seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
30489056010
# -*- coding: utf-8 -*- """ Created on Wed Aug 4 16:13:47 2021 @author: Roman """ from spektral.transforms import AdjToSpTensor from spektral.data import Dataset from spektral.transforms.normalize_one import NormalizeOne import numpy as np import pandas as pd from scipy.sparse import coo_matrix from astropy.coordinates import SkyCoord import astropy.units as u from src.graph.motgraph import MOTGraph import time as t import platform def sliding_window(base_value, window_size = 4, overlap = 2, copy = False): """ build an array containing multiple view of base_value in order to create a sliding window with overlap Parameters ---------- base_value : numpy array values used to make the window. window_size : int, optional size of the window. The default is 4. overlap : int, optional number of value in the overlaping gap. The default is 2. copy : bool, optional DESCRIPTION. The default is False. Returns ------- numpy array multiple view that compose the window. """ sh = (base_value.size - window_size + 1, window_size) st = base_value.strides * 2 view = np.lib.stride_tricks.as_strided(base_value, strides = st, shape = sh)[0::overlap] if copy: return view.copy() else: return view def loadSSOdata(month, _class, point_limit): """ load solar system alerts from local file Parameters ---------- month : string a string number used to specify which file will be loaded. _class : string specify which class object wil be loaded, values can only be 'Solar System MPC' or 'Solar System Candidate'. point_limit : int a value to limit the number of alerts loaded by taken only the object seen more than point_limit times, work only when _class is 'Solar System MPC'. Returns ------- dataframe all alerts seen in the month, belonging to _class and seen more than point_limit times """ if platform.system() == 'Linux': path = "../../data/month=" + month elif platform.system() == 'Windows': path = "..\..\data\month=" + month else: raise ValueError df_sso = pd.read_pickle(path) df_class = df_sso[df_sso['fink_class'] == _class] if _class == 'Solar System MPC': mpc_trajectory = df_class.groupby(['ssnamenr']).count() mpc_index = mpc_trajectory[mpc_trajectory['ra'] >= point_limit].index feature = ['ra', 'dec', 'jd', 'nid', 'dcmag', 'fid', 'ssnamenr', 'candid'] return df_class[df_class['ssnamenr'].isin(mpc_index)][feature] else: feature = ['ra', 'dec', 'jd', 'nid', 'dcmag', 'fid', 'candid'] return df_class[feature] class EdgeNormalizeOne: r""" Normalizes the edge attributes by dividing each row by its sum, so that it sums to 1: $$ \X_i \leftarrow \frac{\X_i}{\sum_{j=1}^{N} \X_{ij}} $$ """ def __call__(self, graph): e_sum = np.sum(graph.e, -1) e_sum[e_sum == 0] = 1 graph.e = graph.e / e_sum[..., None] return graph class MOTGraphDataset(Dataset): def __init__(self, date, load_candidates, lightcurves_point_limit, window_params = None, **kwargs): """ Build graph dataset from local solar system alert dataset Parameters ---------- date : string a string number used to specify which file will be loaded. load_candidates : string specify which class object wil be loaded, values can only be 'Solar System MPC' or 'Solar System Candidate'. lightcurves_point_limit : int a value to limit the number of alerts loaded by taken only the object seen more than point_limit times, work only when _class is 'Solar System MPC'. window_params : int tuple, optional parameter of the window, first is size, second is overlap. The default is None. Returns ------- None. """ self.date = date self.lcpl = lightcurves_point_limit self.load_candidates = load_candidates self.window_params = window_params super().__init__(**kwargs) def read(self): """ method call by the class internally, perform file reading and graph building in order to create graph dataset Returns ------- output : graph list all the graph build from the overlaping window. """ print("reading data...") output = [] df_sso = loadSSOdata(self.date, self.load_candidates, self.lcpl) print("number of sso_alert remaining after limitation by number of point in lightcurves: {}"\ .format(len(df_sso))) nid = np.unique(df_sso['nid']) window = 10 overlap = 5 if self.window_params is not None: window, overlap = self.window_params frames_window = sliding_window(nid, window, overlap) print("construct graph by overlapping window on night id") print("number of graph: {}".format(len(frames_window))) nb_graph = 1 for frames in frames_window: df_frames = df_sso[df_sso['nid'].isin(frames)] df_frames = df_frames.assign(candid_idx=pd.Series(np.arange(len(df_frames))).values) df_frames = df_frames.assign(label=pd.Series(np.zeros(len(df_frames))).values) tmp_df = pd.merge(df_frames, df_frames, on='label') graph_prune = tmp_df[(tmp_df['candid_x'] != tmp_df['candid_y'])\ & (tmp_df['nid_x'] != tmp_df['nid_y'])\ & (((tmp_df['dcmag_x'] - tmp_df['dcmag_y']) / (tmp_df['jd_x'] - tmp_df['jd_y'])) <= 1.0) ] del tmp_df ra_x, dec_x = np.array(graph_prune['ra_x']), np.array(graph_prune['dec_x']) ra_y, dec_y = np.array(graph_prune['ra_y']), np.array(graph_prune['dec_y']) c1 = SkyCoord(ra_x, dec_x, unit = u.degree) c2 = SkyCoord(ra_y, dec_y, unit = u.degree) alerts_sep = c1.separation(c2) graph_prune['alert_sep'] = alerts_sep graph_prune = graph_prune[graph_prune['alert_sep'] <= 0.8] print("constructing graph nb {} with {} nodes and {} edges"\ .format(nb_graph, len(df_frames), len(graph_prune))) # take edges where extremity nodes are the same mpc object same_mpc = graph_prune[graph_prune['ssnamenr_x'] == graph_prune['ssnamenr_y']] # take edges where the left node have been created before the right node forward_same_mpc = same_mpc[same_mpc['nid_x'] < same_mpc['nid_y']] # take only one edge if multiple exists idx_label = forward_same_mpc.groupby(['ssnamenr_x', 'nid_x'])['nid_y'].idxmin() # create the training label graph_prune.loc[same_mpc.loc[idx_label].index, 'label'] = 1 edge_label = graph_prune['label'].to_numpy().astype(np.int32) row = list(graph_prune['candid_idx_x']) col = list(graph_prune['candid_idx_y']) data = np.ones(len(col)) sparse_adj_mat = coo_matrix((data, (row, col)), shape=(len(df_frames), len(df_frames))).tocsr() node_feature = df_frames[['ra', 'dec', 'jd', 'dcmag', 'nid', 'fid']].to_numpy() edge_feature = np.c_[np.array(np.abs(graph_prune['dcmag_x'] - graph_prune['dcmag_y'])), np.array(graph_prune['jd_x'] - graph_prune['jd_y']), np.array(graph_prune['alert_sep']), np.array(graph_prune['nid_x'] - graph_prune['nid_y'])] past_index = np.where(edge_feature[:, -1] > 0)[0] past_index = past_index.reshape((len(past_index), 1)) futur_index = np.where(edge_feature[:, -1] < 0)[0] futur_index = futur_index.reshape((len(futur_index), 1)) if self.load_candidates == 'Solar System MPC': graph_prune = graph_prune[['candid_x', 'nid_x', 'ssnamenr_x', 'candid_y', 'nid_y', 'ssnamenr_y', 'label']] else: graph_prune = graph_prune[['candid_x', 'nid_x', 'candid_y', 'nid_y']] g = MOTGraph(node_feature, sparse_adj_mat, edge_feature, edge_label.reshape((len(edge_label), 1)), graph_prune, past_index, futur_index) output.append(g) nb_graph += 1 print() print("end reading") return output if __name__ == "__main__": print("test") t_before = t.time() tr_dataset = MOTGraphDataset("03", 'Solar System MPC', 15, window_params=(5, 2), transforms=[EdgeNormalizeOne(), NormalizeOne(), AdjToSpTensor()]) print("tr_dataset construct time: ", t.time() - t_before) for g in tr_dataset: print(g.y.sum())
FusRoman/Alert-Association-previous-work
src/graph/motgraphdataset.py
motgraphdataset.py
py
9,253
python
en
code
0
github-code
6
29233364056
#!/usr/bin/env python3 import re import sys import os from os.path import dirname, join as path_join, abspath, exists extra_paths = [path_join(dirname(abspath(__file__)), "include")] def find_file(included_name, current_file): current_dir = dirname(abspath(current_file)) for idir in [current_dir] + extra_paths: try_path = path_join(idir, included_name) if exists(try_path): return try_path return None def process_file(file_path, out_lines=[], front_matter_lines=[], back_matter_lines=[], processed_files=[]): out_lines += "//BEGIN_FILE_INCLUDE: " + file_path + "\n" with open(file_path, "r") as f: for line in f: m_inc = re.match(r'# *include\s*[<"](.+)[>"]\s*', line) if m_inc: inc_name = m_inc.group(1) inc_path = find_file(inc_name, file_path) if inc_path not in processed_files: if inc_path is not None: processed_files += [inc_path] process_file(inc_path, out_lines, front_matter_lines, back_matter_lines, processed_files) else: # assume it's a system header; add it to the front matter just to be clean front_matter_lines += [line] continue m_once = re.match(r"#pragma once\s*", line) # ignore pragma once; we're handling it here if m_once: continue # otherwise, just add the line to the output if line[-1] != "\n": line = line + "\n" out_lines += [line] out_lines += "//END_FILE_INCLUDE: " + file_path + "\n" return "".join(front_matter_lines) + "\n" + "".join(out_lines) + "".join(back_matter_lines) if __name__ == "__main__": print(process_file(abspath(sys.argv[1]), [], # We use an include guard instead of `#pragma once` because Godbolt will # cause complaints about `#pragma once` when they are used in URL includes. ["#ifndef _MDSPAN_SINGLE_HEADER_INCLUDE_GUARD_\n", "#define _MDSPAN_SINGLE_HEADER_INCLUDE_GUARD_\n"], ["#endif // _MDSPAN_SINGLE_HEADER_INCLUDE_GUARD_\n"], [abspath(sys.argv[1])]))
rapidsai/raft
cpp/include/raft/thirdparty/mdspan/make_single_header.py
make_single_header.py
py
2,236
python
en
code
452
github-code
6
27066275793
#! /usr/bin/python from Prettier import * from Solution_Checker import * from Words_List_Prep import * from Scorer import * from Word_Processor import * from Box_Maker import * def main(): """ Main IBM Puzzle find boxes that have between 2 and 5 solutions """ ### Intro Box Text introPrinter() ### Start a recording text file for boxes that are good f = open("AnswerBoxes", "w") ### Creates a list of possible boxes # matrixBoxes = all possible boxes # abcdefghijklmnopqrstuvwxyz alphabet = "abcdefghijklmnopqrstuvwxyz" matrixBoxes = makeReadableBoxes(makeScrambledPartition(alphabet)) ### Loop through Boxes and print if there is exactly one solution for iSidedBox in matrixBoxes: solutions = solve(iSidedBox) if solutions == 1: message = str(iSidedBox) + "\n" print(message) f.write(message) ### Close text file when Done f.close() ### Outro Box Line outroPrinter() return None def solve(sidedBox): """ Main solution initiator """ ### Initialize entry parameters: combinedLetters = str() for iSide in sidedBox: combinedLetters += iSide nSides = len(sidedBox) ### Make set of useful words specific to Box entireWords = initializeDictionary() usefulWords = wordsReducer(sidedBox, entireWords) usefulWords = removeUnwantedCharacter(usefulWords) ### Make list of Playable Words from usefulWords # EntireWords = all words in word list # UsefulWords = words that have all letters from box # PlayableWords = words that can actually be played in game playableWords = list() for iWord in usefulWords: if playableCheck(iWord, sidedBox): playableWords += [iWord] ### Scoring to optimize word choice # Make a dictionary of scores: dictWordScores = makeScoredWords(playableWords) ### TOGGLE FOR SOLUTION PRINTING ### Show top scoring words from scorer.py: topScoringWords(combinedLetters, dictWordScores) ### Combine two words into new dictionary: dictTwoSolves = wordCombiner(combinedLetters, playableWords) ### TOGGLE FOR SOLUTION PRINTING #for iTwoSolution in dictTwoSolves: # print(iTwoSolution) ### Prints the number of TwoSolutions #print("Number of 2-Solves: ", len(dictTwoSolves)) #return topScoringWords return dictTwoSolves #return len(dictTwoSolves) if __name__ == "__main__": sidedBox = ["ion","abc","elt","khr"] print(solve(sidedBox)) #main()
tmangan/PonderThis
2022_December/solver.py
solver.py
py
2,591
python
en
code
0
github-code
6
8704975946
import time from stable_baselines3 import PPO, A2C from batkill_gym import BatkillEnv import os models_dir = "ppo" logdir = f"logs" if not os.path.exists(models_dir): os.makedirs(models_dir) if not os.path.exists(logdir): os.makedirs(logdir) env = BatkillEnv() env.reset() TIMESTEPS = 100000 model = PPO('MlpPolicy', env, verbose=1, tensorboard_log=logdir) model.learn(total_timesteps=TIMESTEPS) model.save(f"{models_dir}/{TIMESTEPS}") # img = model.env.render(mode='rgb_array') # imageio.mimsave('lander_a2c.gif', [np.array(img) for i, img in enumerate(images) if i%2 == 0], fps=29)
polako/batkill
batkill_ai_train.py
batkill_ai_train.py
py
595
python
en
code
1
github-code
6
42448338704
from alpha_vantage.timeseries import TimeSeries from bs4 import BeautifulSoup import json with open("config.json", "r") as config_file: config = json.load(config_file) api_key = config.get("api_key") print("apik key: ", api_key) ts1 = TimeSeries(key=api_key) # Retrieve the monthly time series data for AAPL # data, meta_data = ts1.get_monthly("AAPL") data = ts1.get_weekly("AAPL") # Print the data print("Monthly Time Series Data for AAPL:") print(data) # Optionally, you can print the metadata as well print("Meta Data:") # print(meta_data)
tokyo-lab/alpha
data_using_alpha_vantage_package.py
data_using_alpha_vantage_package.py
py
554
python
en
code
0
github-code
6
26804283291
num_cells, num_epochs = [int(data) for data in input().split()] cells = [int(data) for data in input()] new_cells = [0] * num_cells binary = bin(num_epochs)[2:] num_bits = len(binary) for bin_idx, bin_r_idx in zip(range(num_bits), reversed(range(num_bits))): if binary[bin_idx] == '1': shift = 2 ** bin_r_idx for idx in range(num_cells): new_cells[idx] = (cells[(idx - shift) % num_cells] ^ cells[(idx + shift) % num_cells]) cells = new_cells.copy() print("".join(str(data) for data in new_cells))
Stevan-Zhuang/DMOJ
CCC/CCC '16 S5 - Circle of Life.py
CCC '16 S5 - Circle of Life.py
py
570
python
en
code
1
github-code
6
72743495547
from csv import reader from operator import add import datetime #fares dataset fares_rdd = sc.textFile("/user/hc2660/hw2data/Fares.csv", 1) fares_rdd = fares_rdd.mapPartitions(lambda x: reader(x)) #fares_rdd.take(10) #trips dataset trips_rdd = sc.textFile("/user/hc2660/hw2data/Trips.csv", 1) trips_rdd = trips_rdd.mapPartitions(lambda x: reader(x)) #trips_rdd.take(10) #license dataset header1 = fares_rdd.first() fares2 = fares_rdd.filter(lambda line: line != header1) #fares2.take(10) header2 = trips_rdd.first() trips2 = trips_rdd.filter(lambda line: line != header2) trips3 = trips2.map(lambda line : ((line[0],line[1], line[2], line[5]), (line[3], line[4], line[6], line[7], line[8], line[9], line[10], line[11], line[12], line[13]))) #trips3.take(10) fares3 = fares2.map(lambda line : ((line[0], line[1], line[2], line[3]), (line[4], line[5], line[6], line[7], line[8], line[9], line[10]))) allfare = trips3.join(fares3) allfare1 = allfare.sortByKey(True, 10, keyfunc=lambda k:(k[0], k[1], k[3])) dup = allfare1.map(lambda x:(x[0][0],x[0][3])) dup2 = dup.sortBy(lambda x:(x[0],x[1])) dup3 = dup2.map(lambda x: ((x[0],x[1]),1)).reduceByKey(add) dup4 = dup3.filter(lambda x: (x[1]>1)) dup5 = dup4.map(lambda x: (x[0][0],x[0][1])) dup6 = dup5.sortBy(lambda x:(x[0],x[1])) dup7 = dup6.map(lambda r: ','.join([str(KVPair) for KVPair in r])) dup8 = dup7.map(lambda r: r.replace("'", "")) dup9 = dup8.map(lambda r: r.replace('(', '').replace(')', '')) dup9.saveAsTextFile('task3b.out') #dtime= ['2013-08-06 15:41:00','2013-08-05 18:03:00','2013-08-06 20:55:00','2013-08-07 01:24:00','2013-08-05 09:02:00'] #d2 = sorted(dtime)
Zeus197/bigdata_assignment
assignment1/task3b.py
task3b.py
py
1,629
python
en
code
0
github-code
6
22893421369
# -*- coding: utf-8 -*- from collective.transmogrifier.interfaces import ISection from collective.transmogrifier.interfaces import ISectionBlueprint from collective.transmogrifier.utils import resolvePackageReferenceOrFile from zope.interface import classProvides from zope.interface import implements import os try: import json except ImportError: import simplejson as json DATAFIELD = '_datafield_' class JSONSource(object): """ """ classProvides(ISectionBlueprint) implements(ISection) def __init__(self, transmogrifier, name, options, previous): self.transmogrifier = transmogrifier self.name = name self.options = options self.previous = previous self.context = transmogrifier.context self.path = resolvePackageReferenceOrFile(options['path']) if self.path is None or not os.path.isdir(self.path): raise Exception('Path (' + str(self.path) + ') does not exists.') self.datafield_prefix = options.get('datafield-prefix', DATAFIELD) def __iter__(self): for item in self.previous: yield item for item3 in sorted([ int(i) for i in os.listdir(self.path) if not i.startswith('.') ]): for item2 in sorted([ int(j[:-5]) for j in os.listdir(os.path.join(self.path, str(item3))) if j.endswith('.json') ]): f = open(os.path.join( self.path, str(item3), '%s.json' % item2 )) item = json.loads(f.read()) f.close() yield item
eikichi18/collective.jsonmigrator
collective/jsonmigrator/blueprints/source_json.py
source_json.py
py
1,658
python
en
code
null
github-code
6
40333923387
import numpy as np import wave import pyaudio from scipy.io import wavfile from scipy import interpolate import math import matplotlib.pyplot as plt #MaxVal = 2147483647 MaxVal = 2147483647 #found relavant blog post: #http://yehar.com/blog/?p=197 def clippingFunction(inSample): threshold = MaxVal #maximum 24 bit output outSample = threshold - threshold/(abs(inSample) + math.sqrt(threshold) + 1) ** 2 #return 1 return outSample * np.sign(inSample) #preserves sign def softClip(sampleArr): numSamples = len(sampleArr) sampleArrOut = [[0] * 2 for i in range(numSamples)] for i in range(numSamples): sampleArrOut[i][0] = clippingFunction(sampleArr[i][0]) sampleArrOut[i][1] = clippingFunction(sampleArr[i][1]) return sampleArrOut def main(): #testAudioIn = 'sinC2' testAudioIn = 'flume test' fileName = 'TestAudioIn/' + testAudioIn + '.wav' sampleRate, sampleArr = wavfile.read(fileName) stepSize = 500 #sampleArrClipped = softClip(sampleArr) #wavfile.write("test.wav", sampleRate, np.array(sampleArrClipped)) #need to convert to a numpy array for this function for i in range(1, 500+1, 50): (splineEval, skipNValues, linSpace) = applySpline(sampleArr, i) wavfile.write("TestAudioOut/" "" + testAudioIn + "_" + str(int(i/50)) + ".mp3", sampleRate, np.array(splineEval)) #need to convert to a numpy array for this function #graphSignal(sampleArr) #graphSignal([[i*2 + 1, i*2 + 1] for i in range(10)]) #graphSignal([sampleArr, sFlat]) print("File Name:", fileName) print("Frame Rate:", sampleRate) #print("Sample Array In:", sampleArr[0:100]) #print("Sample Array Out :", sampleArrClipped[0:100]) graphSignal(sampleArr, stepSize) def applySpline(sampleArrs, stepSize): extractedChannel0 = list(map(lambda x: x[0]/MaxVal, sampleArrs)) skipNValues = extractedChannel0[::stepSize] linSpace = list(range(0, len(extractedChannel0), stepSize)) interpolationSpace = list(range(0, len(extractedChannel0))) splineRep = interpolate.splrep(linSpace, skipNValues, s="0") splineEval = interpolate.splev(interpolationSpace, splineRep) return (splineEval, skipNValues, linSpace) def graphSignal(sampleArrs, stepSize): (splineEval, skipNValues, linSpace) = applySpline(sampleArrs, stepSize) plt.plot(splineEval) plt.plot(linSpace, skipNValues, marker = "x", linestyle = 'None') plt.axis([0, 10000, -1, 1]) plt.show() main() ''' Cades Clipper yOut = threshold - frac(threshold)(yIn +1)^power Sigmoid Clipper yOut = (2*threshold)/1+e^(power*-yIn) - threshold Bounce Clipper: Recursively mirrors yIn over threshold until yOut is inbetween the threshold values. ''' ''' The following is tests regarding using the wave library with wave.open('TestAudioIn/silence.wav', 'rb') as inFile: print ( "Number of channels",inFile.getnchannels()) print ( "Sample width",inFile.getsampwidth()) print ( "Frame rate.",inFile.getframerate()) print ( "Number of frames",inFile.getnframes()) print ( "parameters:",inFile.getparams()) samplerate, data = wavfile.read('TestAudioIn/silence.wav') frame = inFile.setpos(100) f1 = inFile.readframes(1) f1Int = int.from_bytes(f1, "big") frame = inFile.setpos(50) f2 = inFile.readframes(1) f2Int = int.from_bytes(f2, "big") #print(frames) #print( f1Int) #print( f2Int) '''
theshieber/Spline-Filter
splinefilterPOC.py
splinefilterPOC.py
py
3,288
python
en
code
0
github-code
6
70799503229
import numpy as np import matplotlib.pyplot as plt import pandas as pd import requests import random from itertools import count # Request fails unless we provide a user-agent api_response = requests.get('https://api.thevirustracker.com/free-api?countryTimeline=US', headers={"User-Agent": "Chrome"}) covid_stats = api_response.json()['timelineitems'] # Break out individual stats date= [] deaths = [] daily_deaths =[] total_casesL = [] daily_cases = [] for i in covid_stats: print (i) del i['stat'] for c_date, info in i.items(): print("\nDate:", c_date) date.append(c_date) print ('Total Cases:',info['total_cases']) total_casesL.append(info['total_cases']) print ('New Cases:',info['new_daily_cases']) daily_cases.append(info['new_daily_cases']) daily_deaths.append(info['new_daily_deaths']) deaths.append(info['total_deaths']) print(total_casesL) print(daily_cases) print(daily_deaths) print (date) print (plt.style.available) death_rate = deaths[-1]/total_casesL[-1] c = str(death_rate) print('Death rate: ' + c[1:6]) y = np.arange(len(date)) plt.plot(y,total_casesL, label = 'Cases', marker = '.', linewidth=3 ) plt.plot(y,daily_cases , 'y', label = 'New Cases', linestyle = '--', ) plt.plot(y, daily_deaths, 'k', label = 'New Deaths' ) plt.plot(y, deaths, color = 'r', label = 'Deaths' , ) plt.ylabel('People') plt.xlabel('Days') plt.title('Covid 19 Cases (USA)') plt.tight_layout() plt.grid(True) plt.legend() plt.show()
it2515/Covid-19
Covid19.py
Covid19.py
py
1,590
python
en
code
0
github-code
6
24823838001
import ctypes from lone.util.struct_tools import ComparableStruct class RegsStructAccess(ComparableStruct): def read_data(self, get_func, offset, size_bytes): read_data = bytearray() for read_byte in range(size_bytes): read_data += get_func(offset).to_bytes(1, 'little') offset += 1 return read_data def __setattr__(self, name, value): # If _access_.set_func is not set, just use ctypes # This is how "direct access" works when the object # is just in userspace memory if not self._access_.set_func: object.__setattr__(self, name, value) # If we are not accessing it directly, but the user requested # something that is not in the _fields_ attribute, just # use the regular __setattr__ elif name not in [f[0] for f in object.__getattribute__(self, '_fields_')]: object.__setattr__(self, name, value) # User requested a field that is in _fields_, and the structure # has the _access_ attribute. Use the _access_.get_func to # read bytes and make up the requested return value else: # Get offset and size for the structure that contains # "name". We read/modify/write below # We read/modify/write below because the user may be # setting an arbitraty number of bits/bytes/etc in the # structure size_bytes = ctypes.sizeof(self.__class__) offset = self._base_offset_ # READ size_bytes from offset into a temporary bytearray, then make up an # object of the type we are modifying read_data = self.read_data(self._access_.get_func, offset, size_bytes) read_obj = self.__class__.from_buffer(read_data) # MODIFY our read data with the new value at name object.__setattr__(read_obj, name, value) # WRITE the full structure back to the registers offset = self._base_offset_ for write_byte in (ctypes.c_uint8 * size_bytes).from_address( ctypes.addressof(read_obj)): self._access_.set_func(offset, write_byte) offset += 1 def __getattribute__(self, name): # If _access_.get_func is not set, just use ctypes # This is how "direct access" works when the object # is just in userspace memory if not object.__getattribute__(self, '_access_').get_func: return object.__getattribute__(self, name) # If we are not accessing it directly, but the user requested # something that is not in the _fields_ attribute, just # use the regular __getattribute__ elif name not in [f[0] for f in object.__getattribute__(self, '_fields_')]: return object.__getattribute__(self, name) # User requested a field that is in _fields_, and the structure # has the _access_ attribute. Use the _access_.get_func to # read bytes and make up the requested return value else: # Get registers offset and size for this structure size_bytes = ctypes.sizeof(self.__class__) offset = self._base_offset_ # READ the latest value from registers read_data = self.read_data(self._access_.get_func, offset, size_bytes) # Create an object with the read value data = self.__class__.from_buffer(read_data) value = object.__getattribute__(data, name) return value
edaelli/lone
python3/lone/nvme/spec/registers/__init__.py
__init__.py
py
3,603
python
en
code
3
github-code
6
13322067740
import sys import getopt import time import random import os import math import Checksum import BasicSender ''' This is a skeleton sender class. Create a fantastic transport protocol here. ''' class Sender(BasicSender.BasicSender): def __init__(self, dest, port, filename, debug=False): super(Sender, self).__init__(dest, port, filename, debug) def handle_response(self,response_packet): if Checksum.validate_checksum(response_packet): print("recv: %s" % response_packet) else: print("recv: %s <--- CHECKSUM FAILED" % response_packet) # Main sending loop. def start(self): seqno = 0 msg = self.infile.read(500).decode() msg_type = None while not msg_type == 'end': next_msg = self.infile.read(500).decode() msg_type = 'data' if seqno == 0: msg_type = 'start' elif next_msg == "": msg_type = 'end' packet = self.make_packet(msg_type,seqno,msg) self.send(packet.encode()) print("sent: %s" % packet) ##### your code goes here ... ##### # your code should be able to handle packet # 1. loss # 2. corruption # 3. duplication # 4. delay # add new functions as necessary response = self.receive() resp_str = response.decode() self.handle_response(resp_str) ##### your code ends here ... ##### msg = next_msg seqno += 1 self.infile.close() ''' This will be run if you run this script from the command line. You should not change any of this; the grader may rely on the behavior here to test your submission. ''' if __name__ == "__main__": def usage(): print("BEARDOWN-TP Sender") print("-f FILE | --file=FILE The file to transfer; if empty reads from STDIN") print("-p PORT | --port=PORT The destination port, defaults to 33122") print("-a ADDRESS | --address=ADDRESS The receiver address or hostname, defaults to localhost") print("-d | --debug Print debug messages") print("-h | --help Print this usage message") try: opts, args = getopt.getopt(sys.argv[1:], "f:p:a:d", ["file=", "port=", "address=", "debug="]) except: usage() exit() port = 33122 dest = "localhost" filename = None debug = False for o,a in opts: if o in ("-f", "--file="): filename = a elif o in ("-p", "--port="): port = int(a) elif o in ("-a", "--address="): dest = a elif o in ("-d", "--debug="): debug = True s = Sender(dest,port,filename,debug) try: s.start() except (KeyboardInterrupt, SystemExit): exit()
weichen-ua/MIS543O_Project2
Sender.py
Sender.py
py
2,910
python
en
code
3
github-code
6
20395581562
"""empty message Revision ID: fbfbb357547c Revises: 2152db7558b2 Create Date: 2021-05-07 17:56:36.699948 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'fbfbb357547c' down_revision = '2152db7558b2' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('task', sa.Column('finished', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('task', 'finished') # ### end Alembic commands ###
metalsalmon/remote_monitoring
migrations/versions/fbfbb357547c_.py
fbfbb357547c_.py
py
653
python
en
code
0
github-code
6
38649574551
import csv import unicodedata import re def strip_accents(string): """ Remove acentos e caracteres especiais de uma string :param string: String para remoção dos acentos e caracteres especiais :return String sem acentos e caracteres especiais: """ return ''.join(ch for ch in unicodedata.normalize('NFKD', string) if not unicodedata.combining(ch)) def read_file(file_path=None): cadastros_list = [] with open(file_path, newline='', encoding='utf-8') as csvfile: cadastros = csv.reader(csvfile, delimiter=',') for row in cadastros: cadastros_list.append({ 'nome': row[0], 'email': row[1], 'cpf': row[2], 'celular': row[3], 'idade': row[4], 'data_nascimento': row[5], 'data_cadastro': row[6] }) return cadastros_list def validate_cadastro(cadastro): """ Valida os cadastros (nome, cpf, celular, idade, data_nascimento e data_cadastro) e faz uma proposta de adequação: Validações: nome : tamanho máximo de 25 caracteres email : formato “primeiroNome.ú[email protected]” cpf : formato "xxx.xxx.xxx-xx" representando um cpf válido celular : formato "(xx) xxxxx-xxxx" idade : inteiro data_nascimento : formato "dd/mm/YYYY" data_cadastro : formato "dd/mm/YYYY" return: dicionario contendo: nome, email, cpf, celular, idade, data_nascimento, data_cadastro, status, reason """ validated_erros = [] name = cadastro['nome'] email = cadastro['email'] cpf = cadastro['cpf'] celular = cadastro['celular'] idade=cadastro['idade'] data_nascimento = cadastro['data_nascimento'] data_cadastro = cadastro['data_cadastro'] cpf_pattern = re.compile(r"^\d{3}.\d{3}.\d{3}-\d{2}$") celular_pattern = re.compile(r"^\([1-9]{2}\) [9]{1}[0-9]{3}\-[0-9]{5}$") # o formato do celular segundo o arquivo de referencia r"^\(\d{2}\) \d{5}-\d{4}$" data_pattern = re.compile(r"^\d{2}/\d{2}/\d{4}$") idade_pattern = re.compile(r"^\d{1,3}$") # Validacao nome if type(name) is not str: validated_erros.append(f'nome invalido por nao ser uma str') if type(name) is str and len(name) >= 25: validated_erros.append(f'Nome inválido: {name} - Correção: Precisa ter 25 ou menos caracteres') #validacao email if type(email) is not str: validated_erros.append('email invalido por não ser uma str') name_parts = name.split(' ') first_name = strip_accents(name_parts[0]) last_name = strip_accents(name_parts[len(name_parts) - 1]) email_pattern = f'{first_name}.{last_name}@gmail.com' regex = rf"^{email_pattern}$" pattern = re.compile(regex, re.IGNORECASE | re.UNICODE) if not pattern.match(email): validated_erros.append(f'E-mail inválido: {email} - Correção: Precisa estar no formato (primeiroNome.ú[email protected]) - ' \ f'Sugestão: {email_pattern.lower()}') #validacao cpf if type(cpf) is not str: validated_erros.append('cpf invalido por nao ser uma str') if type(cpf) is str and not re.fullmatch(cpf_pattern, cpf): validated_erros.append(f'CPF inválido: {cpf} - Correção: Precisa estar no formato (xxx.xxx.xxx-xx)') #validacao celular if type(celular) is not str: validated_erros.append('celular invalido por nao ser uma str') if type(celular) is str and not re.fullmatch(celular_pattern, celular): validated_erros.append(f'Celular inválido: {celular} - Correção: Precisa estar no formato ((xx) xxxxx-xxxx)') #validacao da data de nascimento if type(data_nascimento) is not str: validated_erros.append('data de nascimento invalida por nao ser uma str') if type(data_nascimento) is str and not re.fullmatch(data_pattern, data_nascimento): validated_erros.append(f'Data de nascimento inválida: {data_nascimento} - Precisa estar no formato (dd/mm/YYYY)') #validacao da data de cadrastro if type(data_cadastro) is not str: validated_erros.append('data de cadastro invalida por nao ser uma str') if type(data_cadastro) is str and not re.fullmatch(data_pattern, data_cadastro): validated_erros.append(f'Data de cadastro inválida: {data_cadastro} - Precisa estar no formato (dd/mm/YYYY)') #validacao da idade if not re.fullmatch(idade_pattern, idade): validated_erros.append(f'Idade inválida: {idade} - Precisa ser um número inteiro') if validated_erros !=[] : cadastro['status']= "inválido" cadastro['reason'] = validated_erros else: cadastro['status']= "válido" # print(cadastro) return (cadastro) def export_validate_registers(cadastros_list): """ exporta o arquivo dos cadastros validados no formato txt """ file = open('resultados.txt', 'w') for cadastro in cadastros_list[1:]: vc=validate_cadastro(cadastro) file.write(str(vc)) print(str(vc)) file.write('\n') file.close() if __name__ == '__main__': cadastros_list = read_file('cadastros.csv') export_validate_registers(cadastros_list)
RayBasilio123/desafio-estagio-desenvolvimento-2022Q1-Ray_da_Silva_Basilio
main.py
main.py
py
5,381
python
pt
code
0
github-code
6
72824107709
# [변수와 데이터타입] # 주석(comment) : # 입력 또는 ctrl + / 로 표현한다. 메모같은 것 # 변수(variable) : 변하는 수 id = "pencil" print(id) print("뭐로 쓸까요? - ",id,"으로 쓰죠.") # 숫자 변수 : ""를 입력하지 않으며, 숫자. 연산가능. 데이터타입이 숫자인 변수. num = 10 plus = 1 minus = 2 multiply = 3 divide = 5 print(num + plus) print(num - minus) print(num * multiply) # 30 print(num / divide) # 2 # int 정수 : 1, 2, 3, 4 # float 실수 : 1.0, 1.1 ... num2 = 1.0 print(num2 + 2) a = 5 # int b = 1.1 # float c = 'hello' # string # print(c/b) # error a = a + 2 a = a + 3 a = ((a-5)*3/5) + 2 print(a) print(c,a+b) # 문자열 변수 : ""안에 입력하며, 문자. 연산불가 a = 'hello' # character b = "world!" # string c = "안녕하세요, 저는 'D.Yang'입니다." d = """ 안녕하세요, 저는 "D.Yang"입니다. """ # long string e = """ 안녕하세요, 저는 "D.Yang"입니다. 긴 글을 작성할 때도 이런식으로 스트링 지정을 해줄 수 있습니다. 줄 바꿈이 적용이 되니깐요. """ print(a,b,c,d,e) # 논리 변수 boolean a = 0 b = 2 c = bool(a < b) print(c) # true # null값(비어있는 값) = false, 그 외에는 전부 true a = bool(a) # false b = bool("") # false c = bool([]) # false d = bool(None) # false # null print(a, b, c, d) # 배열 변수 list > dict > tuple # list 리스트 a = [] # dict 딕셔너리 a ={} # tuple 튜플 a = () a = [1, 2, 3] b = {1, 2, 3} c = (1, 2, 3) print(a) print(b) print(c) a = [{1, 2, 3}, {4, 5, 6}] # ok 2중배열! # 총정리! : 변수의 데이터타입 # int 정수 1 # float 실수 0.1, 1.0 # string 문자열 "", '' # boolean 참, 거짓 true, flase # list 리스트 a = [] # dict 딕셔너리 a ={} # tuple 튜플 a = () # 배열의 인덱스 : 0부터 시작 rainbow = ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'purple'] first = rainbow[0] last = rainbow[-1] # = rainbow[6] 끝에서 첫번째 # print(first) # print(last) print('무지개 첫번째 색깔은 {}, 마지막 색깔은 {}이네요.'.format(first, last)) # 배열은 arrayList 또는 array라고 불려요. 이제는 array라고 할께요. # append : array 추가 list1 = [1, 2] list1.append(3) # 새 배열 인덱스를 생성하면서 그 안에 값 3을 추가 list1.append(4) list1.append(5) print(list1) list2 = [] a = 1 b = 2 list2.append(a) list2.append(b) print(list2) list3 = [] list3.append(list1) list3.append(list1) print(list3) # list3 == [[1,2,3,4,5], [1,2,3,4,5]] # 이중배열 list4 = [] list4 = list4 + [1, 2] list4 = list4 + [3, 4, 5] print(list4) # array 삭제 list1 = [1,2,3,4,5,6,7,8,9,10] del list1[-1] # 인덱스를 찾아서 삭제 list1.remove(8) # 값을 찾아서 삭제 print(list1) # array의 종류 list1 = [1, 2, 3, 4] # 가장 일반적인 배열 dict1 = { 'id': 'lala', 'password': 'lalala', 'name': 'lee' } # Dictionary, 사전같이 "키 : 값" 형태의 배열 tuple1 = (1, 4) # 짝끼리 묶는 느낌의 배열 # array와 if문의 조합 : "검색" list1 = [1, 2, 3] if 4 in list1: print('있네') else: print('없네')
Azumait/grammar1
document1_수집/4_students_list1/교육완료자/전소연 파이썬/python jsy/1.py
1.py
py
3,141
python
ko
code
0
github-code
6
22877254400
import matplotlib.pyplot as plt import math for number in range(0,15,5): formatString = "%0.1f" % (number/10.0) filename = "data/stats_2000n_"+formatString+"00000th_"+str(int(number/10) + 1)+"00000times_0.600000kmin_0.200000kstep_2.000000kmax_10statsize.dat" f = open(filename, 'r') headers = f.readline().replace('\n','').split('\t') x = [] y = [] for line in f: datum = line.replace('\n','').split('\t') x.append(float(datum[0])) y.append(float(datum[1])) f.close() if number == 0: plt.scatter(x,y, c='r', marker='s', label="theta = {0}".format(formatString)) elif number == 5: plt.scatter(x,y, c='g', marker='^', label="theta = {0}".format(formatString)) else: plt.scatter(x,y, c='b', marker='o', label="theta = {0}".format(formatString)) plt.title("Size of Largest Component: theta = 0, 0.5, 1") plt.xlabel("Average Degree") plt.ylabel("Fraction of Vertices in Largest Component") ##plt.xlim(0, 2) ##plt.ylim(0,1) plt.legend(loc=4) plt.savefig("data/degree_model_lc_2000n.pdf")
vitchyr/Research-in-Math
degree_model/data_analysis.py
data_analysis.py
py
1,119
python
en
code
4
github-code
6
25144655510
