seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
26080546821
# Example 1: # here we are making a class class Student: pass # we are making an object from student class harry = Student() larry = Student() # we can make instance variable of an object like this harry.name = "Harry" harry.std = 12 harry.section = 1 larry.std = 9 larry.subjects = ["hindi", "physics"] print(harry.name, harry.std) print(harry.section, larry.subjects) # if we will going to use 'larry.name' then it will through an error because we did not define the name for the larry # Example 2: class MyClass(object): # Every class derived from the based class 'object' # Not recommended to use 'object' while defining the class def show(self): # every class method will given us the 'self' instance object print("Hello world") obj = MyClass() obj.show() # Example 2: class Mobile: # writing our one constructor which get called whenever we create the object def __init__(self): self.model = "RealMe" def show_model(self): print("Model: ", self.model) realMe = Mobile() # Accessing method realMe.show_model() # Accessing properties print(realMe.model) # Updating property value realMe.model = "RealMe Pro2" print(realMe.model) # EXample 4: class Mobile2: # writing our one constructor which get called whenever we create the object def __init__(self, model): self.model = model def show_model(self, price): print("Model: ", self.model, " Price: ", price) realMe2 = Mobile2("RealMe X") realMe2.show_model(30000) print("Address of realMe2: ", id(realMe2)) # Address of realMe2: 3058544135760 readMi = Mobile2("ReadMi 7s") readMi.show_model(20000) print("Address of readMi: ", id(readMi)) # Address of readMi: 3058544135952 # Example 5: class Employee: no_of_leaves = 8 # this is the class variable pass harry = Employee() rohan = Employee() harry.name = "Harry" harry.salary = 455 harry.role = "instructor" print(harry.name, harry.salary) # the variable that we made in here like name,salary,role these variable are the instance variable of an object not the varialbe of the class print(harry.no_of_leaves) # but here no_of_leaves is the is the property of the class print(Employee.no_of_leaves) # so we can access variable inside the class through the class as well # if we want to change the value the variable of class we can do that through class name Employee.no_of_leaves = 9 # we can change the value of the no_of_leaves thorugh but!!! harry.no_of_leaves = 10 # here we are trying to change the value of the class variable then it cant be able to change # but!!! we are acctully making the new instance variable of an object print(harry.no_of_leaves) # we can varify through one attribute and that is: print(harry.__dict__) # __dict is defined in all classes and it return dictionary # now we can see that now no_of_leaves is the instance variable of an object print(Employee.__dict__) rohan.name = "Rohan" rohan.salary = 455 rohan.role = "Student" print(rohan.name, rohan.salary) print(rohan.no_of_leaves) # but for rohan object no_of_leaves is not the instance variable but the class variable
roman-ojha/python
Notes/Main/OOP/02_Class_and_Object/02_Creating_Our_Class.py
02_Creating_Our_Class.py
py
3,134
python
en
code
2
github-code
6
27579511655
import os import shutil import torch def make_dirs(args, opts, mode="train"): splits , features = '', '' if args.video_sets == 'videos': splits += 'new_' if args.input_feature == '2d': features += 'new_' splits += 'splits' features += 'features' train_list = os.path.join(opts.data_dir, "BEST", splits, opts.task, "train.txt") valid_list = os.path.join(opts.data_dir, "BEST", splits, opts.task, "test.txt") feature_path = os.path.join(opts.data_dir, "BEST", features, opts.task) resultdir = os.path.join(opts.result_dir, opts.arg, "lap_"+opts.lap, opts.task) if mode == "train": demodir = None dir = resultdir if mode == "eval": demodir = os.path.join(opts.demo_dir, "results", opts.arg, "lap_"+opts.lap, opts.task) dir = demodir if os.path.exists(dir): shutil.rmtree(dir) os.makedirs(dir) return train_list, valid_list, feature_path, resultdir, demodir def accuracy(score_pos, score_neg): """Computes the % of correctly ordered pairs""" pred1 = score_pos pred2 = score_neg correct = torch.gt(pred1, pred2) return float(correct.sum())/correct.size(0), int(correct.sum()) def data_augmentation(input_var1, input_var2, args, device): if args.input_feature == '2d': noise = torch.autograd.Variable(torch.normal(torch.zeros(input_var1.size()[1], input_var1.size()[2], input_var1.size()[3], input_var1.size()[4]), 0.01)).to(device) else: noise = torch.autograd.Variable(torch.normal(torch.zeros(input_var1.size()[1], input_var1.size()[2]), 0.01)).to(device) input_var1 = torch.add(input_var1, noise) input_var2 = torch.add(input_var2, noise) return input_var1, input_var2 class AverageMeter(object): """Compute and stores the average and current value""" def __init__(self): self.reset() def reset_val(self): self.val = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def sec2str(sec): if sec < 60: return "{:02d}s".format(int(sec)) elif sec < 3600: min = int(sec / 60) sec = int(sec - min * 60) return "{:02d}m{:02d}s".format(min, sec) elif sec < 24 * 3600: min = int(sec / 60) hr = int(min / 60) sec = int(sec - min * 60) min = int(min - hr * 60) return "{:02d}h{:02d}m{:02d}s".format(hr, min, sec) elif sec < 365 * 24 * 3600: min = int(sec / 60) hr = int(min / 60) dy = int(hr / 24) sec = int(sec - min * 60) min = int(min - hr * 60) hr = int(hr - dy * 24) return "{:02d} days, {:02d}h{:02d}m{:02d}s".format(dy, hr, min, sec)
t-koba-96/skill-assessment
src/util.py
util.py
py
3,287
python
en
code
0
github-code
6
21386838378
# -*- coding: utf-8 -*- import datetime from functools import partial import ipyvuetify as v from traitlets import ( Unicode, observe, directional_link, List, Int, Bool, Any, link ) from sepal_ui.sepalwidgets.sepalwidget import SepalWidget, TYPES from sepal_ui.frontend.styles import sepal_darker class DynamicSelect(v.Card): """ Widget to navigate with next and previous buttons over a list Args: items (list) : List of items to be displayed in select list label (str) : Label to display into widget Parameters: v_model (traitlets.Any): Current element from select list Example: [1] ds = DynamicSelect(items=[1,2,3,4,5]) ds # Display Dynamic select widget [2] # add behaviour once v_model changes ds.observe(lambda x: print(x), 'v_model') """ items = List([]).tag(sync=True) v_model = Any().tag(sync=True) confidence = Unicode('All').tag(sync=True) def __init__(self, label='', **kwargs): self.class_='d-flex align-center mb-2' self.row=True self.label = label super().__init__(**kwargs) self.w_prev = v.Btn( _metadata = {'name':'previous'}, x_small=True, children=[ v.Icon(left=True,children=['mdi-chevron-left']), 'prev' ]) self.w_next = v.Btn( _metadata = {'name' : 'next'}, x_small=True, children=[ v.Icon(children=['mdi-chevron-right']), 'nxt' ]) self.w_conf = v.Select( class_='ma-2', label='Confidence', v_model='All', items=['All', 'Low','High', 'Nominal'] ) self.w_list = v.Select( class_='ma-2', label=self.label, items=self.items, v_model='' ) self.children = [ self.w_prev, self.w_conf, self.w_list, self.w_next ] link((self.w_list, 'items'),(self, 'items')) link((self.w_list, 'v_model'),(self, 'v_model')) link((self.w_conf, 'v_model'),(self, 'confidence')) self.w_prev.on_event('click', self.prev_next_event) self.w_next.on_event('click', self.prev_next_event) def prev_next_event(self, widget, change, data): current = self.w_list.v_model position = -1 if not current else self.w_list.items.index(current) last = len(self.w_list.items) - 1 if widget._metadata['name']=='next': if position < last: self.w_list.v_model = self.w_list.items[position+1] elif widget._metadata['name']=='previous': if position > 0: self.w_list.v_model = self.w_list.items[position-1] class Tooltip(v.Tooltip): def __init__(self, widget, tooltip, *args, **kwargs): """ Custom widget to display tooltip when mouse is over widget Args: widget (DOM.widget): widget used to display tooltip tooltip (str): the text to display in the tooltip Example: btn = v.Btn(children=['Button']) Tooltip(widget=btn, tooltip='Click over the button') """ self.bottom=True self.v_slots=[{ 'name': 'activator', 'variable': 'tooltip', 'children': widget }] widget.v_on = 'tooltip.on' self.children = [tooltip] super().__init__(*args, **kwargs) def __setattr__(self, name, value): """prevent set attributes after instantiate tooltip class""" if hasattr(self,'_model_id'): if self._model_id: raise RuntimeError(f"You can't modify the attributes of the {self.__class__} after instantiated") super().__setattr__(name, value) class Tabs(v.Card): current = Int(0).tag(sync=True) def __init__(self, titles, content, **kwargs): self.background_color="primary" self.dark = True self.tabs = [v.Tabs(v_model=self.current, children=[ v.Tab(children=[title], key=key) for key, title in enumerate(titles) ])] self.content = [v.TabsItems( v_model=self.current, children=[ v.TabItem(children=[content], key=key) for key, content in enumerate(content) ] )] self.children= self.tabs + self.content link((self.tabs[0], 'v_model'),(self.content[0], 'v_model')) super().__init__(**kwargs)
dfguerrerom/restoration_viewer
component/widget/custom_widgets.py
custom_widgets.py
py
4,906
python
en
code
0
github-code
6
29584086251
# -*- coding: utf-8 -*- import unicodedata from datetime import datetime, timedelta from html2text import html2text from openerp import models, api, fields from openerp.exceptions import Warning class AvancysNotification(models.Model): _name = 'avancys.notification' user_id = fields.Many2one('res.users', 'Usuario') notification = fields.Char('Notificacion') tittle = fields.Char('Titulo') url = fields.Char('Url') date = fields.Datetime('Fecha de generacion') state = fields.Selection([ ('pending', 'Pendiente'), ('sent', 'Enviada') ]) persistent = fields.Boolean('Notificacion persistente') constructor_id = fields.Many2one('notification.constructor', 'constructor') modelo_id = fields.Integer('ID Registro') @api.model def get_notifications(self): notifications = self.env['avancys.notification'].search([ ('user_id', '=', self.env.uid), ('state', '=', 'pending'), ('date', '<=', datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S')) ]) data = [] for message in notifications: data.append( { 'user_id': message.user_id.name, 'tittle': message.tittle, 'notification': message.notification, 'url': message.url, 'date': message.date, 'state': message.state } ) if message.persistent is True: message.unlink() else: message.state = 'sent' return data class NotificationConstructor(models.Model): _name = 'notification.constructor' name = fields.Char('Descripcion') table = fields.Many2one('ir.model', 'Modelo') field_user = fields.Char('Campo usuario') is_partner = fields.Boolean('Es contacto') tittle = fields.Char( 'Titulo de la notificacion', help="""Si es un constructor agrupado asignar un texto plano, sino asignar el campo o el simbolo '-' seguido de texto plano""") field_notification = fields.Char( 'Campo notificacion', help="""Si es un constructor agrupado asignar un texto plano, sino asignar el campo o el simbolo '-' seguido de texto plano""") notification_html = fields.Boolean('Es html') url = fields.Char('Url', help="Especificar direccion desde /web... comodin {id} si se requiere ir a un registro") url_id = fields.Char('ID URL', help="'id' o Campo tipo objeto relacionado") grouped = fields.Boolean('Agrupado') persistent = fields.Boolean('Notificacion Persistente') condition_ids = fields.One2many('notification.constructor.line', 'constructor_id', string="Condiciones") user_from = fields.Char('Remitente', help='Permite mapeo de campos a un nivel, ej: message_id.email_from') @api.model def get_notification(self): self.env.cr.execute("SELECT id FROM notification_constructor") notif_constructor_obj = self.env['notification.constructor'] constructors = self.env.cr.fetchall() for cons in constructors: notif_constructor_obj.browse(cons).create_notifications() @api.multi def create_notifications(self): avancys_notif_obj = self.env['avancys.notification'] dominio = [] for line in self.condition_ids: if line.c2[0:3] == "now": if line.c2[4:5] == '+': date = datetime.now() + timedelta(minutes=int(line.c2[6:len(line.c2)])) elif line.c2[4:5] == '-': date = datetime.now() - timedelta(minutes=int(line.c2[6:len(line.c2)])) elif len(line.c2) == 3: date = datetime.now() else: raise Warning('Las condiciones de fecha no son validas') date = datetime.strftime(date, '%Y-%m-%d %H:%M:%S') crit = (str(line.c1), str(line.operator), date) else: if str(line.c2) == 'True': cond = True elif str(line.c2) == 'False': cond = False else: cond = str(line.c2) crit = (str(line.c1), str(line.operator), cond) dominio.append(crit) modelo_ids = self.env[self.table.model].search(dominio) notif_data = [] orm2sql = self.env['avancys.orm2sql'] if not self.grouped: for i in modelo_ids: for user in getattr(i, self.field_user): if self.is_partner: user_notification = user.system_user_id.id else: user_notification = user.id if self.persistent: user_constructor = avancys_notif_obj.search([ ('constructor_id', '=', self.id), ('user_id', '=', user_notification), ('modelo_id', '=', i.id), ('state', '=', 'pending')]) else: user_constructor = avancys_notif_obj.search([ ('constructor_id', '=', self.id), ('user_id', '=', user_notification), ('modelo_id', '=', i.id)]) if len(user_constructor) > 0: continue if self.tittle[0] == '-': tittle = self.tittle[1:len(self.tittle)] else: if '.' in self.tittle: tittle = getattr(getattr(i, self.tittle.split('.')[0])[0], self.tittle.split('.')[1]) else: tittle = getattr(i, self.tittle) try: tittle = tittle[0].display_name except: if tittle: if len(tittle) == 0: tittle = False else: pass else: tittle = False user_from = False if self.user_from: if '.' in self.user_from: user_from = getattr( getattr(i, self.user_from.split('.')[0])[0], self.user_from.split('.')[1]) else: user_from = getattr(i, self.user_from) try: user_from = user_from[0].display_name except: if len(user_from) == 0: user_from = False else: pass if tittle and user_from: if len(user_from.split(' ')) > 2: user_from = user_from.split(' ')[0] + ' ' + user_from.split(' ')[1] tittle = user_from + ': ' + tittle elif user_from: tittle = user_from if self.field_notification[0] == '-': field_notification = self.field_notification[1:len(self.tittle)] else: if '.' in self.field_notification: field_notification = getattr(i, self.field_notification.split('.')[0]) field_notification = getattr(field_notification[0], self.field_notification.split('.')[1]) else: field_notification = getattr(i, self.field_notification) try: field_notification = field_notification[0].display_name except: if len(field_notification) == 0: field_notification = False else: pass if self.notification_html: if field_notification: field_notification = html2text(field_notification).replace('\n', '') else: field_notification = '' if self.url: if not self.url_id: raise Warning( "Debe especificar un campo relacionado al id para la url, por lo general es 'id'") if self.url_id == 'id': url_id = i.id else: url_id = getattr(i, self.url_id)[0].id url = self.url.replace('{id}', str(url_id)) else: url = False if user_notification is False: continue notif_data.append({ 'user_id': user_notification, 'tittle': tittle, 'notification': field_notification, 'url': url, 'state': 'pending', 'date': orm2sql.local_date(datetime.strftime(datetime.now(), '%Y-%m-%d') + " 00:00:00"), 'constructor_id': self.id, 'persistent': self.persistent, 'modelo_id': i.id, }) else: users = [] for i in modelo_ids: for user in getattr(i, self.field_user): if self.is_partner: user_notification = user[0].system_user_id.id else: user_notification = user[0].id if len(user) > 0: if user_notification not in users: users.append(user_notification) for user in users: if self.persistent: user_constructor = avancys_notif_obj.search([ ('constructor_id', '=', self.id), ('user_id', '=', user), ('state', '=', 'pending')]) else: user_constructor = avancys_notif_obj.search([ ('constructor_id', '=', self.id), ('user_id', '=', user)]) if len(user_constructor) > 0: continue if user is False: continue notif_data.append({ 'user_id': user, 'tittle': self.tittle, 'notification': self.field_notification, 'url': self.url, 'state': 'pending', 'date': orm2sql.local_date(datetime.strftime(datetime.now(), '%Y-%m-%d') + " 00:00:00"), 'constructor_id': self.id, 'persistent': self.persistent, }) orm2sql.sqlcreate(self.env.uid, self.env.cr, 'avancys_notification', notif_data) return class NotificationConstructorLine(models.Model): _name = 'notification.constructor.line' c1 = fields.Char('Campo de busqueda') operator = fields.Char('Operador') c2 = fields.Char( 'Condicion', help=''' Para relacionar la fecha actual, asignar la palabra 'now' y agregar el operador = o - con espacios intermedios, ej. 'now + 60' para compararla con la hora actual + 1 hora ''') constructor_id = fields.Many2one('notification.constructor', 'Constructor')
odoopruebasmp/Odoo_08
v8_llevatelo/avancys_notification/avancys_notification.py
avancys_notification.py
py
11,966
python
en
code
0
github-code
6
35764996048
import os # import urllib.request # from types import SimpleNamespace # from urllib.error import HTTPError import random import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd # import tabulate import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data from torch_geometric.utils import to_undirected,add_self_loops,remove_self_loops from torch_geometric.data import InMemoryDataset, download_url from torch_geometric.data import Data,DataLoader from torch_geometric.datasets import TUDataset def collate_graph_adj(edge_list, ptr,use_gpu=False): if not use_gpu: edges = torch.cat([torch.tensor(i) + ptr[idx] for idx, i in enumerate(edge_list)], dim=1) N = ptr[-1] return torch.sparse_coo_tensor(edges,[1.]*edges.shape[1], (N, N)) else: edges = torch.cat([torch.tensor(i).cuda(0) + ptr[idx] for idx, i in enumerate(edge_list)], dim=1) N = ptr[-1] val = torch.tensor([1.]*edges.shape[1]).cuda(0) return torch.sparse_coo_tensor(edges,val, (N, N)).cuda(0) class EdgeIndex_Processor(): def __init__(self, edge_index): super().__init__() self.random_walk = None adj,N = self.to_sparse_tensor(edge_index) adj_with_selfloop = self.to_sparse_tensor_with_selfloop(edge_index) self.N = N self.adj = adj.float() self.adj_with_loop = adj_with_selfloop.float() self.k_hop_neibrs = [adj.float()] self.calc_random_walk_matrix() def to_sparse_tensor(self, edge_index): edge_index = remove_self_loops(edge_index)[0] r = len(edge_index[0]) N = edge_index.max() + 1 t = torch.sparse_coo_tensor(edge_index, [1] * r, (N, N)) return t, N def to_sparse_tensor_with_selfloop(self, edge_index): edge_index = add_self_loops(edge_index)[0] r = len(edge_index[0]) N = edge_index.max() + 1 t = torch.sparse_coo_tensor(edge_index, [1] * r, (N, N)) return t def calc_random_walk_matrix(self): t = self.adj_with_loop.to_dense().sum(dim=1) t = 1./t n = len(t) ind = torch.tensor([[i,i] for i in range(n)]).T diag = torch.sparse_coo_tensor(ind,t,(n,n)) random_walk = torch.sparse.mm(diag,self.adj) self.random_walk = random_walk def calc_random_walk_feature(self,order=10): t = self.random_walk tot_walk_feats = [] walk_feats = [] for i in range(self.N): walk_feats.append(t[i,i]) tot_walk_feats.append(walk_feats) for i in range(order): walk_feats = [] t = torch.sparse.mm(t,self.random_walk) for i in range(self.N): walk_feats.append(t[i, i]) tot_walk_feats.append(walk_feats) tot_walk_feats = torch.tensor(tot_walk_feats).T return tot_walk_feats def calc_adj_power(self,adj, power): t = adj for _ in range(power - 1): t = torch.sparse.mm(t, adj) # set value to one indices = t.coalesce().indices() v = t.coalesce().values() v = torch.tensor([1 if i > 1 else i for i in v]) diag_mask = indices[0] != indices[1] indices = indices[:, diag_mask] v = v[diag_mask] t = torch.sparse_coo_tensor(indices, v, (self.N, self.N)) return t def postprocess_k_hop_neibrs(self,sparse_adj): diag = torch.diag(1. / sparse_adj.to_dense().sum(dim=1)) diag = diag.to_sparse() out = torch.sparse.mm(diag, sparse_adj) return out def calc_k_hop_neibrs(self,k_hop=2): adj_hop_k = self.calc_adj_power(self.adj, k_hop) one_hop = self.k_hop_neibrs[0] prev_hop = self.k_hop_neibrs[1:k_hop] for p in prev_hop: one_hop += p final_res = adj_hop_k - one_hop indices = final_res.coalesce().indices() v = final_res.coalesce().values() v = [0 if i <= 0 else 1 for i in v] masking = [] v_len = len(v) for i in range(v_len): if v[i] > 0: masking.append(i) v = torch.tensor(v) masking = torch.tensor(masking).long() indices = indices[:, masking] v = v[masking] final_res = torch.sparse_coo_tensor(indices, v, (self.N, self.N)) return final_res def run(self,k_hop=[2,3,4,5,6],random_walk_order=20): walk_feature = self.calc_random_walk_feature(order=random_walk_order) for k in k_hop: t = self.calc_k_hop_neibrs(k) self.k_hop_neibrs.append(t.float()) # normed_k_hop_adj = [self.postprocess_k_hop_neibrs(i.float()) for i in self.k_hop_neibrs] # 是否使用D^-1*A return self.k_hop_neibrs,walk_feature def transform(t): q, j = EdgeIndex_Processor(t.edge_index).run() hop1, hop2, hop3, hop4, hop5, hop6 = q[0], q[1], q[2], q[3], q[4], q[5] t.rand_feature = j x2 = torch.concat((t.x, j), dim=1) hop1_feature = hop1.matmul(x2) hop2_feature = hop2.matmul(x2) hop3_feature = hop3.matmul(x2) hop4_feature = hop4.matmul(x2) hop5_feature = hop5.matmul(x2) hop6_feature = hop6.matmul(x2) hop1 = hop1.coalesce().indices().tolist() hop2 = hop2.coalesce().indices().tolist() hop3 = hop3.coalesce().indices().tolist() hop4 = hop4.coalesce().indices().tolist() hop5 = hop5.coalesce().indices().tolist() hop6 = hop6.coalesce().indices().tolist() t.hop1 = hop1 t.hop2 = hop2 t.hop3 = hop3 t.hop4 = hop4 t.hop5 = hop5 t.hop6 = hop6 t.hop1_feature = hop1_feature t.hop2_feature = hop2_feature t.hop3_feature = hop3_feature t.hop4_feature = hop4_feature t.hop5_feature = hop5_feature t.hop6_feature = hop6_feature return t if __name__=='__main__': pass # edges = torch.tensor([[0, 1, 0, 2, 1, 3, 2, 3], [1, 0, 2, 0, 3, 1, 3, 2]]).long() # data_model = EdgeIndex_Processor(edges) # q,j = data_model.run() # print (q[0]) # print (j) # s = Synthetic_Dataset(root='data/pyg_TRIANGLE_EX/test') # for d in s: # if max(d.y)>1: # print (d.y)
tianyao-aka/Expresive_K_hop_GNNs
QM9/func_util_V2.py
func_util_V2.py
py
6,416
python
en
code
2
github-code
6
71811415868
#!/usr/bin/env python # -*- coding:utf-8 -*- """code_info @Time : 2020 2020/7/13 15:53 @Author : Blanc @File : selenium_test.py """ from selenium import webdriver browser = webdriver.Chrome() browser.get('https://space.bilibili.com/1') name=browser.find_element_by_id('h-name') print(name.text) browser.close()
Flynn-Lu/PythonCode
2020python实训/Day11/selenium_test.py
selenium_test.py
py
331
python
en
code
0
github-code
6
5722675237
import os import struct from lxml import etree import datetime # | Character | Byte order | Size | Alignment | # | --------- | ---------------------- | -------- | --------- | # | @ | native | native | native | # | = | native | standard | none | # | < | little-endian | standard | none | &lt; # | > | big-endian | standard | none | &gt; # | ! | network (= big-endian) | standard | none | # | Format | C Type | Python type | Standard size | Notes | # | ------ | ------------------ | ----------------- | ------------- | -------- | # | x | pad byte | no value | | | # | c | char | bytes of length 1 | 1 | | # | b | signed char | integer | 1 | (1), (2) | # | ? | _Bool | bool | 1 | (1) | # | h | short | integer | 2 | (2) | # | H | unsigned short | integer | 2 | (2) | # | i | int | integer | 4 | (2) | # | I | unsigned int | integer | 4 | (2) | # | l | long | integer | 4 | (2) | # | L | unsigned long | integer | 4 | (2) | # | q | long long | integer | 8 | (2) | # | Q | unsigned long long | integer | 8 | (2) | # | n | ssize_t | integer | | (3) | # | N | size_t | integer | | (3) | # | e | (6) | float | 2 | (4) | # | f | float | float | 4 | (4) | # | d | double | float | 8 | (4) | # | s | char[] | bytes | | | # | p | char[] | bytes | | | # | P | void* | integer | | (5) | class CustomFuncs: @staticmethod def systemtime_16_le(bytes16): """ typedef struct _SYSTEMTIME { WORD wYear; WORD wMonth; WORD wDayOfWeek; WORD wDay; WORD wHour; WORD wMinute; WORD wSecond; WORD wMilliseconds; } SYSTEMTIME, *PSYSTEMTIME, *LPSYSTEMTIME; """ n = struct.unpack('<8H', bytes16) d = datetime.datetime(n[0], n[1], n[3], n[4], n[5], n[6], n[7] * 1000) return d.isoformat() @staticmethod def hex_str(bytes0): """ convert unknown length of bytes to hex string. """ return bytes0.hex() class ByteSnipper: def __init__(self, fp_bin): self.f = open(fp_bin, 'rb') def get_bytes(self, start_offset, byte_size): self.f.seek(start_offset, 0) return self.f.read(byte_size) class TreeFuncs: @staticmethod def get_tree(fp): if os.path.isfile(fp): with open(fp, 'rb') as f: try: tree = etree.parse(f) except Exception as e: print(f'Error: Failed to open the input XML file! fp={fp}') print(e) quit() else: return tree else: print(f'fp="{fp}" is not a file!') quit() @staticmethod def write_tree(fp, tree): with open(fp, 'wb') as f: tree.write(f, encoding='utf-8', xml_declaration=True) def parse_to_xml(fp_bin, fp_xml): # parse binary data byte_snipper = ByteSnipper(fp_bin) # parse xml settings tree_root = TreeFuncs.get_tree(fp_xml) # loop through <Pattern> element for pattern in tree_root.xpath('/Patterns/Pattern'): data_result = "Not Set Error" # get start offset in integer try: start_offset_int = int(pattern.get('start_offset'), 0) except Exception as e: data_result = f"{e.__class__.__name__}: start_offset" else: # Unpack Format ------------------- if pattern.get('unpack_format') is not None: data_format = pattern.get('unpack_format') print(f'data_format={data_format}') # Validate data length try: data_length = struct.calcsize(data_format) except Exception as e: data_result = f'{e.__class__.__name__}: data_length' else: data_bytes = byte_snipper.get_bytes(start_offset_int, data_length) # if unpack_index is not specified, return tuple. if pattern.get('unpack_index') is None: data_result = str(struct.unpack(data_format, data_bytes)) else: # Validate unpack index type try: unpack_index = int(pattern.get('unpack_index')) except Exception as e: data_result = f'{e.__class__.__name__}: unpack_index' else: # Validate unpack index range try: data_result = str(struct.unpack(data_format, data_bytes)[unpack_index]) except Exception as e: data_result = f"{e.__class__.__qualname__}: unpack_index" # Code Page ----------------------- elif pattern.get('code_page') is not None: decode_error = pattern.get('decode_error') if pattern.get('decode_error') is not None else 'replace' data_length = int(pattern.get('length'), 0) data_bytes = byte_snipper.get_bytes(start_offset_int, data_length) data_result = data_bytes.decode(pattern.get('code_page'), decode_error).rstrip(' \0\r\n\t') # Function ------------------------- elif pattern.get('function') is not None: data_length = int(pattern.get('length'), 0) custom_fnc = getattr(CustomFuncs, pattern.get('function')) data_bytes = byte_snipper.get_bytes(start_offset_int, data_length) data_result = custom_fnc(data_bytes) # Nested ----------------------- elif pattern.get('nested') is not None: pass # set XML element value finally: pattern.text = data_result return tree_root def test_from_cmd(): fp_data = 'bintoxml_data.dat' fp_xml_in = 'bintoxml_input.xml' fp_xml_out = 'bintoxml_output.xml' tree_root = parse_to_xml(fp_data, fp_xml_in) TreeFuncs.write_tree(fp_xml_out, tree_root) if __name__ == "__main__": test_from_cmd()
HappyKimoto/BinaryToXml
bintoxml.py
bintoxml.py
py
7,191
python
en
code
0
github-code
6
35684957719
# Given the head of a LinkedList and two positions ‘p’ and ‘q’, reverse the LinkedList from position ‘p’ to ‘q’. class Node: def __init__(self, v, n=None): self.value = v self.next = n def print_ll(self): while self is not None: print(self.value) self = self.next def reverse_sub_ll(head, p, q): p_temp = head q_temp = head temp = head while temp is not None: if temp.next == p: p_temp = temp if temp == q: q_temp = temp.next temp = temp.next previous = q_temp current = p next = None while next is not q_temp: next = current.next current.next = previous previous = current current = next p_temp.next = previous def main(): head = Node(1) head.next = Node(2) head.next.next = Node(3) head.next.next.next = Node(4) head.next.next.next.next = Node(5) head.print_ll() reverse_sub_ll(head, head.next, head.next.next.next) print("-- After Reversing --") head.print_ll() pass if __name__ == '__main__': main()
hitesh-goel/ds-algo
grokking-tci/6_reverse_ll/reverse_sub_ll.py
reverse_sub_ll.py
py
1,144
python
en
code
0
github-code
6
11726198344
import sys import codecs import os import numpy as np import torch from torch.autograd import Variable from .constants import MAX_CHAR_LENGTH, NUM_CHAR_PAD, PAD_CHAR, PAD_POS, PAD_TYPE, ROOT_CHAR, ROOT_POS, ROOT_TYPE, END_CHAR, END_POS, END_TYPE, _START_VOCAB, ROOT, PAD_ID_WORD, PAD_ID_CHAR, PAD_ID_TAG, DIGIT_RE from .conllu_reader import CoNLLReader from .dictionary import Dictionary def init_seed(seed): np.random.seed(seed) torch.manual_seed(seed) def create_dict(train_path, dev_path, test_path, word_embed_dict, dry_run): word_dictionary = Dictionary('word', default_value=True, singleton=True) char_dictionary = Dictionary('character', default_value=True) pos_dictionary = Dictionary('pos', default_value=True) type_dictionary = Dictionary('type', default_value=True) xpos_dictionary = Dictionary('xpos', default_value=True) char_dictionary.add(PAD_CHAR) pos_dictionary.add(PAD_POS) xpos_dictionary.add(PAD_POS) type_dictionary.add(PAD_TYPE) char_dictionary.add(ROOT_CHAR) pos_dictionary.add(ROOT_POS) xpos_dictionary.add(ROOT_POS) type_dictionary.add(ROOT_TYPE) char_dictionary.add(END_CHAR) pos_dictionary.add(END_POS) xpos_dictionary.add(END_POS) type_dictionary.add(END_TYPE) vocab = dict() with codecs.open(train_path, 'r', 'utf-8', errors='ignore') as file: li = 0 for line in file: line = line.strip() if len(line) == 0 or line[0]=='#': continue tokens = line.split('\t') if '-' in tokens[0] or '.' in tokens[0]: continue for char in tokens[1]: char_dictionary.add(char) word = DIGIT_RE.sub(b"0", str.encode(tokens[1])).decode() pos = tokens[3] if tokens[4]=='_' else tokens[3]+'$$$'+tokens[4] xpos = tokens[4] typ = tokens[7] pos_dictionary.add(pos) xpos_dictionary.add(xpos) type_dictionary.add(typ) if word in vocab: vocab[word] += 1 else: vocab[word] = 1 li = li + 1 if dry_run and li == 100: break # collect singletons min_occurence = 1 singletons = set([word for word, count in vocab.items() if count <= min_occurence]) # if a singleton is in pretrained embedding dict, set the count to min_occur + c for word in vocab.keys(): if word in word_embed_dict or word.lower() in word_embed_dict: vocab[word] += 1 vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True) vocab_list = [word for word in vocab_list if word in _START_VOCAB or vocab[word] > min_occurence] max_vocabulary_size = 50000 if len(vocab_list) > max_vocabulary_size: vocab_list = vocab_list[:max_vocabulary_size] def expand_vocab(data_paths): vocab_set = set(vocab_list) for data_path in data_paths: if os.path.exists(data_path): with codecs.open(data_path, 'r', 'utf-8', errors='ignore') as file: li = 0 for line in file: line = line.strip() if len(line) == 0 or line[0]=='#': continue tokens = line.split('\t') if '-' in tokens[0] or '.' in tokens[0]: continue for char in tokens[1]: char_dictionary.add(char) word = DIGIT_RE.sub(b"0", str.encode(tokens[1])).decode() pos = tokens[3] if tokens[4]=='_' else tokens[3]+'$$$'+tokens[4] typ = tokens[7] xpos = tokens[4] pos_dictionary.add(pos) type_dictionary.add(typ) xpos_dictionary.add(xpos) if word not in vocab_set and (word in word_embed_dict or word.lower() in word_embed_dict): vocab_set.add(word) vocab_list.append(word) li = li + 1 if dry_run and li==100: break expand_vocab([dev_path, test_path]) for word in vocab_list: word_dictionary.add(word) if word in singletons: word_dictionary.add_singleton(word_dictionary.get_index(word)) word_dictionary.close() char_dictionary.close() pos_dictionary.close() xpos_dictionary.close() type_dictionary.close() return word_dictionary, char_dictionary, pos_dictionary, xpos_dictionary, type_dictionary def read_data(source_path, word_dictionary, char_dictionary, pos_dictionary, xpos_dictionary, type_dictionary, bptt, max_size=None, normalize_digits=True, symbolic_root=False, symbolic_end=False, dry_run=False): max_char_length = 0 print('Reading data from %s' % source_path) counter = 0 reader = CoNLLReader(source_path, word_dictionary, char_dictionary, pos_dictionary, type_dictionary, xpos_dictionary, None) inst = reader.getNext(normalize_digits=normalize_digits, symbolic_root=symbolic_root, symbolic_end=symbolic_end) data = [] while inst is not None and (not dry_run or counter < 100): inst_size = inst.length() sent = inst.sentence if len(sent.words) > bptt: # generate seqeuences num_sequences = len(sent.words) - bptt for seq_no in range(num_sequences): word_ids, char_id_seqs, pos_ids, xpos_ids, tar_ids = [], [], [], [], [] for i in range(bptt): word_ids.append(sent.word_ids[seq_no+i]) tar_ids.append(sent.word_ids[seq_no+i+1]) char_id_seqs.append(sent.char_id_seqs[seq_no+i]) pos_ids.append(inst.pos_ids[seq_no+i]) xpos_ids.append(inst.xpos_ids[seq_no+i]) data.append([word_ids, char_id_seqs, pos_ids, tar_ids, xpos_ids]) max_len = max([len(char_seq) for char_seq in sent.char_seqs]) max_char_length = max(max_len, max_char_length) inst = reader.getNext(normalize_digits=normalize_digits, symbolic_root=symbolic_root, symbolic_end=symbolic_end) counter += 1 reader.close() return data, max_char_length def read_data_to_variable(source_path, word_dictionary, char_dictionary, pos_dictionary, xpos_dictionary, type_dictionary, bptt, max_size=None, normalize_digits=True, symbolic_root=False, symbolic_end=False, use_gpu=False, volatile=False, dry_run=False): data, max_char_length = read_data(source_path, word_dictionary, char_dictionary, pos_dictionary, xpos_dictionary, type_dictionary, bptt, max_size=max_size, normalize_digits=normalize_digits, symbolic_root=symbolic_root, symbolic_end=symbolic_end, dry_run=dry_run) wid_inputs = np.empty([len(data), bptt], dtype=np.int64) cid_inputs = np.empty([len(data), bptt, max_char_length], dtype=np.int64) pid_inputs = np.empty([len(data), bptt], dtype=np.int64) xpid_inputs = np.empty([len(data), bptt], dtype=np.int64) wid_outputs = np.empty([len(data), bptt], dtype=np.int64) for di in range(len(data)): word_ids, char_id_seqs, pos_ids, tar_wid, xpos_ids = data[di] wid_inputs[di, :] = word_ids for c, cids in enumerate(char_id_seqs): cid_inputs[di, c, :len(cids)] = cids cid_inputs[di, c, len(cids):] = PAD_ID_CHAR pid_inputs[di, :] = pos_ids xpid_inputs[di, :] = xpos_ids wid_outputs[di, :] = tar_wid words = Variable(torch.from_numpy(wid_inputs), requires_grad=False) chars = Variable(torch.from_numpy(cid_inputs), requires_grad=False) poss = Variable(torch.from_numpy(pid_inputs), requires_grad=False) xposs = Variable(torch.from_numpy(xpid_inputs), requires_grad=False) targets = Variable(torch.from_numpy(wid_outputs), requires_grad=False) if use_gpu: words = words.cuda() chars = chars.cuda() poss = poss.cuda() targets = targets.cuda() xposs = xposs.cuda() return words, chars, poss, targets, xposs def get_batch_variable(data, batch_size): words, chars, poss, targets, xposs = data index = torch.randperm(words.size(0)).long()[:batch_size] if words.is_cuda: index = index.cuda() return words[index], chars[index], poss[index], targets[index], xposs[index] def iterate_batch_variable(data, batch_size): words, chars, poss, targets, xposs = data index = torch.arange(0, words.size(0), dtype=torch.long) if words.is_cuda: index = index.cuda() num_batches = words.size(0) // batch_size for bi in range(num_batches): idx = index[bi * batch_size: (bi+1)*batch_size] yield words[idx], chars[idx], poss[idx], targets[idx], xposs[idx]
