seq_id
stringlengths 7
11
| text
stringlengths 156
1.7M
| repo_name
stringlengths 7
125
| sub_path
stringlengths 4
132
| file_name
stringlengths 4
77
| file_ext
stringclasses 6
values | file_size_in_byte
int64 156
1.7M
| program_lang
stringclasses 1
value | lang
stringclasses 38
values | doc_type
stringclasses 1
value | stars
int64 0
24.2k
⌀ | dataset
stringclasses 1
value | pt
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
32043962015
|
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 12 02:46:22 2019
@author: Michael
"""
#importing the necessary libraries
import os
import shutil
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import numpy as np
from imutils import paths
from utilities.preprocessing import AspectAwarePreprocessor
from utilities.datasets import SimpleDatasetLoader
from utilities.nn.cnn import MiniVGGNet
#importing the dataset
segment = 80
path = r'C:\Users\Michael\Desktop\Data Science\My directory set-up for Computer-Vision\Deep learning for computer vision - Practitioneers bundle\datasets\Flowers17'
pl = os.listdir(path)
flower_className = ['Daffodil', 'Snowdrop', 'Lily_Valley', 'Bluebell',
'Crocus', 'Iris', 'Tigerlily', 'Tulip',
'Fritillary', 'Sunflower', 'Daisy', 'Colts\'s_Foot',
'Dandelion', 'Cowslip', 'Buttercup', 'Windflower', 'Pansy']
for p in pl:
if '.jpg' in p:
index = int(p.split("_")[-1].strip(".jpg")) - 1
classname = index // 80
classname = flower_className[classname]
os.makedirs(path + '/' + classname, exist_ok=True)
shutil.move(path + '/' + p, path + '/' + classname + '/' + p)
print("[INFO]")
imagePaths = list(paths.list_images(r'C:\Users\Michael\Desktop\Data Science\My directory set-up for Computer-Vision\Deep learning for computer vision - Practitioneers bundle\datasets\Flowers17'))
aap = AspectAwarePreprocessor(64,64)
sdl = SimpleDatasetLoader(preprocessors=[aap])
(data, labels) = sdl.load(imagePaths, verbose=500)
#preprocessing the data
data = data.astype("float")/255.0
lb = LabelBinarizer()
labels = lb.fit_transform(labels)
trainX, testX, trainY, testY = train_test_split(data, labels, random_state=42, test_size=0.25)
#building the netwok and applying data augmentaion
opt = SGD(lr = 0.05, nesterov=True, momentum = 0.9)
aug = ImageDataGenerator(rotation_range = 30, width_shift_range = 0.1, zoom_range = 0.2,
height_shift_range = 0.1, shear_range = 0.2, horizontal_flip = True,
fill_mode = "nearest")
model = MiniVGGNet.build(width = 64, height = 64, depth = 3, classes = len(flower_className))
model.compile(optimizer = opt, loss = "categorical_crossentropy", metrics = ["accuracy"])
H = model.fit_generator(aug.flow(trainX, trainY, batch_size = 32), steps_per_epoch = len(trainX)//32,
validation_data = (testX, testY), epochs = 100, verbose = 1)
#saving the model
model.save("MiniVGGNet on flowers 17 dataset with data augmentation.hdf5")
#plotting and evaluating the dataset progress reports
plt.style.use("ggplot")
plt.figure("MiniVGGNet on flowers 17 with data aumentation")
plt.plot(np.arange(0, 100), H.history["acc"], label = "Training accuracy")
plt.plot(np.arange(0, 100), H.history["val_acc"], label = "Validation accuracy")
plt.title("Training loss and accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.savefig("MiniVGGNet on flowers 17 with data aumentation")
|
Monarene/CV-Deep-learning-Pracittioner
|
minivggnet_flower17_data_aug.py
|
minivggnet_flower17_data_aug.py
|
py
| 3,346 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35525386991
|
"""
Module containing ports and adapters for forward curve suppliers.
Contains both the abstract interface and concrete implementation.
"""
import abc
import datetime as dt
from typing import Collection
from volfitter.adapters.option_metrics_helpers import create_expiry
from volfitter.adapters.sample_data_loader import AbstractDataFrameSupplier
from volfitter.domain.datamodel import ForwardCurve
class AbstractForwardCurveSupplier(abc.ABC):
"""
Abstract base class for forward curve suppliers.
"""
@abc.abstractmethod
def get_forward_curve(
self, datetime: dt.datetime, expiries: Collection[dt.datetime]
) -> ForwardCurve:
"""
Returns a forward curve.
:param datetime: The datetime for which to return a forward curve.
:param expiries: The expiries for which to return forward prices.
:return: ForwardCurve.
"""
raise NotImplementedError
class OptionMetricsForwardCurveSupplier(AbstractForwardCurveSupplier):
"""
Constructs a ForwardCurve from a DataFrame containing OptionMetrics data.
OptionMetrics is a vendor supplying historical options data. The DataFrame is
expected to be in their format.
See papers/option_metrics_reference_manual.pdf.
"""
def __init__(self, dataframe_supplier: AbstractDataFrameSupplier):
self.dataframe_supplier = dataframe_supplier
def get_forward_curve(
self, datetime: dt.datetime, expiries: Collection[dt.datetime]
) -> ForwardCurve:
"""
Constructs a ForwardCurve from a DataFrame containing OptionMetrics data.
:param datetime: The datetime for which to return a forward curve.
:param expiries: The expiries for which to return forward prices.
:return: ForwardCurve.
"""
df = self.dataframe_supplier.get_dataframe(datetime)
rows = zip(
df["expiration"].values,
df["AMSettlement"].values,
df["ForwardPrice"].values,
)
all_forward_prices = {
create_expiry(date, am_settlement): forward
for (date, am_settlement, forward) in rows
}
requested_forward_prices = {}
for expiry in expiries:
if expiry not in all_forward_prices:
raise ValueError(f"Missing forward price for {expiry}!")
requested_forward_prices[expiry] = all_forward_prices[expiry]
return ForwardCurve(datetime, requested_forward_prices)
|
docadam78/vf_project
|
src/volfitter/adapters/forward_curve_supplier.py
|
forward_curve_supplier.py
|
py
| 2,503 |
python
|
en
|
code
| 2 |
github-code
|
6
|
71643512507
|
import pygame
from pygame.sprite import Sprite
class Button(Sprite):
def __init__(self, ai_settings, screen, msg, position, function_num):
super(Button, self).__init__()
self.screen = screen
self.screen_rect = screen.get_rect()
self.ai_settings = ai_settings
self.function_num = function_num
# 设置按钮的尺寸和其他属性
self.width, self.height = 160, 50
self.button_color = (230, 230, 230)
self.text_color = self.ai_settings.BLACK
self.font = pygame.font.SysFont(None, 48)
self.rect = pygame.Rect(0, 0, self.width, self.height)
self.rect.topleft = position
# 按钮的标签只需创建一次
self.prep_msg(msg)
def prep_msg(self, msg):
"""
将msg渲染成图像,并使其在按钮上居中
:param msg:
:return:
"""
self.msg_image = self.font.render(msg, True, self.text_color, self.button_color)
self.msg_image_rect = self.msg_image.get_rect()
self.msg_image_rect.center = self.rect.center
def is_over(self):
"""判断鼠标是否在按钮上"""
point_x, point_y = pygame.mouse.get_pos()
x, y = self.rect.x, self.rect.y
in_x = x < point_x < x + self.width
in_y = y < point_y < y + self.height
return in_x and in_y
def update(self):
button_color = self.button_color
if self.is_over():
if self.ai_settings.pressed[0] and self.ai_settings.is_upped:
button_color = (190, 190, 190)
self.ai_settings.mouse_state = self.function_num
self.ai_settings.is_upped = False
else:
button_color = (220, 220, 220)
self.screen.fill(button_color, self.rect)
self.screen.blit(self.msg_image, self.msg_image_rect)
# r1rect = pygame.draw.rect(screen, BLACK, (20, 52.25, 160, 50), 1)
# r2rect = pygame.draw.rect(screen, BLACK, (20, 206.75, 160, 50), 1)
# r3rect = pygame.draw.rect(screen, BLACK, (20, 361.25, 160, 50), 1)
# r4rect = pygame.draw.rect(screen, BLACK, (20, 515.75, 160, 50), 1)
# r5rect = pygame.draw.rect(screen, BLACK, (205, 52.25, 160, 50), 1)
# r6rect = pygame.draw.rect(screen, BLACK, (205, 206.75, 160, 50), 1)
# r7rect = pygame.draw.rect(screen, BLACK, (205, 361.25, 160, 50), 1)
# r8rect = pygame.draw.rect(screen, BLACK, (205, 515.75, 160, 50), 1)
#
# f1 = pygame.freetype.Font('德彪钢笔行书字库.TTF', 36)
# f1rect = f1.render_to(screen, (40, 58), "上一层", fgcolor=BLACK, size=40)
# f2rect = f1.render_to(screen, (40, 212.5), "下一层", fgcolor=BLACK, size=40)
# f3rect = f1.render_to(screen, (57, 367), "删除", fgcolor=BLACK, size=40)
# f4rect = f1.render_to(screen, (57, 521.5), "完成", fgcolor=BLACK, size=40)
# f5rect = f1.render_to(screen, (225, 58), "长砖块", fgcolor=BLACK, size=40)
# f6rect = f1.render_to(screen, (225, 212.5), "短砖块", fgcolor=BLACK, size=40)
# f7rect = f1.render_to(screen, (225, 367), "厚砖块", fgcolor=BLACK, size=40)
# f8rect = f1.render_to(screen, (225, 521.5), "其他块", fgcolor=BLACK, size=40)
|
Karllzy/Architect
|
button.py
|
button.py
|
py
| 3,292 |
python
|
en
|
code
| 2 |
github-code
|
6
|
25814086176
|
from selenium.webdriver import Firefox
from selenium.webdriver.common.keys import Keys
from selenium.common.exceptions import NoSuchElementException
import pytest
import time
@pytest.mark.needs_server
class TestMaxlifeFeature:
"""
Checks if the maxlife feature is working
"""
def setup_class(self):
"""
Setup: Open a mozilla browser, login
"""
self.browser = Firefox()
self.browser.get('http://localhost:5000/')
token = self.browser.find_element_by_name("token")
password = "foo"
# login
token.send_keys(password)
token.send_keys(Keys.ENTER)
time.sleep(.1)
try:
self.browser.find_element_by_xpath("//input[@value='Logout']")
except NoSuchElementException:
raise ValueError("Can't login!!! Create a user 'foo' with the permissions"
"'read' and 'create' in your PERMISSIONS in the config")
def teardown_class(self):
"""
Tear down: Close the browser
"""
self.browser.quit()
@property
def page_body_lowercase(self):
return self.browser.find_element_by_tag_name("body").text.lower()
def test_unit_input_exists(self):
unit_input = self.browser.find_element_by_name("maxlife-unit")
assert unit_input is not None
value_input = self.browser.find_element_by_name("maxlife-value")
assert value_input is not None
def fill_form(self):
"""
Fills test values to the form and submits it
:return: tuple(filename, pasted_text)
"""
filename = "test.txt"
text_to_paste = "This is test"
paste_input = self.browser.find_element_by_id("formupload")
paste_input.send_keys(text_to_paste)
filename_input = self.browser.find_element_by_id("filename")
filename_input.send_keys(filename)
contenttype_input = self.browser.find_element_by_id("contenttype")
contenttype_input.send_keys("text/plain")
contenttype_input.send_keys(Keys.ENTER)
time.sleep(.2) # give some time to render next view
return filename, text_to_paste
def delete_current_file(self):
self.browser.find_element_by_id("del-btn").click()
time.sleep(.2)
self.browser.find_element_by_class_name("bootbox-accept").click()
def test_paste_keep_forever(self):
self.browser.find_element_by_xpath("//select[@name='maxlife-unit']/option[@value='forever']").click()
value_input = self.browser.find_element_by_name("maxlife-value")
value_input.clear()
value_input.send_keys(1)
self.fill_form()
assert "max lifetime: forever" in self.page_body_lowercase
self.delete_current_file()
def test_paste_keep_minutes(self):
self.browser.find_element_by_xpath("//select[@name='maxlife-unit']/option[@value='minutes']").click()
value_input = self.browser.find_element_by_name("maxlife-value")
value_input.clear()
value_input.send_keys(1)
self.fill_form()
assert "max lifetime: forever" not in self.page_body_lowercase
self.delete_current_file()
def test_filename_gets_displayed(self):
filename, _ = self.fill_form()
assert filename.lower() in self.page_body_lowercase
self.delete_current_file()
def test_pasted_text_gets_displayed(self):
_, pasted_text = self.fill_form()
self.browser.find_element_by_id("inline-btn").click()
assert pasted_text.lower() in self.page_body_lowercase
self.browser.back()
self.delete_current_file()
@pytest.mark.slow
def test_file_gets_deleted_after_expiry_time(self):
self.browser.find_element_by_xpath("//select[@name='maxlife-unit']/option[@value='minutes']").click()
value_input = self.browser.find_element_by_name("maxlife-value")
value_input.clear()
value_input.send_keys(1)
self.fill_form()
time.sleep(61)
self.browser.find_element_by_id("inline-btn").click()
assert "not found" in self.page_body_lowercase
|
bepasty/bepasty-server
|
src/bepasty/tests/test_website.py
|
test_website.py
|
py
| 4,149 |
python
|
en
|
code
| 162 |
github-code
|
6
|
25399032626
|
import re
from csv import reader
from colorama import init, Fore
# Insert the actual exploits in searchsploit in the database
def update_database(exploit_database, mycursor):
print(Fore.BLUE + "Updating database...")
# Read the CSV to get the basic information
with open('/usr/share/exploitdb/files_exploits.csv','r') as read_obj:
# Read the CSV and skip the first row (headers)
csv_reader = reader(read_obj)
next(csv_reader)
# Insert each row in the table
for row in csv_reader:
query = """INSERT IGNORE INTO Exploits (ID, File, Description, Date, Author, Type, Platform, Port, SellerLink, SoftwareLink, Version, Tested, CVE)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
"""
values = (row[0],row[1],row[2],row[3],row[4],row[5],row[6],row[7])
# To get more information about the exploit
values = search_content(row[1], values)
mycursor.execute(query, values)
exploit_database.commit()
print(Fore.GREEN + "Database update")
# Search the exploit content to find more information about it.
def search_content(exploit_path, values):
# Add the root path to the exploit path
exploit_path = "/usr/share/exploitdb/" + exploit_path
# Specific variables to look for within each exploit
seller_link = ""
software_link = ""
version = ""
tested = ""
CVE = ""
# Booleans to control the search
isEmptyVendor = True
isEmptySoftware = True
isEmptyVersion = True
isEmptyTested = True
isEmptyCVE = True
# Open the file to read its content
with open(exploit_path, 'r') as exploit:
# Get all the lines of the file
data = exploit.read().splitlines()
# Iterate through them to find the key words and, after cleaning it, store them
for line in data:
# Search and check the vendor link
if isEmptyVendor:
if re.search('[Vv]endor [Hh]omepage', line):
if (re.split('[Vv]endor [Hh]omepage', line)[1].strip().startswith(':')):
seller_link = clean_characters(line,'[Vv]endor [Hh]omepage',':')
elif (re.split('[Vv]endor [Hh]omepage', line)[1].strip().startswith('-')):
seller_link = clean_characters(line,'[Vv]endor [Hh]omepage','-')
elif (re.split('[Vv]endor [Hh]omepage', line)[1].startswith(' ')):
seller_link = clean_white(line,'[Vv]endor [Hh]omepage')
isEmptyVendor = False
elif re.search('[Vv]endor', line):
if (re.split('[Vv]endor', line)[1].strip().startswith(':')):
seller_link = clean_characters(line,'[Vv]endor',':')
elif (re.split('[Vv]endor', line)[1].strip().startswith('-')):
seller_link = clean_characters(line,'[Vv]endor','-')
elif (re.split('[Vv]endor', line)[1].startswith(' ')):
seller_link = clean_white(line,'[Vv]endor')
isEmptyVendor = False
# Search and check the software link
if isEmptySoftware:
if re.search('[Ss]oftware [Ll]ink', line):
if (re.split('[Ss]oftware [Ll]ink', line)[1].strip().startswith(':')):
software_link = clean_characters(line,'[Ss]oftware [Ll]ink',':')
elif (re.split('[Ss]oftware [Ll]ink', line)[1].strip().startswith('-')):
software_link = clean_characters(line,'[Ss]oftware [Ll]ink','-')
elif (re.split('[Ss]oftware [Ll]ink', line)[1].startswith(' ')):
software_link = clean_white(line,'[Ss]oftware [Ll]ink')
isEmptySoftware = False
elif re.search('[Pp]roduct [Ww]eb [Pp]age', line):
if (re.split('[Pp]roduct [Ww]eb [Pp]age', line)[1].strip().startswith(':')):
software_link = clean_characters(line,'[Pp]roduct [Ww]eb [Pp]age',':')
elif (re.split('[Pp]roduct [Ww]eb [Pp]age', line)[1].strip().startswith('-')):
software_link = clean_characters(line,'[Pp]roduct [Ww]eb [Pp]age','-')
elif (re.split('[Pp]roduct [Ww]eb [Pp]age', line)[1].startswith(' ')):
software_link = clean_white(line,'[Pp]roduct [Ww]eb [Pp]age')
isEmptySoftware = False
# Search and check the affected version
if isEmptyVersion:
if re.search('[Vv]ersion', line):
if (re.split('[Vv]ersion', line)[1].strip().startswith(':')):
version = clean_characters(line,'[Vv]ersion',':')
elif (re.split('[Vv]ersion', line)[1].strip().startswith('-')):
version = clean_characters(line,'[Vv]ersion','-')
elif (re.split('[Vv]ersion', line)[1].startswith(' ')):
version = clean_white(line,'[Vv]ersion')
isEmptyVersion = False
# Search and check where it has been tested
if isEmptyTested:
if re.search('[Tt]ested [Oo]n', line):
if (re.split('[Tt]ested [Oo]n', line)[1].strip().startswith(':')):
tested = clean_characters(line,'[Tt]ested [Oo]n',':')
elif (re.split('[Tt]ested [Oo]n', line)[1].strip().startswith('-')):
tested = clean_characters(line,'[Tt]ested [Oo]n','-')
elif (re.split('[Tt]ested [Oo]n', line)[1].startswith(' ')):
tested = clean_white(line,'[Tt]ested [Oo]n')
isEmptyTested = False
# Search and check the CVE
if isEmptyCVE:
if line.__contains__('CVE ID'):
if (line.partition('CVE ID')[2].strip().startswith(':')):
CVE = clean_characters(line,'CVE ID',':')
elif (line.partition('CVE ID')[2].strip().startswith('-')):
CVE = clean_characters(line,'CVE ID','-')
elif (line.partition('CVE ID')[2].startswith(' ')):
CVE = clean_white(line,'CVE ID')
isEmptyCVE = False
elif line.__contains__('CVE'):
if (line.partition('CVE')[2].strip().startswith(':')):
CVE = clean_characters(line,'CVE',':')
elif (line.partition('CVE')[2].strip().startswith('-')):
CVE = clean_characters(line,'CVE','-')
elif (line.partition('CVE')[2].startswith(' ')):
CVE = clean_white(line,'CVE')
isEmptyCVE = False
# Add the new values to the values tuple
values = values + (seller_link,)
values = values + (software_link,)
values = values + (version,)
values = values + (tested,)
values = values + (CVE,)
return values
# Clean with characters
def clean_characters(line, word, character):
if (word == 'CVE' or word == 'CVE ID'):
return line.partition(word)[2].split(character,1)[1].translate({ord(i): None for i in '[]'}).strip()
else:
return re.split(word, line)[1].split(character,1)[1].translate({ord(i): None for i in '[]'}).strip()
# Clean with white space
def clean_white(line, word):
if (word == 'CVE' or word == 'CVE ID'):
return line.partition(word)[2].translate({ord(i): None for i in '[]'}).strip()
else:
return re.split(word, line)[1].translate({ord(i): None for i in '[]'}).strip()
|
alvaroreinaa/Can-You-EXPLOIT-It
|
update_database.py
|
update_database.py
|
py
| 7,870 |
python
|
en
|
code
| 1 |
github-code
|
6
|
27127443756
|
"""
基于Memoization的递归可以大大提升性能,此时可以自定义一个memorize修饰器
author:Andy
"""
import functools
def memorize(fn):
# 缓存字典
know = dict()
# 为创建修饰器提供便利,保留被修饰函数的__name__和__doc__属性
@functools.wraps(fn)
def memoizer(*args):
# 如果缓存字典中已经存在
if args in know:
return know[args]
# 如果缓存字典中不存在
else:
know[args] = fn(*args)
return know[args]
return memoizer
@memorize
# 返回前n个数的和
def nsum(n):
assert (n >= 0), "n must be >=0"
return n if n == 0 else n + nsum(n - 1)
@memorize
# 返回斐波那契数列的第n个数
def fib(n):
assert (n >= 0), "n must be >=0"
return n if n in (0, 1) else fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
from timeit import Timer
measures = [
{"exec": "fib(100)", "import": "fib", "func": fib},
{"exec": "nsum(100)", "import": "nsum", "func": nsum},
]
for item in measures:
t = Timer(
item["exec"],
"from __main__ import {}".format(item["import"])
)
print("name: {}, doc: {}, executing: {}, time:{}". \
format(item["func"].__name__, item["func"].__doc__, item["exec"], t.timeit()))
|
LiUzHiAn/pythonDesignPatterns
|
decorate_pattern/my_math.py
|
my_math.py
|
py
| 1,213 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24993603901
|
from osv import fields
from osv import osv
class dm_matchcode(osv.osv):
_name = 'dm.matchcode'
_description = 'Matchcodes for DM'
_columns = {
'name': fields.char('Name', size=64, required=True),
'matchexp': fields.char('Match Expression', size=128, help="""This string defines \
the matchcode expression used to compute the matchcode of a \
customer (partner address). The expression must be a pair of \
key:value separated by a coma. Example : firstname:7, lastname:1, \
street1:-3, city:4, zip:3. A minus sign means that x last characters of the string"""),
'country_id': fields.many2one('res.country', 'Country')
}
dm_matchcode()
class res_partner_address(osv.osv):
_inherit = 'res.partner.address'
_columns = {
'id': fields.integer('ID', readonly=True),
'firstname': fields.char('First Name', size=64),
'name_complement': fields.char('Name Complement', size=64),
'street3': fields.char('Street3', size=128),
'street4': fields.char('Street4', size=128),
'moved': fields.boolean('Moved'),
'quotation': fields.float('Quotation', digits=(16,2)),
'origin_partner': fields.char('Origin Partner', size=64),
'origin_support': fields.char('Origin Support', size=64),
'origin_keyword': fields.char('Origin Keyword', size=64),
'origin_campaign_id': fields.many2one('dm.campaign', 'Origin Campaign'),
'origin_country_id': fields.many2one('res.country', 'Origin Country'),
'date_birth': fields.datetime('Date of Birth'),
'matchcode_id': fields.many2one('dm.matchcode', 'Matchcode')
}
res_partner_address()
#vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
|
factorlibre/openerp-extra-6.1
|
dm_partner_address/dm_partner_address.py
|
dm_partner_address.py
|
py
| 1,845 |
python
|
en
|
code
| 9 |
github-code
|
6
|
2615744068
|
# topics = ["Таѕ"]
from typing import List
class Solution:
def simplifyPath(self, path: str) -> str:
st: List[str] = []
for s in path.split('/'):
if not s or s == '.':
continue
if s == '..':
if st:
st.pop()
else:
st.append(s)
return f'/{"/".join(st)}'
|
show-me-code/signInHelper-using-face-
|
algorithms/[71]简化路径/solution.py
|
solution.py
|
py
| 389 |
python
|
en
|
code
| 0 |
github-code
|
6
|
20299042800
|
"""crud URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.0/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path
from .views import create_view,list_view,create_view_curso,delete_view_estudiante,delete_view_curso,update_view_estudiante,update_view_curso
urlpatterns = [
path('admin/', admin.site.urls),
path('estudiante/', create_view,name = 'estudiante'),
path('curso/', create_view_curso,name = 'curso'),
path('lista/', list_view,name = 'lista'),
path('delete_estudiante/<int:int>', delete_view_estudiante,name = 'delete_view_estudiante' ),
path('delete_curso/<int:int>', delete_view_curso,name = 'delete_view_curso' ),
path('update_estudiante/<int:int>', update_view_estudiante,name = 'update_view_estudiante' ),
path('update_curso/<int:int>', update_view_curso,name = 'update_view_curso' )
]
|
JairoObregon/django
|
crud/urls.py
|
urls.py
|
py
| 1,405 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19167047686
|
"""
A part is a component of the overall derp system that communicates with other parts
"""
from derp.util import TOPICS, MSG_STEM, init_logger, subscriber, publisher, get_timestamp
class Part:
""" The root class for every part, includes a bunch of useful functions and cleanup """
def __init__(self, config, name, sub_names, init_pubsub=True):
""" By default every part is its own publisher and subscribes to one/many messages """
self._name = name
self._sub_names = sub_names
self._config = config[name]
self._global_config = config
self._logger = init_logger(name, config['recording_path'])
self._logger.info("__init__")
self._messages = {topic: TOPICS[topic].new_message() for topic in TOPICS}
self._sub_context, self._subscriber = None, None
self._pub_context, self._publisher = None, None
self._is_pubsub_initialized = False
self._timestamp = 0
if init_pubsub:
self.init_pubsub()
def __del__(self):
""" Clean up the pub/sub system """
self._logger.info("__del__")
if self._subscriber:
self._subscriber.close()
if self._sub_context:
self._sub_context.term()
if self._publisher:
self._publisher.close()
if self._pub_context:
self._pub_context.term()
def init_pubsub(self):
sub_paths = [MSG_STEM + name for name in self._sub_names]
self._sub_context, self._subscriber = subscriber(sub_paths)
self._pub_context, self._publisher = publisher(MSG_STEM + self._name)
self._is_pubsub_initialized = True
def __repr__(self):
return self.__class__.__name__.lower()
def __str__(self):
return repr(self)
def run(self):
assert True
def subscribe(self):
if not self._is_pubsub_initialized:
return None
topic_bytes, message_bytes = self._subscriber.recv_multipart()
self._timestamp = get_timestamp()
topic = topic_bytes.decode()
self._messages[topic] = TOPICS[topic].from_bytes(message_bytes).as_builder()
return topic
def publish(self, topic, **kwargs):
if not self._is_pubsub_initialized:
return None
message = TOPICS[topic].new_message(
createNS=self._timestamp, publishNS=get_timestamp(), **kwargs
)
self._publisher.send_multipart([str.encode(topic), message.to_bytes()])
return message
|
notkarol/derplearning
|
derp/part.py
|
part.py
|
py
| 2,517 |
python
|
en
|
code
| 40 |
github-code
|
6
|
26632895276
|
import pygame
from setting import *
from bullet import Bullet
class Player(pygame.sprite.Sprite):
#初期化(元グループ、初期位置x、初期位置y)
def __init__(self, groups, x, y, enemy_group):
super().__init__(groups)
#敵グループ
self.enemy_group = enemy_group
#画面取得
self.screen = pygame.display.get_surface()
#画像取得
self.image_list = []
for i in range(3):
#tmp_image = pygame.image.load(f'assets/img/player/{i}.png')
tmp_image = pygame.image.load(player_image_path + str(i) + image_extension)
self.image_list.append(tmp_image)
#画像設定
#self.image = pygame.Surface((50,50))
#self.image.fill(COLOR_RED)
self.image_index = player_image_index_straight
self.update_image()
#自機を載せる台車
self.rect = self.image.get_rect(center = (x,y))
#移動方向初期化
self.direction = pygame.math.Vector2()
#移動速度取得
self.speed = player_speed
#体力
self.health = player_health
self.alive = True
#効果音
self.shot_sound = pygame.mixer.Sound(shot_se_path)
self.shot_sound.set_volume(se_volume)
#弾グループ設定
self.bullet_group = pygame.sprite.Group()
#弾発射中
self.fire = False
self.cooldown_timer = 0
##表示の更新
def update(self):
self.input()
self.move()
self.update_image()
#print(str(self.direction) + "-" + str(self.rect))
#弾描画
self.bullet_cooldown()
self.bullet_group.draw(self.screen)
self.bullet_group.update()
#体力
self.collision_enemy()
self.check_alive()
#デバッグ用
#print('b:' + str(self.bullet_group))
#入力キー取得
def input(self):
key = pygame.key.get_pressed()
#上下キー
if key[pygame.K_UP]:
self.direction.y = -1
elif key[pygame.K_DOWN]:
self.direction.y = 1
else:
self.direction.y = 0
#左右キー
if key[pygame.K_LEFT]:
self.direction.x = -1
self.image_index = player_image_index_left
elif key[pygame.K_RIGHT]:
self.direction.x = 1
self.image_index = player_image_index_right
else:
self.direction.x = 0
self.image_index = player_image_index_straight
#zキー(弾発射)
if key[pygame.K_z] and not self.fire:
bullet = Bullet(self.bullet_group, self.rect.centerx, self.rect.top)
self.fire = True
self.shot_sound.play()
#移動処理
def move(self):
#画面端チェック(画面端での移動速度修正)
self.check_edge_screen()
#移動速度の平準化
if self.direction.magnitude() != 0:
self.direction = self.direction.normalize()
#X座標移動
self.rect.x += self.direction.x * self.speed
self.check_off_screen("x")
#y座標移動
self.rect.y += self.direction.y * self.speed
self.check_off_screen("y")
#画面端チェック
#画面端でキーが押されたらそちらの方向への移動を0に
def check_edge_screen(self):
if self.rect.left <= 0 and self.direction.x < 0:
self.direction.x = 0
if self.rect.right >= screen_width and self.direction.x > 0:
self.direction.x = 0
if self.rect.top <= 0 and self.direction.y < 0:
self.direction.y = 0
if self.rect.bottom >= screen_height and self.direction.y > 0:
self.direction.y = 0
#画面外チェック
#画面外に出そうな場合は座標を修正(画面端チェックだけでは微妙にはみ出すため残す)
def check_off_screen(self, vector):
if vector == "x":
if self.rect.left < 0:
self.rect.left = 0
if self.rect.right > screen_width:
self.rect.right = screen_width
if vector == "y":
if self.rect.top < 0:
self.rect.top = 0
if self.rect.bottom > screen_height:
self.rect.bottom = screen_height
#TODO:画面端で斜め移動しようとしたとき、x成分y成分の移動速度は斜め移動の値のままのため、遅くなっている。
#画像の更新
def update_image(self):
self.pre_image = self.image_list[int(self.image_index)]
self.image = pygame.transform.scale(self.pre_image, player_image_size)
#弾クールダウン処理
def bullet_cooldown(self):
if self.fire:
self.cooldown_timer += 1
if self.cooldown_timer > bullet_cooldown_time:
self.fire = False
self.cooldown_timer = 0
#敵との当たり判定
def collision_enemy(self):
for enemy in self.enemy_group:
if self.rect.colliderect(enemy.rect) and enemy.alive:
self.health -= enemy_power
self.check_health()
def check_health(self):
if self.health <= 0:
self.alive = False
#生存確認
def check_alive(self):
if not self.alive:
self.kill()
|
shu0411/training
|
python/trainingEnv/shooting/player.py
|
player.py
|
py
| 5,639 |
python
|
ja
|
code
| 0 |
github-code
|
6
|
29579733720
|
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 7 15:39:51 2018
@author: Akitaka
"""
import numpy as np
from sklearn.model_selection import cross_val_score
from lwpls import LWPLS
def psi(xlist,M):
""" make a design matrix """
ret = []
for x in xlist:
ret.append([x**i for i in range(0,M+1)])
return np.array(ret)
np.random.seed(1)
""" Data """
N = 10
M = 15
xlist = np.linspace(0, 1, N)
ylist = np.sin(2 * np.pi * xlist) + np.random.normal(0, 0.2, xlist.size)
X = psi(xlist,M)
y = ylist
""" Cross validation"""
reg = LWPLS(n_components=2)
reg.fit(X,y)
y_pred = reg.predict(X)
scores = cross_val_score(reg, X, y, cv=5, scoring='neg_mean_squared_error')
print(scores.mean())
|
nakanishi-akitaka/python2018_backup
|
1207/cross_validation_lwpls.py
|
cross_validation_lwpls.py
|
py
| 740 |
python
|
en
|
code
| 5 |
github-code
|
6
|
8829027988
|
########################################################
# Rodrigo Leite - drigols #
# Last update: 21/09/2021 #
########################################################
def OLS(dic):
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(dic)
df['(x_i - x_mean)'] = df['Grade'] - df['Grade'].mean()
df['(y_i - y_mean)'] = df['Salary'] - df['Salary'].mean()
df['(x_i - x_mean)(y_i - y_mean)'] = df['(x_i - x_mean)'] * df['(y_i - y_mean)']
df['(x_i - x_mean)^2'] = (df['Grade'] - df['Grade'].mean())**2
m = (sum(df['(x_i - x_mean)'] * df['(y_i - y_mean)'])) / sum(df['(x_i - x_mean)^2'])
b = df['Salary'].mean() - (m * df['Grade'].mean())
print("Angular Coefficient (m): {0}\nLinear Coefficient (b): {1}".format(round(m), round(b)))
regression_line = [(m*x) + b for x in df['Grade']]
plt.figure(figsize=(10, 7))
plt.scatter(df.Grade, df.Salary, color='g')
plt.plot(df.Grade, regression_line, color='b')
plt.title('Grades vs Salaries | Ordinary Least Squares: OLS')
plt.xlabel('Grade')
plt.ylabel('Salary')
plt.grid()
plt.savefig('../images/plot-02.png', format='png')
plt.show()
if __name__ =="__main__":
students_dic = {
'Grade':[50, 50, 46, 95, 50, 5, 57, 42, 26, 72, 78, 60, 40, 17, 85],
'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000, 42000, 47000, 78000, 119000, 95000, 49000, 29000, 130000]
}
OLS(students_dic)
|
drigols/studies
|
modules/ai-codes/modules/linear-regression/src/students_ols_bestLineFit.py
|
students_ols_bestLineFit.py
|
py
| 1,511 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70633246909
|
#c1 dung for
print("cach 1 dung for")
try:
a,b=map(int, input().split())
except:
print("dau vao ko hop le")
tong=0
for i in range(a,b+1):
tong+=i
print("tong:{}".format(tong))
#c2 dung while
print("cach 2 dung while")
try:
a,b=map(int, input().split())
except:
print("dau vao ko hop le")
tong=0
i=a
while(i<=b):
tong+=i
i+=1
print("tong:{}".format(tong))
|
Clapboiz/Python-basics
|
tongcacsotrongdoanab.py
|
tongcacsotrongdoanab.py
|
py
| 383 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25844066272
|
"""Test Role"""
import unittest
import json
from flask import url_for
from app.test import BaseTest
class RolePermissionTests(BaseTest):
""" Role Permission Test api class """
def test_insert_update_delete(self):
""" insert, update, delete roles permission"""
role_url = url_for('auth.role_role_list')
prm = {
'name': 'role_test',
'active': True,
}
role_data = json.dumps(prm)
response = self.client.post(
role_url,
data=role_data,
content_type='application/json'
)
role_id = response.json['data']['id']
permission_url = url_for('auth.permission_permission_list')
prm = {
'code': 'permission_test',
'name': 'permission_test',
'active': True
}
permission_data = json.dumps(prm)
response = self.client.post(
permission_url,
data=permission_data,
content_type='application/json'
)
permission_id = response.json['data']['id']
# insert role permission
params = {"role_id": role_id,
"permission_id": permission_id,
"status": "false", }
role_permission = json.dumps(params)
url = url_for('auth.role-permission_role_permission_list')
response = self.client.post(
url,
data=role_permission,
content_type='application/json'
)
self.assertEqual(response.status_code, 201)
self.assertEqual(response.json['data']['permission_id'], permission_id)
# update role permission
params = {
"status": "true",
}
role_permission = json.dumps(params)
url = url_for('auth.role-permission_role_permission_detail',
uuid=response.json['data']['id'])
response = self.client.put(
url,
data=role_permission,
content_type='application/json'
)
self.assertEqual(response.status_code, 200)
self.assertEqual(response.json['data']['status'], True)
# check readonly fields value changing
created_at = response.json['data']['created_at']
updated_at = response.json['data']['updated_at']
self.assertIsNotNone(updated_at)
self.assertNotEqual(created_at, updated_at)
url = url_for('auth.role-permission_role_permission_list')
response = self.client.get(url,
content_type='application/json'
)
self.assertEqual(response.status_code, 200)
self.assertGreaterEqual(len(response.json['data']), 1)
if __name__ == "__main__":
unittest.main()
|
ekramulmostafa/ms-auth
|
app/test/test_role_permission.py
|
test_role_permission.py
|
py
| 2,795 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40341366552
|
import os
import re
import selenium
from selenium import webdriver
from time import sleep
from openpyxl import load_workbook
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait # Required for explicit wait
from selenium.webdriver.support import expected_conditions as ec # Required for explicit wait
from selenium.webdriver.common.by import By # Required for explicit wait
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
excel_file = 'token_generation_automation.xlsx'
driver_exe = 'chromedriver.exe'
wb = load_workbook(filename = os.path.join(os.getcwd(),excel_file), read_only = False)
sheet = wb.sheetnames
ws1 = wb[sheet[2]]
max_consumers = ws1.max_row
########################################################
########################################################
indent = 0 #Last valid iteration; Must check before each run
########################################################
########################################################
print(max_consumers-indent)
browser = webdriver.Chrome(executable_path = os.path.join(os.getcwd(), driver_exe))
browser.get("http://172.16.15.18/prepay/login!init.do")
browser.implicitly_wait(100) #implicit wait
browser.maximize_window()
x1 = browser.find_element_by_id("czyId")
x1.send_keys("ChandpurAE1")
x2 = browser.find_element_by_id("pwd")
x2.send_keys("C6_029_Prepaid")
x3 = browser.find_element_by_xpath("//input[@type='button']")
x3.click()
print('Hello')
sleep(5)
for x in range(max_consumers-indent):
browser.implicitly_wait(100)
browser.get('http://172.16.15.18/prepay/prepay/mgtCode/codeMgt!ctc.do?timestamp=NaN&menuid=63100&menupath=Clear%20Tamper%20Status&curTabId=63100')
browser.implicitly_wait(100)
generateBtn = browser.find_elements_by_class_name('ext_btn')[0]
selectBtn = browser.find_element_by_xpath('/html/body/table/tbody/tr/td[2]/form/table/tbody/tr[2]/td[2]/select')
selectOptn = browser.find_element_by_xpath('/html/body/table/tbody/tr/td[2]/form/table/tbody/tr[2]/td[2]/select/option[2]')
browser.switch_to.frame(browser.find_element_by_id('accountQueryIframe'))
browser.implicitly_wait(100)
meterNo = ws1.cell(row = indent+1+x, column = 1).value
print("Meter No: ", meterNo)
browser.find_element(By.ID, "metNo").send_keys(meterNo)
# print('1')
browser.find_elements_by_class_name('ext_btn')[0].click()
browser.implicitly_wait(100)
# print('2')
browser.switch_to_default_content()
sleep(2)
selectOptn.click()
browser.implicitly_wait(100)
selectBtn.click()
browser.implicitly_wait(100)
generateBtn.click()
browser.implicitly_wait(100)
browser.find_element_by_xpath('/html/body/div[7]/div[2]/div[2]/div/div/div/div[1]/table/tbody/tr/td[1]/table/tbody/tr/td[1]/table/tbody/tr[2]/td[2]/em/button').click()
sleep(2)
browser.switch_to.frame(browser.find_element_by_id('openwin'))
serial = browser.find_element_by_xpath('/html/body/table/tbody/tr[1]/td/table/tbody/tr[14]').text
print("Token: ", serial)
sequence = browser.find_element_by_xpath('/html/body/table/tbody/tr[1]/td/table/tbody/tr[11]').text
print("Sequence: ", sequence[10:len(sequence)])
ws1.cell(row = indent+1+x, column = 3).value = sequence[10:len(sequence)]
ws1.cell(row = indent+1+x, column = 4).value = serial
ws1.cell(row = indent+1+x, column = 5).value = 'Done'
wb.save(os.path.join(os.getcwd(),excel_file))
print('Ends : ', x+1)
browser.close()
|
Himu1234/web-automation-chandpur
|
prepaid_token_generation_xlsx.py
|
prepaid_token_generation_xlsx.py
|
py
| 3,524 |
python
|
en
|
code
| 0 |
github-code
|
6
|
130536507
|
import numpy as np
import matplotlib.pyplot as plt
import pyRaven as rav
import emcee
import corner
from scipy.stats import norm
import scipy
from statistics import mode
def fitdata(param,DataPacket,guess):
'''
This function fits a set of LSD profiles using scipy's curve fit function.
Inputs:
param - input parameter dictionary
DataPacket - input DataPacket with real data
guess - array of guess values for kappa, vsini, and vmac. Ex: np.array([1.3,250,30])
Outputs:
parameters - array of fit parameters
covariance - covariance matrix of the fit
modelout - the best fit model
'''
def model(v,kappa,vsini,vmac):
'''
This function creates the line profile model that will be fit to the observed profile
Inputs:
kappa - value of kappa that the walker is on in parameter space
vsini - value of vsini that the walker is on in parameter space
v - velocity array of the actual data
Outputs:
f - line profile model using the weak field method at the walker's position in parameter space
'''
param['general']['vsini']=vsini
param['general']['vmac']=vmac
param['general']['logkappa']=np.log(kappa)
#pyRaven's weakfield disk integration function
model=rav.diskint2.analytical(param,False)
#interpolating the model to be size MCMC wants
f=np.interp(v,model['vel'],model['flux'])
return(f)
x=DataPacket.scaled.lsds[0].vel#+DataPacket.vrad[0]
y=DataPacket.scaled.lsds[0].specI
if DataPacket.nobs!=1:
for i in range(1,DataPacket.nobs):
x=np.append(x,DataPacket.scaled.lsds[i].vel)#+DataPacket.vrad[i])
y=np.append(y,DataPacket.scaled.lsds[i].specI)
parameters,covariance = scipy.optimize.curve_fit(model,x,y,guess)
modelout=model(x,parameters[0],parameters[1],parameters[2])
modelout=modelout[:DataPacket.scaled.lsds[0].vel.size]
return parameters,covariance,modelout
def fitdataMCMC(param,DataPacket,nsteps,guess):
'''
This function fits the LSD profile using MCMC
Inputs:
param - input parameter dictionary
DataPacket - input DataPacket with real data
nsteps - number of steps to run MCMC
guess - array of guess values for kappa, vsini, and vmac. Ex: np.array([1.3,250,30])
Outputs:
kappa - The average fitted value of kappa
vsini - The average fitted value of vsini
vmac - The average fitted value of vmac
'''
#def model(v,c,a,b,Ic):
# return(-c*np.exp(-0.5*np.power(v-a,2)/b**2)+Ic)
def model(v,kappa,vsini,vmac):
'''
This function creates the line profile model that will be fit to the observed profile
Inputs:
kappa - value of kappa that the walker is on in parameter space
vsini - value of vsini that the walker is on in parameter space
vmac - value of the vmac that the walker is on in parameter space
v - velocity array of the actual data
Outputs:
f - line profile model using the weak field method at the walker's position in parameter space
'''
param['general']['vsini']=vsini
param['general']['vmac']=vmac
param['general']['logkappa']=np.log(kappa)
#pyRaven's weakfield disk integration function
model=rav.diskint2.analytical(param,False)
#interpolating the model to be size MCMC wants
f=np.interp(v,model['vel'],model['flux'])
return(f)
def lnprior(params):
'''
This function is used to set constraints on the parameter space the walkers are allowed in. I did this to try and save time, could probably use some tweaking.
Inputs:
params - list of walker parameters, in this code that is [kappa, vsini]
Outputs:
-infinity - if kappa and/or vsini are out of the specified ranges
0 - otherwise
'''
kappa,vsini,vmac=params
if kappa<=0.0 or kappa>=10.0 or vsini >= 500.0 or vsini<=0.0 or vmac<=0.0 or vmac>=100.0:
return(-np.inf)
else:
return(0.0)
def lnlike(params,v,I,Ierr):
'''
Inputs:
params -list of walker parameters, in this code that is [kappa, vsini]
v - velocity array of the data
I - stokes I of the actual data
Ierr - uncertainty in the stokes I of the actual data
Outputs:
The log likelihood using a gaussian function
'''
kappa,vsini,vmac= params
m = model(v,kappa,vsini,vmac)
sigma2 = Ierr**2 #+m**2*np.exp(2*log_f)
return(-0.5 * np.sum((I - m) ** 2 / sigma2 + np.log(sigma2)))
def lnprob(params,v,I,Ierr):
'''
Inputs:
params - list of walker parameters, in this code that is [kappa, vsini]
v - velocity array of the data
I - stokes I of the actual data
Ierr - uncertainty in the stokes I of the actual data
Outputs:
log probability. Used to determine how good a fit the model is
'''
prior=lnprior(params)
if not np.isfinite(prior):
return(-np.inf)
else:
return(prior+lnlike(params,v,I,Ierr))
# Set up the convergence diagonstic plots. At the final step we want all the walkers to be very close together, i.e a straight line at the end.
fig, ax = plt.subplots(3,1,figsize=(15,5))
ax[0].set_title('Convergence Diagnostic Plots')
fig1, ax1 = plt.subplots(1,1,figsize=(5,5)) #sets up the send set of plots
#for i in range(1):
kappa=np.array([])
#log_f=np.array([])
vsini=np.array([])
vmac=np.array([])
Ic=1.0 #defining the continuum value of the real data
vsiniin=DataPacket.vsini #defining the vsini listed in the data packet
v=DataPacket.scaled.lsds[0].vel#+DataPacket.vrad[0] #defining the velocity array of the data
I=DataPacket.scaled.lsds[0].specI #defining the stokes I array of the data
Ierr=DataPacket.scaled.lsds[0].specSigI #defining the stokes I error of the data
for i in range(1,DataPacket.nobs):
v=np.append(v,DataPacket.scaled.lsds[i].vel)#+DataPacket.vrad[i] #defining the velocity array of the data
I=np.append(I,DataPacket.scaled.lsds[i].specI) #defining the stokes I array of the data
Ierr=np.append(Ierr,DataPacket.scaled.lsds[i].specSigI) #defining the stokes I error of the data
ndim = 3 #number of parameters to fit
nwalkers= 10 * ndim #number of walkers (10/parameter)
pguess = guess #initial guess for kappa and vsini
positions = np.zeros((nwalkers,ndim)) #set up walker position array
positions[:,0] = np.abs(np.random.randn(nwalkers)*pguess[0]*0.1+pguess[0]) #set the inital positions of the kappa walkers to be a random distribution around the guess
positions[:,1] = np.random.randn(nwalkers)*pguess[1]*0.1+pguess[1] #set the initial positions of the vsini walkers
positions[:,2] = np.random.randn(nwalkers)*pguess[2]*2
sampler = emcee.EnsembleSampler(nwalkers,ndim,lnprob,args=(v,I,Ierr)) #set up MCMC. Note that the args keyword contains the real data arrays
pos,prob,state = sampler.run_mcmc(positions, nsteps,progress=True) #runs MCMC for the specified number of steps
#make the first set of plots
res = [ax[j].plot(sampler.chain[:,:,j].T, '-', color='k', alpha=0.3) for j in range(3)]
res = [ax[j].axhline(pguess[j]) for j in range(3)]
#save the walker positions at each step (for diagnostics)
#kappa=np.append(kappa,np.mean(sampler.flatchain[int(2*nsteps/3):], axis=0)[0])
#vsini=np.append(vsini,np.mean(sampler.flatchain[int(2*nsteps/3):], axis=0)[1])
#vmac=np.append(vmac,np.mean(sampler.flatchain[int(2*nsteps/3):], axis=0)[2])
kappa=sampler.flatchain[int(2*100/3):][:,0]
vsini=sampler.flatchain[int(2*100/3):][:,1]
vmac=sampler.flatchain[int(2*100/3):][:,2]
bins=20
bin_means = (np.histogram(kappa, bins, weights=kappa)[0]/np.histogram(kappa, bins)[0])
kappa=bin_means[np.histogram(kappa, bins)[0]==np.histogram(kappa, bins)[0].max()][0]
bin_means = (np.histogram(vsini, bins, weights=vsini)[0]/np.histogram(vsini, bins)[0])
vsini=bin_means[np.histogram(vsini, bins)[0]==np.histogram(vsini, bins)[0].max()][0]
bin_means = (np.histogram(vmac, bins, weights=vmac)[0]/np.histogram(vmac, bins)[0])
vmac=bin_means[np.histogram(vmac, bins)[0]==np.histogram(vmac, bins)[0].max()][0]
#log_f=np.append(log_f,np.mean(sampler.flatchain, axis=0)[1])
#make the second set of plots
ax1.plot(DataPacket.scaled.lsds[0].vel,model(DataPacket.scaled.lsds[0].vel, kappa,vsini,vmac))
ax1.plot(v,I)
print('kappa: {} | vsini: {} | vmac: {}'.format(kappa,vsini,vmac))
#make the corner plots
flat_samples = sampler.get_chain(discard=0, thin=5, flat=True)
labels = ["kappa","vsini",'vmac']
corner.corner(
flat_samples, labels=labels)
return(kappa,vsini,vmac,sampler.flatchain)
def fitdata_novsini(param,DataPacket,guess):
'''
This function fits a set of LSD profiles using scipy's curve fit function.