# pylint: disable=W0611, E0401 """ Main goal of this module is to scrape and parse data from "visityerevan.am" website """ import logging import sys from dataclasses import dataclass from urllib.parse import urljoin from httpx import Client from selectolax.parser import HTMLParser, Node logger = logging.getLogger(__name__) logging.basicConfig(level=logging.WARNING) stream_handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( "[%(asctime)s] %(levelname)s:%(name)s:%(lineno)d:%(message)s") stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) HEADERS = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " + "AppleWebKit/537.36 (KHTML, like Gecko) " + "Chrome/109.0.0.0 Safari/537.36"} @dataclass class Event: """ Class contains all info about event """ title: str description: str url_to_original: str time: str price: str img: str @dataclass class Response: """ Class contains html of page and info about existing of the next page """ body_html: HTMLParser status_code: int def serialize_event(event): """ Resulting format for each event """ return { "id": "work in progress...", "type": "parsed_v1", "parserName": "visityerevan", "title": event.title, "description": event.description, "date": event.time, "durationInSeconds": 0, "location": { "country": "Armenia", "city": "Erevan", }, "image": event.img, "price": { "amount": event.price, "currency": "AMD" }, "timezone": { "timezoneName": "AMT", "timezoneOffset": "UTC +4", }, "url": event.url_to_original, } def get_page(client: Client, url: str) -> Response: """ Scrape html from page and check if next pages appears """ resp = client.get(url, headers=HEADERS) html = HTMLParser(resp.text) return Response(body_html=html, status_code=resp.status_code) def get_pages_amount(client: Client, url: str) -> int: """ func to get number of pages with events """ resp = client.get(url, headers=HEADERS) html = HTMLParser(resp.text) pages_amount = html.css("ul[class='pagination justify-content-center'] >" + "li[class='page-item']")[-1:][0].text() return int(pages_amount) def is_valid(data): """ Helps us to catch website's structure changes """ if data is None: logger.warning( "Seems that website changed structure. Please recheck code and website") return False else: return True def parse_detail(blocks: list) -> list: """ Clean and prepare all data that we need """ result = [] # In this loop we will extract all # Info that we can from each event's div for block in blocks: # Extract and prepare "time" month_day = block.css_first( "div[class='col-12 mt-n1'] > div") # Need validate data each parsing attempt if is_valid(month_day): month_day = month_day.text().replace('\n', '').strip() time = block.css_first( "div[class='text-grey text-md mb-2']") if is_valid(time): time = time.text().replace('\n', '').strip().split(' ') cleaned_time = f"{month_day} {time[-1:][0]}" else: cleaned_time = None # Extract and prepare "description" description = block.css_first("p") if is_valid(description): description = description.text().strip() # Clean and prepare "url" url = block.css_first("a").attrs["href"] if is_valid(url): url = "https://www.visityerevan.am" + url # Extract price price = '' cards = block.css("p.card-text > span") if len(cards) == 0: logger.warning( "Seems that website changed structure. Please recheck code and website") else: for card in cards: card = card.text() if "AMD" in card: price = card.replace("AMD", "").strip() else: price = "no info" # Extract img link img = block.css_first("img").attrs["src"] if is_valid(img): img = "https://www.visityerevan.am" + img # There is not need in cleaning "title" # With data we have create a new event object event = Event( title=block.css_first("h5").text(), description=description, url_to_original=url, time=cleaned_time, price=price, img=img ) result.append(serialize_event(event)) return result def scrape_blocks(html: HTMLParser) -> list: """ Getting all divs with information from page """ blocks = html.css("div[class='row px-lg-7']" + " > div") return blocks def pagination_loop(client: Client) -> list: """ Loop through all pages """ url = "https://www.visityerevan.am/browse/things-to-do-events/ru/" # How many pages we will scrape pages_amount = get_pages_amount(client, url) # Blocks contains all divs that we need blocks = [] # Iterating through all pages for page_number in range(1, pages_amount + 1): # Mutating a url to get page with current page number url = urljoin(url, f"?sel_filters=&current_page={page_number}") # Get object with scraped html markup from current page page = get_page(client, url) # Grad all divs with events data and append to list blocks += scrape_blocks(page.body_html) # Scraping is done, time to close session client.close() return blocks async def scrape_website() -> list: """ Main function which contains all logic """ # Start a new session client = Client() # Create list with all divs which contain info about events all_blocks = pagination_loop(client) # Parsing data from divs parsed_data = parse_detail(all_blocks) return parsed_data
EPguitars/events-parsing-archive
standalone/scraper_visityerevan.py
scraper_visityerevan.py
py
6,391
python
en
code
1
github-code
6
43462667811
import pyshorteners def shorten(url): link = pyshorteners.Shortener() return link.tinyurl.short(url) if __name__ == "__main__": url = input("Enter link for sorting:") print(f"\n {shorten(url)}") # https://github.com/urmil89
urmil404/url-Sorter
main.py
main.py
py
245
python
en
code
0
github-code
6
71861349309
import os import sys # 修改工作目录为程序所在目录,这样通过注册表实现开机自动启动时也能获取到正确的工作目录 # PS: 放到这个地方,是确保在所有其他初始化代码之前先修改掉工作目录 dirpath = os.path.dirname(os.path.realpath(sys.argv[0])) old_path = os.getcwd() os.chdir(dirpath) import argparse import datetime import time from multiprocessing import freeze_support import psutil import ga from check_first_run import check_first_run_async from config import config, load_config from db_def import try_migrate_db from first_run import is_weekly_first_run from log import color, log_directory, logger from main_def import ( auto_send_cards, check_all_skey_and_pskey, check_djc_role_binding, check_proxy, check_update, get_user_buy_info, print_update_message_on_first_run_new_version, run, sas, show_ask_message_box, show_buy_info, show_extra_infos, show_lottery_status, show_multiprocessing_info, show_notices, show_pay_info, show_recommend_reward_tips, try_auto_update, try_auto_update_ignore_permission_on_special_case, try_join_xinyue_team, try_load_old_version_configs_from_user_data_dir, try_report_usage_info, try_save_configs_to_user_data_dir, try_take_dnf_helper_chronicle_task_awards_again_after_all_accounts_run_once, try_take_xinyue_team_award, ) from pool import close_pool, init_pool from qq_login import QQLogin from show_usage import show_usage from update import notify_manual_check_update_on_release_too_long from usage_count import increase_counter from util import ( MiB, async_call, async_message_box, change_console_window_mode_async, change_title, clean_dir_to_size, disable_pause_after_run, disable_quick_edit_mode, is_run_in_github_action, kill_other_instance_on_start, pause, remove_old_version_portable_chrome_files, show_head_line, show_unexpected_exception_message, ) from version import author, now_version, ver_time def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--no_max_console", default=False, action="store_true", help="是否不将窗口调整为最大化") parser.add_argument( "--wait_for_pid_exit", default=0, type=int, help="启动后是否等待对应pid的进程结束后再启动,主要用于使用配置工具启动小助手的情况,只有配置工具退出运行,自动更新才能正常进行", ) parser.add_argument("--max_wait_time", default=5, type=int, help="最大等待时间") args = parser.parse_args() return args def prepare_env(): args = parse_args() # 最大化窗口 if not args.no_max_console: logger.info("尝试调整窗口显示模式,打包exe可能会运行的比较慢") change_console_window_mode_async() if args.wait_for_pid_exit != 0: # 通过配置工具打开 increase_counter(ga_category="open_by", name="config_tool", ga_misc_params={"dr": "config_tool"}) logger.info(f"等待pid为{args.wait_for_pid_exit}的配置工具退出运行,从而确保可能有的自动更新能够正常进行,最大将等待{args.max_wait_time}秒") wait_time = 0.0 retry_time = 0.1 while wait_time <= args.max_wait_time: if not psutil.pid_exists(args.wait_for_pid_exit): logger.info("配置工具已成功退出,将开始运行小助手~") break time.sleep(retry_time) wait_time += retry_time else: # 直接打开 increase_counter(ga_category="open_by", name="directly", ga_misc_params={"dr": "directly"}) def main(): try_migrate_db() increase_counter(name="run/begin", ga_type=ga.GA_REPORT_TYPE_PAGE_VIEW) prepare_env() # 启动时检查是否需要同步本机数据目录备份的旧版本配置 try_load_old_version_configs_from_user_data_dir() change_title() print_update_message_on_first_run_new_version() logger.warning(f"开始运行DNF蚊子腿小助手,ver={now_version} {ver_time},powered by {author}") logger.warning(color("fg_bold_cyan") + "如果觉得我的小工具对你有所帮助,想要支持一下我的话,可以帮忙宣传一下或打开付费指引/支持一下.png,扫码打赏哦~") # 读取配置信息 load_config("config.toml", "config.toml.local") cfg = config() if len(cfg.account_configs) == 0: raise Exception("未找到有效的账号配置,请检查是否正确配置。ps:多账号版本配置与旧版本不匹配,请重新配置") try_auto_update_ignore_permission_on_special_case(cfg) notify_manual_check_update_on_release_too_long(cfg.common) check_proxy(cfg) try_report_usage_info(cfg) if cfg.common.disable_cmd_quick_edit: disable_quick_edit_mode() show_notices() if cfg.common.allow_only_one_instance: logger.info("当前仅允许单个实例运行,将尝试干掉其他实例~") async_call(kill_other_instance_on_start) else: logger.info("当前允许多个实例同时运行~") pool_size = cfg.get_pool_size() init_pool(pool_size) change_title(multiprocessing_pool_size=pool_size, enable_super_fast_mode=cfg.common.enable_super_fast_mode) show_multiprocessing_info(cfg) account_names = [] for account_cfg in cfg.account_configs: account_names.append(account_cfg.name) logger.info(f"当前共配置{len(account_names)}个账号,具体如下:{account_names}") clean_dir_to_size(log_directory, cfg.common.max_logs_size * MiB, cfg.common.keep_logs_size * MiB) clean_dir_to_size(f"utils/{log_directory}", cfg.common.max_logs_size * MiB, cfg.common.keep_logs_size * MiB) current_chrome_version = QQLogin(cfg.common).get_chrome_major_version() remove_old_version_portable_chrome_files(current_chrome_version) show_ask_message_box(cfg) # 检查是否有更新,用于提示未购买自动更新的朋友去手动更新~ if cfg.common.check_update_on_start: check_update(cfg) check_all_skey_and_pskey(cfg) check_djc_role_binding() # 确保道聚城绑定OK后在活动运行同时进行异步的弹窗提示 check_first_run_async(cfg) # 挪到所有账号都登陆后再尝试自动更新,从而能够判定是否已购买DLC try_auto_update(cfg) # 查询付费信息供后面使用 show_head_line("查询付费信息") logger.warning("开始查询付费信息,请稍候~") user_buy_info = get_user_buy_info(cfg.get_qq_accounts()) show_buy_info(user_buy_info, cfg, need_show_message_box=False) sas(cfg, "启动时展示账号概览", user_buy_info) # 预先尝试创建和加入固定队伍,从而每周第一次操作的心悦任务也能加到队伍积分中 try_join_xinyue_team(cfg, user_buy_info) # 正式进行流程 run(cfg, user_buy_info) try_take_dnf_helper_chronicle_task_awards_again_after_all_accounts_run_once(cfg, user_buy_info) # 尝试领取心悦组队奖励 try_take_xinyue_team_award(cfg, user_buy_info) # # 尝试派赛利亚出去打工 # try_xinyue_sailiyam_start_work(cfg) # 活动开启关闭时调这个开关即可 enable_card_lottery = True if enable_card_lottery: auto_send_cards(cfg) show_extra_infos(cfg) sas(cfg, "运行完毕展示账号概览", user_buy_info) if enable_card_lottery: show_lottery_status("卡片赠送完毕后展示各账号抽卡卡片以及各礼包剩余可领取信息", cfg, need_show_tips=True) show_pay_info(cfg) show_recommend_reward_tips(user_buy_info) # 显示小助手的使用概览 if cfg.common._show_usage: show_usage() # 运行结束展示下多进程信息 show_multiprocessing_info(cfg) # 检查是否有更新,用于提示未购买自动更新的朋友去手动更新~ if cfg.common.check_update_on_end: check_update(cfg) # 运行完毕备份配置到本机数据目录 try_save_configs_to_user_data_dir() increase_counter(name="run/end", ga_type=ga.GA_REPORT_TYPE_PAGE_VIEW) show_head_line("运行完毕") def main_wrapper(): freeze_support() logger.info(color("bold_green") + f"已将工作目录设置为小助手所在目录:{dirpath},之前为:{old_path}") try: run_start_time = datetime.datetime.now() main() total_used_time = datetime.datetime.now() - run_start_time logger.warning(color("fg_bold_yellow") + f"运行完成,共用时{total_used_time}") # 如果总用时太高的情况时,尝试提示开启多进程和超快速模式 cfg = config() if total_used_time > datetime.timedelta(minutes=10) and ( not cfg.common.enable_multiprocessing or not cfg.common.enable_super_fast_mode ): msg = ( f"当前累计用时似乎很久({total_used_time}),是否要尝试多进程和超快速模式?\n" "多进程模式下,将开启多个进程并行运行不同账号的领取流程\n" "额外开启超快速模式,会进一步将不同账号的不同活动都异步领取,进一步加快领取速度\n" "\n" "如果需要开启,请打开配置工具,在【公共配置】tab中勾选【是否启用多进程功能】和【是否启用超快速模式(并行活动)】" ) logger.warning(color("bold_cyan") + msg) if is_weekly_first_run("用时过久提示"): async_message_box(msg, "用时过久", print_log=False) # 按照分钟级别来统计使用时长 total_minutes = int(total_used_time.total_seconds()) // 60 increase_counter(ga_category="run_used_time_minutes", name=total_minutes) except Exception as e: show_unexpected_exception_message(e) # 如果在github action,则继续抛出异常 if is_run_in_github_action(): raise e finally: # 暂停一下,方便看结果 if not disable_pause_after_run() and not is_run_in_github_action(): async_call_close_pool_after_some_time() pause() close_pool() def async_call_close_pool_after_some_time(): def _close(): wait_time = 10 * 60 logger.info(f"{wait_time} 秒后将自动关闭进程池,方便有足够时间查看进程池中触发的弹窗信息") time.sleep(wait_time) close_pool() async_call(_close) if __name__ == "__main__": main_wrapper()
fzls/djc_helper
main.py
main.py
py
10,763
python
zh
code
319
github-code
6
38750349973
from imagenet_c import * from torchvision.datasets import ImageNet import torchvision.transforms as transforms from torch.utils.data import DataLoader import os import torch import gorilla DATA_ROOT = './data' CORRUPTION_PATH = './corruption' corruption_tuple = (gaussian_noise, shot_noise, impulse_noise, defocus_blur, glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast, elastic_transform, pixelate, jpeg_compression) corruption_dict = {corr_func.__name__: corr_func for corr_func in corruption_tuple} class corrupt(object): def __init__(self, corruption_name, severity=5): self.corruption_name = corruption_name self.severity = severity return def __call__(self, x): # x: PIL.Image x_corrupted = corruption_dict[self.corruption_name](x, self.severity) return np.uint8(x_corrupted) def __repr__(self): return "Corruption(name=" + self.corruption_name + ", severity=" + str(self.severity) + ")" if os.path.exists(os.path.join(DATA_ROOT, CORRUPTION_PATH)) is False: os.mkdir(os.path.join(DATA_ROOT, CORRUPTION_PATH)) for corruption in corruption_dict.keys(): if os.path.exists(os.path.join(DATA_ROOT, CORRUPTION_PATH, corruption + '.pth')): continue print(corruption) val_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), corrupt(corruption, 5) ]) target_dataset = ImageNet(DATA_ROOT, 'val', transform=val_transform) target_dataloader = DataLoader(target_dataset, batch_size=256, shuffle=False, drop_last=False, num_workers=2) datas = [] for batch in gorilla.track(target_dataloader): datas.append(batch[0]) datas = torch.concat(datas) torch.save(datas, os.path.join(DATA_ROOT, CORRUPTION_PATH, corruption + '.pth'))
Gorilla-Lab-SCUT/TTAC
imagenet/utils/create_corruption_dataset.py
create_corruption_dataset.py
py
1,892
python
en
code
37
github-code
6
71634339387
from flask import Flask import requests URL="https://en.wikipedia.org/w/api.php" app = Flask(__name__) #configuring the server name as required app.config['SERVER_NAME'] = "wiki-search.com:5000" @app.route("/") def home(): return 'Enter you query as the subdomain.' @app.route('/', subdomain="<SEARCHPAGE>") #function that searches for the URL def url_search(SEARCHPAGE): if SEARCHPAGE is None: return 'Enter you search query as the subdomain' title_data = requests.get(URL, params={ "action": "query", "format": "json", "list": "search", "srsearch": SEARCHPAGE}).json() #creating a list named titles and appending the titles of every search result into it titles = [] for title in title_data['query']['search']: titles.append(title['title']) #creating a list named urls to which the url of every title is appended urls = [] for title in titles: url_data = requests.get(URL, params={ "action": "query", "format": "json", "titles": title, "prop": "info", "inprop": "url"}).json() for key in url_data['query']['pages']: urls.append(url_data['query']['pages'][key]['fullurl']) #creating a dictionary that contains the links appended as a list to the key named links results={"links":urls} return results if __name__ == '__main__': app.run(debug=True,port=5000)
jubinjacob93/Opensearch-Server
wiksearch.py
wiksearch.py
py
1,513
python
en
code
0
github-code
6
20801954442
import math from os import TMP_MAX MAX = 700 lookup = [[0 for i in range(100001)] for j in range(20)] def buildSparseTable(arr, n): for i in range(0, n): lookup[i][0] = arr[i] j = 1 while (1 << j) <= n: i = 0 while (i + (1 << j) - 1) < n: if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]): lookup[i][j] = lookup[i][j - 1] else: lookup[i][j] = \ lookup[i + (1 << (j - 1))][j - 1] i += 1 j += 1 def query(L, R): j = int(math.log2(R - L + 1)) if lookup[L][j] >= lookup[R - (1 << j) + 1][j]: return lookup[L][j] else: return lookup[R - (1 << j) + 1][j] n = int(input()) nums = [int(i) for i in input().split()] num_q = int(input()) queries = [] sparse_table = buildSparseTable(nums, len(nums)) for i in range(num_q): l, r = [int(i) for i in input().split()] if l > r: tmp = l l = r r = tmp print(query(l-1, r-1))
michbogos/olymp
eolymp/summation/RMQ.py
RMQ.py
py
1,109
python
en
code
0
github-code
6
22477012107
import pandas as pd import timeit pd.set_option('mode.chained_assignment', None) def main(): print('ok') def sortim(df): new_cols = ['PERFIL','BANDEIRA','LOCAL_NOVO','LOCAL','TAMANHO','REGIÃO','REGIAO 2','CONCATENADO','CONCATENADO 2','CONCATENADO 3','CONCATENADO 4','CONCATENADO 5'] for i in new_cols: df[i] = '' print('computado!') for i in range(len(df)): if 'RUA' in df["DESCTAMANHO"][i]: df['LOCAL_NOVO'][i] = "CONVENCIONAL" df['LOCAL'][i] = "RUA" elif 'SHOPPING' in df["DESCTAMANHO"][i]: df['LOCAL_NOVO'][i] = "CONVENCIONAL" df['LOCAL'][i] = "SHOPPING" elif 'QUIOSQUE' in df["DESCTAMANHO"][i]: df['LOCAL_NOVO'][i] = "QUISOQUE" df['LOCAL'][i] = "QUISOQUE" else: df['LOCAL_NOVO'][i] = "COMPACTA" df['LOCAL'][i] = "COMPACTA" if '-CB-' in df["DESCTAMANHO"][i]: df['BANDEIRA'][i] = "CB" else: df['BANDEIRA'][i] = "PF" if '-CB-' in df["DESCTAMANHO"][i]: df['BANDEIRA'][i] = "CB" else: df['BANDEIRA'][i] = "PF" if '-PERFIL 1-' in df["DESCTAMANHO"][i]: df['PERFIL'][i] = "PERFIL 1" elif '-PERFIL 2-' in df["DESCTAMANHO"][i]: df['PERFIL'][i] = "PERFIL 2" elif '-PERFIL 3-' in df["DESCTAMANHO"][i]: df['PERFIL'][i] = "PERFIL 3" elif '-PERFIL 4-' in df["DESCTAMANHO"][i]: df['PERFIL'][i] = "PERFIL 4" else: df['PERFIL'][i] = "PERFIL 5" if '-PP-' in df["DESCTAMANHO"][i]: df['TAMANHO'][i] = "PP" elif '-P-' in df["DESCTAMANHO"][i]: df['TAMANHO'][i] = "P" elif '-M-' in df["DESCTAMANHO"][i]: df['TAMANHO'][i] = "M" elif '-G-' in df["DESCTAMANHO"][i]: df['TAMANHO'][i] = "G" elif '-GG-' in df["DESCTAMANHO"][i]: df['TAMANHO'][i] = "GG" else: df['TAMANHO'][i] = "MEGA" if '-RJ/ES' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "RJ/ES" df['REGIAO 2'][i] = "RJ/ES" elif '-SPI' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "SPI" df['REGIAO 2'][i] = "SPI" elif '-MG' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "MG" df['REGIAO 2'][i] = "MG" elif '-SUL' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "SUL" df['REGIAO 2'][i] = "SUL" elif '-GDE SP' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "GDE SP" df['REGIAO 2'][i] = "GDE SP" elif '-CO/N' in df["DESCTAMANHO"][i]: df['REGIÃO'][i] = "CO/N" df['REGIAO 2'][i] = "CON/N" else: df['REGIÃO'][i] = "NE" df['REGIAO 2'][i] = "NE" df['CONCATENADO'][i] = f"{df['LOCAL_NOVO'][i]}-{df['PERFIL'][i]}-{df['TAMANHO'][i]}" df['CONCATENADO 2'][i] = f"{df['LOCAL_NOVO'][i]}-{df['PERFIL'][i]}-{df['REGIÃO'][i]}-{df['TAMANHO'][i]}" df['CONCATENADO 3'] = df['LOCAL_NOVO'].map(str) + '-' + df['PERFIL'].map(str) + '-' + df['REGIÃO'].map( str) df['CONCATENADO 4'] = df['LOCAL'].map(str) + '-' + df['TAMANHO'].map(str) df['CONCATENADO 5'] = df['LOCAL_NOVO'].map(str) + '-' + df['PERFIL'].map(str) + '-' + df['BANDEIRA'].map( str) + '-' + df['TAMANHO'] df['CONCATENADO 6'] = df['PERFIL'].map(str) + '-' + df['BANDEIRA'].map(str) + '-' + df['LOCAL'].map( str) + '-' + df['REGIÃO'] colorder=['CODPUBLICO','DESCPUBLICO','CODSECAO','DESCSECAO','CODSORTIMENTO','CODTAMANHO','DESCTAMANHO','PERFIL','BANDEIRA','LOCAL_NOVO','LOCAL','TAMANHO','REGIÃO','REGIAO 2','CONCATENADO','CONCATENADO 2','CONCATENADO 3','CONCATENADO 4','CONCATENADO 5','CONCATENADO 6','EMPRESA','FILIAL','TIPOPUBLICO','SOLICVOLTDIF'] df = df[colorder] return df def sortemp(df): new_cols = ['PERFIL', 'BANDEIRA', 'LOCAL_NOVO', 'LOCAL', 'TAMANHO', 'REGIÃO', 'REGIAO 2', 'CONCATENADO', 'CONCATENADO 2'] start = timeit.default_timer() for i in new_cols: df[i] = ' ' df = df.reindex() print('novas colunas') df['LOCAL_NOVO'] = df['DESCTAMANHO'].apply(lambda x: 'CONVENCIONAL' if 'RUA' in x else x) df['LOCAL_NOVO'] = df['LOCAL_NOVO'].apply(lambda x: 'CONVENCIONAL' if 'SHOPPING' in x else x) df['LOCAL_NOVO'] = df['LOCAL_NOVO'].apply(lambda x: 'QUIOSQUE' if 'QUIOSQUE' in x else x) df['LOCAL_NOVO'] = df['LOCAL_NOVO'].apply(lambda x: 'COMPACTA' if 'COMPACTA' in x else x) df['LOCAL_NOVO'] = df['LOCAL_NOVO'].apply(lambda x: 'DIGITAL' if 'DIGITAL' in x else x) df['LOCAL'] = df['DESCTAMANHO'].apply(lambda x: 'RUA' if 'RUA' in x else x) df['LOCAL'] = df['LOCAL'].apply(lambda x: 'SHOPPING' if 'SHOPPING' in x else x) df['LOCAL'] = df['LOCAL'].apply(lambda x: 'QUIOSQUE' if 'QUIOSQUE' in x else x) df['LOCAL'] = df['LOCAL'].apply(lambda x: 'COMPACTA' if 'COMPACTA' in x else x) df['LOCAL'] = df['LOCAL'].apply(lambda x: 'DIGITAL' if 'DIGITAL' in x else x) df['BANDEIRA'] = df['DESCTAMANHO'].apply(lambda x: 'CB' if '-CB-' in x else x) df['BANDEIRA'] = df['BANDEIRA'].apply(lambda x: 'PF' if '-PF-' in x else x) df['PERFIL'] = df['DESCTAMANHO'].apply(lambda x: 'PERFIL 1' if '-PERFIL 1-' in x else x) df['PERFIL'] = df['PERFIL'].apply(lambda x: 'PERFIL 2' if '-PERFIL 2-' in x else x) df['PERFIL'] = df['PERFIL'].apply(lambda x: 'PERFIL 3' if '-PERFIL 3-' in x else x) df['PERFIL'] = df['PERFIL'].apply(lambda x: 'PERFIL 4' if '-PERFIL 4-' in x else x) df['PERFIL'] = df['PERFIL'].apply(lambda x: 'PERFIL 5' if '-PERFIL 5-' in x else x) df['TAMANHO'] = df['DESCTAMANHO'].apply(lambda x: 'PP' if '-PP-' in x else x) df['TAMANHO'] = df['TAMANHO'].apply(lambda x: 'P' if '-P-' in x else x) df['TAMANHO'] = df['TAMANHO'].apply(lambda x: 'M' if '-M-' in x else x) df['TAMANHO'] = df['TAMANHO'].apply(lambda x: 'G' if '-G-' in x else x) df['TAMANHO'] = df['TAMANHO'].apply(lambda x: 'GG' if '-GG-' in x else x) df['TAMANHO'] = df['TAMANHO'].apply(lambda x: 'MEGA' if '-MEGA-' in x else x) df['REGIÃO'] = df['DESCTAMANHO'].apply(lambda x: 'RJ/ES' if '-RJ/ES' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'SPI' if '-SPI' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'MG' if '-MG' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'SUL' if '-SUL' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'GDE SP' if '-GDE SP' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'CO/N' if '-CO/N' in x else x) df['REGIÃO'] = df['REGIÃO'].apply(lambda x: 'NE' if '-NE' in x else x) df['REGIAO 2'] = df['DESCTAMANHO'].apply(lambda x: 'RJ/ES' if '-RJ/ES' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'SPI' if '-SPI' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'MG' if '-MG' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'SUL' if '-SUL' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'GDE SP' if '-GDE SP' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'CO/N' if '-CO/N' in x else x) df['REGIAO 2'] = df['REGIAO 2'].apply(lambda x: 'NE' if '-NE' in x else x) df['CONCATENADO'] = df['LOCAL_NOVO'].map(str) + '-' + df['PERFIL'].map(str) + '-' + df['TAMANHO'] df['CONCATENADO 2'] = df['LOCAL_NOVO'].map(str) + '-' + df['PERFIL'].map(str) + '-' + df['REGIÃO'].map( str) + '-' + df['TAMANHO'] colorder = ['CODSORTIMENTO', 'CODSECAO', 'DESCSECAO', 'CODTAMANHO', 'DESCTAMANHO', 'CODPUBLICO', 'DESCPUBLICO', 'CODMERCADORIA', 'DESCMERCADORIA', 'MERCCONJ', 'PRIORIDADE', 'QTDE', 'VOLTAGEM', 'VIGENCIAINICIO', 'VIGENCIAFIM', 'PERFIL', 'BANDEIRA', 'LOCAL', 'LOCAL_NOVO', 'TAMANHO', 'REGIÃO', 'STATUS', 'DESCMARCA', 'DESCESPECIE', 'CONCATENADO', 'CONCATENADO 2'] df = df[colorder] return df
zameethi/Flask_Rel_New
apps/sortemp_sortim.py
sortemp_sortim.py
py
9,072
python
pt
code
0
github-code
6
10364079292
from wordbank import wbank import random state = { 'word': '', 'history' : [], 'gc' : 0 } def userguess(inp, state) -> dict: guess = list(inp.upper()) wo = list(state['word']) out = [] for lg in guess: if lg in wo: out.append(('yellow', "*" + lg)) else: out.append(('white', lg)) for i in range(len(guess)): if guess[i] == wo[i]: out[i] = ('green', "#" + guess[i]) state['history'].append(out) return state def userinput() -> tuple: inp = input("[][][][][]") inp = inp.strip() if len(inp) == 5: return True, inp else: return False, inp def wordle(state) -> None: print("Hello, let's play!") print("A * next to a letter means it's in the word, a # means it's in the right place!") while True: while True: valid, inp = userinput() if valid: break else: print(f"{inp} wasn't a valid guess, your guess needs to be 5 letters long") state = userguess(inp, state) state['gc'] += 1 for h in state['history']: print(f"[{']['.join([x[1] for x in h])}]") if len([x[0] for x in state['history'][-1] if x[0] == 'green']) == 5: print("You win!") break else: if state['gc'] == 5: print(f"The word was {state['word']}, you didn't win!") break if __name__ == "__main__": while True: state = { 'word': random.choice(wbank).upper(), 'history' : [], 'gc' : 0 } wordle(state) inp = input("Play again? y/n") if inp.strip().lower() == "y": continue else: print("Goodbye! Thanks for playing!") break
aaronlael/cli_wordle
wordle.py
wordle.py
py
1,928
python
en
code
0
github-code
6
30814400750
__author__ = "https://github.com/kdha0727" import os import functools import contextlib import torch import torch.distributed as dist from torch.cuda import is_available as _cuda_available RANK = 0 WORLD_SIZE = 1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Setup Tools # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def is_initialized(): # if pytorch isn't compiled with c10d, is_initialized is omitted from namespace. # this function wraps """ Returns c10d (distributed) runtime is initialized. """ return dist.is_available() and getattr(dist, "is_initialized", lambda: False)() def setup_dist(temp_dir, rank, world_size): """ Set up a distributed process group. """ if is_initialized(): return True init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) if os.name == 'nt': init_method = 'file:///' + init_file.replace('\\', '/') dist.init_process_group( backend='gloo', init_method=init_method, rank=rank, world_size=world_size) else: init_method = f'file://{init_file}' dist.init_process_group( backend='nccl', init_method=init_method, rank=rank, world_size=world_size) global RANK, WORLD_SIZE RANK = rank WORLD_SIZE = world_size torch.cuda.set_device(dev()) torch.cuda.empty_cache() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # General Tools # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # @functools.lru_cache(maxsize=None) def get_rank(group=None): if group is not None and is_initialized(): return dist.get_rank(group=group) return RANK @functools.lru_cache(maxsize=None) def get_world_size(group=None): if group is not None and is_initialized(): return dist.get_world_size(group=group) return WORLD_SIZE def barrier(*args, **kwargs): if is_initialized(): return dist.barrier(*args, **kwargs) @contextlib.contextmanager def synchronized_ops(): barrier() yield barrier() return @functools.lru_cache(maxsize=None) def dev(group=None): """ Get the device to use for torch.distributed. """ if _cuda_available(): return torch.device(get_rank(group)) return torch.device("cpu") def load_state_dict(local_or_remote_path, **kwargs): """ Load a PyTorch file. """ with open(local_or_remote_path, "rb") as f: return torch.load(f, **kwargs) def broadcast(tensor, src=0, group=None, async_op=False): """ Synchronize a Tensor across ranks from {src} rank. (default=0) :param tensor: torch.Tensor. :param src: source rank to sync params from. default is 0. :param group: :param async_op: """ if not is_initialized(): return with torch.no_grad(): dist.broadcast(tensor, src, group=group, async_op=async_op) def sync_params(params, src=0, group=None, async_op=False): """ Synchronize a sequence of Tensors across ranks from {src} rank. (default=0) :param params: Sequence of torch.Tensor. :param src: source rank to sync params from. default is 0. :param group: :param async_op: """ if not is_initialized(): return for p in params: broadcast(p, src, group=group, async_op=async_op)
studio-YAIVERSE/studio-YAIVERSE
dist_util.py
dist_util.py
py
3,621
python
en
code
20
github-code
6
74987096188
from deep_rl_for_swarms.common import explained_variance, zipsame, dataset from deep_rl_for_swarms.common import logger import deep_rl_for_swarms.common.tf_util as U import tensorflow as tf, numpy as np import time import os from deep_rl_for_swarms.common import colorize from mpi4py import MPI from collections import deque from deep_rl_for_swarms.common.mpi_adam import MpiAdam from deep_rl_for_swarms.common.cg import cg from contextlib import contextmanager from deep_rl_for_swarms.common.act_wrapper import ActWrapper import sys from gym import spaces import matplotlib.pyplot as plt def traj_segment_generator(pi, env, horizon, stochastic): # Initialize state variables t = 0 n_agents = env.nr_agents new = True ob = env.reset() cur_ep_ret = 0 cur_ep_len = 0 ep_rets = [] ep_lens = [] time_steps = [] # Initialize history arrays obs = np.array([ob for _ in range(horizon)]) rews = np.zeros([horizon, n_agents], 'float32') vpreds = np.zeros([horizon, n_agents], 'float32') news = np.zeros([horizon, n_agents], 'int32') if isinstance(env.action_space, spaces.Box): ac = np.vstack([env.action_space.sample() for _ in range(n_agents)]) # Used only to initialize vectors!! acs = np.array([ac for _ in range(horizon)]) elif isinstance(env.action_space, spaces.Discrete): ac = np.array([env.action_space.sample() for _ in range(n_agents)]) acs = np.zeros([horizon, n_agents], 'int32') # For discrete actions else: raise NotImplementedError prevacs = acs.copy() time = np.zeros(horizon, 'float32') # To store the time of acting # Info to be saved in the logger keys_to_save = ['attackers_caught', 'attackers_not_caught', 'mean_total_rwd', 'total_rwd'] if env.attack_mode == 'phy': keys_to_save.extend(['phy_fc_error_rate']) if env.attack_mode == 'mac': keys_to_save.extend(['total_mac_tx', 'total_mac_col', 'total_bits_tx', 'prop_t_tx', 'mean_prop_bits_tx_at', 'mean_prop_bits_tx_no']) info_indiv = [] while True: prevac = ac ac, vpred = pi.act(stochastic, np.vstack(ob)) if isinstance(env.action_space, spaces.Box): ac = np.clip(ac, env.action_space.low, env.action_space.high) # To ensure actions are in the right limit! # Slight weirdness here because we need value function at time T # before returning segment [0, T-1] so we get the correct # terminal value if t > 0 and t % horizon == 0: info_total = {} for key in keys_to_save: aux = 0 for i in range(len(info_indiv)): aux += info_indiv[i][key] info_total[key] = aux / len(info_indiv) if isinstance(env.action_space, spaces.Box): yield [ dict( ob=np.array(obs[:, na, :]), rew=np.array(rews[:, na]), vpred=np.array(vpreds[:, na]), new=np.array(news[:, na]), ac=np.array(acs[:, na, :]), prevac=np.array(prevacs[:, na, :]), nextvpred=vpred[na] * (1 - new), ep_rets=[epr[na] for epr in ep_rets], ep_lens=ep_lens, time_steps=np.array(time_steps), time=time, ) for na in range(n_agents) ], info_total elif isinstance(env.action_space, spaces.Discrete): yield [ dict( ob=np.array(obs[:, na, :]), rew=np.array(rews[:, na]), vpred=np.array(vpreds[:, na]), new=np.array(news[:, na]), ac=np.array(acs[:, na]), prevac=np.array(prevacs[:, na]), nextvpred=vpred[na] * (1 - new), ep_rets=[epr[na] for epr in ep_rets], ep_lens=ep_lens, time_steps=np.array(time_steps), time=time ) for na in range(n_agents) ], info_total else: raise NotImplementedError _, vpred = pi.act(stochastic, ob) # Be careful!!! if you change the downstream algorithm to aggregate # several of these batches, then be sure to do a deepcopy ep_rets = [] ep_lens = [] time_steps = [] info_indiv = [] i = t % horizon time_steps.append(t) obs[i] = ob vpreds[i] = vpred news[i] = new acs[i] = ac prevacs[i] = prevac if env.attack_mode == 'mac': time[i] = sum(env.t_counter) elif env.attack_mode == 'phy': time[i] = env.timestep else: raise RuntimeError('Environment not recognized') ob, rew, new, info = env.step(ac) rews[i] = rew #mask_undetected[i] = np.logical_not(env.banned[0:env.nr_agents]) cur_ep_ret += rew cur_ep_len += 1 if new: info_indiv.append(info) ep_rets.append(cur_ep_ret) ep_lens.append(cur_ep_len) cur_ep_ret = 0 cur_ep_len = 0 ob = env.reset() sys.stdout.write('\r Current horizon length = ' + str((t + 1) % horizon) + '/' + str(horizon)) sys.stdout.flush() t += 1 def add_vtarg_and_adv(seg, gamma, lam): new = [np.append(p["new"], 0) for p in seg] # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = [np.append(p["vpred"], p["nextvpred"]) for p in seg] for i, p in enumerate(seg): T = len(p["rew"]) p["adv"] = gaelam = np.empty(T, 'float32') rew = p["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1 - new[i][t + 1] delta = rew[t] + gamma * vpred[i][t + 1] * nonterminal - vpred[i][t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam p["tdlamret"] = p["adv"] + p["vpred"] ''' def add_vtarg_and_adv(seg, gamma, lam): # Modified version to include time! new = [np.append(p["new"], 0) for p in seg] # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = [np.append(p["vpred"], p["nextvpred"]) for p in seg] for i, p in enumerate(seg): T = len(p["rew"]) p["adv"] = gaelam = np.empty(T, 'float32') rew = p["rew"] lastgaelam = 0 time = np.append(p['time'], p['time'][-1] + 1) # Increase the final time by 1 to obtain the differential time difft = time[1:] - time[0: -1] for t in reversed(range(T)): nonterminal = 1 - new[i][t + 1] gt = gamma ** difft[t] # Note that when difft is negative, nonterminal is 0!! lt = lam ** difft[t] delta = rew[t] + gt * vpred[i][t + 1] * nonterminal - vpred[i][t] gaelam[t] = lastgaelam = delta + gt * lt * nonterminal * lastgaelam p["tdlamret"] = p["adv"] + p["vpred"] ''' def learn(env, policy_fn, *, timesteps_per_batch, # what to train on max_kl, cg_iters, gamma, lam, # advantage estimation entcoeff=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters =3, max_timesteps=0, max_episodes=0, max_iters=0, # time constraint callback=None, save_dir=None, save_flag=False, plot_flag=False ): nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) oldpi = policy_fn("oldpi", ob_space, ac_space) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = entcoeff * meanent vferr = tf.reduce_mean(tf.square(pi.vpred - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold (advantage--> Next line) surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")] # Policy variables var_list.extend([v for v in all_var_list if v.name.split("/")[1].startswith("me")]) # Mean embedding variables vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")] # Value function variables vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start + sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out act_params = { 'name': "pi", 'ob_space': ob_space, 'ac_space': ac_space, } pi = ActWrapper(pi, act_params) U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1 while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break if max_timesteps: print(colorize(str(100 * timesteps_so_far / max_timesteps) + ' % of timesteps', color='magenta')) elif max_episodes: print(colorize(str(100 * episodes_so_far / max_episodes) + ' % of episodes', color='magenta')) elif max_iters: print(colorize(str(100 * iters_so_far / max_iters) + ' % of iters', color='magenta')) logger.log("********** Iteration %i ************" % iters_so_far) with timed("sampling"): seg, info = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) ob = np.concatenate([s['ob'] for s in seg], axis=0) ac = np.concatenate([s['ac'] for s in seg], axis=0) atarg = np.concatenate([s['adv'] for s in seg], axis=0) tdlamret = np.concatenate([s['tdlamret'] for s in seg], axis=0) vpredbefore = np.concatenate([s["vpred"] for s in seg], axis=0) # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate # if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret) # if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = ob, ac, atarg fvpargs = [arr[::5] for arr in args] def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p assign_old_eq_new() # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0) assert np.isfinite(stepdir).all() shs = .5 * stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((ob, tdlamret), include_final_partial_batch=False, batch_size=64): g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) lrlocal = (seg[0]["ep_lens"], seg[0]["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) # Add info values logger.record_tabular("AttC", info['attackers_caught']) logger.record_tabular("AttNC", info['attackers_not_caught']) logger.record_tabular("MtR", info['mean_total_rwd']) # Mean total reward logger.record_tabular("TtR", info['total_rwd']) # Total reward if env.attack_mode == 'phy': logger.record_tabular("Fce", info['phy_fc_error_rate']) if env.attack_mode == 'mac': logger.record_tabular("Tmt", info['total_mac_tx']) logger.record_tabular("Tmc", info['total_mac_col']) logger.record_tabular("Tbt", info['total_bits_tx']) logger.record_tabular("Ptt", info['prop_t_tx']) logger.record_tabular("MpbtA", info['mean_prop_bits_tx_at']) logger.record_tabular("MpbtN", info['mean_prop_bits_tx_no']) if rank == 0: logger.dump_tabular() if save_flag: pi.save(os.path.normpath(save_dir + '/models_trpo/model_{}.pkl'.format(iters_so_far))) def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_]
jparras/dla
deep_rl_for_swarms/rl_algo/trpo_mpi/trpo_mpi_attack.py
trpo_mpi_attack.py
py
17,701
python
en
code
0
github-code
6
18490735964
import boto3 import json import uuid print('Loading function') def lambda_handler(event, context): bucketName = event['Records'][0]['s3']['bucket']['name'] fileName = event['Records'][0]['s3']['object']['key'] return detect_labels_and_put_dynamoDB(fileName, bucketName) def detect_labels_and_put_dynamoDB(photo, bucket): rekognitionClient=boto3.client('rekognition', 'us-east-2') dynamoClient = boto3.client('dynamodb') response = rekognitionClient.detect_labels(Image={'S3Object':{'Bucket':bucket,'Name':photo}}, MaxLabels=10) print('Detected labels for ' + photo) for label in response['Labels']: dynamoClient.put_item( TableName='RekognitionDetails', Item= { 'ID' : { 'S': str(uuid.uuid4()) }, 'Filename': { 'S': photo }, 'Category': { 'S' : label['Name'] }, 'Confidence': { 'N': str(label['Confidence']) } }) def main(): photo='' bucket='' label_count=detect_labels(photo, bucket) print("Labels detected: " + str(label_count))
