_do( self.memory, split_dim, axis=axis, newaxes=newaxes, wrapper=wrapper, capacity=self.capacity if axis != 0 else newaxes[0] ) def transpose(self, axis0, axis1, contiguous=True, wrapper=True): return self._recursive_do( self.memory, transpose, axis0=axis0, axis1=axis1, contiguous=contiguous, wrapper=wrapper, capacity=self.capacity if 0 not in [axis0, axis1] else None, ) def contiguous(self, wrapper=True): return self._recursive_do(self.memory, contiguous, wrapper=wrapper, capacity=self.capacity) def tile(self, rep, wrapper=True): return self._recursive_do(self.memory, tile, rep=rep, wrapper=wrapper) def mean(self, axis=None, keepdim=False, wrapper=True): return self._recursive_do( self.memory, arr_mean, axis=axis, keepdim=keepdim, wrapper=wrapper, capacity=self.capacity if axis != 0 and axis is not None else None ) @classmethod def _assign(cls, memory, indices, value, ignore_list=False): if isinstance(value, tuple): value = list(value) if is_dict(memory): assert type(memory) == type(value), f"{type(memory), type(value)}" for key in memory: if key in value: memory[key] = cls._assign(memory[key], indices, value[key], ignore_list) elif is_arr(memory): assert type(memory) == type(value) or np.isscalar(value), f"{type(memory), type(value)}" if share_memory(memory, value): memory[indices] = deepcopy(value) else: memory[indices] = value elif is_list_of(memory): if ignore_list: memory[indices] = value else: # if is_num(indices): # memory[indices] = value if is_num(value) else value[indices] # else: # assert type(memory) == type(value), f"{type(memory), type(value)}" for i in range(min(len(memory), len(value))): memory[i] = cls._assign(memory[i], indices, value[i], ignore_list) return memory def assign_list(self, index, value): if isinstance(value, GDict): value = value.memory assert is_num(index) self.memory = self._assign(self.memory, index, value, True) def to_two_dims(self, wrapper=True): return self._recursive_do(self.memory, to_two_dims, wrapper=wrapper) def take_list(self, index, wrapper=True): assert is_num(index) return self._recursive_do_gdict(self.memory, take, indices=index, axis=0, ignore_list=True, wrapper=wrapper) def to_list(self, wrapper=True): return self._recursive_do(self.memory, to_list, wrapper=wrapper) def select_with_mask(self, mask, wrapper=True): return self._recursive_do(self.memory, select_with_mask, mask=mask, wrapper=wrapper, capacity=to_item(mask.sum())) def recover_with_mask(self, mask, wrapper=True): return self._recursive_do(self.memory, select_with_mask, mask=mask, wrapper=wrapper, capacity=mask.shape[0]) def allreduce(self, op="MEAN", device="cuda", wrapper=True): return self._recursive_do(self.memory, allreduce, op=op, device=device, wrapper=wrapper, capacity=self.capacity) def to_gdict(self): return GDict(self.memory, faster=True) @property def one_device(self): return self._get_one_attr(self.memory, "device") @property def one_shape(self): return self._get_one_attr(self.memory, "shape") @property def one_dtype(self): return self._get_one_attr(self.memory, "dtype") def _flatten(cls, memory, root_key="", full=True): if is_dict(memory): ret = {} for key in memory: ret.update(cls._flatten(memory[key], f"{root_key}/{key}", full)) elif is_list_of(memory) and (full or len(memory) > 10): # Simplify flatten result for small list or tuple ret = {} for i in range(len(memory)): ret.update(cls._flatten(memory[i], f"{root_key}/{i}", full)) else: return memory if root_key == "" else {root_key.replace("//", "/"): memory} return ret def flatten(self, full=True): return type(self)(self._flatten(self.memory, "", full)) @classmethod def wrapper(cls, class_method=False): if not class_method: def decorator(func): @wraps(func) def wrapper(item, *args, **kwargs): if isinstance(item, GDict): return func(item, *args, **kwargs) else: return func(GDict(item), *args, **kwargs).memory return wrapper else: def decorator(func): @wraps(func) def wrapper(self, item, *args, **kwargs): if isinstance(item, GDict): return func(self, item, *args, **kwargs) else: return func(self, GDict(item), *args, **kwargs).memory return wrapper return decorator def select_by_keys(self, keys=None, to_list=False, wrapper=True): def _dfs_select(memory, keys=None): if keys is None: return memory if isinstance(memory, dict): new_keys = {} for key in keys: fk = key[0] if len(key) > 1: if fk not in new_keys: new_keys[fk] = [] new_keys[fk].append(key[1:]) else: new_keys[fk] = None return {key: _dfs_select(memory[key], new_keys[key]) for key in new_keys} elif isinstance(memory, list): new_keys = {} for key in keys: fk = eval(key[0]) if is_str(key[0]) else key[0] if len(key) > 1: if fk not in new_keys: new_keys[fk] = [] new_keys[fk].append(key[1:]) else: new_keys[fk] = None return [_dfs_select(memory[key], new_keys[key]) for key in sorted(new_keys)] else: raise ValueError(f"{keys}") if not isinstance(keys, (list, tuple)) and keys is not None: keys = [keys] single = True else: single = False keys = [self._process_key(key) for key in keys] memory = _dfs_select(self.memory, keys) if to_list: memory = type(self)(memory) memory = [memory[key] for key in keys] if single: memory = memory[0] if wrapper: memory = type(self)(memory) return memory def take(self, indices, axis=0, wrapper=True): # will always copy data, needs double check if is_num(indices): return self._recursive_do_gdict(self.memory, take, indices=indices, axis=axis, wrapper=wrapper) else: if isinstance(indices, slice): len_indices = len(slice_to_range(indices)) else: len_indices = len(indices) new_capacity = len_indices if axis == 0 else self.capacity return self._recursive_do(self.memory, take, indices=indices, axis=axis, wrapper=wrapper, capacity=new_capacity) def slice(self, slice, axis=0, wrapper=True): # no copy return self._recursive_do(self.memory, slice_item, slice=slice, axis=axis, wrapper=wrapper) def assign_all(self, value): if isinstance(value, GDict): value = value.memory self.memory = self._assign(self.memory, slice(None, None, None), value) @classmethod def _do_on_list_of_array(cls, memories, function, **kwargs): for i in range(len(memories)): assert type(memories[i]) is type(memories[0]), f"{type(memories[i]), type(memories[0])}" if isinstance(memories[0], (tuple, list)): for i in range(len(memories)): assert len(memories[i]) == len(memories[0]) ret = [] for i in range(len(memories[0])): ret.append(cls._do_on_list_of_array([memories[j][i] for j in range(len(memories))], function, **kwargs)) elif isinstance(memories[0], dict): for i in range(len(memories)): assert set(memories[i].keys()) == set(memories[0].keys()), f"{set(memories[i].keys())}, {set(memories[0].keys())}" ret = {} for key in memories[0]: ret[key] = cls._do_on_list_of_array([memories[j][key] for j in range(len(memories))], function, **kwargs) else: ret = function(memories, **kwargs) return ret @classmethod def concat(cls, items, axis=0, wrapper=True): ret = cls._do_on_list_of_array([_.memory if isinstance(_, GDict) else _ for _ in items], concat, axis=axis) if wrapper: capacity = 0 for item in items: if isinstance(item, GDict) and item.capacity is not None: capacity += item.capacity else: capacity = None break return cls(ret, capacity=capacity, faster=True) else: return ret @classmethod def stack(cls, items, axis=0, wrapper=True): ret = cls._do_on_list_of_array([_.memory if isinstance(_, GDict) else _ for _ in items], stack, axis=axis) if wrapper: if axis == 0: capacity = len(items) else: capacity = None for item in items: if isinstance(item, cls) and item.capacity is not None: capacity = item.capacity break return cls(ret, capacity=capacity, faster=True) else: return ret @classmethod def _process_key(cls, key): if is_num(key): key = str(key) return key if isinstance(key, (list, tuple)) else key.strip("/").replace("//", "/").split("/") def __getitem__(self, key): return self._get_item(self.memory, self._process_key(key)) def __setitem__(self, key, value): self.memory = self._set_item(self.memory, self._process_key(key), value) return self.memory def __str__(self): return str(self._flatten(self.memory, "", False)) def __dict__(self): assert isinstance(self.memory, dict), "self.memory is not a dict!" return self.memory def __getattr__(self, key): return getattr(self.memory, key) def __contains__(self, key): if "/" in key: key = self._process_key(key) memory = self.memory for _ in key: if _ not in memory: return False memory = memory[_] return True else: return key in self.memory def __delitem__(self, key): keys = list(self._process_key(key)) last_memory = None memory = self.memory for i, key in enumerate(keys): if isinstance(last_memory, list) and isinstance(key, str): key = eval(key) keys[i] = key last_memory = memory memory = memory[key] if last_memory is None: self.memory = None elif isinstance(last_memory, (dict, list)): last_memory.pop(key) class DictArray(GDict): """ DictArray is a special GDict which requires the first dimension of all GDict-Final must be same """ def __init__(self, item=None, capacity=None, faster=False): super(DictArray, self).