seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
7366582703
#Código para sortear valores e organizá-los utilizando itemgetter da biblioteca operator, criando um ranking de vencedores from time import sleep from random import randint from operator import itemgetter classificação = () jogos = {'jogador1': randint(1,6), 'jogador2': randint(1,6), 'jogador3': randint(1,6), 'jogador4': randint(1,6)} print(f'== Resultados: ==') for k, v in jogos.items(): print(f'{k} tirou {v}') sleep(1) classificação = sorted(jogos.items(), key=itemgetter(1), reverse=True) print(f'-='*20) print(f'\* Classificação: */') for k, v in enumerate(classificação): print(f'{k+1}ª posição: {v[0]} com {v[1]}') sleep(1)
mateuzh/Python
desafio091.py
desafio091.py
py
694
python
pt
code
0
github-code
6
21215598425
# -*- coding: utf-8 -*- from datetime import datetime, timedelta from django.utils.translation import gettext as _ from django.db.models.manager import BaseManager import plotly.offline as plotly import plotly.graph_objs as go from reports import utils def weight_change( actual_weights: BaseManager, percentile_weights: BaseManager, birthday: datetime ): """ Create a graph showing weight over time. :param actual_weights: a QuerySet of Weight instances. :param percentile_weights: a QuerySet of Weight Percentile instances. :param birthday: a datetime of the child's birthday :returns: a tuple of the the graph's html and javascript. """ actual_weights = actual_weights.order_by("-date") weighing_dates: list[datetime] = list(actual_weights.values_list("date", flat=True)) measured_weights = list(actual_weights.values_list("weight", flat=True)) actual_weights_trace = go.Scatter( name=_("Weight"), x=weighing_dates, y=measured_weights, fill="tozeroy", mode="lines+markers", ) if percentile_weights: dates = list( map( lambda timedelta: birthday + timedelta, percentile_weights.values_list("age_in_days", flat=True), ) ) # reduce percentile data xrange to end 1 day after last weigh in for formatting purposes # https://github.com/babybuddy/babybuddy/pull/708#discussion_r1332335789 last_date_for_percentiles = max(weighing_dates) + timedelta(days=2) dates = dates[: dates.index(last_date_for_percentiles)] percentile_weight_3_trace = go.Scatter( name=_("P3"), x=dates, y=list(percentile_weights.values_list("p3_weight", flat=True)), line={"color": "red"}, ) percentile_weight_15_trace = go.Scatter( name=_("P15"), x=dates, y=list(percentile_weights.values_list("p15_weight", flat=True)), line={"color": "orange"}, ) percentile_weight_50_trace = go.Scatter( name=_("P50"), x=dates, y=list(percentile_weights.values_list("p50_weight", flat=True)), line={"color": "green"}, ) percentile_weight_85_trace = go.Scatter( name=_("P85"), x=dates, y=list(percentile_weights.values_list("p85_weight", flat=True)), line={"color": "orange"}, ) percentile_weight_97_trace = go.Scatter( name=_("P97"), x=dates, y=list(percentile_weights.values_list("p97_weight", flat=True)), line={"color": "red"}, ) data = [ actual_weights_trace, ] layout_args = utils.default_graph_layout_options() layout_args["barmode"] = "stack" layout_args["title"] = _("<b>Weight</b>") layout_args["xaxis"]["title"] = _("Date") layout_args["xaxis"]["rangeselector"] = utils.rangeselector_date() layout_args["yaxis"]["title"] = _("Weight") if percentile_weights: # zoom in on the relevant dates layout_args["xaxis"]["range"] = [ birthday, max(weighing_dates) + timedelta(days=1), ] layout_args["yaxis"]["range"] = [0, max(measured_weights) * 1.5] data.extend( [ percentile_weight_97_trace, percentile_weight_85_trace, percentile_weight_50_trace, percentile_weight_15_trace, percentile_weight_3_trace, ] ) fig = go.Figure({"data": data, "layout": go.Layout(**layout_args)}) output = plotly.plot(fig, output_type="div", include_plotlyjs=False) return utils.split_graph_output(output)
babybuddy/babybuddy
reports/graphs/weight_change.py
weight_change.py
py
3,806
python
en
code
1,766
github-code
6
72782974907
import _pickle as pickle import numpy as np from mtqt_source import MTQTSource from pathlib import Path from pyrocko import orthodrome import tensorflow_probability as tfp import waveform_processing as wp tfd = tfp.distributions pi = np.pi def find_closest_grid_point(lat_ev, lon_ev, depth_ev, path_models=None, gf_store_id=None, min_dist=7000., min_dist_depth=10000.): pathlist = Path(path_models).glob('model_%s_*' % gf_store_id) k = 0 for path in sorted(pathlist): path = str(path) model_coordinates = path.split("_") lat = float(model_coordinates[3]) lon = float(model_coordinates[4]) depth = float(model_coordinates[5]) dist = orthodrome.distance_accurate50m(lat_ev, lon_ev, lat, lon) if dist < min_dist: min_dist = dist dist_depth = abs(depth-depth_ev) if dist_depth < min_dist_depth: min_dist_depth = dist_depth best_model = path k = k+1 return best_model def grid_points_in_error_ellipses(lat_ev, lon_ev, depth_ev, error_h, error_z, path_models=None, gf_store_id=None): pathlist = Path(path_models).glob('model_%s_*' % gf_store_id) region = orthodrome.radius_to_region(lat_ev, lon_ev, error_h) grid_points = [] for path in sorted(pathlist): path = str(path) model_coordinates = path.split("_") lat = float(model_coordinates[3]) lon = float(model_coordinates[4]) depth = float(model_coordinates[5]) dists = orthodrome.distance_accurate50m_numpy(lat_ev, lon_ev, lat, lon) if dists < error_h: if depth_ev-error_z < depth and depth_ev+error_z > depth: grid_points.append(path) return grid_points def find_event(path_events, time): pathlist = Path(path_events).glob('ev_*') for path in sorted(pathlist): path = str(path)+"/" event = model.load_events(path+"event.txt")[0] if time-10 < event.time and time+10 > event.time: return event, path def loss_function_negative_log_likelihood(): neg_log_likelihood = lambda x, rv_x: -rv_x.log_prob(x) return neg_log_likelihood def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) def lambda_dist(scale=1e-3): return lambda t: tfd.Normal(loc=t, scale=scale) def getitem__all_values(filenames, idx, batch_size=72): batch_x = filenames[idx] data = [] labels = [] for i in range(len(filenames)): batch_x = filenames[i] f = open(batch_x, 'rb') data_events, labels_events, nsamples,\ events = pickle.load(f) f.close() for d, l in zip(data_events, labels_events): labels.append(l[0]) d = d[0] d = np.asarray(d) d = d.reshape(d.shape+(1,)) data.append(d) return np.array(data), np.array(labels), events def waveform_2dGenerator_from_files(filenames, batchsize=72): batchsize = batchsize while 1: data = [] labels = [] for i in range(len(filenames)): batch_x = filenames[i] f = open(batch_x, 'rb') data_events, labels_events, nsamples,\ events = pickle.load(f) f.close() for d, l in zip(data_events, labels_events): labels.append(l[0]) d = d[0] d = np.asarray(d) d = d.reshape(d.shape+(1,)) data.append(d) if len(labels) == batchsize: yield np.array(data), np.array(labels) data = [] labels = [] def convert_norm2real(values): true_mts = [] true_values = [] for p in values: p = p[0] v, w, kappa, sigma, h = p[3], p[4], p[0], p[1], p[2] v = (1/3)-(((1/3)*2)*v) w = ((3/8)*pi)-((((3/8)*pi)*2)*w) kappa = kappa*2.*pi sigma = (pi/2)-(2*(pi/2)*sigma) h = h if h > 1.: h = 1. if v > 1.: v = 1. mtqt_source = MTQTSource(v=v, w=w, kappa=kappa, sigma=sigma, h=h) mt = mtqt_source.pyrocko_moment_tensor() M = mtqt_source.m6 true_mts.append(mt) true_values.append(M) return true_mts, true_values def convert_waveforms_to_input(waveforms): waveforms_events = [waveforms[:]] data_events, nsamples = wp.prepare_waveforms(waveforms_events) data_events = np.asarray(data_events) data_events = data_events.reshape((data_events.shape[0],)+data_events.shape[1:]+(1,)) data_events = np.float32(data_events) return data_events def convert_data_events_to_input(data_events): data_events = np.asarray(data_events) data_events = data_events.reshape((data_events.shape[0],)+data_events.shape[1:]+(1,)) data_events = np.float32(data_events) return data_events def getitem_values(filenames, batch_size, idx): batch_x = filenames[idx] f = open(batch_x, 'rb') data_events, labels_events, nsamples, events = pickle.load(f) f.close() return np.array(data_events), np.array(labels_events), events
braunfuss/BNN-MT
cnn_util.py
cnn_util.py
py
6,023
python
en
code
9
github-code
6
10819501559
import yaml import librosa import numpy as np import os sr = 22050 namesong = 'LizNelson_Rainfall' def merge_stems(namesong): # Merge all instrumental stems into 1 mix and all vocal stems into 1 mix stream = open("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_METADATA.yaml", "r") docs = yaml.load_all(stream) list_vocal = [] list_instru = [] for doc in docs: for k, v in doc.items(): if k == 'stems': for cle, valeur in v.items(): for items in valeur.items(): if items[0] == 'instrument': if "singer" in items[1]: y, sr = librosa.load("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_STEMS/" + namesong + "_STEM_" + cle[1:3] + ".wav") if max(abs(y)) != 0: y = y / max(abs(y)) list_vocal.append(y) else: y, sr = librosa.load("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_STEMS/" + namesong + "_STEM_" + cle[1:3] + ".wav") if max(abs(y)) != 0: y = y / max(abs(y)) list_instru.append(y) vocal_sum = np.zeros(len(y)) instru_sum = np.zeros(len(y)) for i in range(len(list_vocal)): vocal_sum += list_vocal[i] for j in range(len(list_instru)): instru_sum += list_instru[j] if max(abs(vocal_sum)) != 0: vocal_sum = vocal_sum / max(abs(vocal_sum)) if max(abs(instru_sum)) != 0: instru_sum = instru_sum / max(abs(instru_sum)) mix_sum = np.zeros(len(y)) for k in range(len(y)): mix_sum[k] = vocal_sum[k] + instru_sum[k] librosa.output.write_wav("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_VOCALMIX.wav", vocal_sum, sr) librosa.output.write_wav("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_INSTRUMIX.wav", instru_sum, sr) librosa.output.write_wav("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_MIX_SUM.wav", mix_sum, sr) return 0 def show_intrumental(): a = 0 for namesong in os.listdir("./MedleyDB_sample/Audio/"): stream = open("./MedleyDB_sample/Audio/" + namesong + "/" + namesong + "_METADATA.yaml", "r") docs = yaml.load_all(stream) for doc in docs: for k, v in doc.items(): if k == "instrumental": if v == "yes": print(namesong) #if k == "genre": #if v == "Singer/Songwriter": #print(namesong, v) #show_intrumental()