Samir42/RekognitionService
RekognitionLambda.py
RekognitionLambda.py
py
1,249
python
en
code
0
github-code
6
72279625789
import firebase_admin import googleapiclient from firebase_admin import credentials from firebase_admin import db import os from os.path import join, dirname from dotenv import load_dotenv from XmlParser import XmlParser class FirebaseService: dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) DATABASE_URL = os.environ.get("DATABASE_URL") if not firebase_admin._apps: print('初期化') cred = credentials.Certificate('hologram-test-firebase-adminsdk.json') firebase_admin.initialize_app(cred, { 'databaseURL': DATABASE_URL, }) ref_db = db.reference('/video') def __init__(self, video_item): self.video_item = video_item # FirestoreのドキュメントIDを取得 def get_db_id(self): print("FirebaseService", 'get_db_id') id_list = [] key_val = self.ref_db.get() # DB上に書き込まれたアイテムのvideoIdを取得 for key, val in key_val.items(): id_list.append(key) return id_list # def write_video_item(self): print("FirebaseService", "write_video_item") self.ref_db.update(self.video_item) def delete_video_item(self, update_db_items, xml_video_ids, error_channel_ids): print("FirebaseService", 'update_db_items', len(update_db_items), update_db_items) print("FirebaseService", 'xml_video_ids', len(xml_video_ids), xml_video_ids) print("FirebaseService", 'error_channel_ids', len(error_channel_ids), error_channel_ids) # 一週間以上まえのアイテムのみ抽出 # (更新後のDB上のアイテム)-(XMLで取得したアイテム) last_week_ids = set(update_db_items).difference(set(xml_video_ids)) print('last_week_ids', last_week_ids) for single_id in last_week_ids: db_channelId = self.ref_db.child(f'{single_id}').child('channelId').get() print('db_channel_id', db_channelId) # dbから取得したアイテムのチャンネルIDがエラーが発生したチャンネルIDリストの中に含まれていなければ削除 # xml_parseで取得できなかったチャンネルの動画情報が削除されてしまうため if db_channelId not in set(error_channel_ids): print('delete', f'{single_id}') self.ref_db.child(f'{single_id}').delete()
CIDRA4023/Hologram-backend
FirebaseService.py
FirebaseService.py
py
2,457
python
ja
code
0
github-code
6
20157578435
import numpy as np import pandas as pd import time from metric import SampleScore,EventScore, AdjustedMutualInfoScore from joblib import Parallel, delayed class Experiment: def __init__(self,algorithms:list, configurations:list, thresholds = np.linspace(0,1,101),njobs=1,verbose = True) -> None: """Initialization Args: algorithms (list): list of algorithm classes configurations (list): list of list of configurations as dictionnaries for each algorithms classes thresholds (np.ndarray, optional): numpy array of thresholds to consider for the event based metric. Defaults to numpy.linspace(0,1,101). """ self.algorithms = algorithms self.configurations = configurations self.thresholds = thresholds self.njobs = njobs self.verbose = verbose def compute_scores(self,label,prediction): single_pred = np.clip(np.sum(prediction,axis=0),0,1).reshape(1,-1) single_label = np.clip(np.sum(label,axis=0),0,1).reshape(1,-1) scores = [] #single sample score p,r,f = SampleScore().score(single_label,single_pred) scores.append(["sss-precision",p]) scores.append(["sss-recall",r]) scores.append(["sss-fscore",f]) #sample score p,r,f = SampleScore().score(label,prediction) scores.append(["ss-precision",p]) scores.append(["ss-recall",r]) scores.append(["ss-fscore",f]) # weigthed sample score p,r,f = SampleScore(averaging="weighted").score(label,prediction) scores.append(["w-ss-precision",p]) scores.append(["w-ss-recall",r]) scores.append(["w-ss-fscore",f]) #single event score lp,lr,lf = EventScore().score(single_label,single_pred,self.thresholds) for t,p,r,f in zip(self.thresholds,lp,lr,lf): scores.append([f"ses-precision_{np.round(t,2)}",p]) scores.append([f"ses-recall_{np.round(t,2)}",r]) scores.append([f"ses-fscore_{np.round(t,2)}",f]) scores.append(["ses-auc-precision",np.mean(lp)]) scores.append(["ses-auc-recall",np.mean(lr)]) scores.append(["ses-auc-fscore",np.mean(lf)]) #event score lp,lr,lf = EventScore().score(label,prediction,self.thresholds) for t,p,r,f in zip(self.thresholds,lp,lr,lf): scores.append([f"es-precision_{np.round(t,2)}",p]) scores.append([f"es-recall_{np.round(t,2)}",r]) scores.append([f"es-fscore_{np.round(t,2)}",f]) scores.append(["es-auc-precision",np.mean(lp)]) scores.append(["es-auc-recall",np.mean(lr)]) scores.append(["es-auc-fscore",np.mean(lf)]) # weighted event score lp,lr,lf = EventScore(averaging="weighted").score(label,prediction,self.thresholds) for t,p,r,f in zip(self.thresholds,lp,lr,lf): scores.append([f"w-es-precision_{np.round(t,2)}",p]) scores.append([f"w-es-recall_{np.round(t,2)}",r]) scores.append([f"w-es-fscore_{np.round(t,2)}",f]) scores.append(["w-es-auc-precision",np.mean(lp)]) scores.append(["w-es-auc-recall",np.mean(lr)]) scores.append(["w-es-auc-fscore",np.mean(lf)]) #ajusted mutual information scores.append(["amis",AdjustedMutualInfoScore().score(label,prediction)]) return scores def signal_algo_class_experiement(self,signal_idx,signal,label,algo_class,config,config_idx): "Return a DF" #keep only labels row that are activated by the signal label = label[label.sum(axis=1)>0] #update the number of patterns to predict if required t_config = config.copy() if ("n_patterns" in t_config.keys()): if (isinstance(t_config["n_patterns"],int)): t_config["n_patterns"] = label.shape[0] else: t_config["n_patterns"] = None try: #get predictions algo = algo_class(**t_config) start = time.time() algo.fit(signal) end = time.time() #compute scores scores = self.compute_scores(label,algo.prediction_mask_) tdf = pd.DataFrame(scores,columns=["metric","score"]) tdf["algorithm"] = algo_class.__name__ tdf["config_idx"] = config_idx tdf["execution_time"] = end - start tdf["signal_idx"] = signal_idx tdf["n_patterns"] = label.shape[0] tdf["predicted_n_patterns"] = algo.prediction_mask_.shape[0] if self.verbose: s1 = np.round(tdf[tdf["metric"] == "es-auc-fscore"].score.values[0],2) s2 = np.round(tdf[tdf["metric"] == "amis"].score.values[0],2) print(f"signal_id: {signal_idx}, algo: {algo_class.__name__}, config_id: {config_idx}, f-auc: {s1}, ami: {s2}") return tdf except: s= f"signal_id: {signal_idx}, algo: {algo_class.__name__}, config_id: {config_idx} failed to fit." if self.verbose: print(s) if self.logs_path_ is not None: with open(self.logs_path_,"a") as f: f.write(s +"\n") def run_experiment(self,dataset:np.ndarray,labels:np.ndarray,backup_path = None,batch_size=10,logs_path = None,verbose = True)->np.ndarray: """_summary_ Args: dataset (np.ndarray): array of signals, signal shape (L,), variable length allowed labels (np.ndarray): array of labels, label shape (L,), variable length allowed signal_configs (pd.DataFrame, optional): Dataframe containing the configuration of the synthetic generator for each signals. backup_path (str, optional): Path to store df in case of big experiment. If None no saving. Defaults to None. batch_size (int, optional) verbose (bool, optional): verbose. Defaults to True. Returns: pd.DataFrame: scores_df """ self.logs_path_ = logs_path n_signals = len(dataset) n_configs = np.sum([len(conf) for conf in self.configurations]) total = n_signals*n_configs if backup_path != None: n_batches = n_signals//batch_size if n_batches >0: batches =[zip(dataset[i*batch_size:(i+1)*batch_size],labels[i*batch_size:(i+1)*batch_size]) for i in range(n_batches)] else: batches = [] if n_signals % batch_size !=0: batches.append(zip(dataset[n_batches*batch_size:],labels[n_batches*batch_size:])) else: batches = [zip(dataset,labels)] self.df_ = pd.DataFrame() counts = 0 for batch in batches: results = Parallel(n_jobs=self.njobs)( delayed(self.signal_algo_class_experiement)(counts+id_s,signal,label,algo,config,id_c) for id_s,(signal,label) in enumerate(batch) for id_a,algo in enumerate(self.algorithms) for id_c,config in enumerate(self.configurations[id_a]) ) counts = min(counts+batch_size,n_signals) self.df_= pd.concat((self.df_,*results)).reset_index(drop = True) self.df_ = self.df_.astype({'metric':str, "score":float, "algorithm":str,'config_idx':int,"signal_idx":int, "n_patterns":int, "predicted_n_patterns":int}) if backup_path != None: self.df_.to_csv(backup_path) if verbose: print(f"Achieved [{counts*n_configs}/{total}]") return self.df_
thibaut-germain/lt-normalized
src/experiment.py
experiment.py
py
7,754
python
en
code
0
github-code
6
45483801886
import pickle import numpy as np import random import os import pandas as pd import yaml import copy from tqdm import tqdm from . import utils from . import visual import xarray as xr from .proxy import ProxyDatabase from .gridded import Dataset from .utils import ( pp, p_header, p_hint, p_success, p_fail, p_warning, cfg_abspath, cwd_abspath, geo_mean, nino_indices, calc_tpi, global_hemispheric_means, ) from .da import ( enkf_update_array, cov_localization, ) class ReconJob: ''' Reconstruction Job General rule of loading parameters: load from the YAML first if available, then update with the parameters in the function calling, so the latter has a higher priority ''' def __init__(self, configs=None, proxydb=None, prior=None, obs=None): self.configs = configs self.proxydb = proxydb self.prior = prior self.obs = obs def copy(self): return copy.deepcopy(self) def load_configs(self, cfg_path=None, job_dirpath=None, verbose=False): ''' Load the configuration YAML file self.configs will be updated Parameters ---------- cfg_path : str the path of a configuration YAML file ''' pwd = os.path.dirname(__file__) if cfg_path is None: cfg_path = os.path.abspath(os.path.join(pwd, './cfg/cfg_template.yml')) self.cfg_path = cfg_path if verbose: p_header(f'LMRt: job.load_configs() >>> loading reconstruction configurations from: {cfg_path}') self.configs = yaml.safe_load(open(cfg_path, 'r')) if verbose: p_success(f'LMRt: job.load_configs() >>> job.configs created') if job_dirpath is None: if os.path.isabs(self.configs['job_dirpath']): job_dirpath = self.configs['job_dirpath'] else: job_dirpath = cfg_abspath(self.cfg_path, self.configs['job_dirpath']) else: job_dirpath = cwd_abspath(job_dirpath) self.configs['job_dirpath'] = job_dirpath os.makedirs(job_dirpath, exist_ok=True) if verbose: p_header(f'LMRt: job.load_configs() >>> job.configs["job_dirpath"] = {job_dirpath}') p_success(f'LMRt: job.load_configs() >>> {job_dirpath} created') pp.pprint(self.configs) def load_proxydb(self, path=None, verbose=False, load_df_kws=None): ''' Load the proxy database self.proxydb will be updated Parameters ---------- proxydb_path : str if given, should point to a pickle file with a Pandas DataFrame underlying ''' # update self.configs with not None parameters in the function calling if path is None: if os.path.isabs(self.configs['proxydb_path']): path = self.configs['proxydb_path'] else: path = cfg_abspath(self.cfg_path, self.configs['proxydb_path']) else: path = cwd_abspath(path) self.configs['proxydb_path'] = path if verbose: p_header(f'LMRt: job.load_proxydb() >>> job.configs["proxydb_path"] = {path}') # load proxy database proxydb = ProxyDatabase() proxydb_df = pd.read_pickle(self.configs['proxydb_path']) load_df_kws = {} if load_df_kws is None else load_df_kws.copy() proxydb.load_df(proxydb_df, ptype_psm=self.configs['ptype_psm'], ptype_season=self.configs['ptype_season'], verbose=verbose, **load_df_kws) if verbose: p_success(f'LMRt: job.load_proxydb() >>> {proxydb.nrec} records loaded') proxydb.source = self.configs['proxydb_path'] self.proxydb = proxydb if verbose: p_success(f'LMRt: job.load_proxydb() >>> job.proxydb created') def filter_proxydb(self, ptype_psm=None, dt=1, pids=None, verbose=False): if ptype_psm is None: ptype_psm = self.configs['ptype_psm'] else: self.configs['ptype_psm'] = ptype_psm if verbose: p_header(f'LMRt: job.filter_proxydb() >>> job.configs["ptype_psm"] = {ptype_psm}') proxydb = self.proxydb.copy() if self.configs['ptype_psm'] is not None: ptype_list = list(self.configs['ptype_psm'].keys()) if verbose: p_header(f'LMRt: job.filter_proxydb() >>> filtering proxy records according to: {ptype_list}') proxydb.filter_ptype(ptype_list, inplace=True) proxydb.filter_dt(dt, inplace=True) if pids is not None: self.configs['assim_pids'] = pids if verbose: p_header(f'LMRt: job.filter_proxydb() >>> job.configs["assim_pids"] = {pids}') if 'assim_pids' in self.configs and self.configs['assim_pids'] is not None: proxydb.filter_pids(self.configs['assim_pids'], inplace=True) if verbose: p_success(f'LMRt: job.filter_proxydb() >>> {proxydb.nrec} records remaining') self.proxydb = proxydb def seasonalize_proxydb(self, ptype_season=None, verbose=False): if ptype_season is None: ptype_season = self.configs['ptype_season'] else: self.configs['ptype_season'] = ptype_season if verbose: p_header(f'LMRt: job.seasonalize_proxydb() >>> job.configs["ptype_season"] = {ptype_season}') proxydb = self.proxydb.copy() if self.configs['ptype_season'] is not None: if verbose: p_header(f'LMRt: job.seasonalize_proxydb() >>> seasonalizing proxy records according to: {self.configs["ptype_season"]}') proxydb.seasonalize(self.configs['ptype_season'], inplace=True) if verbose: p_success(f'LMRt: job.seasonalize_proxydb() >>> {proxydb.nrec} records remaining') self.proxydb = proxydb if verbose: p_success(f'LMRt: job.seasonalize_proxydb() >>> job.proxydb updated') def load_prior(self, path_dict=None, varname_dict=None, verbose=False, anom_period=None): ''' Load model prior fields Parameters ---------- path_dict: dict a dict of environmental variables varname_dict: dict a dict to map variable names, e.g. {'tas': 'sst'} means 'tas' is named 'sst' in the input NetCDF file ''' # update self.configs with not None parameters in the function calling if path_dict is None: path_dict = cfg_abspath(self.cfg_path, self.configs['prior_path']) self.configs['prior_path'] = path_dict else: self.configs['prior_path'] = cwd_abspath(path_dict) if verbose: p_header(f'LMRt: job.load_prior() >>> job.configs["prior_path"] = {path_dict}') if anom_period is None: anom_period = self.configs['anom_period'] else: self.configs['anom_period'] = anom_period if verbose: p_header(f'LMRt: job.load_prior() >>> job.configs["anom_period"] = {anom_period}') vn_dict = { 'time': 'time', 'lat': 'lat', 'lon': 'lon', } if 'prior_varname' in self.configs: vn_dict.update(self.configs['prior_varname']) if varname_dict is not None: vn_dict.update(varname_dict) self.configs['prior_varname'] = vn_dict # load data if verbose: p_header(f'LMRt: job.load_prior() >>> loading model prior fields from: {self.configs["prior_path"]}') ds = Dataset() ds.load_nc(self.configs['prior_path'], varname_dict=self.configs['prior_varname'], anom_period=anom_period, inplace=True) if verbose: p_hint('LMRt: job.load_prior() >>> raw prior') print(ds) self.prior = ds if verbose: p_success(f'LMRt: job.load_prior() >>> job.prior created') def seasonalize_ds_for_psm(self, ds_type=None, seasonalized_ds_path=None, save_path=None, ptype_season=None, verbose=False): if seasonalized_ds_path is not None and os.path.exists(seasonalized_ds_path): with open(seasonalized_ds_path, 'rb') as f: if ds_type == 'prior': self.seasonalized_prior = pickle.load(f) elif ds_type == 'obs': self.seasonalized_obs = pickle.load(f) else: raise ValueError('Wrong ds_type') else: if ptype_season is None: ptype_season = self.configs['ptype_season'] else: self.configs['ptype_season'] = ptype_season if verbose: p_header(f'LMRt: job.seasonalize_ds_for_psm() >>> job.configs["ptype_season"] = {ptype_season}') all_seasons = [] for ptype, season in ptype_season.items(): if isinstance(season[0], list): # when ptype_season[pobj.ptype] contains multiple seasonality possibilities for sn in season: if sn not in all_seasons: all_seasons.append(sn) else: # when ptype_season[pobj.ptype] contains only one seasonality possibility if season not in all_seasons: all_seasons.append(season) # print(all_seasons) if ds_type == 'prior': ds = self.prior.copy() elif ds_type == 'obs': ds = self.obs.copy() else: raise ValueError('Wrong ds_type') seasonalized_ds = {} for season in all_seasons: if verbose: p_header(f'LMRt: job.seasonalize_ds_for_psm() >>> Seasonalizing variables from {ds_type} with season: {season}') season_tag = '_'.join(str(s) for s in season) seasonalized_ds[season_tag] = ds.seasonalize(season, inplace=False) if ds_type == 'prior': self.seasonalized_prior = seasonalized_ds elif ds_type == 'obs': self.seasonalized_obs = seasonalized_ds else: raise ValueError('Wrong ds_type') if save_path is not None: with open(save_path, 'wb') as f: pickle.dump(seasonalized_ds, f) if verbose: p_success(f'LMRt: job.seasonalize_ds_for_psm() >>> job.seasonalized_{ds_type} created') def seasonalize_prior(self, season=None, verbose=False): if season is None: season = self.configs['prior_season'] else: self.configs['prior_season'] = season if verbose: p_header(f'LMRt: job.seasonalize_prior() >>> job.configs["prior_season"] = {season}') ds = self.prior.copy() ds.seasonalize(self.configs['prior_season'], inplace=True) if verbose: p_hint(f'LMRt: job.seasonalize_prior() >>> seasonalized prior w/ season {season}') print(ds) self.prior = ds if verbose: p_success(f'LMRt: job.seasonalize_prior() >>> job.prior updated') def regrid_prior(self, ntrunc=None, verbose=False): if ntrunc is None: ntrunc = self.configs['prior_regrid_ntrunc'] self.configs['prior_regrid_ntrunc'] = ntrunc ds = self.prior.copy() ds.regrid(self.configs['prior_regrid_ntrunc'], inplace=True) if verbose: p_hint('LMRt: job.regrid_prior() >>> regridded prior') print(ds) self.prior = ds if verbose: p_success(f'LMRt: job.regrid_prior() >>> job.prior updated') def crop_prior(self, domain_range=None, verbose=False): ''' Take a smaller domain for reconstruction Parameters ---------- domain_range : list [lat_min, lat_max, lon_min, lon_max] ''' if domain_range is None: if 'prior_crop_domain_range' not in self.configs: self.configs['prior_crop_domain_range'] = None else: domain_range = self.configs['prior_crop_domain_range'] else: self.configs['prior_crop_domain_range'] = domain_range if self.configs['prior_crop_domain_range'] is None: if verbose: p_success(f'LMRt: job.crop_prior() >>> job.prior not updated as the domain_range is set to None') else: ds = self.prior.copy() ds.crop(self.configs['prior_crop_domain_range'], inplace=True) if verbose: p_hint('LMRt: job.crop_prior() >>> cutted prior') print(ds) self.prior = ds if verbose: p_success(f'LMRt: job.crop_prior() >>> job.prior updated') def load_obs(self, path_dict=None, varname_dict=None, verbose=False, anom_period=None): ''' Load instrumental observations fields Parameters ---------- path_dict: dict a dict of environmental variables varname_dict: dict a dict to map variable names, e.g. {'tas': 'sst'} means 'tas' is named 'sst' in the input NetCDF file ''' if path_dict is None: obs_path = cfg_abspath(self.cfg_path, self.configs['obs_path']) else: obs_path = cwd_abspath(path_dict) self.configs['obs_path'] = obs_path if anom_period is None: anom_period = self.configs['anom_period'] else: self.configs['obs_anom_period'] = anom_period if verbose: p_header(f'LMRt: job.load_obs() >>> job.configs["anom_period"] = {anom_period}') vn_dict = { 'time': 'time', 'lat': 'lat', 'lon': 'lon', } if 'obs_varname' in self.configs: vn_dict.update(self.configs['obs_varname']) if varname_dict is not None: vn_dict.update(varname_dict) self.configs['obs_varname'] = vn_dict if verbose: p_header(f'LMRt: job.load_obs() >>> loading instrumental observation fields from: {self.configs["obs_path"]}') ds = Dataset() ds.load_nc(self.configs['obs_path'], varname_dict=vn_dict, anom_period=anom_period, inplace=True) self.obs = ds if verbose: p_success(f'LMRt: job.load_obs() >>> job.obs created') def calibrate_psm(self, ptype_season=None, seasonalized_prior_path=None, prior_loc_path=None, seasonalized_obs_path=None, obs_loc_path=None, calibed_psm_path=None, calib_period=None, verbose=False): if ptype_season is None: ptype_season = self.configs['ptype_season'] else: self.configs['ptype_season'] = ptype_season if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["ptype_season"] = {ptype_season}') ptype_season = {k:self.configs['ptype_season'][k] for k in self.configs['ptype_psm'].keys()} # set paths for precalculated data if 'prepcalc' not in self.configs: self.configs['precalc'] = {} if seasonalized_prior_path is None: seasonalized_prior_path = os.path.abspath(os.path.join(self.configs['job_dirpath'], 'seasonalized_prior.pkl')) self.configs['precalc']['seasonalized_prior_path'] = seasonalized_prior_path if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["precalc"]["seasonalized_prior_path"] = {seasonalized_prior_path}') if seasonalized_obs_path is None: seasonalized_obs_path = os.path.abspath(os.path.join(self.configs['job_dirpath'], 'seasonalized_obs.pkl')) self.configs['precalc']['seasonalized_obs_path'] = seasonalized_obs_path if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["precalc"]["seasonalized_obs_path"] = {seasonalized_obs_path}') if prior_loc_path is None: prior_loc_path = os.path.abspath(os.path.join(self.configs['job_dirpath'], 'prior_loc.pkl')) self.configs['precalc']['prior_loc_path'] = prior_loc_path if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["precalc"]["prior_loc_path"] = {prior_loc_path}') if obs_loc_path is None: obs_loc_path = os.path.abspath(os.path.join(self.configs['job_dirpath'], 'obs_loc.pkl')) self.configs['precalc']['obs_loc_path'] = obs_loc_path if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["precalc"]["obs_loc_path"] = {obs_loc_path}') if calibed_psm_path is None: calibed_psm_path = os.path.abspath(os.path.join(self.configs['job_dirpath'], 'calibed_psm.pkl')) self.configs['precalc']['calibed_psm_path'] = calibed_psm_path if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["precalc"]["calibed_psm_path"] = {calibed_psm_path}') for ds_type, seasonalized_path, loc_path in zip( ['prior', 'obs'], [seasonalized_prior_path, seasonalized_obs_path], [prior_loc_path, obs_loc_path]): # seasonalize ds for PSM calibration self.seasonalize_ds_for_psm(ds_type=ds_type, ptype_season=ptype_season, seasonalized_ds_path=seasonalized_path, save_path=seasonalized_path, verbose=verbose) if ds_type == 'prior': ds = self.prior seasonalized_ds = self.seasonalized_prior elif ds_type == 'obs': ds = self.obs seasonalized_ds = self.seasonalized_obs # get modeled environmental variables at proxy locales from prior psm_types = set([v for k, v in self.configs['ptype_psm'].items()]) if 'bilinear' in psm_types: var_names = ['tas', 'pr'] else: var_names = ['tas'] self.proxydb.find_nearest_loc(var_names, ds=ds, ds_type=ds_type, ds_loc_path=loc_path, save_path=loc_path, verbose=verbose) self.proxydb.get_var_from_ds(seasonalized_ds, ptype_season, ds_type=ds_type, verbose=verbose) # initialize PSM self.proxydb.init_psm(verbose=verbose) # calibrate PSM if calib_period is None: calib_period = self.configs['psm_calib_period'] else: self.configs['psm_calib_period'] = calib_period if verbose: p_header(f'LMRt: job.calibrate_psm() >>> job.configs["psm_calib_period"] = {calib_period}') if verbose: p_header(f'LMRt: job.calibrate_psm() >>> PSM calibration period: {calib_period}') if calibed_psm_path is not None and os.path.exists(calibed_psm_path): self.proxydb.calib_psm(calib_period=calib_period, calibed_psm_path=calibed_psm_path, verbose=verbose) else: self.proxydb.calib_psm(calib_period=calib_period, save_path=calibed_psm_path, verbose=verbose) def forward_psm(self, verbose=False): self.proxydb.forward_psm(verbose=verbose) def gen_Xb(self, recon_vars=None, verbose=False): ''' Generate Xb ''' if not hasattr(self, 'prior_sample_years'): raise ValueError('job.prior_sample_years not existing, please run job.gen_Ye() first!') if recon_vars is None: recon_vars = self.configs['recon_vars'] else: self.configs['recon_vars'] = recon_vars if verbose: p_header(f'LMRt: job.gen_Xb() >>> job.configs["recon_vars"] = {recon_vars}') if type(recon_vars) is str: # contains only one variable recon_vars = [recon_vars] vn_1st = recon_vars[0] self.prior_sample_idx = [list(self.prior.fields[vn_1st].time).index(yr) for yr in self.prior_sample_years] if verbose: p_success(f'LMRt: job.gen_Xb() >>> job.prior_sample_idx created') nens = np.size(self.prior_sample_years) Xb_var_irow = {} # index of rows in Xb to store the specific var loc = 0 for vn in recon_vars: nt, nlat, nlon = np.shape(self.prior.fields[vn].value) lats, lons = self.prior.fields[vn].lat, self.prior.fields[vn].lon lon2d, lat2d = np.meshgrid(lons, lats) fd_coords = np.ndarray((nlat*nlon, 2)) fd_coords[:, 0] = lat2d.flatten() fd_coords[:, 1] = lon2d.flatten() fd = self.prior.fields[vn].value[self.prior_sample_idx] fd = np.moveaxis(fd, 0, -1) fd_flat = fd.reshape((nlat*nlon, nens)) if vn == vn_1st: Xb = fd_flat Xb_coords = fd_coords else: Xb = np.concatenate((Xb, fd_flat), axis=0) Xb_coords = np.concatenate((Xb_coords, fd_coords), axis=0) Xb_var_irow[vn] = [loc, loc+nlat*nlon-1] loc += nlat*nlon self.Xb = Xb self.Xb_coords = Xb_coords self.Xb_var_irow = Xb_var_irow if verbose: p_success(f'LMRt: job.gen_Xb() >>> job.Xb created') p_success(f'LMRt: job.gen_Xb() >>> job.Xb_coords created') p_success(f'LMRt: job.gen_Xb() >>> job.Xb_var_irow created') def gen_Ye(self, proxy_frac=None, nens=None, verbose=False, seed=0): ''' Generate Ye ''' if proxy_frac is None: proxy_frac = self.configs['proxy_frac'] else: self.configs['proxy_frac'] = proxy_frac if verbose: p_header(f'LMRt: job.gen_Ye() >>> job.configs["proxy_frac"] = {proxy_frac}') if nens is None: nens = self.configs['recon_nens'] else: self.configs['recon_nens'] = nens if verbose: p_header(f'LMRt: job.gen_Xb() >>> job.configs["recon_nens"] = {nens}') self.proxydb.split(proxy_frac, verbose=verbose, seed=seed) vn_1st = list(self.prior.fields.keys())[0] time = self.prior.fields[vn_1st].time Ye_assim_df = pd.DataFrame(index=time) Ye_eval_df = pd.DataFrame(index=time) Ye_assim_lat = [] Ye_assim_lon = [] Ye_eval_lat = [] Ye_eval_lon = [] Ye_assim_coords = np.ndarray((self.proxydb.assim.nrec, 2)) Ye_eval_coords = np.ndarray((self.proxydb.eval.nrec, 2)) for pid, pobj in self.proxydb.assim.records.items(): series = pd.Series(index=pobj.ye_time, data=pobj.ye_value) Ye_assim_df[pid] = series Ye_assim_lat.append(pobj.lat) Ye_assim_lon.append(pobj.lon) Ye_assim_df.dropna(inplace=True) Ye_assim_coords[:, 0] = Ye_assim_lat Ye_assim_coords[:, 1] = Ye_assim_lon for pid, pobj in self.proxydb.eval.records.items(): series = pd.Series(index=pobj.ye_time, data=pobj.ye_value) Ye_eval_df[pid] = series Ye_eval_lat.append(pobj.lat) Ye_eval_lon.append(pobj.lon) Ye_eval_df.dropna(inplace=True) Ye_eval_coords[:, 0] = Ye_eval_lat Ye_eval_coords[:, 1] = Ye_eval_lon Ye_df = pd.concat([Ye_assim_df, Ye_eval_df], axis=1).dropna() self.Ye_df = Ye_df nt = len(Ye_df) self.Ye_assim_df = Ye_assim_df self.Ye_eval_df = Ye_eval_df random.seed(seed) sample_idx = random.sample(list(range(nt)), nens) self.prior_sample_years = Ye_df.index[sample_idx].values if verbose: p_success(f'LMRt: job.gen_Ye() >>> job.prior_sample_years created') # use self.prior_sample_idx for sampling self.Ye_assim = np.array(Ye_assim_df)[sample_idx].T self.Ye_eval = np.array(Ye_eval_df)[sample_idx].T self.Ye_assim_coords = Ye_assim_coords self.Ye_eval_coords = Ye_eval_coords if verbose: p_success(f'LMRt: job.gen_Ye() >>> job.Ye_df created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_assim_df created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_eval_df created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_assim created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_eval created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_assim_coords created') p_success(f'LMRt: job.gen_Ye() >>> job.Ye_eval_coords created') def update_yr(self, target_yr, Xb_aug, Xb_aug_coords, recon_loc_rad, recon_timescale=1, verbose=False, debug=False): start_yr = target_yr - recon_timescale/2 end_yr = target_yr + recon_timescale/2 Xb = np.copy(Xb_aug) i = 0 for pid, pobj in self.proxydb.assim.records.items(): mask = (pobj.time >= start_yr) & (pobj.time <= end_yr) nYobs = np.sum(mask) if nYobs == 0: i += 1 continue # skip to next proxy record Yobs = pobj.value[mask].mean() loc = cov_localization(recon_loc_rad, pobj, Xb_aug_coords) Ye = Xb[i - (self.proxydb.assim.nrec+self.proxydb.eval.nrec)] ob_err = pobj.R / nYobs Xa = enkf_update_array(Xb, Yobs, Ye, ob_err, loc=loc, debug=debug) if debug: Xb_mean = Xb[:-(self.proxydb.assim.nrec+self.proxydb.eval.nrec)].mean() Xa_mean = Xa[:-(self.proxydb.assim.nrec+self.proxydb.eval.nrec)].mean() innov = Yobs - Ye.mean() if np.abs(innov / Yobs) > 1: print(pid, i - (self.proxydb.assim.nrec+self.proxydb.eval.nrec)) print(f'\tXb_mean: {Xb_mean:.2f}, Xa_mean: {Xa_mean:.2f}') print(f'\tInnovation: {innov:.2f}, ob_err: {ob_err:.2f}, Yobs: {Yobs:.2f}, Ye_mean: {Ye.mean():.2f}') Xbvar = Xb.var(axis=1, ddof=1) Xavar = Xa.var(axis=1, ddof=1) vardiff = Xavar - Xbvar if (not np.isfinite(np.min(vardiff))) or (not np.isfinite(np.max(vardiff))): raise ValueError('Reconstruction has blown-up. Exiting!') if debug: print('min/max change in variance: ('+str(np.min(vardiff))+','+str(np.max(vardiff))+')') i += 1 Xb = Xa return Xb def run_da(self, recon_period=None, recon_loc_rad=None, recon_timescale=None, verbose=False, debug=False): if recon_period is None: recon_period = self.configs['recon_period'] else: self.configs['recon_period'] = recon_period if verbose: p_header(f'LMRt: job.run_da() >>> job.configs["recon_period"] = {recon_period}') if recon_timescale is None: recon_timescale = self.configs['recon_timescale'] else: self.configs['recon_timescale'] = recon_timescale if verbose: p_header(f'LMRt: job.run_da() >>> job.configs["recon_timescale"] = {recon_timescale}') if recon_loc_rad is None: recon_loc_rad = self.configs['recon_loc_rad'] else: self.configs['recon_loc_rad'] = recon_loc_rad if verbose: p_header(f'LMRt: job.run_da() >>> job.configs["recon_loc_rad"] = {recon_loc_rad}') recon_yrs = np.arange(recon_period[0], recon_period[-1]+1) Xb_aug = np.append(self.Xb, self.Ye_assim, axis=0) Xb_aug = np.append(Xb_aug, self.Ye_eval, axis=0) Xb_aug_coords = np.append(self.Xb_coords, self.Ye_assim_coords, axis=0) Xb_aug_coords = np.append(Xb_aug_coords, self.Ye_eval_coords, axis=0) nt = np.size(recon_yrs) nrow, nens = np.shape(Xb_aug) Xa = np.ndarray((nt, nrow, nens)) for yr_idx, target_yr in enumerate(tqdm(recon_yrs, desc='KF updating')): Xa[yr_idx] = self.update_yr(target_yr, Xb_aug, Xb_aug_coords, recon_loc_rad, recon_timescale, verbose=verbose, debug=debug) recon_fields = {} for vn, irow in self.Xb_var_irow.items(): _, nlat, nlon = np.shape(self.prior.fields[vn].value) recon_fields[vn] = Xa[:, irow[0]:irow[-1]+1, :].reshape((nt, nlat, nlon, nens)) recon_fields[vn] = np.moveaxis(recon_fields[vn], -1, 1) self.recon_fields = recon_fields if verbose: p_success(f'LMRt: job.run_da() >>> job.recon_fields created') def save_recon(self, save_path, compress_dict={'zlib': True, 'least_significant_digit': 1}, verbose=False, output_geo_mean=False, target_lats=[], target_lons=[], output_full_ens=False, dtype=np.float32): output_dict = {} for vn, fd in self.recon_fields.items(): nyr, nens, nlat, nlon = np.shape(fd) if output_full_ens: output_var = np.array(fd, dtype=dtype) output_dict[vn] = (('year', 'ens', 'lat', 'lon'), output_var) else: output_var = np.array(fd.mean(axis=1), dtype=dtype) output_dict[vn] = (('year', 'lat', 'lon'), output_var) lats, lons = self.prior.fields[vn].lat, self.prior.fields[vn].lon try: gm_ens = np.ndarray((nyr, nens), dtype=dtype) nhm_ens = np.ndarray((nyr, nens), dtype=dtype) shm_ens = np.ndarray((nyr, nens), dtype=dtype) for k in range(nens): gm_ens[:,k], nhm_ens[:,k], shm_ens[:,k] = global_hemispheric_means(fd[:,k,:,:], lats) output_dict[f'{vn}_gm_ens'] = (('year', 'ens'), gm_ens) output_dict[f'{vn}_nhm_ens'] = (('year', 'ens'), nhm_ens) output_dict[f'{vn}_shm_ens'] = (('year', 'ens'), shm_ens) except: if verbose: p_warning(f'LMRt: job.save_recon() >>> Global hemispheric means cannot be calculated') if vn == 'tas': try: nino_ind = nino_indices(fd, lats, lons) nino12 = nino_ind['nino1+2'] nino3 = nino_ind['nino3'] nino34 = nino_ind['nino3.4'] nino4 = nino_ind['nino4'] wpi = nino_ind['wpi'] nino12 = np.array(nino12, dtype=dtype) nino3 = np.array(nino3, dtype=dtype) nino34 = np.array(nino34, dtype=dtype) nino4 = np.array(nino4, dtype=dtype) output_dict['nino1+2'] = (('year', 'ens'), nino12) output_dict['nino3'] = (('year', 'ens'), nino3) output_dict['nino3.4'] = (('year', 'ens'), nino34) output_dict['nino4'] = (('year', 'ens'), nino4) output_dict['wpi'] = (('year', 'ens'), wpi) except: if verbose: p_warning(f'LMRt: job.save_recon() >>> NINO or West Pacific Indices cannot be calculated') # calculate tripole index (TPI) try: tpi = calc_tpi(fd, lats, lons) tpi = np.array(tpi, dtype=dtype) output_dict['tpi'] = (('year', 'ens'), tpi) except: if verbose: p_warning(f'LMRt: job.save_recon() >>> Tripole Index (TPI) cannot be calculated') if output_geo_mean: geo_mean_ts = geo_mean(fd, lats, lons, target_lats, target_lons) output_dict['geo_mean'] = (('year', 'ens'), geo_mean_ts) ds = xr.Dataset( data_vars=output_dict, coords={ 'year': np.arange(self.configs['recon_period'][0], self.configs['recon_period'][1]+1), 'ens': np.arange(nens), 'lat': lats, 'lon': lons, }) if compress_dict is not None: encoding_dict = {} for k in output_dict.keys(): encoding_dict[k] = compress_dict ds.to_netcdf(save_path, encoding=encoding_dict) else: ds.to_netcdf(save_path) if verbose: p_header(f'LMRt: job.save_recon() >>> Reconstructed fields saved to: {save_path}') def prepare(self, job_dirpath=None, proxydb_path=None, ptype_psm=None, ptype_season=None, verbose=False, prior_path=None, prior_varname_dict=None, prior_season=None, prior_regrid_ntrunc=None, obs_path=None, obs_varname_dict=None, anom_period=None, calib_period=None, seasonalized_prior_path=None, seasonalized_obs_path=None, prior_loc_path=None, obs_loc_path=None, calibed_psm_path=None, prep_savepath=None): if job_dirpath is None: job_dirpath = self.configs['job_dirpath'] else: self.configs['job_dirpath'] = job_dirpath if verbose: p_header(f'LMRt: job.prepare() >>> job.configs["job_dirpath"] = {job_dirpath}') os.makedirs(job_dirpath, exist_ok=True) if prep_savepath is None: prep_savepath = os.path.join(job_dirpath, f'job.pkl') else: if 'precalc' not in self.configs: self.configs['precalc'] = {} self.configs['precalc']['prep_savepath'] = prep_savepath if verbose: p_header(f'LMRt: job.prepare() >>> job.configs["precalc"]["prep_savepath"] = {prep_savepath}') if os.path.exists(prep_savepath): job_prep = pd.read_pickle(prep_savepath) if verbose: p_header(f'LMRt: job.prepare() >>> Prepration data loaded from: {prep_savepath}') self.proxydb = job_prep.proxydb self.prior = job_prep.prior self.obs = job_prep.obs del(job_prep) else: # load & process proxy database self.load_proxydb(path=proxydb_path, verbose=verbose) self.filter_proxydb(ptype_psm=ptype_psm, verbose=verbose) self.seasonalize_proxydb(ptype_season=ptype_season, verbose=verbose) # load prior & obs self.load_prior(path_dict=prior_path, varname_dict=prior_varname_dict, anom_period=anom_period, verbose=verbose) self.load_obs(path_dict=obs_path, varname_dict=obs_varname_dict, anom_period=anom_period, verbose=verbose) # calibrate & forward PSM self.calibrate_psm( seasonalized_prior_path=seasonalized_prior_path, seasonalized_obs_path=seasonalized_obs_path, prior_loc_path=prior_loc_path, obs_loc_path=obs_loc_path, calibed_psm_path=calibed_psm_path, calib_period=calib_period, verbose=verbose, ) self.forward_psm(verbose=verbose) # seasonalize & regrid prior del(self.seasonalized_prior) del(self.seasonalized_obs) self.seasonalize_prior(season=prior_season, verbose=verbose) self.regrid_prior(ntrunc=prior_regrid_ntrunc, verbose=verbose) # save result pd.to_pickle(self, prep_savepath) self.configs['precalc']['prep_savepath'] = prep_savepath if verbose: p_header(f'LMRt: job.prepare() >>> Prepration data saved to: {prep_savepath}') p_header(f'LMRt: job.prepare() >>> job.configs["precalc"]["prep_savepath"] = {prep_savepath}') def save(self, prep_savepath=None, verbose=False): if hasattr(self, 'seasonalized_prior'): del(self.seasonalized_prior) if hasattr(self, 'seasonalized_obs'): del(self.seasonalized_obs) if prep_savepath is None: prep_savepath = os.path.join(self.configs['job_dirpath'], f'job.pkl') if 'prepcalc' not in self.configs: self.configs['precalc'] = {} pd.to_pickle(self, prep_savepath) self.configs['precalc']['prep_savepath'] = prep_savepath if verbose: p_header(f'LMRt: job.save_job() >>> Prepration data saved to: {prep_savepath}') p_header(f'LMRt: job.save_job() >>> job.configs["precalc"]["prep_savepath"] = {prep_savepath}') def run(self, recon_seeds=None, recon_vars=None, recon_period=None, recon_timescale=None, recon_loc_rad=None, nens=None, proxy_frac=None, verbose=False, save_configs=True, compress_dict={'zlib': True, 'least_significant_digit': 1}, output_geo_mean=False, target_lats=[], target_lons=[], output_full_ens=False, dtype=np.float32): job_dirpath = self.configs["job_dirpath"] if recon_seeds is None: recon_seeds = self.configs['recon_seeds'] else: self.configs['recon_seeds'] = np.array(recon_seeds).tolist() if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_seeds"] = {recon_seeds}') if recon_vars is None: recon_vars = self.configs['recon_vars'] else: self.configs['recon_vars'] = recon_vars