Inputs:
param - input parameter dictionary
DataPacket - input DataPacket with real data
guess - array of guess values for kappa and vmac. Ex: np.array([1.3,30])
Outputs:
parameters - array of fit parameters
covariance - covariance matrix of the fit
modelout - the best fit model
'''
def model(v,kappa,vmac):
'''
This function creates the line profile model that will be fit to the observed profile
Inputs:
kappa - value of kappa that the walker is on in parameter space
vmac - value of vmac that the walker is on in parameter space
v - velocity array of the actual data
Outputs:
f - line profile model using the weak field method at the walker's position in parameter space
'''
param['general']['vmac']=vmac
param['general']['logkappa']=np.log(kappa)
#pyRaven's weakfield disk integration function
model=rav.diskint2.analytical(param,False)
#interpolating the model to be size MCMC wants
f=np.interp(v,model['vel'],model['flux'])
return(f)
param['general']['vsini']=DataPacket.vsini
x=DataPacket.scaled.lsds[0].vel#+DataPacket.vrad[0]
y=DataPacket.scaled.lsds[0].specI
if DataPacket.nobs!=1:
for i in range(1,DataPacket.nobs):
x=np.append(x,DataPacket.scaled.lsds[i].vel)#+DataPacket.vrad[i])
y=np.append(y,DataPacket.scaled.lsds[i].specI)
parameters,covariance = scipy.optimize.curve_fit(model,x,y,guess)
modelout=model(x,parameters[0],parameters[1])
modelout=modelout[:DataPacket.scaled.lsds[0].vel.size]
return parameters,covariance,modelout
|
veropetit/pyRaven
|
fitparams.py
|
fitparams.py
|
py
| 10,372 |
python
|
en
|
code
| 0 |
github-code
|
6
|
23947460253
|
from game_object.base_object import BaseObject, Wall, Life
import random
class FactoryMethod:
def __init__(self, health=1000, position=None, velocity=None, acceleration=None, size=None, control=None) -> None:
self.health = health
self.position = position or [0, 0]
self.velocity = velocity or [0, 0]
self.acceleration = acceleration or [0, 0]
self.size = size or 100
self.control = control
super().__init__()
def create_object(self):
return BaseObject()
class WallFactory(FactoryMethod):
def __init__(self, health=1000, position=[0, 0], velocity=[0, 0], acceleration=[0, 0], size=[100, 100],
control=None) -> None:
super().__init__(health, position, velocity, acceleration, size, control)
self.counter = 0
def create_object(self):
position = self.position.copy()
max_val = 9
if self.counter < max_val:
position = [self.position[0], self.position[1] + self.size * self.counter]
elif self.counter < max_val * 2:
position = [self.position[0] + self.size * (self.counter - max_val), self.position[1] + self.size * max_val]
elif self.counter < max_val * 3:
position = [self.position[0] + self.size * max_val, self.position[1] + self.size * (max_val - (self.counter - 2 * max_val))]
size = self.size # if self.counter % 4 != 0 else self.size / 1.5
velocity = self.velocity # if self.counter % 4 != 0 else [0, -0.1]
wall = Wall(health=self.health,
position=position,
velocity=velocity,
acceleration=self.acceleration,
size=size,
control=self.control)
self.counter += 1
return wall
class LifeFactory(FactoryMethod):
def create_object(self):
position = [random.randint(0, 1600), random.randint(0, 1000)] if self.position == [0, 0] else self.position
return Life(health=self.health,
position=position,
velocity=self.velocity,
acceleration=self.acceleration,
size=self.size,
control=self.control)
|
NoOneZero/wall_game
|
game_object/factory.py
|
factory.py
|
py
| 2,244 |
python
|
en
|
code
| 1 |
github-code
|
6
|
41957074771
|
import json
import os
j = None
searchables = {}
path = os.path.dirname(os.path.abspath(__file__))
with open (os.path.join(path, 'fhir_parser/downloads/search-parameters.json'), 'r') as f:
j = json.loads(f.read())
for entry in j['entry']:
resource = entry['resource']
for base in resource['base']:
searchables[base] = searchables.get(base, []) + [resource['name']]
import pprint
pprint.pprint(searchables)
|
zensoup/fhirbug
|
tools/get_searchables.py
|
get_searchables.py
|
py
| 420 |
python
|
en
|
code
| 14 |
github-code
|
6
|
42060446091
|
import pygame as pg
from settings import *
class Bullet(pg.sprite.Sprite):
def __init__(self, groups):
self.groups = groups
pg.sprite.Sprite.__init__(self, self.groups)
class PlayerBullet(Bullet):
def __init__(self, game, x, y):
self.game = game
self.groups = self.game.sprites, self.game.bullets, self.game.player_bullets
Bullet.__init__(self, self.groups)
self.image = self.game.spritesheet.get_image(60, 0, 4, 16, GREEN)
self.rect = self.image.get_rect(center=(x, y + PLAYER_BULLET_HEIGHT))
self.mask = pg.mask.from_surface(self.image)
def update(self):
if self.rect.top - 4 < TOP_SPACING:
self.kill()
self.rect.y -= PLAYER_BULLET_SPEED
class MobBullet(Bullet):
def __init__(self, game, x, y):
self.game = game
self.groups = self.game.sprites, self.game.bullets, self.game.mob_bullets
Bullet.__init__(self, self.groups)
self.load_images()
self.last_updated = pg.time.get_ticks()
self.frame = 0
self.image = self.frames[0]
self.rect = self.image.get_rect(midbottom=(x, y + MOB_BULLET_HEIGHT))
def load_images(self):
self.frames = [
self.game.spritesheet.get_image(64, 224, 12, 28, WHITE),
self.game.spritesheet.get_image(76, 224, 12, 28, WHITE),
pg.transform.flip(self.game.spritesheet.get_image(64, 224, 12, 28, WHITE), True, False),
pg.transform.flip(self.game.spritesheet.get_image(76, 224, 12, 28, WHITE), True, False)
]
def animate(self):
now = pg.time.get_ticks()
if now - self.last_updated > MOB_BULLET_FRAME_RATE:
self.frame += 1
if self.frame == len(self.frames):
self.frame = 0
self.image = self.frames[self.frame]
self.last_updated = now
self.mask = pg.mask.from_surface(self.image)
def update(self):
if self.rect.bottom > HEIGHT - BOT_SPACING:
self.kill()
self.rect.y += MOB_BULLET_SPEED
self.animate()
|
soupss/space-invaders
|
sprites/bullet.py
|
bullet.py
|
py
| 2,099 |
python
|
en
|
code
| 0 |
github-code
|
6
|
27125372338
|
import logging
from datetime import datetime
import smtplib
from notifications import *
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from db.client import db_create_close, r
logging.config.fileConfig('/opt/TopPatch/conf/logging.config')
logger = logging.getLogger('rvapi')
@db_create_close
def email_config_exists(customer_name=None, conn=None):
mail_exists = False
try:
mail_config = list(
r
.table(NotificationCollections.NotificationPlugins)
.get_all(customer_name, index=NotificationPluginIndexes.CustomerName)
.filter(
{
NotificationPluginKeys.PluginName: 'email'
}
)
.run(conn)
)
if mail_config:
mail_exists = (True, mail_config[0][NotificationPluginKeys.Id])
except Exception as e:
msg = 'Failed to get mail config: %s' % (e)
logger.error(msg)
return(mail_exists)
@db_create_close
def get_email_config(customer_name=None, conn=None):
mail_config = None
config_exists = False
msg = ''
try:
mail_config = list(
r
.table(NotificationCollections.NotificationPlugins)
.get_all(customer_name, index=NotificationPluginIndexes.CustomerName)
.filter(
{
NotificationPluginKeys.PluginName: 'email'
}
)
.run(conn)
)
if not mail_config:
mail_config = {
'modified_time': '',
'username': '',
'password': '',
'server': '',
'port': '',
'is_tls': '',
'is_ssl': '',
'from_email': '',
'to_email': '',
'last_modify_user': '',
}
msg = 'mail_config does not exist'
else:
config_exists = True
except Exception as e:
msg = 'Failed to get mail config: %s' % (str(e))
logger.exception(e)
return(
{
'pass': config_exists,
'message': msg,
'data': mail_config
}
)
@db_create_close
def delete_email_config(customer_name=None, conn=None):
deleted = False
try:
mail_deleted = (
r
.table(NotificationCollections.NotificationPlugins)
.get_all(customer_name, index=NotificationPluginIndexes.CustomerName)
.filter(
{
NotificationPluginKeys.PluginName: 'email'
}
)
.delete()
.run(conn)
)
if 'deleted' in mail_deleted:
if mail_deleted['deleted'] > 0:
deleted = True
except Exception as e:
msg = (
'Failed to delete mail config for customer %s: %s' %
(customer_name, e)
)
logger.error(msg)
return(deleted)
@db_create_close
def create_or_modify_mail_config(modifying_username=None, customer_name=None,
server=None, username=None, password=None,
port=25, is_tls=False, is_ssl=False,
from_email=None, to_email=None, conn=None):
created = False
msg = ''
base_config = []
email_uuid = None
if (server and username and password and port and customer_name
and modifying_username and from_email and len(to_email) > 0):
modified_time = str(datetime.now())
to_email = ','.join(to_email)
base_config = {
NotificationPluginKeys.ModifiedTime: modified_time,
NotificationPluginKeys.UserName: username,
NotificationPluginKeys.Password: password,
NotificationPluginKeys.Server: server,
NotificationPluginKeys.Port: port,
NotificationPluginKeys.IsTls: is_tls,
NotificationPluginKeys.IsSsl: is_ssl,
NotificationPluginKeys.FromEmail: from_email,
NotificationPluginKeys.ToEmail: to_email,
NotificationPluginKeys.PluginName: 'email',
NotificationPluginKeys.CustomerName: customer_name,
NotificationPluginKeys.ModifiedBy: modifying_username,
}
config_exists = email_config_exists(customer_name=customer_name)
if config_exists:
email_uuid = config_exists[1]
try:
(
r
.table(NotificationCollections.NotificationPlugins)
.get(config_exists[1])
.update(base_config)
.run(conn)
)
created = True
msg = (
'Email config for customer %s has been updated' %
(customer_name)
)
except Exception as e:
msg = 'Failed to update mail config: %s' (e)
logger.error(msg)
else:
try:
is_created = (
r
.table(NotificationCollections.NotificationPlugins)
.insert(base_config, upsert=True)
.run(conn)
)
if 'inserted' in is_created:
if 'generated_keys' in is_created:
if len(is_created['generated_keys']) > 0:
email_uuid = is_created['generated_keys'[0]]
created = True
msg = (
'Email config for customer %s has been created' %
(customer_name)
)
except Exception as e:
msg = 'Failed to update mail config: %s' % (e)
logger.exception(e)
return(
{
'pass': created,
'message': msg,
'data': [base_config]
}
)
class MailClient():
def __init__(self, customer_name):
self.CONFIG = None
self.validated = False
self.connected = False
self.error = None
data = get_email_config(customer_name=customer_name)
self.config_exists = False
if data['pass']:
config = data['data'][0]
self.config_exists = data['pass']
if self.config_exists:
self.server = config['server']
self.username = config['username']
self.password = config['password']
self.port = config['port']
self.from_email = config['from_email']
self.to_email = config['to_email'].split(",")
self.is_tls = config['is_tls']
self.is_ssl = config['is_ssl']
else:
self.server = None
self.username = None
self.password = None
self.port = None
self.from_email = None
self.to_email = None
self.is_tls = None
self.is_ssl = None
def server_status(self):
msg = ''
try:
ehlo = self.mail.ehlo()
if ehlo[0] == 250:
self.connected = True
self.server_reply_code = ehlo[0]
self.server_reply_message = ehlo[1]
msg = self.server_reply_message
logger.info(msg)
except Exception as e:
msg = (
'Connection to mail server %s has not been initialized: %s' %
(self.server, e)
)
logger.exception(msg)
return(msg)
def connect(self):
connected = False
logged_in = False
msg = None
mail = None
try:
if self.is_ssl:
mail = smtplib.SMTP_SSL(self.server, int(self.port), timeout=10)
else:
mail = smtplib.SMTP(self.server, int(self.port), timeout=10)
connected = True
except Exception as e:
logger.exception(e)
msg = e
if connected:
try:
if self.is_tls:
mail.starttls()
mail.login(self.username, self.password)
logged_in = True
except Exception as e:
logger.exception(e)
msg = e
self.connected = connected
self.error = msg
self.logged_in = logged_in
self.mail = mail
return(connected, msg, logged_in, mail)
def disconnect(self):
msg = ''
self.disconnected = False
try:
loggedout = self.mail.quit()
msg = (
'Logged out of Email Server %s: %s' %
(self.server, loggedout)
)
self.disconnected = True
logger.info(msg)
except Exception as e:
msg = (
'Failed to log out of %s: %s' %
(self.server, e)
)
self.disconnected = True
logger.exception(e)
return(self.disconnected, msg)
def send(self, subject, msg_body, to_addresses=None, body_type='html'):
completed = True
from_address = None
try:
from_address = self.from_email
except Exception as e:
msg = 'From_address has not been set'
logger.exception(msg)
if not to_addresses:
try:
to_addresses = self.to_email
except Exception as e:
msg = 'Pass a valid email address:%s' % (e)
logger.exception(msg)
completed = False
if isinstance(to_addresses, list):
msg = MIMEMultipart('alternative')
msg['From'] = from_address
msg['To'] = ','.join(list(to_addresses))
msg['Subject'] = subject
formatted_body = MIMEText(msg_body, body_type)
msg.attach(formatted_body)
try:
self.mail.sendmail(
from_address,
to_addresses,
msg.as_string()
)
except Exception as e:
completed = False
msg = (
'Could not send mail to %s: %s' %
(','.join(to_addresses), e)
)
logger.exception(msg)
return(completed)
|
SteelHouseLabs/vFense
|
tp/src/emailer/mailer.py
|
mailer.py
|
py
| 10,469 |
python
|
en
|
code
| 5 |
github-code
|
6
|
23229945677
|
from django.contrib import admin
from django.urls import path, include
from django.conf.urls.static import static
from django.conf import settings
admin.site.site_header = "Адмнистрирование TBO Dashboard"
admin.site.site_title = "Адмнистрирование TBO Dashboard"
admin.site.index_title = "TBO Dashboard"
urlpatterns = [
path('admin/', admin.site.urls),
path('api/docs/', include('tbo_dash.docs.urls')),
path('api/', include('djoser.urls')),
path('api/', include('djoser.urls.authtoken')),
path('api/', include('tbo_dash.dashboards.urls')),
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) \
+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
if settings.DEBUG:
# Silk profiler
urlpatterns = [
path('silk/', include('silk.urls', namespace='silk')),
] + urlpatterns
|
alldevic/tbo_dash_old
|
tbo_dash/urls.py
|
urls.py
|
py
| 875 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30162237145
|
from tkinter import *
import plateau as plateau
import gestionnaire_evenements as g_evenements
import pions as pions
import debug as de
import gestionnaire_images as g_images
def recommencer_jeu(fenetre,can,*debug):
"""
Relance le jeu avec certains paramètres
:param can: Canva Tkinter
:type can: Objet Tkinter
:param continuer: Si la condition continuer est vraie le jeu charge une partie existante (default false) (facultatif)
:type continuer: Booléen
"""
deb = de.afficher_temps_execution_debut()
#Fonctions
plateau.generer_plateaux(can,g_images.case_noire_iso,g_images.case_blanche_iso,g_images.case_noire_plat,g_images.case_blanche_plat)
grille = pions.ajouter_pions_grille(8)
pions.afficher_pions_plateau_iso(grille,can)
pions.afficher_pions_plateau_plat(grille,can)
pions.tour = 0
g_evenements.afficher_tour(can,pions.tour,g_images.tourn,g_images.tourb)
pions.afficher_pions_captures(can,grille,"C","c",g_images.cavalier_blanc_plat,g_images.cavalier_noir_plat)
de.afficher_temps_execution_fin(deb, "Lancement en")
#Evenements
can.bind("<Button-1>",lambda event: pions.selectionner_pion(event,grille,can))
can.bind("<Button-3>",lambda event: pions.deplacer_pion(event,fenetre,grille,can))
fenetre.protocol("WM_DELETE_WINDOW",lambda: g_evenements.confirmer_quitter(fenetre,grille,pions.tour))
if True in debug:
print(grille)
|
PierreMonrocq/L1-Latroncules-game
|
relance.py
|
relance.py
|
py
| 1,433 |
python
|
fr
|
code
| 0 |
github-code
|
6
|
10423383033
|
from __future__ import annotations
import copy
import dataclasses
import json
from typing import TYPE_CHECKING
import pytest
from randovania.game_description.db.node_identifier import NodeIdentifier
from randovania.games.prime2.layout.echoes_configuration import EchoesConfiguration
from randovania.games.prime2.layout.translator_configuration import LayoutTranslatorRequirement
from randovania.gui import tracker_window
from randovania.layout.lib.teleporters import TeleporterShuffleMode
from randovania.layout.versioned_preset import VersionedPreset
if TYPE_CHECKING:
from pathlib import Path
from unittest.mock import MagicMock
@pytest.fixture(params=[{}, {"teleporters": TeleporterShuffleMode.ONE_WAY_ANYTHING, "translator_configuration": True}])
def layout_config(request, default_echoes_configuration):
if "translator_configuration" in request.param:
translator_requirement = copy.copy(default_echoes_configuration.translator_configuration.translator_requirement)
for gate in translator_requirement.keys():
translator_requirement[gate] = LayoutTranslatorRequirement.RANDOM
break
new_gate = dataclasses.replace(
default_echoes_configuration.translator_configuration, translator_requirement=translator_requirement
)
request.param["translator_configuration"] = new_gate
return dataclasses.replace(default_echoes_configuration, **request.param)
def test_load_previous_state_no_previous_layout(tmp_path: Path, default_echoes_configuration):
# Run
result = tracker_window._load_previous_state(tmp_path, default_echoes_configuration)
# Assert
assert result is None
def test_load_previous_state_previous_layout_not_json(tmp_path: Path, default_echoes_configuration):
# Setup
tmp_path.joinpath("preset.rdvpreset").write_text("this is not a json")
# Run
result = tracker_window._load_previous_state(tmp_path, default_echoes_configuration)
# Assert
assert result is None
def test_load_previous_state_previous_layout_not_layout(tmp_path: Path, default_echoes_configuration):
# Setup
tmp_path.joinpath("preset.rdvpreset").write_text(json.dumps({"trick_level": "foo"}))
tmp_path.joinpath("state.json").write_text("[]")
# Run
result = tracker_window._load_previous_state(tmp_path, default_echoes_configuration)
# Assert
assert result is None
def test_load_previous_state_missing_state(tmp_path: Path, default_preset):
# Setup
VersionedPreset.with_preset(default_preset).save_to_file(tmp_path.joinpath("preset.rdvpreset"))
# Run
result = tracker_window._load_previous_state(tmp_path, default_preset.configuration)
# Assert
assert result is None
def test_load_previous_state_invalid_state(tmp_path: Path, default_preset):
# Setup
VersionedPreset.with_preset(default_preset).save_to_file(tmp_path.joinpath("preset.rdvpreset"))
tmp_path.joinpath("state.json").write_text("")
# Run
result = tracker_window._load_previous_state(tmp_path, default_preset.configuration)
# Assert
assert result is None
def test_load_previous_state_success(tmp_path: Path, default_preset):
# Setup
data = {"asdf": 5, "zxcv": 123}
VersionedPreset.with_preset(default_preset).save_to_file(tmp_path.joinpath("preset.rdvpreset"))
tmp_path.joinpath("state.json").write_text(json.dumps(data))
# Run
result = tracker_window._load_previous_state(tmp_path, default_preset.configuration)
# Assert
assert result == data
@pytest.mark.parametrize("shuffle_advanced", [False, True])
async def test_apply_previous_state(
skip_qtbot, tmp_path: Path, default_echoes_preset, shuffle_advanced, echoes_game_description
):
configuration = default_echoes_preset.configuration
assert isinstance(configuration, EchoesConfiguration)
if shuffle_advanced:
translator_requirement = copy.copy(configuration.translator_configuration.translator_requirement)
for gate in translator_requirement.keys():
translator_requirement[gate] = LayoutTranslatorRequirement.RANDOM
break
new_gate = dataclasses.replace(
configuration.translator_configuration, translator_requirement=translator_requirement
)
layout_config = dataclasses.replace(
configuration,
teleporters=dataclasses.replace(
configuration.teleporters,
mode=TeleporterShuffleMode.ONE_WAY_ANYTHING,
),
translator_configuration=new_gate,
)
preset = dataclasses.replace(default_echoes_preset.fork(), configuration=layout_config)
else:
preset = default_echoes_preset
state: dict = {
"actions": ["Temple Grounds/Landing Site/Save Station"],
"collected_pickups": {
"Amber Translator": 0,
"Annihilator Beam": 0,
"Boost Ball": 0,
"Cobalt Translator": 0,
"Dark Agon Key 1": 0,
"Dark Agon Key 2": 0,
"Dark Agon Key 3": 0,
"Dark Ammo Expansion": 0,
"Dark Beam": 0,
"Dark Torvus Key 1": 0,
"Dark Torvus Key 2": 0,
"Dark Torvus Key 3": 0,
"Dark Visor": 0,
"Darkburst": 0,
"Echo Visor": 0,
"Emerald Translator": 0,
"Energy Tank": 0,
"Grapple Beam": 0,
"Gravity Boost": 0,
"Ing Hive Key 1": 0,
"Ing Hive Key 2": 0,
"Ing Hive Key 3": 0,
"Light Ammo Expansion": 0,
"Light Beam": 0,
"Missile Expansion": 0,
"Missile Launcher": 0,
"Morph Ball Bomb": 0,
"Power Bomb": 0,
"Power Bomb Expansion": 0,
"Progressive Suit": 0,
"Screw Attack": 0,
"Seeker Launcher": 0,
"Sky Temple Key 1": 0,
"Sky Temple Key 2": 0,
"Sky Temple Key 3": 0,
"Sky Temple Key 4": 0,
"Sky Temple Key 5": 0,
"Sky Temple Key 6": 0,
"Sky Temple Key 7": 0,
"Sky Temple Key 8": 0,
"Sky Temple Key 9": 0,
"Sonic Boom": 0,
"Space Jump Boots": 1,
"Spider Ball": 0,
"Sunburst": 0,
"Super Missile": 0,
"Violet Translator": 0,
},
"teleporters": [
{
"data": None,
"teleporter": {
"area": "Transport to Temple Grounds",
"node": "Elevator to Temple Grounds",
"region": "Agon Wastes",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Torvus Bog",
"node": "Elevator to Torvus Bog",
"region": "Agon Wastes",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Sanctuary Fortress",
"node": "Elevator to Sanctuary Fortress",
"region": "Agon Wastes",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport C",
"node": "Elevator to Temple Grounds",
"region": "Great Temple",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport A",
"node": "Elevator to Temple Grounds",
"region": "Great Temple",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport B",
"node": "Elevator to Temple Grounds",
"region": "Great Temple",
},
},
{
"data": None,
"teleporter": {
"area": "Aerie",
"node": "Elevator to Aerie Transport Station",
"region": "Sanctuary Fortress",
},
},
{
"data": None,
"teleporter": {
"area": "Aerie Transport Station",
"node": "Elevator to Aerie",
"region": "Sanctuary Fortress",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Temple Grounds",
"node": "Elevator to Temple Grounds",
"region": "Sanctuary Fortress",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Agon Wastes",
"node": "Elevator to Agon Wastes",
"region": "Sanctuary Fortress",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Torvus Bog",
"node": "Elevator to Torvus Bog",
"region": "Sanctuary Fortress",
},
},
{
"data": None,
"teleporter": {
"area": "Sky Temple Energy Controller",
"node": "Elevator to Temple Grounds",
"region": "Great Temple",
},
},
{
"data": None,
"teleporter": {
"area": "Sky Temple Gateway",
"node": "Elevator to Great Temple",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Agon Wastes",
"node": "Elevator to Agon Wastes",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport B",
"node": "Elevator to Great Temple",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Sanctuary Fortress",
"node": "Elevator to Sanctuary Fortress",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport A",
"node": "Elevator to Great Temple",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Torvus Bog",
"node": "Elevator to Torvus Bog",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Temple Transport C",
"node": "Elevator to Great Temple",
"region": "Temple Grounds",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Sanctuary Fortress",
"node": "Elevator to Sanctuary Fortress",
"region": "Torvus Bog",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Temple Grounds",
"node": "Elevator to Temple Grounds",
"region": "Torvus Bog",
},
},
{
"data": None,
"teleporter": {
"area": "Transport to Agon Wastes",
"node": "Elevator to Agon Wastes",
"region": "Torvus Bog",
},
},
],
"configurable_nodes": {
"Agon Wastes/Mining Plaza/Translator Gate": None,
"Agon Wastes/Mining Station A/Translator Gate": None,
"Great Temple/Temple Sanctuary/Transport A Translator Gate": None,
"Great Temple/Temple Sanctuary/Transport B Translator Gate": None,
"Great Temple/Temple Sanctuary/Transport C Translator Gate": None,
"Sanctuary Fortress/Reactor Core/Translator Gate": None,
"Sanctuary Fortress/Sanctuary Temple/Translator Gate": None,
"Temple Grounds/GFMC Compound/Translator Gate": None,
"Temple Grounds/Hive Access Tunnel/Translator Gate": None,
"Temple Grounds/Hive Transport Area/Translator Gate": None,
"Temple Grounds/Industrial Site/Translator Gate": None,
"Temple Grounds/Meeting Grounds/Translator Gate": None,
"Temple Grounds/Path of Eyes/Translator Gate": None,
"Temple Grounds/Temple Assembly Site/Translator Gate": None,
"Torvus Bog/Great Bridge/Translator Gate": None,
"Torvus Bog/Torvus Temple/Elevator Translator Scan": None,
"Torvus Bog/Torvus Temple/Translator Gate": None,
},
"starting_location": {"region": "Temple Grounds", "area": "Landing Site", "node": "Save Station"},
}
if shuffle_advanced:
for teleporter in state["teleporters"]:
if (
teleporter["teleporter"]["region"] == "Agon Wastes"
and teleporter["teleporter"]["node"] == "Elevator to Sanctuary Fortress"
and teleporter["teleporter"]["area"] == "Transport to Sanctuary Fortress"
):
teleporter["data"] = {
"area": "Agon Energy Controller",
"region": "Agon Wastes",
"node": "Door to Controller Access",
}
state["configurable_nodes"]["Temple Grounds/Hive Access Tunnel/Translator Gate"] = "violet"
VersionedPreset.with_preset(preset).save_to_file(tmp_path.joinpath("preset.rdvpreset"))
tmp_path.joinpath("state.json").write_text(json.dumps(state), "utf-8")
# Run
window = await tracker_window.TrackerWindow.create_new(tmp_path, preset)
skip_qtbot.add_widget(window)
# Assert
assert window.state_for_current_configuration() is not None
persisted_data = json.loads(tmp_path.joinpath("state.json").read_text("utf-8"))
assert persisted_data == state
window.reset()
window.persist_current_state()
persisted_data = json.loads(tmp_path.joinpath("state.json").read_text("utf-8"))
assert persisted_data != state
async def test_load_multi_starting_location(
skip_qtbot, tmp_path: Path, default_echoes_configuration, default_echoes_preset, mocker
):
preset = default_echoes_preset
new_start_loc = (
NodeIdentifier.create("Temple Grounds", "Landing Site", "Save Station"),
NodeIdentifier.create("Temple Grounds", "Temple Transport C", "Elevator to Great Temple"),
)
layout_config = dataclasses.replace(
default_echoes_configuration,
starting_location=dataclasses.replace(default_echoes_configuration.starting_location, locations=new_start_loc),
)
preset = dataclasses.replace(default_echoes_preset.fork(), configuration=layout_config)
mock_return = ("Temple Grounds/Temple Transport C/Elevator to Great Temple", True)
# Run
mock_get_item: MagicMock = mocker.patch("PySide6.QtWidgets.QInputDialog.getItem", return_value=mock_return)
window = await tracker_window.TrackerWindow.create_new(tmp_path, preset)
skip_qtbot.add_widget(window)
# Assert
mock_get_item.assert_called_once()
state = window.state_for_current_configuration()
assert state is not None
assert state.node.identifier == new_start_loc[1]
async def test_load_single_starting_location(
skip_qtbot, tmp_path: Path, default_echoes_configuration, default_echoes_preset
):
preset = default_echoes_preset
new_start_loc = (NodeIdentifier.create("Temple Grounds", "Temple Transport C", "Elevator to Great Temple"),)
layout_config = dataclasses.replace(
default_echoes_configuration,
starting_location=dataclasses.replace(default_echoes_configuration.starting_location, locations=new_start_loc),
)
preset = dataclasses.replace(default_echoes_preset.fork(), configuration=layout_config)
# Run
window = await tracker_window.TrackerWindow.create_new(tmp_path, preset)
skip_qtbot.add_widget(window)
# Assert
state = window.state_for_current_configuration()
assert state is not None
assert state.node.identifier == new_start_loc[0]
async def test_preset_without_starting_location(
skip_qtbot, tmp_path: Path, default_echoes_configuration, default_echoes_preset
):
preset = default_echoes_preset
new_start_loc = ()
layout_config = dataclasses.replace(
default_echoes_configuration,
starting_location=dataclasses.replace(default_echoes_configuration.starting_location, locations=new_start_loc),
)
preset = dataclasses.replace(default_echoes_preset.fork(), configuration=layout_config)
# Run
with pytest.raises(ValueError, match="Preset without a starting location"):
await tracker_window.TrackerWindow.create_new(tmp_path, preset)
|
randovania/randovania
|
test/gui/test_tracker_window.py
|
test_tracker_window.py
|
py
| 17,755 |
python
|
en
|
code
| 165 |
github-code
|
6
|
21077625640
|
import json
import os
import requests
from get_token import GetToken
from log_setup import Logging
from program_data import PDApi
"""
NetApp / SolidFire
CPE
mnode support utility
"""
"""
Package service api calls
https://[mnodeip]/package-repository/1
"""
# set up logging
logmsg = Logging.logmsg()
# disable ssl warnings so the log doesn't fill up
requests.packages.urllib3.disable_warnings()
class Package:
def list_packages(repo):
""" List available packages """
url = f'{repo.base_url}/package-repository/1/packages/'
json_return = PDApi.send_get_return_json(repo, url, debug=repo.debug)
if json_return:
return json_return
def delete_package(repo, package_id):
""" Delete a package """
url = f'{repo.base_url}/package-repository/1/packages/{package_id}'
logmsg.debug(f'Sending DELETE {url}')
json_return = PDApi.send_delete_return_status(repo, url)
if json_return:
logmsg.info(f'{json_return["version"]}: {json_return["message"]}')
def upload_element_image(repo, updatefile):
""" upload a package
requires some special treatment with the api call. So it does not use PDApi.send_put
"""
token = GetToken(repo, True)
logmsg.info('Add upgrade image to package repository')
if os.path.exists(updatefile) != True:
logmsg.info(f'{updatefile} not found')
exit(1)
header = {"Accept": "application/json", "Prefer": "respond-async", "Content-Type": "application/octet-stream", "Authorization":f'Bearer {token.token}'}
url = f'{repo.base_url}/package-repository/1/packages'
session = requests.Session()
with open(updatefile, 'rb') as f:
try:
logmsg.debug(f'Sending PUT {url} {updatefile}')
logmsg.info(f'Loading {updatefile} into the package repository. This will take a few minutes')
response = session.post(url, headers=header, data=f, verify=False)
if response.status_code == 200 or response.status_code == 202:
logmsg.info('Upload successful')
logmsg.info(response.text)
response_json = json.loads(response.text)
else:
logmsg.info(f'Package upload fail with status {response.status_code}\n\t{response.text}')
except requests.exceptions.RequestException as exception:
logmsg.info("An exception occured. See /var/log/mnode-support-util.log for details")
logmsg.debug(exception)
logmsg.debug(f'{response}')
session.close()
return response_json
|
solidfire/mnode-support-util
|
api_package_service.py
|
api_package_service.py
|
py
| 2,719 |
python
|
en
|
code
| 0 |
github-code
|
6
|
39434540766
|
# from sklearn.naive_bayes import MultinomialNB
# from sklearn.naive_bayes import GaussianNB
# from sklearn.cluster import KMeans
import pandas as pd
# from random import shuffle
import numpy as np
import os
# from sklearn.feature_extraction.text import CountVectorizer
# from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize
# import nltk
import re
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import XMLParser
from lxml import etree
def obtener_text(path = str(), file = str()):
"""
Función que regresa el texto del archivo que se le pasa, preferentemente pasar la ruta relativa de donde se encuentra el archivo.
Funciona con los archivos #.review.post del corpus del mismo directorio.
Retorna el texto unicamente.
path = ruta relativa o completa del archivo seleccionado.
"""
with open(path + file, encoding='latin1', mode = 'r') as f:
text = f.read()
listas = text.split('\n')
test = []
for linea in listas:
aux = linea.split(' ')
try:
test.append(aux[1])
except:
pass
cad = ' '.join(test)
return cad
def normalizar(text = str()):
# nltk.download('stopwords')
'''
Funcion para normalizar el texto y eliminar stopwords, así como signos de puntuación, guiones bajos y demás caracteres que no sean texto, retorna la cadena limpia.
text : texto para normalizar
'''
stop_words = set(stopwords.words('spanish'))
lower_string = text.lower()
no_number_string = re.sub(r'\d+','',lower_string)
no_sub_ = re.sub('[\_]',' ', no_number_string)
no_punc_string = re.sub(r'[^\w\s]','', no_sub_)
no_wspace_string = no_punc_string.strip()
# no_wspace_string
lst_string = [no_wspace_string][0].split()
# print(lst_string)
no_stpwords_string=""
for i in lst_string:
if not i in stop_words:
no_stpwords_string += i+' '
no_stpwords_string = no_stpwords_string[:-1]
return no_stpwords_string
def get_rank (path = str(), file = str(), llave = 'rank'):
"""
En la función solo se tiene que pasar el path, más el
archivo del cual se quiera obtener el rank, o mejor dicho
la valoración que se obtuvo en la pelicula, el archivo a pasar tiene que
ser en formato .xml para que la función funcione de forma correcta,
retorna el valor entero que se puso en la pelicula.
path : ruta donde se encuentran los archivos xml
file : nombre del archivo el cual se va a obtener el valor
llave : atributo que se quiere, valor por defecto rank
"""
with open(path + file, mode = 'r', encoding= 'latin1') as f:
parser = etree.XMLParser(recover=True)
tree = ET.parse(f, parser=parser)
root = tree.getroot()
att = root.attrib
return int(att[llave])
def obtener_y (path = str(), file_pos = list(), file_xml = list()):
"""
Funcion hecha para obtener el mismo número de archivos xml y de review.pos, regresa el valor del archivo xml.
Retorna una lista.
path : Dirección donde se encuentra el corpus
file_pos : lista con los nombres del archivo review.pos
xml_file : lista con los nombres del archivo xml contenidas en el corpus
"""
file_of_x = list()
value_of_y = list()
for file in file_pos:
aux = file.split('.')
num = aux[0]
comp = str(num) + '.xml'
if comp in file_xml:
file_of_x.append(obtener_text(path,file))
value_of_y.append(get_rank(path, comp))
return file_of_x, value_of_y
|
svroo/PNL-Escom
|
Joder es cine/Modulo/text_proc.py
|
text_proc.py
|
py
| 3,744 |
python
|
es
|
code
| 0 |
github-code
|
6
|
72283436667
|
import requests
import json
match = {
"Date": "21-01-2023",
"Form": "decent",
"Opposition": "tough",
"season": "middle",
"venue": "home",
"Previous match": "0",
"uEFa": "active"
}
#url = 'http://localhost:9696/predict'
url = 'https://klopp-s-liverp-prod-klopp-s-liverpool-hql7qt.mo4.mogenius.io/predict'
response = requests.post(url, json=match)
result = response.json()
print(result)
|
Blaqadonis/klopps_liverpool
|
predict_test.py
|
predict_test.py
|
py
| 416 |
python
|
en
|
code
| 0 |
github-code
|
6
|
44354332755
|
from datetime import datetime
## Method to remove empty values from a dictionary
def remove_empty_values_from_dict(dictionary):
return {k: v for k, v in dictionary.items() if v is not None and v != '' and v != [] and v != {} }
def pretty_time(seconds):
seconds = abs(int(seconds))
days, seconds = divmod(seconds, 86400)
hours, seconds = divmod(seconds, 3600)
minutes, seconds = divmod(seconds, 60)
if days > 0:
return '%dd %dh %dm %ds' % (days, hours, minutes, seconds)
elif hours > 0:
return '%dh %dm %ds' % (hours, minutes, seconds)
elif minutes > 0:
return '%dm %ds' % (minutes, seconds)
else:
return '%ds' % (seconds)
## Coverts a datetime to a specified string format.
def convert_datetime(dt, fmt):
return dt.strftime(fmt)
## Formats RingCentral Call Metadata into a formatted note for a Close call
def format_ringcentral_call_note(note_data):
keys = ["RC ID", "From", "To", "Duration", "Direction", "Result", "Reason", "Reason Description", "RC Users"]
note = []
note_key_data = {
"RC ID": note_data.get('id'),
"From": note_data['from']['phoneNumber'],
"To": note_data['to']['phoneNumber'],
"Duration": pretty_time(note_data['duration']),
"Direction": note_data['direction'],
'Result': note_data.get('result'),
'Reason': note_data.get('reason'),
'Reason Description': note_data.get('reasonDescription'),
'RC Users': note_data.get('users')
}
note_key_data = remove_empty_values_from_dict(note_key_data)
for key in keys:
if key in note_key_data:
note.append(f"{key}: {note_key_data[key]}" )
if note:
note = ['RingCentral Call:'] + note
return '\n'.join(note)
return None
## Formats RingCentral Call Data into a dictionary that can be POSTed to
## the Close API
def format_ringcentral_call_data(call_data):
if call_data.get('duration') and call_data.get('result') == 'Missed':
call_data['duration'] = 0
close_call_data = {
'lead_id': call_data['lead_id'],
'duration': call_data.get('duration', 0),
'direction': call_data.get('direction', 'outbound').lower(),
'remote_phone': call_data.get('remote_phone'),
'date_created': call_data.get('startTime', '').replace('Z', '+00:00'),
'note': format_ringcentral_call_note(call_data)
}
return remove_empty_values_from_dict(close_call_data)
|
eengoron/close-crm-ringcentral-connector
|
app/format_rc_to_close.py
|
format_rc_to_close.py
|
py
| 2,444 |
python
|
en
|
code
| 1 |
github-code
|
6
|
15370026614
|
import random
numbers=[1,2,3,4,5,6,7,8,9]
guess=input("your guess : ")
randomNumber=random.choice(numbers)
if randomNumber==guess:
print("you win")
else:
print("you lose")
print("the number is : ")
print(randomNumber)
|
pavanajmadhu/guessing-python
|
guessing.py
|
guessing.py
|
py
| 235 |
python
|
en
|
code
| 0 |
github-code
|
6
|
4737933535
|
#Defines what a 'student' is (Something in your program that has 'name, major, gpa, and is_on_probation' parameters)
class student:
def __init__(self, name, major, gpa, is_on_probation): #Constructor: when creating a new student object, this function is called and uses the given parameters
self.name = name
self.major = major #self.major = attribute assigned from the parameter of provided student class.
self.gpa = gpa
self.is_on_probation = is_on_probation
def on_honor_roll(self):
if self.gpa >= 3.5: #Refers to gpa from provided student class
return True
else:
return False
#Creating a 'student' object from the 'student' class
student1 = student("Dan", "Azure", 3.1, False)
student2 = student("Pam", "Art", 3.7, True)
print(student1.name)
print(student2.gpa)
print(student2.on_honor_roll())
class dog:
def __init__(self, breed, age, name):
self.breed = breed
self.age = age
self.name = name
dog1 = dog("German Shepherd", 12, "Joe")
print(dog1.name)
|
danlhennessy/Learn
|
Python/fundamentals/OOP/class.py
|
class.py
|
py
| 1,097 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24347584300
|
# # Categorize all issues
#
# To use: open with jupyter notebook/lab using jupytext and run all cells
# +
from getpass import getpass
from textwrap import dedent
from ipywidgets import Button, ToggleButtons, Output, VBox
from IPython.display import display, Markdown
import gitlab
# -
gl = gitlab.Gitlab(url="https://gitlab.kwant-project.org", private_token=getpass("Gitlab API token: "))
repo = gl.projects.get("zesje/zesje")
labels = repo.labels.list()
# +
label_dict = {tuple(label.name.split(": ")): label for label in labels if ": " in label.name}
categories = ["impact", "effort", "maintainability"]
degrees = ["low", "medium", "high"]
# +
description = Output()
selector = {
category: ToggleButtons(
options=[(degree, label_dict[category, degree]) for degree in degrees],
description=category,
label="medium",
style={"button_color": label_dict},
)
for category in categories
}
submit = Button(description="submit & next", icon="check")
current_issue = None
def submit_labels(issue):
other_labels = [i for i in issue.labels if ": " not in i]
issue.labels = [i.value.name for i in selector.values()] + other_labels
issue.save()
def render_issue(issue):
return Markdown(
dedent(
f"""### [{issue.title}]({issue.web_url})
{issue.description}
"""
)
)
def next_issue():
issues = repo.issues.list(all=True, state="opened")
for issue in issues:
issue_categories = {label.split(": ")[0]: label.split(": ")[1] for label in issue.labels if ": " in label}
already_labeled = len(issue_categories) == 3 and len(set(issue_categories)) == 3
if not already_labeled:
break
else:
submit.disabled = True
submit.text = "Done!"