moulinleo/Voice-Isolation
merge_stems.py
merge_stems.py
py
2,850
python
en
code
0
github-code
6
2277882687
import random import time import discord from discord.ext import commands import utils class Misc(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def profile(self, ctx, user: discord.Member = None): """ Get information about a Discord user. Argument 'user', if specified, is the user to get information about. 'user' can be submitted using the users name, nickname, id or a mention. If 'user' isn't entered it will display your profile. Included information: Nickname Name ID Account creation date Date of joining the server Current status (online, offline, away, etc) The top role in the server """ user = ctx.author if user is None else user # Create the embed object for the message em = utils.embed(title=f"{user.display_name} #{user.discriminator}", thumbnail=user.avatar_url, colour=user.colour) # Add fields containing all the information em.add_field(name="Name", value=user.name) em.add_field(name="Id", value=user.id) em.add_field(name="Created", value=utils.format_time(user.created_at)) em.add_field(name="Joined", value=utils.format_time(user.joined_at)) em.add_field(name="Status", value=user.status) em.add_field(name="Top role", value=user.top_role) # Adding user activity information if user.activity is not None: activity = user.activity.type.name.title() activity_name = user.activity.name # Formatting for if the activity is listening to make grammar correct activity = activity + ' to' if activity == 'Listening' else activity # Add support for Spotify by displaying the song title and the artist if activity_name == 'Spotify': activity_name += f': {user.activity.title} by {user.activity.artist}' em.add_field(name=activity, value=activity_name) await ctx.send(embed=em) @commands.command() async def ping(self, ctx): """ Test the latency to the bot and see how fast it responds """ # Create embed for message em = utils.embed(title=f"Ping", description="Pinging") start = time.perf_counter() message = await ctx.send(embed=em) end = time.perf_counter() # Work out Time difference and convert to milliseconds duration = (end - start) * 1000 em.description = f'Pong! {round(duration, 2)}ms' await message.edit(embed=em) @commands.command(aliases=["hi", "sup", "hey", "yo", "howdy"]) async def hello(self, ctx): """ Say hello and get a random greeting from the bot.""" # Pick a random greeting to reply with from the aliases greeting = random.choice([x.aliases for x in self.bot.commands if x.name == 'hello'][0]).title() # Send greeting message await ctx.send(embed=utils.embed(title="Hello", description=f"{greeting} {ctx.author.mention}!", thumbnail='https://static.tumblr.com/gwp7jk3/QXAma9845/k-on_wave.gif')) @commands.command(aliases=["calc"]) async def math(self, ctx, equation: str): """ Get the result to basic arithmetic. """ try: # Send result await ctx.send(embed=utils.embed(title="Math", description=f"{equation.strip()} = {eval(equation)}")) except SyntaxError: # If a syntax error occured print the result as "SyntaxError" await ctx.send(embed=utils.embed(title="Math", description=f"{equation.strip()} = SyntaxError")) @commands.command(aliases=["inv"]) async def invite(self, ctx): """ Get an invite link for the server. If a server doesn't have an invite link then a new one will be generated. Otherwise an existing one will be displayed. """ # Check for invite links if len(await ctx.guild.invites()) < 1: await ctx.guild.channels[0].create_invite() # Send invite link await ctx.send((await ctx.guild.invites())[0].url) def setup(bot): bot.add_cog(Misc(bot))
SkippyTheSnake/Discord-bot
cogs/misc.py
misc.py
py
3,962
python
en
code
0
github-code
6
16800280781
class Book: def __init__(self,id,name,isbn,page_count,issued,author,year): self.id = id self.name = name self.isbn = isbn self.page_count = page_count self.issued = issued self.author = author self.year = year def doIssue(self): self.issued = True def doReturn(self): self.issued = False def to_dict(self): return { "id" : self.id, "name" : self.name, "isbn" : self.isbn, "page_count" : self.page_count, "issued" : self.issued, "author" : self.author, "year" : self.year } #book = Book(1,"Book Name", 12345,200,2003,"John Doe", 2021) #print(book.to_dict())
ale90bsas/library-python-mongodb
book.py
book.py
py
775
python
en
code
0
github-code
6
28475246683
import tensorflow as tf gpus = tf.config.experimental.list_physical_devices(device_type='GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) import math import numpy as np from tensorflow.keras.regularizers import l2 tf.keras.backend.set_learning_phase(1) conv_init = tf.keras.initializers.VarianceScaling(scale=2.0, mode='fan_out', distribution='truncated_normal') dense_init = tf.keras.initializers.VarianceScaling(scale=1.0 / 3.0, mode='fan_out', distribution='uniform') #計算根據放寬倍數的filter數量 def round_filters(filters, width_coefficient): multiplier = width_coefficient divisor = 8 min_depth = None min_depth = min_depth or divisor filters *= multiplier new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: new_filters += divisor return int(new_filters) #計算根據深度倍數的layer def round_repeats(repeats, depth_coefficient): multiplier = depth_coefficient return int(math.ceil(multiplier * repeats)) def drop_connect(inputs, survival_prob): ''' 根據"Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf 隨機Drop一些Block ''' #非training階段,直接返回 #根據機率隨機Drop某個Block random_tensor = survival_prob batch_size = tf.shape(inputs)[0] random_tensor += tf.random.uniform([batch_size, 1, 1, 1], dtype=inputs.dtype) binary_tensor = tf.floor(random_tensor) output = tf.math.divide(inputs, survival_prob) * binary_tensor #tf.print('learn phase:', tf.keras.backend.learning_phase()) return tf.keras.backend.in_train_phase(output, inputs) class act_layer(tf.keras.layers.Layer): def __init__(self): super(act_layer, self).__init__() def call(self, inputs): return tf.nn.swish(inputs) #return tf.nn.relu(inputs) class SENet(tf.keras.layers.Layer): def __init__(self, num_filter, input_channels, se_ratio=0.25, **kwargs): super(SENet, self).__init__(**kwargs) self.reduce_filters = max(1, int(input_channels * se_ratio)) self.avgpool = tf.keras.layers.GlobalAveragePooling2D() self.reduce_conv = tf.keras.layers.Conv2D(filters=self.reduce_filters, kernel_size=(1,1), strides=(1,1), padding='same', kernel_initializer=conv_init, kernel_regularizer=l2(1e-5)) self.exapnd_conv = tf.keras.layers.Conv2D(filters=num_filter, kernel_size=(1,1), strides=(1,1), padding='same', kernel_initializer=conv_init, kernel_regularizer=l2(1e-5)) self.act = act_layer() def call(self, inputs): x = self.avgpool(inputs) x = tf.expand_dims(input=x, axis=1) x = tf.expand_dims(input=x, axis=1) x = self.reduce_conv(x) x = self.act(x) x = self.exapnd_conv(x) x = tf.nn.sigmoid(x) return inputs * x class MBConv(tf.keras.layers.Layer): def __init__(self, input_channels, output_channels, expand_ratio, kernel_size, strides, se_ratio = 0.25, drop_ratio=0.2): ''' Args: input_channels:input channels數量 output_channels:output channels數量 expand_ratio : 論文中MBConv後帶的數字 kernel_size: kernel size (3*3) or (5*5) strides: Conv stride 1 or 2 se_ratio: SENet 參數 drop_ratio:論文中的 drop connect機率 ''' super(MBConv, self).__init__() self.strides = strides self.input_channels = input_channels self.output_channels = output_channels self.survival_prob = 1 - drop_ratio self.drop_ratio = drop_ratio self.expand_ration = expand_ratio #根據expand ratio增加filter self.filters = input_channels * expand_ratio self.conv_0 = tf.keras.layers.Conv2D(filters=self.filters, kernel_size=(1,1), strides=(1,1), padding='same', use_bias=False, kernel_initializer=conv_init, kernel_regularizer=l2(1e-5)) self.bn_0 = tf.keras.layers.BatchNormalization() #depthwise convolution self.depth_conv_0 = tf.keras.layers.DepthwiseConv2D(kernel_size=kernel_size, strides=(self.strides, self.strides), padding='same', use_bias=False, kernel_initializer=conv_init, kernel_regularizer=l2(1e-5)) self.bn_1 = tf.keras.layers.BatchNormalization() #SENet self.SENet = SENet(self.filters, self.input_channels, se_ratio=se_ratio) #project convolution self.conv_1 = tf.keras.layers.Conv2D(filters=output_channels, kernel_size=(1,1), strides=(1,1), padding='same', use_bias=False, kernel_initializer=conv_init, kernel_regularizer=l2(1e-5)) self.bn_2 = tf.keras.layers.BatchNormalization() self.act_1 = act_layer() self.act_2 = act_layer() def call(self, inputs): #expand dim if self.expand_ration != 1: x = self.conv_0(inputs) x = self.bn_0(x) x = self.act_1(x) else: x = inputs #depthwise conv x = self.depth_conv_0(x) x = self.bn_1(x) x = self.act_2(x) #SENet x = self.SENet(x) x = self.conv_1(x) x = self.bn_2(x) if self.strides == 1 and self.input_channels == self.output_channels: if self.drop_ratio: x = drop_connect(x, self.survival_prob) x = tf.add(x, inputs) return x def creat_mbconv_block(input_tensor, input_channels, output_channels, layer_repeat, expand_ratio, kernel_size, strides, se_ratio = 0.25, drop_ratio=0.2): ''' 根據參數設定MBConv1, MBConv6 ... ''' #如果layer > 1,則接下來的MBConv block #會用output_channels當作input_channels,strides = 1 x = MBConv(input_channels = input_channels, output_channels = output_channels, expand_ratio = expand_ratio, kernel_size = kernel_size, strides = strides, se_ratio = se_ratio, drop_ratio=drop_ratio)(input_tensor) for i in range(layer_repeat - 1): x = MBConv(input_channels = output_channels, output_channels = output_channels, expand_ratio = expand_ratio, kernel_size = kernel_size, strides = 1, se_ratio = se_ratio, drop_ratio=drop_ratio)(x) return x def creat_efficient_net(width_coefficient, depth_coefficient, resolution, dropout_rate, num_classes=1000): ''' 總共分為九個部分 1.