if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_vars"] = {recon_vars}') if type(recon_vars) is str: # contains only one variable recon_vars = [recon_vars] if nens is None: nens = self.configs['recon_nens'] else: self.configs['recon_nens'] = nens if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_nens"] = {nens}') if proxy_frac is None: proxy_frac = self.configs['proxy_frac'] else: self.configs['proxy_frac'] = proxy_frac if verbose: p_header(f'LMRt: job.run() >>> job.configs["proxy_frac"] = {proxy_frac}') if recon_period is None: recon_period = self.configs['recon_period'] else: self.configs['recon_period'] = recon_period if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_period"] = {recon_period}') if recon_timescale is None: recon_timescale = self.configs['recon_timescale'] else: self.configs['recon_timescale'] = recon_timescale if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_timescale"] = {recon_timescale}') if recon_loc_rad is None: recon_loc_rad = self.configs['recon_loc_rad'] else: self.configs['recon_loc_rad'] = recon_loc_rad if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_loc_rad"] = {recon_loc_rad}') # add settings for data saving to configs self.configs['save_settings'] = {} self.configs['save_settings']['compress_dict'] = compress_dict self.configs['save_settings']['output_geo_mean'] = output_geo_mean self.configs['save_settings']['target_lats'] = target_lats self.configs['save_settings']['target_lons'] = target_lons self.configs['save_settings']['output_full_ens'] = output_full_ens if dtype is np.float32: self.configs['save_settings']['dtype'] = 32 elif dtype is np.float64: self.configs['save_settings']['dtype'] = 64 else: raise ValueError('Wrong dtype!') if verbose: p_header(f'LMRt: job.run() >>> job.configs["save_settings"] = {self.configs["save_settings"]}') os.makedirs(job_dirpath, exist_ok=True) if save_configs: cfg_savepath = os.path.join(job_dirpath, f'job_configs.yml') with open(cfg_savepath, 'w') as f: yaml.dump(self.configs, f) if verbose: p_header(f'LMRt: job.run() >>> job.configs saved to: {cfg_savepath}') for seed in recon_seeds: p_header(f'LMRt: job.run() >>> seed: {seed} | max: {recon_seeds[-1]}') recon_savepath = os.path.join(job_dirpath, f'job_r{seed:02d}_recon.nc') if os.path.exists(recon_savepath): p_header(f'LMRt: job.run() >>> reconstruction existed at: {recon_savepath}') continue else: self.gen_Ye(proxy_frac=proxy_frac, nens=nens, seed=seed) self.gen_Xb(recon_vars=recon_vars) idx_savepath = os.path.join(job_dirpath, f'job_r{seed:02d}_idx.pkl') pd.to_pickle([self.prior_sample_idx, self.proxydb.calibed_idx_assim, self.proxydb.calibed_idx_eval], idx_savepath) if verbose: p_header(f'LMRt: job.run() >>> randomized indices for prior and proxies saved to: {idx_savepath}') print(self.proxydb.assim) self.run_da(recon_period=recon_period, recon_timescale=recon_timescale, recon_loc_rad=recon_loc_rad) self.save_recon(recon_savepath, compress_dict=compress_dict, output_geo_mean=output_geo_mean, verbose=verbose, target_lats=target_lats, target_lons=target_lons, output_full_ens=output_full_ens, dtype=dtype) p_header(f'LMRt: job.run() >>> DONE!') def run_cfg(self, cfg_path, job_dirpath=None, recon_seeds=None, verbose=False, save_configs=True): self.load_configs(cfg_path, verbose=verbose) if job_dirpath is None: if os.path.isabs(self.configs['job_dirpath']): job_dirpath = self.configs['job_dirpath'] else: job_dirpath = cfg_abspath(self.cfg_path, self.configs['job_dirpath']) else: job_dirpath = cwd_abspath(job_dirpath) self.configs['job_dirpath'] = job_dirpath os.makedirs(job_dirpath, exist_ok=True) if verbose: p_header(f'LMRt: job.load_configs() >>> job.configs["job_dirpath"] = {job_dirpath}') p_success(f'LMRt: job.load_configs() >>> {job_dirpath} created') proxydb_path = cfg_abspath(cfg_path, self.configs['proxydb_path']) ptype_psm = self.configs['ptype_psm'] ptype_season = self.configs['ptype_season'] prior_path = cfg_abspath(cfg_path, self.configs['prior_path']) prior_varname_dict = self.configs['prior_varname'] prior_season = self.configs['prior_season'] prior_regrid_ntrunc = self.configs['prior_regrid_ntrunc'] prior_crop_domain_range = self.configs['prior_crop_domain_range'] if 'prior_crop_domain_range' in self.configs else None obs_path = cfg_abspath(cfg_path, self.configs['obs_path']) obs_varname_dict = self.configs['obs_varname'] anom_period = self.configs['anom_period'] psm_calib_period = self.configs['psm_calib_period'] try: seasonalized_prior_path = self.configs['precalc']['seasonalized_prior_path'] seasonalized_obs_path = self.configs['precalc']['seasonalized_obs_path'] prior_loc_path = self.configs['precalc']['prior_loc_path'] obs_loc_path = self.configs['precalc']['obs_loc_path'] calibed_psm_path = self.configs['precalc']['calibed_psm_path'] prep_savepath = self.configs['precalc']['prep_savepath'] except: seasonalized_prior_path = None seasonalized_obs_path = None prior_loc_path = None obs_loc_path = None calibed_psm_path = None prep_savepath = None if recon_seeds is None: recon_seeds = self.configs['recon_seeds'] else: self.configs['recon_seeds'] = np.array(recon_seeds).tolist() if verbose: p_header(f'LMRt: job.run() >>> job.configs["recon_seeds"] = {recon_seeds}') recon_vars = self.configs['recon_vars'] recon_period = self.configs['recon_period'] recon_timescale = self.configs['recon_timescale'] recon_loc_rad = self.configs['recon_loc_rad'] recon_nens = self.configs['recon_nens'] proxy_frac = self.configs['proxy_frac'] try: compress_dict = self.configs['save_settings']['compress_dict'] output_geo_mean = self.configs['save_settings']['output_geo_mean'] target_lats = self.configs['save_settings']['target_lats'] target_lons = self.configs['save_settings']['target_lons'] output_full_ens = self.configs['save_settings']['output_full_ens'] dtype_int = self.configs['save_settings']['dtype'] if dtype_int == 32: dtype = np.float32 elif dtype_int == 64: dtype = np.float64 else: raise ValueError(f'Wrong dtype in: {cfg_path}! Should be either 32 or 64.') except: compress_dict={'zlib': True, 'least_significant_digit': 1} output_geo_mean=False target_lats=[] target_lons=[] output_full_ens=False dtype=np.float32 self.prepare(job_dirpath, prep_savepath=prep_savepath, proxydb_path=proxydb_path, ptype_psm=ptype_psm, ptype_season=ptype_season, prior_path=prior_path, prior_varname_dict=prior_varname_dict, prior_season=prior_season, prior_regrid_ntrunc=prior_regrid_ntrunc, obs_path=obs_path, obs_varname_dict=obs_varname_dict, anom_period=anom_period, calib_period=psm_calib_period, seasonalized_prior_path=seasonalized_prior_path, seasonalized_obs_path=seasonalized_obs_path, prior_loc_path=prior_loc_path, obs_loc_path=obs_loc_path, calibed_psm_path=calibed_psm_path, verbose=verbose) # crop the domain if set to if prior_crop_domain_range is not None: self.crop_prior(prior_crop_domain_range, verbose=verbose) self.save(prep_savepath=prep_savepath, verbose=verbose) self.run(recon_seeds=recon_seeds, recon_vars=recon_vars, recon_period=recon_period, save_configs=save_configs, recon_timescale=recon_timescale, recon_loc_rad=recon_loc_rad, nens=recon_nens, proxy_frac=proxy_frac, verbose=verbose, compress_dict=compress_dict, output_geo_mean=output_geo_mean, target_lats=target_lats, target_lons=target_lons, output_full_ens=output_full_ens, dtype=dtype)
fzhu2e/LMRt
LMRt/reconjob.py
reconjob.py
py
45,613
python
en
code
9
github-code
6
35988325228
import joblib model = None def init_model( db, model_themes_path='./flaskr/model/log_reg_themes', model_cats_path='./flaskr/model/log_reg_cats' ): global model cur = db.cursor() query = """ select id from theme order by id; """ cur.execute(query) theme_ids = [id[0] for id in cur.fetchall()] cur.close() cur = db.cursor() query = """ select id from category order by id; """ cur.execute(query) cats_ids = [id[0] for id in cur.fetchall()] cur.close() model = Model(theme_ids, cats_ids, model_themes_path, model_cats_path) def get_model(): return model class Model: def __init__(self, theme_ids, cats_id, model_themes_path, model_cats_path): self.model_themes = joblib.load(model_themes_path) self.model_cats = joblib.load(model_cats_path) self.theme_ids = theme_ids self.cats_ids = cats_id def analyse_theme(self, text: str, detailed_text:str = None, probs_count=3): probs = self.model_themes.predict_proba([text])[0] if detailed_text: d_probs = self.model_themes.predict_proba([detailed_text])[0] probs = probs * d_probs most_likely_probs = None if probs_count <= 0: most_likely_probs = [self.theme_ids[id] for id in probs.argsort().tolist()[:][::-1]] else: most_likely_probs = [self.theme_ids[id] for id in probs.argsort().tolist()[-probs_count:][::-1]] return most_likely_probs def analyse_cat(self, text: str, detailed_text:str = None): probs = self.model_cats.predict_proba([text])[0] if detailed_text: d_probs = self.model_cats.predict_proba([detailed_text])[0] probs = probs * d_probs most_likely_probs = [self.cats_ids[id] for id in probs.argsort().tolist()[:][::-1]] return most_likely_probs
dimayasha7123/kursach3
flaskr/model/model.py
model.py
py
1,979
python
en
code
0
github-code
6
74200612027
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : train.py # @Author: stoneye # @Date : 2023/09/01 # @Contact : [email protected] import tensorflow as tf import tensorflow.contrib.slim as slim import utils from models import ModelUtil from models import NextvladModel from models import TextExactor from models import TrnModel from tensorflow.python.client import device_lib class VideoModel(): def __init__(self, args): """ :param args: config params """ # init the config self.init_config() model_util_obj = ModelUtil() if self.model_type == 'nextvlad': model_obj = NextvladModel() # nextvlad model else: model_obj = TrnModel() # trn model title_obj = TextExactor() # text model # 加载预先训练的embeddding word_embeddings = model_util_obj._init_vocab_and_emb(word_vocab=args.word_vocab, pre_train_emb_path=args.pre_Train_path) self.word_embeddings = tf.Variable(word_embeddings, name='word_embeddings', dtype=tf.float32) self.init_placeholder() # build_graph,support sigle gpu or multi gpus self.total_loss, self.tag_total_prob, self.cate_total_prob, self.train_op = \ self.multi_gpu_bulid_graph(num_gpu=self.num_gpu, lr=self.lr, ad_strength=self.ad_strength, word_embeddings=self.word_embeddings, tag_gt_label=self.tag_gt_label, cate_gt_label=self.cate_gt_label, tag_nums=self.tag_nums, cate_nums=self.cate_nums, rgb_fea_input=self.input_video_rgb_feature, rgb_fea_true_frame=self.rgb_fea_true_frame, audio_fea_input=self.input_video_audio_feature, audio_fea_true_frame=self.audio_fea_true_frame, max_frames_rgb=self.max_frames_rgb, max_frames_audio=self.max_frames_audio, title_fea_input=self.title_id_int_list, word_sequence_length=self.word_sequence_length, model_obj=model_obj, title_obj=title_obj, is_training=self.is_training, dropout_keep_prob=self.dropout_keep_prob, model_util_obj=model_util_obj, task_type=self.task_type) def init_config(self): # task name:["cate","tag","cate_and_tag"] # 1)"cate": only cate task; 2)"tag":only tag task; 3)"cate_and_tag": multi-task, cate and tag self.task_type = args.task_type # nums of gpu self.num_gpu = args.num_gpu # learning rate self.lr = args.lr # ratio of adversarial perturbations self.ad_strength = args.ad_strength # the num of tag self.tag_nums = args.tag_nums # the num of cate self.cate_nums = args.cate_nums # the num of video frames self.max_frames_rgb = args.rgb_frames # the num of audio frames self.max_frames_audio = args.audio_frames # the max length word(word id) of title self.title_max_len = args.title_max_len # main aggregate model : light-weight: trn ; heavy-weight: nextvlad self.model_type = args.model_type # the feature size of img frames. self.rgb_fea_size = args.rgb_fea_size # the feature size of audio frames. self.audio_fea_size = args.audio_fea_size def init_placeholder(self): """ :return: """ # title:[batch,max_len] self.title_id_int_list = tf.placeholder(tf.int32, shape=[None, self.title_max_len]) word_sequence_length = tf.reduce_sum(tf.sign( self.title_id_int_list), axis=1) # [batch,] self.word_sequence_length = tf.cast(word_sequence_length, tf.int32) # [batch,] # cate ground truth self.cate_gt_label = tf.placeholder(tf.float32, shape=[None, self.tag_nums], name="cate_gt_label") # tag ground truth self.tag_gt_label = tf.placeholder(tf.float32, shape=[None, self.tag_nums], name="tag_gt_label") # rgb fea self.input_video_rgb_feature = tf.placeholder(tf.float32, shape=[None, self.max_frames_rgb, self.rgb_fea_size]) # the num of rgb frames self.rgb_fea_true_frame = tf.placeholder(tf.int32, shape=[None, ]) # the num of audio frames self.input_video_audio_feature = tf.placeholder(tf.float32, shape=[None, self.max_frames_audio, self.audio_fea_size]) # audio frames self.audio_fea_true_frame = tf.placeholder(tf.int32, shape=[None, ]) # keep dropout self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # is train stage or not self.is_training = tf.placeholder(tf.bool, name="is_training") def cal_loss(self, rgb_fea, rgb_fea_true_frame, audio_fea, audio_fea_true_frame, title_emb_fea, word_sequence_length, tag_gt_label, cate_gt_label, tag_nums, cate_nums, max_frames_rgb, max_frames_audio, is_training, dropout_keep_prob, model_obj, title_obj, model_util_obj, reuse, task_type, hidden_size=256, embedding_size=200, num_filters=100, num_outputs=1024, ): with tf.variable_scope("cl_loss_from_emb", reuse=reuse): # rgb dense vector rgb_cluster_fea = model_obj.forward(is_training=is_training, fea_input=rgb_fea, dropout_keep_prob=dropout_keep_prob, fea_type='rgb', max_frames=max_frames_rgb, true_frames=rgb_fea_true_frame, name_scope='rgb_cluster_fea') # audio dense vector audio_cluster_fea = model_obj.forward(is_training=is_training, fea_input=audio_fea, dropout_keep_prob=dropout_keep_prob, fea_type='audio', max_frames=max_frames_audio, true_frames=audio_fea_true_frame, name_scope='audio_cluster_fea') # title dense vector baesd on bilstm model bilstm_title_feature = title_obj._bilstm_feature( embedding_descript=title_emb_fea, hidden_size=hidden_size, des_sequence_length=word_sequence_length, dtype=tf.float32, reuse=None) # title dense vector based on textcnn model textcnn_title_feature = title_obj._text_cnn_feature( embedding_descript=title_emb_fea, embedding_size=embedding_size, filter_sizes=list(map(int, "2,3,4,5".split(","))), num_filters=num_filters, reuse=None ) title_fea = tf.concat([bilstm_title_feature, textcnn_title_feature], axis=1) title_fea_drop = slim.dropout(title_fea, keep_prob=dropout_keep_prob, is_training=is_training, scope="title_fea_drop") title_fea_dense = slim.fully_connected(inputs=title_fea_drop, num_outputs=num_outputs, activation_fn=None, scope="title_fea_dense") # batch normalization title_fea_dense_bn = slim.batch_norm( title_fea_dense, center=True, scale=True, is_training=is_training, scope="title_fea_dense_bn", fused=False) with slim.arg_scope([slim.fully_connected], normalizer_fn=slim.batch_norm, normalizer_params={'is_training': is_training, 'center': True, 'scale': True}): # multi-modal total_fea = tf.concat([rgb_cluster_fea, audio_cluster_fea, title_fea_dense_bn], 1) # se gate concate_features_se = model_util_obj._se_module(is_training=is_training, activation=total_fea, name_scope="concat_se") concate_features_se_drop = tf.nn.dropout(concate_features_se, dropout_keep_prob) if task_type == 'cate': cate_total_loss, cate_total_prob = ModelUtil.cate_hmc_layer( fea_vector=concate_features_se_drop, dropout_keep_prob=dropout_keep_prob, cate_nums=cate_nums, ml_tag=cate_gt_label, name_scope='cate1_total_loss') tag_total_prob = tf.zeros_like(tag_gt_label) return cate_total_loss, tag_total_prob, cate_total_prob elif task_type == 'tag': tag_total_loss, \ tag_total_prob = ModelUtil.tag_hmc_layer(fea_vector=concate_features_se_drop, dropout_keep_prob=dropout_keep_prob, tag_nums=tag_nums, ml_tag=tag_gt_label, name_scope='tag_total_loss') cate_total_prob = tf.zeros_like(cate_gt_label) return tag_total_loss, tag_total_prob, cate_total_prob elif task_type == 'cate_and_tag': cate_total_loss, cate_total_prob = ModelUtil.cate_hmc_layer( fea_vector=concate_features_se_drop, dropout_keep_prob=dropout_keep_prob, cate_nums=cate_nums, ml_tag=cate_gt_label, name_scope='cate1_total_loss') tag_total_loss, \ tag_total_prob = ModelUtil.tag_hmc_layer(fea_vector=concate_features_se_drop, dropout_keep_prob=dropout_keep_prob, tag_nums=tag_nums, ml_tag=tag_gt_label, name_scope='tag_total_loss') return cate_total_loss + tag_total_loss, tag_total_prob, cate_total_prob else: raise Exception('task_type:{} not in [cate,tag,cate_and_tag]') def multi_gpu_bulid_graph(self, num_gpu, lr, ad_strength, word_embeddings, tag_gt_label, cate_gt_label, tag_nums, cate_nums, title_fea_input, word_sequence_length, rgb_fea_input, rgb_fea_true_frame, audio_fea_input, audio_fea_true_frame, max_frames_rgb, max_frames_audio, model_obj, title_obj, is_training, dropout_keep_prob, model_util_obj, task_type): """ :param num_gpu: # the nums of gpu :param lr: #learning rate :param ad_strength: # adversarial perturbation :param word_embeddings: #word embedding [batch,emb_size] :param tag_gt_label: # tag gt label [batch,tag_nums] :param cate_gt_label: #cate gt label [batch,cate_nums] :param tag_nums: # the nums of tag :param cate_nums: # the nums of cate :param title_fea_input: # title fea [batch,seq_len] :param word_sequence_length: # the truth length of title :param rgb_fea_input: #rgb fea [batch,frame,fea_size] :param rgb_fea_true_frame: #the truth frames of rgb fea :param audio_fea_input: #audio fea [batch,frame,fea_size] :param audio_fea_true_frame: #the truth frames of audio fea :param max_frames_rgb: #the max frames of rgb :param max_frames_audio: #the max frames of audio :param model_obj: #aggregate model: nextvlad or trn :param title_obj: #textcnn or Bi-LSTM :param is_training: # True or False :param dropout_keep_prob: # float :param model_util_obj: # :param task_type: #the type of task:cate, tag, cate_and_tag:multi-task,cate & tag :return: """ local_device_protos = device_lib.list_local_devices() gpus = [x.name for x in local_device_protos if x.device_type == 'GPU'] gpus = gpus[:num_gpu] num_gpus = len(gpus) if num_gpus > 0: print("Using the following GPUs to train: {}".format(gpus)) num_towers = num_gpus device_string = '/gpu:%d' else: print("No GPUs found. Training on CPU.") num_towers = 1 device_string = '/cpu:%d' self.global_step = tf.Variable(0, trainable=False, name='global_step') optimizer = tf.train.AdamOptimizer(lr) tower_rgb_fea_input = tf.split(rgb_fea_input, num_towers) tower_rgb_fea_true_frame = tf.split(rgb_fea_true_frame, num_towers) tower_audio_fea_input = tf.split(audio_fea_input, num_towers) tower_audio_fea_true_frame = tf.split(audio_fea_true_frame, num_towers) tower_title_fea_input = tf.split(title_fea_input, num_towers) tower_word_sequence_length = tf.split(word_sequence_length, num_towers) tower_tag_gt_label = tf.split(tag_gt_label, num_towers) tower_cate_gt_label = tf.split(cate_gt_label, num_towers) tower_gradients = [] tower_predict_tag_probs = [] tower_predict_cate_probs = [] tower_total_losses = [] for i in range(num_towers): with tf.device(device_string % i): with (tf.variable_scope(("tower"), reuse=True if i > 0 else None)): with (slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0" if num_gpu != 1 else "/gpu:0")): result = self.build_graph( word_embeddings=word_embeddings, rgb_fea_input=tower_rgb_fea_input[i], rgb_fea_true_frame=tower_rgb_fea_true_frame[i], audio_fea_input=tower_audio_fea_input[i], audio_fea_true_frame=tower_audio_fea_true_frame[i], max_frames_rgb=max_frames_rgb, max_frames_audio=max_frames_audio, title_fea_input=tower_title_fea_input[i], word_sequence_length=tower_word_sequence_length[i], tag_gt_label=tower_tag_gt_label[i], cate_gt_label=tower_cate_gt_label[i], is_training=is_training, ad_strength=ad_strength, tag_nums=tag_nums, cate_nums=cate_nums, model_obj=model_obj, title_obj=title_obj, dropout_keep_prob=dropout_keep_prob, model_util_obj=model_util_obj, task_type=task_type ) cl_tag_prob = result["tag_prob"] tower_predict_tag_probs.append(cl_tag_prob) cl_cate_prob = result["cate_prob"] tower_predict_cate_probs.append(cl_cate_prob) loss = result["loss"] update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): tower_total_losses.append(loss) gradients = \ optimizer.compute_gradients(loss, colocate_gradients_with_ops=False) tower_gradients.append(gradients) total_loss = tf.reduce_mean(tf.stack(tower_total_losses)) total_tag_prob = tf.concat(tower_predict_tag_probs, 0) total_cate_prob = tf.concat(tower_predict_cate_probs, 0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): merged_gradients = utils.combine_gradients(tower_gradients) train_op = optimizer.apply_gradients(merged_gradients, global_step=self.global_step) return total_loss, total_tag_prob, total_cate_prob, train_op def build_graph(self, word_embeddings, tag_gt_label, cate_gt_label, tag_nums, cate_nums, ad_strength, rgb_fea_input, rgb_fea_true_frame, audio_fea_input, audio_fea_true_frame, title_fea_input, word_sequence_length, max_frames_rgb, max_frames_audio, is_training, model_obj, title_obj, dropout_keep_prob, model_util_obj, task_type): # [batch,25,emb_size] embedded_title = tf.nn.embedding_lookup(word_embeddings, title_fea_input) # sigmoid cross entropy loss cl_loss, cl_tag_prob, cl_cate_prob = self.cal_loss(rgb_fea=rgb_fea_input, rgb_fea_true_frame=rgb_fea_true_frame, max_frames_rgb=max_frames_rgb, max_frames_audio=max_frames_audio, audio_fea=audio_fea_input, audio_fea_true_frame=audio_fea_true_frame, title_emb_fea=embedded_title, word_sequence_length=word_sequence_length, is_training=is_training, tag_gt_label=tag_gt_label, cate_gt_label=cate_gt_label, tag_nums=tag_nums, cate_nums=cate_nums, dropout_keep_prob=dropout_keep_prob, model_obj=model_obj, title_obj=title_obj, model_util_obj=model_util_obj, task_type=task_type, reuse=None) # add the perturbation on rgb fea rgb_fea_perturbated = model_util_obj.add_perturbation(rgb_fea_input, cl_loss, norm_length=ad_strength) # add the perturbation on audio fea audio_fea_perturbated = model_util_obj.add_perturbation(audio_fea_input, cl_loss, norm_length=ad_strength) # add the perturbation on text(title) fea title_emb_fea_perturbated = model_util_obj.add_perturbation(embedded_title, cl_loss, norm_length=ad_strength) # sigmoid cross entropy loss of perturbation ad_loss, _, _ = self.cal_loss(rgb_fea=rgb_fea_perturbated, rgb_fea_true_frame=rgb_fea_true_frame, max_frames_rgb=max_frames_rgb, max_frames_audio=max_frames_audio, audio_fea=audio_fea_perturbated, audio_fea_true_frame=audio_fea_true_frame, title_emb_fea=title_emb_fea_perturbated, word_sequence_length=word_sequence_length, is_training=is_training, tag_gt_label=tag_gt_label, cate_gt_label=cate_gt_label, tag_nums=tag_nums, cate_nums=cate_nums, dropout_keep_prob=dropout_keep_prob, model_obj=model_obj, title_obj=title_obj, model_util_obj=model_util_obj, task_type=task_type, reuse=True) return {'loss': cl_loss + ad_loss, 'tag_prob': cl_tag_prob, 'cate_prob': cl_cate_prob}
stoneyezhenxu/Multimodal_Video_Classification
src/video_model.py
video_model.py
py
23,282
python
en
code
0
github-code
6
14025841679
""" @author: Yuhao Cheng @contact: yuhao.cheng[at]outlook.com """ #!!!!! ignore the warning messages import warnings warnings.filterwarnings('ignore') import os import pickle import math import torch import time import numpy as np from PIL import Image from collections import OrderedDict import torchvision.transforms as T import torchvision.transforms.functional as tf from torch.utils.data import DataLoader from pyanomaly.core.utils import AverageMeter, flow_batch_estimate, tensorboard_vis_images, make_info_message, ParamSet from pyanomaly.datatools.evaluate.utils import psnr_error from ..abstract.base_engine import BaseTrainer, BaseInference from ..engine_registry import ENGINE_REGISTRY __all__ = ['MEMAETrainer', 'MEMAEInference'] @ENGINE_REGISTRY.register() class MEMAETrainer(BaseTrainer): NAME = ["MEMAE.TRAIN"] def custom_setup(self): # basic meter self.loss_meter_MemAE = AverageMeter(name='loss_memae') def train(self,current_step): # Pytorch [N, C, D, H, W] # initialize start = time.time() self.set_requires_grad(self.MemAE, True) self.MemAE.train() writer = self.kwargs['writer_dict']['writer'] global_steps = self.kwargs['writer_dict']['global_steps_{}'.format(self.kwargs['model_type'])] # get the data data, anno, meta = next(self._train_loader_iter) # the core for dataloader self.data_time.update(time.time() - start) input_data = data.cuda() # True Process =================Start=================== output_rec, att = self.MemAE(input_data) loss_rec = self.rec_loss(output_rec, input_data) loss_mem = self.mem_loss(att) loss_memae_all = self.loss_lamada['rec_loss'] * loss_rec + self.loss_lamada['mem_loss'] * loss_mem # loss_memae_all = self.loss_lamada['rec_loss'] * loss_rec self.optim_MemAE.zero_grad() # with torch.autograd.set_detect_anomaly(True): loss_memae_all.backward() self.optim_MemAE.step() self.loss_meter_MemAE.update(loss_memae_all.detach()) if self.config.TRAIN.adversarial.scheduler.use: self.lr_memae.step() # ======================End================== self.batch_time.update(time.time() - start) if (current_step % self.steps.param['log'] == 0): msg = make_info_message(current_step, self.steps.param['max'], self.kwargs['model_type'], self.batch_time, self.config.TRAIN.batch_size, self.data_time, [self.loss_meter_MemAE]) self.logger.info(msg) writer.add_scalar('Train_loss_MemAE', self.loss_meter_MemAE.val, global_steps) if (current_step % self.steps.param['vis'] == 0): vis_objects = OrderedDict({ 'train_output_rec_memeae': output_rec.detach(), 'train_input': input_data.detach() }) tensorboard_vis_images(vis_objects, writer, global_steps, self.normalize.param['train']) global_steps += 1 # reset start start = time.time() # self.saved_model = {'MemAE':self.MemAE} self.saved_model['MemAE'] = self.MemAE # self.saved_optimizer = {'optim_MemAE': self.optim_MemAE} self.saved_optimizer['optimizer_MemAE']= self.optim_MemAE # self.saved_loss = {'loss_MemAE':self.loss_meter_MemAE.val} self.saved_loss['loss_MemAE'] = self.loss_meter_MemAE.val self.kwargs['writer_dict']['global_steps_{}'.format(self.kwargs['model_type'])] = global_steps @ENGINE_REGISTRY.register() class MEMAEInference(BaseInference): NAME = ["MEMAE.INFERENCE"] def inference(self): for h in self._hooks: h.inference()
YuhaoCheng/PyAnomaly
pyanomaly/core/engine/functions/memae.py
memae.py
py
3,913
python
en
code
107
github-code
6
3167027289
#!/usr/bin/env python3 import random from typing import Tuple from functions.aes import AESCipher, pkcs7_pad, get_blocks, gen_random_bytes def _encryption_oracle(bytes_: bytes) -> Tuple[bytes, str]: key = gen_random_bytes(16) iv = gen_random_bytes(16) prefix = gen_random_bytes(random.randint(5, 10)) suffix = gen_random_bytes(random.randint(5, 10)) pt = prefix + bytes_ + suffix cbc_mode = random.choice([True, False]) if cbc_mode: cbc = AESCipher(AESCipher.MODE_CBC, key, iv=iv) ct = cbc.encrypt(pkcs7_pad(pt)) answer = "cbc" else: ecb = AESCipher(AESCipher.MODE_ECB, key) ct = ecb.encrypt(pkcs7_pad(pt)) answer = "ecb" return ct, answer def challenge11() -> bool: pt = bytes(gen_random_bytes(1) * random.randint(100, 200)) ct, answer = _encryption_oracle(pt) blocks = get_blocks(ct) unique_blocks = len(set(blocks)) guess = "cbc" if len(blocks) == unique_blocks else "ecb" return True if guess == answer else False if __name__ == "__main__": for _ in range(100): assert challenge11(), "The result does not match the expected value" print("Ok")
svkirillov/cryptopals-python3
cryptopals/set2/challenge11.py
challenge11.py
py
1,185
python
en
code
0
github-code
6
27867118318
import tensorflow as tf from utils.nn import linear from .tdnn import TDNN def embed_characters(input, vocab_size, embed_dim=40, scope=None, reuse=None, use_batch_norm=True, use_highway=True, highway_layers=2): """ Character-level embedding """ with tf.variable_scope(scope or 'Embedder') as scope: if reuse: scope.reuse_variables() input = tf.unpack(tf.transpose(input, [1, 0, 2])) # L * [N, W] embedding = tf.get_variable('embedding', [vocab_size, embed_dim]) embedded = [] for word in input: embed = tf.nn.embedding_lookup(embedding, word) # [N, W, d] conved = TDNN(embed, embed_dim) if use_batch_norm: conved = batch_norm(conved) if use_highway: conved = highway(conved, conved.get_shape()[1], highway_layers, 0) embedded.append(conved) scope.reuse_variables() return embedded def batch_norm(x, epsilon=1e-5): shape = x.get_shape().as_list() with tf.variable_scope('BatchNorm'): gamma = tf.get_variable("gamma", [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) beta = tf.get_variable("beta", [shape[-1]], initializer=tf.constant_initializer(0.)) mean, variance = tf.nn.moments(x, [0, 1]) return tf.nn.batch_norm_with_global_normalization( x, mean, variance, beta, gamma, epsilon, scale_after_normalization=True) def highway(input_, size, layer_size=1, bias=-2, f=tf.nn.relu): """Highway Network (cf. http://arxiv.org/abs/1505.00387). t = sigmoid(Wy + b) z = t * g(Wy + b) + (1 - t) * y where g is nonlinearity, t is transform gate, and (1 - t) is carry gate. """ with tf.variable_scope('Highway'): output = input_ for idx in range(layer_size): output = f(linear(output, size, 0, scope='output_lin_%d' % idx, init='he')) transform_gate = tf.sigmoid(linear(input_, size, 0, scope='transform_lin_%d' % idx) + bias) carry_gate = 1. - transform_gate output = transform_gate * output + carry_gate * input_ return output
therne/logue
models/embedding.py
embedding.py
py
2,203
python
en
code
0
github-code
6
21897871134
import got3 import pymongo from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # connect to mongo deamon connection = pymongo.MongoClient("mongodb://localhost") # connect to the collection called uber_tweets in the kubrick db db = connection.kubrick.uberban_tweets count = 0 try: while True: tweetCriteria = got3.manager.TweetCriteria().setSince("2017-09-22").setQuerySearch("uberban") #tweetCriteria = got3.manager.TweetCriteria().setQuerySearch("uberban") tweet = got3.manager.TweetManager.getTweets(tweetCriteria)[count] sent = SentimentIntensityAnalyzer().polarity_scores(tweet.text)['compound'] print(tweet.text) print(sent) print(tweet.date) db.insert_many([{"tweet": tweet.text, "sentiment": sent}]) count += 1 except: print("tweet scrape ended with {no_tweets} tweets".format(no_tweets = count))
JackJoeKul/cities-in-need
Old UberBan Tweets Scrape + Sentiment Analysis/old_tweets.py
old_tweets.py
py
906
python
en
code
0
github-code
6
26999768171
import random def structDataSampling(**kwargs): global tmp result = list() num = kwargs.get("num", -1) if num == -1: raise Exception("Wrong number input") for index in range(0, num): element = list() for key, value in kwargs.items(): if key == "int": it = iter(value['datarange']) tmp = random.randint(next(it), next(it)) elif key == "float": it = iter(value['datarange']) tmp = random.uniform(next(it), next(it)) elif key == "str": tmp = ''.join(random.SystemRandom().choice(value['datarange']) for _ in range(value['len'])) else: continue element.append(tmp) result.append(element) return result def example(): result = structDataSampling(num=3, int={"datarange": [1, 100]}, float={"datarange": [1.0, 100.0]}, str={"datarange": ['a', 'b', 'c', 'd', 'e'], "len": 3} ) for i in result: print(i)
wanghan79/2023_Python
2021011593陈俊聪/PythonFinalTest_2021011593cjc/work_1_cjc/RandomDataSampling.py
RandomDataSampling.py
py
1,194
python
en
code
8
github-code
6
30489464890
from .master import Master import numpy as np import poselib import time import math import test_module.linecloud as lineCloudTest import test_module.recontest as recontest import utils.pose.pose_estimation as pe import utils.pose.vector as vector from utils.pose import dataset from utils.pose import line from utils.l2precon import calculate from static import variable np.random.seed(variable.RANDOM_SEED) class OLC(Master): def __init__(self, dataset_path, output_path): self.pts_to_line = dict() self.line_to_pts = dict() self.line_3d = None self.pts_2d_query = None # Images.txt self.pts_3d_query = None # Points3D.txt self.camera_dict_gt = None # cameras.txt self.queryIds = None self.queryNames = None self.image_dict_gt = None self.resultPose = list() self.resultRecon = list() self.map_type = "OLC" self.points_3D_recon = list() self.lines_3D_recon = list() super().__init__(dataset_path, output_path) self.pts_3d_ids = list(self.pts_3d_query.keys()) np.random.shuffle(self.pts_3d_ids) def makeLineCloud(self): print("OLC: Random distribution line cloud") _pts_3d = np.array([v.xyz for v in self.pts_3d_query.values()]) _pts_ids = np.array([k for k in self.pts_3d_query.keys()]) self.points_3D, self.line_3d, self.ind_to_id, self.id_to_ind = line.drawlines_olc(_pts_3d,_pts_ids) for i, k in enumerate(self.pts_3d_query.keys()): self.pts_to_line[k] = self.line_3d[i] self.line_to_pts[i] = k def maskSparsity(self, sparisty_level): new_shape = int(len(self.pts_3d_ids) * sparisty_level) self.sparse_line_3d_ids = set(self.pts_3d_ids[:new_shape]) def matchCorrespondences(self, query_id): connected_pts3d_idx = np.where(self.pts_2d_query[query_id].point3D_ids != -1)[0] connected_pts3d_ids = self.pts_2d_query[query_id].point3D_ids[connected_pts3d_idx] p2 = np.array([self.pts_3d_query[k].xyz for k in connected_pts3d_ids],dtype=np.float64) x1 = np.array(self.pts_2d_query[query_id].xys[connected_pts3d_idx],dtype=np.float64) pts_to_ind = {} for _i, k in enumerate(connected_pts3d_ids): pts_to_ind[k] = _i if self.pts_3d_query[k].xyz[0] != p2[_i][0]: raise Exception("Point to Index Match Error", k) self.valid_pts_3d_ids = self.sparse_line_3d_ids.intersection(set(connected_pts3d_ids)) newIndex = [] _x2 = [] for _pid in self.valid_pts_3d_ids: newIndex.append(pts_to_ind[_pid]) _x2.append(self.pts_to_line[_pid]) if newIndex: newIndex = np.array(newIndex) # p1: 2D Point # x1: 2D Line # p2: 3D Offset # x2: 3D Line self._x1 = x1[newIndex] self._p2 = p2[newIndex] self._x2 = np.array(_x2) else: self._x1 = np.array([]) self._p2 = np.array([]) self._x2 = np.array([]) print("Found correspondences: ", self._x1.shape[0]) def addNoise(self, noise_level): super().addNoise(noise_level) def estimatePose(self, query_id): if self._x1.shape[0] >= 6: gt_img = pe.get_GT_image(query_id, self.pts_2d_query, self.image_dict_gt) cam_id = gt_img.camera_id cam_p6l = [pe.convert_cam(self.camera_dict_gt[cam_id])] res = poselib.estimate_p6l_relative_pose(self._x1, self._p2, self._x2, cam_p6l, cam_p6l, variable.RANSAC_OPTIONS, variable.BUNDLE_OPTIONS, variable.REFINE_OPTION) super().savePoseAccuracy(res, gt_img, cam_p6l[0]) def savePose(self, sparisty_level, noise_level): super().savePose(sparisty_level, noise_level) def saveAllPoseCSV(self): super().saveAllPoseCSV() def recoverPts(self, estimator, sparsity_level, noise_level): print("OLC recover image", "\n") self.sparse_pts_3d_ids =[] self.id_to_ind_recon = {} self.ind_to_id_recon = {} self.points_3D_recon = [] self.lines_3D_recon = [] for i in range(len(self.sparse_line_3d_ids)): _pts_3d_id = self.line_to_pts[i] self.sparse_pts_3d_ids.append(_pts_3d_id) self.points_3D_recon.append(self.pts_3d_query[_pts_3d_id].xyz) self.lines_3D_recon.append(self.pts_to_line[_pts_3d_id]) self.id_to_ind_recon[_pts_3d_id] = i self.ind_to_id_recon[i] = _pts_3d_id self.points_3D_recon = np.array(self.points_3D_recon) self.lines_3D_recon = np.array(self.lines_3D_recon) ref_iter = variable.REFINE_ITER if estimator=='SPF': # No swap ests = calculate.coarse_est_spf(self.points_3D_recon, self.lines_3D_recon) ests_pts = calculate.refine_est_spf(self.points_3D_recon, self.lines_3D_recon, ests, ref_iter) info = [sparsity_level, noise_level, 0, estimator] super().saveReconpoints(ests_pts, info) if estimator=='TPF': print("OLC should't be estimated with TPF") pass def reconTest(self,estimator): #reconTest recontest.recontest_pt_idx([self.points_3D_recon],[self.ind_to_id_recon],self.pts_3d_query) def test(self,recover,esttype): # recon test print("Consistency test for",self.map_type) if recover: self.reconTest(esttype)
Fusroda-h/ppl
domain/olc.py
olc.py
py
5,682
python
en
code
3
github-code
6
31515309886
#!/usr/bin/env python3 """ Machine Translation model with RNN's """ import tensorflow as tf SelfAttention = __import__('1-self_attention').SelfAttention class RNNDecoder(tf.keras.layers.Layer): """ RNN Decoder part of the translation model """ def __init__(self, vocab, embedding, units, batch): """ initialized the variables Arg: - batch: int with the batch size - vocab: int the size of the input vocabulary - embedding: int dimensionality of the embedding vector - units: int the number of hidden units in the RNN cell - batch: int representing the batch size Public instance attributes: - embedding: a keras Embedding layer converts words from the vocabulary into an embedding vector - gru: a keras GRU layer with units units - F: a Dense layer with vocab units """ super(RNNDecoder, self).__init__() self.embedding = tf.keras.layers.Embedding( vocab, embedding) self.gru = tf.keras.layers.GRU( units, recurrent_initializer="glorot_uniform", return_sequences=True, return_state=True) self.F = tf.keras.layers.Dense(vocab) def call(self, x, s_prev, hidden_states): """ Calling the GRU RNN layer to construct the dencoding part of the tranlation model Arg: - x: tensor of shape (batch, 1) containing the previous word in the target sequence as an index of the target vocabulary - s_prev: is a tensor of shape (batch, units) containing the previous decoder hidden state - hidden_states: is a tensor of shape (batch, input_seq_len, units) containing the outputs of the encoder Return: - y: tensor of shape (batch, vocab) with the output word as a one hot vector in the target vocabulary - s: tensor of shape (batch, units) with the new decoder hidden state """ # embedding the input x embedding = self.embedding(x) # self-attention of the inputs per state attention = SelfAttention(s_prev.shape[1]) # get the attention of the inputs context, weights = attention(s_prev, hidden_states) # getting the context per each input, decoder part context = tf.expand_dims(context, axis=1) # concat the context plus the embedding to pass thought the model inputs = tf.concat([embedding, context], -1) decode_outs, state = self.gru(inputs, initial_state=hidden_states[:, -1]) # get the outputs of the RNN attention model y = tf.reshape((decode_outs), [-1, decode_outs.shape[2]]) # reduce the output to the vocab len y = self.F(y) return y, state