for button in selector.values():
button.disabled = True
return None
description.clear_output(wait=True)
with description:
display(render_issue(issue))
for category, degree in issue_categories.items():
selector[category].label = degree
return issue
def submit_and_next(event):
global current_issue
if current_issue is not None:
submit_labels(current_issue)
current_issue = next_issue()
submit.on_click(submit_and_next)
VBox(children=[description] + list(selector.values()) + [submit])
|
zesje/zesje
|
label_issues.py
|
label_issues.py
|
py
| 2,370 |
python
|
en
|
code
| 9 |
github-code
|
6
|
72787079228
|
import time
import psutil
import scapy.interfaces
from scapy.all import *
from PyQt6.QtCore import QObject, pyqtSignal
class GetInterfaceServer(QObject):
"""捕获网卡信息"""
isActive = True
bytes_flow = pyqtSignal(dict)
interfaces_scapy = scapy.interfaces.get_working_ifaces()
interfaces_psutil = psutil.net_io_counters(pernic=True)
def run(self):
while True:
if not self.isActive:
break
res = {}
for interface in self.interfaces_scapy:
if interface.name in self.interfaces_psutil:
bytes_sent = psutil.net_io_counters(pernic=True)[interface.name].bytes_sent
bytes_recv = psutil.net_io_counters(pernic=True)[interface.name].bytes_recv
else:
bytes_sent = 0
bytes_recv = 0
res[interface.name] = (bytes_sent, bytes_recv)
time.sleep(1)
self.bytes_flow.emit(res)
|
VanCoghChan/CCSniffer
|
models/GetInterfaceModel.py
|
GetInterfaceModel.py
|
py
| 1,002 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26401762339
|
# %%
import plotly.express as px
import plotly.graph_objects as go
import os
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pdb
def visualize_map():
# %%
map_prefix = "50_10_5_10_5_2"
ndf = pd.read_csv("" + map_prefix + "_Nodes.csv")
edf = pd.read_csv("" + map_prefix + "_Edges.csv")
# %%
### Plotly
newDf = []
traces = []
xLines, yLines, zLines = [], [], []
for index, row in edf.iterrows():
bidir = row['bidirectional']
node1 = ndf.loc[ndf['NodeId'] == row['nodeFrom']]
node2 = ndf.loc[ndf['NodeId'] == row['nodeTo']]
xline = [node1['X'].iloc[0], node2['X'].iloc[0]]
yline = [node1['Y'].iloc[0], node2['Y'].iloc[0]]
zline = [node1['Z'].iloc[0], node2['Z'].iloc[0]]
# aTrace = go.Scatter3d(x=xline, y=yline, z=zline, mode='lines', line=dict(color="blue"), hoverinfo='skip', showlegend=False)
# traces.append(aTrace)
vals = [xline[0], yline[0], zline[0], xline[1], yline[1], zline[1]]
newDf.append([row["nodeFrom"], row["nodeFrom"], bidir, *vals])
xLines.extend([*xline, None])
yLines.extend([*yline, None])
zLines.extend([*zline, None])
aTrace = go.Scatter3d(x=xLines, y=yLines, z=zLines, mode='lines', line=dict(color="blue"), hoverinfo='skip', showlegend=False)
traces.append(aTrace)
# fig = go.Figure(data=traces)
# fig.write_image("testPlotly.png")
# plt.show()
# %%
fig = go.Figure(data=traces)
# fig.write_image("../figs/maps/" + map_prefix + ".png")
fig.write_html("hello_world/templates/" + map_prefix + ".html")
def animate_paths():
map_prefix = "50_10_5_10_5_2"
ndf = pd.read_csv("" + map_prefix + "_Nodes.csv")
pdf = pd.read_csv("paths.csv")
pdf = pdf.iloc[:, :-1] # Drop last empty column
# %%
### Creating traces of
pathTraces = []
for index, row in pdf.iterrows():
tmpdf = ndf.iloc[row[1:]]
aTrace = go.Scatter3d(x=tmpdf["X"], y=tmpdf["Y"], z=tmpdf["Z"], mode='lines', hoverinfo="skip", showlegend=False)
pathTraces.append(aTrace)
# %%
# fig = go.Figure(data=pathTraces)
# fig.write_image("testPlotly.png")
# %%
### Create animations
numFrames = len(pdf.columns) - 1 # First columns is the string "Timesteps"
numAgents = pdf.shape[0]
agentColors = list(range(numAgents))
def getSingleFrame(curT):
curLocs = ndf.iloc[pdf[str(curT)]]
return go.Frame(name=str(curT),
data = go.Scatter3d(x=curLocs["X"], y=curLocs["Y"], z=curLocs["Z"],
mode="markers", marker=dict(size=6, color=agentColors), showlegend=False, hoverinfo="skip"))
allFrames = [getSingleFrame(t) for t in range(numFrames)]
# %%
### https://plotly.com/python/visualizing-mri-volume-slices/?_ga=2.213007632.583970308.1664493502-1988171524.1656003349
def sliderFrameArgs(duration):
return {
"frame": {"duration": duration},
"mode": "immediate",
"fromcurrent": True,
"transition": {"duration": duration, "easing": "linear"},
}
sliders = [{
"pad": {"b": 10, "t": 60},
"len": 0.6,
"x": 0.22,
"y": 0,
"steps": [
{
"args": [[f.name], sliderFrameArgs(300)],
"label": str(k),
"method": "animate",
}
for k, f in enumerate(allFrames)]
}]
fig = go.Figure(frames=allFrames,
# data=traces, ## Show entire grid, significantly slows down animation
# data=allFrames[0].data, ## First frame, no grid lines
data=pathTraces, ## Show path traces, animation works fine
layout=go.Layout(
title="3D MAPF Animation",
updatemenus=[dict(
type="buttons",
buttons=[dict(label="▶", # play symbol
method="animate",
args=[None, sliderFrameArgs(300)]),
dict(label="◼", # pause symbol
method="animate",
args=[[None], sliderFrameArgs(0)])
],
direction="left",
pad={"r": 10, "t": 70},
x=0.22,
y=0)],
sliders=sliders)
)
# fig.update_layout(sliders=sliders)
# %%
fig.write_html("hello_world/templates/backAndForth.html")
# %%
|
pwang649/3D_MAPF
|
hello_world/core/visualization.py
|
visualization.py
|
py
| 4,687 |
python
|
en
|
code
| 0 |
github-code
|
6
|
43392192504
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 模版匹配
img = cv2.imread("fb.png", 0)
img2 = img.copy()
template = cv2.imread("zdbz.png", 0)
w,h = template.shape[::-1]
method = eval("cv2.TM_CCOEFF")
res = cv2.matchTemplate(img2, template ,method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val,max_val,min_loc,max_loc)
topLeft = max_loc
bottomRight = (topLeft[0]+w,topLeft[1]+h)
print(bottomRight)
|
frebudd/python
|
阴阳师副本自动化/副本自动化2.py
|
副本自动化2.py
|
py
| 450 |
python
|
en
|
code
| 2 |
github-code
|
6
|
35426911515
|
#!/usr/bin/python3
import numpy as np
import scipy.integrate
import matplotlib.pyplot as plt
def vdp(t,y):
"""calculate Van Der Pol Derivatives"""
# y is a tuple (y0,y1)
y0dot = y[1]
y1dot = (1-y[0]**2)*y[1]-y[0]
dydt = ( y0dot, y1dot )
return dydt
solution = scipy.integrate.solve_ivp(vdp, t_span=(0,20), y0=(0,2), method='RK45', rtol=1e-6)
t = solution.t
y0 = solution.y[0]
y1 = solution.y[1]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(t, y0, color='tab:blue', label='y1')
ax.plot(t, y1, color='tab:orange', label='y2')
ax.set_title('Solution of the van der Pol equation, mu=1')
ax.set_xlabel('time')
ax.set_ylabel('solution')
ax.legend()
plt.show()
|
martinaoliver/GTA
|
ssb/m1a/numeric/Practical_full_solutions_jupyter/python_script_solutions/vanderpol_20191001.py
|
vanderpol_20191001.py
|
py
| 695 |
python
|
en
|
code
| 0 |
github-code
|
6
|
28493662472
|
###### Librerias ######
import tkinter as tk
import Widgets as Wd
import Ecuaciones as Ec
import time as tm
import threading as hilos
import numpy as np
###### Modulos De Librerias ######
import tkinter.ttk as ttk
import tkinter.messagebox as MsB
import serial
import serial.tools.list_ports
import matplotlib.pyplot as plt
###### SubModulos De Librerias ######
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk)
board =serial.Serial(port='COM1', baudrate=9600)
tm.sleep(1)
board2 =serial.Serial(port='COM4', baudrate=9600)
tm.sleep(1)
def Show_Sliders(event): #Función Para Mostrar Sliders
Alter_Sliders('T', Pl_x.get())
Datos_Temp(0,0,0,1)
Wd.Aparecer([Pl_x, Pl_y, Pl_z, P_xi, P_yi, P_zi, P_x, P_y, P_z, P_inicial, P_final],
[1/16+0.025, 1/16+0.025, 1/16+0.025, 0, 0, 0, 1/16+0.01, 1/16+0.01, 1/16+0.01, 0, 2/16],
[1/6, 3/6-0.07, 0.693, 2/6-0.02, 3/6+0.075, 0.836, 2/6-0.02, 3/6+0.075, 0.836, 1/6-0.02, 0])
def Show_Codo(Iden, Valor): #Función Para Mostrar Codos
Wd.Aparecer([T_Codo, Despl_Codo], [4/16+0.02, 4/16+0.01], [3/7+0.02, 4/6])
def Show_Perfiles(event): #Función Para Mostrar Perfiles
Wd.Aparecer([Cuadratico, TrapezoidalI, TrapezoidalII], [6/16+0.04, 9/16+0.04, 12/16+0.04], [0, 0, 0])
def Show_Datos(): #Función Para Mostrar Los Sliders De Datos De Entrada
if Tipo.get()==1:
Wd.Ocultar([Vj_1, Vj_2, Vj_3, Aj_1, Aj_2, Aj_3, TAc_1, TAc_2, TAc_3, TVc_1, TVc_2, TVc_3])
if Tipo.get()==2:
Wd.Aparecer([Vj_1, Vj_2, Vj_3, TVc_1, TVc_2, TVc_3],
[9/16+0.04, 9/16+0.04, 9/16+0.04, 9/16+0.02, 9/16+0.02, 9/16+0.02],
[1/8+0.01, 3/8+0.04, 5/8+0.08, 1/7+0.12, 3/7+0.12, 5/7+0.12])
Wd.Ocultar([Aj_1, Aj_2, Aj_3, TAc_1, TAc_2, TAc_3])
#Calculos.Perf_Trape(T_f.get(),N_p.get(),0,0,0,1)
if Tipo.get()==3:
Wd.Aparecer([Aj_1, Aj_2, Aj_3, TAc_1, TAc_2, TAc_3],
[12/16+0.04, 12/16+0.04, 12/16+0.04, 12/16+0.02, 12/16+0.02, 12/16+0.02],
[1/8+0.01, 3/8+0.04, 5/8+0.08, 1/7+0.12, 3/7+0.12, 5/7+0.12])
Wd.Ocultar([Vj_1, Vj_2, Vj_3, TVc_1, TVc_2, TVc_3])
#Calculos.Perf_Trape(T_f.get(),N_p.get(),0,0,0,2)
Wd.Aparecer([T_f, N_p, TT_f, TN_p, Calcular_PT],
[6/16+0.04, 6/16+0.04, 6/16+0.02, 6/16+0.02, 6/16+0.04],
[1/8+0.01, 3/8+0.04, 1/7+0.012, 3/7+0.012, 6/8])
def Show_Graficas(Iden, Valor):
print(Valor)
bands=0
bandr=0
def Datos_Temp(xtemp, ytemp, ztemp, RW): #Función Para Guardar Los Valores Para Nuevo Punto Inicial
global bands
global bandr
if RW==0:
selection = Despl_Mani.get()
if selection == "Scara (PRR)":
temp_xs=xtemp
temp_ys=ytemp
temp_zs=ztemp
bands=1
else:
temp_xr=xtemp
temp_yr=ytemp
temp_zr=ztemp
bandr=1
else:
selection = Despl_Mani.get()
if selection == "Scara (PRR)":
if bands==1:
P_xi.config(text=temp_xs)
P_yi.config(text=temp_ys)
P_zi.config(text=temp_zs)
else:
P_xi.config(text=345.2)
P_yi.config(text=0)
P_zi.config(text=0)
else:
if bandr==1:
P_xi.config(text=temp_xr)
P_yi.config(text=temp_yr)
P_zi.config(text=temp_zr)
else:
P_xi.config(text=197)
P_yi.config(text=0)
P_zi.config(text=95.5)
def Alter_Sliders(Ident, Valor): #Función Para Alternos Los Sliders (Scara-Antropomórfico)
if Despl_Mani.get() == "Scara (PRR)":
Pl_x['from_']=-131.5
Pl_x['to']=375.5
Pl_z['from_']=0
Pl_z['to']=19
if Ident == 'A1':
Red_Slider(['S', 'T', Pl_y, Check_S_PL, 1/4-0.025, 1/3+0.22], Valor)
else:
Pl_x['from_']=-197
Pl_x['to']=197
if Ident == 'A1':
Red_Slider(['A1', 'T', Pl_y, Check_A_PL, 1/4-0.025, 2/3+0.15], Valor)
elif Ident == 'A2':
Red_Slider(['A2', 'T', Pl_z, Check_A_PL, 1/4-0.025, 2/3+0.15], Valor)
def Mensajes(Cual): #Función Para Seleccionar Mensaje Emergente A Mostrar
if Cual=="DK":
MsB.showinfo(
"Instrucciones Cinemática Directa",
"""
Sliders: Desplazar los slider para mover las
articulaciones del brazo robótico en tiempo real
para obtener las matrices individuales y total de
la cinemática directa. \n
Cuadro de Texto: Digitar el valor que se encuentre
en el rango de funcionamiento del robot para mover
las articulaciones del brazo robótico.
Luego presionar el botón de envió y obtener las
matrices individuales y total de la cinemática directa
en tiempo real.
""")
elif Cual=="IK":
MsB.showinfo(
"Instrucciones Cinemática Inversa",
"""
Deslizar cada slider para establecer la posición
del efector final, dar click en el botón "Calcular"
y finalizar seleccionando la configuración del codo
a utilizar para mover el manipulador. \n
Se debe tener en cuenta que las opciones de los codos
únicamente están disponibles sí los valores calculados
de las articulaciones no superan los límites mecánicos
""")
def Color(Bandera, Boton, Identi): #Función Para Alternan Color De Boton
#print-->board.write
if Bandera:
Boton["bg"]="red4"
board.write(Identi.encode() +b',1\n')
else:
Boton["bg"]="lime green"
board.write(Identi.encode() +b',0\n')
def Gripper(Identi): #Función Para Abrir o Cerrar Grippers
global Estado_S
global Estado_A
global Estado_R
if Identi=='E':
Estado_S=not Estado_S
Color(Estado_S,Gp_S,'E')
elif Identi=='A':
Estado_A=not Estado_A
Color(Estado_A,Gp_A,'A')
else:
Estado_R=not Estado_R
Color(Estado_R,Gp_R,'R')
def Red_Slider(Vec, Valor): #Función Para Redefinir Los Limites de Los Sliders De Cinematica Inversa
Ident=Vec[0]
if (Ident == 'S') or (Ident == 'A2') or (Ident =='A1'):
Pes=Vec[1]
Slider=Vec[2]
Check=Vec[3]
PosX=Vec[4]
PosY=Vec[5]
if Ident =='S': #Redefinir Slider "Py_S" De Scara
if Pes == 'I':
Variable=Check_S_Valor
elif Pes == 'T':
Variable=Check_ST_Valor
Check_A_PL.place_forget()
LimitY_S=Ec.Limites_Y_S(Valor)
Slider['from_']=str(LimitY_S[0])
Slider['to']=str(LimitY_S[1])
if LimitY_S[2] == 1 :
Check.place(relx=PosX, rely=PosY)
else:
Check.place_forget()
if Variable.get(): #Evalua El Checkbox "-", Para Valores Negativos
Slider['from_']=str(float(-1)*LimitY_S[1])
Slider['to']=str(float(-1)*LimitY_S[0])
if Ident =='A1': #Redefinir Slider "Py_A" De Antropomórfico
LimitY_A=Ec.Limites_Y_A(Valor)
Slider['from_']=str(LimitY_A[1])
Slider['to']=str(LimitY_A[0])
if Ident =='A2': #Redefinir Slider "Pz_A" De Antropomórfico
if Pes == 'I':
LimitZ=Ec.Limites_Z_A(Px_A.get(), Py_A.get())
Variable=Check_A_Valor
elif Pes == 'T':
LimitZ=Ec.Limites_Z_A(Pl_x.get(), Pl_y.get())
Variable=Check_AT_Valor
Check_S_PL.place_forget()
if LimitZ[2] == 1 :
Check.place(relx=PosX, rely=PosY)
if Variable.get(): #Evalua El Checkbox "inf", Para Valores Del Limite Inferior
Slider['from_']=str(LimitZ[1][1])
Slider['to']=str(LimitZ[1][0])
else:
Slider['from_']=str(LimitZ[0][1])
Slider['to']=str(LimitZ[0][0])
else:
Check.place_forget()
Slider['from_']=str(LimitZ[1])
Slider['to']=str(LimitZ[0])
def Cambio(Ident): #Función Para Detectar El Cambio De Los CheckBox
if Ident == 'S':
Red_Slider(['S', 'I', Py_S, Check_S, 3/16, 1/2+0.01], Px_S.get())
elif Ident == 'A2':
Red_Slider(['A2', 'I', Pz_A, Check_A, 3/16, 2/3+0.18], None)
elif Ident == 'ST':
Red_Slider(['S', 'T', Pl_y, Check_S_PL, 1/4-0.025, 1/3+0.22], Pl_x.get())
elif Ident == 'AT':
Red_Slider(['A2', 'T', Pl_z, Check_A_PL, 1/4-0.025, 2/3+0.15], None)
def Cine_Directa(Vector, Valor): #Función Para Enviar y Calcular Cinemática Directa Con Los Sliders
Identi=Vector[0]
if (bool(Identi.find('E')))==False:
Matriz=Ec.Parametros(1, Qs1_S.get(), Qs2_S.get(), Qs3_S.get(), None, None, None)
Wd.Llenado(Matriz, 1, 4)
elif (bool(Identi.find('A')))==False:
Matriz=Ec.Parametros(2, Qs1_A.get(), Qs2_A.get(), Qs3_A.get(), None, None, None)
Wd.Llenado(Matriz, 5, 8)
else:
Matriz=Ec.Parametros(3, Qs1_R.get(), Qs2_R.get(), Qs3_R.get(), Qs4_R.get(), Qs5_R.get(), Qs6_R.get())
Wd.Llenado(Matriz, 9, 15)
hilos.Thread(target=Wd.Barra.Carga, args=(Vector[1],)).start()
board.write(Identi.encode()+b','+ Valor.encode()+b'\n')
print(Identi.encode()+b','+ Valor.encode()+b'\n')
board2.write(Identi.encode()+b','+ Valor.encode()+b'\r\n')
def Cajas_DK(Vector): #Función Para Boton "Enviar". Se Calcula y Envia La Cinemática Directa Con Los Cuadros de Texto
Identi=Vector[0]
Valor=Vector[1]
Enviar(Vector)
if (bool(Identi[0].find('E')))==False:
Matriz=Ec.Parametros(1, float(Valor[0].get()), float(Valor[1].get()), float(Valor[2].get()), None, None, None)
Wd.Llenado(Matriz, 1, 4)
elif (bool(Identi[0].find('A')))==False:
Matriz=Ec.Parametros(2, float(Valor[0].get()), float(Valor[1].get()), float(Valor[2].get()), None, None, None)
Wd.Llenado(Matriz, 5, 8)
else:
Matriz=Ec.Parametros(3, float(Valor[0].get()), float(Valor[1].get()), float(Valor[2].get()), float(Valor[3].get()), float(Valor[4].get()), float(Valor[5].get()))
Wd.Llenado(Matriz, 9, 15)
def Cine_Inversa(Vector): #Función Para Calcular Cinematica Inversa Del Scara
Identi=Vector[0]
Codos=Vector[1]
if Identi=='S':
Vec_IK=Ec.Calculo_Inversa(1, float(Px_S.get()), float(Py_S.get()), float(Pz_S.get()))
Codos[0].Ubicacion(1/2,1/2,tk.N)
Codos[1].Ubicacion(2/3, 1/2, tk.N)
#Inserta Valores de Variables de Juntura en La Interfaz (Codo Abajo y Codo Arriba)
q1_S.set(str(int(Vec_IK[0]/10)))
q2_S_D.set(str(int(Vec_IK[1])))
q3_S_D.set(str(int(Vec_IK[2])))
q2_S_U.set(str(int(Vec_IK[3])))
q3_S_U.set(str(int(Vec_IK[4])))
elif Identi=='A':
Vec_IK=Ec.Calculo_Inversa(2, float(Px_A.get()), float(Py_A.get()), float(Pz_A.get()))
Codos[0].Ubicacion(1/2, 1/2, tk.N)
Codos[1].Ubicacion(2/3, 1/2, tk.N)
if Vec_IK[0]<(-1):
Vec_IK[0]=360+Vec_IK[0]
#Inserta Valores de Variables de Juntura en La Interfaz (Codo Abajo y Codo Arriba)
q1_A.set(str(int(Vec_IK[0])))
q2_A_D.set(str(int(Vec_IK[1])))
q3_A_D.set(str(int(Vec_IK[2])))
q2_A_U.set(str(int(Vec_IK[3])))
q3_A_U.set(str(int(Vec_IK[4])))
#Desabilitación de Botones de Envio Cinematica Inversa
if Vec_IK[5] or Vec_IK[6]: #indar indab
if Vec_IK[6] == 1:#indab
Codos[0].place_forget()
if Vec_IK[5] == 1:#indar
Codos[1].place_forget()
MsB.showwarning("Advertencia Selección Codo","""
Una o ambas soluciones supera los limites mecanicos.
Varie el valor del punto
""")
def Enviar(Vector): #Función Donde Se Envia Los Datos
Identi=Vector[0]
Valor=Vector[1]
for i in range (0,len(Identi)):
hilos.Thread(target=Wd.Barra.Carga, args=(Vector[2],)).start()
board.write(Identi[i].encode()+Valor[i].get().encode()+b'\n')
board2.write(Identi[i].encode()+Valor[i].get().encode()+b'\r\n')
tm.sleep(3)
def Jacobians(Barra): #Función Para Mostrar Los Jacobianos
j_S=Ec.Jacobianos(1, Qs1_S.get(), Qs2_S.get(), Qs3_S.get())
j_A=Ec.Jacobianos(2, Qs1_A.get(), Qs2_A.get(), Qs3_A.get())
Matriz=[j_S[0], j_S[1], j_A[0], j_A[1]]
hilos.Thread(target=Wd.Barra.Carga, args=(Barra,)).start()
Wd.Llenado_Jaco(Matriz, 1, 4)
def elec_manipulador():#Funcion Para Elección de Manipulador
selection=Despl_Mani.get()
if selection == "Scara (PRR)":
return 1
else:
return 2
def elec_codo():#Funcion Para Elección de codo
selection=Despl_Codo.get()
if selection == "Codo Abajo":
return 1
else:
return 2
def plot_3d(pos_final_x, pos_final_y, pos_final_z):
root_3d = tk.Tk()
root_3d.wm_title("Plot 3D Efector Final")
fig = Figure(figsize=(5, 5), dpi=100)
canvas = FigureCanvasTkAgg(fig, master=root_3d)
canvas.draw()
ax = fig.add_subplot(111, projection="3d")
ax.plot(pos_final_x, pos_final_y, pos_final_z)
toolbar = NavigationToolbar2Tk(canvas, root_3d)
toolbar.update()
canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
tk.mainloop()
def Envio_Pl(Vectores_1, Vectores_2, Vectores_3):
paso=(T_f.get()/(N_p.get()))
if Despl_Mani.get() == "Scara (PRR)":
board.write(b'Eb,'+"{:.4f}".format(int(Vectores_1[-1])).encode()+b'\n')
board2.write(b'Eb,'+str(int(Vectores_1[-1])).encode()+b'\r\n')
Time_Prisma=int(Vectores_1[-1])*(1.8)
tm.sleep (Time_Prisma)
Restante=T_f.get()-Time_Prisma
paso=(Restante/N_p.get())
for i in range(0,int(N_p.get())):
board.write(b'Ebr,'+"{:.4f}".format(int(Vectores_2[i])).encode()+b'\n')
board2.write(b'Ebr,'+str(int(Vectores_2[i])).encode()+b'\r\n')
tm.sleep(paso/2)
board.write(b'Eab,'+"{:.4f}".format(int(Vectores_3[i])).encode()+b'\n')
board2.write(b'Eab,'+str(int(Vectores_3[i])).encode()+b'\r\n')
tm.sleep(paso/2)
else:
for i in range(0,int(N_p.get())):
board.write(b'Ab,'+"{:.4f}".format(int(Vectores_1[i])).encode()+b'\n')
board2.write(b'Ab,'+str(int(Vectores_1[i])).encode()+b'\r\n')
tm.sleep(paso/3)
board.write(b'Abr,'+"{:.4f}".format(int(Vectores_2[i])).encode()+b'\n')
board2.write(b'Abr,'+str(int(Vectores_2[i])).encode()+b'\r\n')
tm.sleep(paso/3)
board.write(b'Aab,'+"{:.4f}".format(int(Vectores_3[i])).encode()+b'\n')
board2.write(b'Aab,'+str(int(Vectores_3[i])).encode()+b'\r\n')
tm.sleep(paso/3)
def But_Perfiles(Ident):#Funcion Para Calcular La Generación de Trayectorias
mani=elec_manipulador()
codo=elec_codo()
xini=float(P_xi.cget("text"))
yini=float(P_yi.cget("text"))
zini=float(P_zi.cget("text"))
xfin=float(Pl_x.get())
yfin=float(Pl_y.get())
zfin=float(Pl_z.get())
tip=Tipo.get()
tfin=T_f.get()
resolucion=N_p.get()
if tip == 2:
variable=[Vj_1.get(), Vj_2.get(), Vj_3.get()]
elif tip == 3:
variable=[Aj_1.get(), Aj_2.get(), Aj_3.get()]
else:
variable=[0, 0, 0]
Vectores=Wd.Perfil(tip, mani, codo, tfin, xini, yini, zini, xfin, yfin, zfin, resolucion, variable)
if Vectores[0] == 1: # vel
MsB.showwarning(title="error", message="La magnitud de la velocidad supera la condición. \n Varie el los valores de la velocidad crucero ")
for i in range (0, 3):
if Vectores[2]==0:
Vj_1["from_"]=(Vectores[1])+0.1
Vj_1["to"]=(Vectores[1]*2)-0.1
if Vectores[2]==1:
Vj_2["from_"]=(Vectores[1])+0.1
Vj_2["to"]=(Vectores[1]*2)-0.1
if Vectores[2]==2:
Vj_3["from_"]=(Vectores[1])+0.1
Vj_3["to"]=(Vectores[1]*2)-0.1
Vectores=Wd.Perfil(Tipo.get(), elec_manipulador(), elec_codo(), T_f.get(), float(P_xi.cget("text")), float(P_yi.cget("text")), float(P_zi.cget("text")), float(Pl_x.get()), float(Pl_y.get()), float(Pl_z.get()), N_p.get(), [Vj_1.get(), Vj_2.get(), Vj_3.get()])
elif Vectores[0] == 2: #acel
MsB.showwarning(title="error", message="La magnitud de la aceleración supera la condición. \n Varie el los valores de la aceleración crucero")
for i in range (0, 3):
if Vectores[2]==0:
Aj_1["from_"]=(Vectores[1])+0.1
Aj_1["to"]=(Vectores[1]*4)-0.1
if Vectores[2]==1:
Aj_2["from_"]=(Vectores[1])+0.1
Aj_2["to"]=(Vectores[1]*4)-0.1
if Vectores[2]==2:
Aj_3["from_"]=(Vectores[1])+0.1
Aj_3["to"]=(Vectores[1]*4)-0.1
Vectores=Wd.Perfil(Tipo.get(), elec_manipulador(), elec_codo(), T_f.get(), float(P_xi.cget("text")), float(P_yi.cget("text")), float(P_zi.cget("text")), float(Pl_x.get()), float(Pl_y.get()), float(Pl_z.get()), N_p.get(), [Aj_1.get(), Aj_2.get(), Aj_3.get()])
else:
posx=np.empty(resolucion)
posy=np.empty(resolucion)
posz=np.empty(resolucion)
for n in range(0, resolucion):
if mani == 1:
mat=Ec.Parametros(1, Vectores[1][n], Vectores[2][n], Vectores[3][n], None, None, None)
vect_pos=Ec.Vec('C', 3, None, mat[0])
posx[n]=vect_pos[0]
posy[n]=vect_pos[1]
posz[n]=vect_pos[2]
else:
mat=Ec.Parametros(2, Vectores[1][n], Vectores[2][n], Vectores[3][n], None, None, None)
vect_pos=Ec.Vec('C', 3, None, mat[0])
posx[n]=vect_pos[0]
posy[n]=vect_pos[1]
posz[n]=vect_pos[2]
#Thread(target=envio_graf1(Vectores[1],Vectores[2],Vectores[3])).start()
Gr1=Wd.Grafica(Fr_Graf, r'Posición $q_1$', "q[°]", 0, 0)
Gr2=Wd.Grafica(Fr_Graf, r'Posición $q_2$', "q[°]", 1/3, 0)
Gr3=Wd.Grafica(Fr_Graf, r'Posición $q_3$', "q[°]", 2/3, 0)
Gr4=Wd.Grafica(Fr_Graf, r'Velocidad $w_1$', r'w$[rad/s]$', 0, 1/2)
Gr5=Wd.Grafica(Fr_Graf, r'Velocidad $w_2$', r'w$[rad/s]$', 1/3, 1/2)
Gr6=Wd.Grafica(Fr_Graf, r'Velocidad $w_3$', r'w$[rad/s]$', 2/3, 1/2)
Gr1.Linea(resolucion, int(Vectores[1][0]), int(Vectores[1][-1]), int(T_f.get()), Vectores[1])
Gr2.Linea(resolucion, int(Vectores[2][0]), int(Vectores[2][-1]), int(T_f.get()), Vectores[2])
Gr3.Linea(resolucion, int(Vectores[3][0]), int(Vectores[3][-1]), int(T_f.get()), Vectores[3])
Gr4.Linea(resolucion, 0, Vectores[4][int(resolucion/2)], int(T_f.get()), Vectores[4])
Gr5.Linea(resolucion, 0, Vectores[5][int(resolucion/2)], int(T_f.get()), Vectores[5])
Gr6.Linea(resolucion, 0, Vectores[6][int(resolucion/2)], int(T_f.get()), Vectores[6])
P_xi.config(text=Pl_x.get())
P_yi.config(text=Pl_y.get())
P_zi.config(text=Pl_z.get())
Datos_Temp(P_xi.cget("text"), P_yi.cget("text"), P_zi.cget("text"), 0)
Envio_Pl(Vectores[1], Vectores[2], Vectores[3])
plot_3d(posx, posy, posz)
#Objetos Principales
Ventana = tk.Tk()
Ventana.title('Controles de Manipuladores Roboticos')
width=Ventana.winfo_screenwidth()
height= Ventana.winfo_screenheight()
Ventana.geometry("%dx%d" % (width, height))
Panel_Pestañas = ttk.Notebook(Ventana)
Panel_Pestañas.pack(fill='both',expand='yes')
#Variables
Nombres= tk.StringVar() #Variable String Para Nombres
Nombres.set("""
Dario Delgado - 1802992 \n
Brayan Ulloa - 1802861 \n
Fernando Llanes - 1802878 \n
Karla Baron - 1803648 \n
Sebastian Niño - 1803558
""")
Reposo= tk.StringVar() #Variable String Para Mensaje Reposo
Reposo.set("Parte de reposo \r termina en reposo: \r Ti=0; Vi=0; Vf=0")
Wd.Variables_Matrices(15, 4, 4, "DK") #Variables Matrices DK
Wd.Variables_Matrices(4, 6, 3, "Jaco") #Variables Matrices Jacobianos Scara-Antropomórfico
Wd.Variables_Matrices(2, 6, 6, "JacoR") #Variables Matrices Jacobianos R
Estado_S=False
Estado_A=False
Estado_R=False
Check_S_Valor=tk.BooleanVar()
Check_A_Valor=tk.BooleanVar()
Check_ST_Valor=tk.BooleanVar()
Check_AT_Valor=tk.BooleanVar()
#Pestañas
Pestaña_Info=Wd.Pestañas(Panel_Pestañas, 'Portada')
Pestaña_Scara=Wd.Pestañas(Panel_Pestañas, 'Robot Scara (P2R)')
Pestaña_Antro3R=Wd.Pestañas(Panel_Pestañas, 'Robot Antropomórfico (3R)')
Pestaña_Antro6R=Wd.Pestañas(Panel_Pestañas, 'Robot Antropomórfico (6R)')
Pestaña_Trayectorias_Jacobiano=Wd.Pestañas(Panel_Pestañas, 'Trayectorias Por Jacobiano Inverso')
Pestaña_Jacobianos=Wd.Pestañas(Panel_Pestañas, 'Jacobiano')
Pestaña_Trayectorias=Wd.Pestañas(Panel_Pestañas, 'Planeación De Trayectorias')
#Fuentes
Fuente_12 = Wd.Fuentes("Lucida Grande", 12)
Fuente_15 = Wd.Fuentes("Lucida Grande", 15)
Fuente_25 = Wd.Fuentes("Lucida Grande", 25)
Fuente_Num = Wd.Fuentes("Palatino Linotype", 18)
Fuente_Num2 = Wd.Fuentes("Palatino Linotype", 12)
Fuente_Slider= Wd.Fuentes("Bookman Old Style", 12)
##################################Pestaña 1########################################
Fi=Wd.Frame(Pestaña_Info, 'GUI Para Controlar Manipuladores Robóticos', Fuente_12, 1, 1, 0, 0, None) #Frame
Wd.Labels(Fi, Nombres, None, None, None, None, Fuente_25, None).Ubicacion(1/2, 1/2, tk.CENTER)#Label-Nombres
#Com=Wd.Boton(Fi, 20, 5, 'COM Close', None).Ubicacion(1/2, 7/8, tk.CENTER)
#Imagenes
Logo= Wd.Imagenes('./Imagenes/LOGOUMNG.png').zoom(2) #Logo UMNG
tk.Label(Fi, image=Logo).place(relx=1/4, rely=1/2, anchor=tk.CENTER)
Icono= Wd.Imagenes('./Imagenes/icon.png').zoom(2) #Icono Robot
tk.Label(Fi, image=Icono).place(relx=3/4, rely=1/2, anchor=tk.CENTER)
##################################Pestaña 2########################################
Fr_DK_S=Wd.Frame(Pestaña_Scara, 'Cinemática Directa', Fuente_12, 1, 5/8, 0, 0, None) #Frame Cinematica Directa
Fr_IK_S=Wd.Frame(Pestaña_Scara, 'Cinemática Inversa', Fuente_12, 1, 3/8, 0, 5/8, None) #Frame Cinematica Inversa
######Cinematica Directa######
#Barra De Progreso
Ba_S=Wd.Barra(Fr_IK_S, 300, 1/6, 0.98, 0.25, tk.E)
#Sliders
Qs1_S=Wd.Slider(Fr_DK_S, 1, 19, 1, 250, 34, 'Desplazamiento Base', Fuente_Slider, Cine_Directa, ['Eb',Ba_S])
Qs1_S.Ubicacion(0,0)
Qs2_S=Wd.Slider(Fr_DK_S, -90, 90, 10, 250, 34, 'Rotación Antebrazo', Fuente_Slider, Cine_Directa, ['Ebr',Ba_S])
Qs2_S.Ubicacion(0, 1/3)
Qs3_S=Wd.Slider(Fr_DK_S, -90, 90, 10, 250, 34, 'Rotación Brazo', Fuente_Slider, Cine_Directa, ['Eab',Ba_S])
Qs3_S.Ubicacion(0, 2/3)
Qt1_S=Wd.Editables(Fr_DK_S, Fuente_Num, 3/16, 0.11)
Qt2_S=Wd.Editables(Fr_DK_S, Fuente_Num, 3/16, 1/3+0.11)
Qt3_S=Wd.Editables(Fr_DK_S, Fuente_Num, 3/16, 2/3+0.11)
Qt_S=[Qt1_S, Qt2_S, Qt3_S]
#Matrices
Wd.Matrices(Fr_DK_S, "DK", 1, 4, 4, "Link 1", 1/2, 0, Fuente_12)
Wd.Matrices(Fr_DK_S, "DK", 2, 4, 4, "Link 2", 5/6, 0, Fuente_12)
Wd.Matrices(Fr_DK_S, "DK", 3, 4, 4, "Link 3", 1/2, 1/2, Fuente_12)
Wd.Matrices(Fr_DK_S, "DK", 4, 4, 4, "Total", 5/6, 1/2, Fuente_12)
#Botones
Wd.Boton(Fr_DK_S, None, None, "Instrucciones", "LightYellow2", Mensajes, 'DK').Ubicacion(1, 1, tk.SE)
Gp_S=Wd.Boton(Fr_DK_S, 15, 3, "Griper", "lime green", Gripper, 'E')
Gp_S.Ubicacion(4/6, 0.9, tk.CENTER)
Wd.Boton(Fr_DK_S, 12, 2, "Enviar", "ivory3", Cajas_DK, [['Eb,','Ebr,','Eab,'], Qt_S, Ba_S]).Ubicacion(1/4+0.02, 0.9, tk.W)
######Cinematica Inversa######
#Sliders
Py_S=Wd.Slider(Fr_IK_S, -90, 90, 0.5, 250, 20, 'Py', Fuente_Slider, Red_Slider, ['N','N'])
Py_S.Ubicacion(0, 1/3)
Pz_S=Wd.Slider(Fr_IK_S, 0, 190, 10, 250, 20, 'Pz', Fuente_Slider, Red_Slider, ['N','N'])
Pz_S.Ubicacion(0, 2/3)
Check_S=Wd.Check(Fr_IK_S, '-', 3/16, 1/3+0.18, Cambio, 'S', Check_S_Valor)
Px_S=Wd.Slider(Fr_IK_S, -101.5, 345, 0.5, 250, 20, 'Px', Fuente_Slider, Red_Slider, ['S', 'I', Py_S, Check_S, 3/16, 1/2+0.01])
Px_S.Ubicacion(0, 0)
#Codo Abajo
Co_D_S=Wd.Frame(Fr_IK_S, "Codo Abajo", Fuente_12, 1/10, 1/2, 1/2, 0, tk.N)
q1_S=tk.StringVar()
q2_S_D=tk.StringVar()
q3_S_D=tk.StringVar()
qs_S_D=[q1_S, q2_S_D, q3_S_D]
Wd.Labels(Co_D_S, None, "d₁", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 0, tk.NW)
Wd.Labels(Co_D_S, q1_S, None, None, None, None, Fuente_15, "white").Ubicacion(1, 0, tk.NE)
Wd.Labels(Co_D_S, None, "θ₂", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 1/3, tk.NW)
Wd.Labels(Co_D_S, q2_S_D, None, None, None, None, Fuente_15, "white").Ubicacion(1, 1/3, tk.NE)
Wd.Labels(Co_D_S, None, "θ₃", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 2/3, tk.NW)
Wd.Labels(Co_D_S, q3_S_D, None, None, None, None, Fuente_15, "white").Ubicacion(1, 2/3, tk.NE)
#Codo Arriba
Co_U_S=Wd.Frame(Fr_IK_S, "Codo Arriba", Fuente_12, 1/10, 1/2, 2/3, 0, tk.N)
q2_S_U=tk.StringVar()
q3_S_U=tk.StringVar()
qs_S_U=[q1_S, q2_S_U, q3_S_U]
Wd.Labels(Co_U_S, None, "d₁", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 0, tk.NW)
Wd.Labels(Co_U_S, q1_S, None, None, None, None, Fuente_15, "white").Ubicacion(1, 0, tk.NE)
Wd.Labels(Co_U_S, None, "θ₂", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 1/3, tk.NW)
Wd.Labels(Co_U_S, q2_S_U, None, None, None, None, Fuente_15, "white").Ubicacion(1, 1/3, tk.NE)
Wd.Labels(Co_U_S, None, "θ₃", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 2/3, tk.NW)
Wd.Labels(Co_U_S, q3_S_U, None, None, None, None, Fuente_15, "white").Ubicacion(1, 2/3, tk.NE)
#Botones
Wd.Boton(Fr_IK_S, None, None, "Instrucciones", "LightYellow2", Mensajes, 'IK').Ubicacion(1, 1, tk.SE)
CodoD_S=Wd.Boton(Fr_IK_S, 12, 2, "Codo Abajo", "ivory3", Enviar, [['Eb,','Ebr,','Eab,'], qs_S_D, Ba_S])
CodoU_S=Wd.Boton(Fr_IK_S, 12, 2, "Codo Arriba", "ivory3", Enviar, [['Eb,','Ebr,','Eab,'], qs_S_U, Ba_S])
Wd.Boton(Fr_IK_S, 12, 8, "Calcular", "dim gray", Cine_Inversa, ['S', [CodoD_S, CodoU_S]]).Ubicacion(1/4+0.02, 1/2, tk.W)
##################################Pestaña 3########################################
Fr_DK_A=Wd.Frame(Pestaña_Antro3R, 'Cinemática Directa', Fuente_12, 1, 5/8, 0, 0, None) #Frame Cinematica Directa
Fr_IK_A=Wd.Frame(Pestaña_Antro3R, 'Cinemática Inversa', Fuente_12, 1, 3/8, 0, 5/8, None) #Frame Cinematica Inversa
######Cinematica Directa######
#Barra De Progreso
Ba_A=Wd.Barra(Fr_IK_A, 300, 1/6, 0.98, 0.25, tk.E)
#Sliders
Qs1_A=Wd.Slider(Fr_DK_A, 0, 360, 10, 250, 34, 'Rotación Base', Fuente_Slider, Cine_Directa, ['Ab',Ba_A])
Qs1_A.Ubicacion(0, 0)
Qs2_A=Wd.Slider(Fr_DK_A, -90, 90, 10, 250, 34, 'Rotación Brazo', Fuente_Slider, Cine_Directa, ['Aab',Ba_A])
Qs2_A.Ubicacion(0, 2/3)
Qs3_A=Wd.Slider(Fr_DK_A, 0, 180, 10, 250, 34, 'Rotación Antebrazo', Fuente_Slider, Cine_Directa, ['Abr',Ba_A])
Qs3_A.Ubicacion(0, 1/3)
Qt1_A=Wd.Editables(Fr_DK_A,Fuente_Num, 3/16, 0.11)
Qt2_A=Wd.Editables(Fr_DK_A,Fuente_Num, 3/16, 1/3+0.11)
Qt3_A=Wd.Editables(Fr_DK_A,Fuente_Num, 3/16, 2/3+0.11)
Qt_A=[Qt1_A, Qt2_A, Qt3_A]
#Matrices
Wd.Matrices(Fr_DK_A, "DK", 5, 4, 4, "Link 1", 1/2, 0, Fuente_12)
Wd.Matrices(Fr_DK_A, "DK", 6, 4, 4, "Link 2", 5/6, 0, Fuente_12)
Wd.Matrices(Fr_DK_A, "DK", 7, 4, 4, "Link 3", 1/2, 1/2, Fuente_12)
Wd.Matrices(Fr_DK_A, "DK", 8, 4, 4, "Total", 5/6, 1/2, Fuente_12)
#Botones
Wd.Boton(Fr_DK_A, None, None, "Instrucciones", "LightYellow2", Mensajes, 'DK').Ubicacion(1, 1, tk.SE)
Gp_A=Wd.Boton(Fr_DK_A, 15, 3, "Griper", "lime green", Gripper, 'A')
Gp_A.Ubicacion(4/6, 0.9, tk.CENTER)
Wd.Boton(Fr_DK_A, 12, 2, "Enviar", "ivory3", Cajas_DK, [['Ab,','Abr,','Aab,'], Qt_A, Ba_A]).Ubicacion(1/4+0.02, 0.9, tk.W)
######Cinematica Inversa######
#Sliders
Pz_A=Wd.Slider(Fr_IK_A, None, None, 0.5, 250, 20, 'Pz', Fuente_Slider, Red_Slider, ['N','N'])
Pz_A.Ubicacion(0, 2/3)
Check_A=Wd.Check(Fr_IK_A, 'Inf', 3/16, 2/3+0.18, Cambio, 'A2', Check_A_Valor)
Py_A=Wd.Slider(Fr_IK_A, None, None, 0.5, 250, 20, 'Py', Fuente_Slider, Red_Slider, ['A2', 'I', Pz_A, Check_A, 3/16, 2/3+0.18])
Py_A.Ubicacion(0, 1/3)
Px_A=Wd.Slider(Fr_IK_A, -197, 197, 0.5, 250, 20, 'Px', Fuente_Slider, Red_Slider, ['A1', 'I', Py_A, None, None, None])
Px_A.Ubicacion(0, 0)
#Codo Abajo
Co_D_A=Wd.Frame(Fr_IK_A, "Codo Abajo", Fuente_12, 1/10, 1/2, 1/2, 0, tk.N)
q1_A=tk.StringVar()
q2_A_D=tk.StringVar()
q3_A_D=tk.StringVar()
qs_A_D=[q1_A, q2_A_D, q3_A_D]
Wd.Labels(Co_D_A, None, "θ₁", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 0, tk.NW)
Wd.Labels(Co_D_A, q1_A, None, None, None, None, Fuente_15, "white").Ubicacion(1, 0, tk.NE)
Wd.Labels(Co_D_A, None, "θ₂", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 1/3, tk.NW)
Wd.Labels(Co_D_A, q2_A_D, None, None, None, None, Fuente_15, "white").Ubicacion(1, 1/3, tk.NE)
Wd.Labels(Co_D_A, None, "θ₃", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 2/3, tk.NW)
Wd.Labels(Co_D_A, q3_A_D, None, None, None, None, Fuente_15, "white").Ubicacion(1, 2/3, tk.NE)
#Codo Arriba
Co_U_A=Wd.Frame(Fr_IK_A, "Codo Arriba", Fuente_12, 1/10, 1/2, 2/3, 0, tk.N)
q2_A_U=tk.StringVar()
q3_A_U=tk.StringVar()
qs_A_U=[q1_A, q2_A_U, q3_A_U]
Wd.Labels(Co_U_A, None, "θ₁", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 0, tk.NW)
Wd.Labels(Co_U_A, q1_A, None, None, None, None, Fuente_15, "white").Ubicacion(1, 0, tk.NE)
Wd.Labels(Co_U_A, None, "θ₂", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 1/3, tk.NW)
Wd.Labels(Co_U_A, q2_A_U, None, None, None, None, Fuente_15, "white").Ubicacion(1, 1/3, tk.NE)
Wd.Labels(Co_U_A, None, "θ₃", None, None, None, Fuente_15, "sandy brown").Ubicacion(0, 2/3, tk.NW)
Wd.Labels(Co_U_A, q3_A_U, None, None, None, None, Fuente_15, "white").Ubicacion(1, 2/3, tk.NE)
#Botones
Wd.Boton(Fr_IK_A, None, None, "Instrucciones", "LightYellow2", Mensajes, 'IK').Ubicacion(1, 1, tk.SE)
CodoD_A=Wd.Boton(Fr_IK_A, 12, 2, "Codo Abajo", "ivory3", Enviar, [['Ab,','Abr,','Aab,'], qs_A_D, Ba_A])
CodoU_A=Wd.Boton(Fr_IK_A, 12, 2, "Codo Arriba", "ivory3", Enviar, [['Ab,','Abr,','Aab,'], qs_A_U, Ba_A])
Wd.Boton(Fr_IK_A, 12, 8, "Calcular", "dim gray", Cine_Inversa, ['A', [CodoD_A, CodoU_A]]).Ubicacion(1/4+0.02, 1/2, tk.W)
##################################Pestaña 4########################################
#Desplegable
Despl_R=Wd.Desplegable(Pestaña_Antro6R, ["Cinemática Directa", "Cinemática Inversa"])
Despl_R.Ubicacion(0, 0)
Despl_R.bind("<<ComboboxSelected>>",Despl_R.Cambio)
Fr_DK_R=Despl_R.Frame_DK
Fr_IK_R=Despl_R.Frame_IK
#####Cinematica Directa######
#Barra De Progreso
Ba_R=Wd.Barra(Fr_DK_R, 200, 1/15, 0.98, 3/4, tk.NE)
#Sliders
Qs1_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Primera Base', Fuente_Slider, Cine_Directa, ['Rb1',Ba_R])
Qs1_R.Ubicacion(0, 0)
Qs2_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Primer Brazo', Fuente_Slider, Cine_Directa, ['Rbr1',Ba_R])
Qs2_R.Ubicacion(0, 1/6)
Qs3_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Segundo Brazo', Fuente_Slider, Cine_Directa, ['Rbr2',Ba_R])
Qs3_R.Ubicacion(0, 2/6)
Qs4_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Segunda Base', Fuente_Slider, Cine_Directa, ['Rb2',Ba_R])
Qs4_R.Ubicacion(0, 3/6)
Qs5_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Antebrazo', Fuente_Slider, Cine_Directa, ['Rab',Ba_R])
Qs5_R.Ubicacion(0, 4/6)
Qs6_R=Wd.Slider(Fr_DK_R,0, 360, 0.5, 250, 34, 'Rotación Muñeca', Fuente_Slider, Cine_Directa, ['Rm',Ba_R])
Qs6_R.Ubicacion(0, 5/6)
Qt1_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 1/18+0.014)
Qt2_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 4/18+0.014)
Qt3_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 7/18+0.014)
Qt4_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 10/18+0.014)
Qt5_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 13/18+0.014)
Qt6_R=Wd.Editables(Fr_DK_R, Fuente_Num, 3/16, 16/18+0.014)
Qt_R=[Qt1_R, Qt2_R, Qt3_R, Qt4_R, Qt5_R, Qt6_R]
#Matrices
Wd.Matrices(Fr_DK_R, "DK", 9, 4, 4, "Link 1", 1/2, 0, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 10, 4, 4, "Link 2", 5/6, 0, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 11, 4, 4, "Link 3", 1/2, 1/4, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 12, 4, 4, "Link 4", 5/6, 1/4, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 13, 4, 4, "Link 5", 1/2, 2/4, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 14, 4, 4, "Link 6", 5/6, 2/4, Fuente_12)
Wd.Matrices(Fr_DK_R, "DK", 15, 4, 4, "Total", 2/3, 3/4, Fuente_12)
#Botones
Wd.Boton(Fr_DK_R, None, None, "Instrucciones", "LightYellow2", Mensajes, 'DK').Ubicacion(1, 1, tk.SE)
Gp_R=Wd.Boton(Fr_DK_R, 15, 3, "Griper", "lime green", Gripper, 'R')
Gp_R.Ubicacion(7/16, 3/4+0.1, tk.N)
Wd.Boton(Fr_DK_R, 12, 2, "Enviar", "ivory3", Cajas_DK, [['Rb1,','Rbr1,','Rbr2,','Rb2,','Rab,','Rm,'], Qt_R, Ba_R]).Ubicacion(7/16, 3/4, tk.N)
######Cinematica Inversa######
#Sliders
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Px', Fuente_Slider, None, None).Ubicacion(0, 0)
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Py', Fuente_Slider, None, None).Ubicacion(0, 1/6)
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Pz', Fuente_Slider, None, None).Ubicacion(0, 2/6)
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Alfa', Fuente_Slider, None, None).Ubicacion(0, 3/6)
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Beta', Fuente_Slider, None, None).Ubicacion(0, 4/6)
# Wd.Slider(Fr_IK_R, -200, 200, 0.5, 250, 34, 'Gamma', Fuente_Slider, None, None).Ubicacion(0, 5/6)
#Botones
Wd.Boton(Fr_IK_R, None, None, "Instrucciones", "LightYellow2", Mensajes, 'IK').Ubicacion(1, 1, tk.SE)
##################################Pestaña 5########################################
Fr_T_J=Wd.Frame(Pestaña_Trayectorias_Jacobiano, 'Planificación de Trayectorias Por Jacobiano Inverso', Fuente_12, 1, 1, 0, 0, None) #Frame Jacobiano
##################################Pestaña 6########################################
Fr_J=Wd.Frame(Pestaña_Jacobianos, 'Jacobianos', Fuente_12, 1, 1, 0, 0, None) #Frame Jacobiano
#Barra De Progreso
Ba_J=Wd.Barra(Fr_J, 300, 1/15, 1/2, 1/3, tk.N)
#Matrices
Wd.Matrices(Fr_J, "Jaco", 1, 6, 3, "Jacobiano Scara Geométrico", 1/4, 0, Fuente_12)
Wd.Matrices(Fr_J, "Jaco", 2, 6, 3, "Jacobiano Scara Analítico", 3/4, 0, Fuente_12)
Wd.Matrices(Fr_J, "Jaco", 3, 6, 3, "Jacobiano Antropomórfico Geométrico", 1/4, 1/3, Fuente_12)
Wd.Matrices(Fr_J, "Jaco", 4, 6, 3, "Jacobiano Antropomórfico Analítico", 3/4, 1/3, Fuente_12)
Wd.Matrices(Fr_J, "JacoR", 1, 6, 6, "Jacobiano Antropomórfico 6R Geométrico", 1/4, 2/3, Fuente_12)
Wd.Matrices(Fr_J, "JacoR", 2, 6, 6, "Jacobiano Antropomórfico 6R Analítico", 3/4, 2/3, Fuente_12)
#Botones
#Wd.Boton(Fr_J, None, None, "Instrucciones", "LightYellow2").Ubicacion(1, 1, tk.SE)
Wd.Boton(Fr_J, 15, 3, "Mostrar", "dim gray", Jacobians, Ba_J).Ubicacion(1/2, 1/2, tk.N)
##################################Pestaña 7########################################
Fr_T=Wd.Frame(Pestaña_Trayectorias, 'Datos de Entrada', Fuente_12, 1, 1/4, 0, 0, None) #Frame Datos Trayectorias
#Desplegables
Despl_Mani=Wd.Desplegable(Fr_T, ["Scara (PRR)", "Antropomórfico (RRR)"])
Despl_Mani.Ubicacion(0, 0)
Despl_Mani.bind("<<ComboboxSelected>>",Show_Sliders)
Despl_Codo=Wd.Desplegable(Fr_T, ["Codo Arriba", "Codo Abajo"])
Despl_Codo.bind("<<ComboboxSelected>>",Show_Perfiles)
#Label Información Importante (Parte de Reposo)
Wd.Labels(Fr_T, Reposo, None, 1, "solid", None, Fuente_15, None).Ubicacion(4/16, 0, None)
#Puntos Iniciales-Finales
#Labels
P_xi=Wd.Labels(Fr_T, None, "0", 1, "solid", 12, None, None)
P_yi=Wd.Labels(Fr_T, None, "0", 1, "solid", 12, None, None)
P_zi=Wd.Labels(Fr_T, None, "0", 1, "solid", 12, None, None)
P_x= Wd.Labels(Fr_T, None, "Px", None, None, None, None, None)
P_y= Wd.Labels(Fr_T, None, "Py", None, None, None, None, None)
P_z= Wd.Labels(Fr_T, None, "Pz", None, None, None, None, None)
#Buttons
Tipo=tk.IntVar()
Cuadratico=Wd.Radio(Fr_T, "Perfil Cuadrático", Fuente_12, 1, Tipo, 15, Show_Datos)
TrapezoidalI=Wd.Radio(Fr_T, "Perfil Trapezoidal I", Fuente_12, 2, Tipo, 15, Show_Datos)
TrapezoidalII=Wd.Radio(Fr_T, "Perfil Trapezoidal II", Fuente_12, 3, Tipo, 15, Show_Datos)
Calcular_PT=Wd.Boton(Fr_T, 12, None, "Calcular", "dim gray", But_Perfiles, None)
#Wd.Boton(Fr_T, None, None, "Instrucciones", "LightYellow2").Ubicacion(1, 1, tk.SE)
#Barra De Progreso
Br_Pl=Wd.Barra(Fr_T, 150, 1/8, 5/16, 1, tk.S)
#Sliders
Check_S_PL=Wd.Check(Fr_T, '-', 1/4-0.025, 1/3+0.22, Cambio, 'ST', Check_ST_Valor)
Check_A_PL=Wd.Check(Fr_T, 'Inf', 1/4-0.025, 2/3+0.15, Cambio, 'AT', Check_AT_Valor)
Pl_x=Wd.Slider(Fr_T, None, None, 0.5, 180, 20, None, None, Alter_Sliders, 'A1')
Pl_y=Wd.Slider(Fr_T, None, None, 0.5, 180, 20, None, None, Alter_Sliders, 'A2')
Pl_z=Wd.Slider(Fr_T, None, None, 0.5, 180, 20, None, None, Show_Codo, None)
T_f=Wd.Slider(Fr_T, 15, 40, 1, 180, 20, None, None, Show_Graficas, None)
N_p=Wd.Slider(Fr_T, 10, 100, 10, 180, 20, None, None, Show_Graficas, None)
Vj_1=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
Vj_2=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
Vj_3=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
Aj_1=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
Aj_2=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
Aj_3=Wd.Slider(Fr_T, None, None, 0.2, 180, 20, None, None, Show_Graficas, None)
# #Titulos
P_inicial=Wd.Labels(Fr_T, None, "Puntos Iniciales", None, None, 12, Fuente_Num2, None)
P_final=Wd.Labels(Fr_T, None, "Puntos Finales", None, None, 12, Fuente_Num2, None)
T_Codo=Wd.Labels(Fr_T, None, "Elección Codo", None, None, 12, Fuente_Num2, None)
TT_f=Wd.Labels(Fr_T, None, "Tf", None, None, None, Fuente_Num2, None)
TN_p=Wd.Labels(Fr_T, None, "Np", None, None, None, Fuente_Num2, None)
TVc_1=Wd.Labels(Fr_T, None, "Vc1", None, None, None, Fuente_Num2, None)
TVc_2=Wd.Labels(Fr_T, None, "Vc2", None, None, None, Fuente_Num2, None)
TVc_3=Wd.Labels(Fr_T, None, "Vc3", None, None, None, Fuente_Num2, None)
TAc_1=Wd.Labels(Fr_T, None, "Ac1", None, None, None, Fuente_Num2, None)
TAc_2=Wd.Labels(Fr_T, None, "Ac2", None, None, None, Fuente_Num2, None)
TAc_3=Wd.Labels(Fr_T, None, "Ac3", None, None, None, Fuente_Num2, None)
Fr_Graf=Wd.Frame(Pestaña_Trayectorias, 'Gráficas', Fuente_12, 1, 3/4, 0, 1/4, None) #Frame Graficas
#Ventana.attributes('-fullscreen',True)
Ventana.mainloop()
|
daridel99/UMNG-robotica
|
Interfaz.py
|
Interfaz.py
|
py
| 39,199 |
python
|
es
|
code
| 0 |
github-code
|
6
|
2418871084
|
import torch
import numpy as np
from copy import deepcopy
from typing import List, Optional, Tuple
from torch.utils.data import DataLoader
from supervised.utils import ids, keys, typeddicts
from supervised import saving, data, networks
VERBOSE = False # Default: whether the code output should be verbose
NR_EPOCHS = 50 # Default max number of epochs for training in case of no early stopping
EARLY_STOPPING_PATIENCE = 5 # Number of epochs to be patient before early stopping the training
def train_epoch_multi_readout(model: networks.classes.MultitaskLearner, data_loader: DataLoader,
optimizer: torch.optim.Optimizer, track_pmdd: Optional[bool] = False,
training_tracker: Optional[typeddicts.TrackingOutcome] = None,
train_params: Optional[typeddicts.TrainParameters] = None,
pmdd_dataset: Optional[data.load.DatasetType] = None,
validation_dl: Optional[typeddicts.DL] = None
) -> Tuple[List[float], typeddicts.TrackingOutcome]:
# List to store the train loss for each batch
loss_list = []
for batch_idx, ((data_batch, _), (task, targets)) in enumerate(data_loader):
optimizer.zero_grad()
out = model.forward(data_batch)
if len(model.rbs) != 1:
out = torch.gather(out, 0, torch.add(task.view(1, -1), train_params[keys.K_FIRST_TASK_ID])).reshape(-1)
loss = networks.evaluate.mse_loss(out, targets)
loss.backward()
optimizer.step()
loss_list += [float(loss.detach())]
if track_pmdd:
if (batch_idx + 1) in networks.evaluate.PMDD_TRACK_BATCHES:
training_tracker = networks.evaluate.track_network(model=model, pmdd_dataset=pmdd_dataset,
training_tracker=training_tracker,
train_loss=loss_list[-1],
validation_dl=validation_dl,
train_params=train_params)
return loss_list, training_tracker
def train_epoch_context_learner(model: networks.classes.MultitaskLearner, data_loader: DataLoader,
optimizer: torch.optim.Optimizer, track_pmdd: Optional[bool] = False,
training_tracker: Optional[typeddicts.TrackingOutcome] = None,
train_params: Optional[typeddicts.TrainParameters] = None,
pmdd_dataset: Optional[data.load.DatasetType] = None,
validation_dl: Optional[typeddicts.DL] = None
) -> Tuple[List[float], typeddicts.TrackingOutcome]:
# List to store the train loss for each batch
loss_list = []
# Train one batch at a time
for batch_idx, ((data_batch, _), (tasks, targets)) in enumerate(data_loader):
optimizer.zero_grad()
out = model.forward(data_batch, tasks + train_params[keys.K_FIRST_TASK_ID]).reshape(-1)
loss = networks.evaluate.mse_loss(out, targets)
loss_list += [float(loss.detach())]
loss.backward()
optimizer.step()
# Track pmdd loss, validation performance & train loss
if track_pmdd:
if (batch_idx + 1) in networks.evaluate.PMDD_TRACK_BATCHES:
training_tracker = networks.evaluate.track_network(model=model, pmdd_dataset=pmdd_dataset,
training_tracker=training_tracker,
train_loss=loss_list[-1],
validation_dl=validation_dl,
train_params=train_params)
return loss_list, training_tracker
def train_epoch(model: networks.classes.MultitaskLearner, data_loader: DataLoader, optimizer: torch.optim.Optimizer,
prog_params: typeddicts.ProgramParameters, train_params: typeddicts.TrainParameters,
save_params: typeddicts.SavingParameters, pmdd_dataset: data.load.DatasetType,
validation_dl: Optional[typeddicts.DL] = None, track_pmdd: Optional[bool] = False) -> List[float]:
# Initialize the tracker for pmdd loss, validation performance & train loss to a database
if track_pmdd:
assert validation_dl is not None
training_tracker = networks.evaluate.init_track_network(model=model, train_params=train_params,
pmdd_dataset=pmdd_dataset,
validation_dl=validation_dl)
else:
training_tracker = None
# Train for one epoch
if prog_params[keys.K_MODEL_ID] == ids.ID_MULTI_READOUT:
loss_list, training_tracker = train_epoch_multi_readout(
model=model, data_loader=data_loader, optimizer=optimizer, track_pmdd=track_pmdd, train_params=train_params,
training_tracker=training_tracker, pmdd_dataset=pmdd_dataset, validation_dl=validation_dl)
else:
loss_list, training_tracker = train_epoch_context_learner(
model=model, data_loader=data_loader, optimizer=optimizer, track_pmdd=track_pmdd, train_params=train_params,
pmdd_dataset=pmdd_dataset, validation_dl=validation_dl)
# Save the tracked pmdd loss, validation performance & train loss to a database
if track_pmdd:
saving.save.save_first_epoch_batches_pmdd(prog_params=prog_params,
train_params=train_params,
save_params=save_params,
tracked_pmdd_batches=training_tracker)
return loss_list
def train_model(model: networks.classes.MultitaskLearner, train_data: data.datasets.KTaskNClassMDatasetData,
validation_data: data.datasets.KTaskNClassMDatasetData, optimizer: torch.optim.Optimizer,
prog_params: typeddicts.ProgramParameters, train_params: typeddicts.TrainParameters,
save_params: typeddicts.SavingParameters, verbose: Optional[bool] = VERBOSE
) -> Tuple[networks.classes.MultitaskLearner, typeddicts.PerformanceOutcome]:
# Prepare to evaluate best time to stop training
validation_data_loader, nr_samples = data.load.get_dataloader(validation_data)
validation_dl: typeddicts.DL = {keys.K_NUMBER_SAMPLES: nr_samples,
keys.K_VALIDATION_DATALOADER: validation_data_loader}
best_model = deepcopy(model)
best_validation_performance = -1.