ganeshjawahar/ELMoLex
dat/nlm_data.py
nlm_data.py
py
8,163
python
en
code
12
github-code
6
4488441296
""" """ import argparse import copy import functools import itertools # import operator import os from pathlib import Path import re import galsim import joblib import metadetect import ngmix import numpy as np import pyarrow as pa import pyarrow.compute as pc import pyarrow.dataset as ds import pyarrow.parquet as pq import yaml from chromatic_shear_bias.generators import generators @functools.cache def read_sed_file(file_name, wave_type, flux_type): return galsim.sed.SED(file_name, wave_type, flux_type) def build_star(star_params, sed_dir): _standard_dict = { "lte*": "starSED/phoSimMLT", "bergeron*": "starSED/wDs", "k[mp]*": "starSED/kurucz", } wave_type = "Nm" flux_type = "flambda" sed_filename = star_params.get("sedFilename").strip() if not sed_filename.endswith(".gz"): # Some files are missing ".gz" in their suffix; if this is the case, # append to the current suffix sed_filename += ".gz" path_name = Path(sed_filename) for k, v in _standard_dict.items(): matched = False if path_name.match(k): sed_path = Path(sed_dir) / v / path_name matched = True break # we should only have one match if not matched: raise ValueError( f"Filename {sed_filename} does not match any known patterns in {sed_dir}" ) if not sed_path.exists(): raise ValueError(f"Filename {sed_filename} not found in {sed_dir}") sed_file = sed_path.as_posix() sed = read_sed_file(sed_file, wave_type, flux_type) sed = sed.withFluxDensity(1, wavelength=600) # print(f"\tBuilding star took {end - start} s") return galsim.DeltaFunction() * sed def DC2_generator(predicate=None, seed=None): dataset = "/oak/stanford/orgs/kipac/users/smau/dc2_stellar_healpixel_parquet" columns = [ "^sedFilename$", ] sed_dir = "/oak/stanford/orgs/kipac/users/smau/" batch_generator = generators.generate_batches(dataset, columns=columns, predicate=predicate) for batch in batch_generator: row_generator = generators.generate_rows(batch, n_sample=batch.num_rows, seed=seed) for row in row_generator: built = build_star(row, sed_dir) yield built
LSSTDESC/chromatic-shear-bias
chromatic_shear_bias/generators/stars.py
stars.py
py
2,290
python
en
code
4
github-code
6
36712615798
from .mail import on_warning_last_data_upd import threading from datetime import datetime class SensorDataSignals: def __init__(self): self.date = datetime.now() self.timer = threading.Timer(10, on_warning_last_data_upd(datetime.now())) def time_warning(self, sender, **kwargs): if self.timer is not None: self.timer.cancel() self.date = datetime.now() self.timer = threading.Timer(10, on_warning_last_data_upd(self.date)) self.timer.start()
novelsk/AtlasDjango
app/atlas/signals.py
signals.py
py
513
python
en
code
0
github-code
6
31106755329
''' Given a binary tree t and an integer s, determine whether there is a root to leaf path in t such that the sum of vertex values equals s. Example For t = { "value": 4, "left": { "value": 1, "left": { "value": -2, "left": null, "right": { "value": 3, "left": null, "right": null } }, "right": null }, "right": { "value": 3, "left": { "value": 1, "left": null, "right": null }, "right": { "value": 2, "left": { "value": -2, "left": null, "right": null }, "right": { "value": -3, "left": null, "right": null } } } } and s = 7, the output should be hasPathWithGivenSum(t, s) = true. ''' class Tree(object): def __init__(self, x): self.value = x self.left = None self.right = None def hasPathWithGivenSum(t, s): if t is None: return s == 0 elif t.left is None and t.right is not None: return hasPathWithGivenSum(t.right,s-t.value) elif t.right is None and t.left is not None: return hasPathWithGivenSum(t.left,s-t.value) else: return hasPathWithGivenSum(t.left,s-t.value) or hasPathWithGivenSum(t.right,s-t.value)
JorG96/DataStructures
hasPathWithGivenSum.py
hasPathWithGivenSum.py
py
1,521
python
en
code
0
github-code
6
43140645221
"""``atomicmass`` - Return the atomic mass of an atom or molecule. This is really just a wrapper for `periodictable <https://periodictable.readthedocs.io/en/latest/index.html>`_ but returns the mass as an `astropy quantity <http://docs.astropy.org/en/stable/units/index.html>`_. """ import periodictable as pt import astropy.units as u def atomicmass(species): r"""Return the atomic mass of an atom or molecule. **Parameters** species Chemical formula requested species. See `periodictable <https://periodictable.readthedocs.io/en/latest/index.html>`_ for formatting options. **Returns** The atomicmass of *species* as an astropy quantity with units = AMU :math:`(1\, \mathrm{AMU} = 1.660539 \times 10^{-27}\, \mathrm{kg})`. If ``periodictable`` returns a ValueError, *None* is returned. **Examples** :: >>> from nexoclom.atomicdata import atomicmass >>> print(atomicmass('Na')) 22.98977 u >>> print(atomicmass('H2O')) 18.01528 u >>> print(atomicmass('X')) WARNING: mathMB.atomicmass: X not found None """ el = [e.symbol for e in pt.elements] if species in el: atom = eval('pt.' + species) mass = atom.mass * u.u else: try: mass = pt.formula(species).mass * u.u except ValueError: print(f'WARNING: mathMB.atomicmass: {species} not found') mass = None return mass
mburger-stsci/nexoclom
nexoclom/atomicdata/atomicmass.py
atomicmass.py
py
1,498
python
en
code
0
github-code
6
2223517855
from math import cos, sin, radians class Day12(): def __init__(self, input, target): instructions = input.strip() self.instructions = [[x[0], int(x[1:])] for x in instructions.split('\n')] self.direction = [1, 0] self.location = [0, 0] self.waypoint = [10, 1] self.target = target def run_instructions(self): for instruction in self.instructions: self.move(instruction) def move(self, instruction): movement = [0, 0] if instruction[0] == 'N': movement = [0, instruction[1]] elif instruction[0] == 'S': movement = [0, -instruction[1]] elif instruction[0] == 'E': movement = [instruction[1], 0] elif instruction[0] == 'W': movement = [-instruction[1], 0] elif instruction[0] == 'L': self.rotate(instruction) elif instruction[0] == 'R': self.rotate(instruction) elif instruction[0] == 'F': if self.target == 'ship': movement = [x * instruction[1] for x in self.direction] elif self.target == 'waypoint': movement = [x * instruction[1] for x in self.waypoint] self.location = [sum(x) for x in zip(self.location, movement)] movement = [0, 0] if self.target == 'ship': self.location = [sum(x) for x in zip(self.location, movement)] if self.target == 'waypoint': self.waypoint = [sum(x) for x in zip(self.waypoint, movement)] print(instruction) print(self.location, self.waypoint, self.direction) # print(instruction, self.direction, self.waypoint, self.location) # def move_ship(self, instruction): # movement = [0, 0] # if instruction[0] == 'N': # movement = [0, instruction[1]] # elif instruction[0] == 'S': # movement = [0, -instruction[1]] # elif instruction[0] == 'E': # movement = [instruction[1], 0] # elif instruction[0] == 'W': # movement = [-instruction[1], 0] # elif instruction[0] == 'L': # self.rotate(instruction) # elif instruction[0] == 'R': # self.rotate(instruction) # elif instruction[0] == 'F': # movement = [x * instruction[1] for x in self.direction] # self.location = [sum(x) for x in zip(self.location, movement)] # print(instruction, self.direction, self.location) # def move_waypoint(self, instruction): # movement = [0, 0] # if instruction[0] == 'N': # movement = [0, instruction[1]] # elif instruction[0] == 'S': # movement = [0, -instruction[1]] # elif instruction[0] == 'E': # movement = [instruction[1], 0] # elif instruction[0] == 'W': # movement = [-instruction[1], 0] # elif instruction[0] == 'L': # self.rotate(instruction) # elif instruction[0] == 'R': # self.rotate(instruction) # elif instruction[0] == 'F': # movement = [x * instruction[1] for x in self.direction] def get_distance(self): return sum([abs(x) for x in self.location]) def rotate(self, instruction): if self.target == 'ship': target_direction = self.direction elif self.target == 'waypoint': target_direction = self.waypoint if instruction[0] == 'R': rotated = [ target_direction[0] * cos(radians(instruction[1])) + target_direction[1] * sin(radians(instruction[1])), target_direction[0] * -sin(radians(instruction[1])) + target_direction[1] * cos(radians(instruction[1])) ] else: rotated = [ target_direction[0] * cos(radians(instruction[1])) + target_direction[1] * -sin(radians(instruction[1])), target_direction[0] * sin(radians(instruction[1])) + target_direction[1] * cos(radians(instruction[1])) ] if self.target == 'ship': self.direction = [round(x) for x in rotated] elif self.target == 'waypoint': self.waypoint = [round(x) for x in rotated] test_input = '''F10 N3 F7 R90 F11''' test_part_1 = Day12(test_input, 'ship') test_part_1.run_instructions() print(test_part_1.get_distance()) test_part_2 = Day12(test_input, 'waypoint') test_part_2.run_instructions() print(test_part_2.get_distance()) with open('input/day_12.txt', 'r') as f: input = f.read() actual_part_1 = Day12(input, 'ship') actual_part_1.run_instructions() print(actual_part_1.get_distance()) actual_part_2 = Day12(input, 'waypoint') actual_part_2.run_instructions() print(actual_part_2.get_distance())
thekakkun/coding_challenges
advent_of_code/2020/day_12.py
day_12.py
py
4,925
python
en
code
0
github-code
6
27959312759
import torch # Define Net class TestNet(torch.nn.Module): def __init__(self): super(TestNet, self).__init__() def forward(self, x1, x2): y1 = torch.add(x1, 10) y2 = torch.add(x2, 5) y3 = torch.add(y1, y2) y4 = torch.add(y3, 10) return y4 def sample1(): x1 = torch.tensor([[1,2,3],[4,5,6]]) x2 = torch.tensor([[10,20,20],[40,50,60]]) model = TestNet() model.eval() output = model(x1, x2) my_script_module = torch.jit.script(model) frozen_model = torch.jit.freeze(my_script_module) print(frozen_model.graph) torch.jit.save(frozen_model, "simple_jit_add.torchscript") print("x1:{}".format(x1)) print("x2:{}".format(x2)) print("output:{}".format(output)) if __name__ == '__main__': sample1()
SAITPublic/PimAiCompiler
examples/runtime/python/ir_net/simple_add.py
simple_add.py
py
805
python
en
code
2
github-code
6
33016130821
from flask import Flask, flash, json, request, redirect, Response, url_for from flask_cors import CORS app = Flask(__name__) app.config['SESSION_TYPE'] = 'filesystem' app.config.from_envvar('APP_SETTINGS') CORS(app) @app.route('/ping', methods=['GET']) def ping(): response = app.response_class( response='pong', status=200, mimetype='application/json' ) return response if __name__ == '__main__': app.run(host='0.0.0.0', debug=True)
aaronjenkins/flask-api-template
api.py
api.py
py
478
python
en
code
0
github-code
6
7074303331
#Note: 1)The detection works only on grayscale images. So it is important to convert the color image to grayscale. # 2) detectMultiScale function is used to detect the faces. # It takes 3 arguments — the input image, scaleFactor and minNeighbours. scaleFactor specifies how much the image size is reduced with each scale. # minNeighbours specifies how many neighbors each candidate rectangle should have to retain it. # 3) faces contains a list of coordinates for the rectangular regions where faces were found. import numpy as np import cv2 # Load the cascade face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml') smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml') font = cv2.FONT_HERSHEY_SIMPLEX # Read the input image img = cv2.imread('images/input/img.jpg') # Convert into grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #Convert into hsvscale hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Detect faces # faces = face_cascade.detectMultiScale( # gray, # scaleFactor=1.1, # minNeighbors=5, # minSize=(200, 200), # flags=cv2.CASCADE_SCALE_IMAGE # ) faces = face_cascade.detectMultiScale(gray, 1.3, 5) #most common parameters of the detectMultiScale function # scaleFactor : Parameter specifying how much the image size is reduced at each image scale. # minNeighbors : Parameter specifying how many neighbors each candidate rectangle should have to retain it. # minSize : Minimum possible object size. Objects smaller than that are ignored. # maxSize : Maximum possible object size. Objects larger than that are ignored. # Draw rectangle around the faces for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0), 3) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] cv2.putText(img,'Face',(x, y), font, 1,(255,0,0),2) #eyes eyes = eye_cascade.detectMultiScale(roi_gray) #detect eyes and draw rectangle around it for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) cv2.putText(img,'Eye',(x + ex,y + ey), 1, 1, (0, 255, 0), 1) #smile smile = smile_cascade.detectMultiScale( roi_gray, scaleFactor= 1.16, minNeighbors=35, minSize=(25, 25), flags=cv2.CASCADE_SCALE_IMAGE ) #detect smile and draw rectangle around it for (sx, sy, sw, sh) in smile: cv2.rectangle(roi_color, (sh, sy), (sx+sw, sy+sh), (255, 0, 0), 2) cv2.putText(img,'Smile',(x + sx,y + sy), 1, 1, (0, 255, 0), 1) #Display Number of Faces cv2.putText(img,'Number of Faces : ' + str(len(faces)),(40, 40), font, 1,(255,0,0),2) #save the cropped faces crop_face = img[y:y + h, x:x + w] cv2.imwrite('images/output/' + str(w) + str(h) + '_faces.jpg', crop_face) # Display the output cv2.imshow('Original', img) cv2.imshow('Detected Gray', gray) cv2.imshow('Detected HSV', hsv) k = cv2.waitKey(0) if k == 27: # wait for ESC key to exit cv2.destroyAllWindows() elif k == ord('s'): # wait for 's' key to save and exit cv2.imwrite('images/output/detected_image.jpg',img) cv2.destroyAllWindows()
amanpanditap/Python_Projects
facedetection/facedetection-image.py
facedetection-image.py
py
3,295
python
en
code
3
github-code
6
9781885238
from egzP2atesty import runtests def partition(tab,p,r,indeksy): x=tab[indeksy[r]][1] i=p-1 for j in range(p,r): if tab[indeksy[j]][1]>=x: i+=1 tab[indeksy[i]],tab[indeksy[j]]=tab[indeksy[j]],tab[indeksy[i]] tab[indeksy[i+1]],tab[indeksy[r]]=tab[indeksy[r]],tab[indeksy[i+1]] return i+1 def quickSort(tab,p,r,indeksy): if p<r: q=partition(tab,p,r,indeksy) quickSort(tab,p,q-1,indeksy) quickSort(tab,q+1,r,indeksy) def zdjecie(T, m, k): #tutaj proszę wpisać własną implementację n=len(T) indeksy=[0 for _ in range(n)] starts=[0 for _ in range(m)] ends=[0 for _ in range(m)] items=0 width=m+k-1 currEnd=-1 for i in range(m): starts[i]=currEnd+1 currEnd+=width ends[i]=currEnd width-=1 kolumna=0 rzad=0 while items<n: if starts[rzad]+kolumna<=ends[rzad]: indeksy[starts[rzad]+kolumna]=items items+=1 rzad+=1 if rzad>=m: rzad=0 kolumna+=1 quickSort(T, 0, len(T) - 1,indeksy) return None runtests ( zdjecie, all_tests=False )
wiksat/AlghorithmsAndDataStructures
ASD/BitAlgo-Summer/egzP2a/egzP2a.py
egzP2a.py
py
1,169
python
pl
code
0
github-code
6
23386753962
from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.status import HTTP_404_NOT_FOUND from scraper.models import PartsDetails from scraper.serializers import PartsDetailsSerializer # Create your views here. @api_view(['GET']) def company_parts(request, format=None): try: filter_params = {} company_name = request.query_params.get('manufacturer') if company_name: filter_params['company_name'] = company_name category_name = request.query_params.get('category') if category_name: filter_params['category_name'] = category_name model_name = request.query_params.get('model') if model_name: filter_params['model_name'] = model_name print(filter_params) parts_details = PartsDetails.objects.filter(**filter_params).values( 'company_name', 'category_name', 'model_name', 'part_name') print(parts_details) if not parts_details: return Response( "No resource found, please check the query parameters " "and values in URL!", status=HTTP_404_NOT_FOUND) except PartsDetails.DoesNotExist: print("error") return Response(status=HTTP_404_NOT_FOUND) if request.method == 'GET': parts_details_serializer = PartsDetailsSerializer(parts_details, many=True) return Response(parts_details_serializer.data)
spsree4u/urparts_scraper
scraper/views.py
views.py
py
1,537
python
en
code
0
github-code
6
37009080740
import os import pathlib import requests from flask import Flask, session, abort, redirect, request, render_template, make_response from google.oauth2 import id_token from google_auth_oauthlib.flow import Flow from pip._vendor import cachecontrol import google.auth.transport.requests from static.py.chat import socketio from flask_sqlalchemy import SQLAlchemy from static.py.models import User, db import uuid from static.py.user_repository import _user_repo as users, create_username from static.py.PassHandler import PassHandler app = Flask(__name__) app.secret_key = "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" app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.abspath('static/db/users.db') # db = SQLAlchemy(app) socketio.init_app(app) db.init_app(app) with app.app_context(): db.create_all() # db.drop_all() # db.session.commit() pass_handler = PassHandler() # Google Login Fuctionlity os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" GOOGLE_CLIENT_ID = "301822394319-o8gridp2md6qcpc0uk0clkug0puecbio.apps.googleusercontent.com" client_secrets_file = os.path.join(pathlib.Path(__file__).parent, "client_secret.json") flow = Flow.from_client_secrets_file( client_secrets_file=client_secrets_file, scopes=["https://www.googleapis.com/auth/userinfo.profile", "https://www.googleapis.com/auth/userinfo.email", "openid"], redirect_uri="http://127.0.0.1:5000/callback" ) def login_is_required(function): def wrapper(*args, **kwargs): if "google" in session and "google_id" not in session: return abort(401) # Authorization required elif "email" in session and "name" not in session: return abort(401) else: return function() return wrapper @app.route("/login") def login(): authorization_url, state = flow.authorization_url() session["state"] = state return redirect(authorization_url) @app.route("/callback") def callback(): flow.fetch_token(authorization_response=request.url) if not session["state"] == request.args["state"]: abort(500) # State does not match! credentials = flow.credentials request_session = requests.session() cached_session = cachecontrol.CacheControl(request_session) token_request = google.auth.transport.requests.Request(session=cached_session) id_info = id_token.verify_oauth2_token( id_token=credentials._id_token, request=token_request, audience=GOOGLE_CLIENT_ID, clock_skew_in_seconds=10 ) session["login_type"] = "google" session["google_id"] = id_info.get("sub") session["name"] = id_info.get("name") session["given_name"] = id_info.get("given_name") session["email"] = id_info.get("email") session["profile_picture"] = id_info.get("picture") session["family_name"] = id_info.get("family_name") if id_info.get("family_name") != None else "" if users.get_user_by_email(session["email"]) is None: username = create_username(session["given_name"], session["family_name"]) user = users.create_user(session["given_name"], session["family_name"], session["email"], username, str(uuid.uuid4())) session["username"] = user.username return redirect("/home") else: user = users.get_user_by_email(session["email"]) session["username"] = user.username return redirect("/home") # Email Login Functionality @app.route("/signup") def signup(): return render_template('signup.html') @app.route("/elogin") def elogin(): return render_template('elogin.html') @app.route("/loginuser", methods=['POST']) def loginuser(): user = users.get_user_by_username(request.form['username']) if user is None: # print("User not found") return render_template('elogin.html', error="User not found") if pass_handler.verify_password(request.form['password'], user.password) is False: # print("Incorrect password") return render_template('elogin.html', error="Incorrect password") print(user.username) session["username"] = user.username session["name"] = user.username session["given_name"] = user.first_name # print(user.first_name) session["email"] = user.email session["profile_picture"] = "/static/images/userAccount.jpg" return redirect('/home') @app.route("/setuser", methods=['POST']) def setuser(): # print(request.form['username']) user = users.get_user_by_username(request.form['username']) # print(user) if user is not None: return render_template('signup.html', error="Username already exists") elif users.get_user_by_email(request.form['email']) is not None: return render_template('signup.html', error="Email already exists") elif request.form['password'] != request.form['confirm_password']: return render_template('signup.html', error="Passwords do not match") else: user = users.create_user(request.form['fname'], request.form['lname'], request.form['email'], request.form['username'], pass_handler.hash_password(request.form['password'])) session["login_type"] = "email" session["name"] = user.username session["given_name"] = user.first_name session["email"] = user.email session["profile_picture"] = "/static/images/userAccount.jpg" return redirect('/home') @app.route("/spectate") def spectate(): return render_template("spectate.html") @app.route("/logout") def logout(): session.clear() return redirect("/") @app.route("/inbox") def inbox(): return render_template("inbox.html") @app.route("/profile") def profile(): global users user = users.get_user_by_username(session.get("username")) print(session.get("username")) # if user.get_wins(session.get("username")) is None: # users.add_win(session.get("username")) # users.add_loss(session.get("username")) # # wins = 0 # # losses = 0 # else: # wins = users.get_wins(session.get("username")) # losses = users.get_losses(session.get("username")) user_info = { "name": session.get("given_name"), "full_name": session.get("name"), "email": session.get("email"), "profile_picture": session.get("profile_picture"), "wins": users.get_wins(session.get("username")), "losses": users.get_losses(session.get("username")), } return render_template("profile.html", user_info=user_info) @app.route("/host") def host(): return render_template("host.html") @app.route("/join") def join(): return render_template("join.html") @app.route("/game") def game(): lobby_name = request.args['lobby'] # spectate = request.args['spectate'] user_info = { "name": session.get("given_name"), "full_name": session.get("name"), "email": session.get("email"), "profile_picture": session.get("profile_picture"), "wins": users.get_wins(session.get("username")), "losses": users.get_losses(session.get("username")), } user_info["name"] = session.get("given_name") user_info["profile_picture"] = "static/images/userAccount.jpg" # print(user_info) return render_template("game.html", user_info=user_info, lobby_name=lobby_name) @app.route("/") def index(): if session.get("name") is not None: return redirect("/home") return render_template("index.html") @app.route("/home") @login_is_required def home(): user_name = session.get("given_name") return render_template("home.html", user_name=user_name) @app.route("/1player") def onePlayer(): return render_template("player1.html") @app.route("/leaderboard") def leaderboard(): global users top_users = users.get_top_users(5) # for user in top_users: # print(user.username, user.elo) return render_template("leaderboard.html", top_users=top_users, length=len(top_users)) @app.route("/settings") def settings(): return render_template("settings.html") if __name__ == "__main__": socketio.run(app, debug=True, allow_unsafe_werkzeug=True)
SeanDaBlack/checkmasters
app.py
app.py
py
8,145
python
en
code
0
github-code
6
86625733247
#! /usr/bin/env python import os import sys import time import numpy as np from multiprocess import Pool sys.path.append(os.path.join(os.environ['REPO_DIR'], 'utilities')) from utilities2015 import * from metadata import * from data_manager import * from learning_utilities import * ################################### import json import argparse parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='Apply classifiers') parser.add_argument("stack", type=str, help="stack") parser.add_argument("filenames", type=str, help="Filenames") parser.add_argument("classifier_id", type=int, help="classifier id") args = parser.parse_args() stack = args.stack filenames = json.loads(args.filenames) classifier_id = args.classifier_id classifier_properties = classifier_settings.loc[classifier_id] input_img_version = classifier_properties['input_img_version'] cnn_model = dataset_settings.loc[int(classifier_settings.loc[classifier_id]['train_set_id'].split('/')[0])]['network_model'] svm_id = int(classifier_properties['svm_id']) ############################ # if classifier_id == 12: # available_classifiers = {2: DataManager.load_classifiers(classifier_id=2), # 10: DataManager.load_classifiers(classifier_id=10)} # else: available_classifiers = {svm_id: DataManager.load_classifiers(classifier_id=svm_id)} def clf_predict(stack, fn, model_name): if is_invalid(stack=stack, fn=fn): return try: features = DataManager.load_dnn_features(stack=stack, model_name=model_name, fn=fn, input_img_version=input_img_version) except Exception as e: sys.stderr.write('%s\n' % e.message) return # actual_setting = resolve_actual_setting(setting=classifier_id, stack=stack, fn=fn) # clf_allClasses_ = available_classifiers[actual_setting] clf_allClasses_ = available_classifiers[svm_id] for structure, clf in clf_allClasses_.iteritems(): probs = clf.predict_proba(features)[:, clf.classes_.tolist().index(1.)] # output_fn = DataManager.get_sparse_scores_filepath(stack=stack, structure=structure, # classifier_id=actual_setting, fn=fn) output_fn = DataManager.get_sparse_scores_filepath(stack=stack, structure=structure, classifier_id=classifier_id, fn=fn) create_parent_dir_if_not_exists(output_fn) bp.pack_ndarray_file(probs, output_fn) upload_to_s3(output_fn) t = time.time() pool = Pool(NUM_CORES/2) pool.map(lambda fn: clf_predict(stack=stack, fn=fn, model_name=cnn_model), filenames) pool.close() pool.join() sys.stderr.write('Classifier predict: %.2f\n' % (time.time()-t))
mistycheney/MouseBrainAtlas
deprecated/learning/apply_classifiers_v4.py
apply_classifiers_v4.py
py
2,806
python
en
code
3
github-code
6
71862936509
MEM_SIZE = 100 reg = {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': 0, 'sp': 0, 'acc': 0, 'pc': 0, 'ivec': 0, 'int': 0, 'timer': 0, 'halt': False} memory = [0] * MEM_SIZE # move the values def mov(opr): reg[opr[0]] = reg[opr[1]] reg['pc'] = reg['pc'] + 1 # memory list include lists one by one > reg dict keys to add the values def movv(opr): reg[opr[0]] = int(opr[1]) reg['pc'] = reg['pc'] + 1 # addition def add(opr): reg['acc'] = reg[opr[0]] + reg[opr[1]] reg['pc'] = reg['pc'] + 1 # substraction def sub(opr): reg['acc'] = reg[opr[0]] - reg[opr[1]] reg['pc'] = reg['pc'] + 1 # modules def mod(opr): reg['acc'] = reg[opr[0]] % reg[opr[1]] reg['pc'] = reg['pc'] + 1 #get the output def out(opr): print(reg[opr[0]]) reg['pc'] = reg['pc'] + 1 #program end def halt(opr): reg['halt'] = True reg['pc'] = reg['pc'] + 1 f = open('ass-1.asm', 'r') def runm(): while reg['halt'] == False: i = reg['pc'] op = globals()[memory[i][0]] op(memory[i][1:]) pass reg['timer'] = reg['timer'] - 1 if reg['int'] == 1 and reg['timer'] == 0: reg['sp'] = reg['sp'] + 1 reg['pc'] = reg['ivec'] memory[reg['sp']] = reg['pc'] reg['int'] = 0 for l in f: if l.startswith("#"): continue comm = l.split() print(comm) if comm: memory[int(comm[0])] = comm[1:] runm() print(reg) print(memory)
LearnCsWithDIR/Create-Virtual-Machine
vm-1.py
vm-1.py
py
1,479
python
en
code
1
github-code
6
43634206373
# pylint: disable=no-self-use,invalid-name,no-value-for-parameter from __future__ import division from __future__ import absolute_import import torch from allennlp.common.testing.model_test_case import ModelTestCase from allennlp.nn.decoding.chu_liu_edmonds import decode_mst class BiaffineDependencyParserTest(ModelTestCase): def setUp(self): super(BiaffineDependencyParserTest, self).setUp() self.set_up_model(self.FIXTURES_ROOT / u"biaffine_dependency_parser" / u"experiment.json", self.FIXTURES_ROOT / u"data" / u"dependencies.conllu") def test_dependency_parser_can_save_and_load(self): self.ensure_model_can_train_save_and_load(self.param_file) def test_mst_decoding_can_run_forward(self): self.model.use_mst_decoding_for_validation = True self.ensure_model_can_train_save_and_load(self.param_file) def test_batch_predictions_are_consistent(self): self.ensure_batch_predictions_are_consistent() def test_decode_runs(self): self.model.eval() training_tensors = self.dataset.as_tensor_dict() output_dict = self.model(**training_tensors) decode_output_dict = self.model.decode(output_dict) assert set(decode_output_dict.keys()) == set([u'arc_loss', u'tag_loss', u'loss', u'predicted_dependencies', u'predicted_heads', u'words', u'pos']) def test_mst_respects_no_outgoing_root_edges_constraint(self): # This energy tensor expresses the following relation: # energy[i,j] = "Score that i is the head of j". In this # case, we have heads pointing to their children. # We want to construct a case that has 2 children for the ROOT node, # because in a typical dependency parse there should only be one # word which has the ROOT as it's head. energy = torch.Tensor([[0, 9, 5], [2, 0, 4], [3, 1, 0]]) length = torch.LongTensor([3]) heads, _ = decode_mst(energy.numpy(), length.item(), has_labels=False) # This is the correct MST, but not desirable for dependency parsing. assert list(heads) == [-1, 0, 0] # If we run the decoding with the model, it should enforce # the constraint. heads_model, _ = self.model._run_mst_decoding(energy.view(1, 1, 3, 3), length) # pylint: disable=protected-access assert heads_model.tolist()[0] == [0, 0, 1] def test_mst_decodes_arc_labels_with_respect_to_unconstrained_scores(self): energy = torch.Tensor([[0, 2, 1], [10, 0, 0.5], [9, 0.2, 0]]).view(1, 1, 3, 3).expand(1, 2, 3, 3).contiguous() # Make the score for the root label for arcs to the root token be higher - it # will be masked for the MST, but we want to make sure that the tags are with # respect to the unmasked tensor. If the masking was incorrect, we would decode all # zeros as the labels, because torch takes the first index in the case that all the # values are equal, which would be the case if the labels were calculated from # the masked score. energy[:, 1, 0, :] = 3 length = torch.LongTensor([3]) heads, tags = self.model._run_mst_decoding(energy, length) # pylint: disable=protected-access assert heads.tolist()[0] == [0, 0, 1] assert tags.tolist()[0] == [0, 1, 0]
plasticityai/magnitude
pymagnitude/third_party/allennlp/tests/models/biaffine_dependency_parser_test.py
biaffine_dependency_parser_test.py
py
3,576
python
en
code
1,607
github-code
6
21884431887
"""Simulate a number of large CHIME populations.""" from frbpoppy import CosmicPopulation, lognormal, Survey from frbpoppy import SurveyPopulation, pprint N_SRCS = [3e4, 3.5e4, 4e4] N_DAYS = 100 RATE = [8, 9, 10] # per day # Chime started in Aug 2018. Assuming 2/day for one-offs. # Total of 9 repeaters published on 9 Aug 2019. = ~year N_CHIME = {'rep': 9, 'one-offs': 365*2, 'time': 365} for n in N_SRCS: for ra in RATE: print(f'# sources: {n}') print(f'rate: {ra}') r = CosmicPopulation(n, n_days=N_DAYS, repeaters=True) r.set_dist(model='vol_co', z_max=1.0) r.set_dm_host(model='gauss', mean=100, std=200) r.set_dm_igm(model='ioka', slope=1000, std=None) r.set_dm(mw=True, igm=True, host=True) r.set_emission_range(low=100e6, high=10e9) r.set_lum(model='powerlaw', per_source='different', low=1e40, high=1e45, power=0) r.set_si(model='gauss', mean=-1.4, std=1) r.set_w(model='lognormal', per_source='different', mean=0.1, std=1) rate = lognormal(ra, 1, int(n)) r.set_time(model='poisson', rate=rate) # Set up survey s = Survey('chime-frb', n_days=N_DAYS) s.set_beam(model='chime-frb') # Only generate FRBs in CHIME's survey region r.set_direction(model='uniform', min_ra=s.ra_min, max_ra=s.ra_max, min_dec=s.dec_min, max_dec=s.dec_max) r.generate() surv_pop = SurveyPopulation(r, s) surv_pop.name = 'cosmic_chime' print(surv_pop.source_rate) print(surv_pop.burst_rate) pprint(f'# one-offs: {surv_pop.n_one_offs()}') pprint(f'# repeaters: {surv_pop.n_repeaters()}')
TRASAL/frbpoppy
tests/chime/sim_runs.py
sim_runs.py
py
1,794
python
en
code
26
github-code
6
15634510217
''' height = raw_input('pls input your height(cm)') weight = raw_input('pls input your weight(kg)') height = float(height)/100 w = float(w) bmi = w/h**2 print(bmi) if bmi > 30: print('you are heavy') elif 30 >= bmi > 18: print('you are healthy') else: print('you are thin') ''' username = raw_input('pls type username: ') age = raw_input('pls type your age: ') age = int(age) # 'str' format to 'inter' if username == 'Mary' and age == 60: print('I hate you') print('who') ''' elif username == 'Lucy' and age == 20: print('I love you') else: print('Who are you?') '''