__init__(item, faster=faster) if item is None: self.capacity = None return if capacity is not None: self.capacity = capacity if not faster: self.memory = self.to_array(wrapper=False) self.memory = self.unsqueeze(axis=0, wrapper=False) #.to_zeros(wrapper=False) if capacity != 1: self.memory = self.repeat(capacity, axis=0, wrapper=False) elif self.capacity is None: self.capacity = self._get_one_attr(self.memory, "shape")[0] if not faster: self.assert_shape(self.memory, self.capacity) @classmethod def _get_one_attr(cls, memory, attr): # print(type(memory), attr) if isinstance(memory, dict): for key in memory: if hasattr(memory[key], attr): return getattr(memory[key], attr) ans = cls._get_one_attr(memory[key], attr) if ans is not None: return ans elif isinstance(memory, list): for x in memory: if hasattr(x, attr): return getattr(x, attr) ans = cls._get_one_attr(x, attr) if ans is not None: return ans elif hasattr(memory, attr): return getattr(memory, attr) return None @classmethod def check_shape(cls, memory, capacity): if isinstance(memory, dict): for key in memory: if not cls.check_shape(memory[key], capacity): return False elif isinstance(memory, list): for x in memory: if not cls.check_shape(x, capacity): return False elif hasattr(memory, "shape"): return memory.shape[0] == capacity return True @classmethod def assert_shape(cls, memory, capacity): assert cls.check_shape(memory, capacity), f"The first dimension is not {capacity}!" def sample(self, batch_size, valid_capacity=None, wrapper=True): capacity = self.capacity if valid_capacity is None else valid_capacity indices = np.random.randint(low=0, high=capacity, size=batch_size) return self._recursive_do(self.memory, take, indices=indices, axis=0, wrapper=wrapper, capacity=batch_size) def shuffle(self, valid_capacity=None, wrapper=True, in_place=True): capacity = self.capacity if valid_capacity is None else valid_capacity indices = shuffle(np.arange(capacity), axis=0) # print(valid_capacity, self.capacity) # print(np.unique(indices).shape, len(indices)) # exit(0) # print(capacity, self.capacity) if in_place: # print(indices) items = self.take(slice(0, capacity), wrapper=False) # print(items.shape, share_memory(items['actions'], self.memory['actions'])) self.assign(indices, items) # self._recursive_do(self.memory, take, indices=indices, axis=0, wrapper=False, capacity=self.capacity) else: if capacity < self.capacity: indices = np.concatenate([indices, np.arange(self.capacity - capacity) + capacity], axis=0) return self._recursive_do(self.memory, take, indices=indices, axis=0, wrapper=wrapper, capacity=self.capacity) def assign(self, indices, value): if isinstance(value, GDict): value = value.memory self.memory = self._assign(self.memory, indices, value) def gather(self, axis, index, wrapper=True): return self._recursive_do(self.memory, gather, axis=axis, index=index, wrapper=wrapper) def to_dict_array(self): return DictArray(self.memory, capacity=self.capacity, faster=True) def __len__(self): return self.capacity class SharedGDict(GDict): def __init__(self, gdict=None, shape=None, dtype=None, name=None): if gdict is not None: assert shape is None and dtype is None and name is None assert isinstance(gdict, GDict) and gdict.is_np_all shape = gdict.shape dtype = gdict.dtype nbytes = gdict.nbytes else: assert not (shape is None or dtype is None or name is None) nbytes = None self.is_new = name is None name, self.shared_memory = self._create_shared_memory(shape, dtype, nbytes, name) memory = self._create_np_from_memory(self.shared_memory, shape, dtype) self.shared_shape = shape self.shared_dtype = dtype self.shared_name = name super(SharedGDict, self).__init__(memory) def _create_np_from_memory(cls, shared_memory, shape, dtype): if isinstance(shared_memory, dict): memory = {k: cls._create_np_from_memory(shared_memory[k], shape[k], dtype[k]) for k in shared_memory} elif isinstance(shared_memory, list): memory = [cls._create_np_from_memory(shared_memory[k], shape[k], dtype[k]) for k in range(len(shared_memory))] else: if isinstance(dtype, str): dtype = np.dtype(dtype) memory = np.ndarray(shape, dtype=dtype, buffer=shared_memory.buf) return memory def _create_shared_memory(cls, shape, dtype, nbytes, name=None): if name is None: # Create new shared buffer if isinstance(nbytes, dict): ret_name, ret_memory = {}, {} for key in nbytes: name_k, memory_k = cls._create_shared_memory(shape[key], dtype[key], nbytes[key], None) ret_name[key] = name_k ret_memory[key] = memory_k elif isinstance(nbytes, (list, tuple)): ret_name, ret_memory = [], [] for key in range(len(nbytes)): name_k, memory_k = cls._create_shared_memory(shape[key], dtype[key], nbytes[key], None) ret_name.append(name_k) ret_memory.append(memory_k) else: assert is_num(nbytes), f"{nbytes}" ret_memory = SharedMemory(size=nbytes, create=True) ret_name = ret_memory.name else: ret_name = name if isinstance(name, dict): ret_memory = {k: cls._create_shared_memory(shape[k], dtype[k], None, name[k])[1] for k in name} elif isinstance(name, (list, tuple)): ret_memory = [cls._create_shared_memory(shape[k], dtype[k], None, name[k])[1] for k in range(len(name))] else: assert isinstance(name, str), f"{name}" ret_memory = SharedMemory(name=name, create=False) return ret_name, ret_memory def get_infos(self): return self.shared_shape, self.shared_dtype, self.shared_name def _unlink(self): memory = self._flatten(self.shared_memory) if isinstance(memory, dict): for k, v in memory.items(): v.unlink() else: memory.unlink() def _close(self): memory = self._flatten(self.shared_memory) if isinstance(memory, dict): for k, v in memory.items(): v.close() elif not callable(memory): memory.close() def __del__(self): self._close() if self.is_new: self._unlink() def get_full_by_key(self, key): ret = [] for name in ["shared_shape", "shared_dtype", "shared_name"]: ret.append(self._get_item(getattr(self, name), self._process_key(key))) return type(self)(None, *ret) def __setitem__(self, key, value): assert False, "Please convert to GDict or Dictarray then change the value!" class SharedDictArray(SharedGDict, DictArray): pass
haosulab/ManiSkill2-Learn
maniskill2_learn/utils/data/dict_array.py
dict_array.py
py
34,803
python
en
code
53
github-code
6
28900653981