best_validation_loss = -1.
stagnation_counter = 0
training_tracker = None
if save_params[keys.K_SAVE_PMDD_LOSS]:
if save_params[keys.K_PMDD_LOSS_TRACK_DATASET] in [ids.ID_EMNIST, ids.ID_K49, ids.ID_CIFAR100]:
track_dataset = data.load.get_dataset(save_params[keys.K_PMDD_LOSS_TRACK_DATASET], False).data.reshape(
[-1, data.datasets.n_input_dimension(save_params[keys.K_PMDD_LOSS_TRACK_DATASET])])
else:
raise NotImplementedError(f"{save_params[keys.K_PMDD_LOSS_TRACK_DATASET]} track pmdd loss")
if save_params[keys.K_SAVE_PMDD_LOSS] is not None:
training_tracker = {keys.K_TRACKED_TRAIN_LOSS: [], keys.K_TRACKED_VALIDATION_PERFORMANCE: [],
keys.K_TRACKED_PMDD_LOSS: []}
pmdd_loss = networks.evaluate.get_pmdd_loss(dataset=track_dataset,
weights=np.transpose(model.ws[0].detach().numpy()))
training_tracker[keys.K_TRACKED_PMDD_LOSS] += [pmdd_loss]
print(f"Epoch 0 had pmdd L2 {pmdd_loss}")
else:
track_dataset = None
# Train epochs until performance stops to improve
for epoch in range(1, NR_EPOCHS + 1):
data_loader = DataLoader(train_data, batch_size=train_params[keys.K_BATCH_SIZE], shuffle=True)
# Train for one epoch
if epoch == 1:
train_loss = train_epoch(model=model, data_loader=data_loader, optimizer=optimizer, prog_params=prog_params,
train_params=train_params, save_params=save_params, pmdd_dataset=track_dataset,
validation_dl=validation_dl, track_pmdd=save_params[keys.K_SAVE_PMDD_LOSS])
else:
train_loss = train_epoch(model=model, data_loader=data_loader, optimizer=optimizer, prog_params=prog_params,
train_params=train_params, save_params=save_params, pmdd_dataset=track_dataset)
# Evaluate model performance on validation dataset
validation_performance, validation_loss = networks.evaluate.evaluate_performance(
model_id=prog_params[keys.K_MODEL_ID],
model=model,
dataset=validation_data_loader,
nr_samples=nr_samples,
task_id0=train_params[keys.K_FIRST_TASK_ID])
if verbose:
print(f"Epoch {epoch} had training loss {train_loss} and validation performance {validation_performance}%")
if save_params[keys.K_SAVE_PMDD_LOSS]:
training_tracker[keys.K_TRACKED_TRAIN_LOSS] += [train_loss]
training_tracker[keys.K_TRACKED_VALIDATION_PERFORMANCE] += [validation_performance]
pmdd_loss = networks.evaluate.get_pmdd_loss(dataset=track_dataset,
weights=np.transpose(model.ws[0].detach().numpy()))
training_tracker[keys.K_TRACKED_PMDD_LOSS] += [pmdd_loss]
print(f"Epoch {epoch} had "
f"training loss {sum(train_loss)}, "
f"validation performance {validation_performance}% and "
f"pmdd L2 {pmdd_loss}")
# Check whether performance is still improving and stop training otherwise
if validation_performance > best_validation_performance:
stagnation_counter = 0
best_validation_performance = validation_performance
best_validation_loss = validation_loss
best_model = deepcopy(model)
else:
stagnation_counter += 1
if stagnation_counter >= EARLY_STOPPING_PATIENCE:
if verbose:
print(f"Early stopping training at epoch {epoch} "
f"with validation performance of {best_validation_performance}%")
break
# Save the pmdd, train and validation losses during training epochs (if the saving parameters require it)
saving.save.save_train_epochs_pmdd(prog_params=prog_params, train_params=train_params, save_params=save_params,
tracked_pmdd_epochs=training_tracker)
# Evaluate training performance
train_performance, train_loss = networks.evaluate.evaluate_performance(model_id=prog_params[keys.K_MODEL_ID],
model=best_model,
dataset=train_data,
task_id0=train_params[keys.K_FIRST_TASK_ID])
outcome: typeddicts.PerformanceOutcome = {keys.K_TRAIN_PERFORMANCE: train_performance,
keys.K_TRAIN_LOSS: train_loss,
keys.K_VALIDATION_PERFORMANCE: best_validation_performance,
keys.K_VALIDATION_LOSS: best_validation_loss}
return best_model, outcome
def get_optimizer(training_type: str, model: networks.classes.MultitaskLearner, train_params: typeddicts.TrainParameters
) -> torch.optim.Optimizer:
parameters = None
optimizer = None
# Train both shared and contextual parameters
if ids.ID_TRAIN in training_type:
lr = train_params[keys.K_SHARED_PARAM_LEARNING_RATE]
if ids.ID_SINGLE_TASK in training_type:
optimizer = torch.optim.Adam(model.parameters(), lr)
elif ids.ID_CONTEXT_B_SHARED_W in training_type:
optimizer = torch.optim.Adam([{"params": model.ws},
{"params": model.bs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_G_SHARED_BW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.bs},
{"params": model.gs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_G_SHARED_XW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.xs},
{"params": model.gs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_G_SHARED_BXW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.xs}, {"params": model.bs},
{"params": model.gs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_BG_SHARED_W in training_type:
optimizer = torch.optim.Adam([{"params": model.ws},
{"params": model.bs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]},
{"params": model.gs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_M_SHARED_BW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.bs},
{"params": model.ms, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_M_SHARED_XW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.xs},
{"params": model.ms, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_M_SHARED_BXW in training_type:
optimizer = torch.optim.Adam([{"params": model.ws}, {"params": model.xs}, {"params": model.bs},
{"params": model.ms, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
elif ids.ID_CONTEXT_BM_SHARED_W in training_type:
optimizer = torch.optim.Adam([{"params": model.ws},
{"params": model.bs, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]},
{"params": model.ms, "lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
lr)
# Train multiple labels with individual readout neurons each all at the same time
elif ids.ID_MULTI_READOUT in training_type:
optimizer = torch.optim.Adam([{"params": [w for w in model.ws] + [b for b in model.bs]},
{"params": [r for r in model.rs] + [rb for rb in model.rbs],
"lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}], lr)
# Train only contextual parameters
elif ids.ID_TRANSFER in training_type:
lr = train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]
if "deepen" in training_type:
if ids.ID_CONTEXT_B_SHARED_W in training_type:
optimizer = torch.optim.Adam([{"params": model.ws[1:]},
{"params": model.bs,
"lr": train_params[keys.K_CONTEXT_PARAM_LEARNING_RATE]}],
train_params[keys.K_SHARED_PARAM_LEARNING_RATE])
else:
raise NotImplementedError
elif ids.ID_CONTEXT_B_SHARED_W in training_type:
parameters = model.bs
elif ids.ID_CONTEXT_BG_SHARED_W in training_type:
optimizer = torch.optim.Adam([{"params": model.bs, "lr": lr},
{"params": model.gs, "lr": lr}], lr)
elif ids.ID_CONTEXT_G_SHARED_BW in training_type or ids.ID_CONTEXT_G_SHARED_XW in training_type \
or ids.ID_CONTEXT_G_SHARED_BXW in training_type:
parameters = model.gs
# Train only readout neurons on top of a fixed trunk
elif ids.ID_MULTI_READOUT in training_type:
parameters = [r for r in model.rs] + [rb for rb in model.rbs]
else:
raise ValueError(training_type)
if optimizer is None:
optimizer = torch.optim.Adam(parameters, lr)
return optimizer
|
doggydigit/Biasadaptation-jureca
|
supervised/simulate/train.py
|
train.py
|
py
| 17,379 |
python
|
en
|
code
| 0 |
github-code
|
6
|
43623562044
|
#Micah lee 03/12/18
media_type = input("what is the media type? ")
title = input("what is the title ")
des = input("give me a brief description ")
yr = str(input("what year was it created "))
rating = float(input(" what rating would you give this media type (1/10) " ))
new_list = [ title, des, yr, rating ]
if media_type == "Book":
print (new_list)
elif media_type == "movies":
print (new_list)
|
MicLee52/Micah-Lee
|
micah_lee-assign01.py
|
micah_lee-assign01.py
|
py
| 414 |
python
|
en
|
code
| 1 |
github-code
|
6
|
73549603388
|
'''
Slakeys Surf Alert
Add Users with the argument "add" "user name * email * surf spot name * surf spot url"
Run with the argument "run"
'''
import sys
from SurfAlertUtils import *
if __name__ == "__main__":
args = sys.argv
args.pop(0)
if len(args) == 0:
print("Welcome to Slakey\'s Surf Alert. If you have not added a user, please input \"add\" \"user\" \"email\" \"surfspot\" \"url\". If you want to run just input \"run\"")
elif args[0] == "run":
run()
elif args[0] == "add":
adduser(args[1:])
|
aslakey/SlakeysSurfAlert
|
surfalert.py
|
surfalert.py
|
py
| 514 |
python
|
en
|
code
| 0 |
github-code
|
6
|
508734253
|
from itertools import permutations
import cProfile
#
#make permutation of array
#
list = [1,2,3,4]
listPermutations = permutations(list)
for permutation in listPermutations:
print(permutation)
#
#count number of permutations
#
listPermutations = permutations(list)
count = 0
for permutation in listPermutations:
count += 1
print(len(list), count)
#
#check the performance and undestand
# how fast the space of permutations grows
#
def faculty(n):
if n <= 1:
return n
else:
return faculty(n-1)+n
def counter(n):
count = 0
for i in range(n):
count += 1
return count
cProfile.run("counter(faculty(10))")
|
sleevs/JSNSecurity
|
Permutations.py
|
Permutations.py
|
py
| 695 |
python
|
en
|
code
| 0 |
github-code
|
6
|
71811420988
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""code_info
@Time : 2020 2020/7/9 13:15
@Author : Blanc
@File : double_color_ball.py
"""
# 程序运行之后,从1‐64中挑选5个数作为彩票的抽奖结果
import random
a = list()
for i in range(0, 5):
b = random.randint(1, 64)
a.append(b)
print('双色球号开奖:', a)
|
Flynn-Lu/PythonCode
|
2020python实训/Day7/double_color_ball.py
|
double_color_ball.py
|
py
| 361 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24794059633
|
#!/usr/bin/env python3
#
import sys, argparse
import ROOT
ROOT.PyConfig.IgnoreCommandLineOptions = True
def h2pgf(h):
""" Convert TH1 into pgfplot data with error bars
input: xmin xmax y ey
output: x ex y ey
ex = (xmax+xmin)/2
"""
nbins = h.GetNbinsX()
# print("# \\begin{axis}")
# print("# \\addplot[const plot mark mid, black, solid, no markers, error bars/.cd, y dir=both, y explicit, error mark=none]")
# print(" coordinates {")
print("x ex y ey")
for b in range(1, nbins+1):
x = h.GetBinCenter(b)
ex = h.GetBinWidth(b)/2.0
y = h.GetBinContent(b)
ey = h.GetBinError(b)
# print(x,ex,y,ey)
if y>0.0:
print(x, ex, y, ey)
def g2pgf(h):
""" Convert TGraph into pgfplot data """
N = h.GetN()
print("\\begin{axis}")
print("\\addplot[ultra thick]")
print(" coordinates {")
print("x ex y ey")
for b in range(N):
x = h.GetX()[b]
y = h.GetY()[b]
print(x, y)
print("};")
print("\\addlegendentry{TGraph};")
def main():
""" A script to convert TH1 and TGraph into a pgfplot format """
parser = argparse.ArgumentParser(description=main.__doc__, epilog='Homepage: https://github.com/kbat/mc-tools')
parser.add_argument('root', type=str, help='ROOT file')
parser.add_argument('hist', type=str, help='histogram name')
args = parser.parse_args()
f = ROOT.TFile(args.root)
f.ls()
h = f.Get(args.hist)
if h.InheritsFrom("TH1"):
h2pgf(h)
elif h.InheritsFrom("TGraph"):
g2pgf(h)
if __name__ == "__main__":
sys.exit(main())
|
kbat/mc-tools
|
mctools/common/root2pgf.py
|
root2pgf.py
|
py
| 1,629 |
python
|
en
|
code
| 38 |
github-code
|
6
|
22117461324
|
import rospy
from MyStatics.RealTimePlotter import RealTimePlotter
from MyStatics.GaussianPlotter import GaussPlot
from FaultDetection import ChangeDetection
from geometry_msgs.msg import AccelStamped
from dynamic_reconfigure.server import Server
from accelerometer_ros.cfg import accelerometerGaussConfig
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
class AccGaussCUSUM(RealTimePlotter,ChangeDetection,GaussPlot):
def __init__(self, max_samples = 500, pace = 2, cusum_window_size = 10 ):
self.data_ = []
self.data_.append([0,0,0])
self.i = 0
self.msg = 0
self.window_size = cusum_window_size
RealTimePlotter.__init__(self,max_samples,pace)
ChangeDetection.__init__(self,3)
GaussPlot.__init__(self )
rospy.init_node("accelerometer_gauss_cusum", anonymous=True)
rospy.Subscriber("accel", AccelStamped, self.accCB)
self.dyn_reconfigure_srv = Server(accelerometerGaussConfig, self.dynamic_reconfigureCB)
plt.legend()
plt.show()
rospy.spin()
plt.close("all")
def dynamic_reconfigureCB(self,config, level):
self.window_size = config["window_size"]
return config
def accCB(self, msg):
while (self.i< self.window_size):
self.addData([msg.accel.linear.x,msg.accel.linear.y, msg.accel.angular.z])
self.i = self.i+1
if len(self.samples) is self.max_samples:
self.samples.pop(0)
return
self.i=0
self.changeDetection(len(self.samples))
cur = np.array(self.cum_sum, dtype = object)
self.call(np.mean(self.samples, axis=0),np.var(self.samples, axis=0))
"""
THIS IS NOT REALLY WORKING
x1 = np.linspace(-140, 140, len(self.s_z))
print(len(x1), len(np.sort(self.s_z)))
plt.scatter([x1,x1,x1],np.sort(self.s_z))
"""
x = np.linspace(-140, 140, 200)
y = np.array([i.pdf(x) for i in self.rv])
self.update(msg.header.seq,x.tolist(),y.T.tolist())
|
jcmayoral/collision_detector_observers
|
collision_observers/accelerometer/accelerometer_ros/src/fault_detection/AccGaussCUSUM.py
|
AccGaussCUSUM.py
|
py
| 2,101 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70879484348
|
import collections
import functools
from operator import mul
def tokenize(s: str):
tokens = []
words = s.strip().split()
for word in words:
if word.startswith("("):
tokens.append(word[0])
tokens.extend(tokenize(word[1:]))
elif word.endswith(")"):
tokens.extend(tokenize(word[:-1]))
tokens.append(word[-1])
elif word in "+*":
tokens.append(word)
else:
tokens.append(int(word))
return tokens
def weird_math_a_helper(tokens):
ans = None
op = None
while len(tokens) > 0:
token = tokens.popleft()
if token == ")":
break
elif token in ("*", "+"):
op = token
else:
n = weird_math_a_helper(tokens) if token == "(" else token
if ans is None:
ans = n
elif op == "+":
ans += n
elif op == "*":
ans *= n
return ans
def weird_math_a(problem):
return weird_math_a_helper(collections.deque(tokenize(problem)))
def weird_math_b_helper(tokens):
sums = []
ans = None
op = None
while len(tokens) > 0:
token = tokens.popleft()
if token == ")":
break
elif token == "*":
sums.append(ans)
ans = None
op = None
elif token == "+":
op = token
else:
n = weird_math_b_helper(tokens) if token == "(" else token
if ans is None:
ans = n
elif op == "+":
ans += n
sums.append(ans)
return functools.reduce(mul, sums, 1)
def weird_math_b(problem):
return weird_math_b_helper(collections.deque(tokenize(problem)))
def parta(txt):
return sum(weird_math_a(line) for line in txt.splitlines())
def partb(txt):
return sum(weird_math_b(line) for line in txt.splitlines())
if __name__ == "__main__":
from aocd import data
print(f"parta: {parta(data)}")
print(f"partb: {partb(data)}")
|
cj81499/advent-of-code
|
src/aoc_cj/aoc2020/day18.py
|
day18.py
|
py
| 2,065 |
python
|
en
|
code
| 2 |
github-code
|
6
|
74472010426
|
import unittest
from car_simulation import Car, Field, main
from unittest.mock import patch
from io import StringIO
class TestCar(unittest.TestCase):
def test_change_direction(self):
car = Car("TestCar", 0, 0, "N", "F")
car.change_direction("R")
self.assertEqual(car.direction, "E")
def test_move_within_field(self):
field = Field(5, 5)
car = Car("TestCar", 2, 2, "N", "F")
car.move(field)
self.assertEqual((car.x, car.y), (2, 3))
def test_move_out_of_bounds(self):
field = Field(5, 5)
car = Car("TestCar", 4, 4, "E", "F")
car.move(field)
self.assertEqual((car.x, car.y), (4, 4)) # Should not move out of bounds
def test_execute_commands(self):
field = Field(5, 5)
car = Car("TestCar", 0, 0, "N", "F")
car.execute_commands(field)
self.assertEqual(car.direction, "N")
self.assertEqual((car.x, car.y), (0, 1))
def test_execute_empty_commands(self):
field = Field(5, 5)
car = Car("TestCar", 0, 0, "N", "")
car.execute_commands(field)
self.assertEqual((car.x, car.y), (0, 0)) # Should not move with empty commands
def test_get_status(self):
car = Car("TestCar", 3, 3, "W", "FFL")
status = car.get_status()
self.assertEqual(status, "TestCar, (3, 3) W, FFL")
def test_collide(self):
car = Car("TestCar", 2, 2, "S", "F")
car.collid(1, "AnotherCar")
self.assertTrue(car.collided)
self.assertEqual(car.step, 1)
self.assertEqual(car.collided_with, "AnotherCar")
class TestField(unittest.TestCase):
def test_add_car_within_field(self):
field = Field(5, 5)
car = Car("TestCar", 1, 1, "N", "F")
field.add_car(car)
self.assertIn(car, field.cars)
def test_add_car_out_of_bounds(self):
field = Field(5, 5)
car = Car("TestCar", 6, 6, "N", "F")
field.add_car(car)
self.assertNotIn(car, field.cars)
def test_add_car_collision(self):
field = Field(5, 5)
car1 = Car("Car1", 2, 2, "N", "F")
car2 = Car("Car2", 2, 2, "S", "F")
field.add_car(car1)
field.add_car(car2)
self.assertNotIn(car2, field.cars) # Car2 should not be added due to collision
def test_is_within_field(self):
field = Field(5, 5)
self.assertTrue(field.is_within_field(2, 3))
self.assertFalse(field.is_within_field(6, 6))
class TestCarSimulation(unittest.TestCase):
@patch("builtins.input", side_effect=["10 10", "1", "A", "1 2 N", "FFRFFFFRRL", "2", "2"])
def test_simulation_with_single_car(self, mock_input):
with patch("sys.stdout", new_callable=StringIO) as mock_stdout:
main()
output = mock_stdout.getvalue().strip()
self.assertIn("Your current list of cars are:", output)
self.assertIn("- A, (1, 2) N, FFRFFFFRRL", output)
self.assertIn("After simulation, the result is:", output)
self.assertIn("- A, (5, 4) S", output)
@patch("builtins.input", side_effect=["10 10", "1", "A", "1 2 N", "FFRFFFFRRL", "1", "B", "7 8 W", "FFLFFFFFFF", "2", "2"])
def test_simulation_with_multiple_car(self, mock_input):
with patch("sys.stdout", new_callable=StringIO) as mock_stdout:
main()
output = mock_stdout.getvalue().strip()
self.assertIn("Your current list of cars are:", output)
self.assertIn("- A, (1, 2) N, FFRFFFFRRL", output)
self.assertIn("- B, (7, 8) W, FFLFFFFFFF", output)
self.assertIn("After simulation, the result is:", output)
self.assertIn("- A, collides with B at (5, 4) at step 7", output)
self.assertIn("- B, collides with A at (5, 4) at step 7", output)
if __name__ == "__main__":
unittest.main()
|
LiSheng-Chris/car-simulation
|
car_simulation_test.py
|
car_simulation_test.py
|
py
| 3,835 |
python
|
en
|
code
| 0 |
github-code
|
6
|
12258821097
|
import math
import random
import time
import carla
import cv2
import numpy as np
actor_list = []
def pure_pursuit(tar_location, v_transform):
L = 2.875
yaw = v_transform.rotation.yaw * (math.pi / 180)
x = v_transform.location.x - L / 2 * math.cos(yaw)
y = v_transform.location.y - L / 2 * math.sin(yaw)
dx = tar_location.x - x
dy = tar_location.y - y
ld = math.sqrt(dx ** 2 + dy ** 2)
alpha = math.atan2(dy, dx) - yaw
delta = math.atan(2 * math.sin(alpha) * L / ld) * 180 / math.pi
steer = delta/90
if steer > 1:
steer = 1
elif steer < -1:
steer = -1
return steer
def img_process(data):
img = np.array(data.raw_data)
img = img.reshape((1080, 1920, 4))
img = img[:, :, :3]
cv2.imwrite('car.png', img)
# cv2.imshow('', img)
# cv2.waitKey(1)
pass
def callback(event):
print("碰撞")
def callback2(event):
print("穿越车道")
try:
client = carla.Client('localhost', 2000)
client.set_timeout(5.0)
world = client.get_world()
map = world.get_map()
blueprint_library = world.get_blueprint_library()
v_bp = blueprint_library.filter("model3")[0]
spawn_point = random.choice(world.get_map().get_spawn_points())
vehicle = world.spawn_actor(v_bp, spawn_point)
actor_list.append(vehicle)
# Find the blueprint of the sensor.
blueprint = blueprint_library.find('sensor.camera.rgb')
# Modify the attributes of the blueprint to set image resolution and field of view.
blueprint.set_attribute('image_size_x', '1920')
blueprint.set_attribute('image_size_y', '1080')
blueprint.set_attribute('fov', '110')
# Set the time in seconds between sensor captures
blueprint.set_attribute('sensor_tick', '1.0')
transform = carla.Transform(carla.Location(x=0.8, z=1.7))
sensor = world.spawn_actor(blueprint, transform, attach_to=vehicle)
actor_list.append(sensor)
sensor.listen(lambda data: img_process(data))
blueprint_collision = blueprint_library.find('sensor.other.collision')
transform = carla.Transform(carla.Location(x=0.8, z=1.7))
sensor_collision = world.spawn_actor(blueprint_collision, transform, attach_to=vehicle)
actor_list.append(sensor_collision)
sensor_collision.listen(callback)
blueprint_lane_invasion = blueprint_library.find('sensor.other.lane_invasion')
transform = carla.Transform(carla.Location(x=0.8, z=1.7))
sensor_lane_invasion = world.spawn_actor(blueprint_lane_invasion, transform, attach_to=vehicle)
actor_list.append(sensor_lane_invasion)
sensor_lane_invasion.listen(callback2)
vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=0))
while True:
waypoint01 = map.get_waypoint(vehicle.get_location(), project_to_road=True,
lane_type=(carla.LaneType.Driving | carla.LaneType.Sidewalk))
v_trans = vehicle.get_transform()
waypoints = waypoint01.next(8.0)
waypoint02 = waypoints[0]
tar_loc = waypoint02.transform.location
steer = pure_pursuit(tar_loc, v_trans)
vehicle.apply_control(carla.VehicleControl(throttle=0.6, steer=steer))
time.sleep(0.02)
finally:
for actor in actor_list:
actor.destroy()
print("结束")
|
DYSfu/Carla_demo
|
demo3.py
|
demo3.py
|
py
| 3,290 |
python
|
en
|
code
| 4 |
github-code
|
6
|
75235905147
|
from v_model import *
aho=visual.box()
par=visual.box()
par.color=visual.color.red
baka=V_PartsObject(FRAME())
baka.set_shape(aho)
pa=FRAME(xyzabc=[0,0,0,pi/4,0,0])
pb=FRAME(xyzabc=[0,0,0,0,pi/4,0])
pc=FRAME(xyzabc=[0,0,0,0,0,pi/4])
pe=FRAME(xyzabc=[1,0,0,0,pi/4,0,0])
pf=FRAME(xyzabc=[0,1,0,0,0,0])
|
hsnuhayato/iv-plan-hironx
|
rmrc_geo_model/src/model/test.py
|
test.py
|
py
| 300 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19399824149
|
from typing import List
# 438. 找到字符串中所有字母异位词
# https://leetcode-cn.com/problems/find-all-anagrams-in-a-string/
class Solution:
def findAnagrams(self, s: str, p: str) -> List[int]:
p_vec = self.to_vector(p)
s_vec = self.to_vector(s[0: len(p) - 1])
# print(s_vec, p_vec)
i = 0
ans = []
for j in range(len(p) - 1, len(s)):
s_vec[ord(s[j]) - ord('a')] += 1
if p_vec == s_vec:
# print(i)
ans.append(i)
s_vec[ord(s[i]) - ord('a')] -= 1
i += 1
return ans
# 用不到
def compare(self, p_vec, word):
d = dict()
for i, c in enumerate(word):
if c in d:
d[c] += 1
else:
d[c] = 1
if c not in p_vec:
return False, i + 1
elif d[c] > p_vec[c]:
return False, 1
return p_vec == d, 1
def to_vector(self, word):
# d = dict()
# for each in word:
# if each in d:
# d[each] += 1
# else:
# d[each] = 1
# return d
vec = [0] * 26
for each in word:
vec[ord(each) - ord('a')] += 1
return vec
s = "abab"
p = "ab"
print(s)
r = Solution().findAnagrams(s, p)
print(r)
|
Yigang0622/LeetCode
|
findAnagrams.py
|
findAnagrams.py
|
py
| 1,375 |
python
|
en
|
code
| 1 |
github-code
|
6
|
4552159327
|
import random
import sys
sys.path.insert(1, '../')
from utils import read_instance, objetive_function, corrent_solution_size
import config
# Heurística Construtiva 02
# Constructive Heuristic 02
# Random para selecionar o teste e calculado a melhor mesa para aplicá-lo
def constructive_heuristic_02(corrent_size):
def validade_best_desk(solution, idx):
# idx = test number / index
iteration_value = 100000
iteration_solution = solution.copy()
for i in range(0, desk_count):
current_solution = solution.copy()
if solution[i] == 0: # Não sobrescrever casos já alocados
current_solution[i] = idx
current_value = objetive_function(current_solution)
if current_value < iteration_value:
iteration_value = current_value
iteration_solution = current_solution.copy()
return iteration_solution, iteration_value
desks, tests, empty = config.desks, config.tests, config.empty
desk_count = len(desks)
test_count = len(tests)
s = [0 for _ in range(desk_count)]
best_value = 0
desk_with_test = 0
while desk_with_test < (desk_count):
sort_list = [i for i in range(1, test_count)]
idx = random.choice(sort_list)
s, best_value = validade_best_desk(s, idx)
desk_with_test += 1
if corrent_size:
s, best_value = corrent_solution_size(s, empty)
return s, best_value
if __name__ == '__main__':
file_name = sys.argv[1]
read_instance(file_name)
response_solution, objetive = constructive_heuristic_02(True)
print()
print(response_solution)
print(objetive)
|
guilhermelange/Test-Assignment-Problem
|
stage_01/constructive_heuristic_02.py
|
constructive_heuristic_02.py
|
py
| 1,701 |
python
|
en
|
code
| 0 |
github-code
|
6
|
9401341695
|
# coding: utf-8
import re
import requests
response = requests.get('http://ads.fraiburgo.ifc.edu.br')
if response.status_code == 200:
texto = response.content.decode('utf-8')
links = re.findall(r'<a href="(.*?)".*>(.*)</a>', texto)
for url in links:
print(url)
|
fabricioifc/python_regex_tarefa
|
exemplos_professor/regex_02.py
|
regex_02.py
|
py
| 266 |
python
|
en
|
code
| 1 |
github-code
|
6
|
74548599546
|
import boto3
from botocore.exceptions import NoCredentialsError
def upload_to_aws(local_file, bucket, s3_file):
s3 = boto3.client('s3')
try:
s3.upload_file(local_file, bucket, s3_file)
print("Upload Successful")
return True
except FileNotFoundError:
print("The file was not found")
return False
except NoCredentialsError:
print("Credentials not available")
return False
if __name__ == "__main__":
uploaded = upload_to_aws('Screenshot (288).png', 'group-6-marxel-pictures', 'test.png')
|
HULKMARXEL/Group_6_AWS_project
|
localhost/S3.py
|
S3.py
|
py
| 562 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32693295741
|
class man(object):
# name of the man
name = ""
def __init__(self, P_name):
""" Class constructor """
self.name = P_name
print("Here comes " + self.name)
def talk(self, P_message):
print(self.name + " says: '" + P_message + "'")
def walk(self):
""" This let an instance of a man to walk """
print(self.name + " walks")
# This class inherits from Man class
# A superman has all the powers of a man (A.K.A. Methods and Properties in our case ;-)
class superman(man):
# Name of his secret identity
secret_identity = ""
def __init__(self, P_name, P_secret_identity):
""" Class constructor that overrides its parent class constructor"""
# Invokes the class constructor of the parent class #
super(superman, self).__init__(P_name)
# Now let's add a secret identity
self.secret_identity = P_secret_identity
print("...but his secret identity is '" + self.secret_identity + "' and he's a super-hero!")
def walk(self, P_super_speed = False):
# Overrides the normal walk, because a superman can walk at a normal
# pace or run at the speed of light!
if (not P_super_speed):
super(superman, self).walk()
else:
print(self.secret_identity + " run at the speed of light")
def fly(self):
""" This let an instance of a superman to fly """
# No man can do this!
print(self.secret_identity + " fly up in the sky")
def x_ray(self):
""" This let an instance of a superman to use his x-ray vision """
# No man can do this!
print(self.secret_identity + " uses his x-ray vision")
# Declare some instances of man and superman
lois = man("Lois Lane")
jimmy = man("Jimmy Olsen")
clark = superman("Clark Kent", "Superman")
# Let's puth them into action!
print("\n--> Let's see what a man can do:\n")
jimmy.walk()
lois.talk("Oh no, we're in danger!")
print("\n--> Let's see what a superman can do:\n")
clark.walk()
clark.talk("This is a job for SUPERMAN!")
clark.walk(True)
clark.fly()
clark.x_ray()
|
code4ghana/randomPrograms
|
PythonPrograms/testme.py
|
testme.py
|
py
| 2,360 |
python
|
en
|
code
| 1 |
github-code
|
6
|
7649624460
|
# convolution 계산 함수
import numpy as np
import pycuda.autoinit
from pycuda.compiler import SourceModule
from pycuda import gpuarray, tools
import pycuda.driver as cuda
class padding():
# CUDA Limit size
cu_lim = 32
def __init__(self,D,K,mode='vaild'):
# D : Data, K = kernel,
kw = int(K.shape[0]) # kernel width
kh = int(K.shape[1]) # kernel height
# size setting (padding)
if mode == 'vaild':
aw = D.shape[0]-kw+1
ah = D.shape[1]-kh+1
P = D
elif mode == 'same':
D = D.astype(np.float32)
aw = int(D.shape[0])
ah = int(D.shape[1])
if (aw % self.cu_lim == 0):
aw_n = int(aw/self.cu_lim)
else :
aw_n = int(aw/self.cu_lim +1)
if (ah % self.cu_lim == 0):
ah_n = int(ah/self.cu_lim)
else :
ah_n = int(ah/self.cu_lim +1)
# result size
P = np.zeros([aw+kw-1,ah+kh-1]).astype(np.float32)
# Module
mod = SourceModule(open("CUDAKernelStudy\\padding.cu", "r", encoding="utf-8").read())
cu_pad = mod.get_function("padding")
# allocate memory on device
d_gpu = cuda.mem_alloc(D.nbytes)
p_gpu = cuda.mem_alloc(P.nbytes)
# memory copy (host to device)
cuda.memcpy_htod(d_gpu, D)
cuda.memcpy_htod(p_gpu, P)
kw32 = np.int32(kw)
kh32 = np.int32(kh)
cusiz = np.int32(self.cu_lim)
# padding by CUDA
cu_pad(d_gpu,kw32,kh32,cusiz,p_gpu,block=(self.cu_lim,self.cu_lim,1),grid=(aw_n,ah_n,1))
# memory copy (device to host)
cuda.memcpy_dtoh(P, p_gpu)
d_gpu.free()
p_gpu.free()
self.D = D
self.P = P
self.C = np.zeros([aw,ah])
|
JUHYUKo3o/CUDAKernelStudy
|
padding.py
|
padding.py
|
py
| 1,964 |
python
|
en
|
code
| 1 |
github-code
|
6
|
18385134746
|
class MetaSingleton(type):
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(MetaSingleton, cls).__call__(
*args, **kwargs
)
return cls._instances[cls]
class Logger(metaclass=MetaSingleton):
def __init__(self, x):
self.x = x
class Singleton1:
__instance = None
def __new__(cls, nome):
if Singleton1.__instance is None:
Singleton1.__instance = object.__new__(cls)
Singleton1.__instance.__nome = nome
return Singleton1.__instance
@property
def nome(self):
return self.__nome
class Singleton2:
def __new__(cls, nome):
if not hasattr(cls, 'instance'):
cls.instance = super(Singleton2, cls).__new__(cls)
cls.instance.__nome = nome
return cls.instance
@property
def nome(self):
return self.__nome
if __name__ == '__main__':
foo = Singleton1('Maria')
print(foo.nome)
print(foo)
bar = Singleton1('Joao')
print(bar.nome)
print(bar)
print(foo is bar)
foo = Singleton2('Maria')
print(foo.nome)
print(foo)
bar = Singleton2('Joao')
print(bar.nome)
print(bar)
print(foo is bar)
# Example using metaclass
logger1 = Logger(1)
logger2 = Logger(2)
print(logger1)
print(logger1.x)
print(logger2)
print(logger2.x)
|
kelvins/design-patterns-python
|
criacao/singleton/main.py
|
main.py
|
py
| 1,460 |
python
|
en
|
code
| 468 |
github-code
|
6
|
18028370803
|
import json
from logging import info
import boto3
from botocore.exceptions import ClientError
from lgw.lambda_util import get_lambda_info, grant_permission_to_api_resource
def create_rest_api(
api_name,
api_description,
binary_types,
lambda_name,
resource_path,
deploy_stage,
integration_role,
method_response_models,
):
'''
Creates & deploys a REST API that proxies to a Lambda function, returning the URL
pointing to this API.
:param api_name: Name of the REST API
:param api_description: Textual description of the API
:param binary_types: A list of binary types that this API may serve up
:param lambda_name: Name of an existing Lambda function
:param resource_path: The resource path that points to the lambda.
:param deploy_stage: The name of the deployment stage.
:param integration_role
:param method_response_models: Dictionary of content-type => response-model mappings to be applied to child method
:return: URL of API. If error, returns None.
'''
api_client = boto3.client('apigateway')
api_id = create_api_gateway(api_client, api_name, api_description, binary_types)
(lambda_arn, lambda_uri, region, account_id) = get_lambda_info(lambda_name)
root_resource_id = get_root_resource_id(api_client, api_id)
create_method(api_client, api_id, root_resource_id, 'ANY')
create_lambda_integration(api_client, api_id, root_resource_id, lambda_uri, integration_role)
child_resource_id = create_resource(api_client, api_id, root_resource_id, resource_path)
create_method(api_client, api_id, child_resource_id, 'ANY', method_response_models)
create_lambda_integration(api_client, api_id, child_resource_id, lambda_uri, integration_role)
deploy_to_stage(api_client, api_id, deploy_stage)
# grant_permission_to_api_resource(api_id, region, account_id, lambda_arn, resource_path)
return f'https://{api_id}.execute-api.{region}.amazonaws.com/{deploy_stage}'
def delete_rest_api(api_name):
api_client = boto3.client('apigateway')
delete_api_gateway(api_client, api_name)
def deploy_to_stage(api_client, api_id, deploy_stage):
return api_client.create_deployment(restApiId=api_id, stageName=deploy_stage)
def create_lambda_integration(api_client, api_id, root_resource_id, lambda_uri, role_arn=None):
'''
Set the Lambda function as the destination for the ANY method
Extract the Lambda region and AWS account ID from the Lambda ARN
ARN format="arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_NAME"
'''
api_client.put_integration(
restApiId=api_id,
resourceId=root_resource_id,
httpMethod='ANY',
type='AWS_PROXY',
integrationHttpMethod='POST',
uri=lambda_uri,
credentials=role_arn,
)
def create_method(api_client, api_id, resource_id, http_method, method_response_models={}):
try:
response = api_client.get_method(
restApiId=api_id, resourceId=resource_id, httpMethod=http_method
)
if response and response.get('httpMethod'):
info(f'{http_method} method already exists for resource {resource_id}')
return
except api_client.exceptions.NotFoundException:
info(f'{http_method} method does not exist for resource {resource_id}, adding it.')
api_client.put_method(
resourceId=resource_id, restApiId=api_id, httpMethod=http_method, authorizationType='NONE'
)
# Set the content-type of the method response to JSON
api_client.put_method_response(
restApiId=api_id,
resourceId=resource_id,
httpMethod=http_method,
statusCode='200',
responseModels=method_response_models,
)
def create_resource(api_client, api_id, parent_id, resource_path):
resources = api_client.get_resources(restApiId=api_id)
if 'items' in resources:
for resource in resources['items']:
if resource.get('parentId') == parent_id and resource.get('pathPart') == resource_path:
info('Found existing resource for %s' % resource['parentId'])
return resource['id']
info(f'No existing resource found for {parent_id}/{resource_path}, creating a new one')
result = api_client.create_resource(
restApiId=api_id, parentId=parent_id, pathPart=resource_path
)
return result['id']
def get_root_resource_id(api_client, api_id):
result = api_client.get_resources(restApiId=api_id)
root_id = None
for item in result['items']:
if item['path'] == '/':
root_id = item['id']
if root_id is None:
raise ClientError(
'Could not retrieve the ID of the API root resource using api_id [%s]' % api_id
)
return root_id
def delete_api_gateway(api_client, api_name):
api_id = lookup_api_gateway(api_client, api_name)
if api_id:
info(f'Deleting API with ID: {api_id}')
api_client.delete_rest_api(restApiId=api_id)
def create_api_gateway(api_client, api_name, api_description, binary_types):
api_id = lookup_api_gateway(api_client, api_name)
if api_id:
return api_id
info(f'No existing API account found for {api_name}, creating it.')
result = api_client.create_rest_api(
name=api_name, description=api_description, binaryMediaTypes=binary_types
)
return result['id']
def lookup_api_gateway(api_client, api_name):
apis = api_client.get_rest_apis()
if 'items' in apis:
for api in apis['items']:
if api['name'] == api_name:
info('Found existing API account for %s' % api['name'])
return api['id']
info(f'No API gateway found with name {api_name}')
return None
|
ebridges/lgw
|
lgw/api_gateway.py
|
api_gateway.py
|
py
| 5,773 |
python
|
en
|
code
| 0 |
github-code
|
6
|
29778083632
|
import stagger
import os
import sys
from stagger.id3 import *
def metaHound(argvPath):
#ef það er sendur parametri inní fallið þá er það slóðin a möppuna
#sem á að fara i gegnum.