greatlqp/python_lesson
test_0308_2.py
test_0308_2.py
py
604
python
en
code
0
github-code
6
37158488723
import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt from datetime import datetime eboladata=pd.read_csv('datavis/ebola.csv') filtered = eboladata[eboladata['value']>0] filtereddata = filtered[filtered['Indicator'].str.contains('death')] Guineadata = filtereddata[filtereddata['Country']=='Guinea'] Guineadata = Guineadata[Guineadata['Indicator']=='Cumulative number of confirmed Ebola deaths'] Sierradata = filtereddata[filtereddata['Country']=='Sierra Leone'] Sierradata = Sierradata[Sierradata['Indicator']=='Cumulative number of confirmed Ebola deaths'] Liberiadata = filtereddata[filtereddata['Country'].str.contains('Liberia')] #some named as Liberia 2 Liberiadata = Liberiadata[Liberiadata['Indicator']=='Cumulative number of confirmed Ebola deaths'] Guineadata = Guineadata.sort(columns='Date') Sierradata = Sierradata.sort_values(by='Date') Liberiadata = Liberiadata.sort_values(by='Date') g_x=[datetime.strptime(date, '%Y-%m-%d').date() for date in Guineadata['Date']] g_y = Guineadata['value'] s_x=[datetime.strptime(date, '%Y-%m-%d').date() for date in Sierradata['Date']] s_y = Sierradata['value'] l_x=[datetime.strptime(date, '%Y-%m-%d').date() for date in Liberiadata['Date']] l_y = Liberiadata['value'] plt.figure(figsize=(10,10)) plt.plot(g_x, g_y, color='red', linewidth=2, label='Guinea') plt.plot(s_x, s_y, color='orange', linewidth=2, label='Sierra Leone') plt.plot(l_x, l_y, color='blue', linewidth=2, label='Liberia') plt.xlabel('Date', fontsize=18) plt.ylabel('Number of Ebola Deaths', fontsize=18) plt.legend()
QiliWu/Python-datavis
datavis/ebola comfirmed death.py
ebola comfirmed death.py
py
1,578
python
en
code
2
github-code
6
8372223063
import os from unittest.mock import patch, Mock, PropertyMock import pytest from m1l0_services.imagebuilder.v1.imagebuilder_service_pb2 import BuildRequest, BuildConfig from builder.core.imagebuilder import ImageBuilder @patch("shutil.rmtree") def test_cleanup_code_path(mock_shutil): mock_shutil.return_value = Mock() config = { "source": "dir:///tmp/123", "service": "dockerhub", "repository": "m1l0/myproject", "revision": "latest" } request = BuildRequest( id="123", config=BuildConfig(**config) ) imagebuilder = ImageBuilder(request, code_copy_path="/tmp/code/123") imagebuilder.cleanup_code_path() mock_shutil.assert_called_with("/tmp/code/123") @patch("docker.APIClient.remove_image") def test_cleanup_repository(mock_remove_image): mock_remove_image.return_value = Mock() config = { "source": "dir:///tmp/123", "service": "dockerhub", "repository": "m1l0/myproject", "revision": "latest" } request = BuildRequest( id="123", config=BuildConfig(**config) ) imagebuilder = ImageBuilder(request, code_copy_path="/tmp/code/123") imagebuilder._repository = "m1l0/myproject" imagebuilder.cleanup_repository() mock_remove_image.assert_called_with("m1l0/myproject", force=True) def test_imagename_property(): config = { "source": "dir:///tmp/123", "service": "dockerhub", "repository": "m1l0/myproject", "revision": "latest" } request = BuildRequest( id="123", config=BuildConfig(**config) ) imagebuilder = ImageBuilder(request, code_copy_path="/tmp/code/123") imagebuilder._imagename = "m1l0/myproject" imagebuilder._repository = "m1l0/myproject" assert imagebuilder.imagename == "m1l0/myproject" assert imagebuilder.repository == "m1l0/myproject" @patch("builder.core.imagebuilder.build_docker_image") @patch("builder.core.imagebuilder.prepare_archive") @patch("builder.core.imagebuilder.create_dockerfile") @patch("os.listdir") def test_build(mock_listdir, mock_docker, mock_archive, mock_builder): mock_listdir.return_value = iter(["main.py"]) mock_docker.return_value = "DOCKERFILE CONTENTS" mock_archive.return_value = "test.tar.gz" mock_builder.return_value = iter(["80%", "90%", "100%", "imagename: m1l0/myproject"]) config = { "source": "dir:///tmp/123", "service": "dockerhub", "repository": "m1l0/myproject", "revision": "latest" } request = BuildRequest( id="123", config=BuildConfig(**config) ) imagebuilder = ImageBuilder(request, code_copy_path="/tmp/code/123") res = imagebuilder.build() res = list(res) assert res == ["80%", "90%", "100%"] assert imagebuilder.imagename == 'imagename: m1l0/myproject' @patch("builder.core.imagebuilder.push_docker_image") def test_push(mock_push): mock_push.return_value = iter(["80%", "90%", "100%", "repository: m1l0/myproject"]) config = { "source": "dir:///tmp/123", "service": "dockerhub", "repository": "m1l0/myproject", "revision": "latest" } request = BuildRequest( id="123", config=BuildConfig(**config) ) imagebuilder = ImageBuilder(request, code_copy_path="/tmp/code/123") res = imagebuilder.push() res = list(res) assert res == ["80%", "90%", "100%"] assert imagebuilder.repository == "repository: m1l0/myproject"
m1l0ai/m1l0_image_builder
tests/test_imagebuilder.py
test_imagebuilder.py
py
3,538
python
en
code
0
github-code
6
6246496296
from urllib.request import urlretrieve import os def get_dataset_file(url, savepath): if not os.path.exists(savepath): os.mkdir(os.path.dirname(savepath)) urlretrieve(url, savepath) if __name__ == "__main__": url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv" savepath = "wine_dataset/winequality-white.csv" get_dataset_file(url, savepath)
cheesecat47/ML_DL_Jan2020
get_dataset.py
get_dataset.py
py
424
python
en
code
0
github-code
6
12309608299
from setuptools import find_packages, setup import os version = "0.0.1" readme = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() req_file = os.path.join(os.path.dirname(__file__), 'requirements.txt') requirements = [i.strip() for i in open(req_file).readlines()] setup_params = dict( name="pyexcel", version=version, description="Excel DBAPI Driver", author="mclovinxie", author_email="[email protected]", long_description=readme, classifiers=[ "Development Status :: 3 - Alpha", 'Environment :: Console', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Database :: Front-Ends', ], keywords='Excel SQLAlchemy Dialect', packages=find_packages(), include_package_data=True, zip_safe=False, entry_points={ "sqlalchemy.dialects": ["pyexcel = pyexcel.dialect:ExcelDialect"] }, install_requires=requirements ) if __name__ == '__main__': setup(**setup_params)
mclovinxie/dialect-pyexcel
setup.py
setup.py
py
1,222
python
en
code
3
github-code
6
69809838269
import tkinter import tkinter.messagebox import customtkinter import requests import webbrowser from PIL import Image, ImageTk import spotify customtkinter.set_appearance_mode("system") # Modes: "System" (standard), "Dark", "Light" customtkinter.set_default_color_theme("green") # Themes: "blue" (standard), "green", "dark-blue" class App(customtkinter.CTk): WIDTH = 960 HEIGHT = 540 URLS = [] def __init__(self): super().__init__() self.title("KPOP Dictionary") self.geometry(f"{App.WIDTH}x{App.HEIGHT}") self.protocol("WM_DELETE_WINDOW", self.on_closing) image = Image.open("spotify-hex-colors-gradient-background.png").resize((self.WIDTH, self.HEIGHT)) self.bg_image = ImageTk.PhotoImage(image) self.image_label = tkinter.Label(master=self, image=self.bg_image) self.image_label.place(relx=0.5, rely=0.5, anchor=tkinter.CENTER) # two frames -> grid 2x1 self.grid_columnconfigure(1, weight=1) self.grid_rowconfigure(1, weight=1) self.frame_left = customtkinter.CTkFrame(master=self, width=320, corner_radius=2) self.frame_left.grid(row=0, column=0, sticky="nswe", padx=10, pady=10) self.frame_right = customtkinter.CTkFrame(master=self) self.frame_right.grid(row=0, column=1, sticky="nswe", padx=10, pady=10) # left frame -> grid 1x11 self.frame_left.grid_rowconfigure(0, minsize=10) # empty row with minsize as spacing self.frame_left.grid_rowconfigure(5, weight=1) # empty row as spacing self.frame_left.grid_rowconfigure(9, minsize=20) # empty row with minsize as spacing self.frame_left.grid_rowconfigure(11, minsize=10) # empty row with minsize as spacing self.title_label = customtkinter.CTkLabel(master=self.frame_left, text="KPOP Dictionary", text_font=("Roboto Medium", -36)) self.title_label.grid(row=1, column=0, padx=20, pady=20) self.search_label = customtkinter.CTkLabel(master=self.frame_left, text="Type in search term", text_font=("Roboto Medium", -24)) self.search_label.grid(row=2, column=0, padx=20, pady=20) self.entrybox = customtkinter.CTkEntry(master=self.frame_left, width=300, placeholder_text="e.g. Next Level", text_font=("Roboto Medium", -22)) self.entrybox.grid(row=3, column=0, padx=20, pady=20) self.type_label = customtkinter.CTkLabel(master=self.frame_left, text="Choose term type", text_font=("Roboto Medium", -24)) self.type_label.grid(row=4, column=0, padx=20, pady=20) self.radio_var = tkinter.IntVar(value=0) self.radio_button_1 = customtkinter.CTkRadioButton(master=self.frame_left, variable=self.radio_var, value=0, text="Song", text_font=("Roboto Medium", -22), command=self.radiobutton_event) self.radio_button_1.grid(row=6, column=0, padx=20, pady=10) self.radio_button_2 = customtkinter.CTkRadioButton(master=self.frame_left, variable=self.radio_var, value=1, text="Album", text_font=("Roboto Medium", -22), command=self.radiobutton_event) self.radio_button_2.grid(row=7, column=0, padx=20, pady=10) self.radio_button_3 = customtkinter.CTkRadioButton(master=self.frame_left, variable=self.radio_var, value=2, text="Artist", text_font=("Roboto Medium", -22), command=self.radiobutton_event) self.radio_button_3.grid(row=8, column=0, padx=20, pady=10) self.button = customtkinter.CTkButton(master=self.frame_left, text="Search term", text_font=("Roboto Medium", -22), command=self.button_event) self.button.grid(row=9, column=0, padx=20, pady=10) def button_event(self): print(self.entrybox.get()) if self.entrybox.get() == "": return self.frame_right = customtkinter.CTkFrame(master=self) self.frame_right.grid(row=0, column=1, sticky="nswe", padx=10, pady=10) image_urls = [] urls = [] image_urls, App.URLS = spotify.search_spotify(self.entrybox.get(), self.radio_var.get()) count = len(image_urls) if len(image_urls) <= 9 else 9 for i in range(0, count): image = Image.open(requests.get(image_urls[i], stream=True).raw).resize((150, 150)) button = customtkinter.CTkButton(self.frame_right, image=ImageTk.PhotoImage(image), text="") if i == 0: button.configure(command = self.button_1) elif i == 1: button.configure(command = self.button_2) elif i == 2: button.configure(command = self.button_3) elif i == 3: button.configure(command = self.button_4) elif i == 4: button.configure(command = self.button_5) elif i == 5: button.configure(command = self.button_6) elif i == 6: button.configure(command = self.button_7) elif i == 7: button.configure(command = self.button_8) else: button.configure(command = self.button_9) r = int(i / 3) c = int(i % 3) button.grid(row=r,column=c, padx=20, pady=10) def button_1(self): webbrowser.open(App.URLS[0]) def button_2(self): webbrowser.open(App.URLS[1]) def button_3(self): webbrowser.open(App.URLS[2]) def button_4(self): webbrowser.open(App.URLS[3]) def button_5(self): webbrowser.open(App.URLS[4]) def button_6(self): webbrowser.open(App.URLS[5]) def button_7(self): webbrowser.open(App.URLS[6]) def button_8(self): webbrowser.open(App.URLS[7]) def button_9(self): webbrowser.open(App.URLS[8]) def radiobutton_event(self): print("radiobutton toggled, current value:", self.radio_var.get()) def on_closing(self, event=0): self.destroy() if __name__ == "__main__": app = App() app.mainloop()
algebrabender/Spotify-API-Project
gui.py
gui.py
py
7,464
python
en
code
0
github-code
6
19334470717
#!/usr/bin/python3 file0 = open('index0','r') file = open('index','r') indexs = file.read().split() index0s = file0.read().split() for index0 in index0s: if not index0 in indexs: indexs.append(index0) for index in indexs: print(index)
zhangfeiyang/finance-tmp
update_index.py
update_index.py
py
255
python
en
code
0
github-code
6
8879382170
# -*- coding: utf-8 -*- import unittest import sys sys.path.append('../src/') import mac_tran_dao as dao class TestSearchWordFromChunk(unittest.TestCase): def test_chunk_srch_en(self): dao.delete_word_tbl() en_input = "human" jp_input = u"人間" #need the u prefix to declare utf-8 dao.insert_word_pair(en_input,jp_input) result = dao.word_having_chunk("hu")[0] retrieved_pair= dao.get_word_pair_by_id(int(result)) self.assertEqual(en_input, retrieved_pair[0]) self.assertEqual(jp_input,retrieved_pair[1]) def test_chunk_srch_jp(self): dao.delete_word_tbl() en_input = "human" jp_input = u"人間" #need the u prefix to declare utf-8 dao.insert_word_pair(en_input,jp_input) result = dao.word_having_chunk("人")[0] retrieved_pair= dao.get_word_pair_by_id(int(result)) self.assertEqual(en_input, retrieved_pair[0]) self.assertEqual(jp_input,retrieved_pair[1]) """ Test for multiple words containing the input chunk. Ensure that what gets put in, is retrieved by verifying the number of elements. """ def test_chunk_srch_multiple_en(self): dao.delete_word_tbl() pairs = dict() pairs["living" ]=u"生活する" pairs["invited" ]=u"招待される" pairs["involved" ]=u"関わる" pairs["indeed" ]=u"そのとおり" pairs["intention" ]=u"想定" pairs["initiation"]=u"開始" pairs["nicotine" ]=u"ニコチン" pairs["bin" ]=u"ゴミ箱" for en_word in pairs.keys(): dao.insert_word_pair(en_word,pairs[en_word]) list_pairs = list() result = dao.word_having_chunk("in") for wid in result: retrieved_pair=dao.get_word_pair_by_id(int(wid)) list_pairs.append(retrieved_pair) #print list_stuff #first validate that the element counts match. self.assertEqual(len(list_pairs),8) #then validate that the mapping between #the pairs are still in tact. for en_jp_pair in list_pairs: self.assertEqual (en_jp_pair[1],pairs[en_jp_pair[0]]) if __name__=='__main__': unittest.main()
iku000888/Machine-Translation-JP-EN
tests/chunk_search_test.py
chunk_search_test.py
py
2,164
python
en
code
0
github-code
6
37342054211
import pyaml from github import Github import requests import datetime import time def open_json(fileUrl): import json import requests if fileUrl[0:4] == "http": # es URL try: pointer = requests.get(fileUrl) return json.loads(pointer.content.decode('utf-8')) except: return None else: # es file try: file = open(fileUrl, "r") return json.loads(file.read()) except: return None def open_jsonref(fileUrl): import jsonref import requests if fileUrl[0:4] == "http": # es URL pointer = requests.get(fileUrl) return jsonref.loads(pointer.content.decode('utf-8')) else: # es file file = open(fileUrl, "r") return jsonref.loads(file.read()) def echo(concept, variable): print("*** " + concept + " ***") print(variable) print("--- " + concept + " ---") def updated_raw_version_github(original_file_content, repository, path, timeout = 1000): uploaded = datetime.datetime.now() remotepath = "https://raw.githubusercontent.com/smart-data-models/" + repository + "/master/" + path frequency = 5 # seconds counter = 0 difference = True try: while difference: # text = requests.get(remotepath).content.decode('utf-8')[:-1] text = requests.get(remotepath).text[:-1] counter += frequency if counter > timeout: return False text = requests.get(remotepath).text print("retrieved test: " + text) print(ord(text[-1])) if str(text) == str(original_file_content): difference = False available = datetime.datetime.now() print("uploaded at : " + str(uploaded)) print("available at : " + str(available)) return True else: print("______________________________________________") print(original_file_content) print("uploaded at : " + str(uploaded)) print("**********************************************") print(text) print("not matched at :" + str(datetime.datetime.now())) time.sleep(frequency) except (FileNotFoundError, IOError): print("file not available at : ") print("not matched at :" + str(datetime.datetime.now())) return False def parse_description(schemaPayload): output = {} purgedDescription = str(schemaPayload["description"]).replace(chr(34), "") separatedDescription = purgedDescription. split(". ") copiedDescription = list.copy(separatedDescription) for descriptionPiece in separatedDescription: if descriptionPiece in propertyTypes: output["type"] = descriptionPiece copiedDescription.remove(descriptionPiece) elif descriptionPiece.find("Model:") > -1: copiedDescription.remove(descriptionPiece) output["model"] = descriptionPiece.replace("'", "").replace( "Model:", "") if descriptionPiece.find("Units:") > -1: copiedDescription.remove(descriptionPiece) output["units"] = descriptionPiece.replace("'", "").replace( "Units:", "") description = ". ".join(copiedDescription) return output, description def parse_payload(schemaPayload, level): output = {} if level == 1: if "allOf" in schemaPayload: for index in range(len(schemaPayload["allOf"])): echo("passing to next level this payload=", str(schemaPayload["allOf"][index])) if "definitions" in schemaPayload["allOf"][index]: partialOutput = parse_payload(schemaPayload["allOf"][index]["definitions"], level + 1) output = dict(output, **partialOutput) elif "properties" in schemaPayload["allOf"][index]: partialOutput = parse_payload(schemaPayload["allOf"][index], level + 1) output = dict(output, **partialOutput["properties"]) else: partialOutput = parse_payload(schemaPayload["allOf"][index], level + 1) output = dict(output, **partialOutput) if "anyOf" in schemaPayload: for index in range(len(schemaPayload["anyOf"])): echo("original output", output) if "definitions" in schemaPayload["anyOf"][index]: partialOutput = parse_payload(schemaPayload["anyOf"][index]["definitions"], level + 1) output = dict(output, **partialOutput) elif "properties" in schemaPayload["anyOf"][index]: partialOutput = parse_payload(schemaPayload["anyOf"][index], level + 1) output = dict(output, **partialOutput["properties"]) else: partialOutput = parse_payload(schemaPayload["anyOf"][index], level + 1) output = dict(output, **partialOutput) if "oneOf" in schemaPayload: for index in range(len(schemaPayload["oneOf"])): echo("original output", output) if "definitions" in schemaPayload["oneOf"][index]: partialOutput = parse_payload(schemaPayload["oneOf"][index]["definitions"], level + 1) output = dict(output, **partialOutput) elif "properties" in schemaPayload["oneOf"][index]: partialOutput = parse_payload(schemaPayload["oneOf"][index], level + 1) output = dict(output, **partialOutput["properties"]) else: partialOutput = parse_payload(schemaPayload["oneOf"][index], level + 1) output = dict(output, **partialOutput) if "properties" in schemaPayload: output = parse_payload(schemaPayload["properties"], level + 1) elif level < 8: if isinstance(schemaPayload, dict): for subschema in schemaPayload: if subschema in ["allOf", "anyOf", "oneOf"]: output[subschema] = [] for index in range(len(schemaPayload[subschema])): if "properties" in schemaPayload[subschema][index]: partialOutput = parse_payload(schemaPayload[subschema][index], level + 1) output[subschema].append(partialOutput["properties"]) else: partialOutput = parse_payload(schemaPayload[subschema][index], level + 1) output[subschema].append(partialOutput) elif subschema == "properties": echo("properties level", level) output[subschema] = {} for prop in schemaPayload["properties"]: echo(" dealing at level " + str(level) + " with prop=", prop) echo("parsing this payload at " + str(level) + " from prop =" + prop, schemaPayload["properties"][prop]) try: output[subschema][prop] except: output[subschema][prop] = {} for item in list(schemaPayload["properties"][prop]): echo("parsing at level " + str(level) + " item= ", item) if item in ["allOf", "anyOf", "oneOf"]: output[subschema][prop][item] = [] for index in range(len(schemaPayload[subschema][prop][item])): output[subschema][prop][item].append(parse_payload(schemaPayload[subschema][prop][item][index], level + 1)) elif item == "description": print("Detectada la descripcion de la propiedad=" + prop) x_ngsi, description = parse_description(schemaPayload[subschema][prop]) output[subschema][prop][item] = description if x_ngsi: output[subschema][prop]["x-ngsi"] = x_ngsi elif item == "items": output[subschema][prop][item] = parse_payload(schemaPayload[subschema][prop][item], level + 1) elif item == "properties": output[subschema][prop][item] = parse_payload(schemaPayload[subschema][prop][item], level + 1) elif item == "type": if schemaPayload[subschema][prop][item] == "integer": output[subschema][prop][item] = "number" else: output[subschema][prop][item] = schemaPayload[subschema][prop][item] else: output[subschema][prop][item] = schemaPayload[subschema][prop][item] elif isinstance(schemaPayload[subschema], dict): output[subschema] = parse_payload(schemaPayload[subschema], level + 1) else: if subschema == "description": x_ngsi, description = parse_description(schemaPayload) output[subschema] = description if x_ngsi: output["x-ngsi"] = x_ngsi else: output[subschema] = schemaPayload[subschema] elif isinstance(schemaPayload, list): for index in range(len(schemaPayload)): partialOutput = parse_payload(schemaPayload[index], level + 1) output = dict(output, **partialOutput) else: return None return output def github_push_from_variable(contentVariable, repoName, fileTargetPath, message, globalUser, token): from github import Github g = Github(token) repo = g.get_organization(globalUser).get_repo(repoName) try: file = repo.get_contents("/" + fileTargetPath) update = True except: update = False if update: repo.update_file(fileTargetPath, message, contentVariable, file.sha) else: repo.create_file(fileTargetPath, message, contentVariable, "master") baseModelFileName = "model.yaml" #credentialsFile = "/home/aabella/transparentia/CLIENTES/EU/FIWARE/credentials.json" credentialsFile = "/home/fiware/credentials.json" credentials = open_jsonref(credentialsFile) token = credentials["token"] globalUser = credentials["globalUser"] g = Github(token) propertyTypes = ["Property", "Relationship", "GeoProperty"] configFile = "datamodels_to_publish.json" dataModelsToPublish = open_jsonref(configFile) print(dataModelsToPublish) print(type(dataModelsToPublish)) echo("subject", dataModelsToPublish["subject"]) echo("dataModels", dataModelsToPublish["dataModels"]) echo("filter or no ", dataModelsToPublish["filterDataModels"]) repoName = dataModelsToPublish["subject"] dataModels = dataModelsToPublish["dataModels"] if isinstance(dataModels, str): dataModels = [dataModels] enableDataModelFilter = dataModelsToPublish["filterDataModels"] for dataModel in dataModels: # have to be removed if the data model is fixed # if dataModel in ["WoodworkingMachine"]: continue echo("repoName", repoName) result = {} result[dataModel] = {} echo("dataModel=", dataModel) schemaUrl = "https://raw.githubusercontent.com/smart-data-models/" + repoName + "/master/" + dataModel + "/schema.json" echo("urlschema", schemaUrl) schemaExpanded = open_jsonref(schemaUrl) echo("schemaExpanded", schemaExpanded) result[dataModel]["properties"] = parse_payload(schemaExpanded, 1) try: # the required clause is optional required = schemaExpanded["required"] except: required = [] try: entityDescription = schemaExpanded["description"].replace(chr(34),"") except: entityDescription = "No description available" try: version = schemaExpanded["$schemaVersion"] except: version = "" try: tags = schemaExpanded["modelTags"] except: tags = "" try: modelSchema = schemaExpanded["$id"] except: modelSchema = "" try: licenseUrl = schemaExpanded["licenseUrl"] except: licenseUrl = "https://github.com/smart-data-models/" + repoName + "/blob/master/" + dataModel + "/LICENSE.md" try: disclaimer = schemaExpanded["disclaimer"] except: disclaimer = "Redistribution and use in source and binary forms, with or without modification, are permitted provided that the license conditions are met. Copyleft (c) 2022 Contributors to Smart Data Models Program" try: derivedFrom = schemaExpanded["derivedFrom"] except: derivedFrom = "" result[dataModel]["type"] = "object" result[dataModel]["description"] = entityDescription result[dataModel]["required"] = required result[dataModel]["x-version"] = version result[dataModel]["x-model-tags"] = tags result[dataModel]["x-model-schema"] = modelSchema result[dataModel]["x-license-url"] = licenseUrl result[dataModel]["x-disclaimer"] = disclaimer result[dataModel]["x-derived-from"] = derivedFrom echo("result", result) path = dataModel + "/" + baseModelFileName message = "updated " + baseModelFileName + " - support subproperties" # keep the original references when there are $ref clauses schema = open_json(schemaUrl) if "allOf" in schema: for cursor in range(len(schema["allOf"])): if "properties" in schema["allOf"][cursor]: for element in schema["allOf"][cursor]["properties"]: if element in result[dataModel]["properties"]: if "description" in schema["allOf"][cursor]["properties"][element] and "description" in result[dataModel]["properties"][element]: _, description = parse_description(schema["allOf"][cursor]["properties"][element]) result[dataModel]["properties"][element]["description"] = description print("replaced descripton in " + element + " to " + schema["allOf"][cursor]["properties"][element]["description"]) else: print("Nothing to expand") content_variable = pyaml.dumps(result, width=4096, force_embed=True).decode("utf-8") github_push_from_variable(content_variable, repoName, path, message, globalUser, token) available = False while not available: available = updated_raw_version_github(content_variable, repoName, path)
smart-data-models/data-models
utils/10_model.yaml_v13.py
10_model.yaml_v13.py
py
15,076
python
en
code
94
github-code
6
23448354960
import socket from socket import AF_INET6, SOCK_STREAM from threading import Thread localIPv6 = "fe80::c10c:de5e:2cbf:132c%9" globalIPv6 = "2001:14ba:a0bd:dd00:c10c:de5e:2cbf:132c" # Remember to Disable firewall for clients in other networks to be able to connect to the server portIPv6 = 36000 buffer = 1024 backlog = 5 def receive(clientSocketIPv6): while True: message = clientSocketIPv6.recv(buffer).decode("utf8") if message.startswith("/downloaded"): fileData = message.split("\n")[1] fileName = message.split("\n")[2] newFile = open(fileName, "a") newFile.write(fileData) newFile.close() else: print(message) def send(clientSocketIPv6): message = input(">>> ") while message != "/quit": clientSocketIPv6.send(bytes(message, "utf8")) message = input(">>> ") print("You have quitted from the server. See you again") clientSocketIPv6.send(bytes(message, "utf8")) def main(): clientSocketIPv6 = socket.socket(AF_INET6, SOCK_STREAM) addressIPv6 = (globalIPv6, portIPv6) clientSocketIPv6.connect(addressIPv6) receive_thread = Thread(target=receive, args=(clientSocketIPv6,)) send_thread = Thread(target=send, args=(clientSocketIPv6,)) receive_thread.start() send_thread.start() if __name__ == "__main__": main()
SpringNuance/chat_application_command-line-version
client_IPv6.py
client_IPv6.py
py
1,436
python
en
code
1
github-code
6
39165330944
# # @lc app=leetcode.cn id=20 lang=python3 # # [20] 有效的括号 # # @lc code=start class Solution: # 插入左括号,判断右括号 def isValid(self, s: str) -> bool: sLen = len(s) if sLen % 2 !=0: return False stack = list() rightMap = { ')': '(', '}': '{', ']': '[', } for i in s: if i in rightMap: if len(stack) == 0 or rightMap[i] != stack[-1]: return False stack = stack[:-1] else: stack.append(i) return len(stack) == 0 # @lc code=end
cl6222877/leetcode_gogo
20.有效的括号.py
20.有效的括号.py
py
635
python
en
code
0
github-code
6
4510504745
from tkinter import * import tkinter as tk import sqlite3 import sys print("Imported") con = sqlite3.connect("project.db") print("Connected") root = tk.Tk() v = tk.IntVar() v1 = tk.IntVar() v2 = tk.IntVar() v3 = tk.IntVar() def createtable(): create = ("CREATE TABLE IF NOT EXISTS vehicle(NAME VARCHAR(200),"+ "CONTACT VARCHAR(200),"+ "VEHICLE VARCHAR(100),"+ "DATEOFBOOKING VARCHAR(100),"+ "DURATION VARCHAR(100),"+ "RENT VARCHAR(100))") con.execute(create) print("CREATED SUCCESSFULLY") def insertt(aname, acon, aveh, adob, adur, arent): aname = aname.get() acon = acon.get() aveh = aveh.get() adob = adob.get() adur = adur.get() arent = arent.get() print(aname, acon, aveh, adob, adur, arent) print("Value is", aname) insert = str("INSERT INTO vehicle(NAME,CONTACT,VEHICLE,DATEOFBOOKING,DURATION,RENT)"+" VALUES(?,?,?,?,?,?)") con.execute(insert,(aname, acon, aveh, adob, adur, arent)) con.commit() print("INSERTED SUCCESSFULLY") def btnClickdis(): winddis = tk.Toplevel(root) winddis.geometry('500x500+50+50') winddis.title("BOOKING RECORD") curs = con.cursor() query = 'SELECT * FROM vehicle' curs.execute(query) Label(winddis, text="NAME", font=('arial',10,'bold')).grid(row=0, column=0) Label(winddis, text="CONTACT", font=('arial',10,'bold')).grid(row=0, column=1) Label(winddis, text="VEHICLE", font=('arial',10,'bold')).grid(row=0, column=2) Label(winddis, text="DATE OF BOOKING", font=('arial',10,'bold')).grid(row=0, column=3) Label(winddis, text="DURATION", font=('arial',10,'bold')).grid(row=0, column=4) Label(winddis, text="RENT", font=('arial',10,'bold')).grid(row=0, column=5) data=curs.fetchall() for i, row in enumerate(data) : Label(winddis, text=row[0]).grid(row=i+1, column=0) Label(winddis, text=row[1]).grid(row=i+1, column=1) Label(winddis, text=row[2]).grid(row=i+1, column=2) Label(winddis, text=row[3]).grid(row=i+1, column=3) Label(winddis, text=row[4]).grid(row=i+1, column=4) Label(winddis, text=row[5]).grid(row=i+1, column=5) def searching(e): windsearch = tk.Toplevel(root,width=500,height=500) windsearch.title("SEARCH") windsearch.geometry('500x500+50+50') sname = e.get() print("Record of", sname, "is to be deleted") data = con.execute('SELECT NAME,CONTACT,VEHICLE,DATEOFBOOKING,DURATION,RENT FROM vehicle where NAME=?;', (sname,)) for row in data: Label(windsearch, text=row[0], font=('Verdana',12,'bold')).grid(row=1, column=4) Label(windsearch, text=row[1], font=('Verdana',12,'bold')).grid(row=2, column=4) Label(windsearch, text=row[2], font=('Verdana',12,'bold')).grid(row=3, column=4) Label(windsearch, text=row[3], font=('Verdana',12,'bold')).grid(row=4, column=4) Label(windsearch, text=row[4], font=('Verdana',12,'bold')).grid(row=5, column=4) Label(windsearch, text=row[5], font=('Verdana',12,'bold')).grid(row=6, column=4) Label(windsearch, text="NAME", font=('Verdana',15,'bold')).grid(row=1, column=1) Label(windsearch, text="CONTACT", font=('Verdana',15,'bold')).grid(row=2, column=1) Label(windsearch, text="VEHICLE", font=('Verdana',15,'bold')).grid(row=3, column=1) Label(windsearch, text="DATE OF BOOKING", font=('Verdana',15,'bold')).grid(row=4, column=1) Label(windsearch, text="DURATION", font=('Verdana',15,'bold')).grid(row=5, column=1) Label(windsearch, text="RENT", font=('Verdana',15,'bold')).grid(row=6, column=1) def delcnfrm(e): winddelcnfrm = tk.Toplevel(root) winddelcnfrm.geometry('250x250+50+50') winddelcnfrm.title("DELETE?") print(e) delname = e.get() print(delname) l = Label(winddelcnfrm,font=('timesnewroman',10,'bold'),text="CONFIRM?",fg="black").grid(columnspan=2) btndelete = Button(winddelcnfrm,fg="black",font=('arial',10,'bold'),text="YES",command=lambda:deleterec(delname),relief="raise",width=10,height=3,bg="cyan").grid(row=2,column=0) btndelete = Button(winddelcnfrm,fg="black",font=('arial',10,'bold'),text="NO",command=btnClickdel,relief="raise",width=10,height=3,bg="cyan").grid(row=2,column=1) def deleterec(delname): con.execute("DELETE from vehicle where NAME=?;",(delname,)) con.commit() print("DELETED SUCCESSFULLY") def btnLogin(): pass def btnClickdel(): winddel = tk.Toplevel(root) winddel.geometry('700x500+50+50') winddel.title("DELETE A RECORD") l = Label(winddel,font=('timesnewroman',10,'bold'),text="Enter the name whose vehicle booking details you want to delete.",fg="black").grid(row=0,column=0) e = Entry(winddel,font=(20),bd=6) e.place(x=75,y=75) Button(winddel,text="DELETE",font=(20),bg="aquamarine",relief="raise",command=lambda:delcnfrm(e),width=10,height=1).place(x=150,y=150) def btnClickLoginRegister(): windlgrg = tk.Toplevel(root) windlgrg.geometry('500x500+500+150') windlgrg.title("LOGIN OR REGISTER") Button(windlgrg, text="LOGIN", width=25, height=2, command=btnLogin, bg="gold", bd=7, relief="raise", font=(30)).place(x=110,y=100) Button(windlgrg, text="REGISTER", width=25, height=2, command=btnRegister, bg="gold", bd=7, relief="raise", font=(30)).place(x=110,y=230) def buttonClickA(): winda = tk.Toplevel(root, width=500, height=500) winda.geometry('1000x1000+50+50') winda.title("I'M ADMIN") l = tk.Label(winda, text="CHOOSE YOUR OPTION :", font=('Verdana',15,'bold')).place(x=350,y=50) Button(winda, text="VIEW THE BOOKINGS!", width=40, height=3, command=btnClickdis, bg="gold", bd=7, relief="raise", font=(30)).place(x=350,y=100) Button(winda, text="SEARCH A RECORD!", width=40, height=3, command=buttonClick, bg="gold", bd=7, relief="raise", font=(30)).place(x=350,y=230) Button(winda, text="DELETE A RECORD!", width=40, height=3, command=btnClickdel, bg="gold", bd=7, relief="raise", font=(30)).place(x=350,y=360) def buttonClickB(): windb = tk.Toplevel(root) windb.geometry('1000x1000+50+50') windb.title("I'M CUSTOMER") l = tk.Label(windb, text="CHOOSE YOUR OPTION :", font=('Verdana',15,'bold')).place(x=350,y=100) Button(windb, text="BOOK A VEHICLE!", width=40, height=3, command=buttonClick1, bg="maroon1", bd=7, relief="raise", font=(30)).place(x=350,y=150) Button(windb, text="SEARCH YOUR RECORD!", width=40, height=3, command=buttonClick, bg="maroon1", bd=7, relief="raise", font=(30)).place(x=350,y=280) Button(windb, text="GIVE YOUR REVIEWS!", width=40, height=3, command=buttonClick2, bg="maroon1", bd=7, relief="raise", font=(30)).place(x=350,y=410) def buttonClick(): winds = tk.Toplevel(root,width=500,height=500) winds.title("SEARCH WINDOW") winds.geometry('1000x700+50+50') l = tk.Label(winds, font=('timesnewroman',10,'bold'), text="Enter the name whose vehicle booking details you are looking for!", fg="black").place(x=100,y=75) e= Entry(winds, font=(20), bd=6) e.place(x=100, y=125) Button(winds, text="SEARCH", font=(20), bg="tomato", relief="raise", command=lambda:searching(e)).place(x=450,y=200) def btnRegister(): windc = tk.Toplevel(root) windc.geometry('1200x800+50+50') windc.title("PERSONAL DETAILS") pd = tk.Label(windc, text="PERSONAL