降採樣 2~8.不同的MBConv 9.Conv & Pooling & FC ''' img_input = tf.keras.Input(shape=(resolution, resolution, 3)) #第一部分 x = tf.keras.layers.Conv2D(filters=round_filters(32, width_coefficient), kernel_size=(3,3), strides=(2,2), padding='same', use_bias=False, kernel_initializer=conv_init, kernel_regularizer=l2(1e-5))(img_input) x = tf.keras.layers.BatchNormalization()(x) #第二部分 #2 x = creat_mbconv_block(x, input_channels=round_filters(32, width_coefficient), output_channels=round_filters(16, width_coefficient), layer_repeat=round_repeats(1, depth_coefficient), expand_ratio=1, kernel_size=(3,3), strides=1, drop_ratio=dropout_rate) #3 x = creat_mbconv_block(x, input_channels=round_filters(16, width_coefficient), output_channels=round_filters(24, width_coefficient), layer_repeat=round_repeats(2, depth_coefficient), expand_ratio=6, kernel_size=(3,3), strides=2, drop_ratio=dropout_rate) #4 x = creat_mbconv_block(x, input_channels=round_filters(24, width_coefficient), output_channels=round_filters(40, width_coefficient), layer_repeat=round_repeats(2, depth_coefficient), expand_ratio=6, kernel_size=(5,5), strides=2, drop_ratio=dropout_rate) #5 x = creat_mbconv_block(x, input_channels=round_filters(40, width_coefficient), output_channels=round_filters(80, width_coefficient), layer_repeat=round_repeats(3, depth_coefficient), expand_ratio=6, kernel_size=(3,3), strides=2, drop_ratio=dropout_rate) #6 x = creat_mbconv_block(x, input_channels=round_filters(80, width_coefficient), output_channels=round_filters(112, width_coefficient), layer_repeat=round_repeats(3, depth_coefficient), expand_ratio=6, kernel_size=(5,5), strides=1, drop_ratio=dropout_rate) #7 x = creat_mbconv_block(x, input_channels=round_filters(112, width_coefficient), output_channels=round_filters(192, width_coefficient), layer_repeat=round_repeats(4, depth_coefficient), expand_ratio=6, kernel_size=(5,5), strides=2, drop_ratio=dropout_rate) #8 x = creat_mbconv_block(x, input_channels=round_filters(192, width_coefficient), output_channels=round_filters(320, width_coefficient), layer_repeat=round_repeats(1, depth_coefficient), expand_ratio=6, kernel_size=(3,3), strides=1, drop_ratio=dropout_rate) #9 x = tf.keras.layers.Conv2D(filters=round_filters(1280, width_coefficient), kernel_size=(1,1), strides=(1,1), padding='same', use_bias=False, kernel_regularizer=l2(1e-5))(x) x = tf.keras.layers.BatchNormalization()(x) x = act_layer()(x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(dropout_rate)(x) x = tf.keras.layers.Dense(units=num_classes, kernel_initializer=dense_init, kernel_regularizer=l2(1e-5))(x) x = tf.keras.layers.Activation('softmax', dtype='float32')(x) model = tf.keras.Model(inputs=img_input, outputs=x) return model if __name__ == '__main__': model = creat_efficient_net(1.0, 1.0, 224, 0.3) model.compile(optimizer = 'adam', loss = tf.keras.losses.SparseCategoricalCrossentropy()) model.summary()
qwerasdf887/Keras-Efficientnet
MBConv.py
MBConv.py
py
12,100
python
en
code
0
github-code
6
10230251745
import json import numpy as np from eval_list import eval_list import evals.data from evals.registry import registry np.random.seed(42) min_samples_per_dataset = 50 n_test_samples = 10 seen = set() datarows = [] for eval in registry.get_evals("*"): if eval.key not in eval_list or eval.key in seen: continue seen.add(eval.key) if eval.args and "samples_jsonl" in eval.args: samples = evals.data.get_jsonl(eval.args["samples_jsonl"]) # Contruct our tasks dataset instruction_input_output = [] for sample in samples: if "input" in sample and "ideal" in sample: # We only want single-system single-user samples: if isinstance(sample["input"], list) and len(sample["input"]) == 2: if ( sample["input"][0]["role"] == "system" and sample["input"][1]["role"] == "user" ): # Skip if output is a list if isinstance(sample["ideal"], list): continue dp_instruction = sample["input"][0]["content"] dp_in = sample["input"][1]["content"] dp_out = sample["ideal"] instruction_input_output.append((dp_instruction, dp_in, dp_out)) # Skip if there are not enough samples if len(instruction_input_output) < min_samples_per_dataset: continue # Check that all dp_instruction are the same instruction_input_output = sorted(instruction_input_output, key=lambda x: x[0]) if instruction_input_output[0][0] != instruction_input_output[-1][0]: continue # Shuffle samples np.random.shuffle(instruction_input_output) test_samples = [ { "input": i, "output": o, } for _, i, o in instruction_input_output[:n_test_samples] ] train_samples = [ { "input": i, "output": o, } for _, i, o in instruction_input_output[n_test_samples:] ] row = { "eval": eval.key, "instruction": instruction_input_output[0][0], "test_samples": test_samples, "train_samples": train_samples, } datarows.append(row) assert len(datarows) == len( eval_list ), f"Unexpected number of evals: {len(datarows)} != {len(eval_list)}" assert set([r["eval"] for r in datarows]) == set( eval_list ), f"Missing evals: {set(eval_list) - set([r['eval'] for r in datarows])}" # Shuffle rows np.random.shuffle(datarows) # Save jsonl to file with open("samples.jsonl", "w") as f: for row in datarows: f.write(json.dumps(row) + "\n")
openai/evals
evals/elsuite/self_prompting/scripts/dataset/compile_data.py
compile_data.py
py
2,868
python
en
code
12,495
github-code
6
43105564820
import random def flip_coin(): """ returns a coin flip- random integer between 0 and 1 if 1 - the coin lands on head if 0 - the coin lands on tail """ return random.randint(0,1) #equal chance of being on head or tails def monte_carlo(n): """ performs a monte_carlo simulation of a coin flip [Param]\t n (int)- number of samples [Return]\t None- prints out the results of the simulation """ head_count=0 tail_count=0 exp_count=0 while exp_count < n: result = flip_coin() if result == 1: head_count +=1 else: tail_count +=1 exp_count+=1 print(f"There were {n} simulations performed.") msg=f"There were {(head_count/n) * 100} % heads" print(msg) msg=f"There were {(tail_count/n)* 100} % tails" print(msg) # import the random module help(random.choice) monte_carlo(1000000) '''if result ==1: print("head") else: print("tail")'''
jzhanay001/Python-Bootcamp
week_two/coin.py
coin.py
py
977
python
en
code
0
github-code
6
14149764666
class LinkedList: def __init__(self): self.length = 0 self.head = None def print_backward(self): print("[", end="") if self.head is not None: self.head.print_backward() print("]") def add_first(self, cargo): node = Node(cargo) node.next = self.head self.head = node self.length += 1 def print_list(self): print("[", end="") while self.head is not None: print(self.head, end="") self.head = self.head.next if self.head is not None: print(", ", end="") print("]", end="") print() class Node: def __init__(self, cargo=None, next=None): self.cargo = cargo self.next = next def __str__(self): if self.cargo == None: return "" return str(self.cargo) def print_backward(self): first_node = self if self.next is not None: #if not last item which does not have next defined tail = self.next #move to the next item, print nothing tail.print_backward() #call to print tail recursively until we reach print(self.cargo, end=" ") #print item with no next defined if self is not first_node: print(",", end=" ") linklist = LinkedList() node1 = Node(1) node1.print_backward() linklist.add_first(3) linklist.add_first(2) linklist.add_first(1) linklist.print_backward() linklist.print_list() # # def remove_second(list): # if list is None: return # if list.next is None: return # second = list.next # first = list # # this makes the first node refer to the third as the # # second one refers to the third and now is assigned as next for the first # first.next = second.next # #separates second node from the rest (removes its link) # second.next = None # return second # # # node1 = Node(1) # node2 = Node(2) # node3 = Node(3) # # # # node1.next = node2 # node2.next = node3 # # print_list(node1) # node1.print_backward() # # removed = remove_second(node1) # print_list(removed) # # print_list(node1)
Tomasz-Kluczkowski/Education-Beginner-Level
THINK LIKE A COMPUTER SCIENTIST FOR PYTHON 3/CHAPTER 24 LINKED LISTS/linked_list.py
linked_list.py
py
2,148
python
en
code
0
github-code
6
18003897185