from keras.models import * from keras.layers import * import keras from dlblocks.keras_utils import allow_growth , showKerasModel allow_growth() from dlblocks.pyutils import env_arg import tensorflow as tf from Utils import Trainer from SluiceUtils import * class Sluice_SeqLab(Trainer): def build_model(self): config = self.config embed = Embedding( self.config['vocab_size'] , self.config['embed_dim'] , mask_zero=True) rnn_hi = (LSTM( self.config['nHidden'] , return_sequences=True )) rnn_en = (LSTM( self.config['nHidden'] , return_sequences=True )) rnn_enhi = (LSTM( self.config['nHidden'] , return_sequences=True )) rnn_hi2 = (LSTM( self.config['nHidden'] , return_sequences=True )) rnn_en2 = (LSTM( self.config['nHidden'] , return_sequences=True )) rnn_enhi2 = (LSTM( self.config['nHidden'] , return_sequences=True )) stitch_layer = CrossStitch() stitch_layer.supports_masking = True osel = OutPutSelector() osel.supports_masking = True def desectOut(xx): l = xx.shape[-1] return Lambda( lambda x : [x[ ... , :l/2 ] , x[ ... , l/2: ] ] )( xx ) def cal_cs( inp ): x = embed(inp) x_hi = rnn_hi( x ) # en x = embed(inp) x_en = rnn_en( x ) x = embed(inp) x_enhi = rnn_enhi( x ) [ x_hi1 , x_hi2 ] = desectOut( x_hi ) [ x_en1 , x_en2 ] = desectOut( x_en ) [ x_enhi1 , x_enhi2 ] = desectOut( x_enhi ) [ x_hi1 , x_en1 , x_enhi1 , x_hi2 , x_en2 , x_enhi2 ] = stitch_layer([ x_hi1 , x_en1 , x_enhi1 , x_hi2 , x_en2 , x_enhi2 ]) x_hi = Concatenate()([ x_hi1 , x_hi2 ]) x_en = Concatenate()([ x_en1 , x_en2 ]) x_enhi = Concatenate()([ x_enhi1 , x_enhi2 ]) x_hi_p = x_hi x_en_p = x_en x_enhi_p = x_enhi x_hi = rnn_hi2( x_hi ) x_en = rnn_en2( x_en ) x_enhi = rnn_enhi2( x_enhi ) [ x_hi1 , x_hi2 ] = desectOut( x_hi ) [ x_en1 , x_en2 ] = desectOut( x_en ) [ x_enhi1 , x_enhi2 ] = desectOut( x_enhi ) [ x_hi1 , x_en1 , x_enhi1 , x_hi2 , x_en2 , x_enhi2 ] = stitch_layer([ x_hi1 , x_en1 , x_enhi1 , x_hi2 , x_en2 , x_enhi2 ]) x_hi = Concatenate()([ x_hi1 , x_hi2 ]) x_en = Concatenate()([ x_en1 , x_en2 ]) x_enhi = Concatenate()([ x_enhi1 , x_enhi2 ]) x_hi = osel([ x_hi , x_hi_p ]) x_en = osel([ x_en , x_en_p ]) x_enhi = osel([ x_enhi , x_enhi_p ]) return [ x_hi , x_en, x_enhi ] # hi inp_hi = Input((self.config['sent_len'] , )) # en inp_en = Input((self.config['sent_len'] , )) inp_enhi = Input((self.config['sent_len'] , )) [ x_hi , _ , _ ] = cal_cs( inp_hi) [ _ , x_en , _ ] = cal_cs( inp_en) [ _ , _ , x_enhi ] = cal_cs( inp_enhi) out_enhi = TimeDistributed(Dense( self.config['n_class_enhi'] , activation='softmax'))(x_enhi) out_hi = TimeDistributed(Dense( config['n_class_hi'] , activation='softmax'))(x_hi) out_en = TimeDistributed(Dense( config['n_class_en'] , activation='softmax'))(x_en) self.model = Model( [inp_hi , inp_en , inp_enhi ] , [ out_hi , out_en , out_enhi ] ) Trainer.build_model( self ) # jjj """ config = {} config['epochs'] = 4 config['dataset'] = "/tmp/postag_prepped.h5" config['exp_name'] = 'pos_girnet_1l' config['embed_dim'] = 50 config['vocab_size'] = 30003 config['nHidden'] = 100 config['sent_len'] = 150 config['n_class_en'] = 45 config['n_class_hi'] = 25 config['n_class_enhi'] = 19 model = Sluice_SeqLab( exp_location="./ttt" , config_args = config ) model.train() """
divamgupta/mtl_girnet
sequence_labeling/sluice.py
sluice.py
py
4,038
python
en
code
6
github-code
6
30353923791
from os.path import dirname import logging # Enthought library imports. from traits.api import Bool from envisage.ui.workbench.api import WorkbenchApplication from pyface.api import AboutDialog, ImageResource, SplashScreen # Local imports. import mayavi.api from mayavi.preferences.api import preference_manager IMG_DIR = dirname(mayavi.api.__file__) logger = logging.getLogger(__name__) class MayaviWorkbenchApplication(WorkbenchApplication): """ The mayavi application. """ #### MayaviWorkbenchApplication interface ################################# # Turn this off if you don't want the workbench to start a GUI # event loop. start_gui_event_loop = Bool(True, desc='start a GUI event loop') #### 'IApplication' interface ############################################# # The application's globally unique Id. id = 'mayavi_e3' #### 'WorkbenchApplication' interface ##################################### # Branding information. # # The icon used on window title bars etc. icon = ImageResource('m2.ico', search_path=[IMG_DIR]) # The name of the application (also used on window title bars etc). name = 'Mayavi2 - The 3D data visualizer' ########################################################################### # 'WorkbenchApplication' interface. ########################################################################### def run(self): """ Run the application. This does the following: 1) Starts the application 2) Creates and opens a workbench window 3) Starts the GUI event loop (only if start_gui_event_loop is True) 4) When the event loop terminates, stops the application This particular method is overridden from the parent class to allow the user to not run the gui event loop as would be necessary when the loop is started elsewhere or when run fron IPython. """ logger.debug('---------- workbench application ----------') # Make sure the GUI has been created (so that, if required, the splash # screen is shown). gui = self.gui # Start the application. if self.start(): # Create and open the first workbench window. window = self.workbench.create_window( position=self.window_position, size=self.window_size ) window.open() # We stop the application when the workbench has exited. self.workbench.on_trait_change(self._on_workbench_exited, 'exited') # Start the GUI event loop if needed. if self.start_gui_event_loop: # THIS CALL DOES NOT RETURN UNTIL THE GUI IS CLOSED. gui.start_event_loop() return ###################################################################### # Non-public interface. ###################################################################### def _about_dialog_default(self): """ Trait initializer. """ from mayavi import api from vtk import vtkVersion vtk_version = vtkVersion().GetVTKVersion() about_dialog = AboutDialog( parent = self.workbench.active_window.control, image = ImageResource('m2_about.jpg', search_path=[IMG_DIR]), additions = ['Authors: Prabhu Ramachandran', 'and Gael Varoquaux', '', 'Mayavi version %s \t - \t VTK version %s' % (api.__version__, vtk_version)], ) return about_dialog def _splash_screen_default(self): """ Trait initializer. """ if preference_manager.root.show_splash_screen: splash_screen = SplashScreen( image = ImageResource('m2_about.jpg', search_path=[IMG_DIR]), show_log_messages = True, ) else: splash_screen = None return splash_screen
enthought/mayavi
mayavi/plugins/mayavi_workbench_application.py
mayavi_workbench_application.py
py
4,140
python
en
code
1,177
github-code
6
23944471661
import json import pytest from deepdiff import DeepDiff from eth_keys.datatypes import PrivateKey from hexbytes import HexBytes from jsonschema import ValidationError from web3 import Web3 from polyswarmtransaction.exceptions import InvalidKeyError, InvalidSignatureError, WrongSignatureError, \ UnsupportedTransactionError from polyswarmtransaction.transaction import Transaction, SignedTransaction, CustomTransaction def test_recover_when_computed(ethereum_accounts): # Must be a string exact match data = { 'name': 'polyswarmtransaction.transaction:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = Transaction().sign(ethereum_accounts[0].key) assert signed.signature == PrivateKey(ethereum_accounts[0].key).sign_msg_hash(Web3.keccak(text=json.dumps(data))) def test_sign_transaction(ethereum_accounts): expected = '0xed2e8602439eec57a84bb372c6de718d88d2c27f265d7c01fe59a940f9c44eb25f849639669897e376dca6b3e745f4d9667' \ '32f731b6ec20d908673ad882aeed301' data = { 'name': 'polyswarmtransaction.transaction:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } transaction = Transaction() signed = transaction.sign(ethereum_accounts[0].key) assert json.loads(signed.raw_transaction) == data assert signed.signature.hex() == expected def test_sign_customtransaction_data_body(ethereum_accounts): expected = '0xbd112f273df4e3a7d1b97525513c41f42e737c513bad190d74eb92947869747415a857110b02a17cc37f1a0e80514efd94c' \ 'e807196a90cbc88a09377faf202e200' custom_data = {'spam': 'eggs', 'pi': 3, 'it_moves': True} data = { 'name': 'polyswarmtransaction.transaction:CustomTransaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': custom_data, } transaction = CustomTransaction(data_body=json.dumps(custom_data)) signed = transaction.sign(ethereum_accounts[0].key) assert json.loads(signed.raw_transaction) == data assert signed.signature.hex() == expected assert isinstance(signed.transaction(), CustomTransaction) def test_recover_signed_transaction(ethereum_accounts): transaction = Transaction() signed = transaction.sign(ethereum_accounts[0].key) assert signed.ecrecover() == '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5' def