DETAILS", font=('arial',40,'bold'), bd=6, fg="magenta2", anchor='center').grid(row=0, column=1, columnspan=4, pady=5) l1 = tk.Label(windc, text="NAME:", font=(20)).grid(row=1, column=0, pady=5) l2 = tk.Label(windc, text="CONTACT_NO:", font=(20)).grid(row=2, column=0, pady=5) l3 = tk.Label(windc, text="ADDRESS:", font=(20)).grid(row=3, column=0, pady=5) l4 = tk.Label(windc, text="EMAIL_ID:", font=(20)).grid(row=4, column=0, pady=5) l5 = tk.Label(windc, text="GENDER:", font=(20)).grid(row=5, column=0, pady=5) Button(windc, text="REGISTER", font=(20), command=btnClickLoginRegister, bg="yellow", relief="raise").grid(row=7, column=1, rowspan=2) aname = Entry(windc, width=80, font=(20), bd=6) aname.place(x=150, y=90) acon = Entry(windc, width=80, font=(20), bd=6) acon.place(x=150, y=125) e3 = Text(windc, font=(20), height=5, bd=6).grid(row=3, column=1, pady=5) e4 = Text(windc, font=(20), height=0, bd=6).grid(row=4, column=1, pady=5) tk.Radiobutton(windc, text="Male", variable=v, value=1, font=(20)).grid(row=5, column=1, sticky=W) tk.Radiobutton(windc, text="Female", variable=v, value=2, font=(20)).grid(row=6, column=1, sticky=W) def buttonClick2(): windr = tk.Toplevel(root) windr.geometry('1000x1000+50+50') windr.title("REVIEW") re = tk.Label(windr, text="WELCOME TO THE REVIEW SECTION", font=('arial',40,'bold'), bd=6, fg="magenta2", anchor='center').place(x=30,y=5) l = tk.Label(windr, text="Your Name here.", font=('System',15)).place(x=30,y=80) l1 = tk.Label(windr, text="Give your reviews here.", font=('System',15)).place(x=30,y=125) l2 = tk.Label(windr, text="If you have any complaints regarding our rental agency ,enter them here.", font=('System',15)).place(x=30,y=250) l3 = tk.Label(windr, text="Enter your suggestions ,if any.", font=('System',15)).place(x=30,y=375) e = Text(windr, height=0, width=60, font=(20), bd=6).place(x=200,y=80) e1 = Text(windr, height=2, font=(20), bd=6).place(x=30,y=175) e2 = Text(windr, height=2, font=(20), bd=6).place(x=30,y=300) e3 = Text(windr, height=2, font=(20), bd=6).place(x=30,y=425) Button(windr, text="DONE", font=(20), bg="yellow", relief="raise").place(x=425,y=500) def buttonClick3(aname,acon): windn = tk.Toplevel(root) windn.geometry('1200x700+50+50') windn.title("VEHICLE BOOKING DETAILS") vd = tk.Label(windn, text="VEHICLE BOOKING DETAILS", font=('arial',40,'bold'), bd=6, fg="magenta2", anchor='center').place(x=200,y=5) Button(windn, text="VEHICLES FOR RENT", font=(20), command=buttonClick4, bg="orange", relief="raise").place(x=250,y=75) Button(windn, text="VIEW RATES", font=(20), command=buttonClick5, bg="orange", relief="raise").place(x=700,y=75) l6 = tk.Label(windn ,text="ENTER THE NAME OF THE VEHICLE YOU WANT ON RENT :", font=(20)).place(x=30,y=125) la = tk.Label(windn, text="* BIKE",font=(20)).place(x=850,y=125) lb = tk.Label(windn, text="* CAR",font=(20)).place(x=850,y=150) lc = tk.Label(windn, text="* JEEP",font=(20)).place(x=850,y=175) ld = tk.Label(windn, text="* BUS",font=(20)).place(x=850,y=200) le = tk.Label(windn, text="* TRUCK",font=(20)).place(x=850,y=225) l7 = tk.Label(windn, text="DATE OF BOOKING:",font=(20)).place(x=30,y=300) l8 = tk.Label(windn, text="DURATION:",font=(20)).place(x=30,y=350) l9 = tk.Label(windn, text="RENT A DRIVER?",font=(20)).place(x=30,y=400) Button(windn, text="NEXT", font=(20), command=lambda:buttonClick6(aname, acon, aveh, adob, adur), bg="orange", relief="raise").place(x=515,y=570) aveh = Entry(windn, width=80, font=(20), bd=6) aveh.place(x=30, y=250) adob = Entry(windn, width=80, font=(20), bd=6) adob.place(x=225, y=300) adur = Entry(windn, width=80, font=(20), bd=6) adur.place(x=225, y=350) tk.Radiobutton(windn, text="Yes", variable=v2, value=1, font=(20)).place(x=225,y=400) tk.Radiobutton(windn, text="No", variable=v2, value=2, font=(20)).place(x=225,y=450) def buttonClick4(): windv = tk.Toplevel(root) windv.geometry('700x500+50+50') windv.title("VEHICLES FOR RENT") l = tk.Label(windv, text="THE VEHICLES WHICH ARE AVAILABLE FOR RENT WITH US ARE:", font=(20)).grid() l1 = tk.Label(windv, text="BIKES", font=(20)).grid() l2 = tk.Label(windv, text="CARS ", font=(20)).grid() l3 = tk.Label(windv, text="JEEPS", font=(20)).grid() l4 = tk.Label(windv, text="BUSES", font=(20)).grid() l5 = tk.Label(windv, text="TRUCKS", font=(20)).grid() def buttonClick5(): windr = tk.Toplevel(root) windr.geometry('500x500+50+50') windr.title("RENTS OF VEHICLES") l1 = tk.Label(windr, text="RENT OF BIKE IS RS. 300/DAY", font=(20)).grid() l2 = tk.Label(windr, text="RENT OF CAR IS RS. 1500/DAY", font=(20)).grid() l3 = tk.Label(windr, text="RENT OF JEEP IS RS. 2000/DAY", font=(20)).grid() l4 = tk.Label(windr, text="RENT OF BUS IS RS. 9000/DAY", font=(20)).grid() l5 = tk.Label(windr, text="RENT OF TRUCK IS RS. 10000/DAY", font=(20)).grid() def buttonClick6(aname, acon, aveh, adob, adur): windp = tk.Toplevel(root) windp.geometry('1200x700+50+50') windp.title("PAYMENT DETAILS") pay = tk.Label(windp, text="PAYMENT DETAILS", font=('arial',40,'bold'), bd=6, fg="magenta2", anchor='center').place(x=300,y=5) l1 = tk.Label(windp, text="TOTAL RENT:", font=(20)).place(x=30,y=100) l = tk.Label(windp, text="Enter the rent as per the vehicle chosen and the number of days for which the vehcile is rented", font=(15)).place(x=225,y=140) arent = Entry(windp, font=(20),bd=6) arent.place(x=200, y=100) l2 = tk.Label(windp, text="PAYMENT VIA:", font=(20)).place(x=30,y=175) l3 = tk.Label(windp, text="*IN CASE OF ANY DAMAGE DONE TO THE VEHICLE,DAMAGE FINE WILL BE CHARGED.", font=('Verdana',15,'bold'), fg="firebrick1").place(x=30,y=275) l4 = tk.Label(windp, text="Damage amount is 50% of the rent!!!", font=('Verdana',15,'bold'), fg="firebrick1").place(x=30,y=300) l5 = tk.Label(windp, text="*IF VEHICLE IS NOT RETURNED BACK ON TIME,LATE FINE WILL BE CHARGED.", font=('Verdana',15,'bold'), fg="firebrick1").place(x=30,y=350) l6 = tk.Label(windp, text="The late fine is 25% of the rent(if late by a day)!!!", font=('Verdana',15,'bold'), fg="firebrick1").place(x=30,y=375) tk.Radiobutton(windp, text="Credit Card", variable=v3, value=1, font=(20)).place(x=200,y=175) tk.Radiobutton(windp, text="Cash", variable=v3, value=2, font=(20)).place(x=200,y=225) ok = Button(windp, text="SUBMIT", font=('arial',20,'bold'), fg="black", bg="cyan2", relief="raise", command=lambda:insertt(aname, acon, aveh, adob, adur, arent)).place(x=525,y=500) createtable() root.title('Vehicle Rental Agency') root.geometry('1350x700+100+50') root.config(bg="sky blue") backgrnd = Frame(root, width=1600, height=300, relief="raise", bg="sky blue") backgrnd.pack(side = TOP) backgrnd1 = Frame(root, width=1600, height=400, relief="raise", bg="sky blue") backgrnd1.pack(side = TOP) label1 = Label(backgrnd, font=('times',35,'bold'), text="***VEHICLE RENTAL AGENCY***", fg='black', bd=10, bg="plum1").grid() Button(backgrnd1, text="ADMIN", width=40, height=3, command=buttonClickA, bg="blue", bd=7, relief="raise", font=(30)).place(x=450,y=150) Button(backgrnd1, text="CUSTOMER", width=40, height=3, command=btnClickLoginRegister, bg="blue", bd=7, relief="raise", font=(30)).place(x=450,y=280) root.mainloop()
karankhat/Vehicle_Rental_Agency
python.py
python.py
py
14,870
python
en
code
0
github-code
6
20899251668
from utilities import * def main(): # Sampling print("Sampling the room...") frames = sample_noise() name, _ = write_noise("sample.wav", frames) new_frames = create_noise(name) name,_ = write_noise("whitenoise.wav", new_frames) player = WavePlayerLoop("whitenoise.wav",True) player.play() # Play um = True try: while True: if um: filename = "whitenoise0.wav" else: filename = "whitenoise1.wav" frames = sample_noise() print("Sampled") name, _ = write_noise(filename, frames) new_frames = create_noise(name) name,_ = write_noise(filename, new_frames) player.filepath = os.path.abspath(filename) print("Changed") os.remove(filename) um = not um except KeyboardInterrupt: print("Thanks!") return main()
mx60s/tamuhack2019
main.py
main.py
py
944
python
en
code
2
github-code
6
24447759905
from cloudify import ctx from cloudify.decorators import operation from cloudify.state import ctx_parameters as inputs @operation def set_floating_ip_on_port(**_): """ Use this operation when connecting a host to a floating IP. This operation will set the `public_ip` runtime property on the host instance """ floating_ip = ctx.target.instance.runtime_properties['floating_ip_address'] ctx.source.instance.runtime_properties['floating_ip_address'] = floating_ip ctx.source.instance.update() ctx.logger.info('Setting floating IP {0} for `{1}`'.format( floating_ip, ctx.source.instance.id )) def _get_ip_address_and_hostname(): """ Get IP address and hostname from their respective resource pools and update the resource_pool object's runtime properties :return: A tuple (ip_address, hostname) """ resource_pool = ctx.target.instance.runtime_properties['resource_pool'] resource = resource_pool.pop(0) ctx.target.instance.runtime_properties['resource_pool'] = resource_pool ctx.target.instance.update() return resource['ip_address'], resource['hostname'] @operation def get_resources_from_resource_pool(**_): """ Get one of each IP address and hostname from the resource pool and keep them in the `resource` object's runtime props This operation runs in a relationship where `resource` is the source and `resource_pool` is the target """ ip_address, fixed_hostname = _get_ip_address_and_hostname() ctx.logger.info('Setting IP `{0}` for instance `{1}`'.format( ip_address, ctx.source.instance.id )) ctx.logger.info('Setting hostname `{0}` for instance `{1}`'.format( fixed_hostname, ctx.source.instance.id )) ctx.source.instance.runtime_properties['fixed_ip'] = ip_address ctx.source.instance.runtime_properties['fixed_hostname'] = fixed_hostname ctx.source.instance.update() @operation def setup_resource_pool(**_): """ Create the resource pool from the user's inputs """ ctx.instance.runtime_properties['resource_pool'] = inputs['resource_pool'] ctx.instance.update() ctx.logger.info( 'Setting resource pool: {0}'.format(inputs['resource_pool']) ) @operation def set_ip_from_port(**_): """ Use this operation to pass an IP from a port object to the host. This operation will set the `public_ip` runtime property on the host instance """ port_runtime_props = ctx.target.instance.runtime_properties private_ip = port_runtime_props['fixed_ip_address'] # If the port has a floating IP attached to it, we should use as the # public IP. If not, just use the internal fixed_ip_address public_ip = port_runtime_props.get('floating_ip_address', private_ip) ctx.source.instance.runtime_properties['public_ip'] = public_ip ctx.source.instance.update() ctx.logger.info('Setting IP {0} from port for `{1}`'.format( public_ip, ctx.source.instance.id ))
Cloudify-PS/manager-of-managers
plugins/cmom/cmom/misc/ip.py
ip.py
py
3,018
python
en
code
1
github-code
6
25632521939
#! /usr/bin/env python # -*- coding: utf-8 -*- # __author__ = 'CwT' from queue import Queue, Empty import logging import traceback from selenium.common.exceptions import TimeoutException from . import Global logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class Scheduler(object): def __init__(self): self.FIFOqueue = Queue() def wait(self): logger.debug("start to exit, remaining tasks %d" % self.FIFOqueue.qsize()) self.FIFOqueue.join() def add_task(self, target, depth, data=None): # print("Add one target to scheduler", target) self.FIFOqueue.put((target, data, depth)) def get_task(self, block=False): return self.FIFOqueue.get(block=block) def run(self, browser, scanner, setting): try: while True: # print("Get one", self.FIFOqueue.qsize()) target, data, depth = self.get_task() # print("Target: ", target) options = { "url": target, "batch": True, "level": setting.level, "threads": setting.threads, "timeout": setting.timeout } if data: post_data = '&'.join(["%s=%s" % (k, v) for k, v in data.items()]) options["data"] = post_data if setting.test: logger.debug("options: %s" % options) if not setting.test: scanner.add_and_start(**options) try: if depth >= setting.depth != -1: continue # record the depth we are dealing with before we actually get the page Global.CURRENT_DEPTH = depth if data: browser.post(target, data) else: browser.get(target) except TimeoutException: pass finally: self.FIFOqueue.task_done() except Empty: logger.debug("Empty queue, ready to quit") pass except Exception as e: logger.error("something wrong happened!! %s" % e.message) logger.error(type(e)) traceback.print_exc() while not self.FIFOqueue.empty(): self.get_task() self.FIFOqueue.task_done() raise
futurelighthouse/crawler_sqlmap
crawler/util/scheduler.py
scheduler.py
py
2,516
python
en
code
null
github-code
6
9439114675
import shutil import os import random import argparse import sys from xml.dom import minidom import traceback parser = argparse.ArgumentParser(description="Choose a random number of individual files from a data repository") parser.add_argument("-fs", "--files", help="Set the path to the directory with the XML files", required=True) parser.add_argument("-p", "--population", help="Set the number of files that will be selected", type=int, required=True) parser.add_argument("-s", "--seed", help="Set the seed to obtain previous results", default=None) parser.add_argument("-f", "--filter", help="Specify keywords to filter out specific files; the first element is the field to filter, all following elements are the keywords; keywords are separated by comma") parser.add_argument("-d", "--delete", help="Delete the output folder 'selected_files' if it already exists", action="store_true") args = parser.parse_args() try: filters = None if(args.filter != None): filters = args.filter.split(",") if(filters != None and len(filters) < 2): raise Exception("The '-f/--filter' option needs at least two elements") if(os.path.exists(args.files + "/selected_files")): if(args.delete): shutil.rmtree(args.files + "/selected_files") else: raise Exception("The output folder 'selected_files' in the directory '" + args.files + "' already exists. Delete it manually or use the '-d/--delete' option.") file_list = [] print("\rLoading files...", end="") number_of_files = 0 for dirpath, dirnames, filenames in os.walk(args.files): for file in filenames: if(file.endswith(".xml")): if(filters != None): with open(args.files + "/" + file, "r") as xml_reader: content = xml_reader.read().strip() if("<" + filters[0] + ">" in content): items = content.split("<" + filters[0] + ">")[-1].split("</" + filters[0] + ">")[0].split("|") for item in items: if(item.strip() in filters[1:]): file_list.append(file) number_of_files += 1 print("\rLoaded " + str(number_of_files) + " file(s)", end="") break else: file_list.append(file) number_of_files += 1 print("\rLoaded " + str(number_of_files) + " file(s)", end="") print("\rLoading files -> done") if(not len(file_list)): raise Exception("No XML file found in path '" + args.files + "' or all files were filtered out.") if(args.population > len(file_list)): raise Exception("The population size cannot be larger than the number of files.") if(args.seed == None): args.seed = str(random.randrange(sys.maxsize)) random.seed(args.seed) print("\rSelecting randomly " + str(args.population) + " files...", end="") selected_files = random.sample(file_list, args.population) print("\rSelecting randomly " + str(args.population) + " files -> done") os.mkdir(args.files + "/selected_files") progress = 0 for file in selected_files: shutil.copyfile(args.files + "/" + file, args.files + "/selected_files/" + file) progress += 1 print("\rCopy progress: " + str(int((progress/len(selected_files))*100)) + "%", end="") print("\rCopy progress: finished") with open(args.files + "/selected_files/seed.txt", "w") as seedWriter: print("Seed: " + args.seed) seedWriter.write(str(args.seed)) except Exception as ex: print(ex) print(traceback.format_exc())
fusion-jena/QuestionsMetadataBiodiv
data_repositories/random_file_selector.py
random_file_selector.py
py
3,800
python
en
code
4
github-code
6
42287839856
import argparse import os.path import glob from snakePipes import __version__ def ListGenomes(): """ Return a list of all genome yaml files (sans the .yaml suffix) """ dName = os.path.dirname(__file__) genomes = [os.path.basename(f)[:-5] for f in glob.glob(os.path.join(dName, "shared/organisms/*.yaml"))] return genomes def mainArguments(defaults, workingDir=False, createIndices=False, preprocessing=False): """ Return a parser with the general and required args. This will include EITHER a -d option OR -i and -o, depending on the workingDir setting defaults is a dictionary of default values A number of standard arguments are eliminated in the createIndices workflow. """ # Set up some defaults for the sake of readthedocs if 'smtpServer' not in defaults: defaults['smtpServer'] = None if 'smtpPort' not in defaults: defaults['smtpPort'] = 0 if 'onlySSL' not in defaults: defaults['onlySSL'] = False if 'emailSender' not in defaults: defaults['emailSender'] = None parser = argparse.ArgumentParser(add_help=False) if not createIndices and not preprocessing: genomes = ListGenomes() parser.add_argument("genome", metavar="GENOME", help="Genome acronym of the target organism. Either a yaml file or one of: {}".format(", ".join(genomes))) required = parser.add_argument_group('Required Arguments') if workingDir: required.add_argument("-d", "--working-dir", dest="workingdir", help="working directory is output directory and must contain DNA-mapping pipeline output files", required=True) else: if not createIndices: required.add_argument("-i", "--input-dir", dest="indir", required=True, help="input directory containing the FASTQ files, either paired-end OR single-end data") required.add_argument("-o", "--output-dir", dest="outdir", required=True, help="output directory") general = parser.add_argument_group('General Arguments') general.add_argument("-h", "--help", action="help", help="show this help message and exit") general.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="verbose output (default: '%(default)s')", default=defaults["verbose"]) if not workingDir and not createIndices: general.add_argument("--ext", help="Suffix used by input fastq files (default: '%(default)s').", default=defaults["ext"]) general.add_argument("--reads", nargs=2, help="Suffix used to denote reads 1 and 2 for paired-end data. This should typically be either '_1' '_2' or '_R1' '_R2' (default: '%(default)s). " "Note that you should NOT separate the values by a comma (use a space) or enclose them in brackets.", default=defaults["reads"]) general.add_argument("-c", "--configFile", help="configuration file: config.yaml (default: '%(default)s')", default=defaults["configFile"]) general.add_argument("--clusterConfigFile", help="configuration file for cluster usage. In absence, the default options " "specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: '%(default)s')", default=defaults["clusterConfigFile"]) general.add_argument("-j", "--jobs", dest="maxJobs", metavar="INT", help="maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '%(default)s')", type=int, default=defaults["maxJobs"]) general.add_argument("--local", dest="local", action="store_true", default=False, help="run workflow locally; default: jobs are submitted to Slurm queue (default: '%(default)s')") general.add_argument("--keepTemp", action="store_true", help="Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.") general.add_argument("--snakemakeOptions", action="append", help="Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: '%(default)s')", default=[defaults["snakemakeOptions"]]) general.add_argument("--DAG", dest="createDAG", action="store_true", help="If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.") general.add_argument("--version", action="version", version="%(prog)s {}".format(__version__)) emailArgs = parser.add_argument_group('Email Arguments') emailArgs.add_argument("--emailAddress", help="If specified, send an email upon completion to the given email address") emailArgs.add_argument("--smtpServer", default=defaults["smtpServer"], help="If specified, the email server to use.") emailArgs.add_argument("--smtpPort", type=int, default=defaults["smtpPort"], help="The port on the SMTP server to connect to. A value of 0 specifies the default port.") emailArgs.add_argument("--onlySSL", action="store_true", default=defaults["onlySSL"], help="The SMTP server requires an SSL connection from the beginning.") emailArgs.add_argument("--emailSender", default=defaults["emailSender"], help="The address of the email sender. If not specified, it will be the address indicated by `--emailAddress`") emailArgs.add_argument("--smtpUsername", help="If your SMTP server requires authentication, this is the username to use.") emailArgs.add_argument("--smtpPassword", help="If your SMTP server requires authentication, this is the password to use.") return parser def snpArguments(defaults): """ Arguments related to allele-specific pipelines """ parser = argparse.ArgumentParser(add_help=False) snpargs = parser.add_argument_group('Allele-specific mapping arguments') snpargs.add_argument("--VCFfile", default='', help="VCF file to create N-masked genomes (default: 'None')") snpargs.add_argument("--strains", default='', help="Name or ID of SNP strains separated by comma (default: 'None')") snpargs.add_argument("--SNPfile", default='', help="File containing SNP locations (default: 'None')") snpargs.add_argument("--NMaskedIndex", default='', help="N-masked index of the reference genome (default: 'None')") return parser # DNA-mapping options added def commonOptions(grp, defaults, bw=True, plots=True, preprocessing=False): """ Common options found in many workflows grp is an argument group that's simply appended to """ if not preprocessing: grp.add_argument("--downsample", dest="downsample", metavar="INT", help="Downsample the given number of reads randomly from of each FASTQ file (default: '%(default)s')", type=int, default=defaults["downsample"]) grp.add_argument("--trim", dest="trim", action="store_true", help="Activate fastq read trimming. If activated, Illumina adaptors are trimmed by default. " "Additional parameters can be specified under --trimmerOptions. (default: '%(default)s')", default=defaults["trim"]) grp.add_argument("--trimmer", dest="trimmer", choices=['cutadapt', 'trimgalore', 'fastp'], help="Trimming program to use: Cutadapt, TrimGalore, or fastp. Note that if you change this you may " "need to change --trimmerOptions to match! (default: '%(default)s')", default=defaults["trimmer"]) grp.add_argument("--trimmerOptions", dest="trimmerOptions", help="Additional option string for trimming program of choice. (default: '%(default)s')", default=defaults["trimmerOptions"]) grp.add_argument("--fastqc", dest="fastqc", action="store_true", help="Run FastQC read quality control (default: '%(default)s')", default=defaults["fastqc"]) grp.add_argument("--bcExtract", dest="UMIBarcode", action="store_true", help="To extract umi barcode from fastq file via UMI-tools and add it to the read name " "(default: '%(default)s')", default=defaults["UMIBarcode"]) grp.add_argument("--bcPattern", help="The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) " "(default: '%(default)s')", default=defaults["bcPattern"]) if not preprocessing: grp.add_argument("--UMIDedup", action="store_true", help="Deduplicate bam file based on UMIs via `umi_tools dedup` that are present in the read name. " "(default: '%(default)s')", default=defaults["UMIDedup"]) grp.add_argument("--UMIDedupSep", help="umi separation character " "that will be passed to umi_tools." "(default: '%(default)s')", default=defaults["UMIDedupSep"]) grp.add_argument("--UMIDedupOpts", help="Additional options that will be passed to umi_tools." "(default: '%(default)s')", default=defaults["UMIDedupOpts"]) if bw and not preprocessing: grp.add_argument("--bwBinSize", dest="bwBinSize", help="Bin size of output files in bigWig format (default: '%(default)s')", type=int, default=defaults["bwBinSize"]) if plots and not preprocessing: grp.add_argument("--plotFormat", choices=['png', 'pdf', 'None'], metavar="STR", type=str, help="Format of the output plots from deepTools. Select 'none' for no plots (default: '%(default)s')", default=defaults["plotFormat"])
maxplanck-ie/snakepipes
snakePipes/parserCommon.py
parserCommon.py
py
12,233
python
en
code
355
github-code
6
29579806350
# -*- coding: utf-8 -*- """ Created on Fri Dec 7 12:41:01 2018 @author: Akitaka """ # 1:ライブラリのインポート-------------------------------- import numpy as np #numpyという行列などを扱うライブラリを利用 import pandas as pd #pandasというデータ分析ライブラリを利用 import matplotlib.pyplot as plt #プロット用のライブラリを利用 from sklearn import cross_validation, preprocessing, decomposition, manifold #機械学習用のライブラリを利用 from sklearn import datasets #使用するデータ # 2:moon型のデータを読み込む-------------------------------- X,Y = datasets.make_moons(n_samples=200, noise=0.05, random_state=0) # 3:データの整形------------------------------------------------------- sc=preprocessing.StandardScaler() sc.fit(X) X_norm=sc.transform(X) # 4:Isomapを実施------------------------------- isomap = manifold.Isomap(n_neighbors=10, n_components=2) X_isomap = isomap.fit_transform(X) # 解説5:LLEを実施------------------------------- lle = manifold.LocallyLinearEmbedding(n_neighbors=10, n_components=2) X_lle = lle.fit_transform(X) # 6: 結果をプロットする----------------------------- #%matplotlib inline plt.figure(figsize=(10,10)) plt.subplot(3, 1, 1) plt.scatter(X[:,0],X[:,1], c=Y) plt.xlabel('x') plt.ylabel('y') plt.subplot(3, 1, 2) plt.scatter(X_isomap[:,0],X_isomap[:,1], c=Y) plt.xlabel('IM-1') plt.ylabel('IM-2') plt.subplot(3, 1, 3) plt.scatter(X_lle[:,0],X_lle[:,1], c=Y) plt.xlabel('LLE-1') plt.ylabel('LLE-2') plt.show
nakanishi-akitaka/python2018_backup
1207/ml25.py
ml25.py
py
1,632
python
ja
code
5
github-code
6
27857361755
# Nombre: Diccionario.py # Ovjetivo: Muestra el funcuinamiento de los diccionario # Autor: Rafael Ochoa # Fecha: 02/07/2019 lista = [] materias = {"Algoritmos": "100", "Inteligencia Artificial": "69", "Base de Datos": "100"} lista.append(materias) print(lista)
Rafa8a/Automatas2
Diccionario.py
Diccionario.py
py
287
python
es
code
0
github-code
6
21353904775
from functools import lru_cache class Solution: def ladderLength(self, beginWord: str, endWord: str, wordList: [str]) -> int: wordList.append(beginWord) wordList = list(set(wordList)) s_len = len(beginWord) n = len(wordList) wd_ids = [i for i in range(n)] wd2id = dict(zip(wordList, wd_ids)) if not endWord in wordList: return 0 aj_mat = [[0]*n for _ in range(n)] # 判断图中节点的连通性 for i, wd in enumerate(wordList): wd = list(wd) for j in range(s_len): old_c = wd[j] for c in range(97, 123): c = chr(c) if c == old_c: continue wd[j] = c new_s = ''.join(wd) if new_s in wd2id: aj_mat[i][wd2id[new_s]] = 1 wd[j] = old_c # BFS b_idx = wordList.index(beginWord) que = [b_idx] been = [0]*n been[b_idx] = 1 while len(que) != 0: # print(been) curr = que[0] del que[0] if wordList[curr] == endWord: break for i in range(n): if aj_mat[curr][i] and not been[i]: been[i] = been[curr] + 1 que.append(i) e_idx = wordList.index(endWord) return been[e_idx] s = Solution() r = s.ladderLength( 'hit', 'cog', ["hot","dot","dog","lot","log","cog"] ) print(r)
Alex-Beng/ojs
FuckLeetcode/127. 单词接龙.py
127. 单词接龙.py
py
1,603
python
en
code
0
github-code
6
73573190267
import pymysql from dbutils.pooled_db import PooledDB class MysqlPool: config = { 'creator': pymysql, 'host': "127.0.0.1", 'port': 3306, 'user': "tron", 'password': "123456", 'db': "vecrv_sun_airdrop_claimed", 'charset': 'utf8', 'maxconnections': 70, 'cursorclass': pymysql.cursors.DictCursor } pool = PooledDB(**config) def __enter__(self): self.conn = MysqlPool.pool.connection() self.cursor = self.conn.cursor() return self def __exit__(self, type, value, trace): if type == None or type == 0: self.conn.commit() else: print(f"mysql exec failed: \"{self.cursor._last_executed}\"\n" f"{type.__name__}{value}\n" f"{trace}") self.conn.rollback() self.cursor.close() self.conn.close() def db_conn(func): def wrapper(*args, **kw): with MysqlPool() as db: result = func(db, *args, **kw) return result return wrapper class Mysql: @staticmethod @db_conn def getAll(db, sql, param=None): """ @summary: 执行查询,并取出所有结果集 @param sql:查询SQL,如果有查询条件,请只指定条件列表,并将条件值使用参数[param]传递进来 @param param: 可选参数,条件列表值(元组/列表) @return: result list(字典对象)/boolean 查询到的结果集 """ if param is None: count = db.cursor.execute(sql) else: count = db.cursor.execute(sql, param) if count>0: result = db.cursor.fetchall() else: result = False return result @staticmethod @db_conn def getOne(db, sql, param=None): """ @summary: 执行查询,并取出第一条 @param sql:查询SQL,如果有查询条件,请只指定条件列表,并将条件值使用参数[param]传递进来 @param param: 可选参数,条件列表值(元组/列表) @return: result list/boolean 查询到的结果集 """ if param is None: count = db.cursor.execute(sql) else: count = db.cursor.execute(sql, param) if count>0: result = db.cursor.fetchone() else: result = False return result @staticmethod @db_conn def getMany(db, sql, num, param=None): """ @summary: 执行查询,并取出num条结果 @param sql:查询SQL,如果有查询条件,请只指定条件列表,并将条件值使用参数[param]传递进来 @param num:取得的结果条数 @param param: 可选参数,条件列表值(元组/列表) @return: result list/boolean 查询到的结果集 """ if param is None: count = db.cursor.execute(sql) else: count = db.cursor.execute(sql, param) if count>0: result = db.cursor.fetchmany(num) else: result = False return result @staticmethod @db_conn def insertOne(db, sql, value): """ @summary: 向数据表插入一条记录 @param sql:要插入的SQL格式 @param value:要插入的记录数据tuple/list @return: insertId 受影响的行数 """ db.cursor.execute(sql, value) return Mysql.__getInsertId(db) @staticmethod @db_conn def insertMany(db, sql, values): """ @summary: 向数据表插入多条记录 @param sql:要插入的SQL格式 @param values:要插入的记录数据tuple(tuple)/list[list] @return: count 受影响的行数 """ count = db.cursor.executemany(sql,values) return count @staticmethod def __getInsertId(db): """ 获取当前连接最后一次插入操作生成的id,如果没有则为0 """ db.cursor.execute("SELECT @@IDENTITY AS id") result = db.cursor.fetchall() return result[0]['id'] @staticmethod def __query(db, sql, param=None): if param is None: count = db.cursor.execute(sql) else: count = db.cursor.execute(sql, param) return count @staticmethod @db_conn def update(db, sql, param=None): """ @summary: 更新数据表记录 @param sql: SQL格式及条件,使用(%s,%s) @param param: 要更新的 值 tuple/list @return: count 受影响的行数 """ return Mysql.__query(db, sql, param) @staticmethod @db_conn def delete(db, sql, param=None): """ @summary: 删除数据表记录 @param sql: SQL格式及条件,使用(%s,%s) @param param: 要删除的条件 值 tuple/list @return: count 受影响的行数 """ return Mysql.__query(db, sql, param)
dpneko/pyutil
mysql_client.py
mysql_client.py
py
5,065
python
zh
code
0
github-code
6
36562104917
import sys from scipy.sparse import csr_matrix import numpy import re from collections import Counter number = '[0-9]+' isNumber = re.compile(number) FREQ_THRESH = 5 def normalize_word(word): if isNumber.search(word): return '---$$$---' else: return word def trim_vocab(vocab): new_index = 0 for word, freq in vocab.items(): if freq <= FREQ_THRESH: del vocab[word] else: vocab[word] = new_index new_index += 1 return vocab def get_vocab(fileName, lang1Vocab=Counter(), lang2Vocab=Counter()): numLines = 0 for line in open(fileName, 'r'): numLines += 1 lang1, lang2 = line.split('|||') lang1 = unicode(lang1.strip().lower(), 'utf-8') lang2 = unicode(lang2.strip().lower(), 'utf-8') for word in lang1.split(): word = normalize_word(word) lang1Vocab[word] += 1 for word in lang2.split(): word = normalize_word(word) lang2Vocab[word] += 1 #trim the vocab by frequency and replace frequency by unique number return numLines, trim_vocab(lang1Vocab), trim_vocab(lang2Vocab) def convert_dict_to_csr_matrix(matrixDict, sizeData, langVocab): row = numpy.zeros(len(matrixDict), dtype=int) col = numpy.zeros(len(matrixDict), dtype=int) values = numpy.zeros(len(matrixDict), dtype=int) index = 0 for (r, c), val in matrixDict.iteritems(): row[index] = r col[index] = c values[index] = val index += 1 matrixLang = csr_matrix((values,(row,col)), shape=(sizeData,len(langVocab))) return matrixLang def get_parallel_cooccurence_arrays(fileName, lang1Vocab, lang2Vocab, sizeData): matrixDict1 = Counter() numLine = 0 for line in open(fileName, 'r'): lang1, lang2 = line.split('|||') lang1 = unicode(lang1.strip().lower(), 'utf-8') lang2 = unicode(lang2.strip().lower(), 'utf-8') for word in lang1.split(): word = normalize_word(word) if word in lang1Vocab: # we want count of the words on the input matrixDict1[(numLine,lang1Vocab[word])] += 1 numLine += 1 matrixLang1 = convert_dict_to_csr_matrix(matrixDict1, sizeData, lang1Vocab) del matrixDict1 matrixDict2 = Counter() numLine = 0 for line in open(fileName, 'r'): lang1, lang2 = line.split('|||') lang1 = unicode(lang1.strip().lower(), 'utf-8') lang2 = unicode(lang2.strip().lower(), 'utf-8') for word in lang2.split(): word = normalize_word(word) if word in lang2Vocab: # we want probability of occurrence on the output matrixDict2[(numLine,lang2Vocab[word])] = 1 numLine += 1 matrixLang2 = convert_dict_to_csr_matrix(matrixDict2, sizeData, lang2Vocab) del matrixDict2 return (matrixLang1, matrixLang2) def get_datasets(trFile, valFile): sizeTrData, lang1Vocab, lang2Vocab = get_vocab(trFile) sizeValData, lang1Vocab, lang2Vocab = get_vocab(valFile, lang1Vocab, lang2Vocab) sys.stderr.write("\nFiles read...\n") sys.stderr.write("Total vocab sizes: lang1 = {0}, lang2 = {1}\n".format(len(lang1Vocab), len(lang2Vocab))) sys.stderr.write("Size of files: Train = {0}, Val = {1}\n".format(sizeTrData, sizeValData)) datasets = [] datasets.append(get_parallel_cooccurence_arrays(trFile, lang1Vocab, lang2Vocab, sizeTrData)) datasets.append(get_parallel_cooccurence_arrays(valFile, lang1Vocab, lang2Vocab, sizeValData)) return datasets
mfaruqui/vector-semantics
src/nn/process_parallel_data.py
process_parallel_data.py
py
3,788
python
en
code
5
github-code
6
34181193922