import torch import torch.nn as nn from torch.nn import Parameter from torch.distributions import Normal from algo.pn_utils.maniskill_learn.utils.torch import ExtendedModule from ..builder import DENSEHEADS class GaussianHeadBase(ExtendedModule): def __init__(self, scale_prior=1, bias_prior=0, dim_action=None, epsilon=1E-6): super(GaussianHeadBase, self).__init__() self.scale_prior = Parameter(torch.tensor(scale_prior, dtype=torch.float32), requires_grad=False) self.bias_prior = Parameter(torch.tensor(bias_prior, dtype=torch.float32), requires_grad=False) if dim_action is None: assert self.scale_prior.ndim == 1 self.dim_action = self.scale_prior.shape[0] self.epsilon = epsilon self.log_unif_prob = torch.log(1.0 / (2 * self.scale_prior.data)).sum().item() def uniform(self, sample_shape): return ((torch.rand(sample_shape, self.dim_action, device=self.device) * 2 - 1) * self.scale_prior + self.bias_prior), torch.ones(sample_shape, device=self.device) * self.log_unif_prob def sample(self, mean, log_std, num_actions): log_std = log_std.expand_as(mean) mean = torch.repeat_interleave(mean, num_actions, dim=0) log_std = torch.repeat_interleave(log_std, num_actions, dim=0) std = log_std.exp() normal = Normal(mean, std) x_t = normal.rsample() y_t = torch.tanh(x_t) action = y_t * self.scale_prior + self.bias_prior log_prob = normal.log_prob(x_t) log_prob -= torch.log(self.scale_prior * (1 - y_t.pow(2)) + self.epsilon) log_prob = log_prob.sum(1, keepdim=True) mean = torch.tanh(mean) * self.scale_prior + self.bias_prior return action, log_prob, mean, log_std, std @DENSEHEADS.register_module() class GaussianHead(GaussianHeadBase): def __init__(self, scale_prior=1, bias_prior=0, dim_action=None, log_sig_min=-20, log_sig_max=2, epsilon=1e-6): super(GaussianHead, self).__init__(scale_prior, bias_prior, dim_action, epsilon) self.log_sig_min = log_sig_min self.log_sig_max = log_sig_max def forward(self, feature, num_actions=1): assert feature.shape[-1] % 2 == 0 mean, log_std = feature.split(feature.shape[-1] // 2, dim=-1) log_std = torch.clamp(log_std, min=self.log_sig_min, max=self.log_sig_max) return self.sample(mean, log_std, num_actions) @DENSEHEADS.register_module() class SharedGaussianHead(GaussianHeadBase): def __init__(self, scale_prior=1, bias_prior=0, dim_action=None, epsilon=1e-6): super(SharedGaussianHead, self).__init__(scale_prior, bias_prior, dim_action, epsilon) self.log_std = nn.Parameter(torch.zeros(1, self.dim_action).float()) def forward(self, mean, num_actions=1): return self.sample(mean, self.log_std, num_actions)
PKU-EPIC/UniDexGrasp
dexgrasp_policy/dexgrasp/algo/pn_utils/maniskill_learn/networks/dense_heads/gaussian.py
gaussian.py
py
2,881
python
en
code
63
github-code
6
38793898315
# import tensorflow libraries import tensorflow as tf import numpy as np # import opencv and find webcam import cv2 cap = cv2.VideoCapture(0) if not(cap.isOpened()): print("Can't find webcam, shutting down...") quit() # set resolution of camera capture cap.set(cv2.CAP_PROP_FRAME_WIDTH, 960.0) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 960.0) # import system libraries import os import sys sys.path.append("..") # import tf and custom tf libraries from utils import label_map_util import custom_utils # load prediction model print("\nLoading Saved Model...") PATH_TO_MODEL = "new_model" # point to folder containing 'model' folder detect_fn = tf.saved_model.load(os.path.join(PATH_TO_MODEL, "saved_model")) # load category index for prediction model print("\nLoading Category Index...") category_index = label_map_util.create_category_index_from_labelmap(os.path.join(PATH_TO_MODEL, "mscoco_label_map.pbtxt"), use_display_name=True) # begin main loop print("\nBegin Live Image Predicting") while True: # capture image from webcam ret, image_np = cap.read() if ret == False: print("Error Reading Frame, skipping...") continue # convert image to tensor input_tensor = tf.convert_to_tensor(image_np) input_tensor = input_tensor[tf.newaxis, ...] # perform prediction/detection on image tensor detections = detect_fn(input_tensor) num_detections = int(detections.pop('num_detections')) detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()} detections['num_detections'] = num_detections detections['detection_classes'] = detections['detection_classes'].astype(np.int64) # draw detection boxes on image using modified visualization function custom_utils.visualize_boxes_and_labels_on_image_array( image_np, detections['detection_boxes'], detections['detection_classes'], detections['detection_scores'], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=0.65, agnostic_mode=False, line_thickness=8) # display captured image with detection boxes cv2.imshow('object detection', cv2.resize(image_np, (800,600))) # exit program when 'q' key is pressed if cv2.waitKey(25) == ord('q'): cv2.destroyAllWindows() break
OSUrobotics/object_detection
mainfile.py
mainfile.py
py
2,379
python
en
code
0
github-code
6
30881965405
# -*- coding: utf-8 -*- import os from setuptools import setup, find_packages version = '0.9.4' long_description = ( open('README.rst').read() + '\n' + open(os.path.join('docs', 'HISTORY.rst')).read() + '\n') setup(name='plone.jsonapi.routes', version=version, description="Plone JSON API -- Routes", long_description=long_description, # Get more strings from # http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Programming Language :: Python", "Framework :: Plone", "Framework :: Plone :: 4.3", "Framework :: Plone :: 5.0", "Framework :: Plone :: 5.1", "Framework :: Zope2", ], keywords='', author='Ramon Bartl', author_email='[email protected]', url='https://github.com/collective/plone.jsonapi.routes', license='MIT', packages=find_packages('src'), package_dir = {'': 'src'}, namespace_packages=['plone', 'plone.jsonapi'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'plone.api', 'plone.jsonapi.core>=0.6', # -*- Extra requirements: -*- ], extras_require={ 'test': [ 'plone.app.testing', 'unittest2', 'robotsuite', 'robotframework-selenium2library', 'plone.app.robotframework', 'robotframework-debuglibrary', ] }, entry_points=""" # -*- Entry points: -*- [z3c.autoinclude.plugin] target = plone """, )
collective/plone.jsonapi.routes
setup.py
setup.py
py
1,641
python
en
code
12
github-code
6
70986505148
#!/usr/bin/env python3 """ Created on Thu Mar 13 9:31:11 2020 @author: Hanrui Wu """ import pysam import sys import gzip def read_cell_names1(pathseq_bam_file, write_bac): seqbam = pysam.AlignmentFile(pathseq_bam_file, "rb",threads=36) read_name_pathseq = open(write_bac,'w') total_pathseq_reads=0 total_YP_reads=0 for each_line in seqbam: total_pathseq_reads+=1 if each_line.has_tag('YP'): total_YP_reads+=1 #outline = each_line.query_name + '\t' + each_line.get_tag('YP') + '\t' + str(each_line.mapping_quality) + '\n'#update 0520: added mapping quality column #022422:use AS tag instead of mapping_quality outline = each_line.query_name + '\t' + each_line.get_tag('YP') + '\t' + str(each_line.get_tag('AS')) + '\n' read_name_pathseq.write(outline) print('Total reads in pathseq bam = ',total_pathseq_reads) print('Total reads in pathseq bam with YP tag = ',total_YP_reads) return def read_readnames(readname_file): set_for_readnames = set() dict_name = {} with open (readname_file,'r') as r: for each_line in r: #remove \n each_line = each_line.rstrip('\n') each_line_list = each_line.split('\t') set_for_readnames.add(each_line_list[0]) dict_name[each_line_list[0]] = {} dict_name[each_line_list[0]]["pathogen"] = each_line_list[1] dict_name[each_line_list[0]]["mapping_quality"] = each_line_list[2] #print('Number of Pathseq Reads (with YP TAG) = ',len(set_for_readnames)) return set_for_readnames, dict_name def read_pathseq_report_and_create_dict(pathseq_report_csv): pathseq_report = open(pathseq_report_csv,'r') #three dicts: 1. cell-> cell_UMI 2. UMI-> id_sting 3. id -> genus #id -> genus: dict_for_genus = {} set_for_genera = set() #print('lens of pathseq report: ',len(pathseq_report)) for each_line in pathseq_report: each_line = each_line.rstrip('\n') each_line_list = each_line.split('\t') level = each_line_list[2] tax = each_line_list[3] if level == 'genus': set_for_genera.add(tax) if '|' in each_line_list[1]: name_string_list = each_line_list[1].split('|') for n in range(len(name_string_list)): pointer = -n-1 if not '_' in name_string_list[pointer]: name = name_string_list[pointer] break if 'unclassified' in name_string_list[pointer]: name = name_string_list[pointer] break id = each_line_list[0] dict_for_genus[id] = name print ("len(dict_for_genus) = ",len(dict_for_genus)) # 070421:added a veriation function to make sure only annotate genera #exclude_set = set() #for each_key in dict_for_genus: # if not dict_for_genus[each_key] in set_for_genera: # exclude_set.add(each_key) #for each_key in list(dict_for_genus): # if each_key in exclude_set: # del dict_for_genus[each_key] # #print("deleting: ", each_key) #print ("len(dict_for_genus) 2 = ",len(dict_for_genus)) return dict_for_genus def read_cell_names2(set_of_readnames, dict_name, dict_for_genus,original_bam_file,unmap_cbub_bam_file,unmap_cbub_fasta_file, out_cell_list,out_readname_cell_path): seqbam = pysam.AlignmentFile(original_bam_file, "rb",threads=36) readname_cell_path = open(out_readname_cell_path,'w') # Also output fasta and bam for pathseq/kk2 unmap_cbub_fasta = open(unmap_cbub_fasta_file,'w') unmap_cbub_bam = pysam.AlignmentFile(unmap_cbub_bam_file, "wb", seqbam) set_for_infect_cells=set() total_cellranger_bam_reads = 0 total_cellranger_reads_UB_CB_tags = 0 total_cellranger_reads_UB_CB_unmap = 0 total_cellranger_reads_UB_CB_unmap_Aligned_to_Pathseq_YP_reads = 0 total_potential_UMI_including_ambigious_reads = set() #added 102621: output a bam file with only UBCB unmap reads for each_line in seqbam: total_cellranger_bam_reads+=1 if each_line.has_tag('CB') and each_line.has_tag('UB'): total_cellranger_reads_UB_CB_tags+=1 if each_line.has_tag('CB') and each_line.has_tag('UB') and each_line.is_unmapped:#updated 0520: only extract unmapped reads from cellranger total_cellranger_reads_UB_CB_unmap+=1 # added 102721: output a fasta file for kraken query_name_in_cellranger_bam = each_line.query_name seq_in_cellranger_bam = each_line.query_sequence unmap_cbub_fasta.write('>') unmap_cbub_fasta.write(query_name_in_cellranger_bam) unmap_cbub_fasta.write('\n') unmap_cbub_fasta.write(seq_in_cellranger_bam) unmap_cbub_fasta.write('\n') unmap_cbub_bam.write(each_line) if each_line.query_name in set_of_readnames: set_for_infect_cells.add(each_line.get_tag('CB')) readname = each_line.query_name cellname = each_line.get_tag('CB') umi = each_line.get_tag('UB') path = dict_name[readname]["pathogen"] #print(readname) #print(path) #translate id to genus id_string_list = path.split(',') genus_list = [] for each_id in id_string_list: #070421: add function to ignore unfound genus if each_id in dict_for_genus: genus = dict_for_genus[each_id] genus_list.append(genus) else: print(each_id," not found!") genus_list = list(set(genus_list)) genus_list.sort() genus_list_string = ','.join(genus_list) #barcode_UMI_dict[barcode_UMI]["genus_string"] = genus_list mapping_quality = dict_name[readname]["mapping_quality"] outline = readname+'\t'+cellname+'\t'+umi+'\t'+path+'\t'+mapping_quality+'\t'+genus_list_string+'\n' readname_cell_path.write(outline) total_potential_UMI_including_ambigious_reads.add(umi) total_cellranger_reads_UB_CB_unmap_Aligned_to_Pathseq_YP_reads+=1 print('total cellranger bam reads = ',total_cellranger_bam_reads) print('total cellranger bam reads with UB CB tags = ',total_cellranger_reads_UB_CB_tags) print('total UNMAPPED cellranger bam reads with UB CB tags = ',total_cellranger_reads_UB_CB_unmap) print('total cellranger reads with UB_CB_unmap Aligned to Pathseq reads with YP tags = ',total_cellranger_reads_UB_CB_unmap_Aligned_to_Pathseq_YP_reads) print('total potential UMI including ambigious reads = ',len(total_potential_UMI_including_ambigious_reads)) cell_list = open(out_cell_list,'w') for each_cell in set_for_infect_cells: cell_list.write(each_cell) cell_list.write('\n') return def generate_barcode_UMI_dict(out_readname_cell_path):#,pathseq_report_csv,out_genus_file,sample_ident): cell_path_file = open(out_readname_cell_path,'r') # pathseq_report = open(pathseq_report_csv,'r') #genus_file = open(out_genus_file,'w') barcode_UMI_dict = {} for each_line in cell_path_file: each_line = each_line.rstrip('\n') each_line_list = each_line.split('\t') read_name = each_line_list[0] cell_barcode = each_line_list[1] UMI = each_line_list[2] id_string = each_line_list[3] id_string_list = id_string.split(',') barcode_UMI = cell_barcode+'+'+UMI mapping_quality = each_line_list[4] genus_string = each_line_list[5] #then, pick the read with highest mapping quality for each UMI, it's a different strategy then previous idea if not barcode_UMI in barcode_UMI_dict: #if not int(mapping_quality) == 0:#052721 tried to test 0 mapping quality barcode_UMI_dict[barcode_UMI]={} barcode_UMI_dict[barcode_UMI]["id_string"] = id_string_list barcode_UMI_dict[barcode_UMI]["mapping_quality"] = int(mapping_quality) barcode_UMI_dict[barcode_UMI]["genus_string"] = genus_string ''' #also add a translated genus name column (052221) genus_list = [] for each_id in id_string_list: genus = dict_for_genus[each_id] genus_list.append(genus) genus_list = list(set(genus_list)) barcode_UMI_dict[barcode_UMI]["genus_string"] = genus_list ''' elif int(mapping_quality) > barcode_UMI_dict[barcode_UMI]["mapping_quality"]: barcode_UMI_dict[barcode_UMI]["id_string"] = id_string_list barcode_UMI_dict[barcode_UMI]["mapping_quality"] = int(mapping_quality) barcode_UMI_dict[barcode_UMI]["genus_string"] = genus_string print('Total UMI in barcode_UMI_dict = ',len(barcode_UMI_dict)) return barcode_UMI_dict #fast, no need to generate another temp file def output_cells_genus_list(barcode_UMI_dict,dict_for_genus): #genus_file = open(out_genus_file,'w') #three dicts: 1. cell-> cell_UMI 2. UMI-> id_sting 3. id -> genus cells_dict = {} for barcode_UMI in barcode_UMI_dict: cell = barcode_UMI.split('+')[0] if not cell in cells_dict: cells_dict[cell]=[] cells_dict[cell].append(barcode_UMI) else: cells_dict[cell].append(barcode_UMI) #UMI_id_dict is to store UMI<- ids string UMI_id_dict = {} for barcode_UMI in barcode_UMI_dict: #0523: if not ',' in barcode_UMI_dict[barcode_UMI]["genus_string"]: UMI_id_dict[barcode_UMI] = barcode_UMI_dict[barcode_UMI]["id_string"] #then update UMI_id_dict with genus name unambigious_UMI = {} for barcode_UMI in UMI_id_dict: #id_string = UMI_id_dict[barcode_UMI] id_list = UMI_id_dict[barcode_UMI] genus_list = [] for each_id in id_list: #070421: add function to ignore unfound genus!! if each_id in dict_for_genus: genus = dict_for_genus[each_id] genus_list.append(genus) genus_list = list(set(genus_list)) if len(genus_list) == 1:#only keep unambigious UMI unambigious_UMI[barcode_UMI] = genus_list[0] #next, construct cell_metadata using unambigious_UMI dict,also count the number of UMI in cells print('Total unambigious UMI = ',len(unambigious_UMI)) cell_metadata_dict = {} for barcode_UMI in unambigious_UMI: barcode = barcode_UMI.split('+')[0] UMI = barcode_UMI.split('+')[1] genus = unambigious_UMI[barcode_UMI] if not barcode in cell_metadata_dict: cell_metadata_dict[barcode] = {} #0527: changed the structure of cell_metadata_dict#0531: update the structure again cell_metadata_dict[barcode]['genus'] = [] cell_metadata_dict[barcode]['genus'].append(genus) cell_metadata_dict[barcode]['barcode_UMI']={} cell_metadata_dict[barcode]['barcode_UMI'][barcode_UMI] = genus cell_metadata_dict[barcode]['pathogen_count']={} #cell_metadata_dict[barcode]['pathogen_count'][genus] = 1 else: cell_metadata_dict[barcode]['genus'].append(genus) cell_metadata_dict[barcode]['barcode_UMI'][barcode_UMI] = genus if not genus in cell_metadata_dict[barcode]['pathogen_count']: cell_metadata_dict[barcode]['pathogen_count'][genus] = 1 else: cell_metadata_dict[barcode]['pathogen_count'][genus] += 1 #updated 0531 to count pathogen UMI for each cell ''' if not barcode in cell_metadata_dict: cell_metadata_dict[barcode] = {} cell_metadata_dict[barcode]['genus'] = [] cell_metadata_dict[barcode]['genus'].append(genus) cell_metadata_dict[barcode]['UMI_count'] = 1 else: cell_metadata_dict[barcode]['genus'].append(genus) cell_metadata_dict[barcode]['UMI_count'] += 1 ''' #then create output # 052621: put the output part into an individual function # cell_metadata_dict = update_cell_metadata_list(unambigious_UMI,cell_metadata_dict,threshold_for_min_cell, threshold_for_min_umi)#comment for MULTI return cell_metadata_dict def output_cell_metadata(cell_metadata_dict,out_genus_file,sample_ident,barcode_whitelist_file): #Strategy 0601: #1. if periority, then -> periority #2. elif single highest number -> highest genus #3. else (multiple highest) -> "Multi" print('total pathogen-associated gems = ', len(cell_metadata_dict)) white_list_set = set() white_list_dict = {} white_list = gzip.open(barcode_whitelist_file, 'rt') for each_line in white_list: each_line = each_line.rstrip('\n') white_list_set.add(each_line) #print("total number of cells = ", len(white_list_set)) for barcode in cell_metadata_dict: if barcode in white_list_set: white_list_dict[barcode]= cell_metadata_dict[barcode] cell_metadata_dict = white_list_dict print("total filtered pathogen-associated cells = ", len(cell_metadata_dict)) #dict_updated with white list genus_file = open(out_genus_file,'w') header = 'cell_name,pathogen,UMI_count,pathogen_count\n' genus_file.write(header) for barcode in cell_metadata_dict: if not sample_ident == '': cell_name = sample_ident+'_'+barcode else: cell_name = barcode genus_list = [] for barcode_UMI in cell_metadata_dict[barcode]['barcode_UMI']: genus_list.append(cell_metadata_dict[barcode]['barcode_UMI'][barcode_UMI]) sorted_genus_list = list(set(genus_list)) sorted_genus_list.sort() genus = '+'.join(sorted_genus_list) UMI_count = len(cell_metadata_dict[barcode]['barcode_UMI']) #then we need a new item for pathogen count pathogen_count_list = [] for each_pathogen in cell_metadata_dict[barcode]['pathogen_count']: pathogen_count=each_pathogen pathogen_count+=':' pathogen_count+=str(cell_metadata_dict[barcode]['pathogen_count'][each_pathogen]) pathogen_count_list.append(pathogen_count) pathogen_count_list.sort() pathogen_count_str = ';'.join(pathogen_count_list) #insert new rule to RE-ASSIGN genus and UMI-count Periority_pathogen = 'Fusobacterium' pathogen_count_mini_dict = cell_metadata_dict[barcode]['pathogen_count'] temp_max_list = [] UMI_count_sum = 0 #max_UMI = 0 #for each_pathogen in pathogen_count_mini_dict: max_count = max(pathogen_count_mini_dict.values()) for key,value in pathogen_count_mini_dict.items(): if value == max_count: temp_max_list.append(key) max_UMI = value UMI_count_sum += value UMI_count = UMI_count_sum if len(set(temp_max_list)) > 1: genus = 'MULTI' UMI_count = UMI_count_sum else: genus = temp_max_list[0] UMI_count = max_UMI #muted 061821 #if Periority_pathogen in pathogen_count_mini_dict: # genus = Periority_pathogen # UMI_count = pathogen_count_mini_dict[Periority_pathogen] #End of new rule ''' # 060121 new plotting rule: plotting_list = [ "Treponema", "Tannerella", "Porphyromonas", "Capnocytophaga", "Campylobacter", "Capnocytophaga+Treponema", "Mycoplasma", "Fusobacterium", "Solobacterium", "Leptotrichia", "Gelidibacter" ] if genus in plotting_list: output_line = ','.join([cell_name,genus,str(UMI_count),pathogen_count_str])+'\n' else: genus = "Other_bacteria" output_line = ','.join([cell_name,genus,str(UMI_count),pathogen_count_str])+'\n' ''' #1. cell_name 2. genus 3. UMI_count 4. pathogen_count_str output_line = ','.join([cell_name,genus,str(UMI_count),pathogen_count_str])+'\n' if UMI_count >= 1: genus_file.write(output_line) return def UMI_table_output(cell_metadata_dict,barcode_whitelist_file,sample_ident,output_UMI_table_csv,output_UMI_validate_table_csv): #0719: added white list white_list_set = set() white_list_dict = {} white_list = gzip.open(barcode_whitelist_file, 'rt') for each_line in white_list: each_line = each_line.rstrip('\n') white_list_set.add(each_line) print("total number of cells = ", len(white_list_set)) for barcode in cell_metadata_dict: if barcode in white_list_set: white_list_dict[barcode]= cell_metadata_dict[barcode] cell_metadata_dict = white_list_dict #print(white_list_dict) # added 101521: print a UMI table for cross validation (cell+UMI and pathogen) output_UMI_validate_table = open(output_UMI_validate_table_csv,'w') for each_cell in cell_metadata_dict: for each_UMI in cell_metadata_dict[each_cell]['barcode_UMI']: UMI = each_UMI pathogen = cell_metadata_dict[each_cell]['barcode_UMI'][UMI] output_UMI_validate_table.write(UMI+','+pathogen+'\n') #################### output_UMI_table = open(output_UMI_table_csv,'w') #added0714 to output everything for metadata #cell_metadata_dict[barcode]['pathogen_count'][each_pathogen] #first get a complete list of all genera in this sample: genera_list_set = set() for barcode in cell_metadata_dict: for pathogen in cell_metadata_dict[barcode]['pathogen_count']: #cell_metadata_dict[barcode]['pathogen_count'][pathogen] genera_list_set.add(pathogen) genera_list = sorted(list(genera_list_set)) header = ['barcode']+genera_list header_out = ','.join(header) output_UMI_table.write(header_out) output_UMI_table.write('\n') #then start each_line for barcode in cell_metadata_dict: if not sample_ident == '': cell_name = sample_ident+'_'+barcode else: cell_name = barcode genera_count_list = [] for each_genus in genera_list: if each_genus in cell_metadata_dict[barcode]['pathogen_count']: genus_count = cell_metadata_dict[barcode]['pathogen_count'][each_genus] else: genus_count = 0 genera_count_list.append(str(genus_count)) output_line = [cell_name]+genera_count_list output_line_out = ','.join(output_line) output_UMI_table.write(output_line_out) output_UMI_table.write('\n') return if __name__ == "__main__": cellranger_bam_file,sample_ident,barcode_whitelist_file,pathseq_bam_file,pathseq_report_csv,read_name_pathseq,unmap_cbub_bam_file,unmap_cbub_fasta_file,out_cell_list,out_readname_cell_path,out_genus_file,output_UMI_table_csv,output_UMI_validate_table_csv=sys.argv[1:] dict_for_genus = read_pathseq_report_and_create_dict(pathseq_report_csv) step1 = read_cell_names1(pathseq_bam_file, read_name_pathseq) step2 = read_readnames(read_name_pathseq) step3 = read_cell_names2(step2[0], step2[1], dict_for_genus,cellranger_bam_file,unmap_cbub_bam_file,unmap_cbub_fasta_file, out_cell_list,out_readname_cell_path) step4 = generate_barcode_UMI_dict(out_readname_cell_path) step5 = output_cells_genus_list(step4,dict_for_genus) output_cell_metadata(step5,out_genus_file,sample_ident,barcode_whitelist_file) cell_metadata_dict = step5 UMI_table_output(cell_metadata_dict,barcode_whitelist_file,sample_ident,output_UMI_table_csv,output_UMI_validate_table_csv) #0714:added output_UMI_table_csv # cellranger_bam_file, # sample_ident, # barcode_whitelist_file, # pathseq_bam_file, # pathseq_report_csv, # read_name_pathseq, # unmap_cbub_bam_file, # unmap_cbub_fasta_file, # out_cell_list, # out_readname_cell_path, # out_genus_file, # output_UMI_table_csv, # output_UMI_validate_table_csv=sys.argv[1:]
FredHutch/invadeseq
bin/UMI_matrix.py
UMI_matrix.py
py
20,709
python
en
code
1
github-code
6
33126934610
import pandas as pd from tools.readFile import read_excl # 读取excel中指定列整列元素,返回一个集合 def readExcelData(filePath, column): df = pd.read_excel(filePath, usecols=[column - 1]) # 指定读取的列 df_list = df.values.tolist() backList = [] for i in df_list: backList.append(i[0]) if len(backList) == 0: data = read_excl(filePath) # 文件位置 feature1 = data[:, column - 1:column] m = 0 for i in feature1: tmpKey = str(feature1[m][0]) backList.append(tmpKey) m += 1 else: return backList
linhe-demo/sync_dataTable
tools/readExcel.py
readExcel.py
py
632
python
en
code
5
github-code
6
20946824389
import datetime from pysolar import solar # Calculate the altitude and azimuth of the sun given the location and the time def sun_pos(payload): # Input variables lat = payload["lat"] # Lattitude (deg) lon = payload["lon"] # Longitude (deg) epoch = payload["epoch"] # time (Linux epoch in seconds) # Calculate UTC time date = datetime.datetime.fromtimestamp(epoch, tz=datetime.timezone.utc) # Calculate the azimuth and altitude of the sun using [Pysolar](https://pysolar.org/) altitude_sun = solar.get_altitude(lat, lon, date) # Sun's altitude (deg) azimuth_sun = solar.get_azimuth(lat, lon, date) # Sun's azimuth (deg) return {"altitude": altitude_sun, "azimuth": azimuth_sun}
bsamadi/metadata-processor
app/sun_pos.py
sun_pos.py
py
727
python
en
code
0
github-code
6
6422355002
from django.urls import path from . import views urlpatterns = [ path('account', views.account, name="account"), path('profile', views.prifile, name="profile"), path('signup', views.sign_up, name="signup"), path('signin', views.sign_in, name="signin"), path('signout', views.sign_out, name="signout"), ]
aposgial/Project_E3
happy_traveller/register/urls.py
urls.py
py
315
python
en
code
0
github-code
6
39747449584
"""Training and Predicting Cifar10 with Mutant Networks. The networks mutate their architecture using genetic algorithms. Author: Lucas David -- <[email protected]> Licence: MIT License 2016 (c) """ import logging import artificial as art import numpy as np import tensorflow as tf from artificial.utils.experiments import arg_parser, ExperimentSet, Experiment from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator import mutant class Cifar10MutantEnvironment(mutant.Environment): def build(self): tf.logging.info('building environment...') tf.logging.info('|-loading data...') (X, y), (X_test, y_test) = cifar10.load_data() X = X.astype('float32') / 255 X_test = X_test.astype('float32') / 255 g = ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True, rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True) tf.logging.info('|-fitting image generator...') g.fit(X) tf.logging.info('|-defining data sets...') self.dataset_ = g.flow(X, y, batch_size=self.consts.batch_size, shuffle=self.consts.shuffle_train) self.test_dataset_ = self.val_dataset_ = (X_test, y_test) tf.logging.info('building complete') return self class ClimbOverCifar10Experiment(Experiment): env_ = None def setup(self): consts = self.consts # Settings for logging. verbosity_level = logging.INFO if consts.verbose else logging.WARNING for m in ('artificial', 'tensorflow', 'connoisseur'): logger = logging.getLogger(m) logger.setLevel(verbosity_level) logger.addHandler(logging.FileHandler(consts.log_file)) np.random.seed(consts.seed) # Create mutation environment. e = Cifar10MutantEnvironment(optimizer='adam', consts=consts) e.agents = [ mutant.Agent(search=art.searches.local.HillClimbing, environment=e, **consts.agent_params) ] initial_architecture = e.architect_.validate({ mutant.Codes.Conv2D: [ e.architect_.random_layer(mutant.Codes.Conv2D) for _ in range(4) ], mutant.Codes.Dense: [ e.architect_.random_layer(mutant.Codes.Dense) for _ in range(2) ], }) initial_state = mutant.MutantNetwork(initial_architecture) e.current_state = e.initial_state = initial_state self.env_ = e def run(self): try: self.env_.live(n_cycles=1) finally: answer = self.env_.current_state if answer: tf.logging.info('train and validation loss after %i epochs: ' '(%s, %s)', self.consts.n_epochs, answer.loss_, answer.validation_loss_) if __name__ == '__main__': print(__doc__, flush=True) logging.basicConfig(level=logging.DEBUG) logging.getLogger('tensorflow').propagate = False (ExperimentSet(ClimbOverCifar10Experiment) .load_from_json(arg_parser.parse_args().constants) .run())
lucasdavid/unicamp-ia004-neural-networks-2
mutant-networks/experiments/cifar-hill-climbing/experiment.py
experiment.py
py
3,372
python
en
code
0
github-code
6
19342659029