test_recover_signed_transaction_from_parts(): signature = ('0xed2e8602439eec57a84bb372c6de718d88d2c27f265d7c01fe59a940f9c44eb25f849639669897e376dca6b3e745f4d966' '732f731b6ec20d908673ad882aeed301') # Must be a string exact match data = { 'name': 'polyswarmtransaction.transaction:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(data), signature) assert signed.ecrecover() == '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5' def test_recover_signed_transaction_from_signed_output(ethereum_accounts): transaction = Transaction() signed = transaction.sign(ethereum_accounts[0].key) signed = SignedTransaction(signed.raw_transaction, signed.signature) assert signed.ecrecover() == '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5' def test_recover_signed_transaction_from_payload(ethereum_accounts): transaction = Transaction() signed = transaction.sign(ethereum_accounts[0].key) signed = SignedTransaction(**signed.payload) assert signed.ecrecover() == '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5' def test_sign_none(): transaction = Transaction() with pytest.raises(InvalidKeyError): transaction.sign(None) def test_recover_empty_signature(): signed = SignedTransaction('', '') with pytest.raises(InvalidSignatureError): signed.ecrecover() def test_recover_invalid_signature(): signed = SignedTransaction('', '0xaa') with pytest.raises(InvalidSignatureError): signed.ecrecover() def test_recover_changed_body(ethereum_accounts): signature = Transaction().sign(ethereum_accounts[0].key).signature data = { 'name': 'polyswarmtransaction.transaction:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': { 'different': 'asdf' } } signed = SignedTransaction(json.dumps(data), signature) with pytest.raises(WrongSignatureError): signed.ecrecover() def test_recover_changed_signature(ethereum_accounts): transaction = Transaction().sign(HexBytes(ethereum_accounts[0].key)).raw_transaction signature = Transaction().sign(ethereum_accounts[1].key).signature signed = SignedTransaction(transaction, signature) with pytest.raises(WrongSignatureError): signed.ecrecover() def test_load_transaction_string(): signed = SignedTransaction('this is not json', bytes([0] * 65)) with pytest.raises(json.JSONDecodeError): signed.transaction() def test_load_transaction_schema_mismatch(): transaction = { 'name': 'polyswarmtransaction.transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(transaction), bytes([0] * 65)) with pytest.raises(ValidationError): signed.transaction() def test_load_transaction_missing_module(): transaction = { 'name': 'polyswarmtransaction.no:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(transaction), bytes([0] * 65)) with pytest.raises(UnsupportedTransactionError): signed.transaction() def test_load_transaction_missing_class(): transaction = { 'name': 'polyswarmtransaction.transaction:NoTransaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(transaction), bytes([0] * 65)) with pytest.raises(UnsupportedTransactionError): signed.transaction() def test_load_transaction_non_transaction(): transaction = { 'name': 'polyswarmtransaction.transaction:SignedTransaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(transaction), bytes([0] * 65)) with pytest.raises(UnsupportedTransactionError): signed.transaction() def test_load_transaction(): transaction = { 'name': 'polyswarmtransaction.transaction:Transaction', 'from': '0x3f17f1962B36e491b30A40b2405849e597Ba5FB5', 'data': {} } signed = SignedTransaction(json.dumps(transaction), bytes([0] * 65)) assert isinstance(signed.transaction(), Transaction) assert not DeepDiff(signed.transaction().data, Transaction().data, ignore_order=True)
polyswarm/polyswarm-transaction
tests/test_transaction.py
test_transaction.py
py
6,888
python
en
code
1
github-code
6
209544494
recipes = [3, 7] duendes= [0, 1] longitud=323081 #longitud=5 while len(recipes) < longitud + 10: new = recipes[duendes[0]] + recipes[duendes[1]] recipes += [int(c) for c in str(new)] duende1=(duendes[0]+1+recipes[duendes[0]])%len(recipes) duende2=(duendes[1]+1+recipes[duendes[1]])%len(recipes) duendes= [duende1,duende2] #print(recipes) print("Part 1:") print("".join(str(n) for n in recipes[longitud : longitud + 10])) #part 2 puzzle_input =str(longitud) recipes = [3, 7] duendes = [0, 1] input_found = None while input_found is None: actual = ''.join(str(e) for e in recipes[-len(puzzle_input) - 1 : -1]) actual2= ''.join(str(e) for e in recipes[-len(puzzle_input): -1]) #print(actual) #print(actual2) if actual==puzzle_input: input_found = -len(puzzle_input) - 1 break if actual2==puzzle_input: input_found = -len(puzzle_input) break new = recipes[duendes[0]] + recipes[duendes[1]] recipes += [int(c) for c in str(new)] duende1=(duendes[0]+1+recipes[duendes[0]])%len(recipes) duende2=(duendes[1]+1+recipes[duendes[1]])%len(recipes) duendes= [duende1,duende2] print(input_found) print("Part 2: "+str(len(recipes) + input_found))
heyheycel/advent-of-code
2018/code_day14.py
code_day14.py
py
1,164
python
en
code
0
github-code
6
28743291670
import tkinter from turtle import right ventana=tkinter.Tk() ventana.title("Ventana de pruebas") ##ventana.resizable(0,0) no deja ajustar el tamaño ##ventana.iconbitmap("cualquiercosa.ico") asi se puede cambiar el icono de la aplicacion :d ventana.geometry("500x300") ventana.config(bg="black") miframe=tkinter.Frame() miframe.pack(fill="both",expand="true") miframe.config(bg="white") miframe.config(width="800",height="200") miframe.config(bd=35) miframe.config(relief="sunken") miframe.config(cursor="pirate") ventana=tkinter.mainloop() ##cambiar el .py por .pyw para que salga solo la ventana de la aplicacion
SebastianTrujillo21/tkinter_practice
1er_proyecto/primera.py
primera.py
py
633
python
es
code
0
github-code
6
32942155774
""" COMP.CS.100 Programming 1. Stuart Student, [email protected], student id 150360360. Solution of task 2.. """ def main(): num_of_days = int(input('Enter the number of days: ')) data = 0 mean = 0 counter = 0 for number in range(1, num_of_days + 1): running_length = float(input(f'Enter day {number} running length: ')) if running_length != 0: data = data + running_length mean = data / num_of_days counter = 0 else: counter += 1 if counter < 3: continue else: break print() if counter == 3: print('You had too many consecutive lazy days!') elif mean < 3: print(f"Your running mean of {mean:.2f} km was too low!") else: print(f"You were persistent runner! With a mean of {mean:.2f} km.") if __name__ == '__main__': main()
hamedtea/python_assignments
analyzer.py
analyzer.py
py
925
python
en
code
0
github-code
6
70879515068
import aoc_cj.aoc2016.day13 as d EXAMPLE_SPACE = """ .#.####.## ..#..#...# #....##... ###.#.###. .##..#..#. ..##....#. #...##.### """.strip() def test_is_wall(): lines = EXAMPLE_SPACE.splitlines() fav_num = 10 for y in range(len(lines)): for x in range(len(lines[0])): assert lines[y][x] == "." if d.is_open(x, y, fav_num) else "#" def test_a(): assert d.parta("10", target_pos=(7, 4)) == 11
cj81499/advent-of-code
tests/aoc2016/y2016d13_test.py
y2016d13_test.py
py
433
python
en
code
2
github-code
6
18242919824