macoyulloa/holbertonschool-machine_learning
supervised_learning/0x11-attention/2-rnn_decoder.py
2-rnn_decoder.py
py
2,882
python
en
code
0
github-code
6
36153730574
import boto3 import traceback import datetime import os from botocore.exceptions import ClientError from ..models.bucket import Bucket from ..util.preprocessor import preprocess """ S3 functions """ def get_active_bucket_or_create_new(username): """ Returns the user's current active bucket. If there are no buckets, or all the users buckets are full, a new one will be created first. returns: Bucket object """ try: # queries database for non-full buckets range_cond = Bucket.sort.startswith("BUCKET_") buckets = Bucket.query(hash_key=username, range_key_condition=range_cond) # return existing if not full or create new for buck in buckets: if not buck.full: return buck else: bucket = create_bucket(username) return bucket except Exception as e: traceback.print_exc() response_object = { "status": "failed", "message": "Could not query buckets in DB. {}".format(e), } return response_object, 500 def create_bucket(username, region="eu-central-1"): """ Creates an S3 bucket in S3. Naming format: 'flasktextapi-{ENV}-{USERNAME}-BUCKET{BUCKET_ID}' IMPORTANT: underscores in usernames are converted to dashes. returns: bucket """ # create S3 bucket try: bucket_id = _generate_bucket_id(username) username_conv = username.replace("_", "-") bucket_name = "flasktextapi-{env}-{username}-bucket{id}".format( env=os.getenv("BOILERPLATE_ENV"), username=username_conv, id=bucket_id ) bucket = boto3.resource("s3").Bucket(bucket_name) location = {"LocationConstraint": region} response = bucket.create(CreateBucketConfiguration=location) if response["ResponseMetadata"]["HTTPStatusCode"] == 200: try: db_bucket = _create_db_bucket(username, bucket_id, bucket_name) return db_bucket except Exception: traceback.print_exc() response_object = { "status": "failed", "message": "Bucket created successfully but bucket details could not be stored to database.", } return response_object, 500 else: response_object = {"status": "failed", "message": "could not create bucket"} return response_object, 500 except Exception as e: traceback.print_exc() response_object = { "status": "failed", "message": "Could not create bucket. {}".format(e), } return response_object, 500 def add_file(username, input, bucket_name, id, region="eu-central-1"): """ Adds a text to an S3 bucket. Naming format of file: 'unprocessed_{username}_{text.public_id}' @return: Name of the file as String. """ # check input type if not isinstance(input, str): raise ValueError("Text needs to be a String.") bucket = boto3.resource("s3").Bucket(bucket_name) key = "unprocessed_{id}_{username}".format(id=id, username=username) bucket.put_object(Body=bytes(input, "utf-8"), Key=key) return key def add_preprocessed_file(username, input, bucket_name, id, region="eu-central-1"): """ Adds a text to an S3 bucket. Naming format of file: 'unprocessed_{username}_{text.public_id}' @return: Name of the file as String. """ # check input type if not isinstance(input, str): raise ValueError("Text needs to be a String.") # preprocess input prepr_input = preprocess(input) bucket = boto3.resource("s3").Bucket(bucket_name) key = "preprocessed_{id}_{username}".format(id=id, username=username) bucket.put_object(Body=bytes(prepr_input, "utf-8"), Key=key) return key def get_object(bucket_name, key): """ Fetches an object from S3. returns: String """ s3 = boto3.resource("s3") object = s3.Object(bucket_name, key) return object.get()["Body"].read().decode("utf-8") def delete_objects(username, bucket_id, objects): """ Deletes an object from an s3 bucket. Returns: List of deleted objects """ db_bucket = Bucket.get(hash_key=username, range_key="BUCKET_{}".format(bucket_id)) bucket = boto3.resource("s3").Bucket(db_bucket.bucket_name) delete_dict = {"Objects": [{"Key": name} for name in objects]} response = bucket.delete_objects(Delete=delete_dict) if response["ResponseMetadata"]["HTTPStatusCode"] == 200: deleted_items = [] for item in response["Deleted"]: deleted_items.append(item["Key"]) return deleted_items else: deleted_items = [] return deleted_items """ DB Functions related to S3 """ def _create_db_bucket(username, id, bucket_name): new_bucket = Bucket( username=username, sort="BUCKET_{}".format(id), bucket_name=bucket_name, created_date=datetime.datetime.utcnow(), public_id=id, full=False, ) new_bucket.save() return new_bucket """ Helper functions """ def _generate_bucket_id(username): full_buckets = Bucket.query( hash_key=username, range_key_condition=Bucket.sort.startswith("BUCKET_") ) new_id = 0 for buck in full_buckets: if buck.public_id > new_id: new_id = buck.public_id + 1 return new_id def _bucket_full(bucket_name): bucket = boto3.resource("s3").Bucket(bucket_name) size = sum([object.size for object in bucket.objects.all()]) if size > 4990000000000: return True else: return False
jkausti/flask-textsapi
app/textsapi/service/s3buckets.py
s3buckets.py
py
5,725
python
en
code
1
github-code
6
1004762180
# -*- coding: utf-8 -*- """ Created on Fri Jan 11 20:06:31 2019 @author: saksake """ import numpy as np from sklearn.datasets import load_iris def datasets() : # LOAD BOSTON HOUSING DATASET boston = load_iris() # MAKE FEATURE DICTIONARY all_features = {} for i in range(len(boston.feature_names)): key_ = str(boston.feature_names[i]) key_split = key_.split() key = key_split[0]+'_'+key_split[1] all_features[key] = boston.data[:,i] # ADD TARGET DICTIONARY all_features['species'] = boston.target return all_features def splitdict(feature_dict, train_portion, label_key) : train_feature, train_label = {}, {} key = list(feature_dict.keys()) ndata = len(feature_dict[key[0]]) train_n = int(ndata*train_portion) idxs = np.array(range(ndata)) np.random.shuffle(idxs) train_idx = idxs[:train_n] test_idx = idxs[train_n:] for key in feature_dict : if key == label_key : train_label[key] = {} train_label[key] = np.array(feature_dict[key])[train_idx] else : train_feature[key] = {} train_feature[key] = np.array(feature_dict[key])[train_idx] test_feature, test_label = {}, {} for key in feature_dict : if key == label_key : test_label[key] = {} test_label[key] = np.array(feature_dict[key])[test_idx] else : test_feature[key] = {} test_feature[key] = np.array(feature_dict[key])[test_idx] return train_feature, train_label, test_feature, test_label use_feature_name = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'] name_columns_category = [] name_columns_bucket = [] name_columns_numeric = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] label_key ='species' train_portion = 0.6 all_features = datasets() for key in all_features: print("'{:}',".format(key)) # CHOOSE INTEREST FEATURES FROM ALL FEATURES used_features = {} for key in all_features: if key in use_feature_name : used_features[key] = all_features[key] inp_train_feature, inp_train_label, inp_test_feature, inp_test_label = splitdict(feature_dict = used_features, train_portion = train_portion, label_key = label_key) import tensorflow as tf # MAKE INPUT FUNCTION # TRAIN DATA input_fn_train = tf.estimator.inputs.numpy_input_fn( x = inp_train_feature, y = inp_train_label[label_key], shuffle=True, batch_size=128, num_epochs=None ) # TEST DATA input_fn_test = tf.estimator.inputs.numpy_input_fn( x = inp_test_feature, y = inp_test_label[label_key], shuffle=False, batch_size=128, num_epochs=1 ) # Define feature columns. feature_columns_numeric, feature_columns_category, feature_columns_bucket = [], [], [] for key in inp_train_feature : # Define numeric feature columns. if key in name_columns_numeric : feature_columns_numeric.append(tf.feature_column.numeric_column(key)) # Define categorycal feature columns. elif key in name_columns_category : uniq = (np.unique(inp_train_feature[key])).tolist() cat_column = tf.feature_column.categorical_column_with_vocabulary_list(key = key, vocabulary_list = uniq) embed_column = tf.feature_column.embedding_column( categorical_column=cat_column, dimension=len(uniq) ) feature_columns_category.append(embed_column) # Define bucket feature columns. elif key in name_columns_bucket : numeric_column = tf.feature_column.numeric_column(key) # make bucket boundaries arr = np.linspace(min(inp_train_feature[key]), max(inp_train_feature[key]), 1000) n_bucket = 3 q = 1./(n_bucket+1.) boundaries = [] for i in range(n_bucket): boundaries.append(int(np.quantile(arr, q*(i+1)))) # Then, bucketize the numeric column on the years 1960, 1980, and 2000. bucketized_feature_column = tf.feature_column.bucketized_column( source_column = numeric_column, boundaries = boundaries) feature_columns_bucket.append(bucketized_feature_column) feature_columns = feature_columns_numeric + feature_columns_category + feature_columns_bucket # DEFINE ESTIMATOR estimator= tf.estimator.DNNClassifier( feature_columns = feature_columns, # Two hidden layers hidden_units=[512, 256], optimizer='Adagrad', #'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD' activation_fn=tf.nn.relu, # relu. tanh, sigmoid n_classes = len(np.unique(inp_train_label[label_key])), # Model directory model_dir = 'Iris') # TRAIN MODEL estimator.train(input_fn=input_fn_train, steps=5000) # EVALUATE MODEL print('-------------------------------------') evaluate = estimator.evaluate(input_fn = input_fn_test) print('-------------------------------------') # PREDICT pred = list(estimator.predict(input_fn = input_fn_test)) # VISUALIZE TESTING DAN PREDICTED y_prob = [x['probabilities'] for x in pred] y_pred = np.asarray([np.argmax(x) for x in y_prob]) y_real = inp_test_label[label_key] ntrue = len(np.where(y_pred == y_real)[0]) acc = ntrue/float(len(y_real)) print('Accuracy = {:}'.format(acc))
rofiqq/Machine-Learning
High_API/classifier/iris/iris.py
iris.py
py
5,883
python
en
code
0
github-code
6
1197619153
""" 13. ​ Write a Python program that accepts a comma separated sequence of words as input and prints the unique words in sorted form (alphanumerically). """ def sort_comma_seperated_words(sentence): if not sentence.__contains__(","): raise Exception("Only Comma Separated sentences is Accepted!") slitted_list = sentence.split(",") slitted_list.sort() return slitted_list if __name__ == '__main__': try: print(sort_comma_seperated_words("hello should throw error")) except Exception as e: print(e)
asmitbhantana/Insight-Workshop
PythonProgrammingAssignmentsI/Data Types/q13.py
q13.py
py
553
python
en
code
0
github-code
6
8625677438
import numpy as np import copy import random import math value_points = { 'J' : 11, 'Q' : 12, 'K' : 13, 'A' : 14} hh_dict = { 'straight_flush' : 9, 'four_of_a_kind' : 8, 'full_house' : 7, 'flush' : 6, 'straight' : 5, 'three_of_a_kind' : 4, 'two_pair' : 3, 'pair' : 2, 'high_card' : 1} #Takes list of 5 Card objects and returns #a 6 element list, where the first element is the hand hierarchy #(straight_flush = 9, high_card=1) and the subsequent five elements #are the numerical card ranks (A=14, K=13, etc.), "double-sorted" #by kind (set, pair, etc.) then by rank. For example, the hand #[(2, C), (K, C), (3, S), (2, D), (K, H)] gets translated to: #[3, 13, 13, 2, 2, 3]. def hand_strength(hand): #Break down hand into sub-lists of values, suits, and frequencies #Create list of ranks values_list = [x.rank for x in hand] #Create sorted values list sl = list(sorted(values_list)) #Create list of suits suits_list = [x.suit for x in hand] #Create list of unique values uvalues_list = list(set(values_list)) #Create dict of {value : frequency} val_freq_dict = {} for x in uvalues_list: val_freq_dict[x] = values_list.count(x) #Create list of (frequency, value) tuples. freq_list = [] for x in values_list: freq_list.append(val_freq_dict.get(x)) freq_val_list = zip(freq_list, values_list) freq_val_sorted = sorted(freq_val_list, reverse=True) val_sorted = [x[1] for x in freq_val_sorted] #Determine hand hierarchy if 2 in freq_list: if len(uvalues_list) == 4: hh = 'pair' elif len(uvalues_list) == 3: hh = 'two_pair' else: hh = 'full_house' elif 3 in freq_list: hh = 'three_of_a_kind' elif len(set(suits_list)) == 1: hh = 'flush' elif sl[0] == sl[1] - 1 == sl[2] - 2 == sl[3] - 3 == sl[4] - 4 or sl == [2, 3, 4, 5, 14]: hh = 'straight' elif len(uvalues_list) == 5: hh = 'high_card' elif 4 in freq_list: hh = 'four_of_a_kind' else: hh = 'straight_flush' hh = hh_dict.get(hh) #Generate list representing full strength of hand. #hh will be at index 0, followed by the ordered values. hand_strength = val_sorted[:] hand_strength.insert(0, hh) return hand_strength #Takes list of 7 cards (hole cards + community cards) #and returns the list of 21 unique 5-card permutations. def permuts(hand): permutsl = [] #I know this is not the Pythonic way... (though it should be fast) permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[3]] + [hand[4]]) #1 permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[3]] + [hand[5]]) #2 permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[3]] + [hand[6]]) #3 permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[4]] + [hand[5]]) #4 permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[4]] + [hand[6]]) #5 permutsl.append([hand[0]] + [hand[1]] + [hand[2]] + [hand[5]] + [hand[6]]) #6 permutsl.append([hand[0]] + [hand[1]] + [hand[3]] + [hand[4]] + [hand[5]]) #7 permutsl.append([hand[0]] + [hand[1]] + [hand[3]] + [hand[4]] + [hand[6]]) #8 permutsl.append([hand[0]] + [hand[1]] + [hand[3]] + [hand[5]] + [hand[6]]) #9 permutsl.append([hand[0]] + [hand[1]] + [hand[4]] + [hand[5]] + [hand[6]]) #10 permutsl.append([hand[0]] + [hand[2]] + [hand[3]] + [hand[4]] + [hand[5]]) #11 permutsl.append([hand[0]] + [hand[2]] + [hand[3]] + [hand[4]] + [hand[6]]) #12 permutsl.append([hand[0]] + [hand[2]] + [hand[3]] + [hand[5]] + [hand[6]]) #13 permutsl.append([hand[0]] + [hand[2]] + [hand[4]] + [hand[5]] + [hand[6]]) #14 permutsl.append([hand[0]] + [hand[3]] + [hand[4]] + [hand[5]] + [hand[6]]) #15 permutsl.append([hand[1]] + [hand[2]] + [hand[3]] + [hand[4]] + [hand[5]]) #16 permutsl.append([hand[1]] + [hand[2]] + [hand[3]] + [hand[4]] + [hand[6]]) #17 permutsl.append([hand[1]] + [hand[2]] + [hand[3]] + [hand[5]] + [hand[6]]) #18 permutsl.append([hand[1]] + [hand[2]] + [hand[4]] + [hand[5]] + [hand[6]]) #19 permutsl.append([hand[1]] + [hand[3]] + [hand[4]] + [hand[5]] + [hand[6]]) #20 permutsl.append([hand[2]] + [hand[3]] + [hand[4]] + [hand[5]] + [hand[6]]) #21 return permutsl #Takes list of 6-element 'hand-strength' lists #and returns the index of the strongest hand. #Should only be used in combination with other functions def adjudicate(hands): index = 0 multiplier = 100 search = True while search: #Start with empty array; clear the array for subsequent loops array = [] #Populate array with the 1st value of each 'hand-strength' list. #The first value will be the int designating the hand hierarchy #The multiplier is used to magnify the hierarchy code so that #it outweighs any subsequent values when we take running sum. for i in hands: array.append(i[index]) i[index] = i[index]*multiplier #Set the multiplier to 1 so that the subsequent elements in the list #are not magnified. (Only want to magnify the hierarchy code.) multiplier = 1 #Test whether there is a unique max. If so, stop and declare index #of strongest hand array_max = max(array) if array.count(array_max) == 1: position = array.index(array_max) search = False #Test whether we have exhausted the list, in which case multiple hands #are tied. If so, stop and declare the index of the 1st tied best hand elif index + 1 == len(hands[0]): position = array.index(array_max) search = False #Note: This is valid for adjudicating among permutations for a given player, #but NOT for determining a winning hand across players (in that case, should be a tie) #Need to build in this functionality! #If both tests fail, increment the index to compare the next element #(card). Instead of comparing the next element per se, we will compare #the cumulative running sum of elements evaluated so far. The purpose #of this is to take into account the hierarchy & preceding cards, #rather than comparing each card on its own else: index += 1 for i in hands: i[index] += i[index-1] return position #Takes list of 7 cards (hole cards + community cards) #and returns the hand that should be played (best hand) def hand_to_play(seven_cards): #Generate list of all 21 possible 5-card hands permuts_list = permuts(seven_cards) #Convert each 5-card hand into 'hand-strength' code hand_strength_list = [] for hand in permuts_list: hand_strength_list.append(hand_strength(hand)) #Generate index of the hand to play index = adjudicate(hand_strength_list) #Return best hand return permuts_list[index] #Takes multiple 5-card hands and returns the best hand. #Note that the argument is a list of lists of 2-tuples def declare_winner(all_hands): #Convert each hand to 'hand-strength' code hand_strength_list = [] for hand in all_hands: hand_strength_list.append(hand_strength(hand)) #Generate index of the hand to play index = adjudicate(hand_strength_list) #Return best hand return all_hands[index] #Need to write this so that it permits ties... def declare_winner_dict(all_hands): #Convert each hand to 'hand-strength' code and pull out players into list hand_strength_list = [] players_list = [] for hand in all_hands: players_list.append(hand) hand_strength_list.append(hand_strength(all_hands[hand])) #Generate index of the best hand index = adjudicate(hand_strength_list) #Return winning player return players_list[index]
bspringw/poker
poker_functions.py
poker_functions.py
py
7,314
python
en
code
0
github-code
6
24506033331
from nose.tools import eq_ from mock import patch, Mock, sentinel from noderunner.process import open_process @patch("subprocess.Popen", return_value=sentinel.proc) def test_open_process(p): ret = open_process(sentinel.fd, sentinel.secret, nodepath=sentinel.node_path) eq_(ret, sentinel.proc) p.assert_called_once()
williamhogman/noderunner
tests/test_process.py
test_process.py
py
379
python
en
code
6
github-code
6
6827552389
""" https://adventofcode.com/2020/day/10 """ from typing import Dict, List from collections import defaultdict Adapters = List[int] def part1(adapters: Adapters) -> int: """ O(nLogn) solution """ jolts = 0 diffs: Dict[int, int] = defaultdict(int) for adapter in sorted(adapters): diffs[adapter - jolts] += 1 jolts = adapter return diffs[1] * (diffs[3] + 1) def part2(adapters: Adapters) -> int: """ O(nLogn) solution """ adapters = sorted(adapters) adapters = [0] + adapters + [max(adapters)+3] paths = {adapters[0]: 1} for x in adapters[1:]: paths[x] = sum(paths[x - y] for y in range(1, 4) if x - y in paths) return paths[adapters[-1]] if __name__ == "__main__": TEST1 = [int(line.strip()) for line in open("tests/d10.txt", "r")] TEST2 = [int(line.strip()) for line in open("tests/d10_2.txt", "r")] PUZZLE = [int(line.strip()) for line in open("puzzles/d10.txt", "r")] assert part1(TEST1) == 35 assert part1(TEST2) == 220 assert part2(TEST1) == 8 assert part2(TEST2) == 19208 print(f"Part 1: {part1(PUZZLE)}") print(f"Part 2: {part2(PUZZLE)}")
pozhega/AoC
2020/d10.py
d10.py
py
1,164
python
en
code
0
github-code
6
6854075721
from flask import Flask,request,render_template,redirect, url_for from flask import jsonify import requests from cassandra.cluster import Cluster from collections import OrderedDict app = Flask(__name__) KEYSPACE = "twitterkeyspace" @app.route('/', methods=['GET']) def home(): if request.method == 'GET': return render_template('lab.html',flag=0) # Lab Query 1 @app.route('/labquery1', methods=['GET','POST']) def labquery1(): if request.method == 'GET': return render_template('lab.html',flag=0) elif request.method == 'POST': date = request.form['date1'] # print (date) # Connecting cassandra session cluster = Cluster(['127.0.0.1']) session = cluster.connect() session.default_timeout = 60 session.set_keyspace(KEYSPACE) query = "SELECT author_id FROM tweet_table1 WHERE date = '{}'".format(date) rows = session.execute(query) session.execute("DROP TABLE IF EXISTS tweet_table_author_frequency") session.execute(""" CREATE TABLE tweet_table_author_frequency ( author_id text, frequency counter, PRIMARY KEY (author_id) ) """) for row in rows: if row.author_id: query = "UPDATE tweet_table_author_frequency SET frequency = frequency + 1 WHERE author_id = '{}'".format(row.author_id) session.execute(query) rows = session.execute("SELECT * FROM tweet_table_author_frequency") pop = {} for row in rows: pop.update({row.author_id : row.frequency}) res = sorted(pop,key=pop.get,reverse=True) result = [] k = 0 for r in res: temp = [] temp.append(date) temp.append(r) temp.append(pop[r]) result.append(temp) k += 1 print (temp) return render_template('lab.html',result=result,count=k,flag=1) # Lab Query 2 @app.route('/labquery2', methods=['GET','POST']) def labquery2(): if request.method == 'GET': return render_template('lab.html',flag=0) elif request.method == 'POST': date = request.form['date2'] # print (date) # Connecting cassandra session cluster = Cluster(['127.0.0.1']) session = cluster.connect() session.default_timeout = 60 session.set_keyspace(KEYSPACE) query = "SELECT hashtag, location FROM tweet_table2 WHERE date = '{}'".format(date) rows = session.execute(query) session.execute("DROP TABLE IF EXISTS tweet_table_hashtag_location") session.execute(""" CREATE TABLE tweet_table_hashtag_location ( hashtag text, location text, frequency counter, PRIMARY KEY ((hashtag,location)) ) """) for row in rows: if row.hashtag and row.location: print (row.hashtag,row.location) query = "UPDATE tweet_table_hashtag_location SET frequency = frequency + 1 WHERE hashtag = '{}'".format(row.hashtag) + "AND location = '{}'".format(row.location) session.execute(query) rows = session.execute("SELECT * FROM tweet_table_hashtag_location") pop = {} for row in rows: pop.update({(row.hashtag,row.location) : row.frequency}) res = sorted(pop,key=pop.get,reverse=True) result = [] k = 0 for r in res: temp = [] temp.append(date) temp.append(r[0]) temp.append(r[1]) temp.append(pop[r]) result.append(temp) print (temp) k += 1 return render_template('lab.html',result=result,count=k,flag=2) else: return render_template('lab.html',flag=0) if __name__ == '__main__': app.run(host='127.0.0.1',port=5000,debug=True)
piyush-jain1/Databases
Cassandra/Assignment2/app.py
app.py
py
3,427
python
en
code
0
github-code
6
22049716249
from os import name import sys import requests import time import threading sys.path.append('../') from DeskFoodModels.DeskFoodLib import Item, OrderStatus, Order from PyQt5.uic import loadUi from PyQt5 import QtWidgets from PyQt5.QtWidgets import QCheckBox, QComboBox, QDialog, QApplication, QListWidget, QMenu, QPushButton, QStackedWidget, QTextBrowser, QWidget from urllib.request import urlopen import json from DeskFoodModels import firebaseAuth #---Global Variables---# #orderID = "" #order = Order() userID = "" #--------------------Login Window-------------------- class loginScreen(QDialog): def __init__(self): #TODO if login info is wrong, maybe raise an error message super(loginScreen, self).__init__() loadUi("Login.ui", self) self.loginButton.clicked.connect(self.login) self.registerButton.clicked.connect(self.register) self.passwordEdit.setEchoMode(QtWidgets.QLineEdit.Password) def login(self): self.username = self.emailEdit.text() self.password = self.passwordEdit.text() self.user = firebaseAuth.login(self.username, self.password) global userID userID =self.user["localId"] if self.user: #BUG: If a user types admin with a capital letter, it will take them to the customer or runner screen instead of the kitchen menu if(self.username == "[email protected]"): self.acceptadmin() else: self.accept() else: self.emailEdit.setText("") self.passwordEdit.setText("") self.emailEdit.setFocus() #self.errorLabel.setText("Invalid username or password") def register(self): kScreen = registerScreen() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def accept(self): kScreen = customerORRunner() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def acceptadmin(self): kScreen = kitchenMenu() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Register Window-------------------- class registerScreen(QDialog): def __init__(self): super(registerScreen, self).__init__() loadUi("SignUp.ui", self) self.registerButton.clicked.connect(self.register) self.registerButton.setEnabled(False) self.passwordEdit.setEchoMode(QtWidgets.QLineEdit.Password) self.passwordConfirmEdit.setEchoMode(QtWidgets.QLineEdit.Password) self.termsAndConditionsRadioButton.toggled.connect(self.enableRegisterButton) def register(self): self.username = self.userNameEdit.text() self.password = self.passwordEdit.text() self.passwordConfirm = self.passwordConfirmEdit.text() self.email = self.emailEdit.text() if self.username != "" and self.password != "" and self.passwordConfirm != "": if self.password == self.passwordConfirm: self.user = firebaseAuth.register(self.email, self.password, self.username) if self.user: global userID userID = self.user["localId"] self.accept() self.passwordEdit.setText("") self.passwordConfirmEdit.setText("") self.userNameEdit.setFocus() #self.errorLabel.setText("Invalid username or password") def enableRegisterButton(self): if self.termsAndConditionsRadioButton.isChecked(): self.registerButton.setEnabled(True) else: self.registerButton.setEnabled(False) def accept(self): kScreen = customerORRunner() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Customer or Runner Window--------------- class customerORRunner(QDialog): def __init__(self): super(customerORRunner, self).__init__() loadUi("customerORrunner.ui", self) self.customerBTN.clicked.connect(self.customer) self.runnerBTN.clicked.connect(self.runner) def customer(self): kScreen = orderWindow() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def runner(self): kScreen = RunnerPickOrder() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Runner Pick Orders Window-------------------- class RunnerPickOrder(QDialog): def __init__(self): super(RunnerPickOrder, self).__init__() loadUi("RunnerPickOrder.ui", self) self.loadOrders() self.returnBTN.clicked.connect(self.goBack) self.orderList.itemDoubleClicked.connect(self.orderDetails) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def loadOrders(self): # parameter for urlopen url = "http://127.0.0.1:8000/Orders/Status/Ready" # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) # Clear orderList self.orderList.clear() # iterate over the data and append the id of the orders to a list for i in range(len(data_json)): self.orderList.addItem(data_json[i]['order_id']) def orderDetails(self): # Switch to the order details window kScreen = RunnerOrderDetails(orderID=self.orderList.currentItem().text()) widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Runner Order Details Window-------------------- class RunnerOrderDetails(QDialog): def __init__(self, orderID): super(RunnerOrderDetails, self).__init__() loadUi("RunnerOrderDetails.ui", self) self.returnBTN.clicked.connect(self.goBack) self.setCustomer(orderID) self.setOrder(orderID) self.setOrderItems(orderID) self.setDeliveryLocation(orderID) self.setOrderStatus(orderID) self.setOrderTotal(orderID) self.setOrderInstructions(orderID) self.statusButton.clicked.connect(self.changeStatusToEnRoute) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) # Set the customer label to the userID of the order def setCustomer(self, orderID): # parameter for urlopen url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/UserID" response = urlopen(url) userID = json.loads(response.read()) self.customerIDLabel.setText(userID) # Set the order label to the orderID of the order def setOrder(self, orderID): self.orderIDLabel.setText(orderID) # Populate the items list with the items in the order def setOrderItems(self, orderID): # parameter for urlopen url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Items" response = urlopen(url) data_json = json.loads(response.read()) self.itemsList.addItems(data_json) # Set the delivery location label to the delivery location of the order def setDeliveryLocation(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/DeliveryLocation" response = urlopen(url) data_json = json.loads(response.read()) self.deliveryLocationLabel.setText(data_json) # Set the order status label to the order status of the order def setOrderStatus(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Status" response = urlopen(url) data_json = json.loads(response.read()) self.orderStatusLabel.setText(data_json) # Set the order total label to the order total of the order def setOrderTotal(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Total" response = urlopen(url) data_json = json.loads(response.read()) self.orderTotalLabel.setText("$" + str(data_json)) # Set the order instructions label to the order instructions of the order def setOrderInstructions(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Instructions" response = urlopen(url) data_json = json.loads(response.read()) self.orderInstructionsLabel.setText(data_json) def changeStatusToEnRoute(self): orderID = self.orderIDLabel.text() #Update the order status to en route r = requests.put("http://localhost:8000/Orders/" + orderID + "/Status" + "?status=" + OrderStatus.ON_THE_WAY.value) #Update the order RunnerID to the current runner r = requests.put("http://localhost:8000/Orders/" + orderID + "/RunnerID" + "?runnerId=" + userID) self.setOrderStatus(orderID) self.statusButton.setText("Confirm Delivery") self.statusButton.clicked.connect(self.changeStatusToDelivered) def changeStatusToDelivered(self): orderID = self.orderIDLabel.text() #Update the order status to delivered r = requests.put("http://localhost:8000/Orders/" + orderID + "/Status" + "?status=" + OrderStatus.DELIVERED.value) self.setOrderStatus(orderID) #Switch back to the RunnerPickOrder window widget.setCurrentIndex(widget.currentIndex() - 1) widget.currentWidget().loadOrders() widget.removeWidget(self) #--------------------Order Window---------------------------- class orderWindow(QDialog): def __init__(self): super(orderWindow, self).__init__() loadUi("Order.ui", self) self.subtotalText.setText("0") self.loadKitchens() self.kitchensList.itemDoubleClicked.connect(self.loadMenu) self.returnBTN.clicked.connect(self.goBack) self.menuList.itemDoubleClicked.connect(self.addToOrder) self.finishBTN.clicked.connect(self.finish) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def loadKitchens(self): # parameter for urlopen url = "http://127.0.0.1:8000/Kitchens" # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) self.kitchensList.addItems(data_json) def loadMenu(self): nameOfKitchen = self.kitchensList.currentItem().text() # parameter for urlopen url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) self.menuList.clear() myArray = data_json.keys() for val in myArray: if (data_json[val]["Available"]): self.menuList.addItem(str(val) + ": $" + "%0.2f" % float(data_json[val]["Price"])) def addToOrder(self): itemToAdd = self.menuList.currentItem().text() temp = itemToAdd.split(':') itemToAdd2 = temp[0] self.orderList.addItem(itemToAdd2) subtotal = float(self.subtotalText.toPlainText()) temp2 = itemToAdd.split('$') subtotal2 = float(temp2[1]) subtotal = round(subtotal + subtotal2, 2) self.subtotalText.setText( "%0.2f" % subtotal ) tax = round(subtotal * .08, 2) self.taxText.setText( "%0.2f" % tax) subtotal = float(self.subtotalText.toPlainText()) self.totalText.setText( "%0.2f" % round(tax + subtotal, 2) ) def finish(self): kScreen = OrderConfirmaiton(self.orderList, self.totalText.toPlainText()) widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Order Confirmation Window---------------------------- class OrderConfirmaiton(QDialog): def __init__(self, orderList, total): super(OrderConfirmaiton, self).__init__() loadUi("OrderConfirmation.ui", self) self.returnBTN.clicked.connect(self.goBack) self.ConfirmBTN.clicked.connect(self.finish) for i in range(orderList.count()): self.orderItemList.addItem(orderList.item(i).text()) self.TotalField.setText(total) self.DeliveryLocation.returnPressed.connect(self.enableConfirmButton) # The Button should not be enabled until the user has entered their location self.ConfirmBTN.setEnabled(False) #Method to enable the confirm button def enableConfirmButton(self): # Check if the location is empty if self.DeliveryLocation.text() != "": self.ConfirmBTN.setEnabled(True) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def finish(self): orderItems = [] for i in range(self.orderItemList.count()): orderItems.append(self.orderItemList.item(i).text()) order = Order( user_id = userID, delivery_location = self.DeliveryLocation.text(), items = orderItems, total = self.TotalField.text(), instructions = self.Instructions.text() ) kScreen = paymentWindow(order) widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Payment Window-------------------- class paymentWindow(QDialog): def __init__(self, order): super(paymentWindow, self).__init__() loadUi("Payment.ui", self) self.setWindowTitle("Payment") self.studentID.setHidden(True) self.returnBTN.clicked.connect(self.goBack) self.studentIDCheck.clicked.connect(self.clickSID) self.debitcreditCheck.clicked.connect(self.clickDCC) # Don't know why this works but stack overflow says it does self.finishBTN.clicked.connect(lambda: self.finish(order)) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def clickSID(self): self.studentIDCheck.setChecked(1) self.debitcreditCheck.setChecked(0) self.fullName.setHidden(True) self.ccNumber.setHidden(True) self.expDate.setHidden(True) self.CVV.setHidden(True) self.nameInput.setHidden(True) self.dccInput.setHidden(True) self.expInput.setHidden(True) self.cvvInput.setHidden(True) self.studentID.setHidden(False) self.idInput.setHidden(False) def clickDCC(self): self.studentIDCheck.setChecked(0) self.debitcreditCheck.setChecked(1) self.studentID.setHidden(True) self.idInput.setHidden(True) self.fullName.setHidden(False) self.ccNumber.setHidden(False) self.expDate.setHidden(False) self.CVV.setHidden(False) self.nameInput.setHidden(False) self.dccInput.setHidden(False) self.expInput.setHidden(False) self.cvvInput.setHidden(False) def finish(self, order): #Stores the orderID that's created in the database r = requests.post("http://127.0.0.1:8000/CreateNewOrder", order.json()) print(r.text) kScreen = statusWindow() widget.addWidget(kScreen) kScreen.textOrderID.setText(r.text) kScreen.textOrderID.hide() widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Order Status Window-------------------- class statusWindow(QDialog): def __init__(self): self.x = 1 super(statusWindow, self).__init__() loadUi("OrderStatus.ui", self) self.setWindowTitle("Order Status") threading.Thread(target=self.update, daemon=True).start() #self.homeBTN.clicked.connect(self.home) def update(self): print("Updating Order Status") self.orderStatus() time.sleep(1) if(self.x == 1): self.update() def orderStatus(self): # print("This is what we're getting" + orderID) #NOTE: This is a bit of a hack, idk why the orderID keeps the " " around it url = "http://127.0.0.1:8000/Orders/" + self.textOrderID.toPlainText().replace('"', "") + "/Status" #url = "http://127.0.0.1:8000/Orders/" + "-Mpr0leituNsBbqY2CDq" + "/Status" response = urlopen(url) data_json = json.loads(response.read()) if (data_json == OrderStatus.PENDING.value): self.statusLBL.setText("Order is pending!") elif (data_json == OrderStatus.PREPARING.value): self.statusLBL.setText("Preparing the order!") elif (data_json == OrderStatus.COOKING.value): self.statusLBL.setText("Cooking Order!") elif (data_json == OrderStatus.READY.value): self.statusLBL.setText("Order is ready!") elif (data_json == OrderStatus.ON_THE_WAY.value): self.statusLBL.setText("Order is on the way!") elif (data_json == OrderStatus.DELIVERED.value): self.statusLBL.setText("Order is delivered!") else: self.statusLBL.setText("Something went wrong!") """def home(self): kScreen = orderWindow() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1)""" #--------------------Select Option Window-------------------- class kitchenMenu(QDialog): def __init__(self): super(kitchenMenu, self).