#ef ekki er sendur parameter er reiknað með að mappan sem á að fara
#í gegnum sé í cwd.
if argvPath != '':
os.chdir(argvPath)
os.chdir('..')
ipodFolder = argvPath
else:
ipodFolder = os.path.join(os.getcwd(), 'ipod')
if not os.path.exists(os.path.join(os.getcwd(), 'Music')):
os.mkdir('Music')
root = os.path.join(os.getcwd(), 'Music')
#Búið að búa til Music möppu ef hún er ekki til og stilla current working directory á hana
for data in os.walk(ipodFolder):
for file in data[2]:
#data[2] því við viljum bara skoða fæla, ekki folera
os.chdir(root)
#passa að í byrjun hvers hrings sé cwd alltaf Music mappan
currPath = os.path.join(data[0], file)
filename, extension = os.path.splitext(file)
try:
tag = stagger.read_tag(currPath)
#ná í meta-data
album = tag.album
artist = tag.artist
title = tag.title
if artist == '':
artist = 'unknown artists'
if album == '':
album = 'unknown albums'
artist = fixName(artist)
album = fixName(album)
title = fixName(title)
#taka burtu óleyfileg tákn
artistPath = os.path.join(root, artist)
if not os.path.exists(artistPath):
os.mkdir(artist)
os.chdir(artistPath)
#búa til möppu ef þarf fyrir þennan artista
#stilla current working directory á þá möppu
albumPath = os.path.join(artistPath, album)
if not os.path.exists(albumPath):
os.mkdir(album)
os.chdir(albumPath)
#búa til möppu inní artistanum fyrir plötuna
#stilla current working directory á þá möppu
newPath = os.path.join(albumPath, title + extension)
if not os.path.exists(newPath):
os.rename(currPath, newPath)
else:
os.remove(currPath)
#færa lagið í album möppuna ef það er ekki þar nú þegar, annars er því eytt
except:
#hingað ef tekst ekki að ná i meta-data
path = os.path.join(root, 'unknown files')
os.chdir(root)
if not os.path.exists(path):
os.mkdir('unknown files')
newPath = os.path.join(path, file)
#Búa til unknown files möppu ef hún er ekki til
if not os.path.exists(newPath):
os.rename(currPath, newPath)
else:
os.remove(currPath)
#færa lagið í unknown files möppuna ef það er ekki þar nú þegar, annars er því eytt
#henda ipod möppunni ef allt er tómt
for folder in os.listdir(ipodFolder):
os.removedirs(os.path.join(ipodFolder, folder))
def fixName(name):
#ef nafnið inniheldur ólöglega caractera er þeim skipt út fyrir kommu
return name.replace('\\', ',').replace('/', ',').replace(':', ',').replace('*', ',').replace('?', ',').replace('"', ',').replace('<', ',').replace('>', ',').replace('|', ',')
try:
metaHound(sys.argv[1])
except:
metaHound('')
|
asav13/PRLA-Verk5
|
part1/metaDataReader.py
|
metaDataReader.py
|
py
| 3,804 |
python
|
is
|
code
| 0 |
github-code
|
6
|
24362863500
|
from odoo import models, fields, api
from ..tools.nawh_error import NAWHError
class NetaddictionWhLocationsLine(models.Model):
_name = 'netaddiction.wh.locations.line'
_description = "Netaddiction WH Locations Line"
_order = 'qty'
product_id = fields.Many2one(
'product.product',
required=True,
string="Prodotto",
)
qty = fields.Integer(
default=1,
required=True,
string="Quantità",
)
wh_location_id = fields.Many2one(
'netaddiction.wh.locations',
required=True,
string="Ripiano",
)
@api.model
def get_products(self, barcode):
"""
dato il barcode di un ripiano ritorna i prodotti allocati
"""
result = self.search([('wh_location_id.barcode', '=', barcode)])
if not result:
return NAWHError(
"Non sono stati trovati prodotti per il barcode"
)
return result
##########################
# INVENTORY APP FUNCTION #
# ritorna un dict simile #
# ad un json per il web #
##########################
@api.model
def get_json_products(self, barcode):
"""
ritorna un json con i dati per la ricerca per ripiano
"""
is_shelf = self.env['netaddiction.wh.locations'].check_barcode(barcode)
if isinstance(is_shelf, NAWHError):
return {'result': 0, 'error': is_shelf.msg}
results = self.get_products(barcode)
if isinstance(results, NAWHError):
return {'result': 0, 'error': results.msg}
return {
'result': 1,
'shelf': is_shelf.name,
'barcode': barcode,
'products': [
{'product_name': res.product_id.display_name,
'qty': res.qty,
'barcode': res.product_id.barcode}
for res in results
]
}
@api.model
def put_json_new_allocation(self, barcode, qty, product_id, now_wh_line):
"""
sposta la quantità qty dal ripiano barcode al new_shelf
"""
is_shelf = self.env['netaddiction.wh.locations'].check_barcode(barcode)
if isinstance(is_shelf, NAWHError):
return {'result': 0, 'error': is_shelf.msg}
new_shelf = is_shelf.id
line = self.search(
[('id', '=', int(now_wh_line)),
('product_id', '=', int(product_id))]
)
if not line:
return {
'result': 0,
'error': 'Prodotto non più presente in questa locazione'
}
if line.wh_location_id.id == new_shelf:
return {
'result': 0,
'error': 'Non puoi spostare un prodotto nella'
' stessa locazione di partenza'
}
dec = line.decrease(qty)
if isinstance(dec, NAWHError):
return {'result': 0, 'error': dec.msg}
self.allocate(product_id, qty, new_shelf)
product = self.env['product.product'].browse(int(product_id))
return {'result': 1, 'product_barcode': product.barcode}
##############################
# END INVENTORY APP FUNCTION #
##############################
##################
# FUNZIONI VARIE #
##################
def decrease(self, qta):
""" decrementa la quantità allocata di qta """
self.ensure_one()
end_qty = self.qty - int(qta)
if end_qty < 0:
return NAWHError(
"Non puoi scaricare una quantità maggiore di quella allocata"
)
elif end_qty > 0:
self.write({'qty': end_qty})
else:
self.unlink()
def increase(self, qta):
""" incrementa la quantità allocata di qta """
self.ensure_one()
self.qty += int(qta)
@api.model
def allocate(self, product_id, qta, new_location_id):
""" alloca in new_location_id la qta di product_id """
result = self.search(
[('product_id', '=', int(product_id)),
('wh_location_id', '=', int(new_location_id))]
)
if result:
# è già presente una locazione con questo prodotto
# incremento
for res in result:
res.increase(qta)
else:
self.create([{
'product_id': product_id,
'qty': qta,
'wh_location_id': new_location_id
}])
|
suningwz/netaddiction_addons
|
netaddiction_warehouse/models/netaddiction_wh_locations_line.py
|
netaddiction_wh_locations_line.py
|
py
| 4,531 |
python
|
it
|
code
| 0 |
github-code
|
6
|
73675812026
|
import django
from django.conf import settings
import pandas as pd
import os, sys
proj_path = "/home/webuser/webapps/tigaserver/"
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tigaserver_project.settings")
sys.path.append(proj_path)
django.setup()
from tigaserver_app.models import Fix
FILE = os.path.join(settings.STATIC_ROOT, "geo_user_fixes.csv")
# Getting all fixes and create a new DataFrame.
# Selecting only the desired fields for speed reasons.
df = pd.DataFrame.from_records(
Fix.objects.all().values('server_upload_time', 'masked_lon', 'masked_lat')
)
# Remove any NaN value
df.dropna(inplace=True)
# Rename the datetime colume to a more readable name
df.rename(
columns={"server_upload_time": "datetime"},
inplace=True
)
# Convert datetime column to just date
df['datetime'] = pd.to_datetime(df['datetime']).dt.normalize()
# Round float to 2 decimals (lat and lon)
df = df.round(decimals=2)
##########
# Group by date, lat, lon and count the number of elements
# to make the resulting file smaller.
##########
# If the dataviz is slow, create bins for the latitude and longitue.
# Example: https://stackoverflow.com/questions/39254704/pandas-group-bins-of-data-per-longitude-latitude
# import numpy as np
# degres_step = 0.1
# to_bin = lambda x: np.floor(x / step) * step
# df["latBin"] = to_bin(df.masked_lat)
# df["lonBin"] = to_bin(df.masked_lon)
# See: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
df.groupby(
[
pd.Grouper(key='datetime', freq='3W-MON'), # Every 3 weeks.
df['masked_lon'],
df['masked_lat']
]).size()\
.reset_index(name='count')\
.to_csv(FILE, index=False)
|
Mosquito-Alert/mosquito_alert
|
util_scripts/update_geo_userfixes_static.py
|
update_geo_userfixes_static.py
|
py
| 1,682 |
python
|
en
|
code
| 6 |
github-code
|
6
|
12704422220
|
#!/usr/bin/env python3
import asyncio
import discord
import os
client= discord.Client()
TOKEN = os.getenv('USER_TOKEN')
CHANNEL_ID = int(os.getenv('CHANNEL_ID'))
MESSAGE = os.getenv('MESSAGE')
def lambda_handler(event, context):
print("lambda start")
client.run(TOKEN, bot=False)
@client.event
async def on_ready():
print('%s has connected to Discord!' % client.user)
channel = client.get_channel(CHANNEL_ID)
if channel:
await channel.send(MESSAGE)
print("message sent")
else:
print("channel not found")
await client.close()
|
mgla/lambda-discord-messager
|
lambda_function.py
|
lambda_function.py
|
py
| 580 |
python
|
en
|
code
| 0 |
github-code
|
6
|
38905374725
|
from torch import Tensor, LongTensor, max
from typing import Dict
from sklearn.metrics import accuracy_score
def compute_metrics(
outputs: Tensor,
labels: LongTensor,
) -> Dict[str, float]:\
metrics = {}
outputs = outputs.cpu()
labels = labels.cpu()
_, pred = max(outputs.data, 1)
y_true = labels
y_pred = pred
# accuracy
accuracy = accuracy_score(
y_true=y_true,
y_pred=y_pred,
)
# Optional add metrics
metrics["accuracy"] = accuracy
return metrics
if __name__ == '__main__':
pass
|
Agiratex/histological-image-classification
|
utils/compute_metrics.py
|
compute_metrics.py
|
py
| 570 |
python
|
en
|
code
| 0 |
github-code
|
6
|
12228572050
|
import pygame
import socket
import numpy as np
import math
import random
import time
import sys
class launch_missiles:
def __init__(self, screen, pygame, socket, board, is_client, is_server):
self.screen = screen
self.pygame = pygame
self.socket = socket
self.board = board
self.missile_board = np.zeros(shape=(10, 10), dtype=int)
self.is_client = is_client
self.is_server = is_server
self.our_turn = is_client
self.cell_offset = 0
self.first = True
self.very_first = True
self.server = None
self.client = None
def generate_rand_board(self):
for i_idx, i in enumerate(self.board):
for j_idx, j in enumerate(i):
self.board[i_idx][j_idx] = random.randint(0, 1)
def title(self):
font = self.pygame.font.Font("coolvetica rg.ttf", 48)
self.screen.fill((13, 17, 31))
your_board = font.render("Your Board", True, (255, 255, 255))
self.screen.blit(your_board, (200, 10))
missile_board = font.render("Missile Board", True, (255, 255, 255))
self.screen.blit(missile_board, (820, 10))
def createSocket(self, IP):
if self.is_server:
self.server = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM)
self.server.bind(('', 8088))
self.server.listen()
self.conn, self.addr = self.server.accept()
else:
self.client = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM)
time.sleep(3)
self.client.connect((IP, 8088))
def draw_your_board(self):
x_loc = 20
for idx, i in enumerate(self.board):
for jdx, j in enumerate(i):
if j == 0:
self.pygame.draw.rect(self.screen, (214, 229, 255),
(x_loc + 60 * jdx, 90 + self.cell_offset, 58, 58), 1)
self.pygame.draw.circle(self.screen, (163, 163, 162),
((x_loc + (60 * jdx)) + 30, (88 + self.cell_offset) + 30), 6)
elif j == 1:
self.pygame.draw.rect(self.screen, (25, 209, 83),
(x_loc + 60 * jdx, 90 + self.cell_offset, 58, 58), 1)
self.pygame.draw.circle(self.screen, (25, 209, 83),
((x_loc + (60 * jdx)) + 30, (88 + self.cell_offset) + 30), 6)
elif j == 2:
self.pygame.draw.rect(self.screen, (242, 19, 19),
(x_loc + 60 * jdx, 90 + self.cell_offset, 58, 58), 1)
self.pygame.draw.circle(self.screen, (242, 19, 19),
((x_loc + (60 * jdx)) + 30, (88 + self.cell_offset) + 30), 6)
self.cell_offset = self.cell_offset + 60
self.cell_offset = 0
def draw_missile_board(self):
x_loc = 650
for idx, i in enumerate(self.missile_board):
for jdx, j in enumerate(i):
if j == 0:
self.pygame.draw.rect(self.screen, (214, 229, 255),
(x_loc + 60 * jdx, 90 + self.cell_offset, 58, 58), 1)
self.pygame.draw.circle(self.screen, (163, 163, 162),
((x_loc + (60 * jdx)) + 30, (88 + self.cell_offset) + 30), 6)
elif j == 2:
self.pygame.draw.rect(self.screen, (242, 19, 19),
(x_loc + 60 * jdx, 90 + self.cell_offset, 58, 58), 1)
self.pygame.draw.circle(self.screen, (242, 19, 19),
((x_loc + (60 * jdx)) + 30, (88 + self.cell_offset) + 30), 6)
self.cell_offset = self.cell_offset + 60
self.cell_offset = 0
def turn(self):
font = self.pygame.font.Font("coolvetica rg.ttf", 36)
if self.our_turn:
myTurn = font.render("Your Turn!", True, (255, 255, 255))
self.screen.blit(myTurn, (560, 20))
else:
myTurn = font.render("Oppenent's Turn!", True, (255, 255, 255))
self.screen.blit(myTurn, (510, 20))
def change_board(self, x, y):
self.missile_board[y][x] = 2
self.first = True
self.our_turn = False
if self.client:
self.client.send(bytes(str(x) + "_" + str(y), 'utf-8'))
else:
print("sent server")
self.conn.send(bytes(str(x) + "_" + str(y), 'utf-8'))
print("overall sent")
def missed_hit(self, description):
font = self.pygame.font.Font("coolvetica rg.ttf", 32)
description = font.render(str(description) + "!", True, (255, 255, 255))
self.screen.blit(description, (30, 20))
self.pygame.display.update()
def drawui(self, IP):
if self.very_first:
self.createSocket(IP=IP)
self.very_first = False
if self.first:
self.title()
self.draw_your_board()
self.draw_missile_board()
self.turn()
self.pygame.display.update()
self.first = not self.first
if not self.our_turn:
if self.server:
array_x_y = self.conn.recv(1024).decode().split("_")
if array_x_y[0] == "Target Hit" or array_x_y[0] == "Missed":
self.missed_hit(array_x_y[0])
self.first = True
pass
else:
print(array_x_y)
x = int(array_x_y[0])
y = int(array_x_y[1])
print(x, y)
if x < 0 and y < 0:
pass
else:
if self.board[y][x] == 1:
self.conn.send(bytes("Target Hit", 'utf-8'))
else:
self.conn.send(bytes("Missed", 'utf-8'))
self.board[y][x] = 2
self.our_turn = True
self.first = True
else:
array_x_y = self.client.recv(1024).decode().split("_")
print("received " + str(array_x_y[0]))
if array_x_y[0] == "Target Hit" or array_x_y[0] == "Missed":
self.missed_hit(array_x_y[0])
self.first = True
pass
else:
print(array_x_y[0] + "yo")
x = int(array_x_y[0])
y = int(array_x_y[1])
print(x, y)
if x < 0 and y < 0:
pass
else:
if self.board[y][x] == 1:
self.client.send(bytes("Target Hit", 'utf-8'))
else:
self.client.send(bytes("Missed", 'utf-8'))
self.board[y][x] = 2
self.our_turn = True
self.first = True
def run(self, IP):
self.drawui(IP=IP)
'''
pygame.init()
pygame.mixer.quit()
screen = pygame.display.set_mode([1280, 720])
CELLS = 10
#SERVER_BOARD = np.zeros(shape=(CELLS, CELLS), dtype=int)
#server_player = launch_missiles(screen=screen, pygame=pygame, socket=socket)
#SERVER_BOARD = server_player.generate_rand_board()
CLIENT_BOARD = np.zeros(shape=(CELLS, CELLS), dtype=int)
client_server = sys.argv[1]
if client_server == "server":
is_server = True
is_client = False
else:
is_server = False
is_client = True
client_player = launch_missiles(screen=screen, pygame=pygame, socket=socket, board=CLIENT_BOARD, is_client=is_client, is_server=is_server)
client_player.generate_rand_board()
clock = pygame.time.Clock()
while True:
clock.tick(60)
events = pygame.event.get()
for event in events:
if event.type == pygame.QUIT:
break
if event.type == pygame.MOUSEBUTTONDOWN and client_player.our_turn:
x, y = pygame.mouse.get_pos()
print("debug")
x = math.floor((x - 650) / 60)
y = math.floor((y - 90) / 60)
client_player.change_board(x, y)
client_player.run()
'''
|
AtulPhadke/Battleship
|
missile.py
|
missile.py
|
py
| 8,591 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32150136387
|
from collections import deque
def solution(queue1, queue2):
answer = -1
queue1Sum = sum(queue1)
queue2Sum = sum(queue2)
sameSum = (queue1Sum + queue2Sum) // 2
queue1Copy = deque(queue1)
queue2Copy = deque(queue2)
cnt = 0
while cnt < len(queue1) * 3:
if sameSum < queue1Sum:
value = queue1Copy.popleft()
queue2Copy.append(value)
queue1Sum -= value
queue2Sum += value
elif sameSum > queue1Sum:
value = queue2Copy.popleft()
queue1Copy.append(value)
queue1Sum += value
queue2Sum -= value
else:
answer = cnt
break
cnt += 1
return answer
queue1 = [3, 2, 7, 2]
queue2 = [4, 6, 5, 1]
print(solution(queue1,queue2))
|
HS980924/Algorithm
|
src/8.Queue,Deque/두큐합.py
|
두큐합.py
|
py
| 810 |
python
|
en
|
code
| 2 |
github-code
|
6
|
32731940278
|
from collections import deque
n, m = map(int, input().split())
number = list(map(int, input().split()))
deq = deque(i for i in range(1, n+1))
count = 0
for i in range(m):
while True:
if (deq[0] == number[i]):
deq.popleft()
break
else:
if(len(deq) / 2 > deq.index(number[i])):
deq.append(deq.popleft())
count += 1
else:
deq.appendleft(deq.pop())
count += 1
print(count)
|
woo222/baekjoon
|
python/큐,스택/s3_1021_회전하는큐.py
|
s3_1021_회전하는큐.py
|
py
| 505 |
python
|
en
|
code
| 0 |
github-code
|
6
|
34390260723
|
from pathlib import Path
from datetime import timedelta
import environ
import os
import pymysql
pymysql.install_as_MySQLdb()
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
REST_AUTH = {
'SESSION_LOGIN': False
}
###### 환경변수 쪽 설정 ##################
env = environ.Env(DEBUG=(bool, True))
environ.Env.read_env(
env_file=os.path.join(BASE_DIR, '.env')
)
SECRET_KEY=env('SECRET_KEY')
DEBUG=env('DEBUG')
DATABASES = {
'default': {
'ENGINE': env('DATABASES_ENGINE'),
'NAME': BASE_DIR / 'db.sqlite3',
}
}
#######################################
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'rest_framework.authtoken',
'rest_framework',
"corsheaders",
'rest_framework_simplejwt',
'rest_framework_simplejwt.token_blacklist',
# In Folder Installed App
'ycwg',
'party_list',
'account',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
"corsheaders.middleware.CorsMiddleware",
"django.middleware.common.CommonMiddleware",
]
ROOT_URLCONF = 'ycwg.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'ycwg.wsgi.application'
# Database
# https://docs.djangoproject.com/en/dev/ref/settings/#databases
# Password validation
# https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/dev/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/dev/howto/static-files/
STATIC_URL = 'static/'
# Default primary key field type
# https://docs.djangoproject.com/en/dev/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
# CORS_ALLOWED_ORIGINS = [
# "http://localhost:5173",
# "http://localhost:8000",
# "https://port-0-ycwg-backend-1maxx2klgvs8aq4.sel3.cloudtype.app"
# ]
CORS_ALLOW_ALL_ORIGINS = True
CORS_ALLOW_CREDENTIALS = True
CSRF_COOKIE_SECURE = True
CSRF_COOKIE_HTTP_ONLY = True
CSRF_TRUSTED_ORIGINS = [
"http://localhost:8000",
"http://localhost:5173",
"https://port-0-ycwg-backend-1maxx2klgvs8aq4.sel3.cloudtype.app"
]
CORS_EXPOSE_HEADERS = ["Content-Type", "X-CSRFToken"]
SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SAMESITE = "None"
SESSION_COOKIE_SAMESITE = "None"
MEDIA_URL = '/media/' # ex) /media/photo1.png
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
SIMPLE_JWT = {
'ACCESS_TOKEN_LIFETIME': timedelta(days=30),
'REFRESH_TOKEN_LIFETIME': timedelta(days=30),
'ROTATE_REFRESH_TOKENS': False,
'BLACKLIST_AFTER_ROTATION': False,
'UPDATE_LAST_LOGIN': False,
'ALGORITHM': 'HS256',
'SIGNING_KEY': SECRET_KEY,
'VERIFYING_KEY': None,
'AUDIENCE': None,
'ISSUER': None,
'JWK_URL': None,
'LEEWAY': 0,
'AUTH_HEADER_TYPES': ('Bearer',),
'AUTH_HEADER_NAME': 'HTTP_AUTHORIZATION',
'USER_ID_FIELD': 'id',
'USER_ID_CLAIM': 'user_id',
'USER_AUTHENTICATION_RULE': 'rest_framework_simplejwt.authentication.default_user_authentication_rule',
'AUTH_TOKEN_CLASSES': ('rest_framework_simplejwt.tokens.AccessToken',),
'TOKEN_TYPE_CLAIM': 'token_type',
'TOKEN_USER_CLASS': 'rest_framework_simplejwt.models.TokenUser',
'JTI_CLAIM': 'jti',
'SLIDING_TOKEN_REFRESH_EXP_CLAIM': 'refresh_exp',
'SLIDING_TOKEN_LIFETIME': timedelta(days=30),
'SLIDING_TOKEN_REFRESH_LIFETIME': timedelta(days=30),
# custom
'AUTH_COOKIE': 'access',
# Cookie name. Enables cookies if value is set.
'AUTH_COOKIE_REFRESH': 'refresh',
# A string like "example.com", or None for standard domain cookie.
'AUTH_COOKIE_DOMAIN': 'port-0-ycwg-backend-1maxx2klgvs8aq4.sel3.cloudtype.app',
# Whether the auth cookies should be secure (https:// only).
'AUTH_COOKIE_SECURE': False,
# Http only cookie flag.It's not fetch by javascript.
'AUTH_COOKIE_HTTP_ONLY': True,
'AUTH_COOKIE_PATH': '/', # The path of the auth cookie.
# Whether to set the flag restricting cookie leaks on cross-site requests. This can be 'Lax', 'Strict', or None to disable the flag.
'AUTH_COOKIE_SAMESITE': "Lax", # TODO: Modify to Lax
}
REST_FRAMEWORK = {
"DEFAULT_AUTHENTICATION_CLASSES": [
'rest_framework_simplejwt.authentication.JWTAuthentication',
'account.authenticate.CustomAuthentication',
],
"DEFAULT_PERMISSION_CLASSES": [
'rest_framework.permissions.AllowAny',
'rest_framework.permissions.IsAuthenticated',
'rest_framework.authentication.BasicAuthentication',
'rest_framework.authentication.SessionAuthentication',
'rest_framework.authentication.TokenAuthentication',
]
}
AUTH_USER_MODEL = "account.Account"
ALLOWED_HOSTS = [
'*'
]
|
YCWG/YCWG-BackEnd
|
ycwg/settings.py
|
settings.py
|
py
| 6,231 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30003290472
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Description:
# @File: test.py
# @Project: ip_nlp
# @Author: Yiheng
# @Email: [email protected]
# @Time: 7/15/2019 10:30
import time
from pymongo import ASCENDING
from common import logger_factory
from mongo.connect import get_collection
from mongo.utils.query_filter_utils import get_clf_query_filter
logger = logger_factory.get_logger('doc_service')
def create_index(db_name, clc_name, field_name, sort=ASCENDING):
"""
create index of doc field to specified db's collection
:param db_name:
:param clc_name:
:param field_name:
:param sort: default direction is asc
:return:
"""
clc = get_collection(db_name, clc_name)
clc.create_index([(field_name, sort)], background=True)
def remove_redundant(db_name, clc_name):
"""
remove redundant docs
:param db_name:
:param clc_name:
:return:
"""
clc = get_collection(db_name, clc_name)
redundant_docs = clc.aggregate([
{'$group': {
'_id': {'pubId': '$pubId'},
'uniqueIds': {'$addToSet': '$_id'},
'count': {'$sum': 1}
}},
{'$match': {
'count': {'$gt': 1}
}}], allowDiskUse=True)
print('redundant_docs {}'.format(type(redundant_docs)))
for doc in redundant_docs:
logger.info(f'{doc}')
obj_ids = doc['uniqueIds']
logger.info(f'obj ids is {obj_ids}')
for i in range(len(obj_ids)):
if i == len(obj_ids) - 1:
break
clc.remove(obj_ids[i])
def find_some(db_name: str, clc_name: str, limit: int):
"""
find specified count of docs return a generator, whose item is a Bson obj
:param db_name:
:param clc_name:
:param limit:
:return:
"""
logger.info(f'start find_some with limit {limit}')
clc = get_collection(db_name, clc_name)
limit = 0 if limit < 0 else limit
cursor = clc.find({}).limit(limit)
for doc in cursor:
yield doc
def find_all(db_name: str, clc_name: str):
"""
find all docs and return a generator, whose item is a Bson obj
:param db_name:
:param clc_name:
:return:
"""
logger.info('start find_all')
return find_some(db_name, clc_name, 0)
def find_by_clf(db_name, clc_name, limit=300, **kwargs):
"""
find docs by classification infos and return a generator, whose item is a Bson obj
:param db_name:
:param clc_name:
:param limit:
:param kwargs:
:return:
"""
cursor = find_cursor_by_clf(db_name, clc_name, limit, **kwargs)
for doc in cursor:
yield doc
def find_cursor_by_clf(db_name, clc_name, limit, **kwargs):
"""
get docs obj by classification params
:param db_name:
:param clc_name:
:param limit:
:param kwargs:
section required
mainClass
subClass
:return:
"""
logger.info(f'start search tasks with {kwargs}')
clc = get_collection(db_name, clc_name)
query_filter = get_clf_query_filter(kwargs)
cursor = clc.find(query_filter).limit(limit)
logger.info(f'search tasks {kwargs} complete')
return cursor
if __name__ == '__main__':
db_ip_doc = 'ip_doc'
clc_raw = 'raw'
# remove_redundant('ip_doc', 'raw')
start_time = time.time()
docs = find_by_clf(db_ip_doc, clc_raw, section='B', mainClass='29', subClass='K')
# count = len(list(docs))
# print('count is {}'.format(count))
for doc in docs:
logger.info(f'find doc pubId {doc["pubId"]}')
end_time = time.time()
logger.info(f'complete...,take time {end_time - start_time}s')
|
zhenxun815/ip_nlp
|
src/mongo/doc_service.py
|
doc_service.py
|
py
| 3,720 |
python
|
en
|
code
| 0 |
github-code
|
6
|
29098845226
|
#!/bin/env python
# This script undoes the "WellFolders.py" script, aka it empties all of the well folders out into the parent folder.
import os
import re
import argparse
parser = argparse.ArgumentParser(description='Takes a folder formatted by WellFolders and undoes it ',
usage='%(prog)s FOLDERPATH')
parser.add_argument('folderlocation', type=str, help='Absolute path of the folder to modify')
args = parser.parse_args()
regex = re.compile(r'\w{1}\d{2}_Day\d{1}')
allfolders = [file for file in os.scandir(args.folderlocation) if file.is_dir() and regex.match(file.name)]
for folder in allfolders:
redfolder = folder.path + '/Red/'
greenfolder = folder.path + '/Green/'
brightfield = folder.path + '/Brightfield/'
for foldpath in [redfolder, greenfolder, brightfield]:
for file in os.scandir(foldpath):
if file.name.endswith('.txt'):
os.remove(file.path)
elif file.name.endswith('.tif'):
os.rename(file.path, f'{args.folderlocation}/{file.name}')
os.rmdir(foldpath)
os.rmdir(folder.path)
|
jc6213/CRANIUM
|
UndoWellFolders.py
|
UndoWellFolders.py
|
py
| 1,123 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40546898692
|
import json
from django.http import JsonResponse
from django.shortcuts import render
from admin_manage.models import Company
from admin_manage.views import method_verify, verify_token
from face_machine_client.models import ClientInfo
from asgiref.sync import async_to_sync
from channels.layers import get_channel_layer
@verify_token
@method_verify()
def client_register(request):
"""
设备注册接口
请求实例
{
'type':'register',
'username':'',
'password':'',
'company_id':'',
}
:param request:
:return:
{'msg':'ok'}
"""
req_data = request.POST
# 检测消息类型
if req_data.get('type') == 'register':
client_user = req_data.get('client_user')
client_key = req_data.get('client_key')
client_company_id = req_data.get('client_company_id')
# 检测必填项
if client_user and client_key and client_company_id:
client_check = ClientInfo.objects.filter(client_user=client_user).count()
if client_check == 0:
try:
# 进行设备注册
company_id = Company.objects.filter(company_id=client_company_id).get()
ClientInfo.objects.create(client_user=client_user, client_key=client_key, client_info=company_id)
except Exception as e:
print(e)
return JsonResponse({'msg': str(e)})
return JsonResponse({'msg': '设备注册成功,请记录设备号与密码',
'username': client_user,
'password': client_key,
'code': "200",
'error_code': "0"
})
else:
return JsonResponse({'msg': '设备已经被注册',
'code': "200",
'error_code': "601"
})
else:
return JsonResponse({'msg': '有必填项未填',
'code': "200",
'error_code': "884"
})
elif req_data.get('type') == 'delete':
# 删除设备
client_user = req_data.get('client_user')
client_company_id = req_data.get('client_company_id')
company_id = Company.objects.filter(company_id=client_company_id).get()
# 检测必填项
if client_user and client_company_id:
client_object = ClientInfo.objects.filter(client_user=client_user, client_info=company_id)
if client_object.count() == 1:
try:
client_object.delete()
except Exception as e:
print(e)
return JsonResponse({'msg': '删除失败',
'error': str(e),
'code': "200",
'error_code': "884"
})
else:
return JsonResponse({'msg': '删除成功',
'code': "200",
'error_code': "0"})
elif client_object.count() == 0:
return JsonResponse({'msg': '设备不存在',
'code': "200",
'error_code': "606"
})
else:
return JsonResponse({'msg': '参数出错',
'code': "200",
'error_code': "607"
})
else:
return JsonResponse({'msg': '有必填项未填',
'code': "200",
'error_code': "884"
})
else:
return JsonResponse({'msg': '注册参数出错',
'code': "200",
'error_code': "886"
})
@method_verify()
def push_to_client(request):
"""
主动推送数据至客户端
"""
req_data = request.POST
# 推送类型
push_type = req_data.get('push_type')
push_message = request.POST.get('push_message')
# 按照企业id进行设备全推送
if push_type == "company":
company_id = request.POST.get('company_id')
try:
channel_layer = get_channel_layer()
async_to_sync(channel_layer.group_send)( # ASGI是异步的,这里转为同步操作;通过通信层向组群发送消息
str(company_id), # 设备的企业id
{
'type': 'get_notification', # 标记发送事件的type
'message': push_message, # 提示信息
}
)
except Exception as e:
print(e)
return JsonResponse({'msg': '推送出错',
'code': "200",
'error_code': "701"
})
else:
return JsonResponse({'msg': '推送成功',
'code': "200",
'error_code': "0"
})
# 单个设备推送
elif push_type == "single_client":
client_user = request.POST.get('client_user')
try:
channel_layer = get_channel_layer()
async_to_sync(channel_layer.group_send)( # ASGI是异步的,这里转为同步操作;通过通信层向组群发送消息
str(client_user), # 设备的设备号
{
'type': 'get_notification', # 标记发送事件的type
'message': push_message, # 提示信息
}
)
except Exception as e:
print(e)
return JsonResponse({'msg': '推送出错',
'code': "200",
'error_code': "701"
})
else:
return JsonResponse({'msg': '推送成功',
'code': "200",
'error_code': "0"
})
|
hamster1963/face-all-in-one-machine-backend
|
face_machine_client/views.py
|
views.py
|
py
| 6,512 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19400727989
|
class Car:
def __init__(self, id, brand, model, product_year, convertible):
self.id = id
self.brand = brand
self.model = model
self.production_year = product_year
self.convertible = convertible
def jsonEncoder(car):
if isinstance(car, Car):
return car.__dict__
else:
raise TypeError(car.__class__.__name__ + "is not JSON seriazable")
|
Yifei-G/vintage-car-database
|
car.py
|
car.py
|
py
| 426 |
python
|
en
|
code
| 0 |
github-code
|
6
|
3477127800
|
import logging
from dvc.cli.command import CmdBase
logger = logging.getLogger(__name__)
class CmdQueueWorker(CmdBase):
"""Run the exp queue worker."""
def run(self):
self.repo.experiments.celery_queue.worker.start(self.args.name)
return 0
def add_parser(experiments_subparsers, parent_parser):
QUEUE_WORKER_HELP = "Run the exp queue worker."
parser = experiments_subparsers.add_parser(
"queue-worker",
parents=[parent_parser],
description=QUEUE_WORKER_HELP,
add_help=False,
)
parser.add_argument("name", help="Celery worker name.")
parser.set_defaults(func=CmdQueueWorker)
|
gshanko125298/Prompt-Engineering-In-context-learning-with-GPT-3-and-LLMs
|
myenve/Lib/site-packages/dvc/commands/experiments/queue_worker.py
|
queue_worker.py
|
py
| 656 |
python
|
en
|
code
| 3 |
github-code
|
6
|
8105081811
|
# coding=utf-8
import os
import re
import glob
import MeCab
import torch
from torch import nn
import pickle
import linecache
import pandas as pd
from sklearn.model_selection import train_test_split
import torch.optim as optim
import sys
sys.path.append(os.path.join('./', '..', '..'))
from classification.script.models import LSTMClassifier
def make_dataset(data_dir):
categories = [dir_name for dir_name in os.listdir(data_dir) if os.path.isdir(data_dir + dir_name)]
datasets = pd.DataFrame(columns=['title', 'category'])
for category in categories:
text_files = glob.glob(os.path.join(data_dir, category, '*.txt'))
for text_file in text_files:
title = linecache.getline(text_file, 3)
data = pd.Series([title, category], index=datasets.columns)
datasets = datasets.append(data, ignore_index=True)
# データをシャッフル
datasets = datasets.sample(frac=1).reset_index(drop=True)
return datasets
def make_wakati(sentence):
""" 文章を分かち書きしたリストにする。
Args:
sentence (string):
Returns:
list: 記号や英語が削除された、日本語の単語の分かち書きされたリスト
"""
tagger = MeCab.Tagger('-Owakati')
sentence = tagger.parse(sentence)
sentence = re.sub(r'[0-90-9a-zA-Za-zA-Z]+', " ", sentence) # 半角全角英数字除去
sentence = re.sub(r'[\._-―─!@#$%^&\-‐|\\*\“()_■×+α※÷⇒—●★☆〇◎◆▼◇△□(:〜~+=)/*&^%$#@!~`){}[]…\[\]\"\'\”\’'
r':;<>?<>〔〕〈〉?、。・,\./『』【】「」→←○《》≪≫\n\u3000]+', "", sentence) # 記号を削除
wakati = sentence.split(' ')
wakati = [word for word in wakati if word != ""] # 空を削除
return wakati
def sentence2index(sentence, word2index):
"""文章を単語に分割し、単語ごとのindex numを持つ配列にする"""
wakati = make_wakati(sentence)
return torch.tensor([word2index[word] for word in wakati], dtype=torch.long)
def main():
data_dir = '../data/text/'
dataset_pickle_file = os.path.join('../', 'data', 'text', 'title_category_dataset.pickle')
category2index = {
'movie-enter': 0, 'it-life-hack': 1, 'kaden-channel': 2, 'topic-news': 3, 'livedoor-homme': 4, 'peachy': 5,
'sports-watch': 6, 'dokujo-tsushin': 7, 'smax': 8
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not os.path.exists(dataset_pickle_file):
datasets = make_dataset(data_dir)
with open(dataset_pickle_file, 'wb') as pickle_write_file:
pickle.dump(datasets, pickle_write_file)
else:
with open(dataset_pickle_file, 'rb') as pickle_read_file:
datasets = pickle.load(pickle_read_file)
word2index = {}
for title in datasets['title']:
wakati_title = make_wakati(title)
for word in wakati_title:
if word in word2index:
continue
word2index[word] = len(word2index)
print('vocab size:{}'.format(len(word2index)))
vocab_size = len(word2index)
embedding_dim = 10
hidden_dim = 128
output_size = len(category2index)
train_data, test_data = train_test_split(datasets, train_size=0.7)
model = LSTMClassifier(embedding_dim, hidden_dim, vocab_size, output_size).to(device)
criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
train_num, test_num = len(train_data), len(test_data)
train_losses, eval_losses = [], []
accuracies = [] # [TODO] 比較して精度計算する
for epoch in range(5):
train_loss = 0
train_correct_num = 0
for title, cat in zip(train_data['title'], train_data['category']):
model.zero_grad()
inputs = sentence2index(title, word2index).to(device)
outputs = model(inputs).to(device)
gt = torch.tensor([category2index[cat]], dtype=torch.long).to(device)
_, predict = torch.max(outputs, 1)
if gt == predict:
train_correct_num += 1
loss = criterion(outputs, gt)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_losses.append(train_loss)
print('epoch:{}\t train loss:{}\t accuracy:{}'.format(
epoch, train_loss, round(train_correct_num / train_num, 3)))
# テストデータを確認
test_loss = 0
test_correct_num = 0
with torch.no_grad():
for title, cat in zip(test_data['title'], test_data['category']):
inputs = sentence2index(title, word2index).to(device)
outputs = model(inputs).to(device)
gt = torch.tensor([category2index[cat]], dtype=torch.long).to(device)
_, predict = torch.max(outputs, 1)
if gt == predict:
test_correct_num += 1
loss = criterion(outputs, gt)
test_loss += loss.item()
eval_losses.append(test_loss)
print('epoch:{}\t eval loss:{}\t accuracy:{}'.format(
epoch, test_loss, round(test_correct_num / test_num, 3)))
if __name__ == '__main__':
main()
|
ys201810/lstm_pytorch
|
classification/script/train.py
|
train.py
|
py
| 5,357 |
python
|
en
|
code
| 0 |
github-code
|
6
|
41255517387
|
while True:
try:
a = int(input("Enter a: "))
b = int(input("Enter b: "))
op = input("Operation: ")
break
except:
print('Ви повинні використовувати числа!')
if __name__ == '__main__':
print('Ви запустили цей файл, як головний!\n')
elif __name__ == 'operations':
print('Дякуємо за використання модуля отримання даних!\n')
|
timkaaa23/TP-KB-221-Tymofii-Savosta
|
topic_6/operations.py
|
operations.py
|
py
| 434 |
python
|
uk
|
code
| 0 |
github-code
|
6
|
40688712803
|
import logging
from feg.protos import s6a_proxy_pb2, s6a_proxy_pb2_grpc
from google.protobuf.json_format import MessageToJson
from magma.common.rpc_utils import print_grpc
from magma.subscriberdb import metrics
from magma.subscriberdb.crypto.utils import CryptoError
from magma.subscriberdb.store.base import SubscriberNotFoundError
from magma.subscriberdb.subscription.utils import ServiceNotActive
class S6aProxyRpcServicer(s6a_proxy_pb2_grpc.S6aProxyServicer):
"""
gRPC based server for the S6aProxy.
"""
def __init__(self, lte_processor, print_grpc_payload: bool = False):
self.lte_processor = lte_processor
logging.info("starting s6a_proxy servicer")
self._print_grpc_payload = print_grpc_payload
def add_to_server(self, server):
"""
Add the servicer to a gRPC server
"""
s6a_proxy_pb2_grpc.add_S6aProxyServicer_to_server(self, server)
def AuthenticationInformation(self, request, context):
print_grpc(request, self._print_grpc_payload, "AIR:")
imsi = request.user_name
aia = s6a_proxy_pb2.AuthenticationInformationAnswer()
try:
plmn = request.visited_plmn
re_sync_info = request.resync_info
# resync_info =
# rand + auts, rand is of 16 bytes + auts is of 14 bytes
sizeof_resync_info = 30
if re_sync_info and (re_sync_info != b'\x00' * sizeof_resync_info):
rand = re_sync_info[:16]
auts = re_sync_info[16:]
self.lte_processor.resync_lte_auth_seq(imsi, rand, auts)
rand, xres, autn, kasme = \
self.lte_processor.generate_lte_auth_vector(imsi, plmn)
metrics.S6A_AUTH_SUCCESS_TOTAL.inc()
# Generate and return response message
aia.error_code = s6a_proxy_pb2.SUCCESS
eutran_vector = aia.eutran_vectors.add()
eutran_vector.rand = bytes(rand)
eutran_vector.xres = xres
eutran_vector.autn = autn
eutran_vector.kasme = kasme
logging.info("Auth success: %s", imsi)
return aia
except CryptoError as e:
logging.error("Auth error for %s: %s", imsi, e)
metrics.S6A_AUTH_FAILURE_TOTAL.labels(
code=metrics.DIAMETER_AUTHENTICATION_REJECTED,
).inc()
aia.error_code = metrics.DIAMETER_AUTHENTICATION_REJECTED
return aia
except SubscriberNotFoundError as e:
logging.warning("Subscriber not found: %s", e)
metrics.S6A_AUTH_FAILURE_TOTAL.labels(
code=metrics.DIAMETER_ERROR_USER_UNKNOWN,
).inc()
aia.error_code = metrics.DIAMETER_ERROR_USER_UNKNOWN
return aia
except ServiceNotActive as e:
logging.error("Service not active for %s: %s", imsi, e)
metrics.M5G_AUTH_FAILURE_TOTAL.labels(
code=metrics.DIAMETER_ERROR_UNAUTHORIZED_SERVICE,
).inc()
aia.error_code = metrics.DIAMETER_ERROR_UNAUTHORIZED_SERVICE
return aia
finally:
print_grpc(aia, self._print_grpc_payload, "AIA:")
def UpdateLocation(self, request, context):
print_grpc(request, self._print_grpc_payload, "ULR:")
imsi = request.user_name
ula = s6a_proxy_pb2.UpdateLocationAnswer()
try:
profile = self.lte_processor.get_sub_profile(imsi)
except SubscriberNotFoundError as e:
ula.error_code = s6a_proxy_pb2.USER_UNKNOWN
logging.warning('Subscriber not found for ULR: %s', e)
print_grpc(ula, self._print_grpc_payload, "ULA:")
return ula
try:
sub_data = self.lte_processor.get_sub_data(imsi)
except SubscriberNotFoundError as e:
ula.error_code = s6a_proxy_pb2.USER_UNKNOWN
logging.warning("Subscriber not found for ULR: %s", e)
print_grpc(ula, self._print_grpc_payload, "ULA:")
return ula
ula.error_code = s6a_proxy_pb2.SUCCESS
ula.default_context_id = 0
ula.total_ambr.max_bandwidth_ul = profile.max_ul_bit_rate
ula.total_ambr.max_bandwidth_dl = profile.max_dl_bit_rate
ula.all_apns_included = 0
ula.msisdn = self.encode_msisdn(sub_data.non_3gpp.msisdn)
context_id = 0
for apn in sub_data.non_3gpp.apn_config:
sec_apn = ula.apn.add()
sec_apn.context_id = context_id
context_id += 1
sec_apn.service_selection = apn.service_selection
sec_apn.qos_profile.class_id = apn.qos_profile.class_id
sec_apn.qos_profile.priority_level = apn.qos_profile.priority_level
sec_apn.qos_profile.preemption_capability = (
apn.qos_profile.preemption_capability
)
sec_apn.qos_profile.preemption_vulnerability = (
apn.qos_profile.preemption_vulnerability
)
sec_apn.ambr.max_bandwidth_ul = apn.ambr.max_bandwidth_ul
sec_apn.ambr.max_bandwidth_dl = apn.ambr.max_bandwidth_dl
sec_apn.ambr.unit = (
s6a_proxy_pb2.UpdateLocationAnswer
.AggregatedMaximumBitrate.BitrateUnitsAMBR.BPS
)
sec_apn.pdn = (
apn.pdn
if apn.pdn
else s6a_proxy_pb2.UpdateLocationAnswer.APNConfiguration.IPV4
)
print_grpc(ula, self._print_grpc_payload, "ULA:")
return ula
def PurgeUE(self, request, context):
logging.warning(
"Purge request not implemented: %s %s",
request.DESCRIPTOR.full_name, MessageToJson(request),
)
pur = s6a_proxy_pb2.PurgeUEAnswer()
print_grpc(pur, self._print_grpc_payload, "PUR:")
return pur
@staticmethod
def encode_msisdn(msisdn: str) -> bytes:
# Mimic how the MSISDN is encoded in ULA : 3GPP TS 29.329-f10
# For odd length MSISDN pad it with an extra 'F'/'1111'
if len(msisdn) % 2 != 0:
msisdn = msisdn + "F"
result = []
# Treat each 2 characters as a byte and flip the order
for i in range(len(msisdn) // 2):
first = int(msisdn[2 * i])
second = int(msisdn[2 * i + 1], 16)
flipped = first + (second << 4)
result.append(flipped)
return bytes(result)
|
magma/magma
|
lte/gateway/python/magma/subscriberdb/protocols/s6a_proxy_servicer.py
|
s6a_proxy_servicer.py
|
py
| 6,492 |
python
|
en
|
code
| 1,605 |
github-code
|
6
|
39275803820
|
## For random paymentid
import re
import secrets
import sha3
import sys
from binascii import hexlify, unhexlify
import pyed25519
# byte-oriented StringIO was moved to io.BytesIO in py3k
try:
from io import BytesIO
except ImportError:
from StringIO import StringIO as BytesIO
b = pyed25519.b
q = pyed25519.q
l = pyed25519.l
# CN:
def cn_fast_hash(s):
return keccak_256(unhexlify(s))
def keccak_256(s):
# return Keccak().Keccak((len(s)*4, s), 1088, 512, 0x01, 32*8, False).lower()
k = sha3.keccak_256()
k.update(s)
return k.hexdigest()
def sc_reduce(key):
return intToHexStr(hexStrToInt(key) % l)
def sc_reduce32(key):
return intToHexStr(hexStrToInt(key) % q)
def public_from_int(i):
pubkey = ed25519.encodepoint(ed25519.scalarmultbase(i))
return hexlify(pubkey)
def public_from_secret(sk):
return public_from_int(hexStrToInt(sk)).decode('utf-8')
### base58
# MoneroPy - A python toolbox for Monero
# Copyright (C) 2016 The MoneroPy Developers.
#
# MoneroPy is released under the BSD 3-Clause license. Use and redistribution of
# this software is subject to the license terms in the LICENSE file found in the
# top-level directory of this distribution.
__alphabet = [ord(s) for s in '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz']
__b58base = 58
__UINT64MAX = 2 ** 64
__encodedBlockSizes = [0, 2, 3, 5, 6, 7, 9, 10, 11]
__fullBlockSize = 8
__fullEncodedBlockSize = 11
def _hexToBin(hex):
if len(hex) % 2 != 0:
return "Hex string has invalid length!"
return [int(hex[i * 2:i * 2 + 2], 16) for i in range(len(hex) // 2)]
def _binToHex(bin):
return "".join([("0" + hex(int(bin[i])).split('x')[1])[-2:] for i in range(len(bin))])
def _strToBin(a):
return [ord(s) for s in a]
def _binToStr(bin):
return ''.join([chr(bin[i]) for i in range(len(bin))])
def _uint8be_to_64(data):
l_data = len(data)
if l_data < 1 or l_data > 8:
return "Invalid input length"
res = 0
switch = 9 - l_data
for i in range(l_data):
if switch == 1:
res = res << 8 | data[i]
elif switch == 2:
res = res << 8 | data[i]
elif switch == 3:
res = res << 8 | data[i]
elif switch == 4:
res = res << 8 | data[i]
elif switch == 5:
res = res << 8 | data[i]
elif switch == 6:
res = res << 8 | data[i]
elif switch == 7:
res = res << 8 | data[i]
elif switch == 8:
res = res << 8 | data[i]
else:
return "Impossible condition"
return res
def _uint64_to_8be(num, size):
res = [0] * size;
if size < 1 or size > 8:
return "Invalid input length"
twopow8 = 2 ** 8
for i in range(size - 1, -1, -1):
res[i] = num % twopow8
num = num // twopow8
return res
def encode_block(data, buf, index):
l_data = len(data)
if l_data < 1 or l_data > __fullEncodedBlockSize:
return "Invalid block length: " + str(l_data)
num = _uint8be_to_64(data)
i = __encodedBlockSizes[l_data] - 1
while num > 0:
remainder = num % __b58base
num = num // __b58base
buf[index + i] = __alphabet[remainder];
i -= 1
return buf
def encode(hex):
'''Encode hexadecimal string as base58 (ex: encoding a Monero address).'''
data = _hexToBin(hex)
l_data = len(data)
if l_data == 0:
return ""
full_block_count = l_data // __fullBlockSize
last_block_size = l_data % __fullBlockSize
res_size = full_block_count * __fullEncodedBlockSize + __encodedBlockSizes[last_block_size]
res = [0] * res_size
for i in range(res_size):
res[i] = __alphabet[0]
for i in range(full_block_count):
res = encode_block(data[(i * __fullBlockSize):(i * __fullBlockSize + __fullBlockSize)], res,
i * __fullEncodedBlockSize)
if last_block_size > 0:
res = encode_block(
data[(full_block_count * __fullBlockSize):(full_block_count * __fullBlockSize + last_block_size)], res,
full_block_count * __fullEncodedBlockSize)
return _binToStr(res)
def decode_block(data, buf, index):
l_data = len(data)
if l_data < 1 or l_data > __fullEncodedBlockSize:
return "Invalid block length: " + l_data
res_size = __encodedBlockSizes.index(l_data)
if res_size <= 0:
return "Invalid block size"
res_num = 0
order = 1
for i in range(l_data - 1, -1, -1):
digit = __alphabet.index(data[i])
if digit < 0:
return "Invalid symbol"
product = order * digit + res_num
if product > __UINT64MAX:
return "Overflow"
res_num = product
order = order * __b58base
if res_size < __fullBlockSize and 2 ** (8 * res_size) <= res_num:
return "Overflow 2"
tmp_buf = _uint64_to_8be(res_num, res_size)
for i in range(len(tmp_buf)):
buf[i + index] = tmp_buf[i]
return buf
def decode(enc):
'''Decode a base58 string (ex: a Monero address) into hexidecimal form.'''
enc = _strToBin(enc)
l_enc = len(enc)
if l_enc == 0:
return ""
full_block_count = l_enc // __fullEncodedBlockSize
last_block_size = l_enc % __fullEncodedBlockSize
last_block_decoded_size = __encodedBlockSizes.index(last_block_size)
if last_block_decoded_size < 0:
return "Invalid encoded length"
data_size = full_block_count * __fullBlockSize + last_block_decoded_size
data = [0] * data_size
for i in range(full_block_count):
data = decode_block(enc[(i * __fullEncodedBlockSize):(i * __fullEncodedBlockSize + __fullEncodedBlockSize)],
data, i * __fullBlockSize)
if last_block_size > 0:
data = decode_block(enc[(full_block_count * __fullEncodedBlockSize):(
full_block_count * __fullEncodedBlockSize + last_block_size)], data,
full_block_count * __fullBlockSize)
return _binToHex(data)
"""Varint encoder/decoder
varints are a common encoding for variable length integer data, used in
libraries such as sqlite, protobuf, v8, and more.