# Justificação de textos def limpa_texto(texto): '''Elimina espaços do texto original. Sem dependências Parametros: str Retorna: str ''' return ' '.join(texto.split()) def corta_texto(texto, largura): '''Divide o texto pela ultima palavra completa em função da largura. Sem depenências Parametros: str, int Retorna: (str,str) ''' palavras = texto.split() len_total = 0 i = 0 # Econtrar a última palavra completa contida pela largura desejada for i, palavra in enumerate(palavras): len_total += len(palavra) if largura < len_total: break # Contar com o espaço entre palavras len_total += 1 if len(texto) <= largura: i += 1 return ' '.join(palavras[:i]), ' '.join(palavras[i:]) def insere_espacos(texto, largura): '''Preenche a string com espaços em função da largura. Sem dependências Parametros: str, int Retorna: str ''' palavras = texto.split() # numero_espacos -> numero de vezes que duas palavras devem ser separadas # espaco_para_preencher -> numero de caracteres vazios necessários numero_espacos = len(palavras)-1 espaco_para_preencher = largura - (len(texto)-numero_espacos) if len(palavras) > 1: espaco_default = espaco_para_preencher // numero_espacos espacos_restantes = espaco_para_preencher - (numero_espacos * espaco_default) mapa_espacos = [espaco_default] * numero_espacos for i in range(espacos_restantes): mapa_espacos[i] += 1 palavra_final = '' for i, palavra in enumerate(palavras): if i < numero_espacos: palavra_final += palavra + ' '*mapa_espacos[i] else: palavra_final += palavra return palavra_final else: # Se apenas existe uma palavra, adicionar os espaços correspondentes no final return texto + ' '*espaco_para_preencher def justifica_texto(texto, largura): '''Justifica uma string com a largura expecificada. Depende de: limpa_texto(), corta_texto(), insere_espacos(), Parametros: str, int Retorna: tuple ''' if type(texto) != str or type(largura) != int or len(texto) == 0\ or largura <= 0 or not(all(len(palavra) <= largura for palavra in texto.split())): raise ValueError('justifica_texto: argumentos invalidos') texto_justificado = corta_texto(limpa_texto(texto), largura) tuplo_justificado = () def insere_espacos_fim(txt): espaco_para_preencher = largura - (len(txt)) return txt + ' '*espaco_para_preencher while True: # Verificar se é a última frase e justificar de forma diferente if len(texto_justificado[1]) > 0: tuplo_justificado += (insere_espacos(texto_justificado[0], largura),) texto_justificado = texto_justificado[1] texto_justificado = corta_texto(texto_justificado, largura) else: tuplo_justificado += (insere_espacos_fim(texto_justificado[0]),) break return tuplo_justificado # Método de Hondt def calcula_quocientes(votos, deputados): '''Calcula os quocientes de cada partido segundo o Método de Hondt. Sem dependências Parametros: dict, int Retorna: dict ''' quocientes = votos.copy() for partido, num_votos in quocientes.items(): quocientes[partido] = [float(num_votos)] for i in range(1, deputados): quocientes[partido].append(float(quocientes[partido][0] / (i+1))) return quocientes def atribui_mandatos(votos, deputados): '''A partir do cálculo dos quocientes, ordenar os partidos em função dos resultados obtidos nas respetivas votações. Depende de: calcula_quocientes() Parametros: dict, int Retorna: list ''' quocientes = calcula_quocientes(votos, deputados) mandatos = list() # Ordenar os partidos de forma crescente em função do número total de votos # de forma a facilitar situações de empate partidos_ordenados = dict(sorted(quocientes.items(), key=lambda votos : votos[1][0])) while len(mandatos) < deputados: partido_a_eleger = ('', 0) for partido, num_votos in partidos_ordenados.items(): if num_votos[0] > partido_a_eleger[1]: partido_a_eleger = (partido, num_votos[0]) partidos_ordenados[partido_a_eleger[0]] = partidos_ordenados[partido_a_eleger[0]][1:] mandatos.append(partido_a_eleger[0]) return mandatos def obtem_partidos(informacao): '''Obtem todos os partidos que participaram nas eleições Sem dependências Parametros: dict Retorna: list ''' partidos_final = set() for circulo in informacao.values(): for partidos in circulo['votos'].keys(): partidos_final.add(partidos) partidos_final = sorted(partidos_final) return partidos_final def obtem_resultado_eleicoes(informacao): '''Calcula os resultados das eleições Depende de: atribui_mandatos(), obtem_partidos(), (Indiretamente): calcula_quocientes() Parametros: dict Retorna: list ''' # Verificações if type(informacao) != dict or len(informacao) == 0: raise ValueError('obtem_resultado_eleicoes: argumento invalido') for circulo in informacao.values(): if type(circulo) != dict or len(circulo) != 2\ or 'deputados' not in circulo.keys() or 'votos' not in circulo.keys()\ or type(circulo['deputados']) != int or type(circulo['votos']) != dict\ or circulo['deputados'] <= 0 or len(circulo['votos']) == 0: raise ValueError('obtem_resultado_eleicoes: argumento invalido') if not all(type(nome_circulo)==str and len(nome_circulo)>0 for nome_circulo in informacao.keys()): raise ValueError('obtem_resultado_eleicoes: argumento invalido') if not all(((type(votos) == int) and votos > 0 and (type(partido) == str)) for (partido, votos) in circulo['votos'].items()): raise ValueError('obtem_resultado_eleicoes: argumento invalido') resultados = {(partido):(partido, 0, 0) for partido in obtem_partidos(informacao)} for circulo in informacao.values(): votos = circulo['votos'] deputados = circulo['deputados'] resultado_circulo = atribui_mandatos(votos, deputados) for partido, num_votos in votos.items(): votos_atuais = resultados[partido][2] deputados_atuais = resultados[partido][1] resultados[partido] = (partido, deputados_atuais + resultado_circulo.count(partido), votos_atuais + num_votos) resultados = list(resultados.values()) resultados = sorted(resultados, key=lambda resultado: (resultado[1],resultado[2]), reverse=True) return resultados # Solução de sistemas de equações def produto_interno(t1, t2): '''Calcula o produto interno de dois vetores. Sem dependências Parametros: tuple, tuple Retorna: float ''' return sum(float(t1[i]*t2[i]) for i in range(len(t1))) def verifica_convergencia(matriz, constantes, solucao_atual, precisao): '''Verifica a precisão das soluções apresentadas para um dado sistema, representado por uma matriz e um vetor de soluções (constantes). Depende de: produto_interno() Parametros: tuple, tuple, tuple, float Retorna: bool ''' erros = [] # Calcular o erro para cada linha da matriz aumentada for i in range(len(constantes)): resultado_linha = produto_interno(matriz[i], solucao_atual) erros.append(abs(resultado_linha-constantes[i])) return all(e<precisao for e in erros) def retira_zeros_diagonal(matriz, constantes): '''Retira os zeros da diagonal principal de uma matriz efetuando trocas de linha. Sem dependências Parametros: tuple, tuple Retorna: (tuple, tuple) ''' i = 0 j = 0 n_matriz = list(matriz) n_constantes = list(constantes) while i < len(matriz): while n_matriz[i][i] == 0 and j < len(n_matriz): if n_matriz[j][i] != 0 and n_matriz[i][j] != 0: n_matriz[i], n_matriz[j] = n_matriz[j], n_matriz[i] n_constantes[i], n_constantes[j] = n_constantes[j], n_constantes[i] j = 0 j += 1 i += 1 return tuple(n_matriz), tuple(n_constantes) def eh_diagonal_dominante(matriz): '''Verifica se uma matriz é diagonalmente dominante. Sem dependências Parametros: tuple Retorna: bool ''' linha_atual = [] for i in range(len(matriz)): linha_atual = list(matriz[i]) elemento_diagonal = linha_atual.pop(i) linha_atual = [abs(el) for el in linha_atual] if abs(elemento_diagonal) < sum(linha_atual): return False return True def resolve_sistema(matriz, constantes, precisao): '''Resolve um sistema de equações lineares recorrendo ao método de Jacobi. Depende de: retira_zeros_diagonal(), eh_diagonal_dominante(), verifica_convergencia(), produto_interno() Parametros: tuple, tuple, float Retorna: tuple ''' # Verificacao da matriz if type(matriz) != tuple or len(matriz)==0 or len(matriz[0]) != len(matriz): raise ValueError('resolve_sistema: argumentos invalidos') for linha in matriz: if type(linha) != tuple or len(linha) != len(matriz[0]): raise ValueError('resolve_sistema: argumentos invalidos') else: for valor in linha: if (type(valor) != int and type(valor) != float): raise ValueError('resolve_sistema: argumentos invalidos') # Verificacao das constantes if type(constantes) != tuple or len(constantes)==0 or len(constantes) != len(matriz): raise ValueError('resolve_sistema: argumentos invalidos') if not all((type(c) == int or type(c) == float) for c in constantes): raise ValueError('resolve_sistema: argumentos invalidos') # Verificacao da precisao if type(precisao) != float or precisao <= 0: raise ValueError('resolve_sistema: argumentos invalidos') nova_matriz, novas_constantes = retira_zeros_diagonal(matriz, constantes) # Verificacao da diagonal if not eh_diagonal_dominante(nova_matriz): raise ValueError('resolve_sistema: matriz nao diagonal dominante') estimativas = [[0 for c in constantes]] while not verifica_convergencia(nova_matriz, novas_constantes, estimativas[-1], precisao): novas_estimativas = list() for i in range(len(estimativas[0])): f = produto_interno(nova_matriz[i], estimativas[-1]) nova_estimativa = estimativas[-1][i] + (novas_constantes[i] - f) / nova_matriz[i][i] novas_estimativas.append(nova_estimativa) estimativas.append(novas_estimativas) return tuple(estimativas[-1])
IDK04/Projeto-fp-1