__init__() loadUi("KitchenMenu.ui", self) self.AddItemBTN.clicked.connect(self.addItem) self.updatePriceBTN.clicked.connect(self.updatePrice) self.updateAvailabilityBTN.clicked.connect(self.updateAvailability) self.viewKitchensBTN.clicked.connect(self.viewKitchens) self.RemoveItemBTN.clicked.connect(self.removeItem) self.orderDetailsBTN.clicked.connect(self.viewOrders) def addItem(self): kScreen = kitchenAddItem() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def updatePrice(self): kScreen = kitchenUpdatePrice() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def updateAvailability(self): kScreen = kitchenUpdateAvailability() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def viewKitchens(self): kScreen = KitchensScreen() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def removeItem(self): kScreen = KitchenRemoveItem() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) def viewOrders(self): kScreen = KitchenSeeOrders() widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Kitchens See orders window-------------------- class KitchenSeeOrders(QDialog): def __init__(self): super(KitchenSeeOrders, self).__init__() loadUi("KitchenOrderDetails.ui", self) self.loadOrders() self.returnBTN.clicked.connect(self.goBack) self.orderList.itemDoubleClicked.connect(self.orderDetails) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def loadOrders(self): # parameter for urlopen url = "http://127.0.0.1:8000/Orders/Status/Pending" # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) # Clear orderList self.orderList.clear() # iterate over the data and append the id of the orders to a list for i in range(len(data_json)): self.orderList.addItem(data_json[i]['order_id']) def orderDetails(self): # Switch to the order details window kScreen = KitchenSeeOrdersDetails(orderID=self.orderList.currentItem().text()) widget.addWidget(kScreen) widget.setCurrentIndex(widget.currentIndex() + 1) #--------------------Expanded Kitchens order details window-------------------- class KitchenSeeOrdersDetails(QDialog): def __init__(self, orderID): super(KitchenSeeOrdersDetails, self).__init__() loadUi("OrderDetail.ui", self) self.setCustomer(orderID) self.setOrder(orderID) self.setOrderItems(orderID) self.setDeliveryLocation(orderID) self.setOrderStatus(orderID) self.setOrderTotal(orderID) self.setOrderInstructions(orderID) self.statusButton.clicked.connect(self.changeStatusToCooking) # Set the customer label to the userID of the order def setCustomer(self, orderID): # parameter for urlopen url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/UserID" response = urlopen(url) userID = json.loads(response.read()) self.customerIDLabel.setText(userID) # Set the order label to the orderID of the order def setOrder(self, orderID): self.orderIDLabel.setText(orderID) # Populate the items list with the items in the order def setOrderItems(self, orderID): # parameter for urlopen url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Items" response = urlopen(url) data_json = json.loads(response.read()) self.itemsList.addItems(data_json) # Set the delivery location label to the delivery location of the order def setDeliveryLocation(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/DeliveryLocation" response = urlopen(url) data_json = json.loads(response.read()) self.deliveryLocationLabel.setText(data_json) # Set the order status label to the order status of the order def setOrderStatus(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Status" response = urlopen(url) data_json = json.loads(response.read()) self.orderStatusLabel.setText(data_json) # Set the order total label to the order total of the order def setOrderTotal(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Total" response = urlopen(url) data_json = json.loads(response.read()) self.orderTotalLabel.setText(str(data_json)) # Set the order instructions label to the order instructions of the order def setOrderInstructions(self, orderID): url = "http://127.0.0.1:8000/Orders" + "/" + orderID + "/Instructions" response = urlopen(url) data_json = json.loads(response.read()) self.orderInstructionsLabel.setText(data_json) def changeStatusToCooking(self): orderID = self.orderIDLabel.text() #Update the order status to cooking r = requests.put("http://localhost:8000/Orders/" + orderID + "/Status" + "?status=" + OrderStatus.COOKING.value) self.setOrderStatus(orderID) self.statusButton.setText("Complete Order") self.statusButton.clicked.connect(self.completeOrder) def completeOrder(self): orderID = self.orderIDLabel.text() #Update the order status to complete r = requests.put("http://localhost:8000/Orders/" + orderID + "/Status" + "?status=" + OrderStatus.READY.value) self.setOrderStatus(orderID) #Switch back to the kitchenorders window widget.setCurrentIndex(widget.currentIndex() - 1) widget.currentWidget().loadOrders() widget.removeWidget(self) #--------------------Kitchens Add Item Window-------------------- class kitchenAddItem(QDialog): def __init__(self): super(kitchenAddItem, self).__init__() loadUi("KitchenAddItem.ui", self) self.returnBTN.clicked.connect(self.goBack) self.freshensCheck.clicked.connect(self.unclickF) self.deliCheck.clicked.connect(self.unclickD) self.pizzaCheck.clicked.connect(self.unclickP) self.burgerCheck.clicked.connect(self.unclickB) self.marketCheck.clicked.connect(self.unclickM) self.finishBTN.clicked.connect(self.finish) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def unclickF(self): self.freshensCheck.setChecked(1) self.deliCheck.setChecked(0) self.pizzaCheck.setChecked(0) self.burgerCheck.setChecked(0) self.marketCheck.setChecked(0) def unclickD(self): self.freshensCheck.setChecked(0) self.deliCheck.setChecked(1) self.pizzaCheck.setChecked(0) self.burgerCheck.setChecked(0) self.marketCheck.setChecked(0) def unclickP(self): self.freshensCheck.setChecked(0) self.deliCheck.setChecked(0) self.pizzaCheck.setChecked(1) self.burgerCheck.setChecked(0) self.marketCheck.setChecked(0) def unclickB(self): self.freshensCheck.setChecked(0) self.deliCheck.setChecked(0) self.pizzaCheck.setChecked(0) self.burgerCheck.setChecked(1) self.marketCheck.setChecked(0) def unclickM(self): self.freshensCheck.setChecked(0) self.deliCheck.setChecked(0) self.pizzaCheck.setChecked(0) self.burgerCheck.setChecked(0) self.marketCheck.setChecked(1) def finish(self): if(len(self.textName.toPlainText()) > 0): if(len(self.textCost.toPlainText()) > 0): if((self.freshensCheck.checkState()) or (self.deliCheck.checkState()) or (self.pizzaCheck.checkState()) or (self.burgerCheck.checkState()) or self.marketCheck.checkState()): available = False if(self.checkBox.checkState()): available = True if(self.freshensCheck.checkState()): mykitchen = "Freshens" if(self.deliCheck.checkState()): mykitchen = "Deli" if(self.pizzaCheck.checkState()): mykitchen = "Pizza" if(self.burgerCheck.checkState()): mykitchen = "Burgers" if(self.marketCheck.checkState()): mykitchen = "Market" item = Item(name = self.textName.toPlainText(), price = self.textCost.toPlainText(), available = available) r = requests.put("http://localhost:8000/AddToMenu/" + mykitchen, item.json()) self.textName.setText("") self.textCost.setText("") self.textDecription.setText("") self.checkBox.setChecked(0) self.freshensCheck.setChecked(0) self.deliCheck.setChecked(0) self.pizzaCheck.setChecked(0) self.burgerCheck.setChecked(0) self.marketCheck.setChecked(0) #--------------------Kitchens Remove Item Window-------------------- class KitchenRemoveItem(QDialog): def __init__(self): super(KitchenRemoveItem, self).__init__() loadUi("KitchenRemoveItem.ui", self) self.ReturnButton.clicked.connect(self.goBack) self.ConfirmButton.clicked.connect(self.RemoveItem) self.fillBTN.clicked.connect(self.fillItems) url = "http://127.0.0.1:8000/Kitchens" response = urlopen(url) data_json = json.loads(response.read()) self.kitchenBox.addItems(data_json) def fillItems(self): nameOfKitchen = self.kitchenBox.currentText() url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen response = urlopen(url) data_json = json.loads(response.read()) self.itemBox.clear() self.itemBox.addItems(list(data_json.keys())) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def RemoveItem(self): if(len(self.itemBox.currentText()) > 0): r = requests.delete("http://localhost:8000/RemoveItemFromMenu/" + self.kitchenBox.currentText() + "/" +self.itemBox.currentText()) #--------------------Kitchens Update Price Window-------------------- class kitchenUpdatePrice(QDialog): def __init__(self): super(kitchenUpdatePrice, self).__init__() loadUi("KitchenUpdatePrice.ui", self) self.returnBTN.clicked.connect(self.goBack) self.finishBTN.clicked.connect(self.finish) self.fillBTN.clicked.connect(self.fillItems) self.fillPriceBTN.clicked.connect(self.fillPrice) #fill kitchen combo box url = "http://127.0.0.1:8000/Kitchens" response = urlopen(url) data_json = json.loads(response.read()) self.kitchenBox.addItems(data_json) def fillItems(self): nameOfKitchen = self.kitchenBox.currentText() url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen response = urlopen(url) data_json = json.loads(response.read()) self.itemBox.clear() self.itemBox.addItems(list(data_json.keys())) def fillPrice(self): nameOfKitchen = self.kitchenBox.currentText() nameOfItem = self.itemBox.currentText() #NOTE: this is a bit of a hack, but it works. Essentially the URL does not like spaces in the item name, so I had to replace them with '%20'. url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen + "/" + nameOfItem.replace(' ', '%20') + "/Price" response = urlopen(url) data_json = json.loads(response.read()) self.textCost.setText(str(data_json)) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def finish(self): if(len(self.itemBox.currentText()) > 0): r = requests.put("http://localhost:8000/UpdateItemPrice/" + self.kitchenBox.currentText() + "/" + self.itemBox.currentText() + "?price=" + self.textCost.toPlainText()) self.textCost.setText("") #--------------------Kitchens Update Availability Window-------------------- class kitchenUpdateAvailability(QDialog): def __init__(self): super(kitchenUpdateAvailability, self).__init__() loadUi("KitchenUpdateAvailability.ui", self) self.returnBTN.clicked.connect(self.goBack) self.finishBTN.clicked.connect(self.finish) self.fillBTN.clicked.connect(self.fillItems) url = "http://127.0.0.1:8000/Kitchens" response = urlopen(url) data_json = json.loads(response.read()) self.kitchenBox.addItems(data_json) def fillItems(self): nameOfKitchen = self.kitchenBox.currentText() url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen response = urlopen(url) data_json = json.loads(response.read()) self.itemBox.clear() self.itemBox.addItems(list(data_json.keys())) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def finish(self): if(len(self.itemBox.currentText()) > 0): if(self.checkBox.checkState()): available = True else: available = False r = requests.put("http://localhost:8000/UpdateItemAvailability/" + self.kitchenBox.currentText() + "/" + self.itemBox.currentText() + "?availability=" + str(available)) #--------------------Kitchens and Menu Window-------------------- class KitchensScreen(QDialog): def __init__(self): super(KitchensScreen, self).__init__() loadUi("ListOfKitchens.ui", self) self.loadKitchens() self.kitchensList.itemDoubleClicked.connect(self.loadMenu) self.locationLabel.setText("Campus Center Market") self.returnBTN.clicked.connect(self.goBack) def goBack(self): widget.setCurrentIndex(widget.currentIndex() - 1) widget.removeWidget(self) def loadKitchens(self): # parameter for urlopen url = "http://127.0.0.1:8000/Kitchens" # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) self.kitchensList.addItems(data_json) def loadMenu(self): nameOfKitchen = self.kitchensList.currentItem().text() print(nameOfKitchen) # parameter for urlopen url = "http://127.0.0.1:8000/Kitchens/" + nameOfKitchen # store the response of URL response = urlopen(url) # storing the JSON response # # from url in data data_json = json.loads(response.read()) print(data_json) self.menuList.clear() self.menuList.addItems(list(data_json.keys())) #--------------------MAIN-------------------- #Setting up App app = QApplication(sys.argv) loginScreen = loginScreen() widget = QStackedWidget() widget.addWidget(loginScreen) widget.setFixedHeight(800) widget.setFixedWidth(1200) widget.show() try: sys.exit(app.exec_()) except: print("Exiting")
YY0NII/DeskFood
Frontend/Main.py
Main.py
py
33,421
python
en
code
1
github-code
6
41236533985
import rest_framework.authentication from drf_yasg.views import get_schema_view from drf_yasg import openapi from rest_framework import permissions from user.auth.auth import JwtQueryParamsAuthentication schema_view = get_schema_view( openapi.Info( title="接口文档", default_version="1.0", terms_of_service='', contact=openapi.Contact(name="Andy Z Wright", email="[email protected]"), license=openapi.License(name="MIT LICENCE"), ), public=True, permission_classes=(permissions.AllowAny,), # authentication_classes=(JwtQueryParamsAuthentication,) authentication_classes=(), )
beishangongzi/porcelain-backend
swagger_doc/views.py
views.py
py
653
python
en
code
0
github-code
6
21998584846
from typing import List class Solution: def findPeakElement(self, nums: List[int]) -> int: n = len(nums) left = 0 right = n - 1 def get_num(i): if i == -1 or i == n: return float('-inf') return nums[i] ans = -1 while right >= left: mid = left + (right - left) // 2 if get_num(mid - 1) < get_num(mid) > get_num(mid + 1): return mid elif get_num(mid) < get_num(mid + 1): left = mid + 1 else: right = mid - 1 return ans
hangwudy/leetcode
100-199/162. 寻找峰值.py
162. 寻找峰值.py
py
620
python
en
code
0
github-code
6
16105808925
#Server from socket import * serverPort = 12002 listeningSocket = socket(AF_INET, SOCK_STREAM) listeningSocket.bind(('', serverPort)) listeningSocket.listen(1) print('Server ready, socket', listeningSocket.fileno(), 'listening on localhost :', serverPort) connectionSocket, addr = listeningSocket.accept() #client address & socket while 1: msg = bytes.decode(connectionSocket.recv(1024)) if(msg == 'exit'): connectionSocket.close() break print('Client says: ',msg) connectionSocket.send(str.encode(str(addr[0])+':'+str(addr[1])+':'+ msg)) connectionSocket.close()
kelly870114/TCPSocket
TCPServer.py
TCPServer.py
py
598
python
en
code
0
github-code
6
9007439548
""" Week 2 - Data mining By Christopher Diaz Montoya """ # Problem 1!! store=[] # Empty array to store values for a in range (1000, 2000): # Loop to check over all numbers in range if (a % 11 == 0) and not (a % 3 == 0): # Above line makes sure if multiple of 11 and not of 3 execute line below store.append(str(a)) # Stores numbers that met above requirements print (*store, sep = ", ") # Learnt the above print line from the website below to print output correctly # https://www.kite.com/python/answers/how-to-print-a-list-without-brackets-in-python#:~:text=Use%20*%20to%20print%20a%20list,set%20sep%20to%20%22%2C%20%22%20. # Problem 2!! print("Please input a sentance: ") # Allows user to input sentance sentance = input() # Above line assigns input to the varibale called sentance # Below 2 lines will be used as counters for upper and lower case letters UpperCase = 0 LowerCase = 0 # For loop to check each character for the length of the string sentance for char in range(len(sentance)): # Below says if char is in the lower letter alphabet add and assigns to lower # case counter else if in the upper case alphabet add to the upper counter if(sentance[char]>='A' and sentance[char]<='Z'): UpperCase += 1 elif(sentance[char]>='a' and sentance[char]<='z'): # Learnt in my other module how to convert from lower case to upper case # without libraries so played around with the code as it's like a range # and that's how I got the above line LowerCase += 1 # Add 1 to counter print('Upper case = ', UpperCase) print('Lower case = ', LowerCase) # Above prints the count and I used the comma to print the string and counter # int. As I only mentioned the alpahbets there is no issue with the space and # is not counted by accident. # Problem 3!! # Below made a funtion that turns an int into a string def NumToWord(a): b = str(a) # Casts int into a string and stored in b print(b) # Prints b which is casted into a string print(type(b)) # Double check what daat tybe b is # Below int is used to make sure input value is an integer, learnt last # academic year. num = int(input("Please enter a number: ")) NumToWord(num) # Calls functions and passes input "num" into the funciton. # Problem 4!! import itertools # Import from library to help iterate through all outcomes # Below stored for easy access subject = ["I", "You"] verb = ["Read", "Borrow"] ob = ["Shakerpeare's plays", "Shakespeare's poems"] # Below prints and iterates over each possible out come from the lists # mentioned whille the varibles stay in the same order. List ensures prints # in the right way print(list(itertools.product(subject, verb, ob))) # https://www.codegrepper.com/code-examples/python/how+to+find+all+combinations+of+a+list+python # Problem 5!! Part 1 import matplotlib.pyplot as plt # imported and given a shorter name x, y = [1, 2, 3], [2, 4, 1] # Assigning values to varibles x and y plt.xlabel("X axis", fontsize = 15) # Prints x label and size plt.ylabel("Y axis", fontsize = 15) # Prints y label and size plt.title("My first graph", fontsize = 20) # Prints title # Learnt how to change size and label names from # https://stackoverflow.com/questions/12444716/how-do-i-set-the-figure-title-and-axes-labels-font-size-in-matplotlib # Some of above learnt from lectures and exra study help from uni. # This plots the points on the graph plt.plot(x, y) plt.show() # This shows the graph # Part 2 X = [] # Created empty lists to store values read from document Y = [] a = open("test.txt", "r") # a is a variable which are the contents for row in a: # Loops all rows in the txt file row = row.split(" ") # splits numbers in file when it reads a space X.append(row[0]) # First nunber is added to X Y.append(int(row[1])) # Second number is added to Y plt.xlabel("X axis", fontsize = 15) # Prints x label plt.ylabel("Y axis", fontsize = 15) # Prints y label plt.title("My second graph", fontsize = 20) # Prints title plt.plot(X, Y) # This plots the points on the graph plt.show() # This shows the graph #https://www.geeksforgeeks.org/python-create-graph-from-text-file/ # Problem 6!! # below importing relevant libraries import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv ("train.csv") # Above imports and reads the data set df.info() # Did this to see how many columns there are along with what data # types are in the data set which are 3, along with being able to see which # columns have missing dat df["Loan_Status"].value_counts(normalize=True).plot.bar() # Used to see the column which shows how many people got approved in a barchart catColumns = ["Gender", "Married", "Dependents", "Education", "Self_\ Employed", "Property_Area", "Credit_History"] for x in catColumns: # Loops over all data in each column # Crosstab checks against another group of data I want to analyse against, # in this case Loan_Status https://pbpython.com/pandas-crosstab.html against # all the columns in Columns y = pd.crosstab(df["Loan_Status"], df[x], normalize = "columns") # https://www.journaldev.com/45109/normalize-data-in-python taught me how # to normalize data and https://machinelearningmastery.com/rescaling-data-for-machine-learning-in-python-with-scikit-learn/#:~:text=Normalization%20refers%20to%20rescaling%20real,preparation%20of%20coefficients%20in%20regression. # taught me what it does, makes all values inbetween 0 and 1. print(y) # Prints output y.plot(kind = "bar") # Plots bar chart for each column df.boxplot(column = "ApplicantIncome", by = "Education") # Wanted to see the # correlation between graduate income and non graduate income numColumns = ["ApplicantIncome", "CoapplicantIncome", "LoanAmount", "Loan_Amount_Term"] # I did above as I wanted to check if graduates earned more than non graduates # Learnt this in lectue slides for z in numColumns: # For loop to make a graph for each column # for each loop until every column in numColumns has a graph # shows column in numColumns against Loan_status result = df.boxplot(column = z, by = "Loan_Status") # Plots graph plt.show(result) # Shows graphs # The graphs used in the abov loop were learnt from the lecture slides
diaz080800/Python-programming
Week 2/Week2.py
Week2.py
py
6,360
python
en
code
0
github-code
6
70327957627
#!/usr/bin/env python3 import rospy from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from math import sqrt, atan2, exp, atan, cos, sin, acos, pi, asin, atan2, floor from tf.transformations import euler_from_quaternion, quaternion_from_euler from time import sleep import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg global x_n, y_n, theta_n class Node(): def __init__(self, value, x, y): self.value = value self.gCost = 0 self.hCost = 0 self.x = x self.y = y self.parent = None self.path = None def fCost(self): return self.gCost + self.hCost class Astar(): def __init__(self, map, goal, start, cell_size): self.map = map self.goal = goal self.start = start self.cell_size = cell_size self.goal2d = self.goal_to_node2d() self.rows = len(self.map) self.cols = len(self.map[0]) self.targetNode = self.map[self.goal2d[0]][self.goal2d[1]] #self.map[self.goal2d[0]][self.goal2d[1]] = 2 #self.map[self.goal2d[1]][self.goal2d[0]].value = 2 #print(*self.map) def goal_to_node2d(self): #goal: x,y goal2d = np.array([0,0]) goal2d[0] = self.goal[0]/self.cell_size goal2d[1] = -self.goal[1]/self.cell_size return goal2d def node2d_to_goal(self, cell): x = cell.x*self.cell_size + cell_size/2 y = -cell.y*self.cell_size - cell_size/2 return (x,y) def isGoalValid(self): if(self.map[self.goal2d[0]][self.goal2d[1]].value == 1): return False elif(self.map[self.goal2d[0]][self.goal2d[1]].value == 0): return True def getNeighbors(self, node): neighbors = [] for x in range(-1,2): for y in range(-1,2): if(x == 0 and y == 0): continue checkX = node.x + x checkY = node.y + y #print('check:',x,y) if(checkX >= 0 and checkX < self.rows and checkY >= 0 and checkY < self.cols): neighbors.append(self.map[checkX][checkY]) return neighbors def getDistance(self, nodeA, nodeB): distX = abs(nodeA.x - nodeB.x) distY = abs(nodeA.y - nodeB.y) if(distX > distY): return 14*distY + 10*(distX - distY) else: return 14*distX + 10*(distY - distX) def tracePath(self, startNode, endNode): path = [] currentNode = endNode while(currentNode is not startNode): path.append(currentNode) currentNode = currentNode.parent #print('node:', currentNode) path.reverse() #print('path:',path) return path def findPath(self): openSet = [] closeSet = [] print(vars(self.map[self.start[0]][self.start[1]])) startNode = self.map[self.start[0]][self.start[1]] openSet.append(startNode) while(len(openSet) > 0): currentNode = openSet[0] for i in range(1,len(openSet)): #print(openSet[i].fCost()) if(openSet[i].fCost() < currentNode.fCost() or (openSet[i].fCost() == currentNode.fCost() and openSet[i].hCost < currentNode.hCost)): currentNode = openSet[i] #print('in while: ', currentNode.x, currentNode.y, currentNode.fCost()) #print('goal: ', self.goal2d[0] , self.goal2d[1]) openSet.remove(currentNode) closeSet.append(currentNode) if(currentNode.x == self.goal2d[0] and currentNode.y == self.goal2d[1]): print('search done') self.path = self.tracePath(startNode, self.targetNode) return neighbors = self.getNeighbors(currentNode) for neighbor in neighbors: #print(vars(neighbor)) if(neighbor.value == 1 or (neighbor in closeSet)): print('continue') continue newMovementCostToNeighbor = currentNode.gCost + self.getDistance(currentNode, neighbor) if(newMovementCostToNeighbor < neighbor.gCost or not (neighbor in openSet)): neighbor.gCost = newMovementCostToNeighbor neighbor.hCost = self.getDistance(neighbor, self.targetNode) neighbor.parent = currentNode #print(neighbor.gCost) if(neighbor not in openSet): openSet.append(neighbor) print('next') def plotGrid(self): for i in range(len(self.map)): line = [] linefCost = [] for j in range(len(self.map[0])): line.append(self.map[i][j].value) linefCost.append(self.map[i][j].gCost) #print(line) print(linefCost) def refference_trajectory(x_goal, y_goal): x_ref = x_goal y_ref = y_goal Vx_ref = 0 Vy_ref = 0 return (x_ref, y_ref, Vx_ref, Vy_ref) # Rotina para a geracao da entrada de controle def trajectory_controller(x_ref, y_ref, Vx_ref, Vy_ref, Kp, Usat): global x_n, y_n, theta_n Ux = Vx_ref + Kp * (x_ref - x_n) Uy = Vy_ref + Kp * (y_ref - y_n) absU = sqrt(Ux ** 2 + Uy ** 2) if (absU > Usat): Ux = Usat * Ux / absU Uy = Usat * Uy / absU return (Ux, Uy) # Rotina feedback linearization def feedback_linearization(Ux, Uy, d): global x_n, y_n, theta_n VX = cos(theta_n) * Ux + sin(theta_n) * Uy WZ = (-sin(theta_n) / d) * Ux + (cos(theta_n) / d) * Uy return (VX, WZ) # Rotina callback para a obtencao da pose do robo def callback_pose(data): global x_n, y_n, theta_n x_n = data.pose.pose.position.x # posicao 'x' do robo no mundo y_n = data.pose.pose.position.y # posicao 'y' do robo no mundo x_q = data.pose.pose.orientation.x y_q = data.pose.pose.orientation.y z_q = data.pose.pose.orientation.z w_q = data.pose.pose.orientation.w euler = euler_from_quaternion([x_q, y_q, z_q, w_q]) theta_n = euler[2] # orientaco 'theta' do robo no mundo return def calcDistance(x_n, y_n, x_d, y_d): return sqrt(((x_d - x_n)**2 + (y_d - y_n)**2)) def readImage(cell_size): fig = plt.figure(figsize=(8,8), dpi=100) img = 1 - mpimg.imread('../worlds/map_1.png') # Apenas para garantir que só teremos esses dois valores threshold = 0.5 img[img > threshold] = 1 img[img<= threshold] = 0 map_dims = np.array([60, 60]) # Cave # Escala Pixel/Metro print(img.shape) sy, sx = img.shape[0:2] / map_dims # Tamanho da célula do nosso Grid (em metros) rows, cols = (map_dims / cell_size).astype(int) #grid = np.zeros((rows, cols)) grid = [[Node(0,0,0) for x in range(cols)] for y in range(rows)] # Preenchendo o Grid for r in range(rows): for c in range(cols): xi = int(c*cell_size*sx) xf = int(xi + cell_size*sx) yi = int(r*cell_size*sy) yf = int(yi + cell_size*sy) value = np.sum(img[yi:yf,xi:xf]) if(value > threshold): value = 1 else: value = 0 node = Node(value, r, c) grid[r][c] = node return grid def control(poses): #Tempo de simulacao no stage global x_n, y_n freq = 100 Usat = 5 d = 0.8 Kp = 1 #Define uma variavel que controlar a a frequencia de execucao deste no rate = rospy.Rate(freq) vel = Twist() sleep(0.2) # O programa do no consiste no codigo dentro deste while for pose in poses: print(pose) x_goal = pose[0] y_goal = pose[1] # Incrementa o tempo dist = calcDistance(x_n,y_n,x_goal,y_goal) while(dist > 0.5): [x_ref, y_ref, Vx_ref, Vy_ref] = refference_trajectory(x_goal, y_goal) [Ux, Uy] = trajectory_controller(x_ref, y_ref, Vx_ref, Vy_ref, Kp, Usat) [V_forward, w_z] = feedback_linearization(Ux, Uy, d) vel.linear.x = V_forward vel.angular.z = w_z pub_stage.publish(vel) dist = calcDistance(x_n, y_n, x_goal, y_goal) #Espera por um tempo de forma a manter a frequencia desejada rate.sleep() if __name__ == '__main__': try: rospy.init_node("Astar_node") #inicializa o no "este no" pub_stage = rospy.Publisher("/cmd_vel", Twist, queue_size=1) #declaracao do topico para comando de velocidade rospy.Subscriber("/base_pose_ground_truth", Odometry, callback_pose) #declaracao do topico onde sera lido o estado do robo cell_size = 2 x_goal, y_goal = input('(x_goal, y_goal)').split() x_goal, y_goal = [float(i) for i in [x_goal, y_goal]] grid = readImage(cell_size) start_x = floor(x_n/cell_size) start_y = floor(-y_n/cell_size) print('pose: ', start_x, start_y) Astar = Astar(grid, np.array([x_goal, y_goal]), np.array([start_x,start_y]), cell_size) if(not Astar.isGoalValid()): print('Posicao de alvo invalida') exit() Astar.findPath() path = Astar.path planConverted = [] for node in path: pose = Astar.node2d_to_goal(node) planConverted.append(pose) print(pose) Astar.plotGrid() control(planConverted) except rospy.ROSInterruptException: pass
lucca-leao/path-planning
scripts/Astar.py
Astar.py
py
9,706
python
en
code
1
github-code
6
9903389782
# UDP receiver # Olle Bergkvist & August M Rosenqvist from socket import * serverPort = 12000 counter = 10000 # Create UDP socket and bind to specified port serverSocket = socket(AF_INET, SOCK_DGRAM) serverSocket.bind(('', serverPort)) print ("The UDP receiver is ready to receive.\n") while True: # Read client's message and remember client's address (IP and port) counter += 1 message, clientAddress = serverSocket.recvfrom(2048) message = message.decode() messageArray = message.split(";") sequenceNumber = int(messageArray[0]) extractedMessage = messageArray[1] if counter != sequenceNumber: print("Wrong package order detected!") print("Expected ID:", counter, "Received ID:", sequenceNumber) else: print("Correct package received:", sequenceNumber)
ollebergkvist/telekom-lab2
UDPreceiver.py
UDPreceiver.py
py
821
python
en
code
0
github-code
6
37379213866
#影像命名:县(0表示西秀,1表示剑河县)_序号(在points列表中的序号,从0开始)_同一位置的序号(同一位置可能有多张,标个序号,从0开始)_年份(2021之类的)_img #施工标签命名:县(0表示西秀,1表示剑河县)_序号(在points列表中的序号,从0开始)_年份(2021之类的)_conslabel #分类标签命名:县(0表示西秀,1表示剑河县)_序号(在points列表中的序号,从0开始)_2021_classlabel from osgeo import gdal,osr import pickle import os import numpy def getSRSPair(dataset): prosrs=osr.SpatialReference() prosrs.ImportFromWkt(dataset.GetProjection()) geosrs=prosrs.CloneGeogCS() return prosrs,geosrs def lonlat2geo(dataset,lon,lat): prosrs,geosrs=getSRSPair(dataset) ct=osr.CoordinateTransformation(geosrs,prosrs) coords=ct.TransformPoint(lon,lat) return coords[:2] def geo2imagexy(dataset,x,y): trans=dataset.GetGeoTransform() a=numpy.array([[trans[1],trans[2]],[trans[4],trans[5]]]) b=numpy.array([x-trans[0],y-trans[3]]) result=numpy.linalg.solve(a,b) return int(result[0]),int(result[1]) def getImageBound(dataset): #[minx.maxx,miny,maxy] trans=dataset.GetGeoTransform() img_width,img_height=dataset.RasterXSize,dataset.RasterYSize result=[min(trans[0],trans[0]+trans[1]*img_width),max(trans[0],trans[0]+trans[1]*img_width),min(trans[3],trans[3]+trans[5]*img_height),max(trans[3],trans[3]+trans[5]*img_height)] return result def getAllImage_tif(path): result=[] d=os.listdir(path) for i in d: if i.split('.')[-1] == 'tif': result.append(i) return result def contain(bound,point): if bound[0]<point[0]<bound[1] and bound[2]<point[1]<bound[3]: return True else: return False def clip_label_cons(county,year,path_pkl,path_src,path_dst,size=2048): dataset=gdal.Open(path_src) bound=getImageBound(dataset) with open(path_pkl,'rb') as f: points_dict=pickle.load(f) if county==0: points=points_dict['xixiu'] else: points=points_dict['jianhe'] for j,point in enumerate(points,0): x,y=lonlat2geo(dataset,point[0],point[1]) if contain(bound,(x,y)): p=geo2imagexy(dataset,x,y) if p[0]+size>dataset.RasterXSize or p[1]+size>dataset.RasterYSize: continue clip_image=dataset.ReadAsArray(p[0],p[1],size,size) clip_image_path=path_dst+'\\'+str(county)+'_'+str(j)+'_'+str(year)+'_conslabel.tif' clip_image_driver=gdal.GetDriverByName('GTiff') clip_image_dataset=clip_image_driver.Create(clip_image_path,size,size,1,gdal.GDT_Float32) clip_image_dataset.SetGeoTransform((x,dataset.GetGeoTransform()[1],0,y,0,dataset.GetGeoTransform()[5])) clip_image_dataset.SetProjection(dataset.GetProjection()) clip_image_dataset.GetRasterBand(1).WriteArray(clip_image) clip_image_dataset.FlushCache() clip_image_dataset=None def clip_label_class(county,year,path_pkl,path_src,path_dst,size=2048): dataset=gdal.Open(path_src) bound=getImageBound(dataset) with open(path_pkl,'rb') as f: points_dict=pickle.load(f) if county==0: points=points_dict['xixiu'] else: points=points_dict['jianhe'] for j,point in enumerate(points,0): x,y=lonlat2geo(dataset,point[0],point[1]) if contain(bound,(x,y)): p=geo2imagexy(dataset,x,y) if p[0]+size>dataset.RasterXSize or p[1]+size>dataset.RasterYSize: continue clip_image=dataset.ReadAsArray(p[0],p[1],size,size) clip_image_path=path_dst+'\\'+str(county)+'_'+str(j)+'_'+str(year)+'_classlabel.tif' clip_image_driver=gdal.GetDriverByName('GTiff') clip_image_dataset=clip_image_driver.Create(clip_image_path,size,size,1,gdal.GDT_Float32) clip_image_dataset.SetGeoTransform((x,dataset.GetGeoTransform()[1],0,y,0,dataset.GetGeoTransform()[5])) clip_image_dataset.SetProjection(dataset.GetProjection()) clip_image_dataset.GetRasterBand(1).WriteArray(clip_image) clip_image_dataset.FlushCache() clip_image_dataset=None if __name__=='__main__': from matplotlib import pyplot id_county=1 year=2021 path_pkl=r'K:\points.pkl' path_src=r'H:\剑河县\2021标签\label_2021.tif' path_dst=r'H:\剑河县\2021标签裁剪\分类' size=2048 clip_label_class(id_county,year,path_pkl,path_src,path_dst,size) id_county=1 year=2021 path_pkl=r'K:\points.pkl' path_src=r'H:\剑河县\2021标签\label_2021_cons.tif' path_dst=r'H:\剑河县\2021标签裁剪\施工' size=2048 clip_label_cons(id_county,year,path_pkl,path_src,path_dst,size) id_county=1 year=2020 path_pkl=r'K:\points.pkl' path_src=r'H:\剑河县\2020标签\label_2020.tif' path_dst=r'H:\剑河县\2020标签裁剪\施工' size=2048 clip_label_cons(id_county,year,path_pkl,path_src,path_dst,size)
faye0078/RS-ImgShp2Dataset
lee/clip_label.py
clip_label.py
py
5,260
python
en
code
1
github-code
6
74128409788
from collections import deque def find_correct(string): stack = [] for c in string: if c == "[" or c == "{" or c == "(": stack.append(c) else: if "[" in stack and c == "]" and stack[-1] == "[": stack.pop() elif "{" in stack and c == "}" and stack[-1] == "{": stack.pop() elif "(" in stack and c == ")" and stack[-1] == "(": stack.pop() else: return 0 return 1 if not stack else 0 def solution(s): answer = 0 deq = deque(list(s)) for i in range(len(s)): deq.rotate(-1) string = "".join(deq) answer += find_correct(string) return answer
Dayeon1351/TIL
programmers/level2/괄호회전하기/solution.py
solution.py
py
781
python
en
code
0
github-code
6
45364250336
import pygame import solveModuleNotFoundError from Game import * from Game.Scenes import * from Game.Shared import * class Breakout: def __init__(self): self.__lives = 5 self.__score = 0 self.__level = Level(self) self.__level.load(0) self.__pad = Pad((GameConstant.SCREEN_SIZE[0]/2,GameConstant.SCREEN_SIZE[1] - GameConstant.PAD_SIZE[1]),pygame.transform.scale(pygame.image.load(GameConstant.SPRITE_PAD) , GameConstant.PAD_SIZE)) self.__balls = [ Ball((400,400) , pygame.transform.scale(pygame.image.load(GameConstant.SPRITE_BALL) , GameConstant.BALL_SIZE) ,self) ] pygame.init() pygame.mixer.init() pygame.display.set_caption("Brick Breaker") pygame.mouse.set_visible(0) self.__clock = pygame.time.Clock() self.screen = pygame.display.set_mode(GameConstant.SCREEN_SIZE , pygame.DOUBLEBUF, 32) self.bg = pygame.transform.scale(pygame.image.load(GameConstant.BG).convert_alpha() , GameConstant.SCREEN_SIZE) self.__scenes = ( PlayingGameScene(self), GameOverScene(self), HighscoreScene(self), MenuScene(self) ) self.__currentScene = 3 self.__sounds = ( pygame.mixer.Sound(GameConstant.SOUND_FILE_GAMEOVER), pygame.mixer.Sound(GameConstant.SOUND_FILE_HIT_BRICK), pygame.mixer.Sound(GameConstant.SOUND_FILE_HIT_BRICK_LIFE), pygame.mixer.Sound(GameConstant.SOUND_FILE_HIT_BRICK_SPEED), pygame.mixer.Sound(GameConstant.SOUND_FILE_HIT_WALL), pygame.mixer.Sound(GameConstant.SOUND_FILE_HIT_PAD) ) def start(self): while 1: self.__clock.tick(60) self.screen.fill((0,0,0)) self.screen.blit( self.bg, (0,0)) currentScene = self.__scenes[self.__currentScene] currentScene.handleEvents(pygame.event.get()) currentScene.render() pygame.display.update() def changeScene(self , scene): self.__currentScene = scene def getLevel(self): return self.__level def getLives(self): return self.__lives def getScore(self): return self.__score def getBalls(self): return self.__balls def getPad(self): return self.__pad def playSound(self, soundClip): sound = self.__sounds[soundClip] sound.stop() sound.play() def increaseScore(self , score): self.__score += score def increaseLives(self): self.__lives += 1 def reduceLives(self): self.__lives -= 1 def reset(self): self.__score = 0 self.__lives = 5 self.__level.reset() self.__level.load(0) Breakout().start()
grapeJUICE1/Grape-Bricks
Game/Breakout.py
Breakout.py
py
2,928
python
en
code
7
github-code
6
23915032189
from django.contrib.auth.decorators import login_required from django.contrib.auth import login from django.shortcuts import render_to_response, redirect from django.template import RequestContext from apps.data.models import Entry from apps.data.forms import DataForm from django.conf import settings from django.core.urlresolvers import reverse from django.http import HttpResponse, HttpResponseNotFound @login_required def add(request): form = None if request.method == 'POST': form = AddBookForm(request.POST, request.FILES) if form.is_valid(): instance = form.save(commit=False) instance.title = request.title instance.text = request.text instance.save() else: form = AddBookForm() ctx = { 'form': form } return render_to_response('data/create.html', ctx, context_instance=RequestContext(request)) @login_required def entry(request, id): # try: entrie = Entry.objects.get(id=id) ctx = {'entrie': entrie} return render_to_response('data/entry.html', ctx, context_instance=RequestContext(request)) # except: # return HttpResponse('<h1>Page was found</h1>') @login_required def create(request): a = Entry() form = DataForm(request.POST or None) if form.is_valid(): form.save() ctx = { 'form': form } return render_to_response('data/create.html', ctx, context_instance=RequestContext(request)) # Create your views here.