# -*- coding: utf-8 -*- """ Created on Fri May 8 14:11:28 2020 @author: Kollarlab """ from Instruments.HDAWG import HDAWG from Instruments.SGS import RFgen import numpy import time import sys import scipy import pylab import scipy.optimize from mplcursors import cursor as datacursor import threading from userfuncs import freeze import userfuncs as uf from Acqiris_development.Acqiris import Acqiris hardwareAddress = "PXI23::0::0::INSTR" IVIbinPath = "C:\\Program Files\\IVI Foundation\\IVI\\Bin\\" if not IVIbinPath in sys.path: sys.path.append(IVIbinPath) ###################### #measurement parameters measDur = 5e-6 numFreqs = 20 freqs = numpy.linspace(4e9,10e9, numFreqs) freqs = numpy.flipud(freqs) numPoints = 15 #phases = numpy.linspace(0, numpy.pi,numPoints) phases = numpy.linspace(0, 360,numPoints) #setup the digitizer #card = Acqiris(hardwareAddress) card.triggerSlope = 'Rising' card.triggerLevel = 0.1 card.averages = 1 #on-board averages card.segments = 1 card.triggerDelay = 0 card.activeChannels = [1,2] card.verbose = False card.sampleRate = 2e9 card.clockSource = 'External' card.channelRange = 0.5 card.samples = numpy.ceil(measDur*card.sampleRate) card.SetParams() #warning. this may round the number of smaples to multiple of 1024 ##set up the HDAWG. ##in this case, we just need channels 3,4 for our fake clock #### Connect to HDAWG and initialize it #hdawg = HDAWG('dev8163') #HDAWG device name ##hdawg.AWGs[0].samplerate = '2.4GHz' ##hdawg.channelgrouping = '1x4' ##hdawg.Channels[0].configureChannel(amp=1.0,marker_out='Marker', hold='True') ##hdawg.Channels[1].configureChannel(marker_out='Trigger', hold='True') ##hdawg.AWGs[0].Triggers[0].configureTrigger(slope='rising',channel='Trigger in 1') ###hdawg.daq.setInt('/dev8163/awgs/0/outputs/0/hold',1) ###hdawg.daq.setInt('/dev8163/awgs/0/outputs/1/hold',1) #hdawg.OSCs[1].freq = 10e6 #hdawg.Channels[2].analog_outs = [0.5,0] #hdawg.Channels[3].analog_outs = [0,0.5] #hdawg.Channels[2].configureChannel(amp=1.0) #hdawg.Channels[3].configureChannel(amp=1.0) #lo generator #(upper, 110738) #freq = 8 GHz #level = 12 dBm #rf on #mod off #ext ref on (for good phase), or ext ref off for random phase logen = RFgen('TCPIP0::rssgs100a110738::inst0::INSTR') logen.set_Freq(8) logen.set_Amp(12) logen.mod_Off() #logen.set_Internal_Reference() logen.set_External_Reference() logen.power_On() #rf generator #(lower, 110739) #freq = 8 GHz #level = 0 dBm #rf on #mod off #ext ref on rfgen = RFgen('TCPIP0::rssgs100a110739::inst0::INSTR') rfgen.set_Freq(8) rfgen.set_Amp(-4) rfgen.mod_Off() rfgen.set_External_Reference() rfgen.power_On() def plot_fig1(): fig = pylab.figure(1) pylab.clf() ax = pylab.subplot(1,1,1) pylab.plot(Is, Qs, linestyle = '', marker = 'o', markersize = 5, color = 'mediumblue') pylab.plot(xx, yy, color = 'firebrick') # Move left y-axis and bottim x-axis to centre, passing through (0,0) ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('center') # Eliminate upper and right axes ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.set_aspect('equal') titleStr = 'Mixer performance at ' + str(numpy.round(freq_GHz, 3)) + ' GHz' pylab.title(titleStr) # pylab.show(block = False) datacursor() fig.canvas.draw() fig.canvas.flush_events() return def plot_main_fig(fig): fig.clf() ax = pylab.subplot(1,1,1) pylab.plot(Is, Qs, linestyle = '', marker = 'o', markersize = 5, color = 'mediumblue') pylab.plot(xx, yy, color = 'firebrick') # Move left y-axis and bottim x-axis to centre, passing through (0,0) ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('center') # Eliminate upper and right axes ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.set_aspect('equal') titleStr = 'Mixer performance at ' + str(numpy.round(freq_GHz, 3)) + ' GHz' pylab.title(titleStr) # pylab.show(block = False) datacursor() pylab.title('thread test figure') fig.canvas.draw() fig.canvas.flush_events() return def thread_test(): print(1) time.sleep(1) print(2) time.sleep(1) print(3) time.sleep(1) return def thread_fig(fig): ax= pylab.subplot(1,1,1) xs = numpy.linspace(-5,5,50) ys = xs**2 pylab.plot(xs, ys) datacursor() fig.canvas.draw() fig.canvas.flush_events() return stigVec = numpy.zeros(len(freqs)) phiVec = numpy.zeros(len(freqs)) for find in range(0, len(freqs)): freq = freqs[find] freq_GHz = freq/1e9 rfgen.set_Freq(freq_GHz) logen.set_Freq(freq_GHz) time.sleep(0.05) Idata = numpy.zeros(card.samples) Qdata = numpy.zeros(card.samples) Amps = numpy.zeros(numPoints) Angles = numpy.zeros(numPoints) Is = numpy.zeros(numPoints) Qs = numpy.zeros(numPoints) for tind in range(0, numPoints): rfgen.set_Phase(phases[tind]) time.sleep(0.05) card.ArmAndWait() Idata, Qdata = card.ReadAllData() Iav = numpy.mean(Idata) Qav = numpy.mean(Qdata) Amp = numpy.sqrt(Iav**2 + Qav**2) Angle = numpy.arctan2(Iav, Qav)*180/numpy.pi Amps[tind] = Amp Angles[tind] = Angle Is[tind] = Iav Qs[tind] = Qav mixerAxes, mixerCenter, mixerPhi = uf.fitEllipse(Is,Qs, verbose = True) xx, yy = uf.make_elipse(mixerAxes, mixerCenter, mixerPhi, 150) stig = (mixerAxes[1]-mixerAxes[0])/numpy.mean(mixerAxes) stigVec[find] = stig phiVec[find] = mixerPhi # fig = pylab.figure(1) # pylab.clf() # ax = pylab.subplot(1,1,1) # pylab.plot(Is, Qs, linestyle = '', marker = 'o', markersize = 5, color = 'mediumblue') # pylab.plot(xx, yy, color = 'firebrick') # # # # Move left y-axis and bottim x-axis to centre, passing through (0,0) # ax.spines['left'].set_position('center') # ax.spines['bottom'].set_position('center') # # # Eliminate upper and right axes # ax.spines['right'].set_color('none') # ax.spines['top'].set_color('none') # # # Show ticks in the left and lower axes only # ax.xaxis.set_ticks_position('bottom') # ax.yaxis.set_ticks_position('left') # # # ax.set_aspect('equal') # titleStr = 'Mixer performance at ' + str(numpy.round(freq_GHz, 3)) + ' GHz' # pylab.title(titleStr) ## pylab.show(block = False) # # datacursor() # # fig.canvas.draw() # fig.canvas.flush_events() plot_fig1() # thr = threading.Thread(target=thread_test) # if numpy.mod(find,4) == 0: if find == 0: fig8 = pylab.figure(8) ax = pylab.subplot(1,1,1) pylab.plot([1,2], [3,4]) pylab.show() # thr = threading.Thread(target=thread_fig, kwargs = {'fig': fig8}) thr = threading.Thread(target=plot_main_fig, kwargs = {'fig': fig8}) thr.start() stigVec_dB = numpy.log10(stigVec+1)*10 fig2 = pylab.figure(2) pylab.clf() ax = pylab.subplot(2,2,1) pylab.plot(freqs/1e9, stigVec, 'b.') pylab.xlabel('Frequency (GHz)') pylab.ylabel('Astigmatism (linear)') pylab.title('Linear Astigmatism') ax = pylab.subplot(2,2,2) pylab.plot(freqs/1e9, stigVec_dB, 'r.') pylab.xlabel('Frequency (GHz)') pylab.ylabel('Astigmatism (dB)') pylab.title('Log Astigmatism') ax = pylab.subplot(2,2,3) pylab.plot(freqs/1e9, 180*phiVec/numpy.pi, 'b.') pylab.xlabel('Frequency (GHz)') pylab.ylabel('Astigmatism Angle (degrees)') pylab.title('Absolute Astigmatism Angle') ax = pylab.subplot(2,2,4) pylab.plot(freqs/1e9, 180*phiVec/numpy.pi - 45, 'r.') pylab.xlabel('Frequency (GHz)') pylab.ylabel('Astigmatism Angle (degrees) - 45') pylab.title('IQ Angle Imbalance') pylab.suptitle('Mixer Calibration') pylab.tight_layout() pylab.show() rfgen.power_Off() logen.power_Off()
MRitter95/Kollar-Lab
Old_scripts_delete_20220804/Control/DataFigureExample.py
DataFigureExample.py
py
8,375
python
en
code
2
github-code
6
24532771859
import os raw_img_src = "../../Data/Input_Data/raw_img_data/" section_ids = ["r1","r2","r3","r4"] img_type = "xpl" for i in range(10): for j in range(10): if j != 0: print(j) break break
JonasLewe/thesis_codebase
Code/testing/merged_img_generator.py
merged_img_generator.py
py
245
python
en
code
0
github-code
6
19855461730
import tkinter as tk class TabFrameTemplate(tk.Frame): def __init__(self,parent): self.parent = parent super().__init__(self.parent) self["width"] = 1000 self["height"] = 500 self["bg"] = "green" self.canvas = tk.Canvas(self,bg="#F3BFB3",width=800,height=500) self.view_port = tk.Frame(self.canvas) self.vsb = tk.Scrollbar(self, orient="vertical", command=self.canvas.yview) self.canvas.configure(yscrollcommand=self.vsb.set) self.vsb.grid(row=0, column=1, sticky="ns") self.canvas.grid(row=0, column=0,ipadx=10,ipady=10) self.canvas.grid_columnconfigure(0, weight=1) self.canvas_window = self.canvas.create_window((0, 0), window=self.view_port, anchor='nw', tags="self.view_port") self.view_port.bind("<Configure>", self.onFrameConfigure) self.canvas.bind("<Configure>", self.onCanvasConfigure) self.parent.bind("<MouseWheel>", self._on_mousewheel) self.onFrameConfigure(None) self.view_port.grid_columnconfigure(0, weight=1) def _on_mousewheel(self,event): try: self.canvas.yview_scroll(int(-1*(event.delta/120)), "units") except: pass def onFrameConfigure(self, event): self.canvas.configure(scrollregion=self.canvas.bbox("all")) def onCanvasConfigure(self, event): canvas_width = event.width self.canvas.itemconfig(self.canvas_window, width=canvas_width)
wrrayos/InventoryCustodianSlip
templates/tabFrameTemplate.py
tabFrameTemplate.py
py
1,656
python
en
code
0
github-code
6
39045297717
import copy import coordinates as cor import ctypes import os import Email_Sender_Machine as esm import PyGameSource as pgs import TreeCalc as tc import pygame, sys import math os.system('cls') PI = math.pi pygame.init() os.system('cls') windowSize = pygame.display.get_desktop_sizes() print(windowSize) window = pygame.display.set_mode(*windowSize) boardW = 700 boardH = 600 window.fill((255,255,255)) board = pgs.game_board(window,(windowSize[0][0]-boardW)/2,(windowSize[0][1]-boardH)/2,boardW,boardH,7,6) board.set_color(0,23,0) board.draw_board(window) board.circle(window) RED = (255,0,0) BLUE = (0,0,255) col_continue = 1 color_bead = RED def show_game(): while True: board.col_transparency(window) if board.selected_col != None and col_continue%30==0: board.beads(window,color_bead) board.selected_col = None color_bead = BLUE if color_bead is RED else RED pgs.start = False if col_continue>=1*30: break col_continue+=1 col_continue += 1 if pgs.start else 0 print(col_continue) for event in pygame.event.get(): if event.type == pygame.QUIT or event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() pygame.display.update() def start_game(): global board, RED, BLUE, col_continue , color_bead , window game_board = [['-' for i in range(7)]for j in range(6)] game_board_copy=copy.deepcopy(game_board) column=None game_finished = False rows=[5,5,5,5,5,5,5] process = open('Process.txt','w') while not game_finished: tree=tc.Node(game_board_copy) tc.MAX(tree,tc.turn,rows) #for shift in range(turn,stop_turn): if tc.turn%2==0: maximum=-1000000 for i,index in zip(tree.leaves,range(len(tree.leaves))): if i==None: continue if i.value>maximum: maximum=i.value index_max=index process = open('Process.txt','a',buffering=1) process.write('index_max '+str(index_max)+'\n') process.write(str(tree.leaves[index_max].row)+ ' ' +str(tree.leaves[index_max].col)+'\n') for i in tree.leaves[index_max].rows: process.write(str(i)+' ') process.write('\n') for i in tree.leaves[index_max].map: for j in i: process.write(str(j)+' ') process.write('\n') process.write('\n') print() print(index_max) print(tree.row,tree.col) print(*tree.leaves[index_max].rows) tc.print2d(tree.leaves[index_max].map) if tree.leaves[index_max].status==1: print("you lose") process.close() esm.send_email('Process.txt','Process.txt',1) game_finished = True break print() process.write('\n') tree.printTree_bfs(process) print() process.write('\n') tree.leaves[index_max].printTree_bfs(process) process.write('\n'+'#'*165+'\n') print() board.selected_col = index_max board.beads(window,color_bead) color_bead = BLUE tree=tree.leaves[index_max] else: cor.gotoxy(0,0) print('select a column: ',end='') while True: board.col_transparency(window) if board.selected_col != None and col_continue%30==0: board.beads(window,color_bead) color_bead = BLUE if color_bead is RED else RED pgs.start = False if col_continue>=1*30: break col_continue+=1 col_continue += 1 if pgs.start else 0 pgs.exit_from_game() pygame.display.update() if tree.leaves[board.selected_col].status == -1: print('you win') process.close() esm.send_email('Process.txt','Process.txt',0) game_finished = True break tree=tree.leaves[board.selected_col] board.selected_col = None game_board_copy=copy.deepcopy(tree.map) rows=tree.rows tc.turn+=1 tc.stop_turn=5+tc.turn start_game() #show_game()
Matin-Modarresi/connect-four
connect four/connect_four.py
connect_four.py
py
3,851
python
en
code
0
github-code
6
15896435397
""" RED NEURONAL CONVOLUCIONAL, Dataset con fotos de Humanos y Caballos """ import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator # Genera las imagenes # Preprocesado # Rescala las imagenes del Train train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) # Rescala las imagenes del test test_datagen = ImageDataGenerator(rescale = 1./255) # Creando el DF Training SET training_set = train_datagen.flow_from_directory('C:/Users/USUARIO/Desktop/CursoML/Data/training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary') # Creando el DF Test SET test_set = test_datagen.flow_from_directory('C:/Users/USUARIO/Desktop/CursoML/Data/test_set', target_size = (64, 64), batch_size = 10, class_mode = 'binary') # Creamos la red RNC, Convolucion --> Pooling --> Flattenin --> Full Connect RNC = tf.keras.models.Sequential() # 1º Capa Convolucion2D RNC.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same", activation="relu", input_shape=[64, 64, 3])) # 2º Capa - Pooling, Simplificamos los problemas y reduce las operaciones RNC.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid')) # 3º Capa de Convolucion y Pooling RNC.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same", activation="relu")) RNC.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid')) # 4º Capa - Flattening, adapta la estructura de forma vertical en una columna RNC.add(tf.keras.layers.Flatten()) # Full Connection, añadimos la red neuronal totalmentne conectada RNC.add(tf.keras.layers.Dense(units=128, activation='relu')) # Capa de Salida RNC.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) # Funcion sigmoide # Compilamos el modelos con el optimizador Adam y entropia cruzada binaria RNC.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) # Entrenamos el modelo RNC.fit_generator(training_set, steps_per_epoch = 40, epochs = 25, validation_data = test_set, validation_steps = 20) # Observamos que el modelo aprende a identificar entre unas imagenes y otras, para mayor aprendizaje suministrar # mas imagenes ya que la muestra de testing es pequeña. Se podría utilizar este mismo modelo con varias clasificaciones # pero tendriamos que cambia la perdida a la hora nuestro modelo por loss = 'CategoricalCrossentropy'
karlosmir/ML-Projects
ML/RNC01.py
RNC01.py
py
2,915
python
es
code
0
github-code
6
4369691360
import pandas as pd import numpy as np import tensorflow as tf import tensorflow_text as text import pickle import argparse from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import load_model from sklearn.metrics import cohen_kappa_score # Load the test data and split data from labels test_data_file = '../../data/dataset/test_data.xlsx' test_df = pd.read_excel(test_data_file) y_test = test_df['domain1_score'] def calc_test_performance_glove(test_df, y_test): """ Calculates and prints out the Quadratic Weighted Kappa Score for the model using GloVe :param test_df: The test data read into a DataFrame :param y_test: All the essay targets :return: None """ max_len = 275 test_df['essay'] = test_df['essay'].str.lower() with open('model_glove/tokenizer_glove.pickle', 'rb') as handle: tokenizer = pickle.load(handle) sequences = tokenizer.texts_to_sequences(test_df['essay']) padded_seq = pad_sequences(sequences, maxlen=max_len, padding='post') model = load_model('model_glove/model_glove.h5') preds = np.around(model.predict(padded_seq)) kappa_score = cohen_kappa_score(preds, y_test, weights='quadratic') print(f"Quadratic Kappa Score on Test Data with GloVe: {kappa_score}\n") def calc_test_performance_bert(test_df, y_test, small=True): """ Calculates and prints out the Quadratic Weighted Kappa Score for the model using BERT or small BERT :param test_df: The test data read into a DataFrame :param y_test: All the essay targets :param small: A Boolean to calculate kappa score for either model using BERT or small BERT :return: None """ if small: model = tf.saved_model.load('model_bert_small') else: model = tf.saved_model.load('model_bert') test_prediction_tensors = tf.nn.relu(model(tf.constant(test_df['essay']))) preds = [] for values in test_prediction_tensors: preds.append(values.numpy()[0]) preds = np.asarray(preds) preds = np.around(preds) kappa_score = cohen_kappa_score(preds, y_test, weights='quadratic') print(f"Quadratic Kappa Score on Test Data with BERT: {kappa_score}\n") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--glove', action='store_true') parser.add_argument('-b', '--bert', action='store_true') parser.add_argument('-s', '--small', action='store_true') config = parser.parse_args() if not (config.glove or config.bert): parser.error('No model type requested for getting test performance, add -b/--bert or -g/--glove') if config.glove: calc_test_performance_glove(test_df, y_test) if config.bert: calc_test_performance_bert(test_df, y_test, config.small)
chennychenchen99/AutoScorer
models/trained_model_files/calculate_test_performance.py
calculate_test_performance.py
py
2,875
python
en
code
0
github-code
6
8273446218
from django.http import HttpResponse from django.core.cache import cache from custom_cache_page.utils import hash_key class TestCache: def test_cache_page(self, request_factory, mock_cached_view): request = request_factory.get('/bo') mock_cached_view(request) cached_response = cache.get(hash_key('prefix:cached_views:0:/bo')) assert cached_response assert type(cached_response) == HttpResponse assert cached_response.content == HttpResponse('hi').content
kishan-character/django-custom-cache-page
tests/test_cache.py
test_cache.py
py
510
python
en
code
null
github-code
6
32400182580
#!/usr/bin/env python # coding=utf-8 import pylirc class Buttons: # 初始化,这里的app需要和调用它的文件名称一致,conf需要和之前实验中irexec地址一致,"/etc/lirc/irexec.conf" def __init__(self, app, conf): if not pylirc.init(app, conf, 1): raise Exception("Unable to init pylirc") # 阻塞模式关闭 pylirc.blocking(0) def readbutton(self): # 按下按键传递对应的config值,如果没有匹配的key则为None btn = pylirc.nextcode() if btn: return btn[0] else: return None
chronosmaker/RPiRadio
Buttons.py
Buttons.py
py
623
python
en
code
0
github-code
6
11769609560
#Lets check anagrams. """ Anagram is a word, phrase or name formed by rearranging the letters of another word. Like spar from rasp """ def anagram(st1:str, st2:str) ->bool: st_len = len(st1) tru = [] for f in st1: if f in st2: tru.append(True) else: tru.append(False) if all(tru): return True else: return False while True: st1 = input("Enter the first string: ") st2 = input("Enter the second string: ") if len(st1) != len(st2): print("Please enter words of same length") else: break if anagram(st1, st2): print(f"{st1} and {st2} are Anagrams") else: print(f"{st1} and {st2} are not Anagrams")
Kamalabot/Programmers57Challenges
exe24_anagram.py
exe24_anagram.py
py
719
python
en
code
1
github-code
6
10220457455
from typing import List from nazurin.models import Illust, Image, Ugoira from nazurin.utils import Request from nazurin.utils.decorators import network_retry from nazurin.utils.exceptions import NazurinError from nazurin.utils.logging import logger from .base import BaseAPI class SyndicationAPI(BaseAPI): """Public API from publish.twitter.com""" @network_retry async def get_tweet(self, status_id: int): """Get a tweet from API.""" logger.info("Fetching tweet {} from syndication API", status_id) API_URL = "https://cdn.syndication.twimg.com/tweet-result" params = { "features": "tfw_tweet_edit_backend:on", "id": str(status_id), "lang": "en", } async with Request() as request: async with request.get(API_URL, params=params) as response: if response.status == 404: raise NazurinError("Tweet not found or unavailable.") response.raise_for_status() tweet = await response.json() del tweet["__typename"] return tweet async def fetch(self, status_id: int) -> Illust: """Fetch & return tweet images and information.""" tweet = await self.get_tweet(status_id) if "video" in tweet: return await self.get_video(tweet) imgs = self.get_images(tweet) caption = self.build_caption(tweet) return Illust(imgs, caption, tweet) def get_images(self, tweet) -> List[Image]: """Get all images in a tweet.""" if "photos" not in tweet: raise NazurinError("No photo found.") photos = tweet["photos"] imgs = [] for index, photo in enumerate(photos): imgs.append(BaseAPI.parse_photo(tweet, photo, index)) return imgs async def get_video(self, tweet) -> Ugoira: variants = tweet["mediaDetails"][0]["video_info"]["variants"] return await self.get_best_video(tweet, variants)
y-young/nazurin
nazurin/sites/twitter/api/syndication.py
syndication.py
py
2,028
python
en
code
239
github-code
6
14512503096
psw = input('Введите пароль: ') #запрос ввода пароля msg = 'Ваш пароль состоит только из цифр' # задаем "по-умолчанию" значение сообщения, которое будет выводиться после ввода пароля psw_len = len(psw) #вычисление длинны пароля try: result_1 = 2/psw_len # проверка пустого пароля result_2 = int(psw) # проверка "не только цифры" except ZeroDivisionError: # вывод "пустой пароль" в случае ошибки деления на "0" msg = 'Вы ввели пустой пароль' except ValueError: # вывод "все норм" в случае ошибки наличия символов msg = 'Требования к паролю соблюдены' print(msg) # вывод получившегося сообщения
zarubb/ps-pb-psw_vrf
app.py
app.py
py
958
python
ru
code
0
github-code
6
27022192120
import cv2 import numpy as np kernel = np.ones((5,5),np.uint8) # Take input from webcam cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() #Guassian blur to reduce noise frame = cv2.GaussianBlur(frame,(5,5),0) #bgr to hsv hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #split hsv h, s, v = cv2.split(hsv) #HSV values for upper and lower green greenLower = np.array([29, 86, 6]) greenUpper = np.array([64, 255, 255]) # Apply thresholding hthresh = cv2.inRange(np.array(h),np.array([29]),np.array([64])) sthresh = cv2.inRange(np.array(s),np.array([86]),np.array([255])) vthresh = cv2.inRange(np.array(v),np.array([6]),np.array([255])) # AND h s and v tracking = cv2.bitwise_and(hthresh,cv2.bitwise_and(sthresh,vthresh)) #Gussian blur again dilation = cv2.dilate(tracking,kernel,iterations = 1) closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel) res = cv2.GaussianBlur(closing,(5,5),0) # Detect circles using HoughCircles circles = cv2.HoughCircles(res,cv2.HOUGH_GRADIENT,2,120,param1=120,param2=50,minRadius=10,maxRadius=0) #Draw Circles if circles is not None: for i in circles[0,:]: # If the ball is far, draw it in green if int(round(i[2])) < 30: cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),5) cv2.circle(frame,(i[0],i[1]),2,(0,255,0),10) # else draw it in red elif int(round(i[2])) > 35: cv2.circle(frame,(i[0],i[1]),i[2],(0,0,255),5) cv2.circle(frame,(i[0],i[1]),2,(0,0,255),10) #circles = np.round(circles[0, :]).astype("int") #X = circles #print the coordinates of the center print('x=,y=',i[0],i[1]) #Show the result in frames cv2.imshow('HueComp',hthresh) cv2.imshow('SatComp',sthresh) cv2.imshow('ValComp',vthresh) cv2.imshow('res',res) cv2.imshow('tracking',frame) k = cv2.waitKey(5) & 0xFF if k == 27: break cap.release() cv2.destroyAllWindows()
ashwin876/Ball_Tracking_Python
Green_ball_Tracking.py
Green_ball_Tracking.py
py
2,342
python
en
code
0
github-code
6
14560619174
import os from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt from astropy.time import Time from astropy.coordinates import solar_system_ephemeris # , EarthLocation from astropy.coordinates import get_body_barycentric solar_system_ephemeris.set('de432s') def get_planet_coord(timestamp, planet_list): """ 指定の時刻と惑星の座標を取得 Return: dict key: planet name value: dict(x, y, x) 座標値(km) """ def _get_planet_coord_list(timestamp, planet_list): """ 指定時刻の指定惑星の座標情報インスタンスのリストを取得 """ # astropyのTimeタイプへ変換 timestamp = Time(timestamp) # 指定惑星の座標を取得 planet_coord_list = [get_body_barycentric( _planet, timestamp) for _planet in planet_list] return planet_coord_list _planet_coord_list = _get_planet_coord_list(timestamp, planet_list) dict_planet_coord = {} for _planet, _coord in zip(planet_list, _planet_coord_list): # x, y, z[km] x, y, z = _coord.x, _coord.y, _coord.x # dict_planet_coord[_planet] = [lon, lat, radius] dict_planet_coord[_planet] = {'x': x, 'y': y, 'z': z} return dict_planet_coord def get_planet_coord_timeseries(timeseries, planet_list): """ 指定時系列の指定惑星の座標を取得 """ # 初期化 dict_planet_coord_timeseries = {} for _planet in planet_list: dict_planet_coord_timeseries[_planet] = {'x': [], 'y': [], 'z': []} # 時系列での各惑星の座標を取得 for _timestamp in timeseries: """ 指定時刻の指定惑星の座標 key: planet name value: dict(x, y, x) 座標値(km) """ dict_planet_coord = get_planet_coord(_timestamp, planet_list) for _planet in planet_list: for _key in ['x', 'y', 'z']: dict_planet_coord_timeseries[_planet][_key].append( np.array(dict_planet_coord[_planet][_key])) # Convert list into ndarray for _planet in planet_list: for _key in ['x', 'y', 'z']: dict_planet_coord_timeseries[_planet][_key] = np.array( dict_planet_coord_timeseries[_planet][_key]) return dict_planet_coord_timeseries if __name__ == "__main__": # currend work directory CWD_PATH = Path(os.path.dirname(__file__)) # 結果出力フォルダ: 存在しない場合は作成する OUTPUT_PATH = CWD_PATH / 'output' if not os.path.exists(OUTPUT_PATH): os.makedirs(OUTPUT_PATH) # 期間を指定と取得 start, end = '2022-01-01', '2022-08-01' timeseries = pd.date_range(start, end, freq='D') delta_t = 24*60*60 # 惑星リスト planet_list = ['venus', 'earth', 'mars'] # 辞書形式で指定の惑星と時系列情報を取得 dict_planet_coord_timeseries = get_planet_coord_timeseries(timeseries, planet_list) time_list = np.arange(0, delta_t*len(timeseries), len(timeseries)).reshape(-1, 1) # 指摘期間の惑星軌道を描画 fig = plt.figure(figsize=(8, 8)) ax = plt.subplot(1, 1, 1) plt.scatter(0, 0, color='orange', s=200, label='Sun') for _planet in dict_planet_coord_timeseries.keys(): x = dict_planet_coord_timeseries[_planet]['x'] y = dict_planet_coord_timeseries[_planet]['y'] plt.plot(x, y, label=_planet, linewidth=2) plt.scatter(x[0], y[0], color='black', s=40) # initial point plt.scatter(x[-1], y[-1], color='red', s=40) # final point plt.legend() plt.grid() plt.gca().set_aspect('equal') # グラフのアスペクト比を揃える plt.savefig(OUTPUT_PATH / 'test_planet_orbit.png') plt.show() plt.close(fig)
caron14/swingby_challenge
planet_position.py
planet_position.py
py
3,877
python
en
code
0
github-code
6
39270259657
import datetime as dt import re import time import requests import html5lib from bs4 import BeautifulSoup import googleapiclient.discovery import google.auth def get_calendar_html(year, month): CALURL = "https://syllabus.naist.jp/schedules/preview_monthly" text = requests.get(f"{CALURL}/{str(year)}/{str(month)}").text return text def construct_data(html_text, year, month): soup = BeautifulSoup(html_text, "html5lib") # htmlの書式に則って授業情報の抜き出し shedule_table = soup.find("table", attrs={"class": "tbl_m_schedule"}) tr_classes = shedule_table.find_all("td", id=re.compile('^\d+-\d+-\d+$')) tr_class_note_dict = { c["id"].rstrip("_note"): c.text.strip() for c in shedule_table.find_all("td", id=re.compile('^\d+-\d+-\d+_note$')) } # 開始時間のタプル period_starttime = ( dt.time(9, 20), dt.time(11, 0), dt.time(13, 30), dt.time(15, 10), dt.time(16, 50), dt.time(18, 30) ) # 抜き出したデータを構造化 data = [] for c in tr_classes: event_id = c["id"].split("-") lines = c.get_text("[!tag]").strip().split("[!tag]") # 区切り文字列を"[!tag]"にして衝突防止 teachers = "" nth = "" # 授業名、教室、教員名の抽出 ここは適当なパターンマッチングなので修正の余地あり for i in range(len(lines)): if i == 0 or i == len(lines): continue line = lines[i] if i == 1: title = line elif i == 2: classroom = line.lstrip("\u3000").strip("[]") elif line.startswith("\u3000"): line = line.lstrip("\u3000") teachers += line elif line.startswith("<第"): nth = line teachers_list = [t.replace("\u3000", " ").strip(" ") for t in teachers.split("、")] # 開始時刻と終了時刻を作成 date_start = dt.datetime.combine( dt.date(year, month, int(event_id[0])), period_starttime[int(event_id[1])] ) date_end = date_start + dt.timedelta(hours=1, minutes=30) # 辞書にして event = { "class": title, "period": int(event_id[1]), # 時限 (0始まり) "starttime": date_start.strftime("%Y-%m-%dT%H:%M:%S"), "endtime": date_end.strftime("%Y-%m-%dT%H:%M:%S"), "class_number": int(event_id[2]), # 何番目の授業か (IDとは別) "classroom": classroom, "teachers": teachers_list, "note": tr_class_note_dict[c["id"]] } if nth: event["nth"] = nth # 格納 data.append(event) return data def send_events(calendarid_path, key_filename, event_data): SCOPES = ['https://www.googleapis.com/auth/calendar'] with open(calendarid_path, "r") as f: calender_id = f.read() # Googleの認証情報をファイルから読み込む gapi_creds = google.auth.load_credentials_from_file(key_filename, SCOPES)[0] # APIと対話するためのResourceオブジェクトを構築する service = googleapiclient.discovery.build('calendar', 'v3', credentials=gapi_creds) # 予定を書き込む # 書き込む予定情報を用意する for _ in event_data: _teachers = "\n".join(_["teachers"]) # descriptionテキストの作成 dsc = f'{_["period"] + 1}限' + "\n" if "nth" in _: if _["nth"]: dsc += _["nth"] + "\n" dsc += f'担当教員:' + "\n" + _teachers if _["note"]: dsc += "\n\n" + _["note"] # bodyに格納 body = { 'summary': _["class"], 'location': _["classroom"], 'description': dsc, 'start': { 'dateTime': _["starttime"], 'timeZone': 'Japan' }, 'end': { 'dateTime': _["endtime"], 'timeZone': 'Japan' } } # 用意した予定を登録する event = service.events().insert(calendarId=calender_id, body=body).execute() time.sleep(1.25) def main(): import sys args_ = sys.argv[1:] YEAR, MONTH = int(args_[0]), int(args_[1]) CALID_PATH, KEYFILE = args_[2:] html_text = get_calendar_html(YEAR, MONTH) data = construct_data(html_text, YEAR, MONTH) send_events(CALID_PATH, KEYFILE, data) if __name__ == '__main__': main()
Masahiro-Kobayashi-NAIST/NAIST-Class-to-Google-Calander
naist-calendar.py
naist-calendar.py
py
4,663
python
en
code
0
github-code
6
30217414474
import matplotlib.pyplot as plt plt.plot([1,2,3],[4,5,4], color = '#21c4ed', linestyle='dashed', marker='o') # erste Liste die X-Werte, zweite Liste Y-Werte # color via HEX - Farbe finden über color picker (google) # allgemeine Infos = https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot #linestyle = https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle # marker = https://matplotlib.org/api/markers_api.html#module-matplotlib.markers plt.show() # Starten der Anzeige # verschieden Diagrammtypen plt.pie([1, 2, 3]) plt.show() plt.bar([1, 2, 4], [5, 6, 5]) plt.show() plt.scatter([1, 2, 4], [5, 6, 5]) plt.show() plt.scatter([1, 2, 4], [5, 6, 5], color = "#ff0000", marker = "x") plt.show() # Objektorientierte Erstellung eins Diagramms mit einer eingesestzten Grafik import numpy as np x = np.linspace(0,5,11) y = x**2 af = plt.figure() #Diagramm erstellen (leere Arbeitsfläche) axes1 = af.add_axes([0.1,0.1,0.8,0.8]) # Positionierung der Grafik axes2 = af.add_axes([0.2,0.5,0.4,0.3]) # Positionierung der eingesetzten Grafik # Großes Diagramm axes1.plot(x,y,'b') axes1.set_xlabel('X') # Achsenbezeichnung x axes1.set_xlabel('Y') # Achsenbezeichnung Y axes1.set_title('big diagramm') #Diagramm - Titel # Eingesetztes Diagramm mit Achse 2 axes2.plot(y, x, 'r') axes2.set_xlabel('X') # Achsenbezeichnung x axes2.set_xlabel('Y') # Achsenbezeichnung Y axes2.set_title('small diagramm') #Diagramm - Titel plt.show() ###Erstellung von 2 oder mehreren Diagrammen in einem Output diagramm, axes = plt.subplots(nrows = 1, ncols = 2) #diagramm ist variable & gibt das man ein Diagramm erstellen will; # über axes werden die Anzahl der Plots definiert. #Diagramm1 axes[0].plot(x,y) axes[0].set_xlabel('X') axes[0].set_ylabel('Y') #Diagramm2 axes[1].plot(y,x) axes[1].set_ylabel('Y') axes[1].set_xlabel('X') diagramm plt.tight_layout() plt.show() diag = plt.figure(figsize=(8,4),dpi=150) #DPI gibt die Auflösung und somit die Größe an. ax= diag.add_axes([0,0,1,1]) ax.plot(x,y) ###Erstellen und Abspeichern einer Grafik als PNG-Datei diag, axes=plt.subplots(figsize=(12,3),dpi=100) #DPI gibt die Auflösung und somit die Größe an. axes.plot(x,y) diag.savefig('dateiname.png', dpi=200) # Abspeichern einer Matplotlib Grafik ### Legende erstellen bzw. Positionierung der Legende diag = plt.figure() ax=diag.add_axes([0,0,1,1]) ax.plot(x,x**2, label = 'x**2') ax.plot(x,x**3, label = 'x**3') ax.legend(loc=5) # Über loc 1-10 wird die Position der Legende bestimmt ### Grafik Formatierung (Farbe, Formen) #Übersicht über alle Einstellungsmöglichkeiten: diag, ax=plt.subplots() ax.plot(x, x**2, color='#F4A460'# RGB Hex Code für color definieren Syntax:#Code ,alpha=0.9 # Transparenz Setting ,lw=1.5 # Dicke der Linie ,ls='--' # Art der Linie (gestrichelt, durchgehend) ,marker='o'# Setzen von Punkte auf der Linie ,markersize=10 #Größe der Marker ,markerfacecolor='yellow'#Farbe des markes ,markeredgewidth=3#Umrandungsdicke ,markeredgecolor='green')#Umrandungsfarbe ax.set_xlim([0,4.5]) # Auswahl des Darstellungsbereichs von der X-Achse ax.set_ylim([0,20]) #Auswahl des Darstellungsbereichs von der Y-Achse #Example für verschiedene Linienformatierungen diag, ax = plt.subplots(figsize=(12,6)) ax.plot(x, x+1, color="red", linewidth=0.25) ax.plot(x, x+2, color="red", linewidth=0.50) ax.plot(x, x+3, color="red", linewidth=1.00) ax.plot(x, x+4, color="red", linewidth=2.00) # Mögliche Linienstile ‘-‘, ‘–’, ‘-.’, ‘:’, ‘steps’ ax.plot(x, x+5, color="green", lw=3, linestyle='-') ax.plot(x, x+6, color="green", lw=3, ls='-.') ax.plot(x, x+7, color="green", lw=3, ls=':') # Benutzerdefinierte Querstrich line, = ax.plot(x, x+8, color="black", lw=1.50) line.set_dashes([5, 10, 15, 10]) # Format: Linienlänge, Abstandslänge, ... # Mögliche Markierungen: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ... ax.plot(x, x+ 9, color="blue", lw=3, ls='-', marker='+') ax.plot(x, x+10, color="blue", lw=3, ls='--', marker='o') ax.plot(x, x+11, color="blue", lw=3, ls='-', marker='s') ax.plot(x, x+12, color="blue", lw=3, ls='--', marker='1') # Markierungsgröße und Farbe ax.plot(x, x+13, color="purple", lw=1, ls='-', marker='o', markersize=2) ax.plot(x, x+14, color="purple", lw=1, ls='-', marker='o', markersize=4) ax.plot(x, x+15, color="purple", lw=1, ls='-', marker='o', markersize=8, markerfacecolor="red") ax.plot(x, x+16, color="purple", lw=1, ls='-', marker='s', markersize=8, markerfacecolor="yellow", markeredgewidth=3, markeredgecolor="green"); plt.show() #http://www.matplotlib.org - Die Webseite von Matplotlib. #https://github.com/matplotlib/matplotlib - Der Sourcecode zu Matplotlib. #http://matplotlib.org/gallery.html - Eine große Galerie, die viele Arten von Diagrammen zeigt, die mit Matplotlib erstellbar sind.