Here's a quick and dirty module to help avoid reimplementing the same thing
over and over again.
"""
if sys.version > '3':
def _byte(b):
return bytes((b,))
else:
def _byte(b):
return chr(b)
def varint_encode(number):
"""Pack `number` into varint bytes"""
buf = b''
while True:
towrite = number & 0x7f
number >>= 7
if number:
buf += _byte(towrite | 0x80)
else:
buf += _byte(towrite)
break
return buf
def hexStrToInt(h):
'''Converts a hexidecimal string to an integer.'''
return int.from_bytes(unhexlify(h), "little")
def intToHexStr(i):
'''Converts an integer to a hexidecimal string.'''
return hexlify(i.to_bytes(32, "little")).decode("latin-1")
# Validate CN address:
def cn_validate_address(wallet_address: str, get_prefix: int, get_addrlen: int, get_prefix_char: str):
prefix_hex = varint_encode(get_prefix).hex()
remain_length = get_addrlen - len(get_prefix_char)
my_regex = r"" + get_prefix_char + r"[a-zA-Z0-9]" + r"{" + str(remain_length) + ",}"
if len(wallet_address) != int(get_addrlen):
return None
if not re.match(my_regex, wallet_address.strip()):
return None
try:
address_hex = decode(wallet_address)
if address_hex.startswith(prefix_hex):
i = len(prefix_hex) - 1
address_no_prefix = address_hex[i:]
spend = address_no_prefix[1:65]
view = address_no_prefix[65:129]
checksum = address_no_prefix[129:137]
expectedChecksum = cn_fast_hash(prefix_hex + spend + view)[0:8]
if checksum == expectedChecksum:
return wallet_address
except Exception as e:
pass
return None
# Validate address:
def cn_validate_integrated(wallet_address: str, get_prefix_char: str, get_prefix: int, get_intaddrlen: int):
prefix_hex = varint_encode(get_prefix).hex()
remain_length = get_intaddrlen - len(get_prefix_char)
my_regex = r"" + get_prefix_char + r"[a-zA-Z0-9]" + r"{" + str(remain_length) + ",}"
if len(wallet_address) != int(get_intaddrlen):
return None
if not re.match(my_regex, wallet_address.strip()):
return None
try:
address_hex = decode(wallet_address)
if address_hex.startswith(prefix_hex):
i = len(prefix_hex) - 1
address_no_prefix = address_hex[i:]
integrated_id = address_no_prefix[1:129]
spend = address_no_prefix[(128 + 1):(128 + 65)]
view = address_no_prefix[(128 + 65):(128 + 129)]
checksum = address_no_prefix[(128 + 129):(128 + 137)]
expectedChecksum = cn_fast_hash(prefix_hex + integrated_id + spend + view)[0:8]
if checksum == expectedChecksum:
checksum = cn_fast_hash(prefix_hex + spend + view);
address_b58 = encode(prefix_hex + spend + view + checksum[0:8])
result = {}
result['address'] = str(address_b58)
result['integrated_id'] = str(hextostr(integrated_id))
else:
return 'invalid'
except Exception as e:
return None
return result
# make_integrated address:
def cn_make_integrated(wallet_address, get_prefix_char: str, get_prefix: int, get_addrlen: int, integrated_id=None):
prefix_hex = varint_encode(get_prefix).hex()
remain_length = get_addrlen - len(get_prefix_char)
my_regex = r"" + get_prefix_char + r"[a-zA-Z0-9]" + r"{" + str(remain_length) + ",}"
if integrated_id is None:
integrated_id = paymentid()
if len(wallet_address) != get_addrlen:
return None
if not re.match(my_regex, wallet_address.strip()):
return None
if not re.match(r'[a-zA-Z0-9]{64,}', integrated_id.strip()):
return None
try:
address_hex = decode(wallet_address)
checkPaymentID = integrated_id
integrated_id = integrated_id.encode('latin-1').hex()
if (address_hex.startswith(prefix_hex)):
i = len(prefix_hex) - 1
address_no_prefix = address_hex[i:]
spend = address_no_prefix[1:65]
view = address_no_prefix[65:129]
expectedChecksum = cn_fast_hash(prefix_hex + integrated_id + spend + view)[0:8]
address = (prefix_hex + integrated_id + spend + view + expectedChecksum)
address = str(encode(address))
result = {}
result['address'] = wallet_address
result['paymentid'] = checkPaymentID
result['integrated_address'] = address
return result
except Exception as e:
pass
return None
## make random paymentid:
def paymentid(length=None):
if length is None: length = 32
return secrets.token_hex(length)
def hextostr(hex):
h2b = _hexToBin(hex)
# print(h2b)
res = ''
for i in h2b:
res = res + chr(i)
return res
##########
|
wrkzcoin/TipBot
|
wrkzcoin_tipbot/cn_addressvalidation.py
|
cn_addressvalidation.py
|
py
| 11,230 |
python
|
en
|
code
| 137 |
github-code
|
6
|
72960119867
|
"""def is_triangle(a, b, c):
if a > (b + c) or b > (a + c) or c > (a + b):
print("You cannot form a triangle with these numbers")
else:
print("You can form a triangle with these numbers")
is_triangle(4, 8, 12)"""
"""def compare(a, b):
if a > b:
#print(1)
return 1
elif a == b:
#print(0)
return 0
else:
return -1
def collection():
return int(input())
print(compare(collection(), collection()), end="")"""
def is_between(x, y, z):
if x <= y and y <= z:
return True
else: return False
print(is_between(1, 2, 3), end="")
|
derinsola01/Projects
|
sticks.py
|
sticks.py
|
py
| 578 |
python
|
en
|
code
| 0 |
github-code
|
6
|
3897488762
|
from pointcloud import PointCloud
from evaluation import Evaluation_3d
pc = PointCloud(channel_num=4, filename='../data/TCC12.pcd')
pc.create_vis()
pred_boxes = pc.draw_3dboxes_from_txt('../data/PC_0729_3_pred.txt')
gt_boxes = pc.draw_3dboxes_from_txt('../data/PC_0729_3.txt', color=[1, 0, 1])
eval = Evaluation_3d(pred_boxes, gt_boxes, 0.5)
recall = eval.compute_recall()
pc.display_pc()
|
zhangtingyu11/pointcloud_utils
|
pointcloud_utils/demo.py
|
demo.py
|
py
| 390 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24519510155
|
from __future__ import print_function
import sys
import re
import argparse
import json
from constants import *
class Graph(object):
"""
contains all data and information about a single graph inside a
:py:class:diagram.Diagram.
"""
def __init__(self,name, signal_accumulators, ylabel, formatting):
"""
:param name: how the graph will be called in the diagram
:param signal_accumulators: an iterator for signal_accumulators
:param ylabel: naming of the corresponding y-axis in the diagram
:param formatting: Matlab style formatting for this graph
"""
self.name = name
self.__signal_accumulators = signal_accumulators
self.ylabel = ylabel
self.formatting = formatting
self.__xdata = np.array([])
self.__ydata = np.array([])
self.__applied = False
def __apply_accumulators():
"""
generate pylab parsable data from accumulators
"""
self.__xdata = np.array([])
self.__ydata = np.array([])
for acc in self.signal_accumulators:
self.__xdata = __array_append(self.__xdata,acc.attempt)
self.__ydata = __array_append(self.__ydata,acc.count)
self.__applied = True
@property
def signal_accumulators(self):
return self.__signal_accumulators
@signal_accumulators.setter
def signal_accumulators(self,value):
self.__signal_accumulators = value
self.__applied = False
@signal_accumulators.deleter
def signal_accumulators(self):
self.__signal_accumulators = None
self.__applied = False
@property
def x_data(self):
"""
generates data for the x values of a pylab graph plot
"""
if not self.__applied:
self.__apply_accumulators()
return self.__xdata
@property
def y_data(self):
"""
generates data for the y values of a pylab graph plot
"""
if not self.__applied:
self.__apply_accumulators()
return self.__ydata
def __array_append(self, in_a,in_b):
"""
append a numpy array to another
:param in_a: a numpy array
:param in_b: a numpy array or a number
"""
in_b = np.array([in_b]) if isinstance(in_b,(int,float,long,complex)) else in_b
return np.concatenate((in_a,in_b))
|
DFE/night-owl
|
graph.py
|
graph.py
|
py
| 2,380 |
python
|
en
|
code
| 3 |
github-code
|
6
|
30299002056
|
import datetime
from elasticsearch import Elasticsearch
def insertData():
es = Elasticsearch('[localhost]:9200')
# index : product_list, type : _doc
index = "product_list"
doc = {
"category": "t-shirt",
"price": 16700,
"@timestamp": datetime.datetime.now()
}
es.index(index="product_list", doc_type="_doc", body=doc)
def searchAPI():
es = Elasticsearch('[localhost]:9200')
index = "product_list"
body = {
"query": {
"match_all": {}
}
}
res = es.search(index=index, body=body)
print(type(res))
print(len(res['hits']['hits']))
for item in res['hits']['hits']:
print(item['_source'])
#insertData()
searchAPI()
|
yeahyung/python-flask
|
study/elastic.py
|
elastic.py
|
py
| 730 |
python
|
en
|
code
| 0 |
github-code
|
6
|
15963688161
|
# Profundizando tipo float
a = 3.0
# Constructor float puede recibir int y str
a = float(10)
a = float('10')
# print(f'a: {a:.2f}')
# Notación exponencial (valores positivos o negativos)
a = 3e5
a = 3e-5
# print(f'a: {a:.5f}')
# Cualquier cálculo que involucre un float, se promueve a float
a = 4 + 5.0
print(a)
print(type(a))
|
Drako01/Python-Curso
|
0029/01-03-00-ProfundizandoTipoFlotante-UP.py
|
01-03-00-ProfundizandoTipoFlotante-UP.py
|
py
| 329 |
python
|
es
|
code
| 2 |
github-code
|
6
|
34862439177
|
import datetime
import decimal
import urllib.parse
from typing import Dict, Any
from django import template
from django.conf import settings
from django.template.defaultfilters import date
from django.urls import NoReverseMatch, reverse
from django.utils import timezone
from django.utils.safestring import mark_safe
from django.utils.timezone import make_aware
from pysvg.structure import Svg
from components.models import Component
from incidents.choices import IncidentImpactChoices
from utilities.forms import get_selected_values
from utilities.forms.forms import TableConfigForm
from utilities.pysvg_helpers import create_rect
from utilities.utils import get_viewname
register = template.Library()
#
# Filters
#
@register.filter()
def viewname(model, action):
"""
Return the view name for the given model and action. Does not perform any validation.
"""
return get_viewname(model, action)
@register.filter()
def validated_viewname(model, action):
"""
Return the view name for the given model and action if valid, or None if invalid.
"""
viewname = get_viewname(model, action)
# Validate the view name
try:
reverse(viewname)
return viewname
except NoReverseMatch:
return None
@register.filter()
def humanize_speed(speed):
"""
Humanize speeds given in Kbps. Examples:
1544 => "1.544 Mbps"
100000 => "100 Mbps"
10000000 => "10 Gbps"
"""
if not speed:
return ''
if speed >= 1000000000 and speed % 1000000000 == 0:
return '{} Tbps'.format(int(speed / 1000000000))
elif speed >= 1000000 and speed % 1000000 == 0:
return '{} Gbps'.format(int(speed / 1000000))
elif speed >= 1000 and speed % 1000 == 0:
return '{} Mbps'.format(int(speed / 1000))
elif speed >= 1000:
return '{} Mbps'.format(float(speed) / 1000)
else:
return '{} Kbps'.format(speed)
@register.filter()
def humanize_megabytes(mb):
"""
Express a number of megabytes in the most suitable unit (e.g. gigabytes or terabytes).
"""
if not mb:
return ''
if not mb % 1048576: # 1024^2
return f'{int(mb / 1048576)} TB'
if not mb % 1024:
return f'{int(mb / 1024)} GB'
return f'{mb} MB'
@register.filter()
def simplify_decimal(value):
"""
Return the simplest expression of a decimal value. Examples:
1.00 => '1'
1.20 => '1.2'
1.23 => '1.23'
"""
if type(value) is not decimal.Decimal:
return value
return str(value).rstrip('0').rstrip('.')
@register.filter(expects_localtime=True)
def annotated_date(date_value):
"""
Returns date as HTML span with short date format as the content and the
(long) date format as the title.
"""
if not date_value:
return ''
if type(date_value) == datetime.date:
long_ts = date(date_value, 'DATE_FORMAT')
short_ts = date(date_value, 'SHORT_DATE_FORMAT')
else:
long_ts = date(date_value, 'DATETIME_FORMAT')
short_ts = date(date_value, 'SHORT_DATETIME_FORMAT')
return mark_safe(f'<span title="{long_ts}">{short_ts}</span>')
@register.simple_tag
def annotated_now():
"""
Returns the current date piped through the annotated_date filter.
"""
tzinfo = timezone.get_current_timezone() if settings.USE_TZ else None
return annotated_date(datetime.datetime.now(tz=tzinfo))
@register.filter()
def divide(x, y):
"""
Return x/y (rounded).
"""
if x is None or y is None:
return None
return round(x / y)
@register.filter()
def percentage(x, y):
"""
Return x/y as a percentage.
"""
if x is None or y is None:
return None
return round(x / y * 100)
@register.filter()
def has_perms(user, permissions_list):
"""
Return True if the user has *all* permissions in the list.
"""
return user.has_perms(permissions_list)
@register.filter()
def as_range(n):
"""
Return a range of n items.
"""
try:
int(n)
except TypeError:
return list()
return range(n)
@register.filter()
def meters_to_feet(n):
"""
Convert a length from meters to feet.
"""
return float(n) * 3.28084
@register.filter("startswith")
def startswith(text: str, starts: str) -> bool:
"""
Template implementation of `str.startswith()`.
"""
if isinstance(text, str):
return text.startswith(starts)
return False
@register.filter
def get_key(value: Dict, arg: str) -> Any:
"""
Template implementation of `dict.get()`, for accessing dict values
by key when the key is not able to be used in a template. For
example, `{"ui.colormode": "dark"}`.
"""
return value.get(arg, None)
@register.filter
def get_item(value: object, attr: str) -> Any:
"""
Template implementation of `__getitem__`, for accessing the `__getitem__` method
of a class from a template.
"""
return value[attr]
@register.filter
def status_from_tag(tag: str = "info") -> str:
"""
Determine Bootstrap theme status/level from Django's Message.level_tag.
"""
status_map = {
'warning': 'bg-yellow-400',
'success': 'bg-green-400',
'error': 'bg-red-400',
'debug': 'bg-blue-400',
'info': 'bg-blue-400',
}
return status_map.get(tag.lower(), 'info')
@register.filter
def icon_from_status(status: str = "info") -> str:
"""
Determine icon class name from Bootstrap theme status/level.
"""
icon_map = {
'warning': 'alert',
'success': 'check-circle',
'danger': 'alert',
'info': 'information',
}
return icon_map.get(status.lower(), 'information')
@register.filter
def get_visible_components(value: any) -> Any:
"""
Template to return only visibly components
"""
return value.filter(visibility=True)
@register.filter
def get_historic_status(value: Component) -> Any:
"""
Template to return historic status
"""
num_days = 90
start_date = make_aware(datetime.datetime.today()) + datetime.timedelta(days=1)
end_date = (start_date - datetime.timedelta(days=num_days)).replace(microsecond=0, second=0, minute=0, hour=0)
date_list = [end_date + datetime.timedelta(days=x) for x in range(num_days)]
component_incidents = value.incidents.all()
status_svg = Svg(width=816, height=34)
for index, date in enumerate(date_list):
end = date + datetime.timedelta(days=1)
incidents = list(filter(lambda i: date <= i.created <= end, component_incidents))
if len(list(filter(lambda i: i.impact == IncidentImpactChoices.CRITICAL, incidents))) > 0:
status_svg.addElement(create_rect(index=index,
date=date,
incidents=len(incidents),
fill="rgb(239, 68, 68)"))
elif len(list(filter(lambda i: i.impact == IncidentImpactChoices.MAJOR, incidents))) > 0:
status_svg.addElement(create_rect(index=index,
date=date,
incidents=len(incidents),
fill="rgb(249, 115, 22)"))
elif len(list(filter(lambda i: i.impact == IncidentImpactChoices.MINOR, incidents))) > 0:
status_svg.addElement(create_rect(index=index,
date=date,
incidents=len(incidents),
fill="rgb(234, 179, 8)"))
else:
status_svg.addElement(create_rect(index=index,
date=date,
incidents=len(incidents),
fill="rgb(34, 197, 94)"))
return mark_safe(status_svg.getXML())
@register.filter
def join_components_with_groups(value: any) -> Any:
"""
Template to return only visibly components
"""
return mark_safe(", ".join(list(map(lambda c: f'{c.component_group.name} — {c.name}' if c.component_group else c.name, value))))
@register.filter
def urlencode(value: str) -> Any:
return urllib.parse.quote(value)
#
# Tags
#
@register.simple_tag()
def querystring(request, **kwargs):
"""
Append or update the page number in a querystring.
"""
querydict = request.GET.copy()
for k, v in kwargs.items():
if v is not None:
querydict[k] = str(v)
elif k in querydict:
querydict.pop(k)
querystring = querydict.urlencode(safe='/')
if querystring:
return '?' + querystring
else:
return ''
@register.inclusion_tag('helpers/utilization_graph.html')
def utilization_graph(utilization, warning_threshold=75, danger_threshold=90):
"""
Display a horizontal bar graph indicating a percentage of utilization.
"""
if utilization == 100:
bar_class = 'bg-secondary'
elif danger_threshold and utilization >= danger_threshold:
bar_class = 'bg-danger'
elif warning_threshold and utilization >= warning_threshold:
bar_class = 'bg-warning'
elif warning_threshold or danger_threshold:
bar_class = 'bg-success'
else:
bar_class = 'bg-gray'
return {
'utilization': utilization,
'bar_class': bar_class,
}
@register.inclusion_tag('helpers/table_config_form.html')
def table_config_form(table, table_name=None):
return {
'table_name': table_name or table.__class__.__name__,
'form': TableConfigForm(table=table),
}
@register.inclusion_tag('helpers/applied_filters.html')
def applied_filters(form, query_params):
"""
Display the active filters for a given filter form.
"""
form.is_valid()
applied_filters = []
for filter_name in form.changed_data:
if filter_name not in form.cleaned_data:
continue
querydict = query_params.copy()
if filter_name not in querydict:
continue
bound_field = form.fields[filter_name].get_bound_field(form, filter_name)
querydict.pop(filter_name)
display_value = ', '.join([str(v) for v in get_selected_values(form, filter_name)])
applied_filters.append({
'name': filter_name,
'value': form.cleaned_data[filter_name],
'link_url': f'?{querydict.urlencode()}',
'link_text': f'{bound_field.label}: {display_value}',
})
return {
'applied_filters': applied_filters,
}
|
Status-Page/Status-Page
|
statuspage/utilities/templatetags/helpers.py
|
helpers.py
|
py
| 10,704 |
python
|
en
|
code
| 45 |
github-code
|
6
|
12950748282
|
#!/usr/bin/env python
# coding: utf-8
# ## 3. Sphere of influence
# In[1]:
import matplotlib.pyplot as plt
import numpy as np
import scipy.integrate as spy
G = 6.674e-11 #N*m^2/kg^2
# In[2]:
class Body:
def __init__(self, mass, radius,r0,v0):
self.m = mass
self.R = radius
self.r0 = r0
self.v0 = v0
# In[3]:
Earth = Body(5.972e24, 6371.0e3,np.array([152.10e9,0,0]),np.array([0,29.78e3,0])) #m, m/s
Sun = Body(1.989e30, 695508e3, np.array([0,0,0]),np.array([0,0,0])) #m, m/s
Mars = Body(0.64171e24, 3389.5e3, np.array([0,228.0e9,0]), np.array([24.07e3,0,0])) #m, m/s
# #### Comet 67P/C-G: Churyumov–Gerasimenko
# In[11]:
Rosetta = Body(9.982e12, 0, np.array([0,0,0]), np.array([0,0,0])) #m, m/s
r_a = 850150.0e6 #m
r_p = 185980.0e6 #m
# In[5]:
# At perihelium
rho = r_p #m
R_i_p = rho*(Rosetta.m/Sun.m)**(2/5)
print('Sphere of influence. R_i (perihelium) =',R_i_p/1e3,'km')
# In[7]:
# At apohelium
rho = r_a #m
R_i_a = rho*(Rosetta.m/Sun.m)**(2/5)
print('Sphere of influence. R_i (apohelium) =',R_i_a/1e3,'km')
|
veronicasaz/AstrodynamicsScripts
|
SimpleExercises/SphereOfInfluence.py
|
SphereOfInfluence.py
|
py
| 1,078 |
python
|
en
|
code
| 1 |
github-code
|
6
|
25569721131
|
import numpy as np
batch_size_dis = 64 # batch size for discriminator
batch_size_gen = 63 # batch size for generator
lambda_dis = 1e-5 # l2 loss regulation factor for discriminator
lambda_gen = 1e-5 # l2 loss regulation factor for generator
n_sample_dis = 20 # sample num for generator
n_sample_gen = 20 # sample num for discriminator
update_ratio = 1 # updating ratio when choose the trees
save_steps = 10
lr_dis = 1e-4 # learning rate for discriminator
lr_gen = 1e-3 # learning rate for discriminator
max_epochs = 50 # outer loop number
max_epochs_gen = 5 # loop number for generator
max_epochs_dis = 5 # loop number for discriminator
gen_for_d_iters = 10 # iteration numbers for generate new data for discriminator
max_degree = 0 # the max node degree of the network
model_log = "../log/iteration1/"
use_mul = False # control if use the multiprocessing when constructing trees
load_model = False # if load the model for continual training
gen_update_iter = 200
window_size = 3
random_state = np.random.randint(0, 100000)
app = "link_prediction"
import_tree = False
tree_path = "../../data/input/trees"
train_filename = "../../data/input/toy-edges.txt"
test_filename = ""
test_neg_filename = ""
n_embed = 300
n_node = 9890
pretrain_emd_filename_d = "../../data/input/embed.txt"
pretrain_emd_filename_g = "../../data/input/embed.txt"
modes = ["dis", "gen"]
emb_filenames = ["../../data/output/toy_" + modes[0] + "_" + str(random_state) + ".emb",
"../../data/output/toy_" + modes[1] + "_" + str(random_state) + ".emb"]
result_filename = "../../data/output/toy_" + str(random_state) + ".txt"
# for mr_predict
test_data = "../../data/input/test.data"
crossmap = "../../data/input/pickled.model"
predict_type = ['w', 'l', 't']
node_dict = "../../data/input/node_dict111.txt"
|
PonderLY/NetworkEmbedding
|
GraphGAN/config.py
|
config.py
|
py
| 1,814 |
python
|
en
|
code
| 4 |
github-code
|
6
|
6829602172
|
# ====================================================
# Quantum Information and Computing exam project
#
# UNIPD Project | AY 2022/23 | QIC
# group : Barone, Coppi, Zinesi
# ----------------------------------------------------
# > description |
#
# dQA utilities: perceptron hamiltonian tools
# ----------------------------------------------------
# coder : Barone Francesco, Zinesi Paolo
# : github.com/baronefr/perceptron-dqa/
# dated : 17 March 2023
# ver : 1.0.0
# ====================================================
import numpy as np
import matplotlib.pyplot as plt
class PerceptronHamiltonian:
def make_Ux(N, beta_p, dtype = np.complex128):
"""Return as MPO the U_x evolution operator at time-parameter beta_p."""
tb = np.array( [[np.cos(beta_p), 1j*np.sin(beta_p)],[1j*np.sin(beta_p), np.cos(beta_p)]], dtype=dtype)
return [ np.expand_dims(tb, axis=(0,1)) for _ in range(N) ]
def Wz(N, Uk : np.array, xi : int, marginal = None, dtype = np.complex128):
"""The tensors of Eq. 17 of reference paper."""
bond_dim = len(Uk)
if marginal == 'l':
shape = (1,bond_dim,2,2)
elif marginal == 'r':
shape = (bond_dim,1,2,2)
else:
shape = (bond_dim,bond_dim,2,2)
tensor = np.zeros( shape, dtype = dtype )
coeff = np.power( Uk/np.sqrt(N+1), 1/N)
exx = 1j * np.arange(bond_dim) * np.pi / (N + 1) # check: N+1
for kk in range(bond_dim):
spin_matrix = np.diag(
[ coeff[kk]*np.exp(exx[kk]*(1-xi)),
coeff[kk]*np.exp(exx[kk]*(1+xi)) ]
)
if marginal == 'l':
tensor[0,kk,:,:] = spin_matrix
elif marginal == 'r':
tensor[kk,0,:,:] = spin_matrix
else:
tensor[kk,kk,:,:] = spin_matrix
return tensor
def make_Uz(N : int, Uk : np.array, xi : np.array, dtype = np.complex128):
"""Return as MPO the U_z evolution operator at time s_p (defined indirectly by Uk)."""
# Uk must be a vector for all k values, while p is fixed
# xi must be a single sample from dataset
assert len(xi) == N, 'not matching dims'
arrays = [ PerceptronHamiltonian.Wz(N, Uk, xi[0], marginal = 'l', dtype = dtype) ] + \
[ PerceptronHamiltonian.Wz(N, Uk, xi[i+1], dtype = dtype) for i in range(N-2) ] + \
[ PerceptronHamiltonian.Wz(N, Uk, xi[N-1], marginal = 'r', dtype = dtype) ]
return arrays
def h_perceptron(m, N):
""" Cost function to be minimized in the perceptron model, depending on the overlap m.
The total H_z Hamiltonian is obtained as a sum of these cost functions evaluated at each pattern csi_mu.
h(m) = 0 if m>=0 else -m/sqrt(N)
"""
m = np.array(m)
return np.where(m>=0, 0, -m/np.sqrt(N)).squeeze()
def f_perceptron(x, N):
""" Cost function to be minimized in the perceptron model, depending on the Hamming distance x.
The total H_z Hamiltonian is obtained as a sum of these cost functions evaluated at each pattern csi_mu.
f(x) = h(N - 2x) = h(m(x)) with m(x) = N - 2x
"""
m = N - 2*np.asarray(x)
return PerceptronHamiltonian.h_perceptron(m, N)
def Hz_mu_singleK(N, mu, K, f_FT_, patterns):
""" Build factorized Hz^{mu,k} (bond dimension = 1) on N sites"""
d = 2
Hz_i = []
for i in range(1,N+1):
tens = np.zeros((1,1,d,d), dtype=np.complex128)
for s_i in range(d):
tens[0,0,s_i,s_i] = np.power(f_FT_[K]/np.sqrt(N+1), 1/N) * np.exp(1.0j * (np.pi/(N+1)) * K * (1-patterns[mu,i-1]*(-1)**s_i))
Hz_i.append(tens)
return Hz_i
def create_dataset(N : int, features : int):
"""Create dataset as described by ref. paper, i.e. random +-1 values."""
x = np.random.randint(2, size=(N, features))
x[ x == 0 ] = -1 # data is encoded as +- 1
return x
|
baronefr/perceptron-dqa
|
lib/dQA_utils.py
|
dQA_utils.py
|
py
| 4,128 |
python
|
en
|
code
| 2 |
github-code
|
6
|
37018522643
|
import numpy as np
import statsmodels.api as sm
np.random.seed(2021)
mu = 0
sigma = 1
# number of observations
n = 100
alpha = np.repeat(0.5, n)
beta = 1.5
def MC_estimation_slope(M):
MC_betas = []
MC_samples = {}
for i in range(M):
# to make sure the variance in X is bigger than the variance in the error term
X = 9 * np.random.normal(mu, sigma, n)
# random error term
e = np.random.normal(mu, sigma, n)
# determining Y
Y = (alpha + beta * X + e)
MC_samples[i] = Y
# running regression
model = sm.OLS(Y.reshape((-1, 1)), X.reshape((-1, 1)))
ols_result = model.fit()
# getting model slope
coeff = ols_result.params
MC_betas.append(coeff)
MC_beta_hats = np.array(MC_betas).flatten()
return (MC_samples, MC_beta_hats)
MS_samples, MC_beta_hats = MC_estimation_slope(M = 10000)
beta_hat_MC = np.mean(MC_beta_hats)
print(MC_beta_hats)
print(beta_hat_MC)
|
TatevKaren/mathematics-statistics-for-data-science
|
Statistical Sampling/Monte Carlo Simulation OLS estimate.py
|
Monte Carlo Simulation OLS estimate.py
|
py
| 985 |
python
|
en
|
code
| 88 |
github-code
|
6
|
45484267256
|
from setuptools import setup, find_packages
__version__ = '0.8.6'
with open('README.rst', 'r', encoding='utf-8') as fh:
long_description = fh.read()
setup(
name='LMRt', # required
version=__version__,
description='LMR turbo',
long_description=long_description,
long_description_content_type='text/x-rst',
author='Feng Zhu',
author_email='[email protected]',
url='https://github.com/fzhu2e/LMRt',
packages=find_packages(),
include_package_data=True,
license='GPL-3.0 license',
zip_safe=False,
scripts=['bin/LMRt'],
keywords='LMRt',
classifiers=[
'Natural Language :: English',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
],
install_requires=[
'termcolor',
'pyyaml',
'pandas',
'cftime',
'tqdm',
'xarray',
'netCDF4',
'statsmodels',
'seaborn',
'pyleoclim',
'pyvsl',
'pyresample',
'fbm',
],
)
|
fzhu2e/LMRt
|
setup.py
|
setup.py
|
py
| 1,031 |
python
|
en
|
code
| 9 |
github-code
|
6
|
17371125676
|
from django.contrib import admin
from django.contrib.auth import get_user_model
User = get_user_model()
class UserAdmin(admin.ModelAdmin):
list_display = (
'id',
'first_name',
'last_name',
'username',
'email',
'balance',
'freeze_balance',
'role',
)
admin.site.register(User, UserAdmin)
|
vavsar/freelance_t
|
users/admin.py
|
admin.py
|
py
| 363 |
python
|
en
|
code
| 1 |
github-code
|
6
|
7938194140
|
import pytesseract
from PIL import Image
import cv2
# Path to the Tesseract executable (you might not need this on Ubuntu)
# pytesseract.pytesseract.tesseract_cmd = r'/usr/bin/tesseract' # You may need to set the correct path to Tesseract on your system
# Open an image file
image_path = 'image.jpeg'
img = Image.open(image_path)
# Use pytesseract to do OCR on the image
text = pytesseract.image_to_string(img)
# Print the extracted text
print(text)
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
cv2.imshow("", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
KolKemboi/AiMazing
|
OCR.py
|
OCR.py
|
py
| 572 |
python
|
en
|
code
| 0 |
github-code
|
6
|
4728965077
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 11 10:19:22 2018
@author: psanch
"""
import tensorflow as tf
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import numpy as np
import utils.utils as utils
class BaseVisualize:
def __init__(self, model_name, result_dir, fig_fize):
self.model_name = model_name
self.result_dir = result_dir
self.fig_size = fig_fize
self.colors = {0:'black', 1:'grey', 2:'blue', 3:'cyan', 4:'lime', 5:'green', 6:'yellow', 7:'gold', 8:'red', 9:'maroon'}
def save_img(self, fig, name):
utils.save_img(fig, self.model_name, name, self.result_dir)
return
def reduce_dimensionality(self, var, perplexity=10):
dim = var.shape[-1]
if(dim>2):
tsne = TSNE(perplexity=perplexity, n_components=2, init='pca', n_iter=1000)
var_2d = tsne.fit_transform(var)
else:
var_2d = np.asarray(var)
return var
def scatter_variable(self, var, labels, title, perplexity=10):
f, axarr = plt.subplots(1, 1, figsize=self.fig_size)
var_2d = self.reduce_dimensionality(var)
if(labels is not None):
for number, color in self.colors.items():
axarr.scatter(x=var_2d[labels==number, 0], y=var_2d[labels==number, 1], color=color, label=str(number))
axarr.legend()
else:
axarr.scatter(x=var_2d[:, 0], y=var_2d[:, 1], color=self.colors[2])
axarr.grid()
f.suptitle(title, fontsize=20)
return f
|
psanch21/VAE-GMVAE
|
base/base_visualize.py
|
base_visualize.py
|
py
| 1,607 |
python
|
en
|
code
| 197 |
github-code
|
6
|
8564353511
|
import tkinter as tk
import random
from sql import SqlInject
LARGE_FONT = ("Verdana", 12)
data = SqlInject()
class GuiFood(tk.Tk):
def __init__(self, data=data, *args, **kwargs):
tk.Tk.__init__(self, *args, **kwargs)
container = tk.Frame(self)
container.pack(side="top", fill="both", expand=True)
container.grid_rowconfigure(0, weight=1)
container.grid_columnconfigure(0, weight=1)
self.database = data
self.value1 = tk.StringVar()
self.user_choice = "purée"
self.user_product_name = "Purée de Pois Cassés "
self.user_product_data = []
self.subs_product_data = []
self.frames = {}
self.all_frames = (StartPage, ChooseCate, ChooseFood, FoodInfo, SubsFood, SaveSearch)
for F in self.all_frames:
frame = F(container, self)
self.frames[F] = frame
frame.grid(row=0, column=0, sticky="nsew")
self.show_frame(StartPage)
def show_frame(self, cont):
frame = self.frames[cont]
frame.tkraise()
class StartPage(tk.Frame):
def __init__(self, parent, controller):
tk.Frame.__init__(self, parent)
label = tk.Label(self, text="Start Page", font=LARGE_FONT)
label.pack(pady=10, padx=10)
button = tk.Button(self, text="Substituer un aliment",
command=lambda: controller.show_frame(ChooseCate))
button.pack()
button2 = tk.Button(self, text="Retrouver mes aliments substitués.",
command=lambda: controller.show_frame(SaveSearch))
button2.pack()
class ChooseCate(tk.Frame):
def __init__(self, parent, controller):
tk.Frame.__init__(self, parent)
self.controller = controller
label = tk.Label(self, text="Choix de l'aliment a substituer", font=LARGE_FONT)
label.pack(pady=10, padx=10)
vals = controller.database.get_category()
etiqs = controller.database.get_category()
self.varCatch = tk.StringVar() # define type of variable catching
self.choice = None
def get_value():
controller.user_choice = self.varCatch.get()
frame = ChooseFood(parent, controller)
controller.frames[ChooseFood] = frame
frame.grid(row=0, column=0, sticky="nsew")
for i in range(len(vals)):
b = tk.Radiobutton(self, variable=self.varCatch, text=etiqs[i], value=vals[i],
command=lambda: [get_value(), controller.show_frame(ChooseFood)])
b.pack(side="top", expand=1)
button1 = tk.Button(self, text="Retour au menu",
command=lambda: controller.show_frame(StartPage))
button1.pack()
class ChooseFood(tk.Frame):
def __init__(self, parent, controller):
self.controller = controller
self.choice_cate = self.controller.user_choice
tk.Frame.__init__(self, parent)
label = tk.Label(self, text=str(self.choice_cate), font=LARGE_FONT)
label.pack(side="top")
food_data = controller.database.get_categorized_food(self.choice_cate)
list = tk.Listbox(self)
for i in food_data:
list.insert(i[0], i[2])
list.pack()
button2 = tk.Button(self, text="Afficher les infos",
command=lambda:[info_food(), controller.show_frame(FoodInfo)])
button2.pack()
button1 = tk.Button(self, text="Retour au Menu",
command=lambda: controller.show_frame(StartPage))
button1.pack()
def info_food():
controller.user_product_name = list.get(list.curselection())
frame = FoodInfo(parent, controller)
controller.frames[FoodInfo] = frame
frame.grid(row=0, column=0, sticky="nsew")
class FoodInfo(tk.Frame):
def __init__(self, parent, controller):
self.controller = controller
self.choice_info = self.controller.user_product_name
tk.Frame.__init__(self, parent)
food_data = controller.database.get_data_product(column="product_name", search=self.choice_info)
column_name = ["nutriscore","nom du produit","Nom générique","Magasin","Marques","url"]
for col, data in zip(column_name, food_data[0][1:-1]):
label = tk.Label(self, text=str(col)+" : "+str(data)+"\n", font=LARGE_FONT)
label.pack(side="top")
button1 = tk.Button(self, text="Retour au Menu",
command=lambda: controller.show_frame(StartPage))
button1.pack()
button2 = tk.Button(self, text="Substituer cet aliment",
command=lambda:[substitute_food(), controller.show_frame(SubsFood)])
button2.pack()
def substitute_food():
controller.user_product_data = food_data
frame = SubsFood(parent, controller)
controller.frames[SubsFood] = frame
frame.grid(row=0, column=0, sticky="nsew")
class SubsFood(tk.Frame):
def __init__(self, parent, controller):
self.controller = controller
self.cate = self.controller.user_choice
tk.Frame.__init__(self, parent)
food_data = controller.database.get_substitute(self.cate)[random.randrange(0,2)]
column_name = ["nutriscore", "nom du produit", "Nom générique", "Magasin", "Marques", "url"]
for col, data in zip(column_name, food_data[1:-1]):
label = tk.Label(self, text=str(col)+" : "+str(data)+"\n", font=LARGE_FONT)
label.pack(side="top")
button1 = tk.Button(self, text="Retour au Menu",
command=lambda: controller.show_frame(StartPage))
button1.pack()
button2 = tk.Button(self, text="Sauvegarder?",
command= lambda: save_search())
button2.pack()
def save_search():
prod_id = controller.user_product_data[0][0]
controller.database.save_substitute(product_id=int(prod_id), substitute_id=int(food_data[0]))
frame = StartPage(parent, controller)
controller.frames[StartPage] = frame
frame.grid(row=0, column=0, sticky="nsew")
class SaveSearch(tk.Frame):
def __init__(self, parent, controller):
self.controller = controller
self.save = controller.database.get_save_substitute()
print(str(self.save))
tk.Frame.__init__(self, parent)
for i in self.save:
product_name = controller.database.get_data_product(search=i[1])[0][2]
substitute_name = controller.database.get_data_product(search=i[2])[0][2]
label = tk.Label(self, text=str(product_name)+" ==> "+str(substitute_name)+"\n", font=LARGE_FONT)
label.pack(side="top")
if __name__ == '__main__':
app = GuiFood()
app.mainloop()
|
Bainard/activite5
|
newgui.py
|
newgui.py
|
py
| 6,917 |
python
|
en
|
code
| 0 |
github-code
|
6
|
12580230297
|
from django.shortcuts import render
from django.http import JsonResponse
import openai
# Create your views here.
openai_api_key='MI-API-KEY'
openai.api_key=openai_api_key
def ask_openai(message):
response = openai.Completion.create(
model = "text-davinci-003",
prompt= message,
max_tokens=150,
n=1,
stop= None,
temperature=0.7,
)
answer = response.choices[0].text.strip()
answer = "Miau... " + answer + " ...Miau"
return answer
def chatbot(request):
if request.method=='POST':
message = request.POST.get('message')
sarcastic_order = "Quiero que actúes como una persona sarcástica. "
message = sarcastic_order + message
response = ask_openai(message)
return JsonResponse({'message':message, 'response':response})
return render(request, 'chatbot.html')
|
elgualas/MichiAI
|
chatbot/views.py
|
views.py
|
py
| 880 |
python
|
en
|
code
| 0 |
github-code
|
6
|
2734136284
|
# -*- coding: utf-8 -*-
"""
@project ensepro
@since 25/02/2018
@author Alencar Rodrigo Hentges <[email protected]>
"""
import json
import logging
from ensepro.constantes import ConfiguracoesConstantes, StringConstantes, LoggerConstantes
def __init_logger():
global logger
logging.basicConfig(
filename=ConfiguracoesConstantes.ENSEPRO_PATH + __get_config(LoggerConstantes.NOME_DO_ARQUIVO),
level=logging.INFO,
format=__get_config(LoggerConstantes.FORMATO),
filemode=__get_config(LoggerConstantes.MODO_DO_ARQUIVO),
)
logger = logging.getLogger(LoggerConstantes.GET_LOGGER_MODULO.format(modulo=LoggerConstantes.MODULO_CONFIGURACOES))
logger.setLevel(logging.getLevelName(__get_config(LoggerConstantes.NIVEL_LOG_MODULO.format(modulo=LoggerConstantes.MODULO_CONFIGURACOES))))
def __carregar_configuracoes():
global __configs
__configs = json.loads(open(
file=ConfiguracoesConstantes.ARQUIVO_CONFIGURACOES,
mode=StringConstantes.FILE_READ_ONLY,
encoding=StringConstantes.UTF_8
).read())
def __get_config(path):
value = __configs
_path = path.split(".")
for key in _path:
value = value[key]
return value
def get_config(path: str, path_params=None, config_params=None):
"""
Obtém a configuração (<i>path</i>) do arquivo de configuração.
:param path: caminho da configuração no arquivo json, separada por ponto('.').
:param path_params: mapa com os parametros necessários para preencher o caminho da configuração.
:param config_params: mapa com os parametros necessários para completar a configuração obtida
:return:
"""
logger.debug("Obtendo configuração: [path=%s, path_params=%s, config_params=%s]", path, path_params, config_params)
if path_params:
path = path.format_map(path_params)
config = __get_config(path)
if config_params:
return config.format_map(config_params)
logger.info("Configuração obtida: [path=%s] = %s", path, config)
return config
__carregar_configuracoes()
__init_logger()
|
Ensepro/ensepro-core
|
ensepro/configuracoes/configuracoes.py
|
configuracoes.py
|
py
| 2,135 |
python
|
pt
|
code
| 1 |
github-code
|
6
|
40176969885
|
from setuptools import setup, find_packages
VERSION = "0.0.6"
DESCRIPTION = "Investopedia simulator trading API"
LONG_DESCRIPTION = (
"An API that allows trading with stock simulator for from Investopedia"
)
install_requires = ["selenium", "schedule"]
setup(
name="simulatorTradingApi",
version=VERSION,
author="Michael Chi",
author_email="[email protected]",
description=DESCRIPTION,
long_description=LONG_DESCRIPTION,
packages=find_packages(),
install_requires=install_requires,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.7",
include_package_data=True,
)
|
mchigit/investopedia-simulator-api
|
setup.py
|
setup.py
|
py
| 752 |
python
|
en
|
code
| 0 |
github-code
|
6
|
5892500320
|
import tkinter
import requests
import ujson
import datetime
from PIL import ImageTk,Image
from tkinter import ttk
from concurrent import futures
# pip install: requests, pillow, ujson
#region Static Requests
key = 0000000000 #<-- Riot developer key needed.