main.py
main.py
py
11,418
python
pt
code
0
github-code
6
16734122984
from typing import Any from fastapi import FastAPI, Response, Request from pathlib import Path from pydantic import BaseModel from autogoal.utils._storage import inspect_storage import uvicorn from autogoal_remote.distributed.proxy import loads, dumps, encode, decode class Body(BaseModel): values: Any app = FastAPI() @app.get("/input") async def input(request: Request): """ Returns the model input type """ return { "semantic type name": str(request.app.model.best_pipeline_.input_types), "pickled data": dumps( request.app.model.best_pipeline_.input_types, use_dill=True ), } @app.get("/output") async def output(request: Request): """ Returns the model output type """ return { "semantic type name": str( request.app.model.best_pipeline_.algorithms[-1].__class__.output_type() ), "pickled data": dumps( request.app.model.best_pipeline_.algorithms[-1].__class__.output_type(), use_dill=True, ), } @app.get("/inspect") async def inspect(request: Request): """ Returns the model inspect command """ return {"data": str(inspect_storage(Path(request.app.model.export_path)))} @app.post("/") async def eval(t: Body, request: Request): """ Returns the model prediction over the provided values """ model = request.app.model data = loads(t.values) result = model.predict(data) return {"data": dumps(result)} def run(model, ip=None, port=None): """ Starts HTTP API with specified model. """ app.model = model uvicorn.run(app, host=ip or "0.0.0.0", port=port or 8000)
autogoal/autogoal-remote
autogoal_remote/production/server.py
server.py
py
1,689
python
en
code
1
github-code
6
27516277876
from discord.ext import commands from databases.database_manager import db class Hive(commands.Cog): def __init__(self, bot): self.bot = bot self._last_member = None @commands.command(name='get_map_id', help='<map_name>', aliases=["get_id","gmi"]) async def get_map_id(self, ctx, map_name): map_name = map_name.title() map_id = db.translate(map_name) if map_id is None: await ctx.send("Sorry, I could not find `{}` in the database 🙁".format(map_name)) return else: await ctx.send("The id for the `{}` map is `{}`".format(map_name, map_id)) def setup(bot): bot.add_cog(Hive(bot))
tintin10q/hive-discord-bot
commands/get_map_id.py
get_map_id.py
py
710
python
en
code
0
github-code
6
16733135761
import argparse import logging import os import sys import time from urllib.parse import urljoin, urlparse, unquote, parse_qs import requests import urllib3 from bs4 import BeautifulSoup from pathvalidate import sanitize_filename logger = logging.getLogger(__name__) class BookError(Exception): def __init__(self, text): self.txt = text def main(): logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') library_url = 'https://tululu.org' books_path = 'books/' os.makedirs(books_path, exist_ok=True) books_images_path = 'images/' os.makedirs(books_images_path, exist_ok=True) parser = argparse.ArgumentParser(description='парсер онлайн-библиотеки https://tululu.org/') parser.add_argument('start_id', nargs='?', default='1', type=int, help='с какой страницы начинать') parser.add_argument('end_id', nargs='?', default='1000', type=int, help='по какую страницу качать') args = parser.parse_args() urllib3.disable_warnings() for book_number in range(args.start_id, args.end_id + 1): book_url = f'{library_url}/b{book_number}/' try: logger.info(f'ищем книгу по адресу {book_url}') response = requests.get(book_url, verify=False) response.raise_for_status() check_for_redirect(response) book = parse_book_page(response.text, book_url) download_txt(f'{library_url}/txt.php?id={book_number}', book_number, book['title'], books_path) download_image(book['image_url'], books_images_path) except requests.HTTPError as e: print(e, file=sys.stderr) logger.exception(e) except requests.ConnectionError as e: logger.exception(e) print(e, file=sys.stderr) time.sleep(10) except requests.TooManyRedirects: print('обнаружен редирект', file=sys.stderr) except KeyboardInterrupt: print('Скачивание остановлено') sys.exit() except BookError as e: logger.exception(e) print(e, file=sys.stderr) def check_for_redirect(response): if len(response.history) > 0: logger.info('Такой страницы не существует.') raise requests.TooManyRedirects def parse_book_page(content, book_url): soup = BeautifulSoup(content, 'lxml') title_author_string = soup.select_one('.ow_px_td h1').text book_title, book_author = map(lambda title: title.strip(), title_author_string.split('::')) book_image_src = soup.select_one('.bookimage img')['src'] book_image_url = urljoin(book_url, book_image_src) search_text_result = soup.select_one('table.d_book a[title$=txt]') if not search_text_result: raise BookError('Текст этой книги отсутствует') book_text_url = search_text_result['href'] parsed_book_query = parse_qs(urlparse(book_text_url).query) book_id = parsed_book_query['id'][0] comment_tags = soup.select('.texts .black') book_comments = [comment_tag.text for comment_tag in comment_tags] genre_tags = soup.select('span.d_book a') book_genres = [genre_tag.text for genre_tag in genre_tags] book = { 'title': book_title, 'author': book_author, 'comments': book_comments, 'genres': book_genres, 'image_url': book_image_url, 'id': book_id, 'text_url': urljoin(book_url, book_text_url) } return book def download_txt(url, book_id, filename, folder='books/'): """Функция для скачивания текстовых файлов. Args: url (str): Cсылка на текст, который хочется скачать. book_id (int): Уникальный id книги filename (str): Имя файла, с которым сохранять. folder (str): Папка, куда сохранять. Returns: str: Путь до файла, куда сохранён текст. """ file_path = os.path.join(folder, f'{book_id}. {sanitize_filename(filename)}.txt') response = requests.get(url, verify=False) response.raise_for_status() check_for_redirect(response) with open(file_path, 'wb') as file: file.write(response.content) logger.info(f'скачали книгу: {file_path}') return file_path def download_image(url, folder='images/', rewrite=False): response = requests.get(url, verify=False) response.raise_for_status() check_for_redirect(response) file_path = os.path.join(folder, os.path.basename(unquote(urlparse(url).path))) if not rewrite and os.path.exists(file_path): return file_path with open(file_path, 'wb') as file: file.write(response.content) logger.info(f'скачали файл: {file_path}') return file_path if __name__ == '__main__': main()
petrovskydv/parse_library
parse_tululu.py
parse_tululu.py
py
5,093
python
en
code
0
github-code
6
15521199342
state = [] with open('D6_input.txt', 'r') as fopen: state = list(map(int, fopen.readline().rstrip().split(','))) for i in range(256): for ind, fish_state in enumerate(state): if fish_state == 0: state[ind] = 6 state.append(9) else: state[ind] -= 1 print(len(state))
probablyanasian/advent-of-code
2021/D6/Day_6A.py
Day_6A.py
py
284
python
en
code
0
github-code
6
73787200189