ThePeziBear/MyPythonLibrary
Visualizing_Python/Matplotlib/1_General_Matplotlib_settings.py
1_General_Matplotlib_settings.py
py
4,912
python
de
code
0
github-code
6
32543172289
import aioredis import pytest from aiorate_limiter import RateLimiterOpts from aiorate_limiter.storage.redis import RedisRateLimiter, REDIS_SCRIPT_HASH @pytest.fixture async def redis(): redis = await aioredis.create_redis("redis://localhost:6379") yield redis redis.close() await redis.wait_closed() @pytest.mark.asyncio async def test_consume(redis): key, duration, points = "test_key", 5000, 10 opts = RateLimiterOpts(points=points, duration=duration) redis_limiter = RedisRateLimiter(opts, redis) await redis_limiter.init() res = await redis_limiter.consume(key, 0) assert res.is_allowed and res.remaining_points == points # Reduce points res = await redis_limiter.consume(key) assert res.is_allowed and res.remaining_points == points - 1 # Reduce token res = await redis_limiter.consume(key) assert res.is_allowed and res.remaining_points == points - 2 # Reduce all tokens res = await redis_limiter.consume(key, points * 10) assert res.is_allowed is False @pytest.mark.asyncio async def test_script_load(redis): key, duration, points = "test_key", 5000, 5 opts = RateLimiterOpts(points=points, duration=duration) redis_limiter = RedisRateLimiter(opts, redis) await redis_limiter.init() assert (await redis.script_exists(REDIS_SCRIPT_HASH))[0] # Check success loading script await redis_limiter.consume(key, 0) # Remove script await redis.script_flush() assert not (await redis.script_exists(REDIS_SCRIPT_HASH))[0] with pytest.raises(Exception): await redis_limiter.consume(key, 0)
theruziev/aiorate_limiter
tests/storages/test_redis_rl.py
test_redis_rl.py
py
1,623
python
en
code
2
github-code
6
7002248991
from ...flaskapp.utils.db_utils import conn from ...common.constants import CURRENT_TERM from ...flaskapp.utils.utils import previous_term from ..utils import student_utils as student def transcript_is_outdated(user_id): cur.execute("""SELECT term_year, term_month FROM students_completed_courses scc JOIN courses ON courses.id = scc.course_id WHERE student_id = %s ORDER BY term_year DESC, term_month DESC LIMIT 1""", (user_id,)) latest_transcript_term = cur.fetchone() return ((not latest_transcript_term) or (latest_transcript_term < previous_term(*CURRENT_TERM))) # add flag transcript_outdated to students table # on new quarter start, reset all students to False # prompt student "Did you take classes in the Spring? Yes/No" # No -> transcript_outdated = False # Yes -> Transcript upload -> transcript_outdated = True from ..utils import student_utils as student def update_student(user_id, transcript, programs): student.set_student_programs(user_id, programs) student.handle_transcript(user_id, transcript)
minupalaniappan/gradfire
daviscoursesearch/flaskapp/service/user.py
user.py
py
1,113
python
en
code
12
github-code
6
40677398663
from magma.configuration_controller.request_consumer.request_db_consumer import ( RequestDBConsumer, ) from magma.db_service.config import TestConfig from magma.db_service.models import ( DBCbsd, DBCbsdState, DBRequest, DBRequestType, ) from magma.db_service.session_manager import Session from magma.db_service.tests.local_db_test_case import LocalDBTestCase from parameterized import parameterized REQUEST_PROCESSING_LIMIT = 10 class RegistrationDBConsumerTestCase(LocalDBTestCase): def test_get_pending_requests_retrieves_empty_list_of_requests_when_no_pending_requests_in_db(self): # Given consumer = RequestDBConsumer( "someRequest", request_processing_limit=REQUEST_PROCESSING_LIMIT, ) # When reqs = consumer.get_pending_requests(self.session) # Then self.assertEqual(0, len(list(reqs.values())[0])) def test_get_pending_requests_retrieves_pending_requests_only(self): # Given consumer = RequestDBConsumer( "someRequest", request_processing_limit=REQUEST_PROCESSING_LIMIT, ) self._prepare_two_pending_requests() # When reqs = consumer.get_pending_requests(self.session) # Then self.assertEqual(2, len(list(reqs.values())[0])) @parameterized.expand([ (1, 1, 1), (2, 2, 0), (0, 2, 0), (-1, 2, 0), (-100, 2, 0), ]) def test_different_processes_dont_pick_up_each_others_requests(self, max_batch_size, req_count_1, req_count_2): """ This is a test for horizontal scaling functionality of the Configuration Controller. It tests if two processes (in this case associated with different Session instances) only pick those requests that have no lock on them. """ # Given config = TestConfig() config.REQUEST_PROCESSING_LIMIT = max_batch_size session1 = Session(bind=self.engine) session2 = Session(bind=self.engine) consumer = RequestDBConsumer( "someRequest", request_processing_limit=config.REQUEST_PROCESSING_LIMIT, ) self._prepare_two_pending_requests() # When reqs1 = consumer.get_pending_requests(session1) reqs2 = consumer.get_pending_requests(session2) reqs1_list = list(reqs1.values())[0] reqs2_list = list(reqs2.values())[0] session1.commit() session2.commit() # Then self.assertEqual(req_count_1, len(reqs1_list)) self.assertEqual(req_count_2, len(reqs2_list)) if reqs1_list and reqs2_list: # Making sure we're not getting the same requests in both sessions self.assertNotEqual(reqs1_list[0].cbsd_id, reqs2_list[0].cbsd_id) session1.close() session2.close() def _prepare_two_pending_requests(self): test_state = DBCbsdState(name="test_state") cbsds = [] for i in range(1, 3): cbsds.append( DBCbsd( id=int(i), cbsd_id=f"foo{i}", state=test_state, desired_state=test_state, user_id="test_user", fcc_id=f"test_fcc_id{i}", cbsd_serial_number=f"test_serial_nr{i}", ), ) req_type = DBRequestType(name="someRequest") req1 = DBRequest( cbsd=cbsds[0], type=req_type, payload={ "some": "payload1", }, ) req2 = DBRequest( cbsd=cbsds[1], type=req_type, payload={ "some": "payload2", }, ) self.session.add_all([req1, req2]) self.session.commit()
magma/magma
dp/cloud/python/magma/configuration_controller/tests/unit/test_request_consumer.py
test_request_consumer.py
py
3,787
python
en
code
1,605
github-code
6
15598827362
import torch from torch import nn from torch.nn import init # L2 Norm: solve "feature map" scale inconsistent class L2Norm(nn.Module): def __init__(self, n_channels, scale): super(L2Norm, self).__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.randn(self.n_channels)) # only Parameter can be "check" self.reset_parameters() def reset_parameters(self): init.constant(self.weight, self.gamma) def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = torch.div(x, norm) out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x return out
AceCoooool/detection-pytorch
ssd/utils_ssd/L2Norm.py
L2Norm.py
py
752
python
en
code
24
github-code
6
9781742668
INF=float('inf') G = [[0, 3, INF, 5], [2, 0, INF, 4], [INF, 1, 0, INF], [INF, INF, 2, 0]] nV = 4 distance = list(map(lambda i: list(map(lambda j: j, i)), G)) print(distance) for k in range(nV): for i in range(nV): for j in range(nV): distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j]) print(distance) # skrót def Floyd_Warshall(G): n = len(G) for t in range(n): # na wykladzie (1,n+) inna numeracja wierzchołkow for u in range(n): for w in range(n): G[u][w] = min(G[u][w], G[u][t] + G[t][w])
wiksat/AlghorithmsAndDataStructures
ASD/BeforeExam/egzamin_2_szablony/Floyd-Warshall.py
Floyd-Warshall.py
py
622
python
en
code
0
github-code
6
17035760804
# グラフのパス (paizaランク C 相当) # https://paiza.jp/works/mondai/graph_dfs_problems/graph_dfs__path_one_step3 INPUT1 = """\ 3 1 2 """ OUTPUT1 = """\ 1 2 3 """ INPUT2 = """\ 5 5 3 """ OUTPUT2 = """\ 5 4 3 2 """ def main(input_str): # n: 頂点数, s: 起点, k: 回数 n, s, k = map(int, input_str.split()) # 隣接リスト ad_list = {} for i in range(1, n + 1): e = [j for j in range(1, n + 1) if j != i] ad_list[i] = e # s から k 回移動する経路 path = [s] for _ in range(k): # 今いる頂点 cv = path[-1] # 移動可能な頂点を選択して walk 末尾へ追加 for nv in ad_list[cv][::-1]: # 訪問済の頂点はスキップ if nv in path: continue # path に追加してループを抜ける path.append(nv) break # 経路を出力 return " ".join(map(str, path)) print(main(open(0).read()))
atsushi0919/paiza_workbook
graph_dfs_problems/01-03_path_one_step3.py
01-03_path_one_step3.py
py
997
python
ja
code
0
github-code
6
5479410467
import itertools from copy import deepcopy from random import shuffle from .type_utils import is_seq_of def concat_seq(in_list, dtype): assert dtype in [list, tuple] return dtype(itertools.chain(*in_list)) def concat_list(in_list): return concat_seq(in_list, list) def concat_tuple(in_list): return concat_seq(in_list, tuple) def auto_pad_seq(a, b): """ Input two sequence, then output two list of objects with the same size. """ a = list(a) if isinstance(a, (list, tuple)) else [a] b = list(b) if isinstance(b, (list, tuple)) else [b] if len(a) > len(b): for i in range(len(a) - len(b)): b.append(a[0]) elif len(a) < len(b): for i in range(len(b) - len(a)): a.append(b[0]) return a, b def flatten_seq(x, dtype=list): if not is_seq_of(x, (tuple, list)): return x return dtype(concat_list([flatten_seq(_) for _ in x])) def split_list_of_parameters(num_procsess, *args, **kwargs): from ..math import split_num args = [_ for _ in args if _ is not None] kwargs = {_: __ for _, __ in kwargs.items() if __ is not None} assert len(args) > 0 or len(kwargs) > 0 first_item = args[0] if len(args) > 0 else kwargs[list(kwargs.keys())[0]] n, running_steps = split_num(len(first_item), num_procsess) start_idx = 0 paras = [] for i in range(n): slice_i = slice(start_idx, start_idx + running_steps[i]) start_idx += running_steps[i] args_i = list([_[slice_i] for _ in args]) kwargs_i = {_: kwargs[_][slice_i] for _ in kwargs} paras.append([args_i, kwargs_i]) return paras def select_by_index(files, indices): return [files[i] for i in indices] def random_pad_clip_list(x, num): x = deepcopy(list(x)) if len(x) > num: shuffle(x) return x[:num] else: ret = [] for i in range(num // len(x)): shuffle(x) ret = ret + x ret = ret + x[: num - len(ret)] return ret
haosulab/ManiSkill2-Learn
maniskill2_learn/utils/data/seq_utils.py
seq_utils.py
py
2,031
python
en
code
53
github-code
6
27937206338
import re from .Enums import SelectionMode from .Exceptions import SelectionReuseException from . import Database __author__ = 'Riley Flynn (nint8835)' class DatabaseSelection: """ Represents a selection of items from a JSON DB. Can have items retrieved from it, or can be modified. Upon modification the selection object becomes unusable and must be recreated by performing the selection again. """ def __init__(self, data: list, db: "Database.JSONDatabase"): """ Creates a new instance of DatabaseSelection :param data: A list of rows from a db. :param db: The JSONDatabase instance that the rows came from. Used to perform modifications. """ self.db = db self.rows = data self._selection_modified = False def __getitem__(self, item): if not self._selection_modified: return self.rows[item] else: raise SelectionReuseException() def __len__(self): if not self._selection_modified: return len(self.rows) else: raise SelectionReuseException() def __str__(self): if not self._selection_modified: return "DatabaseSelection from database at {}, containing the following rows: {}".format(self.db.path, self.rows) else: return "Unusable DatabaseSelection object. Perform a new selection to get a usable one." def __repr__(self): if not self._selection_modified: return "DatabaseSelection({}, {})".format(self.rows, self.db) else: return "" def remove(self): """ Removes all rows contained in this selection from the DB """ if not self._selection_modified: for row in self.rows: self.db.data.remove(row) self.db.save_db() self._selection_modified = True self.rows = [] else: raise SelectionReuseException() def update(self, key, value): """ Updates the value of a certain key of all rows contained in this selection :param key: The key you wish to update :param value: The new value """ if not self._selection_modified: for row in self.rows: self.db.data[self.db.data.index(row)][key] = value self.db.save_db() self._selection_modified = True self.rows = [] else: raise SelectionReuseException() def select(self, mode: SelectionMode, key="", selection_var="") -> "DatabaseSelection": """ Further refines this selection :param mode: The mode of selection used to refine the selection :param key: The key to perform the selection on :param selection_var: The variable to be used for the selection :return: A DatabaseSelection object containing the refined selection """ if not self._selection_modified: if mode == SelectionMode.VALUE_LESS_THAN: return DatabaseSelection([row for row in self.rows if row[key] < selection_var], self.db) if mode == SelectionMode.VALUE_GREATER_THAN: return DatabaseSelection([row for row in self.rows if row[key] > selection_var], self.db) if mode == SelectionMode.VALUE_EQUALS: return DatabaseSelection([row for row in self.rows if row[key] == selection_var], self.db) if mode == SelectionMode.VALUE_GREATER_THAN_OR_EQUAL: return DatabaseSelection([row for row in self.rows if row[key] >= selection_var], self.db) if mode == SelectionMode.VALUE_LESS_THAN_OR_EQUAL: return DatabaseSelection([row for row in self.rows if row[key] <= selection_var], self.db) if mode == SelectionMode.VALUE_NOT_EQUAL: return DatabaseSelection([row for row in self.rows if row[key] != selection_var], self.db) if mode == SelectionMode.REGEX_MATCH: regex = re.compile(selection_var) return DatabaseSelection([row for row in self.rows if regex.match(row["key"])], self.db) if mode == SelectionMode.VALUE_IN: return DatabaseSelection([row for row in self.rows if selection_var in row[key]], self.db) if mode == SelectionMode.ALL: return DatabaseSelection(self.rows, self.db) else: raise SelectionReuseException()
nint8835/NintbotForDiscord
libraries/JSONDB/Selection.py
Selection.py
py
4,508
python
en
code
1
github-code
6
39122705161
from flask import* from database import DB,CR teacher=Blueprint("teacher",__name__) @teacher.route("/") def TeacherHome(): return render_template("teacherhome.html") @teacher.route("/answerquestion",methods=["post","get"]) def AnswerQuestion(): CR.execute("SELECT * FROM sdatabase") qanda=CR.fetchall() if 'submit' in request.form: answer=request.form['ans'] id=request.form['submit'] sql="UPDATE sdatabase SET answer=%s WHERE id=%s" val=(answer,id) CR.execute(sql,val) DB.commit() flash("Answer submited") return redirect(url_for("teacher.AnswerQuestion")) return render_template('answerquestion.html',qanda=qanda) @teacher.route("/deletesdatabase",methods=["post","get"]) def deletesdatabase(): CR.execute("SELECT *FROM sdatabase ") res=CR.fetchall() if "submit" in request.form: id=request.form['submit'] CR.execute("DELETE FROM sdatabase WHERE id=%s",(id,)) DB.commit() flash("Items Delete") return redirect(url_for('teacher.deletesdatabase')) return render_template('deletesdatabase.html',res=res)
ShanoliaJoseph/flask
teacher.py
teacher.py
py
1,145
python
en
code
0
github-code
6
21056363812
import torch import torchvision from torchvision import models import torchvision.transforms as transforms from torchvision.transforms import ToPILImage import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np import time from functools import wraps n_classes = 100 def watcher(func): @wraps(func) def wrapper(*args, **kwargs): start = time.perf_counter() result = func(*args, **kwargs) end = time.perf_counter() print(f" ===> took {end-start} seconds") return result return wrapper # function to define an old style fully connected network (multilayer perceptrons) class old_nn(nn.Module): def __init__(self): super(old_nn, self).__init__() self.fc1 = nn.Linear(32 * 32 * 3, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, n_classes) # last FC for classification def forward(self, x): x = x.view(x.shape[0], -1) x = F.sigmoid(self.fc1(x)) x = F.sigmoid(self.fc2(x)) x = self.fc3(x) return x # function to define the convolutional network class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # conv2d first parameter is the number of kernels at input (you get it from the output value of the previous layer) # conv2d second parameter is the number of kernels you wanna have in your convolution, so it will be the n. of kernels at output. # conv2d third, fourth and fifth parameters are, as you can read, kernel_size, stride and zero padding :) self.conv1 = nn.Conv2d(3, 128, kernel_size=5, stride=2, padding=0) self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.conv_final = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=0) self.fc1 = nn.Linear(64 * 4 * 4 * 4, 4096) self.fc2 = nn.Linear(4096, n_classes) # last FC for classification def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool(self.conv_final(x))) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) # hint: dropout goes here! x = self.fc2(x) return x # function to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() def plot_kernel(model): model_weights = model.state_dict() fig = plt.figure() plt.figure(figsize=(10, 10)) for idx, filt in enumerate(model_weights['conv1.weight']): # print(filt[0, :, :]) if idx >= 32: continue plt.subplot(4, 8, idx + 1) plt.imshow(filt[0, :, :], cmap="gray") plt.axis('off') plt.show() def plot_kernel_output(model, images): fig1 = plt.figure() plt.figure(figsize=(1, 1)) img_normalized = (images[0] - images[0].min()) / (images[0].max() - images[0].min()) plt.imshow(img_normalized.numpy().transpose(1, 2, 0)) plt.show() output = model.conv1(images) layer_1 = output[0, :, :, :] layer_1 = layer_1.data fig = plt.figure() plt.figure(figsize=(10, 10)) for idx, filt in enumerate(layer_1): if idx >= 32: continue plt.subplot(4, 8, idx + 1) plt.imshow(filt, cmap="gray") plt.axis('off') plt.show() def test_accuracy(net, dataloader): ########TESTING PHASE########### # check accuracy on whole test set correct = 0 total = 0 net.eval() # important for deactivating dropout and correctly use batchnorm accumulated statistics with torch.no_grad(): for data in dataloader: images, labels = data images = images.cuda() labels = labels.cuda() outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy of the network on the test set: %d %%' % ( accuracy)) return accuracy def show_dataset(dataiter): images, labels = next(dataiter) imshow(torchvision.utils.make_grid(images)) def plot_values(accuracy_values, loss_values): fig = plt.figure(figsize=(10, 20)) ax = fig.add_subplot(211) ax.plot(accuracy_values, '-bo', label='accuracy') ax.set_title("Accuracy ") ax.set_xlabel("Epochs") ax.legend() ax1 = fig.add_subplot(212) ax1.plot(loss_values, '-ro', label='loss') ax1.set_title("Loss over epochs") ax1.set_xlabel("Epochs") ax1.legend() fig.show() @watcher def train(net, trainloader, testloader, criterion, optimizer, nepochs): ########TRAINING PHASE########### n_loss_print = len(trainloader) # print every epoch, use smaller numbers if you wanna print loss more often! n_epochs = nepochs accuracy_values = [] loss_values = [] print("Starting Training") for epoch in range(n_epochs): # loop over the dataset multiple times net.train() # important for activating dropout and correctly train batchnorm running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs and cast them into cuda wrapper inputs, labels = data inputs = inputs.cuda() labels = labels.cuda() # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % n_loss_print == (n_loss_print - 1): loss_values.append(running_loss / n_loss_print) print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / n_loss_print)) running_loss = 0.0 accuracy_values.append(test_accuracy(net, testloader)) print('Finished Training') plot_values(accuracy_values, loss_values) if __name__ == '__main__': # transform are heavily used to do simple and complex transformation and data augmentation transform_train = transforms.Compose( [ # transforms.Resize((40, 40)), # transforms.RandomCrop(size=[32, 32], padding=0), # transforms.RandomHorizontalFlip(), transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) transform_test = transforms.Compose( [ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True, num_workers=4, drop_last=True) testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=256, shuffle=False, num_workers=4, drop_last=True) print("Dataset loaded") dataiter = iter(trainloader) # show images just to understand what is inside the dataset ;) # show_dataset(dataiter) print("NN instantiated") # net = old_nn() net = CNN() #### # for Residual Network: # net = models.resnet18(pretrained=True) # net.fc = nn.Linear(512, n_classes) #changing the fully connected layer of the already allocated network #### ###OPTIONAL: # print("####plotting kernels of conv1 layer:####") # plot_kernel(net) #### net = net.cuda() criterion = nn.CrossEntropyLoss().cuda() # it already does softmax computation for use! optimizer = optim.Adam(net.parameters(), lr=0.0001) # better convergency w.r.t simple SGD :) print("Optimizer and criterion instantiated") ###OPTIONAL: # print("####plotting output of conv1 layer:#####") # plot_kernel_output(net,images) ### train(net=net, trainloader=trainloader, testloader=testloader, criterion=criterion, optimizer=optimizer, nepochs=20)
modusV/Machine-Learning-Homeworks
HW3/main.py
main.py
py
9,042
python
en
code
0
github-code
6
71484026108
import sys import heapq if sys.version[0] == '2': range, input = xrange, raw_input MAX_SPEED = 30 dvs = (-1, 0, 1) while True: N, M = map(int, input().split()) if not (N | M): break S, G = map(lambda x: int(x) - 1, input().split()) edge = [[] for _ in range(N)] for _ in range(M): x, y, d, c = map(int, input().split()) edge[x - 1].append((y - 1, d, c)) edge[y - 1].append((x - 1, d, c)) INF = 1e9 dist = [[[INF for _ in range(N)] for _ in range(MAX_SPEED + 1)] for _ in range(N)] que = [(0.0, S, 0, S)] while que: cost, now, v, prev = heapq.heappop(que) if cost > dist[now][v][prev]: continue if now == G and v == 1: print("{:.20f}".format(cost)) break dist[now][v][prev] = cost for x, d, c in edge[now]: if x == prev: continue for dv in dvs: nv = v + dv if 0 < nv <= c and dist[x][nv][now] > dist[now][v][prev] + d / nv: dist[x][nv][now] = dist[now][v][prev] + d / nv heapq.heappush(que, (dist[x][nv][now], x, nv, now)) else: print("unreachable")
knuu/competitive-programming
aoj/11/aoj1162.py
aoj1162.py
py
1,221
python
en
code
1
github-code
6
15447622348
import pyglet class Tower: def __init__(self, pos): super().__init__() self.pos = pos class TownHall(Tower): def __init__(self, pos): super().__init__(pos) self.image = pyglet.image.load('./Assets/town hall.png') self.image.anchor_x = self.image.width // 2 self.sprite = pyglet.sprite.Sprite(self.image, x=self.pos[0], y=self.pos[1]) self.size = [3, 3] self.tiles = [[(x + self.pos[0], y + self.pos[1]) for x in range(3)] for y in range(3)] print(self.tiles)
dungcatcher/siege
towers.py
towers.py
py
543
python
en
code
0
github-code
6
32285228189
#!/usr/bin/env python from inv_memo import * bin_file = './memo' context(os = 'linux', arch = 'amd64') # context.log_level = 'debug' #========== env = Environment('debug', 'local', 'remote') env.set_item('mode', debug = 'DEBUG', local = 'PROC', remote = 'SOCKET') env.set_item('target', debug = {'argv':[bin_file], 'aslr':False}, \ local = {'argv':[bin_file]}, \ remote = {'host':'challenge', 'port':4296}) env.set_item('libc', debug = None, \ local = None, \ remote = 'libc-2.27.so') env.set_item('one_gadget', debug = 0xaee38c, local = 0xe4138c, remote = 0xe4138c) env.select('remote') #========== binf = ELF(bin_file) libc = ELF(env.libc) if env.libc else binf.libc #========== def attack(conn, **kwargs): fake_chunk = [0]*8 fake_chunk[1] = 0x21; fake_chunk[5] = 0x11; fake_chunk[7] = 0x11; iv = InvisibleMemo(conn, ''.join(map(p64, fake_chunk))[:-1]) iv.newkey(''.join(map(p64, fake_chunk))[:0x10]) for _ in range(7): iv.add(0x18, None, 0x100) for _ in range(7): iv.add(0x88, None, 0x100) iv.delete(2, -1) iv.add(0x88, None, 0x100) iv.newkey(p64(0)+p64(0x183)) iv.add(0x178, p32(env.one_gadget)[:3], 0x98) conn.sendlineafter('> ', '0') conn.sendlineafter('Bye!\n', 'id') conn.recv(1) #========== if __name__=='__main__': comn = Communicate(env.mode, **env.target) comn.connect() if env.check('remote'): comn.run(attack) comn.connection.sendline('/send_flag') else: comn.bruteforce(attack) comn.connection.interactive() #==========
shift-crops/CTFProblemArchive
2019/CODE BLUE CTF/InvisibleMemo/exploit/exploit_memo_probably_4096.py
exploit_memo_probably_4096.py
py
1,692
python
en
code
1
github-code
6
30754540175
for _ in range(int(input())): n = int(input()) candles = list(map(int, input().split(' '))) candles = sorted(candles, reverse=True) if len(candles) == 1: if candles[0] > 1: print('NO') else: print('YES') else: if candles[0] > candles[1] + 1: print('NO') else: print('YES')
Tanguyvans/Codeforces
780/B.py
B.py
py
376
python
en
code
0
github-code
6
20921242416
import networkx as nx from graph_manager.graph_tools import clusters_dict2clusters_list from graph_manager.plot_tools import * def louvain(G, resolution=1, eps=0.001): clusters_dict = maximize(G, resolution, eps) n = len(clusters_dict) k = len(set(clusters_dict.values())) while k < n: H = aggregate(G, clusters_dict) new_cluster = maximize(H, resolution, eps) clusters_dict = {u: new_cluster[clusters_dict[u]] for u in G.nodes()} n = k k = len(set(clusters_dict.values())) return clusters_dict2clusters_list(clusters_dict) def maximize(G, resolution, eps): # node weights node_weight = {u: 0. for u in G.nodes()} for (u, v) in G.edges(): node_weight[u] += G[u][v]['weight'] node_weight[v] += G[u][v]['weight'] # total weight wtot = sum(list(node_weight.values())) # clusters cluster = {u: u for u in G.nodes()} # total weight of each cluster cluster_weight = {u: node_weight[u] for u in G.nodes()} # weights in each community to which the nodes are linked w = {u: {v: G[u][v]['weight'] for v in G.neighbors(u) if v != u} for u in G.nodes()} increase = True while increase: increase = False for u in G.nodes(): # Compute delta for every neighbor delta = {} for k in w[u].keys(): delta[k] = w[u][k] - resolution * node_weight[u] * cluster_weight[k] / wtot # Compute delta for u itself (if not already done) k = cluster[u] if k not in w[u].keys(): delta[k] = - resolution * node_weight[u] * cluster_weight[k] / wtot # Compare the greatest delta to epsilon l = max(delta, key=delta.get) if delta[l] - delta[k] > resolution * (node_weight[u] * node_weight[u] / wtot) + eps / wtot: increase = True cluster[u] = l # Update information about neighbors and the community change of u cluster_weight[k] -= node_weight[u] cluster_weight[l] += node_weight[u] for v in G.neighbors(u): if v != u: w[v][k] -= G[u][v]['weight'] if w[v][k] == 0: w[v].pop(k) if l not in w[v].keys(): w[v][l] = 0 w[v][l] += G[u][v]['weight'] return cluster def aggregate(G, clusters_dict): H = nx.Graph() H.add_nodes_from(list(clusters_dict.values())) for (u,v) in G.edges(): if H.has_edge(clusters_dict[u], clusters_dict[v]): H[clusters_dict[u]][clusters_dict[v]]['weight'] += G[u][v]['weight'] else: H.add_edge(clusters_dict[u], clusters_dict[v]) H[clusters_dict[u]][clusters_dict[v]]['weight'] = G[u][v]['weight'] return H
sharpenb/Multi-Scale-Modularity-Graph-Clustering
Scripts/clustering_algorithms/louvain.py
louvain.py
py
2,921
python
en
code
2
github-code
6
71780099388
from django.contrib.auth.models import AbstractUser from django.core.validators import RegexValidator from django.db import models class User(AbstractUser): '''Модель пользователя''' email = models.EmailField( verbose_name='Электронная почта', max_length=254, unique=True, db_index=True, ) username = models.CharField( verbose_name='Логин', max_length=150, unique=True, db_index=True, validators=[RegexValidator( regex=r'^[\w.@+-]+$', message='В имени использованы запрещенные символы' )] ) first_name = models.CharField( verbose_name='Имя', max_length=150, ) last_name = models.CharField( verbose_name='Фамилия', max_length=150, ) password = models.CharField( verbose_name='Пароль', max_length=254, ) is_subscribed = models.BooleanField( default=False, ) USERNAME_FIELD = 'email' REQUIRED_FIELDS = 'username', 'first_name', 'last_name' class Meta: ordering = ['id'] verbose_name = 'Пользователь' verbose_name_plural = 'Пользователи' def __str__(self): return self.email
GirzhuNikolay/foodgram-project-react
backend/users/models.py
models.py
py
1,353
python
en
code
0
github-code
6
32724523948
import tornado.ioloop import tornado.web import hashlib import uuid import json from time import mktime from datetime import datetime from email.utils import formatdate up_user = '' up_password = '' up_method = 'PUT' up_host = 'v1.api.upyun.com' up_path = '/bucket/' up_base_url = "http://bucket.b0.upaiyun.com/%s" class MainHandler(tornado.web.RequestHandler): def get(self): content_md5 = self.get_argument('md5', '') content_len = self.get_argument('len', '') content_type = self.get_argument('type', '') stamp = mktime(datetime.now().timetuple()) date = formatdate(timeval = stamp, localtime = False, usegmt = True) filename = hashlib.md5(uuid.uuid1().hex).hexdigest() base_string = "%s&%s&%s&%s&%s" % ( up_method, up_path + filename, date, content_len, hashlib.md5(up_password).hexdigest()) signature = hashlib.md5(base_string).hexdigest() headers = {"Authorization": "UpYun %s:%s" % (up_user, signature), "Content-Type": content_type, "Content-MD5": content_md5, "Date": date, "Expect": ""} self.write(json.dumps({ "headers": headers, "method": up_method, "host": up_host, "path": up_path + filename, "url": up_base_url % filename })) application = tornado.web.Application([ (r"/storage", MainHandler), ]) if __name__ == "__main__": application.listen(8888) tornado.ioloop.IOLoop.instance().start()
zhicheng/storage
main.py
main.py
py
1,410
python
en
code
1
github-code
6
13925195329
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 18 17:27:59 2018 @author: du This is neural network configuration file """ num_epoch = 1000 batch_size = 32 milestones = [2] max_len = 40 hidden_size2 = 50 # hidden size for image feature hidden_size = 50 # hidden size for superimpoed text feature def write_log(dir_,log): """ write log file Input: dir_: the directory for writing the log file log: the string log """ with open(dir_,'a') as file: file.write(log) file.write('\n') file.close()
yuhaodu/TwitterMeme
step2_MemeClassifier/.ipynb_checkpoints/classifier_utils-checkpoint.py
classifier_utils-checkpoint.py
py
573
python
en
code
6
github-code
6
42029059098
import torch import time import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import transforms import os from Network import FullyConvNet from Network import train from PIL import Image import numpy as np import argparse import cv2 from serialTest.serialPackage import armCommunication from collections import deque import utils import settings ARM_RANGE_HEIGHT = settings.ARM_RANGE_HEIGHT ARM_RANGE_WIDTH = settings.ARM_RANGE_WIDTH BASE_X = settings.BASE_X BASE_Y = settings.BASE_Y RATIO = settings.RATIO def update_points(points): pointsOldDataFile = open('pointsOldData.csv','w') for _point in points: pointLineString = str(_point[0])+","+str(_point[1]) + "\n" pointsOldDataFile.write(pointLineString) pointsOldDataFile.close() def read_savedPoints(): points = [] with open('pointsOldData.csv','r') as f: for pointLineString_fromFile in f: pointStrings = pointLineString_fromFile.split(",") points.append([float(p) for p in pointStrings]) return points def transform_by4(img, points, width, height): """ copied from https://blanktar.jp/blog/2015/07/python-opencv-crop-box.html """ """ 4点を指定してトリミングする。 """ if len(points) != 4: #頂点の数が4つでないなら古いデータを使う print("ないんじゃ~~") points = read_savedPoints() else: #頂点の数が4つなら古いデータ更新 update_points(points) points = sorted(points, key=lambda x:x[1]) # yが小さいもの順に並び替え。 top = sorted(points[:2], key=lambda x:x[0]) # 前半二つは四角形の上。xで並び替えると左右も分かる。 bottom = sorted(points[2:], key=lambda x:x[0], reverse=True) # 後半二つは四角形の下。同じくxで並び替え。 points = np.array(top + bottom, dtype='float32') # 分離した二つを再結合。 dst = np.array([ np.array([0, 0]), np.array([width-1, 0]), np.array([width-1, height-1]), np.array([0, height-1]), ], np.float32) trans = cv2.getPerspectiveTransform(points, dst) # 変換前の座標と変換後の座標の対応を渡すと、透視変換行列を作ってくれる。(射影行列では?) return cv2.warpPerspective(img, trans, (int(width), int(height))) #ここで影を指定のサイズで受け取る def np_to_PIL(image): return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) def crop_image_along_line(image, width, height): blue, green, red = cv2.split(image) diff = np.where(green >= red, green - (red.astype(np.uint16) * 10 // 10).astype(np.uint8), 0) ret, thresh = cv2.threshold(diff, 50, 255, cv2.THRESH_BINARY) kernel = np.ones((50,50),np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours.sort(key=cv2.contourArea, reverse=True) epsilon = 0.05 * cv2.arcLength(contours[0], True) approx = cv2.approxPolyDP(contours[0], epsilon, True) cv2.imwrite("thresh.jpg", thresh) return transform_by4(image, approx[:, 0, :], width, height) cam = cv2.VideoCapture(2) cam.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) def capture(): # cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 4000) retval, frame = cam.read() if not retval: print('cannnot read') # return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) return frame def get_max_dir(directory_path): os.makedirs(directory_path, exist_ok=True) return max([0] + [int(d.name) for d in os.scandir(directory_path) if d.is_dir() and d.name.isdigit()]) def get_max_file(directory_path): os.makedirs(directory_path, exist_ok=True) return max([0] + [int(f.name.split('.')[0]) for f in os.scandir(directory_path) if f.is_file() and f.name.split('.')[0].isdigit()]) def random_position(height, width, ratio): from random import randrange return randrange(height * ratio), randrange(width * ratio // 2) def pick(y, x, arm, ratio): x //= ratio y //= ratio y = ARM_RANGE_HEIGHT - y arm.send_position(BASE_X + x, BASE_Y + y) print(BASE_X + x, BASE_Y + y) while True: res = arm.read_one_byte() print(res) if res != 0: return res == 11 def counter(res): result = [] with open('day1.txt') as f: for line in f: result = [int(l) for l in line.split()] with open('day1.txt', 'w') as f: result[int(res)] += 1 print(*result, file=f) def add_red_point(pil_image, h, w): im = np.array(pil_image) for i in range(3): im[h][w][i] = 0 im[h][w][0] = 255 return Image.fromarray(im) def main(model): INPUT_SIZE = 129 BATCH = ARM_RANGE_WIDTH // 2 OBJECT_NUM = 3 picked_count = 0 indicator = 0 os.makedirs('entire', exist_ok=True) arm = armCommunication('COM8', 115200, 20) save_dirctory = './models/' + str(get_max_dir('./models') + 1) # os.makedirs(save_dirctory, exist_ok=True) net = FullyConvNet() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) net.to(device) if model is not None: net.load_state_dict(torch.load(model)) net.eval() sigmoid = nn.Sigmoid() transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(tuple([0.5] * 3), tuple([0.5] * 3))] ) latest_positions = deque([(0, 0) for i in range(5)], maxlen=5) for i in range(int(1e6)): # if i != 0 and (i == 100 or i % 500 == 0): # model_save_path = os.path.join(save_dirctory, '{}.pth'.format(i)) # train(os.path.join(model_save_path)) # net.load_state_dict(torch.load(model_save_path)) # net.eval() if picked_count >= OBJECT_NUM: picked_count = 0 indicator = (indicator + 1) & 1 print('cap') image = np_to_PIL(crop_image_along_line(capture(), ARM_RANGE_WIDTH * RATIO, ARM_RANGE_HEIGHT * RATIO)) # image = Image.open('test/2539.jpg') print(image.size) print('done') P = np.zeros(shape=(ARM_RANGE_HEIGHT * RATIO, ARM_RANGE_WIDTH * RATIO), dtype=np.float16) with torch.no_grad(): P = sigmoid(net(torch.stack([transform(image)]).to(device))).cpu().numpy()[0][0] for i, (h, w) in enumerate(latest_positions, 1): for y in range(max(0, h - i ** 2), min(ARM_RANGE_HEIGHT * RATIO, h + i ** 2 + 1)): for x in range(max(0, w - i ** 2), min(ARM_RANGE_WIDTH * RATIO, w + i ** 2 + 1)): P[y][x] = 0 h, w = np.unravel_index(np.argmax(P), P.shape) print("probability:", P[h][w]) overray = Image.fromarray(utils.probability_to_green_image_array(P)) blended = Image.blend(image, overray, alpha=0.5) blended.show() latest_positions.append((h, w)) time.sleep(1) # what is this? try: res = pick(h, w, arm, RATIO) # the position on the full image except Exception as e: print(e) continue picked_count += res image_save_path = './images/{}/{}.jpg'.format(int(res), get_max_file('./images/{}'.format(int(res))) + 1) utils.crop_center(image, h, w, INPUT_SIZE).save(image_save_path) image.save('./entire/{}.jpg'.format(get_max_file('./entire') + 1)) counter(res) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-m', '--model', type=str, default='no_maxpool_L1/60.pth') args = parser.parse_args() main(args.model)
qLethon/bin_picking_robot
main.py
main.py
py
8,023
python
en
code
0
github-code
6
30071759044
import pandas as pd from tensorflow import keras import os import numpy as np from sklearn.preprocessing import MinMaxScaler class AbundanceGenerator(keras.utils.Sequence): def __init__(self, abundance_file,species,batch_size=32, shuffle=True,to_fit=True): 'Initialization' self.abundance_file=abundance_file self.dim = len(species) self.store = pd.HDFStore(abundance_file)# self.species=species self.n_examples=self.store.get_storer('df').shape[0] self.batch_size = batch_size self.n_batches=int(np.floor(self.n_examples / self.batch_size)) self.shuffle = shuffle self.on_epoch_end() def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.n_batches) if self.shuffle == True: np.random.shuffle(self.indexes) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch X=self.store.select(key="df",start=index*self.batch_size,stop=(index+1)*self.batch_size) return X[self.species].values,X[self.species].values def __len__(self): 'Denotes the number of batches per epoch' return self.n_batches
uclchem/Chemulator
src/abundancegenerator.py
abundancegenerator.py
py
1,233
python
en
code
6
github-code
6
20031000434
import sys from PIL import Image Image.MAX_IMAGE_PIXELS = 1000000000 image = Image.open("WAC_TIO2_COMBINED_MAP.png") width, height = image.size print("width",width,end=" ") print("height",height,end=" ") aspect_ratio = width/height print("aspect_ratio",aspect_ratio) if aspect_ratio == 2: print("aspect ratio already matching.") exit(0) else: print("adapting aspect ratio to 2") if aspect_ratio < 2: print("Expanding width") print("ERROR: Not implemented.") exit(0) if aspect_ratio > 2: new_height = width/2 if ((int(new_height) - height)% 2) == 0 : new_height = int(new_height) else: new_height = int(new_height)+1 print("Expanding height to",new_height) add_lines = (new_height-height)/2 print("adding",add_lines,"lines to the top and bottom") new_im = Image.new('L', (width, new_height)) x_offset = 0 y_offset = int(add_lines) new_im.paste(image, (x_offset,y_offset)) new_im.save('WAC_TIO2_GLOBAL_MAP.png') #new_im.save('WAC_TIO2_GLOBAL_MAP.TIF') print('COMPLETED.')