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.utils import clip_grad_norm_ from torch.utils.data import DataLoader import torchvision.models as models from torch.autograd import Variable, grad from copy import deepcopy from tqdm import tqdm import torch.nn.init as init from .DevNet import SemiADNet import sys sys.path.append("..") from data import ALDataset class waal_clf(nn.Module): def __init__(self, input_dim, embSize=320, num_classes=1): super(waal_clf, self).__init__() self.layer1 = nn.Sequential( nn.Linear(input_dim, embSize), nn.ReLU(), nn.Dropout(p=0.01) ) self.layer2 = nn.Sequential( nn.Linear(embSize, 50), nn.ReLU(), nn.Dropout(p=0.01) ) self.layer3 = nn.Linear(50, num_classes) self.embSize = embSize def forward(self, X, return_embedding=False): emb = self.layer1(X) X = self.layer2(emb) X = self.layer3(X) if return_embedding: return X, emb else: return X def get_embedding_dim(self): return self.embSize class Net_WAAL: def __init__(self, model_name='WAAL', config=None, net_clf=None, net_dis=None): self.config = config self.batch_size = config['model_batch_size'] self.nb_batch = 20 self.device = torch.device("cuda" if config['use_cuda'] else "cpu") self.net_clf = net_clf if isinstance(net_clf, nn.Module) else waal_clf self.net_dis = net_dis if isinstance(net_dis, nn.Module) else Discriminator self.use_imbalence_train = False def fit(self, X_train, y_train, X_unlabeled=None, ratio=None, X_valid=None, y_valid=None, alpha=1e-3): n_epoch = self.config['n_epoch'] dim = X_train.shape[1] outlier_indices = np.where(y_train == 1)[0] inlier_indices = np.where(y_train == 0)[0] self.clf = self.net_clf(input_dim=dim, num_classes=2).to(self.device) self.dis = self.net_dis(dim = self.clf.get_embedding_dim()).to(self.device) # setting three optimizers self.opt_clf = optim.Adam(self.clf.parameters(), lr=0.001, weight_decay=1e-5) self.opt_dis = optim.Adam(self.dis.parameters(), lr=0.001, weight_decay=1e-5) # computing the unbalancing ratio, a value betwwen [0,1] #gamma_ratio = X_labeled.shape[0]/X_unlabeled.shape[0] gamma_ratio = X_train.shape[0]/X_unlabeled.shape[0] print(gamma_ratio) self.clf.train() self.dis.train() if not self.use_imbalence_train: data = ALDataset(X_train, y_train) loader = DataLoader(data, self.batch_size , shuffle=True) for epoch in range(n_epoch): if self.use_imbalence_train: for i in range(self.nb_batch): label_x, label_y = self.input_batch_generation_sup(X_train, outlier_indices, inlier_indices, self.batch_size) label_x, label_y = label_x.to(self.device), label_y.to(self.device) unlabel_x = self.sample_unlabeled(X_unlabeled, self.batch_size).to(self.device) self.train(label_x, label_y , unlabel_x, gamma_ratio=gamma_ratio,alpha=alpha) else: for batch_idx, (label_x, label_y) in enumerate(loader): label_y = label_y.unsqueeze(1) label_x, label_y = label_x.to(self.device), label_y.to(self.device) unlabel_x = self.sample_unlabeled(X_unlabeled, len(label_x) ).to(self.device) self.train(label_x, label_y , unlabel_x, gamma_ratio=gamma_ratio,alpha=alpha) def train(self, label_x, label_y , unlabel_x, gamma_ratio=None,alpha=1e-3): # training feature extractor and predictor self.set_requires_grad(self.clf,requires_grad=True) self.set_requires_grad(self.dis,requires_grad=False) self.opt_clf.zero_grad() lb_out, lb_z = self.clf(label_x, return_embedding=True) _, unlb_z = self.clf(unlabel_x, return_embedding=True) # prediction loss (deafult we use F.cross_entropy) zero_prob = 1-label_y gt_probs = torch.cat((zero_prob,label_y),1) pred_loss = torch.mean(F.cross_entropy(lb_out,gt_probs)) # pred_loss = self.deviation_loss(label_y, lb_out) # Wasserstein loss (unbalanced loss, used the redundant trick) wassertein_distance = self.dis(unlb_z).mean() - gamma_ratio * self.dis(lb_z).mean() with torch.no_grad(): _, lb_z = self.clf(label_x, return_embedding=True) _, unlb_z = self.clf(unlabel_x, return_embedding=True) gp = self.gradient_penalty(self.dis, unlb_z, lb_z) loss = pred_loss + alpha * wassertein_distance + alpha * gp * 5 # for CIFAR10 the gradient penality is 5 # for SVHN the gradient penality is 2 loss.backward() # clip_grad_norm_(self.clf.parameters(), 1.0) self.opt_clf.step() # Then the second step, training discriminator self.set_requires_grad(self.clf, requires_grad=False) self.set_requires_grad(self.dis, requires_grad=True) with torch.no_grad(): _, lb_z = self.clf(label_x, return_embedding=True) _, unlb_z = self.clf(unlabel_x, return_embedding=True) for _ in range(1): # gradient ascent for multiple times like GANS training gp = self.gradient_penalty(self.dis, unlb_z, lb_z) wassertein_distance = self.dis(unlb_z).mean() - gamma_ratio * self.dis(lb_z).mean() dis_loss = -1 * alpha * wassertein_distance - alpha * gp * 2 self.opt_dis.zero_grad() dis_loss.backward() self.opt_dis.step() def input_batch_generation_sup(self, X_train, outlier_indices, inlier_indices, batch_size): ''' batchs of samples. This is for csv data. Alternates between positive and negative pairs. ''' n_inliers = len(inlier_indices) n_outliers = len(outlier_indices) sample_num = batch_size//2 inlier_idx = np.random.choice([i for i in range(n_inliers)], sample_num, replace=True) outlier_idx = np.random.choice([i for i in range(n_outliers)], sample_num, replace=True) sampled_X = np.concatenate((X_train[inlier_indices[inlier_idx]], X_train[outlier_indices[outlier_idx]]), axis=0) sampled_y = np.concatenate((np.expand_dims(np.zeros(sample_num), axis=1), np.expand_dims(np.ones(sample_num), axis=1)), axis=0) # print(sampled_X.shape) return torch.from_numpy(sampled_X).float(), torch.from_numpy(sampled_y).float() def sample_unlabeled(self, X_unlabeled, batch_size): # is_replace = True if len(X_unlabeled)<batch_size else False is_replace = True idx = np.random.choice([i for i in range(len(X_unlabeled))], batch_size, replace=is_replace) sampled = X_unlabeled[idx] return torch.from_numpy(sampled).float() def deviation_loss(self, y_true, y_pred): ''' z-score-based deviation loss ''' confidence_margin = 5. self.ref = torch.normal(mean=0., std=torch.full([5000], 1.)).cuda() dev = (y_pred - torch.mean(self.ref)) / torch.std(self.ref) inlier_loss = torch.abs(dev) outlier_loss = torch.abs((confidence_margin - dev).clamp_(min=0.)) return torch.mean((1 - y_true) * inlier_loss + y_true * outlier_loss) def predict_prob(self, X, y=None, method="linear", threshold_method="quantile", num=0.95): self.clf.eval() with torch.no_grad(): X = torch.from_numpy(X).to(self.device) out = self.clf(X.float()) prob = F.softmax(out, dim=1).cpu().detach() return prob def predict_score(self, X, y=None, return_threshold=False, quantile_num=0.95): prob = self.predict_prob(X).numpy() score = prob[:, 1] if return_threshold: print('quanitile:') print(np.quantile(score,[i/10 for i in range(0,11)])) threshold = np.quantile(score, quantile_num) return score, threshold else: return score def predict(self, X, y=None, threshold=0.5): prob = self.predict_prob(X) label = prob.max(1)[1] return label def single_worst(self, probas): """ The single worst will return the max_{k} -log(proba[k]) for each sample :param probas: :return: # unlabeled \times 1 (tensor float) """ value,_ = torch.max(-1*torch.log(probas),1) return value # setting gradient values def set_requires_grad(self, model, requires_grad=True): """ Used in training adversarial approach :param model: :param requires_grad: :return: """ for param in model.parameters(): param.requires_grad = requires_grad # setting gradient penalty for sure the lipschitiz property def gradient_penalty(self, critic, h_s, h_t): ''' Gradeitnt penalty approach''' alpha = torch.rand(h_s.size(0), 1).to(self.device) differences = h_t - h_s interpolates = h_s + (alpha * differences) interpolates = torch.cat([interpolates, h_s, h_t]).requires_grad_() # interpolates.requires_grad_() preds = critic(interpolates) gradients = grad(preds, interpolates, grad_outputs=torch.ones_like(preds), retain_graph=True, create_graph=True)[0] gradient_norm = gradients.norm(2, dim=1) gradient_penalty = ((gradient_norm - 1)**2).mean() return gradient_penalty def get_model(self): return self.clf def get_embeddings(self, data): self.clf.eval() embeddings = torch.zeros([len(data), self.clf.get_embedding_dim()]) loader = DataLoader(data, shuffle=False, **self.params['loader_te_args']) with torch.no_grad(): for x, y, idxs in loader: x, y = x.to(self.device), y.to(self.device) out, e1 = self.clf(x) embeddings[idxs] = e1.cpu() return embeddings class Discriminator(nn.Module): """Adversary architecture(Discriminator) for WAE-GAN.""" def __init__(self, dim=20): super(Discriminator, self).__init__() self.dim = np.prod(dim) self.net = nn.Sequential( nn.Linear(self.dim, 512), nn.ReLU(True), nn.Linear(512, 512), nn.ReLU(True), nn.Linear(512,1), nn.Sigmoid(), ) self.weight_init() def weight_init(self): for block in self._modules: for m in self._modules[block]: kaiming_init(m) def forward(self, z): return self.net(z).reshape(-1) def kaiming_init(m): if isinstance(m, (nn.Linear, nn.Conv2d)): init.kaiming_normal_(m.weight) if m.bias is not None: m.bias.data.fill_(0) elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)): m.weight.data.fill_(1) if m.bias is not None: m.bias.data.fill_(0) def normal_init(m, mean, std): if isinstance(m, (nn.Linear, nn.Conv2d)): m.weight.data.normal_(mean, std) if m.bias.data is not None: m.bias.data.zero_() elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)): m.weight.data.fill_(1) if m.bias.data is not None: m.bias.data.zero_()
clarenceluo78/ActiveAD
models/nets_waal.py
nets_waal.py
py
10,208
python
en
code
0
github-code
6
858377764