# ----------- Request Session -----------
sessionSummoner = requests.Session()
sessionRank = requests.Session()
sessionMatch = requests.Session()
sessionMatchList = requests.Session()
# ----------- Current Patch -----------
patchesJson = requests.get("https://ddragon.leagueoflegends.com/api/versions.json")
patches = ujson.loads(patchesJson.text)
currentPatch = patches[0]
# ----------- Static League Data -----------
summonerSpellJsonData = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{currentPatch}/data/en_US/summoner.json")
summonerSpellRawData = ujson.loads(summonerSpellJsonData.text)["data"]
mapListJsonData = requests.get("https://static.developer.riotgames.com/docs/lol/maps.json")
mapListRawData = ujson.loads(mapListJsonData.text)
#endregion
root = tkinter.Tk()
root.title("League Quick Data")
root.iconbitmap("LQ.ico")
root.configure(background = "black")
root.resizable(False, False)
#region Languages
class ChangeRegion:
def __init__(self, languageDict = None, buttonSearchLang = None, sessionRegionLang = None, matchResultLang = None):
self.languageDict = languageDict
self.buttonSearchLang = buttonSearchLang
self.sessionRegionLang = sessionRegionLang
self.matchResultLang = matchResultLang
def CreateDict(self):
self.languageDict = {"searchButton":["BUSCAR", "SEARCH"], "sessionRegion":["BR", "NA"], "gameResult":[["VITORIA", "DERROTA"], ["VICTORY", "DEFEAT"]]}
self.buttonSearchLang = self.languageDict["searchButton"][0]
self.sessionRegionLang = self.languageDict["sessionRegion"][0]
self.matchResultLang = self.languageDict["gameResult"][0]
def RegionNA(self, buttonSearch, buttonBR, buttonNA):
self.buttonSearchLang = self.languageDict["searchButton"][1]
self.sessionRegionLang = self.languageDict["sessionRegion"][1]
self.matchResultLang = self.languageDict["gameResult"][1]
buttonSearch.configure(text = self.buttonSearchLang)
buttonBR.configure(background = "black")
buttonNA.configure(background = "#10293f")
def RegionBR(self, buttonSearch, buttonBR, buttonNA):
self.buttonSearchLang = self.languageDict["searchButton"][0]
self.sessionRegionLang = self.languageDict["sessionRegion"][0]
self.matchResultLang = self.languageDict["gameResult"][0]
buttonSearch.configure(text = self.buttonSearchLang)
buttonBR.configure(background = "#10293f")
buttonNA.configure(background = "black")
regionMethods = ChangeRegion()
regionMethods.CreateDict()
#endregion
# ----------- Search Button -----------
searchButtonBorder = tkinter.Frame(root, background = "#048195")
searchButtonBorder.grid(row = 0, column = 2, sticky = "nswe")
searchButtonBorder.grid_columnconfigure(0, weight = 1)
searchButton = tkinter.Label(searchButtonBorder, text = "BUSCAR", font = ("", 8, "bold"), background = "black", foreground = "white", borderwidth = 3)
searchButton.grid(row = 0, column = 0, sticky = "nswe", padx = 2, pady = 2)
# ----------- Region Buttons -----------
languageFrame = tkinter.Frame(root, width = 10, background = "#024e64")
languageFrame.grid(row = 0, column = 4, sticky = "e")
brButton = tkinter.Button(languageFrame,
width = 3,
text = "BR",
font = ("Arial", 9, "bold"),
activebackground = "#07141f",
activeforeground = "white",
foreground = "white",
background = "black",
relief = "ridge",
borderwidth = 0,
command = lambda: regionMethods.RegionBR(searchButton, brButton, naButton))
brButton.grid(row = 0, column = 0, padx = 1, pady = 1)
naButton = tkinter.Button(languageFrame,
width = 3,
text = "NA",
font = ("Arial", 9, "bold"),
activebackground = "#07141f",
activeforeground = "white",
foreground = "white",
background = "black",
relief = "ridge",
borderwidth = 0,
command = lambda: regionMethods.RegionNA(searchButton, brButton, naButton))
naButton.grid(row = 0, column = 1, padx = 1, pady = 1)
regionMethods.RegionBR(searchButton, brButton, naButton)
# ----------- Scrollbar Style -----------
style = ttk.Style()
style.theme_use("classic")
style.map("TScrollbar", background=[('pressed', '!focus', '#ae914b')], relief=[('pressed', 'flat')])
style.configure("TScrollbar", troughcolor = "black", relief = "flat", background = "#775829", arrowsize = 0, width = 5, borderwidth = 0)
#region Entries
player1 = tkinter.Entry(root, width = 22,
background = "black",
foreground = "white",
borderwidth = 0,
highlightthickness = 2,
highlightcolor = "#775829",
highlightbackground = "#775829",
insertbackground = "light grey",
insertborderwidth = 1,
relief= "ridge")
player1.grid(row = 1, column = 0, sticky = "we")
player2 = tkinter.Entry(root, width = 22,
background = "black",
foreground = "white",
borderwidth = 0,
highlightthickness = 2,
highlightcolor = "#775829",
highlightbackground = "#775829",
insertbackground = "light grey",
insertborderwidth = 1,
relief= "ridge")
player2.grid(row = 1, column = 1, sticky = "we")
player3 = tkinter.Entry(root, width = 22,
background = "black",
foreground = "white",
borderwidth = 0,
highlightthickness = 2,
highlightcolor = "#775829",
highlightbackground = "#775829",
insertbackground = "light grey",
insertborderwidth = 1,
relief= "ridge")
player3.grid(row = 1, column = 2, sticky = "we")
player4 = tkinter.Entry(root, width = 22,
background = "black",
foreground = "white",
borderwidth = 0,
highlightthickness = 2,
highlightcolor = "#775829",
highlightbackground = "#775829",
insertbackground = "light grey",
insertborderwidth = 1,
relief= "ridge")
player4.grid(row = 1, column = 3, sticky = "we")
player5 = tkinter.Entry(root, width = 22,
background = "black",
foreground = "white",
borderwidth = 0,
highlightthickness = 2,
highlightcolor = "#775829",
highlightbackground = "#775829",
insertbackground = "light grey",
insertborderwidth = 1,
relief= "ridge")
player5.grid(row = 1, column = 4, sticky = "we")
playerArray = [player1, player2, player3, player4, player5]
#endregion
#region Gui creation methods
scrollBarArray = [0, 0, 0, 0, 0]
# ----------- Frame Buttons -----------
playerHistoryButtonArray = [0, 0, 0, 0, 0]
def CreateButtonBG():
for i in range(5):
if playerArray[i].get():
buttonBackground = tkinter.Label(root, background = "black", foreground = "white")
buttonBackground.grid(row = 2, columnspan = 5, sticky = "nswe")
break
if i == 4:
buttonBackground = tkinter.Label(root, background = "black", foreground = "white", text = "Null")
buttonBackground.grid(row = 2, columnspan = 5, sticky = "nswe")
def CreateHistoryButton(playerNumber):
historyButtonBorder = tkinter.Frame(root, background = "#ae914b")
historyButtonBorder.grid(row = 2, column = playerNumber, sticky = "we")
historyButtonBorder.grid_columnconfigure(0, weight = 1)
playerHistoryButton = tkinter.Label(historyButtonBorder, text = playerArray[playerNumber].get(), font = ("", 9, "bold"), background = "#0e191d",
foreground = "#fff6d6", borderwidth = 2)
playerHistoryButton.grid(row = 0, column = 0, sticky = "we", padx = 1, pady = 1)
playerHistoryButtonArray[playerNumber] = playerHistoryButton
# ----------- Frames -----------
scrollableMainFrameArray = [0, 0, 0, 0, 0]
historyFrameArray = [0, 0, 0, 0, 0]
def CreateHistoryFrame(playerNumber):
scrollableFrame = tkinter.Frame(root, height = 450, width = 680, background = "black")
scrollableFrame.grid(row = 4, columnspan = 5, sticky = "nsew")
scrollableFrame.grid_columnconfigure((0, 1), weight = 1)
canvasLayout = tkinter.Canvas(scrollableFrame, height = 450, width = 680, background = "black", highlightthickness = 0, scrollregion = (0, 0, 0, 980))
canvasLayout.grid(row=0, column = 0, sticky = "nsew")
historyFrame = tkinter.Frame(canvasLayout, height = 450, width = 680, background = "black")
canvasLayout.create_window((0, 0), window = historyFrame, anchor = "nw")
scrollbar = ttk.Scrollbar(scrollableFrame, orient = "vertical", command = canvasLayout.yview)
scrollbar.grid(row = 0, column = 1, sticky = "nse", padx = (4, 3), pady = (0, 3))
canvasLayout.configure(yscrollcommand = scrollbar.set)
# ----------- Scroll Function -----------
def MouseWheelMove(event):
canvasLayout.yview_scroll(-1 * (event.delta // 120), "units")
scrollbar.bind_all("<MouseWheel>", MouseWheelMove)
scrollableMainFrameArray[playerNumber] = scrollableFrame
historyFrameArray[playerNumber] = historyFrame
# ----------- Match Previews -----------
playerMatchArray = [0, 0, 0, 0, 0]
def CreateMatchPreview(playerNumber):
matchArray = []
for i in range(11):
if i == 0:
ProfileSummary.CreateProfileFrame(playerNumber)
else:
match = tkinter.Frame(historyFrameArray[playerNumber], height = 85, width = 680, background = "black")
match.grid(pady = (6, 0), columnspan = 5)
match.grid_rowconfigure((0,1) , weight = 1)
match.grid_columnconfigure((0,1,2,3) , weight = 1)
match.grid_propagate(False)
matchArray.append(match)
playerMatchArray[playerNumber] = matchArray
#endregion
#region Classes
championCircleFrame = ImageTk.PhotoImage(Image.open("circlebig.png").resize((75, 75)))
levelCircleFrame = ImageTk.PhotoImage(Image.open("circlesma.png").resize((23, 23)))
minionIcon = ImageTk.PhotoImage(Image.open("minion.png").resize((11, 13)))
goldIcon = ImageTk.PhotoImage(Image.open("gold.png").resize((15, 12)))
itemList1 = [[],[],[],[],[],[],[],[],[],[]]
itemList2 = [[],[],[],[],[],[],[],[],[],[]]
itemList3 = [[],[],[],[],[],[],[],[],[],[]]
itemList4 = [[],[],[],[],[],[],[],[],[],[]]
itemList5 = [[],[],[],[],[],[],[],[],[],[]]
spellList1 = [[],[],[],[],[],[],[],[],[],[]]
spellList2 = [[],[],[],[],[],[],[],[],[],[]]
spellList3 = [[],[],[],[],[],[],[],[],[],[]]
spellList4 = [[],[],[],[],[],[],[],[],[],[]]
spellList5 = [[],[],[],[],[],[],[],[],[],[]]
championList = [[],[],[],[],[],[],[],[],[],[]]
summaryChampionIconArray = [[],[],[],[],[]]
profileSummaryArray = [0, 0, 0, 0, 0]
# ----------- Get Data -----------
class SummaryStats:
def __init__(self, matchesWon = None, matchesLost = None, averageKill = None, averageDeath = None, averageAssist = None, championDictOrder = None):
self.matchesWon = matchesWon
self.matchesLost = matchesLost
self.averageKill = averageKill
self.averageDeath = averageDeath
self.averageAssist = averageAssist
self.championDictOrder = championDictOrder
def GetSummaryWins(self, matchRawDataArray, playerPuuid): #Recent win/lose/winrate
self.matchesWon = 0
self.matchesLost = 0
for i in range(10):
if len(matchRawDataArray) >= i + 1:
participants = matchRawDataArray[i]["metadata"]["participants"]
if matchRawDataArray[i]["info"]["participants"][participants.index(playerPuuid)]["win"]:
self.matchesWon += 1
else:
self.matchesLost += 1
def GetSummaryKda(self, matchRawDataArray, playerPuuid): #Player kda
self.averageKill = 0
self.averageDeath = 0
self.averageAssist = 0
for i in range(10):
if len(matchRawDataArray) >= i + 1:
participants = matchRawDataArray[i]["metadata"]["participants"]
self.averageKill += matchRawDataArray[i]["info"]["participants"][participants.index(playerPuuid)]["kills"]
self.averageDeath += matchRawDataArray[i]["info"]["participants"][participants.index(playerPuuid)]["deaths"]
self.averageAssist += matchRawDataArray[i]["info"]["participants"][participants.index(playerPuuid)]["assists"]
def GetSummaryChampions(self, matchRawDataArray, playerPuuid, player):
championDict = {}
participantsArray = []
championPlayedArray = []
# ----------- Recent Champion Names -----------
for i in range(10):
if len(matchRawDataArray) >= i + 1:
participants = matchRawDataArray[i]["metadata"]["participants"]
participantsArray.append(participants)
championPlayedArray.append(matchRawDataArray[i]["info"]["participants"][participants.index(playerPuuid)]["championName"])
# ----------- Match Result -----------
championIndex = 0
for i in championPlayedArray:
if i in championDict:
if matchRawDataArray[championIndex]["info"]["participants"][participantsArray[championIndex].index(playerPuuid)]["win"]:
championDict[i][1] += 1
else:
championDict[i][2] += 1
else:
if matchRawDataArray[championIndex]["info"]["participants"][participantsArray[championIndex].index(playerPuuid)]["win"]:
championDict[i] = [[0, 0, 0], 1, 0]
else:
championDict[i] = [[0, 0, 0], 0, 1]
championIndex += 1
# ----------- Recent Champion Names -----------
for i in range(10):
if len(matchRawDataArray) >= i + 1:
championName = matchRawDataArray[i]["info"]["participants"][participantsArray[i].index(playerPuuid)]["championName"]
championDict[championName][0][0] += matchRawDataArray[i]["info"]["participants"][participantsArray[i].index(playerPuuid)]["kills"]
championDict[championName][0][1] += matchRawDataArray[i]["info"]["participants"][participantsArray[i].index(playerPuuid)]["deaths"]
championDict[championName][0][2] += matchRawDataArray[i]["info"]["participants"][participantsArray[i].index(playerPuuid)]["assists"]
# ----------- Sort Dictionary -----------
self.championDictOrder = [[key, value] for (key, value) in championDict.items()]
for i in range(len(championDict)):
aux = 0
for j in range(len(championDict) - 1):
if (self.championDictOrder[j][1][1] + self.championDictOrder[j][1][2]) < (self.championDictOrder[j + 1][1][1] + self.championDictOrder[j + 1][1][2]):
aux = self.championDictOrder[j + 1]
self.championDictOrder[j + 1] = self.championDictOrder[j]
self.championDictOrder[j] = aux
# ----------- Champion Icon -----------
for i in range(3):
if len(self.championDictOrder) >= i + 1:
try:
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.championDictOrder[i][0]}.png").resize((32,32)))
except:
response = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{currentPatch}/img/champion/{self.championDictOrder[i][0]}.png")
if response.status_code == 200:
open(f"datadragon/{self.championDictOrder[i][0]}.png", 'wb').write(response.content)
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.championDictOrder[i][0]}.png").resize((32, 32)))
summaryChampionIconArray[player].append(image)
class PlayerStats:
def __init__(self, playerPuuid = None, encryptedSummonerId = None, playerRank = None):
self.playerPuuid = playerPuuid #"puuid" - summoner api
self.encryptedSummonerId = encryptedSummonerId #"id" - summoner api
self.playerRank = playerRank #"tier + rank" - leagueV4 api
def PlayerDataRequest(self, name):
if regionMethods.sessionRegionLang == "BR":
playerJsonData = sessionSummoner.get(f"https://br1.api.riotgames.com/lol/summoner/v4/summoners/by-name/{name}?api_key={key}")
playerRawData = ujson.loads(playerJsonData.text)
else:
playerJsonData = sessionSummoner.get(f"https://na1.api.riotgames.com/lol/summoner/v4/summoners/by-name/{name}?api_key={key}")
playerRawData = ujson.loads(playerJsonData.text)
try:
self.playerPuuid = playerRawData["puuid"]
self.encryptedSummonerId = playerRawData["id"]
print(self.playerPuuid)
except:
return 0
else:
return 1
def PlayerRankRequest(self):
if regionMethods.sessionRegionLang == "BR":
playerRankJsonData = sessionRank.get(f"https://br1.api.riotgames.com/lol/league/v4/entries/by-summoner/{self.encryptedSummonerId}?api_key={key}")
playerRankRawData = ujson.loads(playerRankJsonData.text)
else:
playerRankJsonData = sessionRank.get(f"https://na1.api.riotgames.com/lol/league/v4/entries/by-summoner/{self.encryptedSummonerId}?api_key={key}")
playerRankRawData = ujson.loads(playerRankJsonData.text)
try:
self.playerRank = playerRankRawData[0]["tier"] + " " + playerRankRawData[0]["rank"]
if playerRankRawData[0]["tier"] == "MASTER" or "GRANDMASTER" or "CHALLANGER":
self.playerRank = playerRankRawData[0]["tier"]
except:
self.playerRank = "Unranked"
class MatchStatsChampion:
def __init__(self, championId = None, championLevel = None):
self.championId = championId #"championId" - match api
self.championLevel = championLevel #"champLevel" - #match api
def MatchStatsChampionRequest(self, matchRawData, playerKey, player):
participants = matchRawData["metadata"]["participants"]
self.championId = matchRawData["info"]["participants"][participants.index(playerKey)]["championName"]
self.championLevel = matchRawData["info"]["participants"][participants.index(playerKey)]["champLevel"]
try:
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.championId}.png").resize((60,60)))
except:
response = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{currentPatch}/img/champion/{self.championId}.png")
if response.status_code == 200:
open(f"datadragon/{self.championId}.png", 'wb').write(response.content)
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.championId}.png").resize((60,60)))
championList[player].append(image)
class MatchStatsSpells:
def __init__(self, spellArrayIds = None, spellSpriteName = None):
self.spellArrayIds = spellArrayIds #["Summoner1Id", "Summoner2Id"] - #match api
self.spellSpriteName = spellSpriteName #[spells[0], spells[1]] - #key in http://ddragon.leagueoflegends.com/cdn/11.19.1/data/en_US/summoner.json
def MatchStatsSpellsRequest(self, matchRawData, playerKey):
participants = matchRawData["metadata"]["participants"]
self.spellArrayIds = [0, 0]
self.spellSpriteName = [0, 0]
self.spellArrayIds[0] = matchRawData["info"]["participants"][participants.index(playerKey)]["summoner1Id"]
self.spellArrayIds[1] = matchRawData["info"]["participants"][participants.index(playerKey)]["summoner2Id"]
for spellDict in summonerSpellRawData.values():
if spellDict["key"] == f"{self.spellArrayIds[0]}":
self.spellSpriteName[0] = (spellDict["id"])
elif spellDict["key"] == f"{self.spellArrayIds[1]}":
self.spellSpriteName[1] = (spellDict["id"])
def GetSpellSprites(self, player, preview):
for i in range(2):
if self.spellSpriteName[i] != 0:
try:
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.spellSpriteName[i]}.png").resize((18, 18)))
except:
response = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{currentPatch}/img/spell/{self.spellSpriteName[i]}.png")
if response.status_code == 200:
open(f"datadragon/{self.spellSpriteName[i]}.png", 'wb').write(response.content)
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.spellSpriteName[i]}.png").resize((18, 18)))
if player == 0:
spellList1[preview].append(image)
elif player == 1:
spellList2[preview].append(image)
elif player == 2:
spellList3[preview].append(image)
elif player == 3:
spellList4[preview].append(image)
elif player == 4:
spellList5[preview].append(image)
if player == 0:
return spellList1
elif player == 1:
return spellList2
elif player == 2:
return spellList3
elif player == 3:
return spellList4
elif player == 4:
return spellList5
class MatchStatsItems:
def __init__(self, itemArray = None):
self.itemArray = itemArray #["num", "num", "num", "num", "num", "num", "num"] - #match api
def MatchStatsItemsRequests(self, matchRawData, playerKey):
participants = matchRawData["metadata"]["participants"]
self.itemArray = []
for i in range(7):
self.itemArray.append(matchRawData["info"]["participants"][participants.index(playerKey)][f"item{i}"])
def GetItemSprites(self, player, preview):
for i in range(7):
if self.itemArray[i] != 0:
try:
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.itemArray[i]}.png").resize((32, 32)))
except:
response = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{currentPatch}/img/item/{self.itemArray[i]}.png")
if response.status_code == 200:
open(f"datadragon/{self.itemArray[i]}.png", 'wb').write(response.content)
image = ImageTk.PhotoImage(Image.open(f"datadragon/{self.itemArray[i]}.png").resize((32, 32)))
if player == 0:
itemList1[preview].append(image)
elif player == 1:
itemList2[preview].append(image)
elif player == 2:
itemList3[preview].append(image)
elif player == 3:
itemList4[preview].append(image)
elif player == 4:
itemList5[preview].append(image)
if player == 0:
return itemList1
elif player == 1:
return itemList2
elif player == 2:
return itemList3
elif player == 3:
return itemList4
elif player == 4:
return itemList5
class MatchStatsPlayer:
def __init__(self, playerKills = None, playerDeaths = None, playerAssists = None, playerMinions = None, playerGold = None):
self.playerKills = playerKills #"kill" - match api
self.playerDeaths = playerDeaths #"death" - match api
self.playerAssists = playerAssists #"assist" - match api
self.playerMinions = playerMinions #"totalMinionsKilled" - match api
self.playerGold = playerGold #"goldEarned" - match api
def MatchStatsPlayerRequest(self, matchRawData, playerKey):
participants = matchRawData["metadata"]["participants"]
self.playerKills = matchRawData["info"]["participants"][participants.index(playerKey)]["kills"]
self.playerDeaths = matchRawData["info"]["participants"][participants.index(playerKey)]["deaths"]
self.playerAssists = matchRawData["info"]["participants"][participants.index(playerKey)]["assists"]
self.playerMinions = matchRawData["info"]["participants"][participants.index(playerKey)]["totalMinionsKilled"]
self.playerGold = matchRawData["info"]["participants"][participants.index(playerKey)]["goldEarned"]
self.playerGold = '{:,}'.format(self.playerGold).replace(",", ".")
def ScoreConstructor(self):
return f"{self.playerKills} / {self.playerDeaths} / {self.playerAssists}"
class MatchStatsGame:
def __init__(self, mapId = None, mapName = None, gameMode = None, gameCreation = None, gameDuration = None, matchResult = None):
self.mapId = mapId #"mapId" - match api
self.mapName = mapName #mapId > mapName https://static.developer.riotgames.com/docs/lol/maps.json
self.gameMode = gameMode #"gameMode" - match api
self.gameCreation = gameCreation #"gameCreation" - match api - unix to date
self.gameDuration = gameDuration #"gameDuration" - match api - milisegundos
self.matchResult = matchResult #"win" - match api
def MatchModeRequest(self, matchRawData):
self.mapId = matchRawData["info"]["mapId"]
self.mapName = [mapValues["mapName"] for mapValues in mapListRawData if mapValues["mapId"] == self.mapId]
self.mapName = self.mapName[0]
self.gameMode = matchRawData["info"]["gameMode"]
def MatchTimeRequest(self, matchRawData):
gameCreationTimestamp = matchRawData["info"]["gameCreation"]
gameCreationDatetime = datetime.datetime.fromtimestamp(gameCreationTimestamp/1000)
if regionMethods.sessionRegionLang == "BR":
self.gameCreation = gameCreationDatetime.strftime('%d / %m / %Y')
else:
self.gameCreation = gameCreationDatetime.strftime('%m / %d / %Y')
if "gameEndTimestamp" in matchRawData["info"]:
datatimeRaw = str(datetime.timedelta(seconds = matchRawData["info"]["gameDuration"]))
if datatimeRaw[0] == "0":
self.gameDuration = datatimeRaw[2:]
else:
self.gameDuration = datatimeRaw
else:
datatimeRaw = str(datetime.timedelta(seconds = (matchRawData["info"]["gameDuration"] // 1000)))
if datatimeRaw[0] == "0":
self.gameDuration = datatimeRaw[2:]
else:
self.gameDuration = datatimeRaw
def GetMatchResult(self, matchRawData, playerKey):
participants = matchRawData["metadata"]["participants"]
self.matchResult = regionMethods.matchResultLang[0] if matchRawData["info"]["participants"][participants.index(playerKey)]["win"] else regionMethods.matchResultLang[1]
# ----------- Create Assets -----------
class ProfileSummary:
def CreateProfileFrame(playerNumber):
profileSummaryFrame = tkinter.Frame(historyFrameArray[playerNumber], height = 60, width = 680, background = "black")
profileSummaryFrame.grid(columnspan = 5)
profileSummaryFrame.grid_propagate(False)
profileSummaryFrame.grid_rowconfigure(0, weight = 1)
profileSummaryFrame.grid_columnconfigure((0, 1), weight = 1)
profileSummaryArray[playerNumber] = profileSummaryFrame
def CreateNameRank(profileSummaryArray, name, rank):
nameRankFrame = tkinter.Frame(profileSummaryArray, height = 38, width = 135, background = "black")
nameRankFrame.grid(row = 0, column = 0, sticky = "w")
nameRankFrame.grid_propagate(False)
nameRankFrame.grid_rowconfigure((0, 1), weight = 1)
nameRankFrame.grid_columnconfigure(0, weight = 1)
nameLabel = tkinter.Label(nameRankFrame, text = name, font = ("", 10, "bold"), background = "black", foreground = "white", borderwidth = 0, highlightthickness = 0)
nameLabel.grid(row = 0, column = 0, sticky = "swe", pady = (0, 0))
rankLabel = tkinter.Label(nameRankFrame, text = rank, font = ("", 10, "bold"), background = "black", foreground = "white", borderwidth = 0, highlightthickness = 0)
rankLabel.grid(row = 1, column = 0, sticky = "nwe", pady = (0, 0))
frameLine = tkinter.Frame(nameRankFrame, height = 1, width = 120, background = "#775829")
frameLine.grid(row = 2, column = 0, pady = (5, 0))
def CreateRecentMatches(profileSummaryArray, recentWinValue, recentLossValue, averageKill, averageDeath, averageAssist):
# ----------- Recent Matches Stats -----------
recentMatchesStats = tkinter.Frame(profileSummaryArray, height = 110, width = 152, background = "black")
recentMatchesStats.grid(row = 0, column = 1, sticky = "w", pady = (7, 0))
recentMatchesStats.grid_propagate(False)
recentMatchesStats.grid_rowconfigure((0, 1), weight = 1)
recentMatchesStats.grid_columnconfigure((0, 1), weight = 1)
# ----------- Player Performance (Recent Matches Stats) -----------
recentPerformance = tkinter.Frame(recentMatchesStats, height = 30, width = 150)
recentPerformance.grid(row = 0, column = 0)
recentPerformance.grid_propagate(False)
recentPerformance.grid_rowconfigure((0, 1), weight = 1)
recentPerformance.grid_columnconfigure((0), weight = 1)
winrate = f"{recentWinValue} / {recentLossValue}"
kda = f"{averageKill / 10} / {averageDeath / 10} / {averageAssist / 10}"
recentWinrateLabel = tkinter.Label(recentPerformance, text = winrate, font = ("", 11, "bold"), background = "black", foreground = "white")
recentWinrateLabel.grid(row = 0, column = 0, sticky = "we")
averageKdaLabel = tkinter.Label(recentPerformance, text = kda, font = ("", 8, "bold"), background = "black", foreground = "white")
averageKdaLabel.grid(row = 1, column = 0, sticky = "we")
# ----------- Winrate Stats (Recent Matches Stats) -----------
winrateGraph = tkinter.Frame(recentMatchesStats, height = 22, width = 150, background = "black", highlightthickness = 0, borderwidth = 0)
winrateGraph.grid(row = 1, column = 0, pady = (0, 4))
winrateGraph.grid_propagate(False)
winrateGraph.grid_columnconfigure((0, 1, 2), weight = 1)
winrateGraph.grid_rowconfigure(0, weight = 1)
recentWinsLabel = tkinter.Label(winrateGraph, text = f"{recentWinValue} V", font = ("", 10, "bold"), background = "black", foreground = "deep sky blue", borderwidth = 0,
highlightthickness = 0)
recentWinsLabel.grid(row = 0, column = 0, sticky = "e")
kdaBar = tkinter.Frame(winrateGraph, height = 15, width = 80, highlightthickness = 0, borderwidth = 0)
kdaBar.grid(row = 0, column = 1)
recentLossesLabel = tkinter.Label(winrateGraph, text = f"{recentLossValue} D", font = ("", 10, "bold"), background = "black", foreground = "red", borderwidth = 0,
highlightthickness = 0)
recentLossesLabel.grid(row = 0, column = 2, sticky = "w")
for i in range(recentWinValue):
filledColor = tkinter.Canvas(kdaBar, height = 15, width = 8, background = "deep sky blue", highlightthickness = 0, borderwidth = 0)
filledColor.grid(row = 0, column = i)
for i in range(recentLossValue):
filledColor = tkinter.Canvas(kdaBar, height = 15, width = 8, background = "red", highlightthickness = 0, borderwidth = 0)
filledColor.grid(row = 0, column = recentWinValue + i)
# ----------- Vertical Line (Recent Matches Stats) -----------
frameLine = tkinter.Frame(recentMatchesStats, height = 110, width = 1, background = "#775829")
frameLine.grid(row = 0,rowspan = 2, column = 1,sticky = "ns")
def CreateRecentChampion(profileSummaryArray, championDict, championIconArray):
recentChampionsFrame = tkinter.Frame(profileSummaryArray, height = 34, width = 381, background = "black")
recentChampionsFrame.grid(row = 0, column = 2)
recentChampionsFrame.grid_propagate(False)
recentChampionsFrame.grid_columnconfigure((0, 1, 2), weight = 1)
recentChampionsFrame.grid_rowconfigure(0, weight = 1)
for i in range(3):
if len(championDict) >= i + 1:
# ----------- Champion Data -----------
championWinrate = f"{championDict[i][1][1]} / {championDict[i][1][2]}"
championWinrate = championWinrate + " (" + str("{:.0f}".format((championDict[i][1][1] / (championDict[i][1][1] + championDict[i][1][2])) * 100)) + "%)"
championAverageKill = "{:.1f}".format(championDict[i][1][0][0] / (championDict[i][1][1] + championDict[i][1][2]))
championAverageDeath = "{:.1f}".format(championDict[i][1][0][1] / (championDict[i][1][1] + championDict[i][1][2]))
championAverageAssist = "{:.1f}".format(championDict[i][1][0][2] / (championDict[i][1][1] + championDict[i][1][2]))
championKda = f"{championAverageKill} / {championAverageDeath} / {championAverageAssist}"
# ----------- Recent Played Champion -----------
mostPlayedChampion = tkinter.Frame(recentChampionsFrame, height = 34, width = 127, background = "black")
mostPlayedChampion.grid(row = 0, column = i)
mostPlayedChampion.grid_propagate(False)
mostPlayedChampion.grid_columnconfigure((0, 1), weight = 1)
mostPlayedChampion.grid_rowconfigure(0, weight = 1)
# ----------- Champion Icon (Recent Played Champion) -----------
championBorder = tkinter.Frame(mostPlayedChampion, height = 34, width = 34, background = "#775829", borderwidth = 0, highlightthickness = 0)
championBorder.grid(row = 0, column = 0, sticky = "w")
championIcon = tkinter.Canvas(championBorder, height = 32, width = 32, background = "black", borderwidth = 0, highlightthickness = 0)
championIcon.grid(row = 0, column = 0, padx = 1, pady = 1)
championIcon.create_image((16, 16), image = championIconArray[i])
# ----------- Champion Stats Label (Recent Played Champion) -----------
championStats = tkinter.Frame(mostPlayedChampion, height = 34, width = 84, background = "black", borderwidth = 0)
championStats.grid(row = 0, column = 1, padx = (0, 6), sticky = "w")
championStats.grid_propagate(False)
championStats.grid_columnconfigure(0, weight = 1)
championStats.grid_rowconfigure((0, 1), weight = 1)
championWinrateLabel = tkinter.Label(championStats, text = championWinrate, font = ("Arial Narrow", 10, "bold"), background = "black", foreground = "white")
championWinrateLabel.grid(row = 0, column = 0, sticky = "w" )
championKdaLabel = tkinter.Label(championStats, text = championKda, font = ("Arial Narrow", 10, "bold"), background = "black", foreground = "white")
championKdaLabel.grid(row = 1, column = 0, sticky = "w")
class MatchPreview:
def ChampionCircle(frameNumber, championImage, playerLevel):
circle = tkinter.Canvas(frameNumber, height = 85, width = 85, background = "black", highlightthickness = 0)
circle.grid(row = 0, column = 0)
circle.create_image((42, 42), image = championImage)
circle.create_image((42, 42), image = championCircleFrame)
circle.create_image((65, 62), image = levelCircleFrame)
circle.create_text((65, 63), text = playerLevel, fill = "#918c83", font = ("", 8, "bold"))
def GamemodeResult(frameNumber, matchResult, gameMode, spellArray, preview):
gamemodeResultFrame = tkinter.Frame(frameNumber, height = 63, width = 110, background = "black")
gamemodeResultFrame.grid(row = 0, column = 1, pady = (14, 0), sticky= "nwe")
gamemodeResultFrame.grid_rowconfigure((0 , 1, 2), weight = 1)
gamemodeResultFrame.grid_propagate(False)
# ----------- Match Result -----------
matchResultLabel = tkinter.Label(gamemodeResultFrame, text = matchResult, background = "black",
foreground = "red" if matchResult == regionMethods.matchResultLang[1] else "deep sky blue", borderwidth = 0, font = ("", 10, "bold")) #text = matchResult/gameMode
matchResultLabel.grid(row = 0, column = 0, sticky = "nw")
# ----------- Gamemode -----------
matchGamemodeLabel = tkinter.Label(gamemodeResultFrame, text = gameMode, background = "black", foreground = "#918c83", borderwidth = 0,
font = ("", 9, "bold")) #text = matchResult/gameMode
matchGamemodeLabel.grid(row = 1, column = 0, sticky= "nw", pady = (0,3))
# ----------- Spell Sprites -----------
spellFrame = tkinter.Frame(gamemodeResultFrame, height = 18, width = 36, background = "#775829", borderwidth = 0)
spellFrame.grid(row = 2, column = 0, sticky = "nw", pady = (0, 3))
for i in range(2):
if len(spellArray[preview]) >= i + 1:
if i == 1:
spellSprite = tkinter.Canvas(spellFrame, height = 18, width = 18 , highlightthickness = 0, borderwidth = 0)
spellSprite.grid(row = 0, column = i, padx = 1, pady = 1)
else:
spellSprite = tkinter.Canvas(spellFrame, height = 18, width = 18 , highlightthickness = 0, borderwidth = 0)
spellSprite.grid(row = 0, column = i, padx = (1,0), pady = 1)
spellSprite.create_image((9, 9), image = spellArray[preview][i])
def PlayerResult(frameNumber, gold, totalMinion, score, itemArray, preview):
playerResultFrame = tkinter.Frame(frameNumber, height = 64, width = 192, background = "black", borderwidth = 0)
playerResultFrame.grid(row = 0, column = 2, pady = (16, 0), padx = (20, 20), sticky = "n")
# ----------- Items -----------
itemFrame = tkinter.Frame(playerResultFrame, height = 32, width = 192, background = "#775829", borderwidth = 0)
itemFrame.grid(row = 0, column = 0)
for i in range(7):
if i == 6:
itemSprite = tkinter.Canvas(itemFrame, height = 32, width = 32 , background = "black", highlightthickness = 0, borderwidth = 0)
itemSprite.grid(row = 0, column = i, padx = 1, pady = 1)
else:
itemSprite = tkinter.Canvas(itemFrame, height = 32, width = 32 , background = "black", highlightthickness = 0, borderwidth = 0)
itemSprite.grid(row = 0, column = i, padx = (1,0), pady = 1)
if i < len(itemArray[preview]):
itemSprite.create_image((16,16), image = itemArray[preview][i])
# ----------- Score -----------
scoreFrame = tkinter.Frame(playerResultFrame, height = 11, width = 192, background = "black", borderwidth = 0)
scoreFrame.grid(row = 1, column = 0, pady = (9, 0), sticky = "swe")
scoreFrame.grid_columnconfigure((0, 1, 2), weight = 1)
kdaLabel = tkinter.Label(scoreFrame, text = score, background = "black", foreground = "#918c83", font = ("Heuristica", 11,"bold"), borderwidth = 0)
kdaLabel.grid(row = 0, column = 0, sticky = "w")
# ----------- Minions -----------
minionFrame = tkinter.Frame(scoreFrame, background = "black")
minionFrame.grid(row = 0, column = 1)
minionLabel = tkinter.Label(minionFrame, text = totalMinion, background = "black", foreground = "#918c83", font = ("", 11,"bold"), borderwidth = 0)
minionLabel.grid(row = 0, column = 0, padx = (0, 2))
minionCanvas = tkinter.Canvas(minionFrame, background = "black", highlightthickness = 0, height = 16, width = 16)
minionCanvas.grid(row = 0, column = 1)
minionCanvas.create_image((8, 7), image = minionIcon)
# ----------- Gold -----------
goldFrame = tkinter.Frame(scoreFrame, background = "black")
goldFrame.grid(row = 0, column = 2, sticky = "e")
goldLabel = tkinter.Label(goldFrame, text = gold, background = "black", foreground = "#918c83",font = ("", 11,"bold"), borderwidth = 0)
goldLabel.grid(row = 0, column = 0, padx = (0, 4))
goldCanvas = tkinter.Canvas(goldFrame, background = "black", highlightthickness = 0, height = 17, width = 17)
goldCanvas.grid(row = 0, column = 1)
goldCanvas.create_image((8, 8), image = goldIcon)
def TimeData(frameNumber, mapName, gameDuration, gameCreation):
dataFrame = tkinter.Frame(frameNumber, height = 85, width = 100, background = "black", borderwidth = 0)
dataFrame.grid(row = 0, column = 3, pady = 5, sticky = "nswe")
dataFrame.grid_rowconfigure((0, 1), weight=1)
dataFrame.grid_columnconfigure((0), weight=1)
dataFrame.grid_propagate(False)
mapLabel = tkinter.Label(dataFrame, text = mapName, background = "black", font = ("", 9, "bold"), foreground = "#918c83")
mapLabel.grid(row = 0, column = 0, sticky = "w")
dateTimeLabel = tkinter.Label(dataFrame, text = f"{gameDuration} · {gameCreation}", font = ("", 9, "bold"), background = "black", foreground = "#918c83")
dateTimeLabel.grid(row = 1, column = 0, pady = (0, 20), sticky = "w")
def PreviewLine(frameNumber):
line = tkinter.Frame(frameNumber, height = 1, width = 800, background = "#7d6f4b", borderwidth = 0)
line.grid(row = 0, columnspan = 6, sticky = "swe")
#endregion
#region Match Data
matchDataArray = [[], [], [], [], []]
def MatchDataRequest(match):
matchJsonData = sessionMatch.get(match)
matchRawData = ujson.loads(matchJsonData.text)
return matchRawData
def MatchListDataRequest(playerPuuid, player):
matchListJsonData = sessionMatchList.get(f"https://americas.api.riotgames.com/lol/match/v5/matches/by-puuid/{playerPuuid}/ids?start=0&count=10&api_key={key}")
matchListRawData = ujson.loads(matchListJsonData.text)
multithreadMatchList = []
for i in range(10):
if len(matchListRawData) >= i + 1:
multithreadMatchList.append(f"https://americas.api.riotgames.com/lol/match/v5/matches/{matchListRawData[i]}?api_key={key}")
if len(matchListRawData) == 0:
return 0
with futures.ThreadPoolExecutor(max_workers = 10) as executor:
for request in executor.map(MatchDataRequest, multithreadMatchList):
matchDataArray[player].append(request)
def ChangeFrame(player):
if player == "player1":
scrollableMainFrameArray[0].tkraise()
elif player == "player2":
scrollableMainFrameArray[1].tkraise()
elif player == "player3":
scrollableMainFrameArray[2].tkraise()
elif player == "player4":
scrollableMainFrameArray[3].tkraise()
elif player == "player5":
scrollableMainFrameArray[4].tkraise()
#endregion
#region Instantiation
playerSummaryStats1 = SummaryStats()
playerStats1 = PlayerStats()
matchStatsChampion1 = MatchStatsChampion()
matchStatsSpells1 = MatchStatsSpells()
matchStatsItems1 = MatchStatsItems()
matchStatsPlayer1 = MatchStatsPlayer()
matchStatsGame1 = MatchStatsGame()
playerSummaryStats2 = SummaryStats()
playerStats2 = PlayerStats()
matchStatsChampion2 = MatchStatsChampion()
matchStatsSpells2 = MatchStatsSpells()
matchStatsItems2 = MatchStatsItems()
matchStatsPlayer2 = MatchStatsPlayer()
matchStatsGame2 = MatchStatsGame()
playerSummaryStats3 = SummaryStats()
playerStats3 = PlayerStats()
matchStatsChampion3 = MatchStatsChampion()
matchStatsSpells3 = MatchStatsSpells()
matchStatsItems3 = MatchStatsItems()
matchStatsPlayer3 = MatchStatsPlayer()
matchStatsGame3 = MatchStatsGame()
playerSummaryStats4 = SummaryStats()
playerStats4 = PlayerStats()
matchStatsChampion4 = MatchStatsChampion()
matchStatsSpells4 = MatchStatsSpells()
matchStatsItems4 = MatchStatsItems()
matchStatsPlayer4 = MatchStatsPlayer()
matchStatsGame4 = MatchStatsGame()
playerSummaryStats5 = SummaryStats()
playerStats5 = PlayerStats()
matchStatsChampion5 = MatchStatsChampion()
matchStatsSpells5 = MatchStatsSpells()
matchStatsItems5 = MatchStatsItems()
matchStatsPlayer5 = MatchStatsPlayer()
matchStatsGame5 = MatchStatsGame()
#endregion
playerSummaryStatsArray = [playerSummaryStats1, playerSummaryStats2, playerSummaryStats3, playerSummaryStats4, playerSummaryStats5]
playerStatsArray = [playerStats1, playerStats2, playerStats3, playerStats4, playerStats5]
statsChampionArray = [matchStatsChampion1, matchStatsChampion2, matchStatsChampion3, matchStatsChampion4, matchStatsChampion5]
statsSpellsArray = [matchStatsSpells1, matchStatsSpells2, matchStatsSpells3, matchStatsSpells4, matchStatsSpells5]
statsItemsArray = [matchStatsItems1, matchStatsItems2, matchStatsItems3, matchStatsItems4, matchStatsItems5]
matchStatsPlayerArray = [matchStatsPlayer1, matchStatsPlayer2, matchStatsPlayer3, matchStatsPlayer4, matchStatsPlayer5]
statsGameArray = [matchStatsGame1, matchStatsGame2, matchStatsGame3, matchStatsGame4, matchStatsGame5]
def AssignHistoryButton(player):
if player == 0:
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeFrame("player1"))
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeEntry(event, 0), add = "+")
if player == 1:
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeFrame("player2"))
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeEntry(event, 1), add = "+")
if player == 2:
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeFrame("player3"))
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeEntry(event, 2), add = "+")
if player == 3:
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeFrame("player4"))
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeEntry(event, 3), add = "+")
if player == 4:
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeFrame("player5"))
playerHistoryButtonArray[player].bind("<Button-1>", lambda event: ChangeEntry(event, 4), add = "+")
def DestroyOldApp():
for i in range(5):
summaryChampionIconArray[i].clear()
if playerHistoryButtonArray[i] != 0:
scrollableMainFrameArray[i].destroy()
matchDataArray[i].clear()
profileSummaryArray[i].destroy()
for i in range(10):
itemList1[i].clear()
itemList2[i].clear()
itemList3[i].clear()
itemList4[i].clear()
itemList5[i].clear()
spellList1[i].clear()
spellList2[i].clear()
spellList3[i].clear()
spellList4[i].clear()
spellList5[i].clear()
championList[i].clear()
def AppBuilder(event):
lastColor = []
DestroyOldApp()
# ----------- UI Creation -----------
CreateButtonBG()
for i in range(5):
if playerArray[i].get() != "" and " ":
if playerStatsArray[i].PlayerDataRequest(playerArray[i].get()) == 0:
pass
elif MatchListDataRequest(playerStatsArray[i].playerPuuid, i) == 0:
pass
else:
CreateHistoryButton(i)
CreateHistoryFrame(i)
CreateMatchPreview(i)
AssignHistoryButton(i)
playerStatsArray[i].PlayerRankRequest()
playerSummaryStatsArray[i].GetSummaryWins(matchDataArray[i], playerStatsArray[i].playerPuuid)
playerSummaryStatsArray[i].GetSummaryKda(matchDataArray[i], playerStatsArray[i].playerPuuid)
playerSummaryStatsArray[i].GetSummaryChampions(matchDataArray[i], playerStatsArray[i].playerPuuid, i)
ProfileSummary.CreateNameRank(profileSummaryArray[i], playerArray[i].get(), playerStatsArray[i].playerRank)
ProfileSummary.CreateRecentMatches(profileSummaryArray[i], playerSummaryStatsArray[i].matchesWon, playerSummaryStatsArray[i].matchesLost,
playerSummaryStatsArray[i].averageKill, playerSummaryStatsArray[i].averageDeath, playerSummaryStatsArray[i].averageAssist)
ProfileSummary.CreateRecentChampion(profileSummaryArray[i], playerSummaryStatsArray[i].championDictOrder, summaryChampionIconArray[i])
lastColor.append(playerHistoryButtonArray[i])
elif i == 4:
lastColor[len(lastColor) - 1].configure(background = "#042937")
for player in range(5):
if playerHistoryButtonArray[player] != 0:
for preview in range(10):
# ----------- Data Requests -----------
statsChampionArray[player].MatchStatsChampionRequest(matchDataArray[player][preview], playerStatsArray[player].playerPuuid, player)
statsSpellsArray[player].MatchStatsSpellsRequest(matchDataArray[player][preview], playerStatsArray[player].playerPuuid)
statsItemsArray[player].MatchStatsItemsRequests(matchDataArray[player][preview], playerStatsArray[player].playerPuuid)
matchStatsPlayerArray[player].MatchStatsPlayerRequest(matchDataArray[player][preview], playerStatsArray[player].playerPuuid)
statsGameArray[player].GetMatchResult(matchDataArray[player][preview], playerStatsArray[player].playerPuuid)
statsGameArray[player].MatchModeRequest(matchDataArray[player][preview])
statsGameArray[player].MatchTimeRequest(matchDataArray[player][preview])
# ----------- UI Elements -----------
MatchPreview.ChampionCircle(playerMatchArray[player][preview], championList[player][preview], statsChampionArray[player].championLevel)
MatchPreview.GamemodeResult(playerMatchArray[player][preview], statsGameArray[player].matchResult, statsGameArray[player].gameMode,
statsSpellsArray[player].GetSpellSprites(player, preview), preview)
MatchPreview.PlayerResult(playerMatchArray[player][preview], matchStatsPlayerArray[player].playerGold, matchStatsPlayerArray[player].playerMinions,
matchStatsPlayerArray[player].ScoreConstructor(), statsItemsArray[player].GetItemSprites(player, preview), preview)
MatchPreview.TimeData(playerMatchArray[player][preview], statsGameArray[player].mapName, statsGameArray[player].gameDuration, statsGameArray[player].gameCreation)
MatchPreview.PreviewLine(playerMatchArray[player][preview])
def ChangeSearch(event):
if str(event.type) == "ButtonPress":
searchButton.config(background = "#07141f")
elif str(event.type) == "ButtonRelease":
searchButton.config(background = "black")
def ChangeEntry(event, player):
for i in range(5):
if i == player:
playerHistoryButtonArray[i].configure(background = "#042937")
elif playerHistoryButtonArray[i] != 0:
playerHistoryButtonArray[i].configure(background = "black")
searchButton.bind("<Button-1>", ChangeSearch)
searchButton.bind("<Button-1>", AppBuilder, add = "+")
searchButton.bind("<ButtonRelease>", ChangeSearch)
player1.bind("<Return>", AppBuilder)
player2.bind("<Return>", AppBuilder)
player3.bind("<Return>", AppBuilder)
player4.bind("<Return>", AppBuilder)
player5.bind("<Return>", AppBuilder)
root.mainloop()
#pyinstaller --onefile --noconsole MainFile.py
|
WandersonKnight/League-Quick-Data
|
MainFile.py
|
MainFile.py
|
py
| 54,615 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21816512190
|
from flask import Flask, request
import json
app = Flask(__name__)
@app.route("/")
def api():
x = request.headers.get("Xxx")
if x == None:
return "missing header"
headers = [header for header in request.headers]
return json.dumps(headers)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=3000, debug=True)
|
mrtc0/abusing-hop-by-hop-header
|
app/app.py
|
app.py
|
py
| 344 |
python
|
en
|
code
| 1 |
github-code
|
6
|
1175959273
|
#!/usr/bin/env python3
"""
Watersheds problem
for Google Code Jam 2009
Qualification Round
Link to problem description:
http://code.google.com/codejam/contest/dashboard?c=90101#s=p1
author:
Chris Nitsas
(nitsas)
language:
Python 3.2.1
date:
April, 2012
usage:
$ python3 runme.py sample.in
or
$ runme.py sample.in
(where sample.in is the input file and $ the prompt)
"""
import sys
# non-standard modules:
from helpful import read_int, read_list_of_int
def get_altitudes_map(file, height):
altitudes = []
for i in range(height):
altitudes.append(read_list_of_int(file))
return altitudes
def label_cells(altitudes):
height, width = len(altitudes), len(altitudes[0])
label_of_cell = [['' for i in line] for line in altitudes]
unused_labels = label_generator()
for i in range(height):
for j in range(width):
if not label_of_cell[i][j]:
travel_to_sink_and_label_backwards((i, j), altitudes, label_of_cell, unused_labels)
return label_of_cell
def travel_to_sink_and_label_backwards(cell, altitudes, label_of_cell, unused_labels):
path = [cell]
neighbor = get_lowest_neighbor(altitudes, cell)
while neighbor:
# we aren't at the sink yet
if not label_of_cell[neighbor[0]][neighbor[1]]:
path.append(neighbor)
neighbor = get_lowest_neighbor(altitudes, neighbor)
else:
label_path(path, label_of_cell, label_of_cell[neighbor[0]][neighbor[1]])
break
else:
# we got to a sink; label the path with a new, unused label
label_path(path, label_of_cell, next(unused_labels))
def label_generator():
labels = "abcdefghijklmnopqrstuvwxyz"
for label in labels:
yield label
def label_path(path, label_of_cell, label):
for (i, j) in path:
label_of_cell[i][j] = label
def get_lowest_neighbor(altitudes, cell):
row, col = cell
height, width = len(altitudes), len(altitudes[0])
lowest_altitude = altitudes[row][col]
neighbor = ()
# check North neighbor (if it exists)
if row > 0 and altitudes[row - 1][col] < lowest_altitude:
lowest_altitude = altitudes[row - 1][col]
neighbor = (row - 1, col)
# now check West neighbor (if it exists)
if col > 0 and altitudes[row][col - 1] < lowest_altitude:
lowest_altitude = altitudes[row][col - 1]
neighbor = (row, col - 1)
# now check East neighbor (if it exists)
if col < width - 1 and altitudes[row][col + 1] < lowest_altitude:
lowest_altitude = altitudes[row][col + 1]
neighbor = (row, col + 1)
# finally, check South neighbor (if it exists)
if row < height - 1 and altitudes[row + 1][col] < lowest_altitude:
lowest_altitude = altitudes[row + 1][col]
neighbor = (row + 1, col)
return neighbor
def print_cell_labels(cell_labels):
for line in cell_labels:
print(" ".join(line))
def main(filename=None):
if filename is None:
if len(sys.argv) == 2:
filename = sys.argv[1]
else:
print("Usage: runme.py input_file")
return 1
with open(filename, "r") as f:
num_maps = read_int(f)
for i in range(num_maps):
print("Case #" + str(i+1) + ":")
(height, width) = read_list_of_int(f)
altitudes = get_altitudes_map(f, height)
cell_labels = label_cells(altitudes)
print_cell_labels(cell_labels)
return 0
if __name__ == "__main__":
status = main()
sys.exit(status)
|
nitsas/codejamsolutions
|
Watersheds/runme.py
|
runme.py
|
py
| 3,572 |
python
|
en
|
code
| 1 |
github-code
|
6
|
70078444988
|
import logging
import math
import threading
import time
import torch
#import support.kernels as kernel_factory
from ...support.kernels import factory
from ...core import default
from ...core.model_tools.deformations.exponential import Exponential
from ...core.models.abstract_statistical_model import AbstractStatisticalModel
from ...core.models.model_functions import initialize_control_points, initialize_momenta
from ...core.observations.deformable_objects.deformable_multi_object import DeformableMultiObject
from ...in_out.array_readers_and_writers import *
from ...in_out.dataset_functions import create_template_metadata
#import support.utilities as utilities
from ...support.utilities import move_data, get_best_device
from .abstract_statistical_model import process_initial_data
import torch.nn.functional as F
logger = logging.getLogger(__name__)
# def _subject_attachment_and_regularity(arg):
# """
# Auxiliary function for multithreading (cannot be a class method).
# """
# from .abstract_statistical_model import process_initial_data
# if process_initial_data is None:
# raise RuntimeError('process_initial_data is not set !')
#
# # Read arguments.
# freeze_sparse_matrix = False
# (deformable_objects, multi_object_attachment, objects_noise_variance,
# freeze_template, freeze_control_points, freeze_momenta,
# exponential, sobolev_kernel, use_sobolev_gradient, tensor_scalar_type, gpu_mode) = process_initial_data
# (i, template, template_data, control_points, momenta, with_grad, momenta_t, sparse_matrix, alpha) = arg
#
# # start = time.perf_counter()
# device, device_id = get_best_device(gpu_mode=gpu_mode)
# # device, device_id = ('cpu', -1)
# if device_id >= 0:
# torch.cuda.set_device(device_id)
#
# # convert np.ndarrays to torch tensors. This is faster than transferring torch tensors to process.
# template_data = {key: move_data(value, device=device, dtype=tensor_scalar_type,
# requires_grad=with_grad and not freeze_template)
# for key, value in template_data.items()}
# template_points = {key: move_data(value, device=device, dtype=tensor_scalar_type,
# requires_grad=with_grad and not freeze_template)
# for key, value in template.get_points().items()}
# control_points = move_data(control_points, device=device, dtype=tensor_scalar_type,
# requires_grad=with_grad and not freeze_control_points)
# momenta = move_data(momenta, device=device, dtype=tensor_scalar_type,
# requires_grad=with_grad and not freeze_momenta)
#
# assert torch.device(
# device) == control_points.device == momenta.device, 'control_points and momenta tensors must be on the same device. ' \
# 'device=' + device + \
# ', control_points.device=' + str(control_points.device) + \
# ', momenta.device=' + str(momenta.device)
#
# attachment, regularity = DeterministicAtlasHypertemplate._deform_and_compute_attachment_and_regularity(
# exponential, template_points, control_points, momenta,
# template, template_data, multi_object_attachment,
# deformable_objects[i], objects_noise_variance, alpha,
# device)
#
# res = DeterministicAtlasHypertemplate._compute_gradients(
# attachment, regularity,
# freeze_template, momenta_t,
# freeze_control_points, control_points,
# freeze_momenta, momenta, freeze_sparse_matrix, sparse_matrix,
# with_grad)
# # elapsed = time.perf_counter() - start
# # logger.info('pid=' + str(os.getpid()) + ', ' + torch.multiprocessing.current_process().name +
# # ', device=' + device + ', elapsed=' + str(elapsed))
# return i, res
class DeterministicAtlasWithModule(AbstractStatisticalModel):
"""
Deterministic atlas object class.