Sven-J-Steinert/DLR_Paper_2023
maps/preparation/TiO2/old/02_place_in_global.py
02_place_in_global.py
py
1,072
python
en
code
0
github-code
6
26042346056
from __future__ import annotations from dataclasses import dataclass from typing import Any from pants.bsp.spec.base import BuildTargetIdentifier # ----------------------------------------------------------------------------------------------- # Compile Request # See https://build-server-protocol.github.io/docs/specification.html#compile-request # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class CompileParams: # A sequence of build targets to compile. targets: tuple[BuildTargetIdentifier, ...] # A unique identifier generated by the client to identify this request. # The server may include this id in triggered notifications or responses. origin_id: str | None = None # Optional arguments to the compilation process. arguments: tuple[str, ...] | None = () @classmethod def from_json_dict(cls, d: dict[str, Any]) -> Any: return cls( targets=tuple(BuildTargetIdentifier.from_json_dict(x) for x in d["targets"]), origin_id=d.get("originId"), arguments=tuple(d["arguments"]) if "arguments" in d else None, ) def to_json_dict(self) -> dict[str, Any]: result: dict[str, Any] = {"targets": [tgt.to_json_dict() for tgt in self.targets]} if self.origin_id is not None: result["originId"] = self.origin_id if self.arguments is not None: result["arguments"] = self.arguments return result @dataclass(frozen=True) class CompileResult: # An optional request id to know the origin of this report. origin_id: str | None # A status code for the execution. status_code: int # Kind of data to expect in the `data` field. If this field is not set, the kind of data is not specified. data_kind: str | None = None # A field containing language-specific information, like products # of compilation or compiler-specific metadata the client needs to know. data: Any | None = None @classmethod def from_json_dict(cls, d: dict[str, Any]) -> Any: return cls( origin_id=d.get("originId"), status_code=d["statusCode"], data_kind=d.get("dataKind"), data=d.get("data"), ) def to_json_dict(self) -> dict[str, Any]: result: dict[str, Any] = { "statusCode": self.status_code, } if self.origin_id is not None: result["originId"] = self.origin_id if self.data_kind is not None: result["dataKind"] = self.data_kind if self.data is not None: result["data"] = self.data # TODO: Enforce to_json_dict available return result @dataclass(frozen=True) class CompileTask: target: BuildTargetIdentifier @classmethod def from_json_dict(cls, d: dict[str, Any]) -> Any: return cls(target=BuildTargetIdentifier.from_json_dict(d["target"])) def to_json_dict(self) -> dict[str, Any]: return {"target": self.target.to_json_dict()} @dataclass(frozen=True) class CompileReport: # The build target that was compiled target: BuildTargetIdentifier # An optional request id to know the origin of this report. origin_id: str | None # The total number of reported errors compiling this target. errors: int # The total number of reported warnings compiling the target. warnings: int # The total number of milliseconds it took to compile the target. time: int | None = None # The compilation was a noOp compilation. no_op: bool | None = None @classmethod def from_json_dict(cls, d: dict[str, Any]) -> Any: return cls( target=BuildTargetIdentifier.from_json_dict(d["target"]), origin_id=d.get("originId"), errors=d["errors"], warnings=d["warnings"], time=d.get("time"), no_op=d.get("noOp"), ) def to_json_dict(self) -> dict[str, Any]: result = { "target": self.target.to_json_dict(), "errors": self.errors, "warnings": self.warnings, } if self.origin_id is not None: result["originId"] = self.origin_id if self.time is not None: result["time"] = self.time if self.no_op is not None: result["noOp"] = self.no_op return result
pantsbuild/pants
src/python/pants/bsp/spec/compile.py
compile.py
py
4,430
python
en
code
2,896
github-code
6
2772686666
'''有K种不同的玫瑰花,现在要摆放在N个位置上,要求每种颜色的花至少出现过一次,请问有多少种不同的方案数呢?,因为答案可能很大,你只需要输出它对772235取余后的结果. 输入描述: 输入只有1行,分别有两个整数N,K( 1 <= N <= 50000 , 1 <= K <= 30 ) 输出描述: 输出一行表示答案 输入例子1: 3 2 输出例子1: 6 ''' def fun(k,n): ### K 种花 无限取 求出取出总共为n种花的分布情况 res = [0] t = math.factorial(n+k)%772235 help(k,0,n,res,t) return res[0] def help(k,s,n,res,t,ans=[]): if s == k-1: ans.append(n) t_ans = t for i in ans.copy(): t_ans = t_ans/(math.factorial(i+1)%772235) res[0]+=int(t_ans)%772235 #print(res) ans.pop() return for i in range(n+1): ans.append(i) help(k,s+1,n-i,res,t,ans) ans.pop() import math ### dp 不会做 遇到就放弃 if __name__ == "__main__": ans = 0 n,k = [int(x) for x in input().strip().split()] value=[i+1 for i in range(k)] for j in range(1,k): key=[i+1 for i in range(value[j])] sum_=0 for i in range(j): key[i]=math.factorial(value[j])/(math.factorial(value[j]-key[i])*math.factorial(key[i])) temp1 = key[i]*value[i]%772235 sum_+=temp1 sum_=sum_%772235 temp2 = pow(value[j],n)%772235 value[j]=int((temp2-sum_)%772235) print(value[k-1])
queryor/algorithms
gatherAlgorithms/玫瑰花.py
玫瑰花.py
py
1,573
python
zh
code
0
github-code
6
8915987730
#Faça um programa que leia dois números inteiros e informe se estes são iguais ou diferentes #Solcitando os numeros ao user e salvando nas variaveis correspondentes n1 = int(input("Digite o primeiro número ")) n2 = int(input("Digite o segundo número ")) #Veririficando se os valores são iguals e informando ao usuário if n1==n2: print("Os números são iguais") else: print("Os números são diferentes")
lucasnasc46/curso-python22
Desafaio 1/questao2.py
questao2.py
py
422
python
pt
code
0
github-code
6
19705741714
# https://www.beecrowd.com.br/judge/pt/problems/view/1173?origem=1 lista = list(range(10)) entrada = 51 while entrada > 50: entrada = int(input()) lista[0] = entrada print(f"N[0] = {lista[0]}") for i in range(1, 10): lista[i] = lista[i - 1] * 2 print(f"N[{i}] = {lista[i]}")
caioopra/URI-Beecrowd
1173.py
1173.py
py
291
python
pt
code
0
github-code
6
72774182909
class Solution(object): # brute force def minDistanceBrute(self, word1, word2): """ :type word1: str :type word2: str :rtype: int """ if len(word1)==0: return len(word2) if len(word2)==0: return len(word1) if word1[0]==word2[0]: return self.minDistanceBrute(word1[1:], word2[1:]) else: return min(self.minDistanceBrute(word1[1:], word2), self.minDistanceBrute(word1, word2[1:]), self.minDistanceBrute(word1[1:], word2[1:])) + 1 # ^ delete word1[0] ^ insert at word1 ^ replace word1[0] with word2[0] # DP def minDistance(self, word1, word2): ''' this is just modified version of longest common subsequence we can thing of it as going to the next block must be the best of either replacing, deleting or inserting an element in w1 to correlate this to LCS let's say we have a common subsequence Z between w1 and w2 note: here we write w2 on top of matrix and w1 on the left side of matrix if w1[i]=w2[i]=z then we move ahead, if not: we take the minimum of these three operations: insert: dp[i][j-1]+1 delete: dp[i-1][j]+1 replace: dp[i-1][j-1]+1 recall we 0s in the first row and column of the matrix for LCS and started with 1,1 index because 0th row and 0th index are empty to change from an empty string to string of length i we append i at dp[i][0] example matrix between "abc" and "adc" 0 1 2 3 1 0 2 3 2 2 1 2 3 3 2 1 ''' m = len(word1) n = len(word2) dp = [[0 for _ in range(n+1)] for _ in range(m+1)] # the reason behind this is that, if we start from an empty string at [i, 0] then to change it to word2, that is the word we have kept on top, we will need to insert i elements # thus dp[i][0] = i for i in range(m+1): dp[i][0] = i for j in range(n+1): dp[0][j] = j for i in range(1, m+1): for j in range(1, n+1): if word1[i-1]==word2[j-1]: dp[i][j] = dp[i-1][j-1] else: dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1 return dp[m][n] if __name__=='__main__': word1 = "horse" word2 = "ros" s = Solution() print(s.minDistanceBrute(word1, word2)) print(s.minDistance(word1, word2))
V-nsh/DSA
leetcode/leetcode75/DP_mult/72_edit_distance.py
72_edit_distance.py
py
2,597
python
en
code
1
github-code
6
72908363068
# -*- coding: utf-8 -*- from odoo import models, fields, api, _ from dateutil.relativedelta import relativedelta from odoo.exceptions import ValidationError, UserError from datetime import datetime, timedelta from odoo.http import request class OpAdmissionRegisterCustom(models.Model): _inherit = "op.admission.register" batch_id = fields.Many2one( 'op.batch', 'Term', required=True) product_id = fields.Many2one( 'product.product', 'Course Fees', required=False, domain=[('type', '=', 'service')], readonly=True, states={'draft': [('readonly', False)]}, track_visibility='onchange') class OpAdmission(models.Model): _inherit = 'op.admission' batch_id = fields.Many2one('op.batch', 'Term', domain=[], required=True, readonly=False) name = fields.Char( 'Name', size=128, required=False, translate=False) readonly = fields.Boolean(compute="_compute_read_only") class_id = fields.Many2one('op.classroom', 'Class', required=False) birth_place = fields.Many2one('res.country.state', 'Birth Place') payment_option = fields.Selection([('normal', 'Normal'), ('exempted', 'Exempted'), ('haft_scholarship', '50% Scholarship'), ('full_scholarship', '100% Scholarship'), ('installment', 'Installment')], default='normal') fill_application = fields.Boolean('Fill Application') marital_status = fields.Selection([('single', 'Single'), ('married', 'Married')]) constrains = fields.Text('Special Wishes') shoe_size_id = fields.Many2one('pm.shoe.size') uniform_size_id = fields.Many2one('pm.uniform.size') shoe_size = fields.Selection([ ('xxs', 'XXS'), ('xs', 'XS'), ('s', 'S'), ('m', 'M'), ('l', 'L'), ('xl', 'Xl'), ('xxl', 'XXL'), ], 'Shoe Size') khmer_name = fields.Char('Name in Khmer') uniform_size = fields.Selection([ ('xxs', 'XXS'), ('xs', 'XS'), ('s', 'S'), ('m', 'M'), ('l', 'L'), ('xl', 'Xl'), ('xxl', 'XXL'), ], 'Uniform Size') nationality = fields.Many2one('res.country', 'Nationality') primary_language = fields.Many2one('pm.student.language', string='Other Language') other_language = fields.Many2many('pm.student.language', string='Other languages', help="Other languages") english_score = fields.Float('English Score (%)') high_school_id = fields.Many2one('pm.high_school', 'High School') highest_education = fields.Selection([('HS', 'High School'), ('BA', 'Bachelor Degree'), ('MA', 'Master Degree'), ('PHD', 'Doctoral Degree')]) working_experience = fields.Text('Working Experience') job_position = fields.Text('Job Position') enroll_reason_id = fields.Many2one('pm.enroll_reason', string='Reason to Enroll') not_enroll_reason_id = fields.Many2one('pm.not_enroll_reason', string='Reason not to Enroll') current_address = fields.Char('Current Address') hobby = fields.Char('Hobby') family_size = fields.Integer('Family Size') family_status = fields.Selection([('p', 'Poor'), ('n', 'Normal'), ('r', 'Rich')]) campaign_id = fields.Many2one('utm.campaign', 'Campaign') source_id = fields.Many2one('utm.source', 'Source') referred = fields.Char('Referred By') passport_number = fields.Char('Passport Number') id_card = fields.Char('ID Card') medical_checkup = fields.Boolean('Medical Check up', default=True) motivational_letter = fields.Boolean('Motivational Letter') special_medical = fields.Text('Special Medical Condition') is_scholarship = fields.Boolean('Scholarship') lead_id = fields.Integer() p_street = fields.Char('Street...') p_street2 = fields.Char('Street...') p_city = fields.Char('City', size=64) p_zip = fields.Char('Zip', size=8) p_state_id = fields.Many2one( 'res.country.state', 'States') p_country_id = fields.Many2one( 'res.country', 'Country', ) application_number = fields.Char( 'Application Number', copy=False, readonly=True, store=True) # new fields application_date = fields.Datetime( 'Application Date', required=True, copy=False, default=lambda self: fields.Datetime.now()) application_fee = fields.Boolean('Application Fee', required=True, default=True) scholarship_status = fields.Many2one('pm.scholarship.status', string='Scholarship Status') status = fields.Selection([('1st_follow_up', '1st follow-up'), ('2nd_follow_up', '2nd follow-up'), ('3rd_follow_up', '3rd follow-up'), ('visited_and_toured', 'Visited & toured academy'), ('live_student', 'Live of a student'), ('pick_up_application', 'Pick up application'), ('submitted_application', 'Submitted application incomplete'), ('schedule_for_interview', 'Schedule for interview'), ('interviewed', 'interviewed'), ('acceptance_letter', 'Acceptance letter issued')]) status_detail = fields.Char('Status detail') lead_source = fields.Selection([('social_media', 'Social media'), ('facebook', 'Facebook'), ('website', 'Website'), ('school_visit', 'School Visit'), ('acac_student', 'By ACAC student'), ('friend', 'Friend'), ('school_councelor', 'School councelor'), ('family', 'Family'), ('open_day', 'Open day'), ('fair_exhibition', 'Fair/exhibition'), ('nea', 'NEA'), ('other', 'other')]) lead_participation = fields.One2many('pm.lead.participation', inverse_name='admission_id', string='Participation', help="Participation") additional_source = fields.Char('Additional Source Info') parents = fields.Char('Parents') siblings = fields.Integer('Siblings') other_depends = fields.Char('Other dependents') application_form = fields.Boolean('Application Form', default=True, required=True) pictures = fields.Boolean('Pictures') schooling_year = fields.Char('No. Schooling years') lead_educational_achievement = fields.One2many('pm.lead.educational.achievement', inverse_name="admission_id", string='Educational Achievements', help="Educational Achievements") lead_working_experience = fields.One2many('pm.lead.working.experience', inverse_name="admission_id", string='Working Experience', help="Working Experience") contact_name = fields.Many2one('res.partner', string='Emergency Contact') email_from = fields.Char('Email', help="Email address of the contact", tracking=40, index=True) user_id = fields.Many2one('res.users', string='ACAC Contact', index=True, tracking=True, default=lambda self: self.env.user) acac_contact = fields.Char('ACAC Contact') scholar_application = fields.Boolean('Scholar Application') financial_status = fields.Boolean('Proof of Financial Status') family_income = fields.Float('Source of Family income') rank = fields.Selection([('first_contact', 'First Contact'), ('potential', 'Potential'), ('high_potential', 'High Potential')]) facebook = fields.Char('Facebook') phone = fields.Char('Mobile 1') admission_url = fields.Char('Link', compute="_compute_admission_url", store=True) visa_number = fields.Char('Visa Number') visa_expiry = fields.Date('Expiry Date') product_id = fields.Many2one( 'product.product', 'Course Fees', required=False, domain=[('type', '=', 'service')],track_visibility='onchange') @api.depends('state') def _compute_read_only(self): for rec in self: if rec.state == 'done': rec.readonly = True else: rec.readonly = False @api.onchange('register_id') def onchange_register(self): print('gege') print(self.register_id.batch_id) self.course_id = self.register_id.course_id self.batch_id = self.register_id.batch_id print(self.course_id) print(self.batch_id) @api.onchange('course_id') def onchange_course(self): # self.batch_id = False term_id = False if self.course_id and self.course_id.fees_term_id: term_id = self.course_id.fees_term_id.id self.fees_term_id = term_id @api.onchange('product_id') def onchange_product(self): print('gaga') self.fees = self.product_id.lst_price @api.depends('name') def _compute_admission_url(self): for record in self: base_url = request.env['ir.config_parameter'].get_param('web.base.url') base_url += '/web#id=%d&view_type=form&model=op.admission' % (record.id) record.admission_url = base_url def submit_form(self): ir_model_data = self.env['ir.model.data'] try: template_id = ir_model_data.get_object_reference('pm_admission', 'student_admission_submission')[1] except ValueError: template_id = False self.env['mail.template'].browse(template_id).send_mail(self.id, force_send=True) self.state = 'submit' action = self.env.ref("crm.crm_lead_all_leads").read()[0] return action def confirm_in_progress(self): ir_model_data = self.env['ir.model.data'] try: template_id = ir_model_data.get_object_reference('pm_admission', 'student_payment_confirm')[1] except ValueError: template_id = False self.env['mail.template'].browse(template_id).send_mail(self.id, force_send=True) self.state = 'confirm' action = self.env.ref("crm.crm_lead_all_leads").read()[0] return action def admission_confirm(self): ir_model_data = self.env['ir.model.data'] try: template_id = ir_model_data.get_object_reference('pm_admission', 'student_admission_confirm')[1] except ValueError: template_id = False self.env['mail.template'].browse(template_id).send_mail(self.id, force_send=True) self.state = 'admission' action = self.env.ref("crm.crm_lead_all_leads").read()[0] return action def confirm_cancel(self): lead = self.env['crm.lead'].browse(self.lead_id) lead.type = 'lead' self.unlink() action = self.env.ref("crm.crm_lead_all_leads").read()[0] return action @api.onchange('student_id') def onchange_student_id(self): student = self.env['op.student'].search( [('id', '=', self.student_id.id)]) print(student) if self.student_id and self.is_student: self['prev_course_id'] = student['prev_course_id'] self['high_school_id'] = student['high_school_id'] self['english_score'] = student['english_score'] # additional information self['khmer_name'] = student['khmer_name'] self['id_card'] = student['id_card'] self['passport_number'] = student['passport_number'] self['marital_status'] = student['marital_status'] self['nationality'] = student['nationality'] self['primary_language'] = student['primary_language'] self['other_language'] = student['other_language'] self['shoe_size'] = student['shoe_size'] self['uniform_size'] = student['uniform_size'] self['job_position'] = student['job_position'] self['working_experience'] = student['working_experience'] self['constrains'] = student['constrains'] self['hobby'] = student['hobby'] self['facebook'] = student['facebook'] self['visa_number'] = student['visa_number'] self['visa_expiry'] = student['visa_expiry'] self['image'] = student['image_1920'] # family info self['family_status'] = student['family_status'] self['family_business'] = student['family_business'] self['family_income'] = student['family_income'] self['family_size'] = student['family_size'] # self['campaign_id'] = student['campaign_id'] self['source_id'] = student['source_id'] self['referred'] = student['referred'] # Extra self['medical_checkup'] = student['medical_checkup'] self['special_medical'] = student['special_medical'] self['motivational_letter'] = student['motivational_letter'] @api.onchange('is_student') def onchange_is_student(self): if not self.is_student: self['prev_course_id'] = False self['high_school_id'] = False self['english_score'] = False # additional information self['khmer_name'] = False self['id_card'] = False self['passport_number'] = False self['marital_status'] = False self['nationality'] = False self['primary_language'] = False self['other_language'] = False self['shoe_size'] = False self['uniform_size'] = False self['job_position'] = False self['working_experience'] = False self['constrains'] = False self['hobby'] = False self['facebook'] = False self['visa_number'] = False self['visa_expiry'] = False # family info self['family_status'] = False self['family_business'] = False self['family_income'] = False self['family_size'] = False # self['campaign_id'] = False self['source_id'] = False self['referred'] = False # Extra self['medical_checkup'] = False self['special_medical'] = False self['motivational_letter'] = False @api.model def create(self, val): student = self.env['op.student'].search( [('id', '=', self.student_id.id)]) if self.student_id and self.is_student: self['prev_course_id'] = student['prev_course_id'] self['high_school_id'] = student['high_school_id'] self['english_score'] = student['english_score'] # additional information self['khmer_name'] = student['khmer_name'] self['id_card'] = student['id_card'] self['passport_number'] = student['passport_number'] self['marital_status'] = student['marital_status'] self['nationality'] = student['nationality'] self['primary_language'] = student['primary_language'] self['other_language'] = student['other_language'] self['shoe_size'] = student['shoe_size'] self['uniform_size'] = student['uniform_size'] self['job_position'] = student['job_position'] self['working_experience'] = student['working_experience'] self['constrains'] = student['constrains'] self['hobby'] = student['hobby'] self['facebook'] = student['facebook'] self['visa_number'] = student['visa_number'] self['visa_expiry'] = student['visa_expiry'] # family info self['family_status'] = student['family_status'] self['family_business'] = student['family_business'] self['family_income'] = student['family_income'] self['family_size'] = student['family_size'] # self['campaign_id'] = student['campaign_id'] self['source_id'] = student['source_id'] self['referred'] = student['referred'] # Extra self['medical_checkup'] = student['medical_checkup'] self['special_medical'] = student['special_medical'] self['motivational_letter'] = student['motivational_letter'] @api.onchange('is_student') def onchange_is_student(self): if not self.is_student: self['prev_course_id'] = False self['high_school_id'] = False self['english_score'] = False # additional information self['khmer_name'] = False self['id_card'] = False self['passport_number'] = False self['marital_status'] = False self['nationality'] = False self['primary_language'] = False self['other_language'] = False self['shoe_size'] = False self['uniform_size'] = False self['job_position'] = False self['working_experience'] = False self['constrains'] = False self['hobby'] = False # family info self['family_status'] = False self['family_business'] = False self['family_income'] = False self['family_size'] = False # self['campaign_id'] = False self['source_id'] = False self['referred'] = False # Extra self['medical_checkup'] = False self['special_medical'] = False self['motivational_letter'] = False # @api.onchange('batch_id') # def onchange_batch_id(self): # if self.batch_id and self.batch_id.state != 'active': # msg = 'The selected term is not active: (%s) state: (%s)' % (self.batch_id.name, # self.batch_id.state) # raise ValidationError(_(msg)) @api.model def create(self, val): print('=====batch=====') print(val['batch_id']) if val['batch_id']: print('hit 1') batch = self.env['op.batch'].browse(val['batch_id']) if batch.state != 'active': print('hit 2') msg = 'The selected term is not active:- (%s)' % ( batch.name) raise ValidationError(_(msg)) lead_id = val.get('lead_id') if lead_id: lead_ref = self.env['crm.lead'].browse(lead_id) lead_ref.type = "admission" res = super(OpAdmission, self).create(val) attachment = self.env['ir.attachment'].search([('res_model', '=', 'crm.lead'), ('res_id', '=', lead_id)]) if attachment: for att in attachment: att.write({ 'res_model': 'op.admission', 'res_id': res.id }) return res def enroll_student(self): for record in self: messages = '' if not record.class_id: messages += 'Class | ' if not record.contact_name: messages += 'Emergency Contact | ' if len(messages): notification = { 'type': 'ir.actions.client', 'tag': 'display_notification', 'params': { 'title': 'Please fill in the following fields:', 'message': _(messages), 'type': 'danger', # types: success,warning,danger,info 'sticky': True, # True/False will display for few seconds if false }, } return notification if record.register_id.max_count: total_admission = self.env['op.admission'].search_count( [('register_id', '=', record.register_id.id), ('state', '=', 'done')]) if not total_admission < record.register_id.max_count: msg = 'Max Admission In Admission Register :- (%s)' % ( record.register_id.max_count) raise ValidationError(_(msg)) if not record.student_id: vals = record.get_student_vals() record.partner_id = vals.get('partner_id') record.student_id = student_id = self.env[ 'op.student'].create(vals).id else: record.student_id.course_detail_ids.p_active = False student_id = record.student_id.id record.student_id.write({ 'course_detail_ids': [[0, False, { 'course_id': record.course_id and record.course_id.id or False, 'batch_id': record.batch_id and record.batch_id.id or False, 'p_active': True, }]], }) attachment = self.env['ir.attachment'].search([('res_model', '=', 'op.admission'), ('res_id', '=', record.id)]) print(attachment) if attachment: for att in attachment: attchment_clone = att.copy() print('******') print(attchment_clone) attchment_clone.write({ 'res_model': 'op.student', 'res_id': student_id }) print('true true') if record.fees_term_id: val = [] product = self.env['product.product'].search([('barcode', '=', '168@168')]) print('...........product............') product_id = product.id for line in record.fees_term_id.line_ids: no_days = line.due_days no_alert_days = no_days - 7 state = 'draft' price = line.total print(price) amount = price date = (datetime.today() + relativedelta( days=no_days)).date() alert_date = (datetime.today() + relativedelta( days=no_alert_days)).date() dict_val = { 'semester': line.semester, 'fees_line_id': line.id, 'amount': amount, 'date': date, 'alert_date': alert_date, 'product_id': product_id, 'state': state, } val.append([0, False, dict_val]) print(val) record.student_id.write({ 'fees_detail_ids': val }) record.write({ 'nbr': 1, 'state': 'done', 'admission_date': fields.Date.today(), 'student_id': student_id, 'is_student': True, }) def get_student_vals(self): for student in self: langs = [[6, False, student.other_language.mapped('id')]] educat = [[6, False, student.lead_educational_achievement.mapped('id')]] working = [[6, False, student.lead_working_experience.mapped('id')]] partition = [[6, False, student.lead_participation.mapped('id')]] student_user = self.env['res.users'].with_context(no_reset_password=False).create({ 'name': student.name, 'login': student.email, 'image_1920': self.image or False, 'is_student': True, 'company_id': self.env.ref('base.main_company').id, 'groups_id': [ (6, 0, [self.env.ref('base.group_portal').id])] }) details = { 'phone': student.phone, 'mobile': student.mobile, 'email': student.email, 'street': student.street, 'street2': student.street2, 'city': student.city, 'country_id': student.country_id and student.country_id.id or False, 'state_id': student.state_id and student.state_id.id or False, # 'image_1920': student.image, 'zip': student.zip } student_user.partner_id.write(details) student_user.with_context(create_user=True).action_reset_password() details.update({ 'title': student.title and student.title.id or False, 'first_name': student.first_name, 'birth_place': student.birth_place.id, 'middle_name': student.middle_name, 'khmer_name': student.khmer_name, 'last_name': student.last_name, 'birth_date': student.birth_date, 'gender': student.gender, # 'image_1920': student.image or False, 'course_detail_ids': [[0, False, { 'course_id': student.course_id and student.course_id.id or False, 'batch_id': student.batch_id and student.batch_id.id or False, 'class_ids': [[6, 0, [student.class_id.id]]], }]], 'user_id': student_user.id, 'partner_id': student_user.partner_id.id, 'batch_id': student.batch_id and student.batch_id.id or False, 'fill_application': student.marital_status, 'marital_status': student.marital_status, 'constrains': student.constrains, 'shoe_size': student.shoe_size, 'shoe_size_id': student.shoe_size_id.id, 'uniform_size': student.uniform_size, 'uniform_size_id': student.uniform_size_id.id, 'primary_language': student.primary_language.id, 'other_language': langs, 'english_score': student.english_score, 'highest_education': student.highest_education, 'working_experience': student.working_experience, 'job_position': student.job_position, 'current_address': student.current_address, 'hobby': student.hobby, 'family_size': student.family_size, 'family_status': student.family_status, 'passport_number': student.passport_number, 'id_card': student.id_card, 'campaign_id': student.campaign_id.id, 'source_id': student.source_id.id, 'referred': student.referred, 'medical_checkup': student.medical_checkup, 'is_scholarship': student.is_scholarship, 'scholarship_status': student.scholarship_status.id, 'motivational_letter': student.motivational_letter, 'special_medical': student.special_medical, 'enroll_reason_id': student.enroll_reason_id.id, 'high_school_id': student.high_school_id.id, 'facebook': student.facebook, 'visa_number': student.visa_number, 'visa_expiry': student.visa_expiry, 'nationality': student.nationality.id, 'rank': student.rank, 'status_detail': student.status_detail, 'lead_source': student.lead_source, 'additional_source': student.additional_source, 'parents': student.parents, 'siblings': student.siblings, 'other_depends': student.other_depends, 'application_form': student.application_form, 'pictures': student.pictures, 'schooling_year': student.schooling_year, 'lead_educational_achievement': educat, 'lead_working_experience': working, 'lead_participation': partition, 'family_income': student.family_income, 'scholar_application': student.scholar_application, 'financial_status': student.financial_status, 'contact_name': student.contact_name.id, 'application_fee': student.application_fee, 'p_street': student.p_street, 'p_street2': student.p_street2, 'p_city': student.p_city, 'p_zip': student.p_zip, 'p_state_id': student.p_state_id.id, 'p_country_id': student.p_country_id.id, }) print('*&(7e2132') print(details) return details def write(self, vals): # Temporarily fixing image issue when update a record if 'image' in vals and vals['image']: self.env.cr.execute("""DELETE FROM ir_attachment WHERE res_model = '%s' AND res_field = '%s' AND res_id = %d""" % (self._name, 'image', self.id)) return super(OpAdmission, self).write(vals)
mrrtmob/odoo_acac
local-addon/pm_admission/models/pm_admission.py
pm_admission.py
py
30,867
python
en
code
0
github-code
6
27920291546
import os import time import numpy as np import pandas as pd import logging import shutil from pathlib import Path from deep_squeeze.disk_storing import calculate_compression_ratio def repeat_n_times(n): """ A decorator that repeats a decorated function (in our case the compression pipeline) n times and returns its mean and its std of its return values. Note that the decorated function must return a number. """ def decorator(func): def wrapper(*args, **kwargs): comp_ratios = [func(*args) for _ in range(n)] comp_ratios = np.array(comp_ratios) return np.mean(comp_ratios), np.std(comp_ratios) return wrapper return decorator def display_compression_results(mean_ratio, std_ratio, repeats): print(f"\n>>> Final results after {repeats} executions:") print(f"\tMean compression ratio: {mean_ratio:.3f}") print(f"\tStd of compression ratio: {std_ratio:.3f}") def run_full_experiments(pipeline_func, dataset_paths, errors, params, save_path, repeats): results_df = pd.DataFrame(columns=['Data', 'Error', 'MeanRatio', 'StdRatio', 'Time']) for dataset in dataset_paths: params['data_path'] = dataset dataset_name = dataset.split('/')[-1] for error in errors: start_time = time.time() params['error_threshold'] = error mean_ratio, std_ratio = pipeline_func(params) results_df = results_df.append({'Data': dataset_name, 'Error': error, 'MeanRatio': mean_ratio, 'StdRatio': std_ratio, 'Time': np.round((time.time() - start_time) / repeats, 2)}, ignore_index=True) logging.info(f">>> Completed {dataset_name} with {error} error threshold.") results_df.to_csv(save_path) def run_scaling_experiment(sample_sizes, pipeline_func, dataset_path, params, save_path, repeats): """ We run the compression pipeline on increasing size samples of the same dataset to examine the time scaling. """ # Create a temporary directory that will hold the sample csv files and the compressed outputs Path("storage/temporary_time_exp/").mkdir(parents=True, exist_ok=True) # Init the results df results_df = pd.DataFrame(columns=['SampleSize', 'DeepSqueeze', 'Gzip', 'Parquet']) # Read the dataset df_full = pd.read_csv(dataset_path) params['data_path'] = 'storage/temporary_time_exp/temp.csv' for sample_size in sample_sizes: sample_df = df_full.sample(frac=sample_size) # We have to store the file, for our experiment to take into account reading time sample_df.to_csv('storage/temporary_time_exp/temp.csv', header=None, index=False) # Run and time the DeepSqueeze compression pipeline start_time = time.time() _, _ = pipeline_func(params) deep_squeeze_time = np.round((time.time() - start_time) / repeats, 2) # Gzip time start_time = time.time() sample_df.to_csv("storage/temporary_time_exp/gzip_temp.csv.zip", index=False, compression="zip") gzip_time = np.round((time.time() - start_time), 2) # Parquet time start_time = time.time() sample_df.to_parquet("storage/temporary_time_exp/parquet_temp.parquet", index=False, compression='brotli') parquet_time = np.round((time.time() - start_time), 2) results_df = results_df.append({'SampleSize': sample_size, 'DeepSqueeze': deep_squeeze_time, 'Gzip': gzip_time, 'Parquet': parquet_time}, ignore_index=True) # Delete created temp files shutil.rmtree('storage/temporary_time_exp') results_df.to_csv(save_path) def baseline_compression_ratios(datasets, results_path): """ Calculate the baseline compression ratios of gzip and parquet """ results_df = pd.DataFrame(columns=['Dataset', 'Gzip', 'Parquet']) Path("storage/temporary_baseline/").mkdir(parents=True, exist_ok=True) for dataset_path in datasets: pd.read_csv(dataset_path).to_csv("storage/temporary_baseline/gzip_temp.csv.zip", index=False, compression="zip") gzip_comp_ratio, _, _ = calculate_compression_ratio(dataset_path, "storage/temporary_baseline/gzip_temp.csv.zip") pd.read_csv(dataset_path).to_parquet("storage/temporary_baseline/parquet_temp.parquet", index=False, compression='brotli') parquet_comp_ratio, _, _ = calculate_compression_ratio(dataset_path, "storage/temporary_baseline/parquet_temp.parquet") results_df = results_df.append({'Dataset': dataset_path.split('/')[-1], 'Gzip': gzip_comp_ratio, 'Parquet': parquet_comp_ratio}, ignore_index=True) shutil.rmtree('storage/temporary_baseline') results_df.to_csv(results_path)