import DaNN import numpy as np import torch import torch.nn as nn import torch.optim as optim from tqdm import tqdm import argparse import data_loader import mmd import scipy.io import json DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') LEARNING_RATE = 0.02 MOMEMTUN = 0.05 L2_WEIGHT = 0.003 DROPOUT = 0.5 N_EPOCH = 200 BATCH_SIZE = [64, 64] LAMBDA = 0.5 GAMMA = 10 ^ 3 RESULT_TRAIN = [] RESULT_TEST = [] log_train = open('log_train_a-w.txt', 'w') log_test = open('log_test_a-w.txt', 'w') parser = argparse.ArgumentParser() parser.add_argument("--seed", type = int, default=0) parser.add_argument("--person", type=int, default=1) args = parser.parse_args() def mmd_loss(x_src, x_tar): return mmd.mix_rbf_mmd2(x_src, x_tar, [GAMMA]) def train(model, optimizer, epoch, data_src, data_tar): total_loss_train = 0 criterion = nn.CrossEntropyLoss() correct = 0 batch_j = 0 list_src, list_tar = list(enumerate(data_src)), list(enumerate(data_tar)) for batch_id, (data, target) in enumerate(data_src): _, (x_tar, y_target) = list_tar[batch_j] data, target = data.to(DEVICE), target.to(DEVICE) x_tar, y_target = x_tar.to(DEVICE), y_target.to(DEVICE) model.train() y_src, x_src_mmd, x_tar_mmd = model(data, x_tar) loss_c = criterion(y_src, target) loss_mmd = mmd_loss(x_src_mmd, x_tar_mmd) pred = y_src.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() loss = loss_c + LAMBDA * loss_mmd optimizer.zero_grad() loss.backward() optimizer.step() total_loss_train += loss.data res_i = 'Epoch: [{}/{}], Batch: [{}/{}], loss: {:.6f}'.format( epoch, N_EPOCH, batch_id + 1, len(data_src), loss.data ) batch_j += 1 if batch_j >= len(list_tar): batch_j = 0 total_loss_train /= len(data_src) acc = correct * 100. / len(data_src.dataset) res_e = 'Epoch: [{}/{}], training loss: {:.6f}, correct: [{}/{}], training accuracy: {:.4f}%'.format( epoch, N_EPOCH, total_loss_train, correct, len(data_src.dataset), acc ) tqdm.write(res_e) log_train.write(res_e + '\n') RESULT_TRAIN.append([epoch, total_loss_train, acc]) return model def test(model, data_tar, e): total_loss_test = 0 correct = 0 criterion = nn.CrossEntropyLoss() with torch.no_grad(): for batch_id, (data, target) in enumerate(data_tar): data, target = data.to(DEVICE),target.to(DEVICE) model.eval() ypred, _, _ = model(data, data) loss = criterion(ypred, target) pred = ypred.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() total_loss_test += loss.data accuracy = correct * 100. / len(data_tar.dataset) res = 'Test: total loss: {:.6f}, correct: [{}/{}], testing accuracy: {:.4f}%'.format( total_loss_test, correct, len(data_tar.dataset), accuracy ) tqdm.write(res) RESULT_TEST.append([e, total_loss_test, accuracy]) log_test.write(res + '\n') return accuracy / 100. def dataset_load(batch_size = 64, person = args.person): X_source = np.array([]) y_source = np.array([]) for i in range(10): data = scipy.io.loadmat('../train/%d.mat'%(i+1))['de_feature'] label = scipy.io.loadmat('../train/%d.mat'%(i+1))['label'] if i == 0: X_source = data y_source = label else: X_source = np.vstack((X_source, data)) y_source = np.vstack((y_source, label)) X_source = (X_source - np.min(X_source, axis=0)) / (np.max(X_source, axis=0) - np.min(X_source, axis=0)) X_source = torch.from_numpy(X_source).float() y_source = torch.from_numpy(y_source).long().squeeze() source_dataset = torch.utils.data.TensorDataset(X_source, y_source) X_target = scipy.io.loadmat('../test/%d.mat'%(10 + person))['de_feature'] y_target = scipy.io.loadmat('../test/%d.mat'%(10 + person))['label'] X_target = (X_target - np.min(X_target, axis=0)) / (np.max(X_target, axis=0) - np.min(X_target, axis=0)) X_target = torch.from_numpy(X_target).float() y_target = torch.from_numpy(y_target).long().squeeze() target_dataset = torch.utils.data.TensorDataset(X_target, y_target) return source_dataset, target_dataset if __name__ == '__main__': torch.manual_seed(args.seed) source_dataset, target_dataset = dataset_load(person=args.person) data_src = torch.utils.data.DataLoader(dataset=source_dataset,batch_size=64,shuffle=True,num_workers=1, drop_last = True) data_tar = torch.utils.data.DataLoader(dataset=target_dataset,batch_size=64,shuffle=True,num_workers=1, drop_last = True) model = DaNN.DaNN(n_input=310, n_hidden=512, n_class=4) model = model.to(DEVICE) optimizer = optim.SGD( model.parameters(), lr=LEARNING_RATE, momentum=MOMEMTUN, weight_decay=L2_WEIGHT ) acc_list = [] for e in tqdm(range(1, N_EPOCH + 1)): model = train(model=model, optimizer=optimizer, epoch=e, data_src=data_src, data_tar=data_tar) acc = test(model, data_tar, e) acc_list.append(acc.item()) jd = {"test_acc": acc_list} with open(str(args.seed)+'/acc'+str(args.person)+'.json', 'w') as f: json.dump(jd, f) torch.save(model, 'model_dann.pkl') log_train.close() log_test.close() res_train = np.asarray(RESULT_TRAIN) res_test = np.asarray(RESULT_TEST) np.savetxt('res_train_a-w.csv', res_train, fmt='%.6f', delimiter=',') np.savetxt('res_test_a-w.csv', res_test, fmt='%.6f', delimiter=',')
comprehensiveMap/EI328-project
DaNN_/main.py
main.py
py
5,846
python
en
code
5
github-code
6
37429210278
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: iGenus邮件系统一处无需登录的任意代码执行 referer: http://www.wooyun.org/bugs/wooyun-2015-0156126 author: Lucifer description: /home/webmail/igenus/include/login_inc.php base64编码未验证可写入shell ''' import sys import requests class igenus_code_exec_BaseVerify: def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50" } payload = "/index.php?selTpl=YWF8YWFhJzsKcGhwaW5mbygpOyM=" vulnurl = self.url + payload try: req = requests.get(vulnurl, headers=headers, timeout=10, verify=False) if r"Configuration File (php.ini) Path" in req.text: return "[+]存在igenus命令执行漏洞...(高危)\tpayload: "+vulnurl except: return "[-]connect timeout" if __name__ == "__main__": testVuln = igenus_code_exec_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/cms/iGenus/igenus_code_exec.py
igenus_code_exec.py
py
1,113
python
en
code
1,626
github-code
6
25693151845
# coding=gbk # 9.12 导入类练习 多个模块 """在admin privileges类中导入用户模块中的user类""" from user import User class Privileges(): """创建一个有关管理员权限的小类""" def __init__( self, privileges= ['can add post','can delete post','can ban user']): """初始化权限的属性""" self.privileges = privileges def show_privileges(self): """方法 描述有关管理员权限的职能""" print("\nThe admin user have these privileges:") for n in self.privileges: print("\t",n) class Admin(User): """创建用户类的子类 管理员类""" def __init__(self,first_name, last_name, gender,age): """接受并初始化父类的属性""" super().__init__(first_name, last_name, gender, age) self.privileges = Privileges() user_1 = Admin('lei', 'tianfu', 'male', 21) user_1.privileges.show_privileges() user_1.describe_user()
Troysps/learn_python
77/9.12导入类练习.py
9.12导入类练习.py
py
947
python
en
code
0
github-code
6
15028429007
n1 = int(input('Digite o primeiro número inteiro: ')) n2 = int(input('Digite o segundo número inteiro: ')) n3 = int(input('Digite o terceiro número inteiro: ')) if n1 > n2 and n3: print(f'O maior número é {n1}') input('Pressione ENTER para encerrar programa') if n2 > n1 and n3: print(f'O maior número é {n2}') input('Pressione ENTER para encerrar programa') exit() if n3 > n1 and n2: print(f'O maior número é {n3}') input('Pressione ENTER para encerrar programa') exit()
LeonardoDaSilvaBrandao/Phyton-Exercicios
Faça um Programa que leia três números e mostre o maior deles..py
Faça um Programa que leia três números e mostre o maior deles..py
py
535
python
pt
code
0
github-code
6
26660179991
'''Model base module''' import config import redis import collections import asyncio import sqlalchemy as sa from sqlalchemy import MetaData class Relation(object): def __init__(self, target_cls, back_populates=None, onupdate="CASCADE", ondelete="CASCADE", rkey=None, reverse=False): self.target_cls = target_cls self.back_populates = back_populates self.onupdate = onupdate self.ondelete = ondelete self.rkey = rkey self.reverse = reverse def bind(self, key, source_cls): target_cls = self.target_cls pkey = target_cls._symbols[target_cls._pname].obj self.rkey = sa.Column('_rel_{}'.format(key), pkey.type, sa.ForeignKey(pkey, onupdate=self.onupdate, ondelete=self.ondelete), index=True) if self.back_populates is not None: assert self.back_populates not in self.target_cls._relations self.target_cls._relations[self.back_populates] = Relation( source_cls, rkey=self.rkey, reverse=True) return self.rkey class Symbol(object): def __init__(self, obj, immutable, primary): self.obj = obj self.immutable = immutable self.primary = primary class ShadowColumn(object): def __init__(self, cls, mapping, prefix): self.cls = cls self.mapping = mapping self.prefix = prefix def __getattr__(self, name): column = getattr(self.cls, name) if isinstance(column, sa.Column): name = self.prefix + column.name if name in self.mapping: return self.mapping[name] elif isinstance(column, ShadowColumn): return ShadowColumn(column.cls, self.mapping, '{}__{}_'.format(self.prefix, name)) raise AttributeError class ShadowMeta(type): def build_relation_query(table, relations): query = table label_map = {} for key, relation in relations.items(): prefix = '__' + key target_cls = relation.target_cls target_query = target_cls._relquery.alias(prefix) for column in target_query.columns: label_map[column] = '{}_{}'.format(prefix, column.name) query = query.join(target_query, relation.rkey == target_query.columns[target_cls._pname]) relation_columns = {} select_columns = [] for column in query.columns: if column.name.startswith('_rel_'): continue if column in label_map: labeled_column = column.label(label_map[column]) relation_columns[labeled_column.name] = column column = labeled_column select_columns.append(column) return (relation_columns, sa.select(select_columns, from_obj=query)) def __new__(cls, name, bases, namespace): model_cls = type.