"""
####################################################################################################################
### Constructor:
####################################################################################################################
def __init__(self, template_specifications, number_of_subjects,
dimension=default.dimension,
tensor_scalar_type=default.tensor_scalar_type,
tensor_integer_type=default.tensor_integer_type,
dense_mode=default.dense_mode,
number_of_processes=default.number_of_processes,
deformation_kernel_type=default.deformation_kernel_type,
deformation_kernel_width=default.deformation_kernel_width,
deformation_kernel_device=default.deformation_kernel_device,
shoot_kernel_type=default.shoot_kernel_type,
number_of_time_points=default.number_of_time_points,
use_rk2_for_shoot=default.use_rk2_for_shoot, use_rk2_for_flow=default.use_rk2_for_flow,
freeze_template=default.freeze_template,
use_sobolev_gradient=default.use_sobolev_gradient,
smoothing_kernel_width=default.smoothing_kernel_width,
initial_control_points=default.initial_control_points,
freeze_control_points=default.freeze_control_points,
initial_cp_spacing=default.initial_cp_spacing,
initial_momenta=default.initial_momenta,
freeze_momenta=default.freeze_momenta,
gpu_mode=default.gpu_mode,
process_per_gpu=default.process_per_gpu,
**kwargs):
AbstractStatisticalModel.__init__(self, name='DeterministicAtlas', number_of_processes=number_of_processes,
gpu_mode=gpu_mode)
# Global-like attributes.
self.dimension = dimension
self.tensor_scalar_type = tensor_scalar_type
self.tensor_integer_type = tensor_integer_type
self.dense_mode = dense_mode
# Declare model structure.
self.fixed_effects['template_data'] = None
self.fixed_effects['hypertemplate_data'] = None
self.fixed_effects['control_points'] = None
self.fixed_effects['momenta'] = None
self.fixed_effects['momenta_t'] = None
self.fixed_effects['module_intensities'] = None
self.fixed_effects['module_positions'] = None
self.fixed_effects['module_variances'] = None
self.freeze_template = freeze_template
self.freeze_control_points = freeze_control_points
self.freeze_momenta = freeze_momenta
self.freeze_sparse_matrix = False
self.alpha = 1
# Deformation.
self.exponential = Exponential(
dense_mode=dense_mode,
kernel=factory(deformation_kernel_type,
gpu_mode=gpu_mode,
kernel_width=deformation_kernel_width),
shoot_kernel_type=shoot_kernel_type,
number_of_time_points=number_of_time_points,
use_rk2_for_shoot=use_rk2_for_shoot, use_rk2_for_flow=use_rk2_for_flow)
self.exponential_t = Exponential(
dense_mode=dense_mode,
kernel=factory(deformation_kernel_type,
gpu_mode=gpu_mode,
kernel_width=deformation_kernel_width),
shoot_kernel_type=shoot_kernel_type,
number_of_time_points=number_of_time_points,
use_rk2_for_shoot=use_rk2_for_shoot, use_rk2_for_flow=use_rk2_for_flow)
# Template.
(object_list, self.objects_name, self.objects_name_extension,
self.objects_noise_variance, self.multi_object_attachment) = create_template_metadata(template_specifications,
self.dimension)
self.template = DeformableMultiObject(object_list)
self.hypertemplate = DeformableMultiObject(object_list)
# self.template.update()
self.number_of_objects = len(self.template.object_list)
self.use_sobolev_gradient = use_sobolev_gradient
self.smoothing_kernel_width = smoothing_kernel_width
if self.use_sobolev_gradient:
self.sobolev_kernel = factory(deformation_kernel_type,
gpu_mode=gpu_mode,
kernel_width=smoothing_kernel_width)
# Template data.
self.fixed_effects['template_data'] = self.template.get_data()
self.fixed_effects['hypertemplate_data'] = self.hypertemplate.get_data()
# Control points.
self.fixed_effects['control_points'] = initialize_control_points(
initial_control_points, self.template, initial_cp_spacing, deformation_kernel_width,
self.dimension, self.dense_mode)
self.number_of_control_points = len(self.fixed_effects['control_points'])
# Momenta.
self.fixed_effects['momenta'] = initialize_momenta(
initial_momenta, self.number_of_control_points, self.dimension, number_of_subjects)
self.fixed_effects['momenta'] = 0.0001*np.ones(self.fixed_effects['momenta'].shape)
self.number_of_subjects = number_of_subjects
self.fixed_effects['momenta_t'] = initialize_momenta(
None, self.number_of_control_points, self.dimension, 1)
# initial_cp = initialize_control_points(None, self.template, 40, None, self.dimension, False)
# self.nb_modules = initial_cp.shape[0]
# self.fixed_effects['module_positions'] = np.array([initial_cp,]*self.number_of_subjects)
#self.fixed_effects['module_positions'] = np.array([[np.array(self.template.get_points()['image_points'].shape[:-1])/2]*initial_cp.shape[0]]*self.number_of_subjects)
for i in range(object_list[0].bounding_box.shape[0]):
object_list[0].bounding_box[i,0] = object_list[0].bounding_box[i,1]/2 - 10/2
object_list[0].bounding_box[i, 1] = object_list[0].bounding_box[i, 1] / 2 + 10 / 2
t = DeformableMultiObject(object_list)
initial_cp = initialize_control_points(None, t, 3, None, self.dimension, False)
self.nb_modules = initial_cp.shape[0]
self.fixed_effects['module_positions'] = np.array([initial_cp, ] * self.number_of_subjects)
# k = 0
# j = 0
# add = 1
# while k < self.nb_modules - 1:
# self.fixed_effects['module_positions'][:,k,j] += add
# self.fixed_effects['module_positions'][:, k+1, j] -= add
# k += 2
# if j == self.fixed_effects['module_positions'].shape[2] - 1:
# j = 0
# add += 1
# else:
# j+=1
self.fixed_effects['module_intensities'] = 0*np.ones([self.number_of_subjects, self.nb_modules])
self.fixed_effects['module_variances'] = 5*np.ones([self.number_of_subjects, self.nb_modules, self.dimension])
self.process_per_gpu = process_per_gpu
self.regu_var_m = 5
self.regu_var_m_ortho = 10
def initialize_noise_variance(self, dataset, device='cpu'):
if np.min(self.objects_noise_variance) < 0:
hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, momenta_t \
= self._fixed_effects_to_torch_tensors(False, device=device)
targets = dataset.deformable_objects
targets = [target[0] for target in targets]
residuals_torch = []
self.exponential.set_initial_template_points(template_points)
self.exponential.set_initial_control_points(control_points)
for i, target in enumerate(targets):
self.exponential.set_initial_momenta(momenta[i])
self.exponential.update()
deformed_points = self.exponential.get_template_points()
deformed_data = self.template.get_deformed_data(deformed_points, template_data)
residuals_torch.append(self.multi_object_attachment.compute_distances(
deformed_data, self.template, target))
residuals = np.zeros((self.number_of_objects,))
for i in range(len(residuals_torch)):
residuals += residuals_torch[i].detach().cpu().numpy()
# Initialize the noise variance hyper-parameter as a 1/100th of the initial residual.
for k, obj in enumerate(self.objects_name):
if self.objects_noise_variance[k] < 0:
nv = 0.01 * residuals[k] / float(self.number_of_subjects)
self.objects_noise_variance[k] = nv
logger.info('>> Automatically chosen noise std: %.4f [ %s ]' % (math.sqrt(nv), obj))
####################################################################################################################
### Encapsulation methods:
####################################################################################################################
# Template data ----------------------------------------------------------------------------------------------------
def get_template_data(self):
return self.fixed_effects['template_data']
def set_template_data(self, td):
self.fixed_effects['template_data'] = td
self.template.set_data(td)
def get_hypertemplate_data(self):
return self.fixed_effects['hypertemplate_data']
# Control points ---------------------------------------------------------------------------------------------------
def get_control_points(self):
return self.fixed_effects['control_points']
def set_control_points(self, cp):
self.fixed_effects['control_points'] = cp
# self.number_of_control_points = len(cp)
# Momenta ----------------------------------------------------------------------------------------------------------
def get_momenta(self):
return self.fixed_effects['momenta']
def set_momenta(self, mom):
self.fixed_effects['momenta'] = mom
def get_momenta_t(self):
return self.fixed_effects['momenta_t']
def set_momenta_t(self, mom):
self.fixed_effects['momenta_t'] = mom
def set_module_intensities(self, w):
self.fixed_effects['module_intensities'] = w
def get_module_intensities(self):
return self.fixed_effects['module_intensities']
def set_module_positions(self, c):
self.fixed_effects['module_positions'] = c
def get_module_positions(self):
return self.fixed_effects['module_positions']
def set_module_variances(self, sigma):
self.fixed_effects['module_variances'] = sigma
def get_module_variances(self):
return self.fixed_effects['module_variances']
# Full fixed effects -----------------------------------------------------------------------------------------------
def get_fixed_effects(self):
out = {}
if not self.freeze_template:
out['momenta_t'] = self.fixed_effects['momenta_t']
if not self.freeze_control_points:
out['control_points'] = self.fixed_effects['control_points']
if not self.freeze_momenta:
out['momenta'] = self.fixed_effects['momenta']
if not self.freeze_sparse_matrix:
out['module_positions'] = self.fixed_effects['module_positions']
out['module_intensities'] = self.fixed_effects['module_intensities']
out['module_variances'] = self.fixed_effects['module_variances']
return out
def set_fixed_effects(self, fixed_effects):
if not self.freeze_template:
device, _ = get_best_device(self.gpu_mode)
hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, momenta_t, module_intensities, module_positions, module_variances \
= self._fixed_effects_to_torch_tensors(False, device=device)
self.exponential_t.set_initial_template_points(hypertemplate_points)
self.exponential_t.set_initial_control_points(control_points)
self.exponential_t.set_initial_momenta(momenta_t[0])
self.exponential_t.move_data_to_(device=device)
self.exponential_t.update()
template_points = self.exponential_t.get_template_points()
template_data = self.hypertemplate.get_deformed_data(template_points, hypertemplate_data)
template_data = {key: value.detach().cpu().numpy() for key, value in template_data.items()}
self.set_momenta_t(fixed_effects['momenta_t'])
self.set_template_data(template_data)
if not self.freeze_control_points:
self.set_control_points(fixed_effects['control_points'])
if not self.freeze_momenta:
self.set_momenta(fixed_effects['momenta'])
if not self.freeze_sparse_matrix:
self.set_module_positions(fixed_effects['module_positions'])
self.set_module_variances((fixed_effects['module_variances']))
self.set_module_intensities(fixed_effects['module_intensities'])
####################################################################################################################
### Public methods:
####################################################################################################################
def setup_multiprocess_pool(self, dataset):
self._setup_multiprocess_pool(initargs=([target[0] for target in dataset.deformable_objects],
self.multi_object_attachment,
self.objects_noise_variance,
self.freeze_template, self.freeze_control_points, self.freeze_momenta,
self.exponential, self.sobolev_kernel, self.use_sobolev_gradient,
self.tensor_scalar_type, self.gpu_mode))
# Compute the functional. Numpy input/outputs.
def compute_log_likelihood(self, dataset, population_RER, individual_RER, mode='complete', with_grad=False):
"""
Compute the log-likelihood of the dataset, given parameters fixed_effects and random effects realizations
population_RER and indRER.
:param fixed_effects: Dictionary of fixed effects.
:param population_RER: Dictionary of population random effects realizations.
:param individual_RER: Dictionary of individual random effects realizations.
:param mode: Indicates which log_likelihood should be computed, between 'complete', 'model', and 'class2'.
:param with_grad: Flag that indicates wether the gradient should be returned as well.
:return:
"""
if self.number_of_processes > 1:
targets = [target[0] for target in dataset.deformable_objects]
(deformable_objects, multi_object_attachment, objects_noise_variance,
freeze_template, freeze_control_points, freeze_momenta,
exponential, sobolev_kernel, use_sobolev_gradient, tensor_scalar_type, gpu_mode) = process_initial_data
device, device_id = get_best_device(gpu_mode=gpu_mode)
self.exponential_t.set_initial_template_points(self.hypertemplate.get_points())
self.exponential_t.set_initial_control_points(self.fixed_effects['control_points'])
self.exponential_t.set_initial_momenta(self.fixed_effects['momenta_t'])
self.exponential_t.move_data_to_(device=device)
self.exponential_t.update()
template_points = self.exponential_t.get_template_points()
template_data = self.hypertemplate.get_deformed_data(template_points, self.fixed_effects['hypertemplate_data'])
args = [(i, self.template,
template_data,
self.fixed_effects['control_points'],
self.fixed_effects['momenta'][i],
with_grad) for i in range(len(targets))]
start = time.perf_counter()
results = self.pool.map(_subject_attachment_and_regularity, args, chunksize=1) # TODO: optimized chunk size
# results = self.pool.imap_unordered(_subject_attachment_and_regularity, args, chunksize=1)
# results = self.pool.imap(_subject_attachment_and_regularity, args, chunksize=int(len(args)/self.number_of_processes))
logger.debug('time taken for deformations : ' + str(time.perf_counter() - start))
# Sum and return.
if with_grad:
attachment = 0.0
regularity = 0.0
gradient = {}
if not self.freeze_template:
gradient['momenta_t'] = np.zeros(self.fixed_effects['momenta_t'].shape)
if not self.freeze_control_points:
gradient['control_points'] = np.zeros(self.fixed_effects['control_points'].shape)
if not self.freeze_momenta:
gradient['momenta'] = np.zeros(self.fixed_effects['momenta'].shape)
for result in results:
i, (attachment_i, regularity_i, gradient_i) = result
attachment += attachment_i
regularity += regularity_i
for key, value in gradient_i.items():
if key == 'momenta':
gradient[key][i] = value
else:
gradient[key] += value
return attachment, regularity, gradient
else:
attachment = 0.0
regularity = 0.0
for result in results:
i, (attachment_i, regularity_i) = result
attachment += attachment_i
regularity += regularity_i
return attachment, regularity
else:
device, device_id = get_best_device(gpu_mode=self.gpu_mode)
hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, \
momenta_t, module_intensities, module_positions, module_variances = self._fixed_effects_to_torch_tensors(with_grad,device=device)
sparse_matrix = self.construct_sparse_matrix(template_points['image_points'], module_positions, module_variances, module_intensities)
return self._compute_attachment_and_regularity(dataset, hypertemplate_data, hypertemplate_points, control_points,
momenta, momenta_t, sparse_matrix, module_intensities, module_positions, module_variances, with_grad, device=device)
####################################################################################################################
### Private methods:
####################################################################################################################
@staticmethod
def _deform_and_compute_attachment_and_regularity(exponential, template_points, control_points, momenta, module_positions, module_variances, module_intensities, sparse_matrix,
template, template_data,
multi_object_attachment, deformable_objects,
objects_noise_variance, regu_var_m, regu_var_m_ortho,
device='cpu'):
# Deform.
exponential.set_initial_template_points(template_points)
exponential.set_initial_control_points(control_points)
exponential.set_initial_momenta(momenta)
exponential.move_data_to_(device=device)
exponential.update()
# Compute attachment and regularity.
deformed_points = exponential.get_template_points()
deformed_data = template.get_deformed_data(deformed_points, template_data)
deformed_data['image_intensities'] += sparse_matrix
attachment = -multi_object_attachment.compute_weighted_distance(deformed_data, template, deformable_objects,
objects_noise_variance)
regularity = - exponential.get_norm_squared()
# x = template_points['image_points'].cpu().detach()
# final_cp = exponential.control_points_t[-1].cpu().detach()
# regu = torch.zeros(x.shape[:-1], dtype=torch.float64)
# for k in range(final_cp.shape[0]):
# m = momenta[k].clone().cpu().detach()
# if m.numpy().any():
# m /= torch.norm(m)
# e = torch.randn(m.size(), dtype=torch.float64)
# e -= e.dot(m) * m
# e /= torch.norm(e)
# if m.size()[0] == 2:
# y = x - final_cp[k]
# regu += torch.exp(-torch.mm(y.view(-1,2), m.view(2,1)) ** 2 / (2 * 1) - torch.mm(y.view(-1,2), e.view(2,1)) ** 2 / (2 * 10)).view(y.shape[:-1])
# else:
# e2 = torch.cross(m, e)
# y = x - final_cp[k]
# regu += torch.exp(
# -torch.dot(y, m) ** 2 / (2 * 1) - torch.dot(y, e) ** 2 / (2 * 10) - torch.dot(y, e2) ** 2 / (2 * 10))
#
# dim = template_data['image_intensities'].shape
# regu2 = torch.zeros(dim).double()
# for k in range(module_positions.shape[0]):
# x_norm = torch.mul(x ** 2, 1 / module_variances[k] ** 2).sum(-1).view(-1, 1)
# y_norm = torch.mul(module_positions[k] ** 2, 1 / module_variances[k] ** 2).sum().view(-1, 1)
# points_divided = torch.mul(x, 1 / module_variances[k] ** 2)
# dist = (x_norm + y_norm - 2.0 * torch.mul(points_divided, module_positions[k]).sum(-1).view(-1,
# 1)).reshape(
# dim)
# regu2 += torch.exp(-dist)*torch.abs(module_intensities[k].detach())
#
# regularity -= 200.*torch.sum(torch.mul(torch.tensor(regu, dtype=torch.float64),regu2))
final_cp = exponential.control_points_t[-1]
final_momenta = exponential.momenta_t[-1]
for k in range(final_cp.shape[0]):
if momenta[k].detach().numpy().any():
m = final_momenta[k] / torch.norm(momenta[k])
e = torch.randn(m.shape[0], dtype=torch.float64)
e = e - torch.dot(e, m) * m
e = e / torch.norm(e)
for l in range(module_positions.shape[0]):
if m.size()[0] == 2:
y = module_positions[l] - final_cp[k]
regularity += - 10000*torch.sum(torch.exp(- torch.mm(y.view(-1,2), m.view(2,1)) ** 2 / (2 * regu_var_m) - torch.mm(y.view(-1,2), e.view(2,1)) ** 2 / (2 * regu_var_m_ortho)).view(y.shape[:-1]))
else:
e2 = torch.cross(m, e)
y = module_positions[l] - final_cp[k]
regularity += - torch.sum(torch.exp(
-torch.dot(y, m) ** 2 / (2 * regu_var_m) - torch.dot(y, e) ** 2 / (2 * regu_var_m_ortho) - torch.dot(y, e2) ** 2 / (2 * regu_var_m_ortho)).view(y.shape[:-1]))
x_norm = (module_positions ** 2).sum(1).view(-1, 1)
dist = x_norm + x_norm.view(1, -1) - 2.0 * torch.mm(module_positions, torch.transpose(module_positions, 0, 1))
# dist = torch.zeros([16,16], dtype=torch.float64)
# for k in range(16):
# dist[k,:] = torch.norm(module_positions - module_positions[k], dim=1)**2/400
regularity -= -torch.sum(torch.exp(-dist))
assert torch.device(
device) == attachment.device == regularity.device, 'attachment and regularity tensors must be on the same device. ' \
'device=' + device + \
', attachment.device=' + str(attachment.device) + \
', regularity.device=' + str(regularity.device)
return attachment, regularity
@staticmethod
def _compute_gradients(attachment, regularity,
freeze_template, momenta_t,
freeze_control_points, control_points,
freeze_momenta, momenta, freeze_sparse_matrix, module_intensities, module_positions, module_variances,
with_grad=False):
if with_grad:
total_for_subject = attachment + regularity
total_for_subject.backward()
gradient = {}
if not freeze_template:
assert momenta_t.grad is not None, 'Gradients have not been computed'
gradient['momenta_t'] = momenta_t.grad.detach().cpu().numpy()
if not freeze_control_points:
assert control_points.grad is not None, 'Gradients have not been computed'
gradient['control_points'] = control_points.grad.detach().cpu().numpy()
if not freeze_momenta:
assert momenta.grad is not None, 'Gradients have not been computed'
gradient['momenta'] = momenta.grad.detach().cpu().numpy()
if not freeze_sparse_matrix:
gradient['module_intensities'] = module_intensities.grad.detach().cpu().numpy()
gradient['module_positions'] = module_positions.grad.detach().cpu().numpy()
gradient['module_variances'] = module_variances.grad.detach().cpu().numpy()
res = attachment.detach().cpu().numpy(), regularity.detach().cpu().numpy(), gradient
else:
res = attachment.detach().cpu().numpy(), regularity.detach().cpu().numpy()
return res
def _compute_attachment_and_regularity(self, dataset, hypertemplate_data, hypertemplate_points, control_points, momenta, momenta_t, sparse_matrix, module_intensities, module_positions, module_variances,
with_grad=False, device='cpu'):
"""
Core part of the ComputeLogLikelihood methods. Torch input, numpy output.
Single-thread version.
"""
# Initialize.
targets = [target[0] for target in dataset.deformable_objects]
attachment = 0.
regularity = 0.
self.exponential_t.set_initial_template_points(hypertemplate_points)
self.exponential_t.set_initial_control_points(control_points)
self.exponential_t.set_initial_momenta(momenta_t[0])
self.exponential_t.move_data_to_(device=device)
self.exponential_t.update()
template_points = self.exponential_t.get_template_points()
template_data = self.hypertemplate.get_deformed_data(template_points, hypertemplate_data)
self.set_template_data({key: value.detach().cpu().numpy() for key, value in template_data.items()})
regularity -= self.exponential_t.get_norm_squared()
# loop for every deformable object
# deform and update attachment and regularity
for i, target in enumerate(targets):
new_attachment, new_regularity = DeterministicAtlasWithModule._deform_and_compute_attachment_and_regularity(
self.exponential, template_points, control_points, momenta[i], module_positions[i], module_variances[i], module_intensities[i], sparse_matrix[i],
self.template, template_data, self.multi_object_attachment,
target, self.objects_noise_variance, self.regu_var_m, self.regu_var_m_ortho,
device=device)
attachment += new_attachment
regularity += new_regularity
# Compute gradient.
return self._compute_gradients(attachment, regularity,
self.freeze_template, momenta_t,
self.freeze_control_points, control_points,
self.freeze_momenta, momenta, self.freeze_sparse_matrix, module_intensities, module_positions, module_variances,
with_grad)
####################################################################################################################
### Private utility methods:
####################################################################################################################
def construct_sparse_matrix(self, points, module_centers, module_variances, module_intensities):
dim = (self.number_of_subjects,) + self.fixed_effects['template_data']['image_intensities'].shape
sparse_matrix = torch.zeros(dim).double()
for i in range(dim[0]):
for k in range(self.nb_modules):
x_norm = torch.mul(points ** 2, 1/module_variances[i,k]**2).sum(-1).view(-1, 1)
y_norm = torch.mul(module_centers[i,k] ** 2, 1/module_variances[i,k]**2).sum().view(-1, 1)
points_divided = torch.mul(points, 1/module_variances[i,k]**2)
dist = (x_norm + y_norm - 2.0 * torch.mul(points_divided, module_centers[i,k]).sum(-1).view(-1,1)).reshape(dim[1:])
sparse_matrix[i] += torch.exp(-dist)*module_intensities[i,k]
# sparse_matrix[i] += 70/81*(1-dist)**2*(dist<1).double()*module_intensities[i,k]
# x_norm = (points ** 2)
# y_norm = (module_centers[i,k] ** 2)
# dist = (x_norm + y_norm - 2.0 * torch.mul(points, module_centers[i, k])).view(-1, 2)
# rect = ((dist[:,0] < module_variances[i,k,0]) * (dist[:,1] < module_variances[i,k,1])).double()
# f = torch.exp(-dist.sum(1)/10)
# conv2 = torch.nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=1, bias=False)
# conv2.weights = rect.reshape([1, 1, 100, 100])
# sparse_matrix[i] += conv2(f.float().reshape([1,1,100,100]))[0,0,1:-1,1:-1].double()*module_intensities[i,k]
#sparse_matrix[i] += module_intensities[i,k] * (1/(1+torch.exp(-2*2*(points[:,:,0] - module_centers[i,k,0] + module_variances[i,k,0]/2))) - 1/(1+torch.exp(-2*2*(points[:,:,0] - module_centers[i,k,0] - module_variances[i,k,0]/2)))) * (1/(1+ torch.exp(-2*2*(points[:,:,1] - module_centers[i,k,1] + module_variances[i,k,1]/2))) - 1/(1+torch.exp(-2*2*(points[:,:,1] - module_centers[i,k,1] - module_variances[i,k,1]/2))))
# x_norm = torch.mul(points ** 2, 1/module_variances[i,k]**2).sum(2).view(-1, 1)
# y_norm = torch.mul(module_centers[i,k] ** 2, 1/module_variances[i,k]**2).sum().view(-1, 1)
# points_divided = torch.mul(points, 1/module_variances[i,k]**2)
# dist = (x_norm + y_norm - 2.0 * torch.mul(points_divided, module_centers[i,k]).sum(2).view(-1,1)).reshape(dim[1:])
# sparse_matrix[i] += module_intensities[i,k] * (1/(1+torch.exp(-2*100*(dist+0.1))) - 1/(1+torch.exp(-2*100*(dist - 1))))
return sparse_matrix
def _fixed_effects_to_torch_tensors(self, with_grad, device='cpu'):
"""
Convert the fixed_effects into torch tensors.
"""
# Template data.
template_data = self.fixed_effects['template_data']
template_data = {key: move_data(value, device=device, dtype=self.tensor_scalar_type,
requires_grad=False)
for key, value in template_data.items()}
# Template points.
template_points = self.template.get_points()
template_points = {key: move_data(value, device=device, dtype=self.tensor_scalar_type,
requires_grad=False)
for key, value in template_points.items()}
hypertemplate_data = self.fixed_effects['hypertemplate_data']
hypertemplate_data = {key: move_data(value, device=device, dtype=self.tensor_scalar_type,
requires_grad=False)
for key, value in hypertemplate_data.items()}
# Template points.
hypertemplate_points = self.hypertemplate.get_points()
hypertemplate_points = {key: move_data(value, device=device, dtype=self.tensor_scalar_type,
requires_grad=False)
for key, value in hypertemplate_points.items()}
momenta_t = self.fixed_effects['momenta_t']
momenta_t = move_data(momenta_t, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_template and with_grad))
# Control points.
if self.dense_mode:
assert (('landmark_points' in self.template.get_points().keys()) and
('image_points' not in self.template.get_points().keys())), \
'In dense mode, only landmark objects are allowed. One at least is needed.'
control_points = template_points['landmark_points']
else:
control_points = self.fixed_effects['control_points']
control_points = move_data(control_points, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_control_points and with_grad))
# control_points = Variable(torch.from_numpy(control_points).type(self.tensor_scalar_type),
# requires_grad=(not self.freeze_control_points and with_grad))
# Momenta.
momenta = self.fixed_effects['momenta']
momenta = move_data(momenta, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_momenta and with_grad))
module_intensities = self.fixed_effects['module_intensities']
module_intensities = move_data(module_intensities, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_sparse_matrix and with_grad))
module_positions = self.fixed_effects['module_positions']
module_positions = move_data(module_positions, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_sparse_matrix and with_grad))
module_variances = self.fixed_effects['module_variances']
module_variances = move_data(module_variances, device=device, dtype=self.tensor_scalar_type,
requires_grad=(not self.freeze_sparse_matrix and with_grad))
return hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, momenta_t, module_intensities, module_positions, module_variances
####################################################################################################################
### Writing methods:
####################################################################################################################
def write(self, dataset, population_RER, individual_RER, output_dir, write_residuals=True):
# Write the model predictions, and compute the residuals at the same time.
residuals = self._write_model_predictions(dataset, individual_RER, output_dir,
compute_residuals=write_residuals)
# Write residuals.
if write_residuals:
residuals_list = [[residuals_i_k.data.cpu().numpy() for residuals_i_k in residuals_i]
for residuals_i in residuals]
write_2D_list(residuals_list, output_dir, self.name + "__EstimatedParameters__Residuals.txt")
# Write the model parameters.
self._write_model_parameters(output_dir)
def _write_model_predictions(self, dataset, individual_RER, output_dir, compute_residuals=True):
device, _ = get_best_device(self.gpu_mode)
# Initialize.
hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, momenta_t, \
module_intensities, module_positions, module_variances = self._fixed_effects_to_torch_tensors(False, device=device)
sparse_matrix = self.construct_sparse_matrix(template_points['image_points'], module_positions, module_variances, module_intensities)
# Deform, write reconstructions and compute residuals.
self.exponential.set_initial_template_points(template_points)
self.exponential.set_initial_control_points(control_points)
residuals = [] # List of torch 1D tensors. Individuals, objects.
for i, subject_id in enumerate(dataset.subject_ids):
self.exponential.set_initial_momenta(momenta[i])
self.exponential.update()
# Writing the whole flow.
names = []
for k, object_name in enumerate(self.objects_name):
name = self.name + '__flow__' + object_name + '__subject_' + subject_id
names.append(name)
#self.exponential.write_flow(names, self.objects_name_extension, self.template, template_data, output_dir)
deformed_points = self.exponential.get_template_points()
deformed_data = self.template.get_deformed_data(deformed_points, template_data)
deformed_data['image_intensities'] += sparse_matrix[i]
m = torch.max(deformed_data['image_intensities'])
for k in range(module_positions.shape[1]):
for j in range(module_positions[i,k].shape[0]):
module_positions[i,k,j] = min(99, module_positions[i,k,j])
module_positions[i, k, j] = max(0, module_positions[i, k, j])
deformed_data['image_intensities'][tuple(module_positions[i,k].int())] = 2* m
if compute_residuals:
residuals.append(self.multi_object_attachment.compute_distances(
deformed_data, self.template, dataset.deformable_objects[i][0]))
names = []
for k, (object_name, object_extension) \
in enumerate(zip(self.objects_name, self.objects_name_extension)):
name = self.name + '__Reconstruction__' + object_name + '__subject_' + subject_id + object_extension
names.append(name)
self.template.write(output_dir, names,
{key: value.detach().cpu().numpy() for key, value in deformed_data.items()})
deformed_data['image_intensities'] = sparse_matrix[i]
names = []
for k, (object_name, object_extension) \
in enumerate(zip(self.objects_name, self.objects_name_extension)):
name = self.name + '__Reconstruction__' + object_name + '__subject_' + subject_id + '_sparsematrix' + object_extension
names.append(name)
self.template.write(output_dir, names,
{key: value.detach().cpu().numpy() for key, value in deformed_data.items()})
return residuals
def _write_model_parameters(self, output_dir):
# Template.
device, _ = get_best_device(self.gpu_mode)
template_names = []
hypertemplate_data, hypertemplate_points, template_data, template_points, control_points, momenta, momenta_t, module_intensities, module_positions, module_variances \
= self._fixed_effects_to_torch_tensors(False, device=device)
self.exponential_t.set_initial_template_points(hypertemplate_points)
self.exponential_t.set_initial_control_points(control_points)
self.exponential_t.set_initial_momenta(momenta_t[0])
self.exponential_t.move_data_to_(device=device)
self.exponential_t.update()
template_points = self.exponential_t.get_template_points()
template_data = self.hypertemplate.get_deformed_data(template_points, hypertemplate_data)
self.set_template_data({key: value.detach().cpu().numpy() for key, value in template_data.items()})
for i in range(len(self.objects_name)):
aux = self.name + "__EstimatedParameters__Template_" + self.objects_name[i] + self.objects_name_extension[i]
template_names.append(aux)
self.template.write(output_dir, template_names)
# Control points.
write_2D_array(self.get_control_points(), output_dir, self.name + "__EstimatedParameters__ControlPoints.txt")
# Momenta.
write_3D_array(self.get_momenta(), output_dir, self.name + "__EstimatedParameters__Momenta.txt")
write_2D_array(self.get_momenta_t()[0], output_dir, self.name + "__EstimatedParameters__Momenta_t.txt")
write_3D_array(self.get_module_positions(), output_dir, self.name + "__EstimatedParameters__ModulePositions.txt")
write_3D_array(self.get_module_intensities(), output_dir, self.name + "__EstimatedParameters__ModuleIntensities.txt")
write_3D_array(self.get_module_variances(), output_dir, self.name + "__EstimatedParameters__ModuleVariances.txt")
|
lepennec/Deformetrica_coarse_to_fine
|
core/models/deterministic_atlas_withmodule.py
|
deterministic_atlas_withmodule.py
|
py
| 45,901 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35754362412
|
import pandas as pandas
import matplotlib.pyplot as pyplot
import numpy as numpy
import streamlit as st
import geopandas as gpd
import pydeck as pdk
from helpers.data import load_data, data_preprocessing, load_geo_data, geo_data_preprocessing
from helpers.viz import yearly_pollution, monthly_pollution, ranking_pollution, pollution_map
from helpers.model import pollution_prediction
DATA_PATH = 'pollution_us_2000_2016.csv'
st.title("Analysis of US Pollution between 2000 and 2016, focusing on California")
# Read Data
df = load_data(DATA_PATH,145000)
st.header('Raw data')
st.dataframe(df)
# Clean Data
st.header('Data Preprocessing')
df_cleaned = data_preprocessing(df.copy())
st.subheader('Cleaned data')
st.dataframe(df_cleaned)
# Data Visualization
st.header('Data Visualization')
st.sidebar.title('Filters')
pollutant = st.sidebar.selectbox('Pollutant', ["NO2Mean", "SO2Mean", "O3Mean", "COMean"])
cali = st.sidebar.checkbox('Cali Data Only')
values = st.sidebar.checkbox('Show Data Values')
# Yearly plot
st.subheader('Yearly pollution change')
st.markdown(f"__{pollutant} in {'California' if cali else 'the US'} by year between 2000 and 2016__")
yearly_pollution_chart = yearly_pollution(df_cleaned, pollutant, cali, values)
st.pyplot(yearly_pollution_chart)
# Monthly plot
st.subheader('Monthly pollution change')
st.markdown(f"__{pollutant} in {'California' if cali else 'the US'} by month between 2000 and 2016__")
monthly_pollution_chart = monthly_pollution(df_cleaned, pollutant, cali, values)
st.pyplot(monthly_pollution_chart)
# Ranking plot
st.subheader('State rankings')
st.markdown(f"__Top 30 {pollutant} rankings in the US__")
ranking_pollution_chart = ranking_pollution(df_cleaned, pollutant, values)
st.pyplot(ranking_pollution_chart)
# Modeling
st.subheader('Prediction Model')
st.markdown(f"__{pollutant} predictions until 2026 in {'California' if cali else 'the US'}__")
prediction_model = pollution_prediction(df_cleaned, pollutant, cali, values)
st.pyplot(prediction_model)
# Data Mapping
st.header('Data Mapping')
GEO_DATA_PATH = 'geo_data.json'
# Read Data
geo_data = load_geo_data(GEO_DATA_PATH)
st.subheader('Raw Geo Data (sample of 3)')
st.write(geo_data.sample(3))
# Clean and merge data
st.subheader('Geo data Preprocessing: Cleaned and Merged Geo data (sample of 3)')
merged = geo_data_preprocessing(geo_data.copy(), df_cleaned.copy())
st.write(merged)
# Map data
st.subheader('Mapped data')
st.markdown(f"__US {pollutant} Averages from 2000 to 2016__")
COLOR_BREWER_BLUE_SCALE = [
[240, 249, 232],
[204, 235, 197],
[168, 221, 181],
[123, 204, 196],
[67, 162, 202],
[8, 104, 172],
]
NO2Mean = pdk.Layer(
"HeatmapLayer",
data=merged,
opacity=0.9,
get_position=["long", "lat"],
aggregation=pdk.types.String("MEAN"),
color_range=COLOR_BREWER_BLUE_SCALE,
threshold=1,
get_weight="NO2Mean",
pickable=True,
)
SO2Mean = pdk.Layer(
"ColumnLayer",
data=merged,
get_position=["long", "lat"],
get_elevation="SO2Mean",
elevation_scale=100,
radius=50,
get_fill_color=[180, 0, 200, 140],
pickable=True,
auto_highlight=True,
)
st.pydeck_chart(pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=37.6000,
longitude=-95.6650,
zoom=5,
pitch=50,
),
layers=[NO2Mean]
))
|
natalie-cheng/pollution-project
|
main.py
|
main.py
|
py
| 3,405 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26609155963
|
import pyautogui
import time
def click_on_bluestacks(x, y):
# Attendez 5 secondes pour vous donner le temps de changer de fenêtre
time.sleep(5)
# Trouvez la fenêtre Bluestacks
bluestacks_windows = pyautogui.getWindowsWithTitle('Bluestacks')
# Vérifiez si la fenêtre Bluestacks a été trouvée
if len(bluestacks_windows) == 0:
print("La fenêtre Bluestacks n'a pas été trouvée.")
return
# Si la fenêtre Bluestacks a été trouvée, effectuez un clic à des coordonnées spécifiques
bluestacks_window = bluestacks_windows[0]
# Déplacez le curseur de souris à ces coordonnées dans la fenêtre Bluestacks
pyautogui.moveTo(bluestacks_window.left + x, bluestacks_window.top + y)
# Cliquez à ces coordonnées
pyautogui.click()
# Appelez la fonction click_on_bluestacks avec les coordonnées (100, 100)
if __name__ == "__main__":
click_on_bluestacks(100, 100)
|
Edgarflc/Summoners-War-Bot
|
test.py
|
test.py
|
py
| 941 |
python
|
fr
|
code
| 0 |
github-code
|
6
|
42123413608
|
import datetime
from collections import namedtuple
import isodate
from .. import build_data_path as build_data_path_global
from ..input_definitions.examples import LAGTRAJ_EXAMPLES_PATH_PREFIX
TrajectoryOrigin = namedtuple("TrajectoryOrigin", ["lat", "lon", "datetime"])
TrajectoryDuration = namedtuple("TrajectoryDuration", ["forward", "backward"])
TrajectoryDefinition = namedtuple(
"TrajectoryDefinition",
[
"domain",
"duration",
"origin",
"name",
"type",
"timestep",
"extra_kwargs",
"version",
],
)
def duration_or_none(s):
if s is None:
return datetime.timedelta()
return isodate.parse_duration(s)
INPUT_REQUIRED_FIELDS = {
"trajectory_type": ["linear", "eulerian", "lagrangian"],
# domain should only be given when creating a lagrangian trajectory or if
# we're trying to get the timestep from the domain data. In both cases the
# domain should be a string
"domain": [
dict(requires=dict(trajectory_type="lagrangian"), choices=str),
dict(requires=dict(timestep="domain_data"), choices=str),
None,
],
"lat_origin": float,
"lon_origin": float,
"datetime_origin": isodate.parse_datetime,
"forward_duration|backward_duration": duration_or_none,
# if the domain is given we can use domain data for the timestep, otherwise
# the timestep should be a parsable duration string
"timestep": (
dict(
requires=dict(domain="__is_set__"),
choices=["domain_data"],
),
isodate.parse_duration,
),
# only linear trajectories need to have their velocity prescribed
"u_vel": dict(requires=dict(trajectory_type="linear"), choices=float),
"v_vel": dict(requires=dict(trajectory_type="linear"), choices=float),
# velocity method is only relevant when making lagrangian trajectories
"velocity_method": dict(
requires=dict(trajectory_type="lagrangian"),
choices=[
"single_height_level",
"single_pressure_level",
"lower_troposphere_humidity_weighted",
],
),
"velocity_method_height": dict(
requires=dict(velocity_method="single_height_level"),
choices=float,
),
"velocity_method_pressure": dict(
requires=dict(velocity_method="single_pressure_level"),
choices=float,
),
}
def build_data_path(root_data_path, trajectory_name):
# we need to strip the `lagtraj://` prefix before we construct the path
# since the data is stored locally
if trajectory_name.startswith(LAGTRAJ_EXAMPLES_PATH_PREFIX):
trajectory_name = trajectory_name[len(LAGTRAJ_EXAMPLES_PATH_PREFIX) :]
data_path = build_data_path_global(
root_data_path=root_data_path, data_type="trajectory"
)
return data_path / "{}.nc".format(trajectory_name)
|
EUREC4A-UK/lagtraj
|
lagtraj/trajectory/__init__.py
|
__init__.py
|
py
| 2,892 |
python
|
en
|
code
| 8 |
github-code
|
6
|
27532635720
|
# Question 19
class Py:
def get_String(self, str):
self.str = str
def print_String(self):
print(self.str.upper())
str = input("Enter a String: ")
p1 = Py()
p1.get_String(str)
print("String in uppercase: ", end="")
p1.print_String()
|
rudravashishtha/Python_ETE_Solution
|
19ques.py
|
19ques.py
|
py
| 261 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32636741250
|
import six
from c7n_azure.actions.tagging import Tag, AutoTagUser, RemoveTag, TagTrim, TagDelayedAction
from c7n_azure.actions.delete import DeleteAction
from c7n_azure.filters import (MetricFilter, TagActionFilter,
DiagnosticSettingsFilter, PolicyCompliantFilter)
from c7n_azure.provider import resources
from c7n_azure.query import QueryResourceManager, QueryMeta, ChildResourceManager, TypeInfo, \
ChildTypeInfo, TypeMeta
from c7n_azure.utils import ResourceIdParser
from c7n.utils import local_session
@six.add_metaclass(TypeMeta)
class ArmTypeInfo(TypeInfo):
# api client construction information for ARM resources
id = 'id'
name = 'name'
diagnostic_settings_enabled = True
default_report_fields = (
'name',
'location',
'resourceGroup'
)
@resources.register('armresource')
@six.add_metaclass(QueryMeta)
class ArmResourceManager(QueryResourceManager):
class resource_type(ArmTypeInfo):
service = 'azure.mgmt.resource'
client = 'ResourceManagementClient'
enum_spec = ('resources', 'list', None)
def augment(self, resources):
for resource in resources:
if 'id' in resource:
resource['resourceGroup'] = ResourceIdParser.get_resource_group(resource['id'])
return resources
def get_resources(self, resource_ids):
resource_client = self.get_client('azure.mgmt.resource.ResourceManagementClient')
session = local_session(self.session_factory)
data = [
resource_client.resources.get_by_id(rid, session.resource_api_version(rid))
for rid in resource_ids
]
return [r.serialize(True) for r in data]
@staticmethod
def register_arm_specific(registry, _):
for resource in registry.keys():
klass = registry.get(resource)
if issubclass(klass, ArmResourceManager):
klass.action_registry.register('tag', Tag)
klass.action_registry.register('untag', RemoveTag)
klass.action_registry.register('auto-tag-user', AutoTagUser)
klass.action_registry.register('tag-trim', TagTrim)
klass.filter_registry.register('metric', MetricFilter)
klass.filter_registry.register('marked-for-op', TagActionFilter)
klass.action_registry.register('mark-for-op', TagDelayedAction)
klass.filter_registry.register('policy-compliant', PolicyCompliantFilter)
if resource != 'resourcegroup':
klass.action_registry.register('delete', DeleteAction)
if hasattr(klass.resource_type, 'diagnostic_settings_enabled') \
and klass.resource_type.diagnostic_settings_enabled:
klass.filter_registry.register('diagnostic-settings', DiagnosticSettingsFilter)
@six.add_metaclass(QueryMeta)
class ChildArmResourceManager(ChildResourceManager, ArmResourceManager):
class resource_type(ChildTypeInfo, ArmTypeInfo):
pass
resources.subscribe(resources.EVENT_FINAL, ArmResourceManager.register_arm_specific)
|
LRuttenCN/cloud-custodian
|
tools/c7n_azure/c7n_azure/resources/arm.py
|
arm.py
|
py
| 3,163 |
python
|
en
|
code
| 1 |
github-code
|
6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.