MikeXydas/DeepSqueeze
deep_squeeze/experiment.py
experiment.py
py
5,487
python
en
code
10
github-code
6
40176552944
import os import sys import cv2 import PIL import pprint import pytesseract import time SRC_DIR = os.path.dirname(os.path.realpath(__file__)) sys.path.append(SRC_DIR) #print(sys.path) import fetch import display import filter page_seg_mode = 11 # Parse sparse text def group_names(data): d2 = dict2list(data) non_empty_blocks = [b for b in d2 if b['text']] block_nums = set([b['block_num'] for b in non_empty_blocks]) names = [] for bn in block_nums: this_block = [b for b in non_empty_blocks if b['block_num'] == bn] names.append({ 'block_num': bn, 'text': " ".join([b['text'] for b in this_block]), 'left': min([b['left'] for b in this_block]), 'top': max([b['top'] for b in this_block]), 'right': max([b['left'] + b['width'] for b in this_block]), 'bottom': max([b['top'] + b['height'] for b in this_block]) }) return names def dict2list(d): """ Assumes list for each key is same length. """ return [{k: d[k][i] for k in d} for i in range(len(list(d.values())[0]))] def add_rating(name, score): ratings[name] = score print("Added {}: {}".format(name, score)) def extract(image_file): perf = {} start_t = time.time() output = {} image = cv2.imread(image_file) #cv2.imshow("Rating", image) #cv2.waitKey(1) ocr_start_t = time.time() data = pytesseract.image_to_data(PIL.Image.open(image_file), config='--psm {}'.format(page_seg_mode), output_type=pytesseract.Output.DICT) #pprint.pprint(data, indent=7) ocr_end_t = time.time() perf["ocr_t"] = (ocr_end_t - ocr_start_t) * 1000 names = group_names(data) #print("names:", [n['text'] for n in names]) box_image = image.copy() display.draw_boxes(box_image, names) #cv2.imshow("Rating", box_image) #cv2.waitKey(1) names = filter.clean_names(names) #pprint.pprint(cleaned_names) filtered_names = filter.filter_abv(names) filtered_names = filter.filter_styles_re(filtered_names) filtered_names = filter.filter_breweries(filtered_names) filtered_box_image = image.copy() #print("filtered_names:", filtered_names) display.draw_boxes(filtered_box_image, filtered_names) #cv2.imshow("Rating", filtered_box_image) #cv2.waitKey(1) output["names"] = filtered_names fetch_start_t = time.time() #ratings = fetch.async_search_beers([n['clean_text'] for n in filtered_names]) ratings = fetch.async_search_beers(filtered_names) #longest = max([len(ratings[r]["rating"]) for r in ratings]) #for n in sorted(ratings, key=lambda n: ratings[n], reverse=True): # print("{}:{}\t{}".format(n, ' '*(longest-len(n)), ratings[n])) fetch_end_t = time.time() perf["fetch_t"] = (fetch_end_t - fetch_start_t) * 1000 filtered_box_image2 = image.copy() """ for n in ratings: box = next(b for b in filtered_names if b['clean_text'] == n) display.write_rating(filtered_box_image, (box['right'], box['bottom']), ratings[n]["rating"]) """ for n in ratings: display.write_rating(filtered_box_image, (n['right'], n['bottom']), n["rating"]) #cv2.imshow("Rating", filtered_box_image) #cv2.waitKey(1) end_t = time.time() perf["total_t"] = (end_t - start_t) * 1000 output["img"] = filtered_box_image #output["ratings"] = ratings output["perf"] = perf return output def main(image_file): #pytesseract.pytesseract.tesseract_cmd = 'D:/Program Files (x86)/Tesseract-OCR/tesseract' image = cv2.imread(image_file) cv2.imshow("Rating", image) cv2.waitKey(1) """ print("OCR (STRING)") text = pytesseract.image_to_string(PIL.Image.open(image_file), config='--psm {}'.format(page_seg_mode), output_type=pytesseract.Output.DICT) lines = text['text'].split('\n') lines_stripped = [l for l in lines if l] print("\toutput:\t\t", text) print("\tlines:\t\t", lines) print("\tnon-empty lines:", lines_stripped) """ """ print("BOXES") boxes = pytesseract.image_to_boxes(PIL.Image.open(image_file), output_type=pytesseract.Output.DICT) pprint.pprint(boxes) """ print("OCR (DATA)") data = pytesseract.image_to_data(PIL.Image.open(image_file), config='--psm {}'.format(page_seg_mode), output_type=pytesseract.Output.DICT) pprint.pprint(data, indent=7) """ print("OSD") osd = pytesseract.image_to_osd(PIL.Image.open(image_file), output_type=pytesseract.Output.DICT) pprint.pprint(osd) """ # Simple approach to forming beer names from words returned by tesseract by # grouping by blocks. names = group_names(data) print("names:", [n['text'] for n in names]) box_image = image.copy() display.draw_boxes(box_image, names) cv2.imshow("Rating", box_image) cv2.waitKey(1) cleaned_names = filter.clean_names(names) pprint.pprint(cleaned_names) filtered_names = filter.filter_abv(cleaned_names) filtered_names = filter.filter_styles_re(filtered_names) filtered_names = filter.filter_breweries(filtered_names) filtered_box_image = image.copy() print("filtered_names:", filtered_names) display.draw_boxes(filtered_box_image, filtered_names) cv2.imshow("Rating", filtered_box_image) cv2.waitKey(1) ratings = fetch.async_search_beers([n['clean_text'] for n in filtered_names]) longest = max([len(r) for r in ratings]) for n in sorted(ratings, key=lambda n: ratings[n], reverse=True): print("{}:{}\t{}".format(n, ' '*(longest-len(n)), ratings[n])) filtered_box_image2 = image.copy() for n in ratings: box = next(b for b in cleaned_names if b['clean_text'] == n) display.write_rating(filtered_box_image, (box['right'], box['bottom']), ratings[n]) cv2.imshow("Rating", filtered_box_image) cv2.waitKey(1) """ sync_ratings = {} for n in filtered_names: sync_ratings[n['text']] = fetch.search_beers(n['text']) if not sync_ratings[n['text']]: continue display.write_rating(filtered_box_image2, (n['right'], n['top']), sync_ratings[n['text']]) cv2.imshow("Rating 2", filtered_box_image2) cv2.waitKey(1) print(sync_ratings) """ cv2.waitKey(0) if __name__ == "__main__": main(sys.argv[1])
JohnMcAninley/beer-goggles
goggles/extract.py
extract.py
py
6,035
python
en
code
0
github-code
6
16414819917
from sklearn import cross_validation f = open("Pubmed-Diabetes/data/Pubmed-Diabetes.DIRECTED.cites.tab") m = open("Pubmed-Diabetes/data/Pubmed-diabetes.NODE.paper.tab") #define the dataset dataList = [] # dataList[i] = [paper_id + class_label + word_attributed + [citing paper + cited paper]] #construct the data from the content file: def buildCon(): m.readline() basic = [] firstLine = m.readline().split() for i in range(len(firstLine)-2): basic.append(firstLine[i+1].split(":")[1]) for line in m: sonList = [] c = line.split() sonList.append(c[0]) sonList.append(int(c[1].split("=")[1])-1) lenUnit = len(c) sonList.append([]) for i in range(500): sonList[2].append(0.0) for i in range(lenUnit-3): test = c[i+2].split("=")[0] for j in range(500): if(basic[j] == test): sonList[2][j] = c[i+2].split("=")[1] break sonList.append([]) sonList[3].append([]) sonList[3].append([]) dataList.append(sonList) ##transfer the label to the number # if(c[n-1] == "Agents"): # q = 0 # elif(c[n-1] == "AI"): # q = 1 # elif(c[n-1] == "DB"): # q = 2 # elif(c[n-1] == "IR"): # q = 3 # elif(c[n-1] == "ML"): # q = 4 # elif(c[n-1] == "HCI"): # q = 5 # sonList.append(q) # sonList.append([]) # for i in range(n-2): # sonList[2].append(float(c[i+1])) # dataList.append(sonList) # #construct the data from the cite file def buildCite(): f.readline() f.readline() for line in f: p = line.split()[1].split(":")[1] q = line.split()[3].split(":")[1] for i in range(len(dataList)): if(dataList[i][0] == p and p != q): dataList[i][3][0].append(q) if(dataList[i][0] == q and p != q): dataList[i][3][1].append(p) buildCon() buildCite() print(1)
randywhisper/DataAnalyst_py583
code/structed_Pub.py
structed_Pub.py
py
1,727
python
en
code
2
github-code
6
26804210661
inside_edges = [] edge_to_pen = {} num_pens = int(input()) for pen_idx in range(num_pens): data = [int(data) for data in input().split()] num_edges = data[0] corners = data[1: num_edges + 1] edges = [tuple(sorted([corners[idx], corners[(idx + 1) % num_edges]])) for idx in range(num_edges)] edge_costs = data[num_edges + 1:] for idx in range(num_edges): if edges[idx] in edge_to_pen: other_pen_idx, _ = edge_to_pen.pop(edges[idx]) inside_edges.append((edge_costs[idx], pen_idx, other_pen_idx)) else: edge_to_pen[edges[idx]] = (pen_idx, edge_costs[idx]) outside_edges = [] outside_idx = num_pens for pen_idx, cost in edge_to_pen.values(): outside_edges.append((cost, pen_idx, outside_idx)) def kruskal(edges, n): edges.sort() parents = [edge for edge in range(n)] def find(x): while x != parents[x]: x = parents[x] return x total_cost = 0 for cost, x, y in edges: x_root = find(x) y_root = find(y) if x_root != y_root: total_cost += cost parents[x_root] = y_root return total_cost print(min(kruskal(inside_edges, num_pens), kruskal(inside_edges + outside_edges, num_pens + 1)))
Stevan-Zhuang/DMOJ
CCC/CCC '10 S4 - Animal Farm.py
CCC '10 S4 - Animal Farm.py
py
1,289
python
en
code
1
github-code
6
72509864189
from flask import ( Blueprint, render_template, request, redirect, session, flash, url_for, abort, ) from .models import * from flask_mail import Message from flask_login import current_user, login_required from sqlalchemy.exc import SQLAlchemyError from Hispanist_flask import mail from Hispanist_flask.my_app.main_page import log_error module = Blueprint('pages', __name__, template_folder='./templates/pages', static_folder='./static/pages', url_prefix='/') @module.route('/rating') def rating(): """Page that shows rating of Spanish schools and universities.""" schools = School.query.all() universities = University.query.all() return render_template("my_app/pages/rating.html", schools=schools, universities=universities) @module.route('/books') def books(): books = Book.query.all() return render_template('my_app/pages/books.html', books=books) @module.route('/videos') def videos(): """Page that shows rating of Spanish schools and universities.""" channels = Video.query.filter(Video.type=='канал').all() videos = Video.query.filter(Video.type=='видео').all() return render_template("my_app/pages/videos.html", channels=channels, videos=videos) @module.route('/article/<id>', methods=['GET', 'POST']) def article(id): """ article: instance of article that the method gets from the form in html to render one article. Page that renders one article. """ article_object = Article.query.filter(Article.id == id).one() return render_template('my_app/pages/article.html', article=article_object) @module.route('/learn_words', methods=['GET', 'POST']) @login_required def learn_words(): words = Word.query.filter(Word.users.any(User.username == current_user.username)).all() if request.method == 'POST': word = request.form.get('word') translation = request.form.get('translation') print(word) print(translation) print(request.form) word_obj = Word.query.filter(Word.word==word).all() if not word_obj: word_obj = Word(word=word, translation=translation) db.session.add(word_obj) user = User.query.filter(User.username == current_user.username).one() word_obj.users.append(user) print(word_obj) try: db.session.commit() except SQLAlchemyError as e: log_error('Error while querying database', exc_info=e) flash('Добавление слова не удалось', 'danger') abort(500) session.modified = True return render_template('my_app/pages/learn_words.html', words=words) @module.route('/olimpiads') def olimpiads(): return render_template('my_app/pages/olimpiads.html') @module.route('/lessons', methods=["GET", "POST"]) def lessons(): if request.method == 'POST': email = request.form.get('email') phone = request.form.get('phone') message = request.form.get('message') msg = Message('Клиент оставил обращение на сайте', recipients=[email]) msg.body = f'Номер телефона клиента: {phone}, сообщение от клиента: {message}' mail.send(msg) flash('менеджер свяжется с вами в течение суток') return redirect(url_for('pages.lessons')) return render_template('my_app/pages/lessons.html')
vecherninanika/Hispanist_Flask
Hispanist_flask/my_app/pages.py
pages.py
py
3,473
python
en
code
0
github-code
6
18476191196
import tornado.httpserver import tornado.ioloop import tornado.web import json import webapp import RF24module import time import database global radioNodi global dbn class GetListaNodiSettingHandler(tornado.web.RequestHandler): def get(self): #*************************************** #*************************************** #*************************************** #recupera nodi dal server e inviala al main.html #leggi il setting dal database #*************************************** #*************************************** #*************************************** #test ---> """ nodo_new = { "55754":{"Tipo":"5", "Descrizione":"Dimmer", "funzionamento" : [{"ch1":"false","ch2":"true","ch3":"false","ch4":"true"}] , "stato" : [ { "ch1b" : "false" , "ch2b" : "true" , "ch3b" : "true" , "ch4b" : "true" , "ch1d" : "40" , "ch2d" : "80" , "ch3d" : "50" , "ch4d" : "20" } ] }, "55753":{"Tipo":"5", "Descrizione":"Dimmer", "funzionamento" : [{"ch1":"false","ch2":"true","ch3":"true","ch4":"true"}] , "stato" : [ { "ch1b" : "true" , "ch2b" : "false" , "ch3b" : "true" , "ch4b" : "true" , "ch1d" : "40" , "ch2d" : "80" , "ch3d" : "50" , "ch4d" : "20" } ] }, "55752":{"Tipo":"5", "Descrizione":"Dimmer", "funzionamento" : [{"ch1":"false","ch2":"true","ch3":"true","ch4":"true"}] , "stato" : [ { "ch1b" : "true" , "ch2b" : "false" , "ch3b" : "false" , "ch4b" : "true" , "ch1d" : "40" , "ch2d" : "80" , "ch3d" : "50" , "ch4d" : "100" } ] }, } """ nodi_new = webapp.dbn.Read_Lista_Nodi_return_JSON() #aggiungi ordine #nodo_new['OrdineNodi'] = ['addrss_A','addrss_B'] numberorder = [] for item in nodi_new: numberorder.append(nodi_new[item]['Ordine']) numberorder.sort() list_Address = [] for idn in numberorder: for item in nodi_new: if(nodi_new[item]['Ordine'] == idn): list_Address.append(item) nodi_new['OrdineNodi'] = list_Address self.write(json.dumps(nodi_new)) class AggiungiNodiHandler(tornado.web.RequestHandler): def get(self): #*************************************** #*************************************** #*************************************** #recupera dati con il cordinatore dal wireless nodi #*************************************** #*************************************** #*************************************** #test ---> nodo = webapp.radioNodi.find_nodo() #verifica se gia ce nel daatabase a = webapp.dbn.Is_AddressNodo_inDataabase(nodo) if(a==False): time.sleep(0.1) nodo_new = {} if (nodo == None): self.write(json.dumps(nodo_new)) else: #richiede descrizione nodo tipo = webapp.radioNodi.get_tipo_nodo(nodo) if (tipo == 5): #un dimmer (x ora solo dimmer) nodo_new = { nodo :{"Tipo": str(tipo), "Descrizione":"Dimmer"}} #aggiungi in database webapp.dbn.Aggiungi_Nodo_inDatabase(nodo, str(tipo)) else: nodo_new = {} self.write(json.dumps(nodo_new)) #nodo_new = {"55754":{"Tipo":"5", "Descrizione":"Dimmer"}} self.write(json.dumps(nodo_new)) else: print("Nodo Gia esiste!") nodo_new = { "Errore" : "Nodo Esiste" } self.write(json.dumps(nodo_new)) class RimuoviNodoHandler(tornado.web.RequestHandler): def post(self): data = json.loads(self.request.body) #*************************************** #*************************************** #*************************************** #rimuovi nodo dal database #*************************************** #*************************************** #*************************************** #test ---> webapp.dbn.Remove_Nodo(str(data["Nodo"])) #print('remove: ' + data['Nodo']) class OrdineNodiHandler(tornado.web.RequestHandler): def post(self): data = json.loads(self.request.body) #*************************************** #*************************************** #*************************************** #ordini nodi nel database #*************************************** #*************************************** #*************************************** #test ---> webapp.dbn.Set_Ordine_Nodi(data["Nodi"]) class FunzionamentoNodoHandler(tornado.web.RequestHandler): def post(self): data = json.loads(self.request.body) #*************************************** #*************************************** #*************************************** #Funzionamento dimmer, Setting del nodo da impostare nel database #*************************************** #*************************************** #*************************************** #test ---> nodi_new = webapp.dbn.Write_Setting_Nodo(str(data["Nodo"]),str(data["checkbox"]),str(data["value"])) #print(data)
salviador/LightHub
raspberry/app/AggiungiNodi.py
AggiungiNodi.py
py
5,476
python
it
code
0
github-code
6
11506766967
# брой правоъгълни маси # дължина на масите # ширина на масите # размер на покривки = дължина + ширина на масите + 120 # карета = дължина на маса / 2 # долар = 1.85 tables_all = int(input()) tables_length = float(input()) tables_width = float(input()) covers = tables_all * (tables_length + 2 * 0.30) * (tables_width + 2 * 0.30) squares = tables_all * (tables_length / 2 * tables_length / 2) covers_price_per_meter = 7 squares_price_per_meter = 9 price_usd = covers * covers_price_per_meter + squares * squares_price_per_meter price_bgn = price_usd * 1.85 print(f"{price_usd:.2f} USD") print(f"{price_bgn:.2f} BGN")
PIvanov94/SoftUni-Software-Engineering
PB-Python April 2020 Part 2/Tailoring Workshop.py
Tailoring Workshop.py
py
752
python
bg
code
0
github-code
6
40696903853
import argparse import logging import sys def create_parser(): parser = argparse.ArgumentParser( "Get magma managed configs for the specified service. (mconfig)", ) parser.add_argument( "-s", "--service", required=True, help="Magma service name", ) parser.add_argument( "-v", "--variable", help="Config variable name. " "If not specified, then JSON dump all configs for this service.", ) parser.add_argument( "-t", "--test", action="store_true", help="Do a truthy test on v. " "If True then return code is 0, otherwise return code is 2", ) return parser def main(): parser = create_parser() args = parser.parse_args() # import after parsing command line because import is sluggish from magma.configuration.mconfig_managers import ( load_service_mconfig_as_json, ) # set up logging logging.basicConfig( level=logging.INFO, format='[%(asctime)s %(levelname)s %(name)s] %(message)s', ) mconfig_json = load_service_mconfig_as_json(args.service) # if a variable was not specified, pretty print config and exit if args.variable is None: for k, v in mconfig_json.items(): # Keys shouldn't have spaces in them, but just in case # Values also shouldn't have newlines, but if they do, this will # print differently than if called with --variable print(k.replace(" ", "_"), str(v).replace("\n", r"\n")) sys.exit(0) var = mconfig_json[args.variable] if args.test: if var: # if true, then return 0 (zero means success) sys.exit(0) # exit code 2 to distinguish from exit code 1, # which is returned after python exceptions. sys.exit(2) # not a boolean, print the config print(var) sys.exit(0) if __name__ == "__main__": main()
magma/magma
orc8r/gateway/python/scripts/magma_get_config.py
magma_get_config.py
py
1,967
python
en
code
1,605
github-code
6
6701340278
import cv2 import numpy as np import imgaug.augmenters as iaa import imgaug as ia import torchvision from torchvision import transforms from PIL import Image, ImageEnhance, ImageOps from RandAugment.augmentations import Lighting, RandAugment class ResizeImage(object): def __init__(self, height=256, width=256): self.height = height self.width = width def __call__(self, img): img = np.array(img) h, w = img.shape[:2] if h < w: w = int(self.height*w*1.0/h) h = self.height else: h = int(self.width*h*1.0/w) w = self.width img = cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC) return Image.fromarray(img) class ResizeImageVal(object): def __init__(self, height=256, width=256): self.height = height self.width = width self.pad_fix = iaa.PadToFixedSize(width=width, height=height) def __call__(self, img): img = np.array(img) h, w = img.shape[:2] if h > w: w = int(self.height*w*1.0/h) h = self.height else: h = int(self.width*h*1.0/w) w = self.width img = cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC) img = self.pad_fix.augment_image(img) return Image.fromarray(img) def sometimes(aug): return iaa.Sometimes(0.5, aug) class imgaugAugment(object): def __init__(self): super(imgaugAugment, self).__init__() self.seq = iaa.Sequential( [ # apply the following augmenters to most images iaa.Fliplr(0.5), # horizontally flip 50% of all images iaa.Flipud(0.2), # vertically flip 20% of all images # crop images by -5% to 10% of their height/width sometimes(iaa.CropAndPad( percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255) )), sometimes(iaa.Affine( # scale images to 80-120% of their size, individually per axis scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # translate by -20 to +20 percent (per axis) translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, rotate=(-45, 45), # rotate by -45 to +45 degrees shear=(-16, 16), # shear by -16 to +16 degrees # use nearest neighbour or bilinear interpolation (fast) order=[0, 1], # if mode is constant, use a cval between 0 and 255 cval=(0, 255), # use any of scikit-image's warping modes (see 2nd image from the top for examples) mode=ia.ALL )), # execute 0 to 5 of the following (less important) augmenters per image # don't execute all of them, as that would often be way too strong iaa.SomeOf((0, 5), [ # convert images into their superpixel representation sometimes(iaa.Superpixels( p_replace=(0, 1.0), n_segments=(20, 200))), iaa.OneOf([ # blur images with a sigma between 0 and 3.0 iaa.GaussianBlur((0, 3.0)), # blur image using local means with kernel sizes between 2 and 7 iaa.AverageBlur(k=(2, 7)), # blur image using local medians with kernel sizes between 2 and 7 iaa.MedianBlur(k=(3, 11)), ]), iaa.Sharpen(alpha=(0, 1.0), lightness=( 0.75, 1.5)), # sharpen images iaa.Emboss(alpha=(0, 1.0), strength=( 0, 2.0)), # emboss images # search either for all edges or for directed edges, # blend the result with the original image using a blobby mask iaa.SimplexNoiseAlpha(iaa.OneOf([ iaa.EdgeDetect(alpha=(0.5, 1.0)), iaa.DirectedEdgeDetect( alpha=(0.5, 1.0), direction=(0.0, 1.0)), ])), # add gaussian noise to images iaa.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05*255), per_channel=0.5), iaa.OneOf([ # randomly remove up to 10% of the pixels iaa.Dropout((0.01, 0.1), per_channel=0.5), iaa.CoarseDropout((0.03, 0.15), size_percent=( 0.02, 0.05), per_channel=0.2), ]), # invert color channels iaa.Invert(0.05, per_channel=True), # change brightness of images (by -10 to 10 of original value) iaa.Add((-10, 10), per_channel=0.5), # change hue and saturation iaa.AddToHueAndSaturation((-20, 20)), # either change the brightness of the whole image (sometimes # per channel) or change the brightness of subareas iaa.OneOf([ iaa.Multiply((0.5, 1.5), per_channel=0.5), iaa.FrequencyNoiseAlpha( exponent=(-4, 0), first=iaa.Multiply((0.5, 1.5), per_channel=True), second=iaa.LinearContrast((0.5, 2.0)) ) ]), # improve or worsen the contrast iaa.LinearContrast((0.5, 2.0), per_channel=0.5), iaa.Grayscale(alpha=(0.0, 1.0)), # move pixels locally around (with random strengths) sometimes(iaa.ElasticTransformation( alpha=(0.5, 3.5), sigma=0.25)), # sometimes move parts of the image around sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1))) ], random_order=True ) ], random_order=True ) def __call__(self, img): img = self.seq.augment_image(img) return Image.fromarray(img) _IMAGENET_PCA = { 'eigval': [0.2175, 0.0188, 0.0045], 'eigvec': [ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ] } class Augment(object): def __init__(self, width=320, height=320, phase='train'): super(Augment, self).__init__() self.phase = phase self.widht = width self.height = height # self.transform_train = torchvision.transforms.Compose([ # imgaugAugment(), # ]) self.transform_train = transforms.Compose([ imgaugAugment(), RandAugment(n=3, m=9), transforms.RandomResizedCrop(self.height, scale=(0.08, 1.0), interpolation=Image.BICUBIC), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, ), transforms.ToTensor(), Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) self.transform_test = transforms.Compose([ transforms.Resize(self.height+32, interpolation=Image.BICUBIC), transforms.CenterCrop(self.height), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) def __call__(self, image): if self.phase == 'train': image = self.transform_train(image) elif self.phase == 'valid' or self.phase=='test': image = self.transform_test(image) return image
toandaominh1997/ProductDetectionShopee
datasets/augment.py
augment.py
py
8,295
python
en
code
0
github-code
6
75131969148
# -*- coding: utf-8 -*- """https://blog.csdn.net/zwq912318834/article/details/79870432""" import scrapy from selenium import webdriver import time from scrapy import signals # scrapy 信号相关库 from pydispatch import dispatcher # scrapy最新采用的方案 class LoginBlibliSpider(scrapy.Spider): name = 'login_blibli' allowed_domains = ['bilibili.com/'] start_urls = ['https://api.bilibili.com/x/web-interface/nav'] def __init__(self): super(LoginBlibliSpider, self).__init__() print(33333333333333333333) # 这个路径指向我们电脑使用的cookies以及localstorage等一大些登陆信息,从而可以很方便的实现 profile_directory = r'--user-data-dir=C:\Users\acer\AppData\Local\Google\Chrome\User Data' # 实例化一个浏览器对象(实例化一次) options = webdriver.ChromeOptions() options.add_argument(profile_directory) self.driver = webdriver.Chrome(chrome_options=options) self.driver.get("https://space.bilibili.com/") self.seleniumCookies = self.driver.get_cookies() print(f"seleniumCookies = {self.driver.get_cookies()}") # time.sleep(3) # self.driver.quit() # 设置信号量,当收到spider_closed信号时,调用mySpiderCloseHandle方法,关闭chrome dispatcher.connect(receiver=self.mySpiderCloseHandle, signal=signals.spider_closed ) # 信号量处理函数:关闭chrome浏览器 def mySpiderCloseHandle(self, spider): # 不知道为啥,例子中这里给了参数spider self.driver.quit() print("1", "-------------------") def parse(self, response): print(response.text)
hahahei957/NewProject_Opencv2
use_of_selenium/use_of_selenium/spiders/login_blibli.py
login_blibli.py
py
1,782
python
en
code
0
github-code
6
18244671014
from os import path, mkdir, listdir import configparser import utils def default_config(config): """Put here the content of the default configuration file""" config['vosk'] = {'project_name': 'vosk', 'model_name': '', 'models_url': 'https://alphacephei.com/vosk/models'} config['fastpunct'] = {'project_name': 'fastpunct', 'model_name': '', 'models_url': 'https://github.com/notAI-tech/fastPunct'} class Settings: __config = configparser.ConfigParser() __config_path = path.join(utils.project_root, "settings") def __init__(self): # Check if the settings folder already exist if not path.exists(self.__config_path): mkdir(self.__config_path) # Check if the config file already exist else fill it with default settings if "config" in listdir(self.__config_path): self.__config.read(path.join(self.__config_path, "config")) self.__add_default_params() else: default_config(self.__config) self.write_config() def __getitem__(self, sections): """Get the item according to the section(s) given\n Example :\n > settings ["vosk", "model_name"]\n "model_name" \n > settings ["vosk"]\n {"model_name" : "model_name, \n "" : ""}""" if isinstance(sections, tuple): section, property = sections return self.__config[section][property] else: return self.__config[sections] def __setitem__(self, tuple, data): """Set the item according to the tuple given\n Example : settings ["vosk", "model_name"] = "model_name" """ section, property = tuple self.__config[section][property] = data def write_config(self): """Write the config to the file""" with open(path.join(self.__config_path, "config"), 'w') as configfile: self.__config.write(configfile) def __add_default_params(self): """If the default settings are modified in term of slots, then apply it to the existing config\n NOTE: it only works with 1 or 2 dimensions dictionnary""" default_dict = {} default_config(default_dict) stored_dict = dict(self.__config._sections) for key1 in default_dict.keys(): if isinstance(default_dict[key1], dict): for key2 in default_dict[key1].keys(): if key1 in stored_dict.keys() and key2 in stored_dict[key1]: default_dict[key1][key2] = stored_dict[key1][key2] else: if key1 in stored_dict.keys(): default_dict[key1] = stored_dict[key1] self.__config.read_dict(default_dict) self.write_config() def dl_model_path(project): """Return the DeepLearning model path corresponding to the poject.R Args: project (dict): Project informations Returns: str: path to the model directory """ model_name = project["model_name"] project_name = project["project_name"] def error(e): print(f" Could not access deeplearning model '{model_name}' of project '{project_name}'.") print(" " + e) return None if not model_name: error("Model name empty") path_models = path.join(utils.project_root, "models") if not path.exists(path_models): mkdir(path_models) error("Model folder unexisting. Creating one at : " + path_models) path_model = path.join(path_models, project_name, model_name) if path.exists(path_model): if (listdir(path_model) != []): print(f"Model '{model_name}' of project '{project_name}' found") return path_model else: error("Model seems empty. Check the contents of : " + path_model) else: if not path.exists(path.join(path_models, project_name)): mkdir(path.join(path_models, project_name)) print(f"Project is unexisting in {path_models}. Creating the folder.") error("Model unexisting. Please")
cg-Kdaf/Zacharias
src/private_data.py
private_data.py
py
4,247
python
en
code
0
github-code
6
18049656660
#! /usr/bin/env python3 # pyre-strict import os from common_tests import CommonTestDriver from test_case import TestCase class HierarchyTests(TestCase[CommonTestDriver]): @classmethod def get_template_repo(cls) -> str: return "hphp/hack/test/integration/data/hierarchy" def test_inheritance(self) -> None: """ Test --inheritance-ancestors and --inheritance-children """ self.test_driver.start_hh_server() self.test_driver.check_cmd( [ 'File "{root}foo.php", line 3, characters 7-9: Foo', ' inherited by File "{root}bar.php", line 3, characters 7-9: Bar', 'File "{root}foo.php", line 4, characters 19-19: Foo::f', ' inherited by File "{root}bar.php", line 4, characters 19-19: Bar::f', 'File "{root}foo.php", line 3, characters 7-9: Foo', ' inherited by File "{root}baz.php", line 3, characters 7-9: Baz', 'File "{root}foo.php", line 5, characters 19-19: Foo::g', ' inherited by File "{root}baz.php", line 4, characters 19-19: Baz::g', ], options=["--inheritance-children", "Foo"], ) self.test_driver.check_cmd( [ 'File "{root}baz.php", line 3, characters 7-9: Baz', ' inherited from File "{root}foo.php", line 3, characters 7-9: Foo', 'File "{root}baz.php", line 4, characters 19-19: Baz::g', ' inherited from File "{root}foo.php", line 5, characters 19-19: Foo::g', 'File "{root}baz.php", line 3, characters 7-9: Baz', ' inherited from File "{root}bar.php", line 3, characters 7-9: Bar', ], options=["--inheritance-ancestors", "Baz"], ) def test_inheritance_filter(self) -> None: self.test_driver.start_hh_server() self.test_driver.check_cmd( [ 'File "{root}filter.php", line 15, characters 7-12: Filter', ' inherited from File "{root}filter.php", line 3, characters 7-13: CFilter', 'File "{root}filter.php", line 18, characters 19-31: Filter::cfilterMethod', ' inherited from File "{root}filter.php", line 4, characters 19-31: CFilter::cfilterMethod', ], options=["--inheritance-ancestor-classes", "Filter"], ) self.test_driver.check_cmd( [ 'File "{root}filter.php", line 15, characters 7-12: Filter', ' inherited from File "{root}filter.php", line 7, characters 11-17: IFilter', 'File "{root}filter.php", line 19, characters 19-31: Filter::ifilterMethod', ' inherited from File "{root}filter.php", line 8, characters 19-31: IFilter::ifilterMethod', ], options=["--inheritance-ancestor-interfaces", "Filter"], ) self.test_driver.check_cmd( [ 'File "{root}filter.php", line 15, characters 7-12: Filter', ' inherited from File "{root}filter.php", line 11, characters 7-13: TFilter', 'File "{root}filter.php", line 20, characters 19-31: Filter::tfilterMethod', ' inherited from File "{root}filter.php", line 12, characters 19-31: TFilter::tfilterMethod', ], options=["--inheritance-ancestor-traits", "Filter"], ) def test_method_signature_change(self) -> None: with open(os.path.join(self.test_driver.repo_dir, "qux.php"), "w") as f: f.write( """<?hh //partial class Qux { public function f() { $x = new Foo(); $x->f(); } } """ ) self.test_driver.start_hh_server(changed_files=["qux.php"]) self.test_driver.check_cmd(["No errors!"]) debug_sub = self.test_driver.subscribe_debug() with open(os.path.join(self.test_driver.repo_dir, "foo.php"), "w") as f: f.write( """<?hh //partial class Foo { public function f(): void {} public final function g() {} } """ ) msgs = debug_sub.get_incremental_logs() self.assertEqual(set(msgs["to_redecl_phase1"]["files"]), set(["foo.php"])) # FIXME: redeclaring qux.php is unnecessary self.assertEqual( set(msgs["to_redecl_phase2"]["files"]), set(["foo.php", "bar.php", "baz.php", "qux.php"]), ) self.assertEqual( set(msgs["to_recheck"]["files"]), set(["foo.php", "bar.php", "baz.php", "qux.php"]), )
WeilerWebServices/Facebook
hhvm/hphp/hack/test/integration/hierarchy_tests.py
hierarchy_tests.py
py
4,662
python
en
code
3
github-code
6