__new__(cls, name, bases, namespace) if name == 'BaseModel': return model_cls pname = None symbols = {} columns = {} relations = {} pkey_constraint = None attrs = list(model_cls.__dict__.items()) for key, value in attrs: if key == '__primarykey__': pkey_constraint = sa.PrimaryKeyConstraint( *[column.name for column in value]) continue if (not isinstance(value, Relation) and not isinstance(value, sa.Column)): continue immutable = False primary = False name = key if key.startswith('_'): name = name.lstrip('_') immutable = True if isinstance(value, Relation): relations[name] = value elif isinstance(value, sa.Column): columns[name] = value primary = value.primary_key if primary: assert pname is None pname = name symbols[name] = Symbol(value, immutable, primary) delattr(model_cls, key) model_cls._pname = pname table_columns = list(columns.values()) for key, relation in relations.items(): table_columns.append(relation.bind(key, model_cls)) if pkey_constraint is not None: table_columns.append(pkey_constraint) model_cls._columns = columns model_cls._relations = relations model_cls._symbols = symbols model_cls._table = sa.Table(namespace['__tablename__'], model_cls._metadata, *table_columns) model_cls._relcolumns, model_cls._relquery = cls.build_relation_query( model_cls._table, relations) return model_cls def __getattr__(self, name): if name not in self._symbols: raise AttributeError symbol = self._symbols[name] if isinstance(symbol.obj, sa.Column): return symbol.obj elif isinstance(symbol.obj, Relation): relation = symbol.obj if not relation.reverse: return ShadowColumn(relation.target_cls, self._relcolumns, '__{}_'.format(name)) raise AttributeError class ShadowExpr(object): def __init__(self, expr, typ=None): self.expr = expr self.typ = typ def __getattr__(self, name): func = getattr(self.expr, name) def wrapper(*args, **kwargs): '''Wrapper.''' proxy_args = [] for value in args: proxy_args.append(self.proxy_value(value)) proxy_kwargs = {} for key, value in kwargs.items(): proxy_kwargs[key] = self.proxy_value(value) return ShadowExpr(func(*proxy_args, **proxy_kwargs), typ=self.typ) return wrapper def proxy_value(self, value): if isinstance(value, ShadowExpr): return value.expr elif isinstance(value, ShadowMeta): return value._table return value async def execute(self, conn): results = await conn.execute(self.expr) return ShadowResult(results, self.typ) class ShadowResult(object): def __init__(self, results, typ): self.results = results self.rowcount = self.results.rowcount self.typ = typ def __aiter__(self): return self async def __anext__(self): result = await self.results.fetchone() if result is None: raise StopAsyncIteration if self.typ is None: return result else: return self.typ(result) async def first(self): result = await self.results.fetchone() self.results.close() if result is None: return None elif self.typ is None: return result else: return self.typ(result) async def scalar(self): result = await self.results.scalar() if result is None: return None elif self.typ is None: return result else: return self.typ(result) class BaseModel(object, metaclass=ShadowMeta): _metadata = MetaData() def __init__(self, _result_obj=None, _prefix='', **kwargs): if _result_obj is not None: fields = dict((key, _result_obj[_prefix + column.name]) for key, column in self._columns.items()) for key, relation in self._relations.items(): if not relation.reverse: target_cls = relation.target_cls next_prefix = '{}__{}_'.format(_prefix, key) fields[key] = target_cls(_result_obj, next_prefix) else: fields = {} for key, column in self._columns.items(): value = None if key in kwargs: value = kwargs[key] elif key != self._pname: raise AttributeError fields[key] = value for key, relation in self._relations.items(): if not relation.reverse and key in kwargs: fields[key] = kwargs[key] object.__setattr__(self, '_fields', fields) if self._pname is not None: self.update_reverse_relations() def __getattr__(self, name): return self._fields[name] def __setattr__(self, name, value): override_mutable = False if name.startswith('_'): name = name.lstrip('_') override_mutable = True symbol = self._symbols.get(name) if symbol is None: raise AttributeError if symbol.primary: raise AttributeError if symbol.immutable and not override_mutable: raise AttributeError if isinstance(symbol.obj, Relation): relation = symbol.obj if relation.reverse: raise AttributeError self._fields[name] = value def update_reverse_relations(self): pval = self._fields[self._pname] reverse_relations = [(key, relation) for key, relation in self._relations.items() if relation.reverse] if pval is None: for key, relation in reverse_relations: if key in self._fields: del self._fields[key] else: for key, relation in reverse_relations: self._fields[key] = (relation.target_cls.select() .where(relation.rkey == pval)) async def save(self, conn): table_fields = {} for key, column in self._columns.items(): if key not in self._fields: raise AttributeError if key == self._pname and self._fields[key] is None: continue table_fields[column.name] = self._fields[key] for key, relation in self._relations.items(): if relation.reverse: continue if key not in self._fields: raise AttributeError target = self._fields[key] target_pval = getattr(target, target._pname) assert target_pval is not None table_fields[relation.rkey.name] = target_pval expr = (sa.dialects.postgresql.insert(self._table) .values(**table_fields) .on_conflict_do_update( constraint=self._table.primary_key, set_=table_fields )) if self._pname is not None: pkey = self._symbols[self._pname].obj expr = expr.returning(pkey) result = await conn.execute(expr) if self._pname is not None: pval = await result.scalar() assert pval is not None self._fields[self._pname] = pval # Since we may change the primary value, update reversed relation # queries. self.update_reverse_relations() @classmethod def select(cls): return ShadowExpr(cls._relquery, typ=cls) @classmethod def delete(cls): return ShadowExpr(cls._table.delete()) @classmethod def join(cls, other, *args, **kwargs): return ShadowExpr(cls._table.join(other._table, *args, **kwargs)) def select(fields, cls=None): query_fields = [] for field in fields: if isinstance(field, BaseModel): field = field._table query_fields.append(field) return ShadowExpr(sa.select(query_fields), typ=cls) def model_context(func): class Context: def __init__(self, conn, redis): self.conn = conn self.redis = redis async def wrapper(*args, **kwargs): '''Wrapper.''' task = asyncio.Task.current_task() ctx = Context(task._conn, task._redis) return await func(*args, **kwargs, ctx=ctx) return wrapper def create_schemas(db_url): # Make sure to load all schemas. import model.user import model.scoring import model.problem import model.proset import model.challenge engine = sa.create_engine(db_url) BaseModel._metadata.create_all(engine) engine.dispose() def drop_schemas(db_url): # Make sure to load all schemas. import model.user import model.scoring import model.problem import model.proset import model.challenge engine = sa.create_engine(db_url) BaseModel._metadata.drop_all(engine) engine.dispose()
SproutProject/sptoj-server
model/__init__.py
__init__.py
py
12,647
python
en
code
0
github-code
6