msakhnik/just-read
apps/data/views.py
views.py
py
1,497
python
en
code
0
github-code
6
15802748190
from django.conf.urls import url, include from django.contrib import admin from rest_framework.documentation import include_docs_urls api_patterns = [ url(r'^docs/', include_docs_urls(title='Documentation')), url(r'^', include(('my_website.apps.youtube_download.urls', 'youtube_download'), namespace='youtube_download')), ] urlpatterns = [ url(r'^api/auth/', include('django.contrib.auth.urls')), url(r'^api/rest-auth/', include(('rest_auth.urls', 'youtube_download'), namespace='rest_auth')), url(r'^api/rest-auth/registration/', include(('rest_auth.registration.urls', 'youtube_download'), namespace='rest_auth_registration')), # Allauth url(r'^api/accounts/', include('allauth.urls')), url(r'^accounts/', include('allauth.urls')), url(r'^api/', include((api_patterns, 'youtube_download'), namespace='api')), url(r'^api/admin/', admin.site.urls), ]
zsoman/my-website
my_website/urls.py
urls.py
py
902
python
en
code
0
github-code
6
16398002041
import os import pygame from Engine import MainMenu from Entities.Maps.SimpleCheck import SimpleCheck, ConditionsType class BlockChecks(SimpleCheck): def __init__(self, ident, name, positions, linked_map): SimpleCheck.__init__(self, ident, name, positions, linked_map, True) self.position_logic_indicator = None self.surface_logic_indicator = None self.list_checks = [] self.show_checks = False self.all_logic = False self.logic_cpt = 0 self.focused = False def add_check(self, check): self.list_checks.append(check) self.update() def get_checks(self): return self.list_checks def update(self): self.logic_cpt = 0 self.all_logic = True self.checked = True self.focused = False for check in self.list_checks: check.update() if not check.hide and not check.checked: if not check.checked: self.checked = False if not self.focused: self.focused = check.focused if check.state == ConditionsType.LOGIC: self.logic_cpt += 1 else: self.all_logic = False font = self.map.tracker.core_service.get_font("mapFont") map_font_path = os.path.join(self.map.tracker.core_service.get_tracker_temp_path(), font["Name"]) font_number = self.map.tracker.core_service.get_font("mapFontChecksNumber") font_path = os.path.join(self.map.tracker.core_service.get_tracker_temp_path(), font_number["Name"]) groups_datas = self.map.tracker.tracker_json_data[4]["SizeGroupChecks"] zoom = self.map.tracker.core_service.zoom index_positions = self.map.index_positions self.pin_rect = pygame.Rect( (index_positions[0] * zoom) + (self.positions["x"] * zoom), (index_positions[1] * zoom) + (self.positions["y"] * zoom), groups_datas["w"] * zoom, groups_datas["h"] * zoom ) color = "Done" if self.checked else ( "Logic" if self.all_logic else ("HaveLogic" if self.logic_cpt > 0 else "NotLogic")) self.pin_color = self.map.tracker.core_service.get_color_from_font(font, color) temp_surface = pygame.Surface((0, 0), pygame.SRCALPHA, 32).convert_alpha() self.surface_logic_indicator, self.position_logic_indicator = MainMenu.MainMenu.draw_text( text=f"{self.logic_cpt}", font_name=font_path, color=self.map.tracker.core_service.get_color_from_font(font_number, "Normal"), font_size=font_number["Size"] * zoom, surface=temp_surface, position=(self.pin_rect.x, self.pin_rect.y), outline=0.5 * zoom ) rect = self.surface_logic_indicator.get_rect() x_number = self.pin_rect.x + (self.pin_rect.w / 2) - (rect.w / 2) + (0.5 * zoom) y_number = self.pin_rect.y + (self.pin_rect.h / 2) - (rect.h / 2) + (1.5 * zoom) self.position_logic_indicator = (x_number, y_number) def draw(self, screen): if not self.all_check_hidden(): font = self.map.tracker.core_service.get_font("mapFont") border_color = self.map.tracker.core_service.get_color_from_font(font, "Focused") if self.focused else (0, 0, 0) self.draw_rect(screen, self.pin_color, border_color, self.pin_rect, 2 * self.map.tracker.core_service.zoom) if self.logic_cpt > 0: screen.blit(self.surface_logic_indicator, self.position_logic_indicator) def left_click(self, mouse_position): if not self.map.current_block_checks: pygame.mouse.set_cursor(pygame.SYSTEM_CURSOR_ARROW) self.update() self.map.current_block_checks = self self.map.update() def right_click(self, mouse_position): tracker = None for check in self.list_checks: check.checked = not self.checked check.update() tracker = check.tracker self.update() if tracker: tracker.current_map.update() def wheel_click(self, mouse_position): tracker = None for check in self.list_checks: check.focused = not check.focused check.update() tracker = check.tracker self.update() if tracker: tracker.current_map.update() def get_rect(self): return self.pin_rect @staticmethod def draw_rect(surface, fill_color, outline_color, rect, border=1): surface.fill(outline_color, rect) surface.fill(fill_color, rect.inflate(-border * 2, -border * 2)) def get_data(self): checks_datas = [] for check in self.list_checks: checks_datas.append(check.get_data()) data = { "id": self.id, "name": self.name, "checks_datas": checks_datas } return data def set_data(self, datas): i = 0 for data in datas["checks_datas"]: for check in self.list_checks: if (check.id == data["id"]) and (check.name == data["name"]): i = i + 1 check.set_data(data) break def all_check_hidden(self): hidden = 0 for check in self.list_checks: if check.hide: hidden = hidden + 1 return hidden == len(self.list_checks)
linsorak/LinSoTracker
Entities/Maps/BlockChecks.py
BlockChecks.py
py
5,551
python
en
code
3
github-code
6
33272837414
import concurrent.futures import timeit import matplotlib.pyplot as plt import numpy from controller import Controller def mainUtil(): result = [] for i in range(50): c = Controller(300) c.GradientDescendAlgorithm(0.000006, 1000) result.append(c.testWhatYouHaveDone()) return result if __name__ == '__main__': start = timeit.default_timer() with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: print('This takes anywhere from 5 to 12 minutes to run (depending on how powerful your machine is).\n\tGo grab some popcorn') Q1 = executor.submit(mainUtil) Q2 = executor.submit(mainUtil) Q3 = executor.submit(mainUtil) Q4 = executor.submit(mainUtil) Q5 = executor.submit(mainUtil) errorList = Q1.result() + Q2.result() + Q3.result() + Q4.result() + Q5.result() print('In 250 runs you have achieved:') print('\tMaximum Error: ', max(errorList)) print('\tMinimum Error: ', min(errorList)) print('\tAverage Error: ', numpy.average(errorList)) plt.plot(errorList, 'ro') plt.show() end = timeit.default_timer() print('Time: ', (end - start) / 60)
CMihai998/Artificial-Intelligence
Lab7 - GDA/main.py
main.py
py
1,133
python
en
code
3
github-code
6
73549678908
__doc__ = """ Script for collection of training data for deep learning image recognition. Saving standardised pictures of detected faces from webcam stream to given folder. Ver 1.1 -- collect_faces.py Author: Aslak Einbu February 2020. """ import os import cv2 import datetime import imutils import time import numpy as np # Loading neural net model for face detection net = cv2.dnn.readNetFromCaffe("model/face_detect/deploy.prototxt.txt", "model/face_detect/res10_300x300_ssd_iter_140000.caffemodel") # Setting folder name for saving of detected images. person = input("Hvem er personen?") bildepath = f'/tmp/dnn/{person}' if not os.path.exists(bildepath): os.makedirs(bildepath) bildepath = f'/tmp/dnn/{person}' def main(): """ Analysing webcam video stream and displaying detected faces. Applies deep neural net model for detection of faces in in image. Saves images of detected faces to given folder (stops saving after 1000 pictures). """ antall = 0 sistetid = time.time() stdtxt = "Ingen fjes observert!" dcttxt = "Fjes observert!" noen = False camera = cv2.VideoCapture(0) print("Analyserer webcam bildestrøm...") print(f'Lagrer alle passfoto i {bildepath}.') while True: (grabbed, frame) = camera.read() if not grabbed: break detekt_txt = stdtxt frame = imutils.resize(frame, width=500) lager = frame.copy() # Detecting faces: (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence < 0.7: continue detekt_txt = dcttxt box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") text = "{:.1f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) try: fjes = lager[startY:endY, startX:endX] fjes = cv2.resize(fjes, (100, 120)) # Saving image of face if (time.time() - sistetid) > 0.5: sistetid = time.time() if antall < 1000: cv2.imwrite(f'{bildepath}/{str(time.time())}.jpg', fjes) antall = antall + 1 print(f'\rAntall bilder lagra: {antall}', sep='', end='', flush=True) except: pass noen = True if (noen): try: frame[255:375, 0:100] = fjes cv2.putText(frame, "Siste person", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 0), 1) except: pass cv2.putText(frame, detekt_txt, (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) cv2.putText(frame, datetime.datetime.now().strftime(" %d %B %Y %I:%M:%S%p"), (4, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 0), 1) cv2.putText(frame, f'Bilder lagra:{antall}', (10, 250), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 0), 1) cv2.imshow("Fjes", frame) cv2.moveWindow("Fjes", 1450, 100) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break camera.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
aslake/family_deep_learning
collect_faces.py
collect_faces.py
py
3,826
python
en
code
1
github-code
6
20908637143
from python_app_configs import config from python_generic_modules import se_os from python_generic_modules import se_docker import re import os import glob import time import jinja2 template1 = jinja2.Template("{% for i in range(0,last_num)%}zookeepernode{{ i }}.{{ domain }}:2181{% if not loop.last %},{% endif %}{% endfor %}") zookeeper_nodes = template1.render(last_num=config.zookeeper_nodes,domain=config.domain_name) def setup_kafka_dirs(): print('Setting up kafka bind_mount directories...\n') os.chdir(config.dest_dir) dir_glob = 'kafka' + '*' dir_lst = glob.glob(dir_glob) for i in dir_lst: se_os.del_dir(str(i)) src_dir_path = os.path.join(config.data_dir,'kafka_conf') for i in range(0,config.kafka_nodes): dest_path_new = os.path.join(config.dest_dir,'kafkanode'+str(i)) se_os.copy_dir(src_dir_path,dest_path_new) print('bind_mount directories setup compelete\n') def config_kafka(i): src_file_path = os.path.join(config.data_dir,'kafka_conf','server.properties') dest_file_path = os.path.join(config.dest_dir,'kafkanode'+str(i),'server.properties') param1 = re.compile(r'(.*)(broker.id)(.*)') param2 = re.compile(r'(.*)(num.partitions)(.*)') param3 = re.compile(r'(.*)(zookeeper.connect=)(.*)') with open(src_file_path,mode='r') as file1: with open(dest_file_path,mode='w') as file2: for line in file1: if param1.search(line): line = param1.sub(r'\1\2{}'.format('='+str(i)), line) file2.write(line) continue elif param2.search(line): line = param2.sub(r'\1\2{}'.format('='+str(str(config.kafka_default_partitions))), line) file2.write(line) continue elif param3.search(line): line = param3.sub(r'\1\2{}'.format(zookeeper_nodes), line) file2.write(line) continue else: file2.write(line) def launch_kafka(): print('\n====Running kafka_setup module====\n') setup_kafka_dirs() time.sleep(3) print('\n====Running kafka_config module====\n') for i in range(0,config.kafka_nodes): print("Updating configs for node 'kafkanode{}'\n".format(i)) config_kafka(i) time.sleep(3) print('\n====Creating SE_Platform Network if not already created====\n') hadoop_net = config.hadoop_network_range + '/24' lst = config.hadoop_network_range.split('.') lst[3]='1' hadoop_gateway = '.'.join(lst) se_docker.create_network('hadoopnet',hadoop_net,hadoop_gateway) print('\n====Launching containers and attaching bind mounts====\n') for i in range(0,config.kafka_nodes): se_docker.launch_containers('kmahesh2611/kafka','/kafka_2.11-2.1.0/bin/kafka-server-start.sh /kafka_2.11-2.1.0/config/server.properties','kafkanode' + str(i) + '.' + config.domain_name,'kafkanode' +str(i) + '.' + config.domain_name,{os.path.join(config.dest_dir,'kafkanode'+str(i)):{'bind':'/kafka_2.11-2.1.0/config','mode':'rw'}},'hadoopnet',True,True) print('Wait for 10 seconds....') time.sleep(10) print('\n====Verify if containers are running====\n') num = 0 for i in se_docker.get_all_containers(): if 'kafkanode' in i.name: num = num + 1 if 'running' in i.status: print('{} : {}'.format(i.name,i.status)) else: print('Error: Container "{}" is in status "{}"\n'.format(i.name,i.status)) print('Exiting script\n') sys.exit(1) if num == 0: print('No container found starting with name "kafkanode"') print('Exiting script\n') sys.exit(1) ### Creating Kafka topics ### print('\n====Creating Kafka Topics====\n') for i in config.kafka_topics: print(se_docker.exec_command('kafkanode0' + '.' + config.domain_name,"/kafka_2.11-2.1.0/bin/kafka-topics.sh --create --zookeeper {} --replication-factor {} --partitions {} --topic {}".format(zookeeper_nodes,str(config.kafka_nodes),str(config.kafka_default_partitions),i))) print("Created topics: {}\n".format([topics for topics in config.kafka_topics])) def del_kafka_containers(): print('\n====Stopping and deleting Containers for kafka====\n') for i in se_docker.get_all_containers(): if 'kafkanode' in i.name: print('Stopping and deleting Container: {}\n'.format(i.name)) i.remove(force=True)
karthikmahesh2611/docker_hadoop
python_hadoop_modules/kafka.py
kafka.py
py
4,120
python
en
code
0
github-code
6
10775009029
def enumerate2(xs, start=0, step=1): for x in xs: yield (start, x) start += step data = list(open("./03-input.txt").read().splitlines()) for s in ((1, 1), (3, 1), (5, 1), (7, 1), (1, 2)): data2 = [(d, i, i % len(d), d[i%len(d)]) for i, d in enumerate2(data[::s[1]], step=s[0])] print(sum([d[3] == '#' for d in data2]))
knjmooney/Advent-Of-Code
2020/03-toboggan.py
03-toboggan.py
py
348
python
en
code
0
github-code
6
30061736104
import os,sys,random import veri NewName = os.path.expanduser('~') if os.path.exists('%s/vlsistuff' % NewName): sys.path.append('%s/vlsistuff/verification_libs3'%NewName) elif 'VLSISTUFF' in os.environ: sys.path.append('%s/verification_libs3'%os.environ['VLSISTUFF']) else: print("please set VLSISTUFF to where You cloned vlsistuff repository. like: /home/cucu/softs/vlsistuff") sys.exit() import logs Monitors=[] cycles=0 GIVEUP_TIMEOUT = 1000 # how many cycles to run before retirment. import sequenceClass seq = sequenceClass.sequenceClass('tb',Monitors,'',[]) def pymonname(Name): logs.pymonname(Name) def sequence(TestName): Seq = logs.bin2string(TestName) seq.readfile(Seq) logs.setVar('sequence',Seq) Dir = os.path.dirname(Seq) logs.setVar('testsdir',Dir) logs.log_info('SEQUENCE %d'%len(seq.Sequence)) def cannot_find_sig(Sig): logs.log_error('cannot find "%s" signal in the design'%Sig) class driverMonitor(logs.driverClass): def __init__(self,Path,Monitors): logs.driverClass.__init__(self,Path,Monitors) # Monitors.append(self) # self.Path = Path # self.state='idle' # self.waiting = 0 # # def force(self,Sig,Val): # veri.force('%s.%s'%(self.Path,Sig),str(Val)) # # def peek(self,Sig): # return logs.peek('%s.%s'%(self.Path,Sig)) # def peeksigned(self,Sig): # return logs.peeksigned('%s.%s'%(self.Path,Sig)) # # def valid(self,Sig): # return self.peek(Sig)==1 # def run(self): if self.waiting>0: self.waiting -= 1 elif self.state=='idle': self.state='work0' elif self.state=='work0': self.state='work1' elif self.state=='work1': self.state='idle' if self.valid('validin')and self.valid('takenin'): return # example of driver class usage # driverMonitor('tb',Monitors) def negedge(): global cycles cycles += 1 veri.force('tb.cycles',str(cycles)) if (cycles>GIVEUP_TIMEOUT): logs.log_info('finishing on default guard of %d'%GIVEUP_TIMEOUT) veri.finish() rst_n = veri.peek('tb.rst_n') if (rst_n!='1'): return if (cycles==30): veri.listing('tb','100','deep.list') if (cycles>30): for Mon in Monitors: Mon.run() def cucu(): # list of all interface signals, just to help You find the names veri.force('tb.requests','0') grants = logs.peek('tb.grants')
greenblat/vlsistuff
rtl_library/round_robin/verilog.py
verilog.py
py
2,502
python
en
code
41
github-code
6
19092857489
from collections import namedtuple import csv import gzip import logging import sys import urllib.parse csv.field_size_limit(sys.maxsize) logging.basicConfig(level=logging.INFO) Switch = namedtuple("Switch", ['srclang', 'targetlang', 'country', 'qid', 'title', 'datetime', 'usertype', 'title_country_src_count']) Session = namedtuple('Session', ['usrhash', 'country', 'pageviews', 'usertype']) Pageview = namedtuple('Pageview', ['dt', 'proj', 'title', 'wd', 'referer']) EDIT_STR = "EDITATTEMPT" usertypes = ['reader', 'editor'] def tsv_to_sessions(tsv, trim=False): """Convert TSV file of pageviews to reader sessions. Each line corresponds to a pageview and the file is sorted by user and then time. Fields order is: hashed user ID, wikipedia project, page title, page ID, datettime, IP country, referer, Wikidata ID For example: 00000a5795ba512... enwiki Columbidae 63355 2019-02-16T11:31:53 Norway https://www.google.com/ Q10856 00000a5795ba512... enwiki Anarchism 12 2019-02-16T11:32:05 Norway https://en.wikipedia.org/ Q6199 This yields a Session object where: session.usrhash = '00000a5795ba512...' session.country = 'Norway' session.pageviews = [(dt='2019-02-16T11:31:53', proj='enwiki', title='Columbidae', wd='Q10856', referer='google'), (dt='2019-02-16T11:32:05', proj='enwiki', title='Anarchism', wd='Q6199', referer='enwiki')] """ expected_header = ['user', 'project', 'page_title', 'page_id', 'dt', 'country', 'referer', 'item_id'] usr_idx = expected_header.index('user') proj_idx = expected_header.index('project') title_idx = expected_header.index('page_title') dt_idx = expected_header.index('dt') country_idx = expected_header.index("country") referer_idx = expected_header.index('referer') wd_idx = expected_header.index("item_id") malformed_lines = 0 i = 0 with gzip.open(tsv, 'rt') as fin: assert next(fin).strip().split("\t") == expected_header curr_usr = None country = None usertype = 'reader' session = [] for i, line in enumerate(fin): line = line.strip().split("\t") try: usr = line[usr_idx] proj = line[proj_idx] title = line[title_idx] dt = line[dt_idx] ref = ref_class(line[referer_idx]) except IndexError: malformed_lines += 1 continue try: wd_item = line[wd_idx] except IndexError: wd_item = None pv = Pageview(dt, proj, title, wd_item, ref) if usr == curr_usr: if title == EDIT_STR: usertype = 'editor' else: session.append(pv) else: if curr_usr: if trim: trim_session(session) yield(Session(curr_usr, country, session, usertype=usertype)) curr_usr = usr country = line[country_idx] if title == EDIT_STR: usertype = 'editor' session = [] else: usertype = 'reader' session = [pv] if curr_usr: if trim: trim_session(session) yield (Session(curr_usr, country, session, usertype=usertype)) print("{0} total lines. {1} malformed.".format(i, malformed_lines)) def ref_class(referer): dom = urllib.parse.urlparse(referer).netloc if 'wikipedia' in dom: return dom.split('.')[0].replace('-', '_') + 'wiki' elif 'google' in dom: return 'google' else: if dom.startswith('www.'): dom = dom[4:] return dom def trim_session(pvs): """Remove duplicate page views (matching title and project). For a given session, this retains only the first view of a given page title on a given project. Parameters: pvs: list of page view objects for a given reader's session Returns: Nothing. The page views are modified in place. """ # only report based on first pageview of page user_unique_pvs = set() pvs_to_remove = [] for i in range(0, len(pvs)): pv_id = '{0}-{1}'.format(pvs[i].proj, pvs[i].title) if pv_id in user_unique_pvs: pvs_to_remove.append(i) user_unique_pvs.add(pv_id) for i in range(len(pvs_to_remove)-1, -1, -1): pvs.pop(pvs_to_remove[i]) def get_lang_switch(pvs, wikidbs=(), ref_match=False): """Get pairs of page views that are language switches. Parameters: pvs: list of page view objects for a given reader's session wikidbs: if empty, all language switches return. Otherwise, only language switches that involve languages included in wikidbs will be retained. Returns: switches: list of tuples, where each tuple corresponds to two page views of a single Wikidata item across two different projects. If a session is: [(dt='2019-02-16T11:31:53', proj='enwiki', title='Columbidae', wd='Q10856'), (dt='2019-02-16T11:32:05', proj='enwiki', title='Anarchism', wd='Q6199'), (dt='2019-02-16T11:32:13', proj='eswiki', title='Columbidae', wd='Q10856')] Then the switches would be of the form [(0, 2)] """ switches = [] # at least two different projects viewed in the session if len(set([p.proj for p in pvs])) > 1: # find all wikidata items viewed in multiple languages # preserve which one was viewed first for i in range(0, len(pvs) - 1): for j in range(i+1, len(pvs)): diff_proj = pvs[i].proj != pvs[j].proj same_item = pvs[i].wd and pvs[i].wd == pvs[j].wd if diff_proj and same_item: if not wikidbs or pvs[i].proj in wikidbs or pvs[j].proj in wikidbs: if ref_match: if pvs[i].proj == pvs[j].referer: switches.append((i, j)) else: switches.append((i, j)) break return switches def get_nonlang_switch(pvs, wikidb, switches=(), direction="from"): """Get page views in a language that are not switches of the specified direction. Finds pages in a language that the user did not switch to/from (depending on direction parameter). User must have at least one language switch with specified wikidb and direction in their session though to indicate that they might have switched. Parameters: pvs: list of page view objects for a given reader's session wikidb: Only language non-switches that involve this language will be retained. switches: if precalculated, this speeds up processing direction: "from" indicates the language switch must have had wikidb as the origin project. "to" indicates the language switch must have had wikidb as the destination project. Returns: no_switches: list of page view indices. For this session and wikidb = "enwiki" and direction = "from": [(dt=2019-02-16T11:31:53, proj=enwiki, title='Columbidae', wd='Q10856'), (dt=2019-02-16T11:32:05, proj=enwiki, title='Anarchism', wd='Q6199'), (dt=2019-02-16T11:32:13, proj=eswiki, title='Columbidae', wd='Q10856')] Then the no_switches would be of the form: [1] If direction was "to" or wikidb was "eswiki" then no page views would be returned. """ no_switches = [] # at least two different projects viewed in the session if len(set([p.proj for p in pvs])) > 1: if switches: all_switches = switches else: all_switches = get_lang_switch(pvs, [wikidb]) # did user have any switches of form: # direction == "from": wikidb -> other language # direction == "to": other language -> wikidb dir_switches_in_lang = set() for f,t in all_switches: # switched from wikidb -> other project if direction == "from" and pvs[f].proj == wikidb: dir_switches_in_lang.add(f) # switched from other project -> wikidb elif direction == "to" and pvs[t].proj == wikidb: dir_switches_in_lang.add(t) if dir_switches_in_lang: # find all wikidata items not viewed in multiple languages # preserve which one was viewed first for i in range(0, len(pvs)): if pvs[i].proj == wikidb and i not in dir_switches_in_lang: no_switches.append(i) return no_switches
geohci/language-switching
session_utils.py
session_utils.py
py
8,958
python
en
code
2
github-code
6
25508679765
#!/usr/bin/env python3 import shutil import psutil import socket import report_email import time import os def check_disk_usage(disk): disk_usage = shutil.disk_usage(disk) free = (disk_usage.free / disk_usage.total) * 100 return free > 20 def check_cpu_usage(): usage = psutil.cpu_percent(1) return usage < 80 def check_memory(): memory = psutil.virtual_memory()[1] / 10**6 return memory > 500 def check_localhost(): #print(socket.gethostbyname('localhost')) if socket.gethostbyname('localhost') == '127.0.0.1': return True else: return False def alert(error): sender = "[email protected]" receiver = "{}@example.com".format(os.environ.get('USER')) subject = error body = "Please check your system and resolve the issue as soon as possible." message = report_email.generate(sender, receiver, subject, body, '') report_email.send(message) def main(): while True: if not check_disk_usage('/'): alert('Error - Available disk space is less than 20%') if not check_cpu_usage(): alert('Error - CPU usage is over 80%') if not check_memory(): alert('Error - Available memory is less than 500MB') if not check_localhost(): alert('Error - localhost cannot be resolved to 127.0.0.1') time.sleep(60) if __name__ == "__main__": main()
paesgus/AutomationTI_finalproject
health_check.py
health_check.py
py
1,330
python
en
code
0
github-code
6
72143877628
''' Escribir un programa en Python que convierta millas a kilómetros. Se deben imprimir los siguientes mensajes: Bienvenido (ingrese su nombre): <nombre> Ingrese las millas a convertir: <millas> Hola <nombre>, la conversión resulta: <resultado> km Guarde el programa en un archivo que se llame m2k.py ''' name = input('Bienvenido (ingrese su nombre): ') miles = float(input('Ingrese las millas a convertir:')) mile_kilometer_ratio = 1.609344 kilometers = miles * mile_kilometer_ratio # Notar que en este caso usamos f-strings para generar la cadena de texto completa. # la notación {kilometers:.2f} indica a Python que queremos visualizar solamente 2 decimales de # la variable kilometers print(f'Hola {name}, la conversión resulta:\n {kilometers:.2f} Km')
levensworth/udesa-pc-tutorial
2022-b/1-operaciones/clase_3_e2.py
clase_3_e2.py
py
767
python
es
code
2
github-code
6
74227616828
from flask import render_template,request,redirect,url_for from . import main from ..request import get_news_sources,get_allArticles,get_headlines from ..models import Sources, Articles #views @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' # getting sources business_sources = get_news_sources('business') sports_sources = get_news_sources('sports') technology_sources = get_news_sources('technology') entertainment_sources = get_news_sources('entertainment') # news_sources = get_news_sources('sources') title = "Breaking News" return render_template('index.html', title = title, business_sources = business_sources, sports_sources=sports_sources, technology_sources=technology_sources,entertainment_sources=entertainment_sources) # @main.route('/articles') # def articles(): # ''' # view article page # ''' # articles = get_allArticles(id) # return render_template("articles.html", id = id, articles = articles) @main.route('/articles/<int:id>') def articles(id): """_ to display news and article details """ articles = get_allArticles(id) return render_template("articles.html", id = id, articles =articles) @main.route('/headlines') def headlines(): ''' view headline page ''' #getting headlines headline_id = get_headlines('id') headline_name = get_headlines('name') title = 'Top Headlines' return render_template('headlines.html', title = title, headline_id= headline_id, headline_name=headline_name)
chanaiagwata/News_API
app/main/views.py
views.py
py
1,612
python
en
code
0
github-code
6
27614632298
# coding:utf-8 from appium import webdriver class Werdriver: def get_driver(self): configure = { "platformName": "Android", "deviceName": "PBV0216922007470", "app": "/Users/luyunpeng/Downloads/ci_v1.5.0_2019-07-18_16-35_qa.apk", "noReset": "true" } driver = webdriver.Remote("http://127.0.0.1:4723/wd/hub", configure) return driver if __name__ == '__main__': test = Werdriver() test.get_driver()
lyp0129/study_appium
get_driver/test_driver.py
test_driver.py
py
497
python
en
code
0
github-code
6
22371526331
from odoo import api, SUPERUSER_ID def post_init_hook(cr, registry, vals=None): """For brand new installations""" env = api.Environment(cr, SUPERUSER_ID, {}) # Change only those with no weight already set products_init = env['product.product'].search([ ('weight', '=', 0), ]).filtered('is_weight_uom') for product in products_init: product._onchange_uom_product_weight_through_uom()
detian08/bsp_addons
product-attribute-11.0/product_weight_through_uom/hooks.py
hooks.py
py
425
python
en
code
1
github-code
6
21951291908
#Описать функцию AddRightDigit(D, K), добавляющуюю к целому числу положительному #числу К справа цифру D(D - входной параметр целого типа лежащий в диапазоне от 0 до 9, К - параметр целого типа, # являющийся входным и выходный одновременно). С помощью функции последовательно добавиить к данному числу К справа данный цифры D1,D2, # выводя рез-тат каждого добавления D1= int(input("Введите цифру от 0 до 9: ")) K = int(input("Введите число К: ")) if type(D1)!=int: print("Введите целую цифру от 0 до 9") D1= int(input("Введите цифру от 0 до 9: ")) if not(0<=D1<=9): print("Введите число в указанном диапазоне") D1 = int(input("Введите цифру от 0 до 9: ")) def AddRightDigit(D2): print("Промежуточный результат с D1: ",K, D1, sep="") print("Конечный результат с D2: ",K, D1,D2, sep="") AddRightDigit(D2=int(input("Снова введите цифру от 0 до 9: ")))
DaNil4594/EremenkoPythonProject
PZ_5/PZ_5_2.py
PZ_5_2.py
py
1,320
python
ru
code
0
github-code
6
5449785498
from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD import matplotlib.pyplot as plt from keras.datasets import cifar10 from keras.utils import np_utils (xtrain,ytrain),(xtest,ytest) = cifar10.load_data() print('xtrain.shape',xtrain.shape) print('ytrain.shape',ytrain.shape) print('ytest.shape',ytest.shape) print('xtest.shape',xtest.shape) batchsize=200 cats = 10 nepoch = 100 xtrain = xtrain.reshape(50000,3072) xtest = xtest.reshape(10000,3072) xtrain = xtrain/255 xtest = xtest/255 ytrain = np_utils.to_categorical(ytrain,cats) ytest = np_utils.to_categorical(ytest,cats) model = Sequential() model.add(Dense(units=10,input_shape=(3072,),activation='softmax',kernel_initializer='normal')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.05), metrics=['accuracy']) model.summary() history = model.fit(xtrain, ytrain, nb_epoch=nepoch, batch_size=batchsize, verbose=1) # Evaluate evaluation = model.evaluate(xtest, ytest, verbose=1) print('Summary: Loss over the test dataset: %.2f, Accuracy: %.2f' % (evaluation[0], evaluation[1]))
daftengineer/kerasSagemaker
test.py
test.py
py
1,101
python
en
code
0
github-code
6
23186461899
"""FECo3: Python bindings to a .fec file parser written in Rust.""" from __future__ import annotations import os from functools import cached_property from pathlib import Path from typing import TYPE_CHECKING, NamedTuple from . import _feco3, _version if TYPE_CHECKING: import pyarrow as pa __version__ = _version.get_version() """Version string for this package.""" class Header(NamedTuple): """The header of a [FecFile][feco3.FecFile]. Attributes: fec_version: The version of the FEC file format. software_name: The name of the software that generated the file. software_version: The version of the software that generated the file. This isn't present in some older FEC files. report_id: If this .fec file is an amendment to a previous filing, the filing number of the original. report_number: If this .fec file is an amendment to a previous filing, which number amendement this is (1, 2, 3 etc) """ fec_version: str software_name: str software_version: str | None report_id: str | None report_number: str | None class Cover(NamedTuple): """The Cover Line of an [FecFile][feco3.FecFile]. Attributes: form_type: The form type of the filing, eg. "F3" filer_committee_id: The FEC-assigned ID of the committee that filed the report, eg "C00618371" """ form_type: str filer_committee_id: str class FecFile: """An FEC file.""" def __init__(self, src: str | os.PathLike) -> None: """Create a new FecFile. This doesn't do any reading or parsing until you access one of the members. Args: src: A path or a URL to an FEC file. If a string that starts with "http://" or "https://", it will be treated as a URL. Otherwise, it will be treated as a path. """ if isinstance(src, str) and ( src.startswith("http://") or src.startswith("https://") ): self._src = src self._wrapped = _feco3.FecFile.from_https(self._src) else: self._src = Path(src) self._wrapped = _feco3.FecFile.from_path(self._src) @cached_property def header(self) -> Header: """The [Header][feco3.Header] of the FEC file. The first time this is accessed, the FEC file will be read and parsed as far as needed. Subsequent accesses will return the same object. """ h = self._wrapped.header return Header( fec_version=h.fec_version, software_name=h.software_name, software_version=h.software_version, report_id=h.report_id, report_number=h.report_number, ) @cached_property def cover(self) -> Cover: """The [Cover][feco3.Cover] of the FEC file. The first time this is accessed, the FEC file will be read and parsed as far as needed. Subsequent accesses will return the same object. """ c = self._wrapped.cover return Cover( form_type=c.form_type, filer_committee_id=c.filer_committee_id, ) def to_parquets(self, out_dir: str | os.PathLike) -> None: """Write all itemizations in this FEC file to parquet files. There will be one parquet file for each record type, eg. ``sa11.parquet``. """ parser = _feco3.ParquetProcessor(out_dir) parser.process(self._wrapped) def to_csvs(self, out_dir: str | os.PathLike) -> None: """Write all itemizations in this FEC file to CSV files. There will be one CSV file for each record type, eg. ``sa11.csv``. """ parser = _feco3.CsvProcessor(out_dir) parser.process(self._wrapped) def __repr__(self) -> str: src_str = f"src={self._src!r}" return f"{self.__class__.__name__}({src_str})" # This is what rust parquet uses as a batch size # https://docs.rs/parquet/40.0.0/src/parquet/file/properties.rs.html#83 DEFAULT_PYARROW_RECORD_BATCH_MAX_SIZE = 1024 * 1024 class ItemizationBatch(NamedTuple): """A batch of itemizations. Attributes: code: The code of the itemization type, eg. "SA11AI" records: A [pyarrow.RecordBatch][pyarrow.RecordBatch] of itemizations. """ code: str records: pa.RecordBatch class PyarrowBatcher: """ Iterates an [FecFile](feco3.FecFile) and yields [ItemizationBatch](feco3.ItemizationBatch)s of itemizations. """ # noqa: E501 def __init__(self, fec_file: FecFile, max_batch_size: int | None = None) -> None: """Create a new PyarrowBatcher. Args: fec_file: The [FecFile][feco3.FecFile] to iterate. max_batch_size: The max rows per [pyarrow.RecordBatch][pyarrow.RecordBatch]. Defaults to 1024 * 1024, which is what rust parquet uses. """ self._fec_file = fec_file if max_batch_size is None: max_batch_size = DEFAULT_PYARROW_RECORD_BATCH_MAX_SIZE self._wrapped = _feco3.PyarrowBatcher(max_batch_size) def __iter__(self) -> PyarrowBatcher: return self def __next__(self) -> ItemizationBatch: """Get the next batch of itemizations from the FEC file.""" pair = self._wrapped.next_batch(self._fec_file._wrapped) if pair is None: raise StopIteration code, batch = pair return ItemizationBatch(code, batch)
NickCrews/feco3
python/src/feco3/__init__.py
__init__.py
py
5,512
python
en
code
2
github-code
6
1530038484
import requests import json from bs4 import BeautifulSoup def songwhip_it(url): html = requests.get('https://songwhip.com/'+url).content soup = BeautifulSoup(html, 'html.parser') links_text = list(soup.findAll('script'))[2].get_text() links_json = json.loads(links_text[links_text.index('{'):-1])['links'] return links_json songwhip_it("https://open.spotify.com/track/4Aep3WGBQlpbKXkW7kfqcU")
kartikye/q
linker.py
linker.py
py
415
python
en
code
0
github-code
6
34142194304
import numpy as np import scipy.constants from pathlib import Path class ElectricAcceleration: bodies = [] def __init__(self, bodies): """This will allow the list of particles from the Accelerator module to be inserted letting the ElectricAcceleration class calculate their acceleration""" self.bodies = bodies def acceleration(self, mag1, mag2, mag3, sinelec1, sinelec2, sinelec3): """The values of the electic and magnetic field set in the Accelerator file are imported here""" constantelectric=np.array([sinelec1, sinelec2, sinelec3]) magnetic=np.array([mag1, mag2, mag3]) magnitudeMagnetic=np.linalg.norm(magnetic) for particle1 in self.bodies: """The electric field due to particle-particle interactions and the acceleration are set to be arrays""" electricSection=np.array([0., 0., 0.]) acceleration = np.array([0., 0., 0.]) """The charge mass and velocity of the particles are set to be their values as calculated in the particle class""" c1 = particle1.charge m1 = particle1.mass v1 = particle1.velocity #kineticE = 0 for particle2 in self.bodies: if particle1 != particle2: """This allows the calculation of the acceleration due to the electric and magnetic fields for each body in the system""" m2 = particle2.mass c2 = particle2.charge v2 = particle2.velocity """This calculates the distance between the accelerating body and the body causing the acceleration, this will only apply when 2 or more charged particles are present""" r = np.array(particle1.position) - np.array(particle2.position) magnitudeR = np.linalg.norm(r) const=1/(4*scipy.constants.pi*scipy.constants.epsilon_0) #electricSection=np.array([1,1,0]) """This calculates the electric field acting on a charged particle due to each other charged particle in the system""" electric=np.array([const*(c2/magnitudeR**2)]) electricSection += ((electric/magnitudeR)*r) #kineticE=np.linalg.norm(0.5*m1*v1**2) #update magnetic with input functions """This combines the effects of the constant sinusoidal electric field and the effect due to other charged particles""" totalelectric=electricSection+constantelectric """The value for the total electric field is then used in loretz equation to calculate the acceleration due to both the electric and magnetic fields""" qvb=np.cross((c1*v1), magnetic) acceleration=(((c1*totalelectric)+(qvb))/m1)+acceleration #particle1.kineticE=kineticE """This sets the acceleration of the particle to be the previously calculated value for the current time step""" particle1.acceleration = acceleration #print(acceleration) #for particle1 in self.bodies: # """This allows the calculation of the angular and linear momentum of the system""" # angularMomentum = 0 # momentum = 0 #for particle2 in self.bodies: # if particle1 != particle2: # m1 = particle1.mass # r = np.array(particle1.position) - np.array(particle2.position) # momentum = m1*np.linalg.norm(particle1.velocity) # angularMomentum = momentum * np.linalg.norm(r) #particle1.momentum = momentum #particle1.angularMomentum = angularMomentum
Lancaster-Physics-Phys389-2020/phys389-2020-project-twgrainger
LidlFieldV1.py
LidlFieldV1.py
py
3,815
python
en
code
0
github-code
6
74179568189
''' To run test: move into same directory as spotify_api.py file ''' import unittest import spotify_api import spotipy import pandas as pd from spotipy.oauth2 import SpotifyClientCredentials client_id = 'ea776b5b86c54bd188d71ec087b194d3' client_secret = '1e0fcbac137c4d3eb2d4cc190693792a' # keep this hidden redirect_uri = 'http://localhost:' # will be changed class TestSpotify(unittest.TestCase): client_credentials_manager = None sp = None @classmethod def setUpClass(cls): cls.client_credentials_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret) cls.sp = spotipy.Spotify(client_credentials_manager=cls.client_credentials_manager) def testGetArtistInfoReturns(self): an_dict = dict() au_dict = dict() artist = "Bad Suns" info = spotify_api.get_artist_info(self.sp, artist, an_dict, au_dict) self.assertIsNotNone(info) def testGetArtistInfo(self): an_dict = dict() au_dict = dict() artist = "Bad Suns" info = spotify_api.get_artist_info(self.sp, artist, an_dict, au_dict) self.assertEqual(5, len(info)) # make sure the number of albums recorded is correct def testArtistToDF(self): an_dict = dict() au_dict = dict() artist = "Bad Suns" info = spotify_api.get_artist_info(self.sp, artist, an_dict, au_dict) df = spotify_api.artist_to_csv("Bad Suns", info) self.assertEqual(58, len(df)) # make sure the number of albums recorded is correct def testDFToDict(self): an_dict = dict() au_dict = dict() artist = "Bad Suns" info = spotify_api.get_artist_info(self.sp, artist, an_dict, au_dict) df = spotify_api.artist_to_csv("Bad Suns", info) d = spotify_api.artist_df_to_dict(df, "Bad Suns") self.assertEqual(13, len(d)) # make sure the number of albums recorded is correct def testDFToSongs(self): an_dict = dict() au_dict = dict() artist = "Bad Suns" info = spotify_api.get_artist_info(self.sp, artist, an_dict, au_dict) df = spotify_api.artist_to_csv("Bad Suns", info) songs = spotify_api.artist_df_to_songs(df, "Bad Suns") self.assertEqual(13, len(songs)) # make sure the number of albums recorded is correct unittest.main()
dylanmccoy/songtrackr
tests/spotify_unittest.py
spotify_unittest.py
py
2,431
python
en
code
0
github-code
6
3967140891
import torch def batch_horizontal_flip(tensor, device): """ :param tensor: N x C x H x W :return: """ inv_idx = torch.arange(tensor.size(3) - 1, -1, -1).long().to(device) img_flip = tensor.index_select(3, inv_idx) return img_flip def euclidean_dist(x: torch.Tensor, y: torch.Tensor): """ Args: x: pytorch Variable, with shape [m, d] y: pytorch Variable, with shape [n, d] Returns: dist: pytorch Variable, with shape [m, n] """ m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(beta=1, alpha=-2, mat1=x, mat2=y.t()) dist.clamp_(min=1e-12) dist.sqrt_() # for numerical stability return dist if __name__ == '__main__': a = torch.tensor([[0., 0.]]) b = torch.tensor([[1., 1.]]) dist = euclidean_dist(a, b) print(dist) a = torch.randn(4, 2048, 16, 4) b = torch.tensor([[1., 1.]]) dist = euclidean_dist(a, b) print(dist)
clw5180/reid-baseline
utils/tensor_utils.py
tensor_utils.py
py
1,068
python
en
code
null
github-code
6
10137995508
import socket sock = socket.socket() server_address = ('localhost', 9080) print('connecting to {} port {}'.format(*server_address)) sock.connect(server_address) message = str.encode("CREATE TABLE VADICS (id int, name str);") try: print('sending {!r}'.format(message)) sock.sendall(message) amount_received = 0 amount_expected = len(message) while amount_received < amount_expected: data = sock.recv(1024) amount_received += len(data) print('received {!r}'.format(data)) finally: print('closing socket') sock.close()
etozhezhenechka/VadikDB
client.py
client.py
py
574
python
en
code
0
github-code
6
43346750218
if __name__ == '__main__': from ovh import * import argparse import logging logger = logging.getLogger("ovh/download_db") parser = argparse.ArgumentParser(description='Creates N workers on the OVH cloud.') parser.add_argument('--db-name', default='Contrastive_DPG_v2', help='name for MySQL DB') parser.add_argument('--db-path', default='../databases/', help='Path to database backup files') args = parser.parse_args() novac = get_nova_client() master = get_master_instance(novac) ssh_master = get_ssh_client(master) download_db(ssh_master, args.db_name, args.db_path) for instance in novac.servers.list(): logger.info(f"Downloading experiments from {instance.name}") rsync_experiments( instance.addresses["Ext-Net"][0]["addr"], local_experiments_path=f'../experiments/remote/{instance.name}' )
charleswilmot/Contrastive_DPG
src/ovh_download_db.py
ovh_download_db.py
py
899
python
en
code
0
github-code
6
36407185173
import pytest from logging import getLogger from barbucket.domain_model.types import * _logger = getLogger(__name__) _logger.debug(f"--------- ---------- Testing Types") def test_api_correct() -> None: _logger.debug(f"---------- Test: test_api_correct") try: test_api = Api.IB except AttributeError as e: assert False, e def test_api_incorrect() -> None: _logger.debug(f"---------- Test: test_api_incorrect") with pytest.raises(AttributeError): test_api = Api.NON_EXIST # type: ignore def test_exchange_correct() -> None: _logger.debug(f"---------- Test: test_exchange_correct") try: test_exchange = Exchange.XETRA except AttributeError as e: assert False, e def test_exchange_incorrect() -> None: _logger.debug(f"---------- Test: test_exchange_incorrect") with pytest.raises(AttributeError): test_exchange = Exchange.NON_EXIST # type: ignore def test_stock_type_correct() -> None: _logger.debug(f"---------- Test: test_stock_type_correct") try: test_contract_type = StockType.ETF except AttributeError as e: assert False, e def test_stock_type_incorrect() -> None: _logger.debug(f"---------- Test: test_stock_type_incorrect") with pytest.raises(AttributeError): test_contract_type = StockType.NON_EXIST # type: ignore def test_get_api_notation_for_exchange() -> None: _logger.debug(f"---------- Test: test_get_api_notation_for_exchange") trans = ApiNotationTranslator() expected = "IBIS" actual = trans.get_api_notation_for_exchange( exchange=Exchange.XETRA, api=Api.IB) assert actual == expected def test_get_exchange_from_api_notation() -> None: _logger.debug(f"---------- Test: test_get_exchange_from_api_notation") trans = ApiNotationTranslator() expected = Exchange.XETRA actual = trans.get_exchange_from_api_notation( name="IBIS", api=Api.IB) assert actual == expected def test_get_api_notation_for_contract_type() -> None: _logger.debug(f"---------- Test: test_get_api_notation_for_contract_type") trans = ApiNotationTranslator() expected = "COMMON" actual = trans.get_api_notation_for_stock_type( stock_type=StockType.COMMON_STOCK, api=Api.IB) assert actual == expected def test_get_contract_type_from_api_notation() -> None: _logger.debug(f"---------- Test: test_get_contract_type_from_api_notation") trans = ApiNotationTranslator() expected = StockType.COMMON_STOCK actual = trans.get_stock_type_from_api_notation( name="COMMON", api=Api.IB) assert actual == expected def test_get_api_notation_for_ticker_symbol() -> None: _logger.debug(f"---------- Test: test_get_api_notation_for_ticker_symbol") trans = ApiNotationTranslator() expected = "AB CD" actual = trans.get_api_notation_for_ticker_symbol( ticker_symbol=TickerSymbol(name="AB_CD"), api=Api.IB) assert actual == expected def test_get_ticker_symbol_from_api_notation() -> None: _logger.debug(f"---------- Test: test_get_ticker_symbol_from_api_notation") trans = ApiNotationTranslator() ticker_symbol = trans.get_ticker_symbol_from_api_notation( name="AB CD", api=Api.IB) assert type(ticker_symbol) == TickerSymbol assert ticker_symbol.name == "AB_CD"
mcreutz/barbucket
tests/domain_model/test_types.py
test_types.py
py
3,398
python
en
code
0
github-code
6
73022500347
import threading def even_list_sum(numbers): even_sum = sum(x for x in numbers if x % 2 == 0) print(f"Sum of even elements: {even_sum}") def odd_list_sum(numbers): odd_sum = sum(x for x in numbers if x % 2 != 0) print(f"Sum of odd elements: {odd_sum}") def main(): input_str = input("Enter a list of integers separated by spaces: ") numbers = list(map(int, input_str.split())) evenlist_thread = threading.Thread(target=even_list_sum, args=(numbers,)) oddlist_thread = threading.Thread(target=odd_list_sum, args=(numbers,)) evenlist_thread.start() oddlist_thread.start() evenlist_thread.join() oddlist_thread.join() print("Exit from main") if __name__ == "__main__": main()
vedangthete30/Python-Assignments
Assignment 7/Assignment7_3.py
Assignment7_3.py
py
738
python
en
code
0
github-code
6
30168009886
import requests import pandas as pd import arrow import warnings import io from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import smtplib import logging warnings.filterwarnings('ignore', 'Unverified HTTPS request') url = "https://protect.cylance.com/Reports/ThreatDataReportV1/memoryprotection/" token = "Token" fullurl = (url + token) path = 'Filepath' logfile = 'FilePath' nv = arrow.now() date = nv.shift(days=-1).format('M/D/YYYY') date2 = nv.shift(days=-1).format('YYYYMD') def email_send(email_data): from_addr = "EmailFrom" to_addr = "EmailTo" to_list = ["To_List"] msg = MIMEMultipart() msg['From'] = from_addr msg['To'] = to_addr msg['Subject'] = "Cylance Exploit Attempts for %s" %(date) part2 = MIMEText(email_data, 'html') msg.attach(part2) server = smtplib.SMTP("smtpRelay", 25) server.sendmail(from_addr,to_list,msg.as_string()) server.quit() if __name__ == '__main__': logging.basicConfig(filename=logfile, level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s') logging.info('Requesting MEM TDR') urlData = requests.get(fullurl).content rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) logging.info('Creating dataframe') df2 = pd.DataFrame(rawData) logging.info('Dropping Serial Column') df3 = df2.drop(["Serial Number",], axis = 1) logging.info('Filtering Data by date') test3 = (df3[df3['ADDED'].str.contains(date)]) logging.info('Selecting Column Headers') output = (test3[["Device Name","ADDED",'PROCESS NAME','ACTION','TYPE','USER NAME']]) print(output) if output.empty: logging.info('No Memory Exploit for %s' % (date)) else: logging.info('Creating CSV') output.to_csv(path + date2 + "mem.csv", index=False) logging.info('CSV Created') logging.info('Converting Data to HTML') email_data = output.to_html(index = False) logging.info('Preparing Email') email_send(email_data) logging.info('Email Sent')
cmoxley1/Cylance
MemTDREmail.py
MemTDREmail.py
py
2,128
python
en
code
0
github-code
6
43347425408
import numpy as np import os from collections import defaultdict, namedtuple import re from mpl_toolkits.axes_grid1.inset_locator import inset_axes class Collection(object): def __init__(self, path): self.path = path self.name = path.strip("/").split("/")[-1] self.data = defaultdict(list) self.RunDescription = namedtuple('RunDescription', ['n_sources', 'dim_sources', 'dim_shared', 'dim_correlate', 'dim_latent']) self.RunData = namedtuple('RunData', ['sources', 'shared']) for filename in os.listdir(self.path): self.add_data(filename) def add_data(self, filename): match = re.match("[0-9]+_[0-9]+_[0-9]+_[0-9]+_[0-9]+_[0-9]+_([0-9]+)_([0-9]+)_([0-9]+)_([0-9]+)_([0-9]+).npz", filename) if match: new_data = np.load(self.path + '/' + filename) run_description = self.RunDescription(*(int(x) for x in match.groups())) run_data = self.RunData(new_data["sources"], new_data["shared"]) self.data[run_description].append(run_data) def get_final_reconstruction_errors_means_stds(self): sources_data = { run_description: np.array([run_data.sources for run_data in run_data_list]) for run_description, run_data_list in self.data.items() } shared_data = { run_description: np.array([run_data.shared for run_data in run_data_list]) for run_description, run_data_list in self.data.items() } sources_means = { run_description: np.mean(data) for run_description, data in sources_data.items() } sources_stds = { run_description: np.std(np.mean(data, axis=-1)) for run_description, data in sources_data.items() } shared_means = { run_description: np.mean(data) for run_description, data in shared_data.items() } shared_stds = { run_description: np.std(np.mean(data, axis=-1)) for run_description, data in shared_data.items() } return sources_means, sources_stds, shared_means, shared_stds def plot_wrt_latent_dim(self, ax, legend=True, lasts=3, inset=False, ylabel=False, title='exclusive'): sources_means, sources_stds, shared_means, shared_stds = self.get_final_reconstruction_errors_means_stds() keys = list(sources_means.keys()) keys.sort(key=lambda x: x.dim_latent) x = np.array([key.dim_latent for key in keys]) sources_means = np.array([sources_means[key] for key in keys]) sources_stds = np.array([sources_stds[key] for key in keys]) shared_means = np.array([shared_means[key] for key in keys]) shared_stds = np.array([shared_stds[key] for key in keys]) # ax.plot([0], [1], color='grey', marker='o') # ax.plot([0, x[0]], [1, sources_means[0]], color='grey', linestyle='--') # ax.plot([0, x[0]], [1, shared_means[0]], color='grey', linestyle='--') x = np.concatenate([[0], x], axis=0) sources_means = np.concatenate([[1], sources_means], axis=0) sources_stds = np.concatenate([[0], sources_stds], axis=0) shared_means = np.concatenate([[1], shared_means], axis=0) shared_stds = np.concatenate([[0], shared_stds], axis=0) ax.plot(x, sources_means, color='b', linestyle='--', marker='o', label="exclusive") ax.plot(x, shared_means, color='r', linestyle='--', marker='o', label="shared") ax.fill_between(x, sources_means - sources_stds, sources_means + sources_stds, color='b', alpha=0.5) ax.fill_between(x, shared_means - shared_stds, shared_means + shared_stds, color='r', alpha=0.5) ax.axvline(keys[0].dim_shared + (keys[0].n_sources * keys[0].dim_sources), color='k', linestyle='--') ax.set_xlabel("latent dimension") if ylabel: ax.set_ylabel(r"mean reconstruction errors $\tilde{r}_{m}$ and $\tilde{r}_{e}$") else: ax.set_yticks([]) if title == 'exclusive': title = r"$d_{e} = " + "{}$".format(keys[0].dim_sources) elif title == 'n_sources': title = r"$n = {}$".format(keys[0].n_sources) ax.set_title(title) if legend: ax.legend(loc='center right') if inset: inset = inset_axes(ax, width="15%", height="30%", loc=1) inset.plot(x[-lasts:], sources_means[-lasts:], color='b', linestyle='--', marker='o', label="exclusive") inset.plot(x[-lasts:], shared_means[-lasts:], color='r', linestyle='--', marker='o', label="shared") inset.fill_between(x[-lasts:], sources_means[-lasts:] - sources_stds[-lasts:], sources_means[-lasts:] + sources_stds[-lasts:], color='b', alpha=0.5) inset.fill_between(x[-lasts:], shared_means[-lasts:] - shared_stds[-lasts:], shared_means[-lasts:] + shared_stds[-lasts:], color='r', alpha=0.5) inset.set_ylim([0, None]) if __name__ == '__main__': c = Collection('../data/trash/') c.compute_fits() fits = c.compute_fits_fixed_u0() print(fits)
charleswilmot/lossy_compression
src/collection.py
collection.py
py
5,139
python
en
code
0
github-code
6
38200290752
import speech_recognition as sr import pyttsx3 import screen_brightness_control as sbc import geocoder from geopy.geocoders import Nominatim r = sr.Recognizer() def SpeakText(command): engine = pyttsx3.init() engine.say(command) engine.runAndWait() while(1): try: with sr.Microphone() as source2: r.adjust_for_ambient_noise(source2, duration=0.2) audio2 = r.listen(source2) MyText = r.recognize_google(audio2) MyText = MyText.lower() print(MyText) SpeakText(MyText) except sr.RequestError as e: print("Could not request results; {0}".format(e)) except sr.UnknownValueError: print("unknown error occured")
Priyanshu360-cpu/Machine-Learning
repeat_audio.py
repeat_audio.py
py
746
python
en
code
3
github-code
6
71053381947
import logging import os logger = logging.getLogger() logger.setLevel(logging.DEBUG) logger.propagate = False # do not propagate logs to previously defined root logger (if any). formatter = logging.Formatter('%(asctime)s - %(levelname)s(%(name)s): %(message)s') # console consH = logging.StreamHandler() consH.setFormatter(formatter) consH.setLevel(logging.INFO) logger.addHandler(consH) # file handler request_file_handler = True log = logger resume_result_json = True class Bunch(dict): def __init__(self, *args, **kwds): super(Bunch, self).__init__(*args, **kwds) self.__dict__ = self AA_abb_dict = {"<unk>": 0, "<pad>": 1, "<start>": 2, "<eos>": 3, "A": 4, "C": 5, "D": 6, "E": 7, "F": 8, "G": 9, "H": 10, "I": 11, "K": 12, "L": 13, "M": 14, "N": 15, "P": 16, "Q": 17, "R": 18, "S": 19, "T": 20, "V": 21, "W": 22, "Y": 23} AA_abb_dict_T = {v:k for k, v in AA_abb_dict.items()} AA_dict = {"<unk>": 0, "<pad>": 1, "<start>": 2, "<eos>": 3, "ALA": 4, "CYS": 5, "ASP": 6, "GLU": 7, "PHE": 8, "GLY": 9, "HIS": 10, "ILE": 11, "LYS": 12, "LEU": 13, "MET": 14, "ASN": 15,"PRO": 16, "GLN": 17, "ARG": 18, "SER": 19, "THR": 20, "VAL": 21, "TRP": 22, "TYR": 23} pep_max_length_uniprot = 40 pep_max_length_pepbdb = 40 EGCM_max_length = 400 process_pepbdb = True process_uniprot = False pepbdb_source = "/home/chens/data/pepbdb/pepbdb" pepbdb_processed = 'pepbdb_sorted.json' uniprot_yes_source = '/home/chens/data/uniprot/uniprot-reviewed_yes.fasta' uniprot_no_source = '/home/chens/data/uniprot/uniprot-reviewed_no.fasta' uniprot_processed = 'uniprot.json' test_result = 'test_result.json' EGCM_max_value = 100 EGCM_embeded_length = 50 train_mode = 'finetune' #or pretrain pretrained_model = 'output/07-14/pretrain_model_57.pt' fintuned_model = 'output/07-14-21/finetune_model_59.pt' final_model = 'output/07-15-12/z_gen_model_59.pt' savepath='output/{}' tbpath = 'tb/default' generated_savepath = 'generated.json' batch_size = 16 total_epoch = 60 sample_num = 20 def _cfg_import_export(cfg_interactor, cfg_, prefix='', mode='fill_parser'): """ Iterate through cfg_ module/object. For known variables import/export from cfg_interactor (dict, argparser, or argparse namespace) """ for k in dir(cfg_): if k[0] == '_': continue # hidden v = getattr(cfg_, k) if type(v) in [float, str, int, bool]: if mode == 'fill_parser': cfg_interactor.add_argument('--{}{}'.format(prefix, k), type=type(v), help='default: {}'.format(v)) elif mode == 'fill_dict': cfg_interactor['{}{}'.format(prefix, k)] = v elif mode == 'override': prek = '{}{}'.format(prefix, k) if prek in cfg_interactor: setattr(cfg_, k, getattr(cfg_interactor, prek)) elif type(v) == Bunch: # recurse; descend into Bunch _cfg_import_export(cfg_interactor, v, prefix=prefix + k + '.', mode=mode) def _override_config(args, cfg): """ call _cfg_import_export in override mode, update cfg from: (1) contents of config_json (taken from (a) loadpath if not auto, or (2) savepath) (2) from command line args """ config_json = vars(args).get('config_json', '') _cfg_import_export(args, cfg, mode='override') vae = Bunch( batch_size=1, lr=1e-3, # TODO lrate decay with scheduler s_iter=0, n_iter=200000, beta=Bunch( start=Bunch(val=1.0, iter=0), end=Bunch(val=2.0, iter=10000) ), lambda_logvar_L1=0.0, # default from https://openreview.net/pdf?id=r157GIJvz lambda_logvar_KL=1e-3, # default from https://openreview.net/pdf?id=r157GIJvz z_regu_loss='mmdrf', # kl (vae) | mmd (wae) | mmdrf (wae) cheaplog_every=500, # cheap tensorboard logging eg training metrics expsvlog_every=20000, # expensive logging: model checkpoint, heldout set evals, word emb logging chkpt_path='./output/{}/{}_model_{}.pt', clip_grad=5.0, ) vae.beta.start.iter = vae.s_iter vae.beta.end.iter = vae.s_iter + vae.n_iter // 5 model = Bunch( z_dim=100, c_dim=2, emb_dim=150, pretrained_emb=None, # set True to load from dataset_unl.get_vocab_vectors() freeze_embeddings=False, flow=0, flow_type='', E_args=Bunch( h_dim=80, # 20 for amp, 64 for yelp biGRU=True, layers=1, p_dropout=0.0 ), G_args=Bunch( G_class='gru', GRU_args=Bunch( # h_dim = (z_dim + c_dim) for now. TODO parametrize this? p_word_dropout=0.3, p_out_dropout=0.3, skip_connetions=False, ), deconv_args=Bunch( max_seq_len=pep_max_length_pepbdb if train_mode=='finetune' else pep_max_length_uniprot, num_filters=100, kernel_size=4, num_deconv_layers=3, useRNN=False, temperature=1.0, use_batch_norm=True, num_conv_layers=2, add_final_conv_layer=True, ), ), C_args=Bunch( min_filter_width=3, max_filter_width=5, num_filters=100, dropout=0.5 ) ) # config for the losses, constant during training & phases losses = Bunch( wae_mmd=Bunch( sigma=7.0, # ~ O( sqrt(z_dim) ) kernel='gaussian', # for method = rf rf_dim=500, rf_resample=False ), )
ChenShengsGitHub/structure-based-peptide-generator
cfg.py
cfg.py
py
5,610
python
en
code
0
github-code
6
36766343172
from sys import stdin n, m, v = map(int, stdin.readline().split()) graph = [[0]*(n+1) for _ in range(n+1)] visited = [False]*(n+1) # 간선 입력받기 for _ in range(m): x, y = map(int, stdin.readline().split()) graph[x][y] = 1 graph[y][x] = 1 def dfs(v): visited[v] = True print(v, end=" ") for i in range(1, n+1): if not visited[i] and graph[v][i] == 1: dfs(i) def bfs(v): visited[v] = False queue = [v] while queue: v = queue.pop(0) print(v, end=" ") for i in range(1, n+1): if visited[i] and graph[v][i] == 1: queue.append(i) visited[i] = False dfs() print() bfs() # 런타임 에러발생???
jiyoung-dev/Algorithm
2021study/dfs bfs/b1260_dfs와bfs.py
b1260_dfs와bfs.py
py
727
python
en
code
0
github-code
6
42862238176
import pgzrun import random import time import pygame.time # import pygame TITLE = "Brickbreaker" # initial score is 0 # time is use to get the initial time and stores in the variable 'start time' score = 0 # as ball hits the brick, score changes by 10 score_point = 10 start_time = time.time () elapsed_time = 0 # setting the size of the game window and number of bricks per row WIDTH = 640 HEIGHT = 480 PADDLE_HEIGHT = 1 BRICKS_PER_ROW = 10 # setting the paddle initial position paddle = Actor("paddlered.png") paddle.x = 320 paddle.y = 440 # choosing the ball type and setting the initial ball position ball = Actor("ballgrey.png") ball.x = 320 ball.y = 340 # setting the initial speed ball_x_speed = 2 ball_y_speed = 2 bricks = [] # placing the bricks in the screen current_brick_pos_x = 64 / 2 current_brick_pos_y = 32 / 2 # Brick sprites are 64 by 32 # defining the code for different types of bricks brick_sprites = ["element_green_rectangle.png", "element_yellow_rectangle.png", "element_red_rectangle.png"] middle_brick = ["element_grey_rectangle.png"] # this will be used to check if the game is over or not so that it can be used to restart and set everything back to its orignal position game_over_box = False # if we want to display any thing on the screen like ball, paddle, score; it must be written in this function def draw(): global start_time screen.fill((100, 149, 237)) paddle.draw() ball.draw() for brick in bricks: brick.draw() # to draw the score and elapsed time screen.draw.text("Score: " + str(score), bottomleft=(10, 480), color="red") update_elapsed_time() screen.draw.text("Time: " + str(elapsed_time), bottomright = (630, 480), color = "red") #if game is over it will call game over function to draw the message game_over() def update_elapsed_time(): global elapsed_time global start_time # this is the main code to checking the time # first it checks the universal(device) time(which will be our start time) # so as the game goes on it frequently keeps on subtracting the initial time from latest time elapsed_time = int(time.time() - start_time) def update_paddle(): # it will check the mouse coordinates horizontally # if its horizontal it will move the paddle with the mouse global paddle if pygame.mouse.get_rel()[0] != 0: paddle.x = pygame.mouse.get_pos()[0] # if the mouse is not moving it will follow the keys else: if keyboard.a: if (paddle.x - 4 > + 52): paddle.x = paddle.x - 4 if keyboard.d: if (paddle.x + 4 < 640 - 48): paddle.x = paddle.x + 4 # updates the position of given parameters def update_ball(): global ball_x_speed global ball_y_speed global score global game_over_box ball.x = ball.x + ball_x_speed ball.y = ball.y + ball_y_speed # checks weather the ball has hit the side walls if (ball.x > WIDTH - 16) or (ball.x < 0): ball_x_speed = ball_x_speed * -1 # checks weather the ball has hit the top or bottom wall, here speed -1 means reverse the direction if (ball.y > HEIGHT - 16) or (ball.y < 0): ball_y_speed = ball_y_speed * -1 # checks weather the ball had collide with paddle, if yes reverse the direction if ball.colliderect(paddle): ball_y_speed = ball_y_speed * -1 # checks the ball position, if collided at the bottom, the condition gave over becomes true # which will draw the game over sign in the screen if (ball.y > HEIGHT - 16): game_over_box = True for brick in bricks: # checks the condition if ball collide with the bricks,the bricks gets removed # and speed becomes -1, ball returns # score increases by 10 if ball.colliderect(brick): bricks.remove(brick) ball_y_speed = ball_y_speed * -1 score = score + score_point def update(): update_paddle() update_ball() update_elapsed_time() # this function is used to create the row of bricks with the given sprite and position def place_brick_row(sprite, pos_x, pos_y): any_brick = BRICKS_PER_ROW // 2 for i in range(BRICKS_PER_ROW): brick = Actor(sprite) brick.x = pos_x + i * 64 brick.y = pos_y if i == any_brick: any_brick = random.choice(middle_brick) brick.image = any_brick bricks.append(brick) for brick_sprite in brick_sprites: place_brick_row(brick_sprite, current_brick_pos_x, current_brick_pos_y) current_brick_pos_y += 32 def game_over(): if game_over_box: message = "Game Over" restart_game = "Press Enter to Restart" message_width = len(message) * 30 message_height = 50 # draws the message in the screen game over and want to restart screen.draw.filled_rect( Rect(WIDTH / 2 - message_width / 2, HEIGHT / 2 - message_height / 2, message_width, message_height), (255, 0, 0)) screen.draw.text(message, center=(WIDTH / 2, HEIGHT / 2), fontsize=40, color="white") screen.draw.text(restart_game, center=(WIDTH / 2, HEIGHT / 1.5), fontsize=40, color="white") # if user press enter it will call restart function if keyboard.RETURN: restart() # reset everything back as usual def restart(): global score, ball_x_speed, ball_y_speed, game_over_box, current_brick_pos_x, current_brick_pos_y, bricks, start_time, elapsed_time score = 0 start_time = time.time() elapsed_time = 0 ball.x = 320 ball.y = 340 ball_x_speed = 2 ball_y_speed = 2 paddle.x = 320 paddle.y = 440 bricks = [] current_brick_pos_x = 64 / 2 current_brick_pos_y = 32 / 2 current_brick_pos_y = 32 / 2 for brick_sprite in brick_sprites: place_brick_row(brick_sprite, current_brick_pos_x, current_brick_pos_y) current_brick_pos_y += 32 game_over_box = False pgzrun.go()
Nirrdsh/py-game
Assignment.py
Assignment.py
py
6,033
python
en
code
1
github-code
6
34050613320
import tensorflow as tf import numpy as np def model(X): X = X / 255 conv1 = tf.layers.batch_normalization(tf.layers.conv2d(X, 64, 6, activation=tf.nn.leaky_relu, padding="SAME")) pool1 = tf.layers.max_pooling2d(conv1, 2, 2) conv2 = tf.layers.batch_normalization(tf.layers.conv2d(pool1, 128, 3, activation=tf.nn.leaky_relu, padding="SAME")) conv3 = tf.layers.batch_normalization(tf.layers.conv2d(conv2, 128, 1, activation=tf.nn.leaky_relu, padding="SAME")) pool2 = tf.layers.max_pooling2d(conv3, 2, 2) conv4 = tf.layers.batch_normalization(tf.layers.conv2d(pool2, 256, 3, activation=tf.nn.leaky_relu, padding="SAME")) conv5 = tf.layers.batch_normalization(tf.layers.conv2d(conv4, 256, 1, activation=tf.nn.leaky_relu, padding="SAME")) conv6 = tf.layers.batch_normalization(tf.layers.conv2d(conv5, 256, 3, activation=tf.nn.leaky_relu, padding="SAME")) pool3 = tf.layers.max_pooling2d(conv6, 2, 2) conv7 = tf.layers.batch_normalization(tf.layers.conv2d(pool3, 512, 1, activation=tf.nn.leaky_relu, padding="SAME")) conv8 = tf.layers.batch_normalization(tf.layers.conv2d(conv7, 512, 3, activation=tf.nn.leaky_relu, padding="SAME")) conv9 = tf.layers.batch_normalization(tf.layers.conv2d(conv8, 512, 1, activation=tf.nn.leaky_relu, padding="SAME")) pool4 = tf.layers.max_pooling2d(conv9, 2, 2) conv10 = tf.layers.batch_normalization(tf.layers.conv2d(pool4, 1024, 3, activation=tf.nn.leaky_relu, padding="SAME")) out = tf.layers.conv2d(conv10, 25, 1) return out def calc_iou(boxes1,boxes2): #convert [x,y,w,h] to [x1,y1,x2,y2] boxes1_t=tf.stack([ boxes1[..., 0] - boxes1[...,2] / 2.0, boxes1[..., 1] - boxes1[...,3] / 2.0, boxes1[..., 0] + boxes1[...,2] / 2.0, boxes1[..., 1] + boxes1[...,3] / 2.0], axis=-1) boxes2_t = tf.stack([ boxes2[..., 0] - boxes2[..., 2] / 2.0, boxes2[..., 1] - boxes2[..., 3] / 2.0, boxes2[..., 0] + boxes2[..., 2] / 2.0, boxes2[..., 1] + boxes2[..., 3] / 2.0], axis=-1) #calc left up and right down lu = tf.maximum(boxes1_t[...,:2],boxes2_t[...,:2]) rd = tf.minimum(boxes1_t[...,2:],boxes2_t[...,2:]) # intersection intersection = tf.maximum(0.0, rd - lu) inter_square = intersection[..., 0] * intersection[..., 1] #calculate boxes1 and boxes2 square square1 = boxes1[...,2] * boxes1[...,3] square2 = boxes2[..., 2] * boxes2[..., 3] union_square = tf.maximum(square1 + square2 - inter_square, 1e-10) return tf.clip_by_value(inter_square / union_square, 0.0, 1.0) def loss(pred, out): out_score = out[..., 4] pred_score = pred[..., 4] pred_cat = pred[..., 5:] out_cat = out[..., 5:] pred_boxes = pred[...,0:4] out_boxes = out[...,0:4] obj=out_score no_obj = tf.ones_like(out_score) - out_score pred_boxes=tf.stack([ pred_boxes[...,0], pred_boxes[...,1], tf.square(pred_boxes[...,2]), tf.square(pred_boxes[...,3])], axis=-1) iou=calc_iou(pred_boxes,out_boxes) #object loss loss_obj= obj * tf.square(iou - pred_score) loss_obj = tf.reduce_mean(tf.reduce_sum( loss_obj,axis=[1,2] )) #no object loss loss_noobj = no_obj * tf.square(pred_score) loss_noobj = tf.reduce_mean(tf.reduce_sum(loss_noobj, axis=[1, 2])) # x,y,w,h loss pred_boxes_l=tf.stack([ pred_boxes[...,0], pred_boxes[...,1], pred_boxes[...,2], pred_boxes[...,3]], axis=-1) loss_box = tf.reduce_sum( tf.square(pred_boxes_l - out_boxes), axis=-1) loss_box = obj * loss_box loss_box = tf.reduce_mean( tf.reduce_sum (loss_box,axis=[1,2] ) ) #class loss loss_class = tf.reduce_sum( tf.square(out_cat - pred_cat),axis=-1 ) loss_class = obj * loss_class loss_class = tf.reduce_mean( tf.reduce_sum(loss_class ,axis=[1,2])) return loss_class + loss_obj + .5 * loss_noobj + 5 * loss_box
AbdelrahmanEldakrony/yolo-object-detection
yolo.py
yolo.py
py
4,066
python
en
code
0
github-code
6
71276866109
import setuptools with open("README.md", "r") as file: long_description = file.read() with open("requirements.txt", "r") as file: required_packages = file.read().splitlines() setuptools.setup( name="labscribe", version="0.4.7", author="Jay Morgan", author_email="[email protected]", description="A small package for managing python experiment scripts", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jaypmorgan/labscribe", packages=setuptools.find_packages(), python_requires=">=3", install_requires=required_packages, include_package_data=True, package_data={"labscribe": ["labscribe/data/*.sql"]})
jaypmorgan/labscribe
setup.py
setup.py
py
729
python
en
code
0
github-code
6
19124524287
from google.appengine.ext import ndb from components import utils import gae_ts_mon import config import model FIELD_BUCKET = 'bucket' # Override default target fields for app-global metrics. GLOBAL_TARGET_FIELDS = { 'job_name': '', # module name 'hostname': '', # version 'task_num': 0, # instance ID } CREATE_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/created', description='Build creation', ) START_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/started', description='Build start', ) COMPLETE_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/completed', description='Build completion, including success, failure and cancellation', ) HEARTBEAT_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/heartbeats', description='Failures to extend a build lease' ) LEASE_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/leases', description='Successful build lease extension', ) LEASE_EXPIRATION_COUNT = gae_ts_mon.CounterMetric( 'buildbucket/builds/lease_expired', description='Build lease expirations' ) CURRENTLY_PENDING = gae_ts_mon.GaugeMetric( 'buildbucket/builds/pending', description='Number of pending builds', ) CURRENTLY_RUNNING = gae_ts_mon.GaugeMetric( 'buildbucket/builds/running', description='Number of running builds' ) LEASE_LATENCY = gae_ts_mon.NonCumulativeDistributionMetric( 'buildbucket/builds/never_leased_duration', description=( 'Duration between a build is created and it is leased for the first time'), ) SCHEDULING_LATENCY = gae_ts_mon.NonCumulativeDistributionMetric( 'buildbucket/builds/scheduling_duration', description='Duration of a build remaining in SCHEDULED state', ) def fields_for(build, **extra): if build: tags = dict(t.split(':', 1) for t in build.tags) fields = { 'builder': tags.get('builder', ''), 'user_agent': tags.get('user_agent', ''), FIELD_BUCKET: build.bucket, } else: fields = { 'builder': '', 'user_agent': '', FIELD_BUCKET: '<no bucket>', } fields.update(extra) return fields def increment(metric, build, **fields): # pragma: no cover """Increments a counter metric.""" metric.increment(fields_for(build, **fields)) def increment_complete_count(build): # pragma: no cover assert build assert build.status == model.BuildStatus.COMPLETED increment( COMPLETE_COUNT, build, result=str(build.result), failure_reason=str(build.failure_reason or ''), cancelation_reason=str(build.cancelation_reason or ''), ) @ndb.tasklet def set_build_status_metric(metric, bucket, status): q = model.Build.query( model.Build.bucket == bucket, model.Build.status == status) value = yield q.count_async() metric.set(value, {FIELD_BUCKET: bucket}, target_fields=GLOBAL_TARGET_FIELDS) @ndb.tasklet def set_build_latency(metric, bucket, must_be_never_leased): q = model.Build.query( model.Build.bucket == bucket, model.Build.status == model.BuildStatus.SCHEDULED, ) if must_be_never_leased: q = q.filter(model.Build.never_leased == True) else: # Reuse the index that has never_leased q = q.filter(model.Build.never_leased.IN((True, False))) now = utils.utcnow() dist = gae_ts_mon.Distribution(gae_ts_mon.GeometricBucketer()) for e in q.iter(projection=[model.Build.create_time]): latency = (now - e.create_time).total_seconds() dist.add(latency) if dist.count == 0: dist.add(0) metric.set(dist, {FIELD_BUCKET: bucket}, target_fields=GLOBAL_TARGET_FIELDS) # Metrics that are per-app rather than per-instance. GLOBAL_METRICS = [ CURRENTLY_PENDING, CURRENTLY_RUNNING, LEASE_LATENCY, SCHEDULING_LATENCY, ] def update_global_metrics(): """Updates the metrics in GLOBAL_METRICS.""" futures = [] for b in config.get_buckets_async().get_result(): futures.extend([ set_build_status_metric( CURRENTLY_PENDING, b.name, model.BuildStatus.SCHEDULED), set_build_status_metric( CURRENTLY_RUNNING, b.name, model.BuildStatus.STARTED), set_build_latency(LEASE_LATENCY, b.name, True), set_build_latency(SCHEDULING_LATENCY, b.name, False), ]) for f in futures: f.check_success()
mithro/chromium-infra
appengine/cr-buildbucket/metrics.py
metrics.py
py
4,246
python
en
code
0
github-code
6
40238915211
from setuptools import setup, find_packages requires = [ 'buildbot', 'python-debian', 'xunitparser', ] setup( name='buildbot-junit', version='0.1', description='Junit for buildbot', author='Andrey Stolbuhin', author_email='[email protected]', url='https://github.com/ZeeeL/buildbot-junit', keywords='buildbot xunit junit steps shellcommand', packages=find_packages('src'), package_dir={'': 'src'}, include_package_data=True, zip_safe=False, install_requires=requires, )
ZeeeL/buildbot-junit
setup.py
setup.py
py
535
python
en
code
3
github-code
6
26273852906
"""Module for test case fixturing functions. """ from birgitta import timing __all__ = ['dataframes', 'write_fixtures'] def dataframes(fixtures, variant_name, spark_session): """Makes dataframes from fixtures. Args: fixtures (dict): Dict of fixtures variant_name (str): Name of fixture variant spark_session (SparkSesssion): Spark session used to create fixtures dataframe_source (DataframeSource): The source to write to, e.g. S3 Returns: A dict of `dataset name => dataframe` pairs """ # FUTURE: Try writing directly to parquet using pyarrow instead. Could be faster. # noqa 501 ret = {} for fixture in fixtures: ret[fixture.dataset.name] = fixture.df(variant_name, spark_session) return ret def write_fixtures(fixtures, variant_name, spark_session, dataframe_source): """Write fixtures to storage. Args: fixtures (dict): Dict of fixtures variant_name (str): Name of fixture variant spark_session (SparkSession): Spark session used to create fixtures dataframe_source (DataframeSource): The source to write to, e.g. FS """ timing.time("write_fixtures start") dfs = dataframes(fixtures, variant_name, spark_session) for ds_name in dfs.keys(): dataframe_source.write(dfs[ds_name], ds_name) timing.time("write_fixtures end")
telia-oss/birgitta
birgitta/recipetest/localtest/fixturing.py
fixturing.py
py
1,427
python
en
code
13
github-code
6
30078414055
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import pandas as pd import matplotlib.pyplot as plt from tensorflow.keras.utils import to_categorical print(tf.__version__) train = pd.read_csv(r"sign_mnist_train.csv") test = pd.read_csv(r"sign_mnist_test.csv") print(train.head()) train_labels = train['label'] test_labels = test['label'] del train['label'] del test['label'] train_images = train.values test_images = test.values print(train_images.shape, test_images.shape) # Normalize the data x_train = train_images / 255.0 x_test = test_images / 255.0 # Reshaping the data from 1-D to 3-D as required through input by CNN's x_train = x_train.reshape(-1,28,28,1) x_test = x_test.reshape(-1,28,28,1) y_train = to_categorical(train_labels) y_test = to_categorical(test_labels) print("image shape-", x_train.shape, x_test.shape) print("label shape-", y_train.shape, y_test.shape) model = Sequential() model.add(layers.Conv2D(32, (3,3), input_shape=(28,28,1), activation='relu')) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(32, (3,3), activation='relu')) model.add(layers.MaxPooling2D()) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.2)) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(25, activation='softmax')) print(model.summary()) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=10, validation_data = (x_test, y_test), batch_size=128) model.evaluate(x_test, y_test) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() # graph plot_graphs(history, 'accuracy') plot_graphs(history, 'loss')
daxjain789/Sign-Language-MNIST-with-CNN
sign_language.py
sign_language.py
py
2,118
python
en
code
0
github-code
6
4783520916
from railrl.misc.exp_util import * from railrl.launchers.exp_launcher import tdm_experiment import railrl.misc.hyperparameter as hyp from railrl.config.base_exp_config import variant as base_exp_variant from multiworld.envs.mujoco.cameras import * from multiworld.core.image_env import get_image_presampled_goals as image_env_presampled_goals_func variant = deep_update(base_exp_variant, dict( rl_variant=dict( do_state_exp=False, algo_kwargs=dict( tdm_kwargs=dict( max_tau=25, ), ), presample_goals=True, generate_goal_dataset_fctn=image_env_presampled_goals_func, goal_generation_kwargs=dict( num_goals_presampled=10000, ), replay_buffer_kwargs=dict( store_distributions=True, ), use_state_reward=True, vae_wrapped_env_kwargs=dict(), reward_params=dict( type='vectorized_state_distance', ), train_algo='mf-tdm', snapshot_gap=25, ), observation_modality='latent', tag='', )) env_params = { 'pm': { 'env_id': ['Image48PointmassUWallTrainEnvBig-v1'], # 'rl_variant.vae_base_path': [ # 'your-base-path-here', # ], 'rl_variant.vae_path': [ 'your-path-here', ], 'rl_variant.algo_kwargs.base_kwargs.max_path_length': [100], 'rl_variant.algo_kwargs.tdm_kwargs.max_tau': [25], 'rl_variant.algo_kwargs.base_kwargs.num_epochs': [200], 'rl_variant.exploration_type': ['epsilon'], 'rl_variant.exploration_noise': [0.1], 'rl_variant.algo_kwargs.base_kwargs.reward_scale': [1e0], 'rl_variant.snapshot_gap': [10], 'rl_variant.vis_kwargs.save_period': [20], 'rl_variant.vis_kwargs.vis_list': [[ 'v', ]], 'rl_variant.vis_kwargs.vis_blacklist': [[ 'reconstr_image_reproj_observation', ]], 'rl_variant.vae_wrapped_env_kwargs.v_func_heatmap_bounds': [(-1.5, 0.0)], }, 'pnr': { 'env_id': ['Image84SawyerPushAndReachArenaTrainEnvBig-v0'], # 'rl_variant.vae_base_path': [ # 'your-base-path-here', # ], 'rl_variant.vae_path': [ 'your-path-here', ], 'rl_variant.algo_kwargs.base_kwargs.max_path_length': [100], 'rl_variant.algo_kwargs.tdm_kwargs.max_tau': [25], 'rl_variant.algo_kwargs.base_kwargs.batch_size': [2048], 'rl_variant.algo_kwargs.base_kwargs.num_epochs': [500], 'rl_variant.exploration_type': ['ou'], 'rl_variant.exploration_noise': [0.3], 'rl_variant.algo_kwargs.base_kwargs.reward_scale': [1e1], 'rl_variant.snapshot_gap': [25], 'rl_variant.vis_kwargs.save_period': [50], 'rl_variant.vis_kwargs.vis_list': [[ 'plt', ]], }, } def process_variant(variant): rl_variant = variant['rl_variant'] if args.debug: rl_variant['algo_kwargs']['base_kwargs']['num_epochs'] = 4 rl_variant['algo_kwargs']['base_kwargs']['batch_size'] = 128 rl_variant['vis_kwargs']['num_samples_for_video'] = 2 rl_variant['vae_wrapped_env_kwargs']['num_samples_for_latent_histogram'] = 100 if 'env_kwargs' in variant and 'num_goals_presampled' in variant['env_kwargs']: variant['env_kwargs']['num_goals_presampled'] = 10 if 'goal_generation_kwargs' in rl_variant and \ 'num_goals_presampled' in rl_variant['goal_generation_kwargs']: rl_variant['goal_generation_kwargs']['num_goals_presampled'] = 10 if rl_variant['use_state_reward']: assert 'latent' not in rl_variant['reward_params']['type'] rl_variant['training_mode'] = 'train_env_goals' rl_variant['vis_kwargs']['save_video_env_only'] = True rl_variant['qf_kwargs']['structure'] = 'none' rl_variant['vf_kwargs']['structure'] = 'none' rl_variant['replay_buffer_kwargs']['ob_keys_to_save'] = [ 'state_observation', 'state_desired_goal', 'state_achieved_goal', 'latent_observation', 'latent_desired_goal', 'latent_achieved_goal', ] rl_variant['replay_buffer_kwargs']['goal_keys'] = ['state_desired_goal', 'latent_desired_goal'] rl_variant['replay_buffer_kwargs']['desired_goal_keys'] = ['state_desired_goal', 'latent_desired_goal'] variant['tag'] = 'max-tau-' + str(rl_variant['algo_kwargs']['tdm_kwargs']['max_tau']) rl_variant['train_algo'] = rl_variant['train_algo'] + "-" + variant['tag'] variant['train_algo'] = rl_variant['train_algo'] if __name__ == "__main__": args = parse_args() preprocess_args(args) search_space = env_params[args.env] load_vae_base_path_meta_data(search_space) sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) for exp_id, variant in enumerate(sweeper.iterate_hyperparameters(print_info=False)): process_variant(variant) run_experiment( exp_function=tdm_experiment, variant=variant, args=args, exp_id=exp_id, exp_type='train-tdm', )
snasiriany/leap
experiments/image/train_tdm.py
train_tdm.py
py
5,244
python
en
code
45
github-code
6
15909966165
''' 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? ''' def power_sum(exp): sum = 0 pow = 2 ** int(exp) for i in str(pow): sum = sum + int(i) return(sum) print(power_sum(1000))
beingnishas/projecteuler
016_Power_digit_sum.py
016_Power_digit_sum.py
py
276
python
en
code
0
github-code
6
23378159417
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.utils as utils LRELU_SLOPE = 0.1 def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def init_weights(m, mean=0.0, std=0.01): if isinstance(m, nn.Conv1d): m.weight.data.normal_(mean, std) class res_block1(nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.h = h self.convs1 = nn.ModuleList([ utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x): # lrelu -> cnn1 -> lrelu -> cnn2 -> residual x for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: utils.remove_weight_norm(l) for l in self.convs2: utils.remove_weight_norm(l) class res_block2(nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.h = h self.convs = nn.ModuleList([ utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), utils.weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: utils.remove_weight_norm(l) class generator(nn.Module): def __init__(self, h): super().__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = utils.weight_norm(nn.Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) resblock = res_block1 if h.resblock == '1' else res_block2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(utils.weight_norm( nn.ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.conv_post = utils.weight_norm(nn.Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) # This is the first layer that upsamples the number of channels from 80 to 8192 for i in range(self.num_upsamples): # Stacks the transpose-conv + resblocks 'num_upsamples' times. x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) # Decreases the num of channels xs = None for j in range(self.num_kernels): # Each iteration inputs into the resblocks if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels # In the end, all the individual outputs from the resblocks is meaned. # After all the resblocks, the final output is the dim of 32 in the current configuration. x = F.leaky_relu(x) x = self.conv_post(x) # Takes the 32 input channels and gives 1 channel of output x = torch.tanh(x) return x # Final output is (bs, 1, 2097152) for default config. def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: utils.remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() utils.remove_weight_norm(self.conv_pre) utils.remove_weight_norm(self.conv_post) class discriminator_p(nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super().__init__() self.period = period norm_f = utils.weight_norm if use_spectral_norm == False else utils.spectral_norm self.convs = nn.ModuleList([ norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = list() b, c, t = x.shape if t % self.period != 0: n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), 'reflect') t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class multi_period_discriminator(nn.Module): def __init__(self): super().__init__() self.discriminators = nn.ModuleList([ discriminator_p(i) for i in [2, 3, 5, 7, 11] ]) def forward(self, y, y_hat): # Takes actual out (y) and fake out (y_hat) y_d_rs, y_d_gs, fmap_rs, fmap_gs = list(), list(), list(), list() for i, d in enumerate(self.discriminators): # each discriminator has a different kernel size (but 1 depth) to compute only 1 period of audio. y_d_r, fmap_r = d(y) # calculates discrimination score for real (hence, 'r'). Look, I didn't pick the variables names okay. y_d_g, fmap_g = d(y_hat) # 'g' stands for generated y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class discriminator_s(nn.Module): def __init__(self, use_spectral_norm=False): super().__init__() norm_f = utils.weight_norm if use_spectral_norm == False else utils.spectral_norm self.convs = nn.ModuleList([ norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)), norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = list() for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class multi_scale_discriminator(nn.Module): def __init__(self): super().__init__() self.discriminators = nn.ModuleList([ discriminator_s(use_spectral_norm=True), discriminator_s(), discriminator_s(), ]) self.meanpools = nn.ModuleList([ nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2) ]) def forward(self, y, y_hat): # in MSD, you do not reshape the input data to differentiate between different period of the input audio. y_d_rs, y_d_gs, fmap_rs, fmap_gs = list(), list(), list(), list() for i, d in enumerate(self.discriminators): if i != 0: # you do not average-pool the raw audio. Also, you use spectral_norm on the raw audio. y = self.meanpools[i-1](y) # average-pooling the inputs y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) # discrimination scores for the inputs y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) # fmap are the feature maps. It's audio y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): # it is the mean absolute error a.k.a L1 Loss loss = 0 # all the losses calculated is added to the total loss. for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 # 2 is just a factor added to increase the influence of this loss to the overall loss def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss, r_losses, g_losses = 0, list(), list() for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) # real loss g_loss = torch.mean(dg**2) # gen loss loss += (r_loss + g_loss) # GAN Loss r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss, gen_losses = 0, list() for dg in disc_outputs: l = torch.mean((1-dg)**2) # GAN Loss for generators gen_losses.append(l) loss += l return loss, gen_losses if __name__ == '__main__': model = multi_period_discriminator() [print(model.discriminators[i].period) for i in range(5)]
uuzall/hifi_gan
model.py
model.py
py
10,620
python
en
code
0
github-code
6
19018842256
# https://atcoder.jp/contests/arc147/submissions/34636074 import sys N = int(sys.stdin.readline().rstrip()) P = [ int(x) for x in sys.stdin.readline().rstrip().split() ] ans = [] for i in range(N-2): for j in range(N-3, i-1, -1): if (j+1)%2 == P[j]%2 and (j+3)%2 != P[j+2]%2: P[j], P[j+2] = P[j+2], P[j] ans.append(['B', j+1]) for i in range(N-1): if (i+1)%2 != P[i]%2 and (i+2)%2 != P[i+1]%2: P[i], P[i+1] = P[i+1], P[i] ans.append(['A', i+1]) for i in range(N-2): for j in range(N-3, i-1, -1): if P[j] > P[j+2]: P[j], P[j+2] = P[j+2], P[j] ans.append(['B', j+1]) print(len(ans)) for el in ans: print("{} {}".format(el[0], el[1]))
minheibis/atcoder
questions/ARC147/B/ref_00.py
ref_00.py
py
743
python
en
code
0
github-code
6
2333095008
""" Random agent on Farm0 ===================== """ from rlberry.agents import AgentWithSimplePolicy from rlberry.manager import AgentManager, evaluate_agents, plot_writer_data from rlberry_farms.game0_env import Farm0 from rlberry.agents.torch.utils.training import model_factory_from_env import numpy as np env_ctor, env_kwargs = Farm0, {} class InstallationTestAgent(AgentWithSimplePolicy): name = "InstallationTestAgent" def __init__(self, env, **kwargs): AgentWithSimplePolicy.__init__(self, env, **kwargs) def fit(self, budget=10, **kwargs): observation = self.env.reset() episode_reward = 0 for ep in range(int(budget)): action = self.policy(observation) observation, reward, done, _ = self.env.step(action) episode_reward += reward if done: self.writer.add_scalar("episode_rewards", episode_reward, ep) episode_reward = 0 self.env.reset() def policy(self, observation): return 1 if __name__ == "__main__": manager = AgentManager( InstallationTestAgent, (env_ctor, env_kwargs), agent_name="InstallationTestAgent", fit_budget=10, eval_kwargs=dict(eval_horizon=150), n_fit=4, parallelization="process", mp_context="spawn", ) manager.fit() evaluation = evaluate_agents([manager], n_simulations=2, show=False).values print("Installation test : Done!") # This template file gives mean evaluation reward 96.
farm-gym/rlberry-farms
examples/installation_test.py
installation_test.py
py
1,556
python
en
code
0
github-code
6
12424083867
__author__ = "Vanessa Sochat, Alec Scott" __copyright__ = "Copyright 2021-2022, Vanessa Sochat and Alec Scott" __license__ = "Apache-2.0" from .command import Command import json # Every command must: # 1. subclass Command # 2. defined what container techs supported for (class attribute) defaults to all # 3. define run function with kwargs class Size(Command): supported_for = ["docker", "podman"] pre_message = "Sizing Container..." def run(self, **kwargs): """ Get a container size. """ # Always run this first to make sure container tech is valid self.check(**kwargs) # These are both required for docker/podman container_name = self.kwargs["container_name"] out, err = self.execute_host( [ self.tech, "container", "ls", "-s", "--filter", "name=%s" % container_name, "--format", '"{{ json .}}"', ] ) if not err: out = json.loads(out.strip().strip('"')) return self.return_success(out["Size"]) return self.return_failure(err) class InspectContainer(Command): supported_for = ["docker", "podman"] pre_message = "Inspecting Container..." def run(self, **kwargs): """ Inspect a container fully, or specific sections """ # Always run this first to make sure container tech is valid self.check(**kwargs) # These are both required for docker/podman container_name = self.kwargs["container_name"] # inspect defaults to labels and environment if self.args: for section in self.args: result = self.run_command( [ self.tech, "inspect", "--format", "{{json .%s }}" % section.capitalize(), container_name, ] ) else: result = self.run_command([self.tech, "inspect", container_name]) if result: return result return self.return_success()
syspack/paks
paks/commands/inspect.py
inspect.py
py
2,263
python
en
code
2
github-code
6
42666755991
# https://www.youtube.com/watch?v=y5DkiL6gIzY&ab_channel=Makekit # https://makecode.microbit.org/#editor pitch = 0 arm = 0 #Arm means on or off for the drone roll = 0 throttle = 0 yaw = 0 radio_group = 7 radio.set_group(radio_group) # Have the display show the radio set_group basic.show_number(radio_group) # To show the radio group number on the display # Function for when the a button is pressed on the transmitter # Want to decrease the speed # The input part is the inturrupt that detects the button being pressed # The section above the input is the function part where we'll add our code def on_button_pressed_a(): global throttle throttle -= 5 input.on_button_pressed(Button.A, on_button_pressed_a) # Function for when the b button is pressed on the transmitter # Want to increase the speed # Inside the functions, the varibales are local # Need to specify that is the global variable we are changing def on_button_pressed_b(): global throttle throttle += 5 input.on_button_pressed(Button.B, on_button_pressed_b) # To turn on and off the engines def on_button_pressed_ab(): global arm global throttle throttle = 0 if arm == 0: arm = 1 else: arm = 0 input.on_button_pressed(Button.AB, on_button_pressed_ab) # Shake to stop feature def on_gesture_shake(): global arm arm = 0 input.on_gesture(Gesture.SHAKE, on_gesture_shake) def on_forever(): #basic.show_number(throttle) # To display value on the board pitch = input.rotation(Rotation.PITCH) roll = input.rotation(Rotation.ROLL) # To fill a pixel when the motors are turned on_button_pressed basic.clear_screen() if arm == 1: led.plot(0,0) # Top Left Pixel # Throttle led.plot(0, Math.map(throttle,0,100,4,0)) # How to represent throttle if only leds from 0 - 4 # map(value you want to change, whats the lowest number it can be, whats the highest number it can be, # whats the lowest output number you want it to be, whats the highest output number you want it to be) # roll and pitch led.plot(Math.map(roll,-45, 45,0,4), Math.map(pitch,-45, 45,0,4)) # x-axis -> moves side to side, y-axis -> moves up and down # This function send 1 value with a name from transmitter to drone. Tells it whether it is roll or pitch or whatever and how much it is radio.send_value("P", pitch) radio.send_value("A", arm) radio.send_value("R", roll) radio.send_value("T", throttle) radio.send_value("Y", yaw) basic.forever(on_forever)
ogradyra/Cyber-Physical-Systems
weekly-code/week01/online_resources/youtube_video_code.py
youtube_video_code.py
py
2,541
python
en
code
1
github-code
6