from __future__ import division from vistrails.core.bundles.pyimport import py_import import vistrails.core.requirements from vistrails.gui.modules.source_configure import SourceConfigurationWidget from PyQt4 import QtCore, QtGui from vistrails.gui.theme import CurrentTheme def TextEditor(parent=None): try: py_import('PyQt4.Qsci', {'linux-debian': 'python-qscintilla2', 'linux-ubuntu': 'python-qscintilla2'}, True) except ImportError: return OldTextEditor(parent) else: return NewTextEditor(parent) def NewTextEditor(parent): vistrails.core.requirements.require_python_module('PyQt4.Qsci') from PyQt4.Qsci import QsciScintilla class _TextEditor(QsciScintilla): def __init__(self, parent=None): QsciScintilla.__init__(self, parent) ## set the default font of the editor ## and take the same font for line numbers font = CurrentTheme.PYTHON_SOURCE_EDITOR_FONT self.setFont(font) fm = QtGui.QFontMetrics(font) ## Line numbers # conventionally, margin 0 is for line numbers self.setMarginWidth(0, fm.width( "0000" ) + 4) self.setMarginLineNumbers(0, True) self.setAutoIndent(True) ## Edge Mode shows a red vetical bar at 80 chars self.setEdgeMode(QsciScintilla.EdgeLine) self.setEdgeColumn(80) self.setEdgeColor(QtGui.QColor("#CCCCCC")) ## Folding visual : we will use boxes self.setFolding(QsciScintilla.BoxedTreeFoldStyle) ## Braces matching self.setBraceMatching(QsciScintilla.SloppyBraceMatch) ## Editing line color # self.setCaretLineVisible(True) # self.setCaretLineBackgroundColor(QtGui.QColor("#CDA869")) ## Margins colors # line numbers margin self.setMarginsBackgroundColor(QtGui.QColor("#FFFFFF")) self.setMarginsForegroundColor(QtGui.QColor("#000000")) # folding margin colors (foreground,background) self.setFoldMarginColors(QtGui.QColor("#DDDDDD"),QtGui.QColor("#DDDDDD")) # do not use tabs self.setIndentationsUseTabs(False) self.setTabWidth(4) self.setTabIndents(True) # set autocompletion self.setAutoCompletionThreshold(2) self.setAutoCompletionSource(QsciScintilla.AcsDocument) self.setAutoCompletionCaseSensitivity(True) self.setAutoCompletionReplaceWord(True) self.setAutoCompletionFillupsEnabled(True) def setPlainText(self, text): """ setPlainText(text: str) -> None redirect to setText """ self.setText(text) def toPlainText(self): """ setPlainText(text: str) -> None redirect to self.text() """ text = self.text() return text.replace('\r\n', '\n').replace('\r', '\n') # def focusOutEvent(self, event): # if self.parent(): # QtCore.QCoreApplication.sendEvent(self.parent(), event) # QsciScintilla.focusOutEvent(self, event) return _TextEditor(parent) class OldTextEditor(QtGui.QTextEdit): def __init__(self, parent=None): QtGui.QTextEdit.__init__(self, parent) self.setAcceptRichText(False) self.setLineWrapMode(QtGui.QTextEdit.NoWrap) self.formatChanged(None) self.setCursorWidth(8) self.connect(self, QtCore.SIGNAL('currentCharFormatChanged(QTextCharFormat)'), self.formatChanged) def formatChanged(self, f): self.setFont(CurrentTheme.PYTHON_SOURCE_EDITOR_FONT) def keyPressEvent(self, event): """ keyPressEvent(event: QKeyEvent) -> Nont Handle tab with 4 spaces """ if event.key()==QtCore.Qt.Key_Tab: self.insertPlainText(' ') else: # super(PythonEditor, self).keyPressEvent(event) QtGui.QTextEdit.keyPressEvent(self, event) class TextConfigurationWidget(SourceConfigurationWidget): def __init__(self, module, controller, parent=None): SourceConfigurationWidget.__init__(self, module, controller, TextEditor, False, False, parent, False, portName='value')
VisTrails/VisTrails
vistrails/gui/modules/string_configure.py
string_configure.py
py
4,614
python
en
code
100
github-code
6
39911776352
import os import re import json import pickle import kss import pandas as pd from tqdm import tqdm from elasticsearch import Elasticsearch from torch.utils.data import DataLoader, TensorDataset from datasets import load_metric, load_from_disk, load_dataset, Features, Value, Sequence, DatasetDict, Dataset from sentence_transformers import SentenceTransformer, util from data_processing import * from mask import mask_to_tokens def save_pickle(save_path, data_set): file = open(save_path, "wb") pickle.dump(data_set, file) file.close() return None def get_pickle(pickle_path): f = open(pickle_path, "rb") dataset = pickle.load(f) f.close() return dataset def save_data(data_path, new_wiki): with open(data_path, 'w', encoding='utf-8') as make_file: json.dump(new_wiki, make_file, indent="\t", ensure_ascii=False) def passage_split_400(text): num = len(text) // 400 count = 1 split_datas = kss.split_sentences(text) data_list = [] data = "" for split_data in split_datas: if abs(len(data) - 400) > abs(len(data) + len(split_data) - 400) and count < num: if len(data) == 0: data += split_data else: data += (" " + split_data) elif count < num: data_list.append(data) count += 1 data = "" data += split_data else: data += split_data data_list.append(data) return data_list, len(data_list) def passage_split(text): length = len(text) // 2 split_datas = kss.split_sentences(text) data_1 = "" data_2 = "" for split_data in split_datas: if abs(len(data_1) - length) > abs(len(data_1) + len(split_data) - length): if len(data_1) == 0: data_1 += split_data else: data_1 += (" " + split_data) else: if len(data_2) == 0: data_2 += split_data else: data_2 += (" " + split_data) return data_1, data_2 def preprocess(text): text = re.sub(r'\n', ' ', text) text = re.sub(r"\\n", " ", text) text = re.sub(r"\s+", " ", text) text = re.sub(r'#', ' ', text) text = re.sub(r"[^a-zA-Z0-9가-힣ㄱ-ㅎㅏ-ㅣぁ-ゔァ-ヴー々〆〤一-龥<>()\s\.\?!》《≪≫\'<>〈〉:‘’%,『』「」<>・\"-“”∧]", "", text) return text def run_preprocess(data_dict): context = data_dict["context"] start_ids = data_dict["answers"]["answer_start"][0] before = data_dict["context"][:start_ids] after = data_dict["context"][start_ids:] process_before = preprocess(before) process_after = preprocess(after) process_data = process_before + process_after ids_move = len(before) - len(process_before) data_dict["context"] = process_data data_dict["answers"]["answer_start"][0] = start_ids - ids_move return data_dict def run_preprocess_to_wiki(data_dict): context = data_dict["text"] process_data = preprocess(context) data_dict["text"] = process_data return data_dict def search_es(es_obj, index_name, question_text, n_results): query = { 'query': { 'match': { 'document_text': question_text } } } res = es_obj.search(index=index_name, body=query, size=n_results) return res def make_custom_dataset(dataset_path) : if not (os.path.isdir("../data/train_dataset") or os.path.isdir("../data/wikipedia_documents.json")) : raise Exception ("Set the original data path to '../data'") train_f = Features({'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None), 'context': Value(dtype='string', id=None), 'id': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None)}) if not os.path.isfile("../data/preprocess_wiki.json") : with open("../data/wikipedia_documents.json", "r") as f: wiki = json.load(f) new_wiki = dict() for ids in range(len(wiki)): new_wiki[str(ids)] = run_preprocess_to(wiki[str(ids)]) with open('../data/preprocess_wiki.json', 'w', encoding='utf-8') as make_file: json.dump(new_wiki, make_file, indent="\t", ensure_ascii=False) if not os.path.isfile("/opt/ml/input/data/preprocess_train.pkl"): train_dataset = load_from_disk("../data/train_dataset")['train'] val_dataset = load_from_disk("../data/train_dataset")['validation'] new_train_data, new_val_data = [], [] for data in train_dataset: new_data = run_preprocess(data) new_train_data.append(new_data) for data in val_dataset: new_data = run_preprocess(data) new_val_data.append(new_data) train_df = pd.DataFrame(new_train_data) val_df = pd.DataFrame(new_val_data) dataset = DatasetDict({'train': Dataset.from_pandas(train_df, features=train_f), 'validation': Dataset.from_pandas(val_df, features=train_f)}) save_pickle(dataset_path, dataset) if 'preprocess' in dataset_path: return dataset if 'squad' in dataset_path : train_data = get_pickle("../data/preprocess_train.pkl")["train"] val_data = get_pickle("../data/preprocess_train.pkl")["validation"] korquad_data = load_dataset("squad_kor_v1")["train"] df_train_data = pd.DataFrame(train_data) df_val_data = pd.DataFrame(val_data) df_korquad_data = pd.DataFrame(korquad_data, columns=['answers', 'context', 'id', 'question']) df_total_train = pd.concat([df_train_data, df_korquad_data]) dataset = DatasetDict({'train': Dataset.from_pandas(df_total_train, features=train_f), 'validation': Dataset.from_pandas(df_val_data, features=train_f)}) save_pickle("../data/korquad_train.pkl", dataset) return train_dataset if 'concat' in dataset_path : base_dataset = get_pickle("../data/preprocess_train.pkl") train_dataset, val_dataset = base_dataset["train"], base_dataset["validation"] train_data = [{"id" : train_dataset[i]["id"], "question" : train_dataset[i]["question"], "answers" : train_dataset[i]["answers"], "context" : train_dataset[i]["context"]} for i in range(len(train_dataset))] val_data = [{"id" : val_dataset[i]["id"], "question" : val_dataset[i]["question"], "answers" : val_dataset[i]["answers"], "context" : val_dataset[i]["context"]} for i in range(len(val_dataset))] config = {'host':'localhost', 'port':9200} es = Elasticsearch([config]) k = 5 # k : how many contexts to concatenate for idx, train in enumerate(train_data): res = search_es(es, "wiki-index", question["question"], k) context_list = [(hit['_source']['document_text'], hit['_score']) for hit in res['hits']['hits']] contexts = train["context"] count = 0 for context in context_list: # if same context already exists, don't concatenate if train["context"] == context[0]: continue contexts += " " + context[0] count += 1 if count == (k-1): break train_data[idx]["context"] = contexts for idx, val in enumerate(val_data): res = search_es(es, "wiki-index", question["question"], k) context_list = [(hit['_source']['document_text'], hit['_score']) for hit in res['hits']['hits']] contexts = val["context"] count = 0 for context in context_list: if val["context"] == context[0]: continue contexts += " " + context[0] count += 1 if count == (k-1): break val_data[idx]["context"] = contexts train_df = pd.DataFrame(train_data) val_df = pd.DataFrame(val_data) dataset = DatasetDict({'train': Dataset.from_pandas(train_df, features=train_f), 'validation': Dataset.from_pandas(val_df, features=train_f)}) save_pickle(dataset_path, dataset) return dataset if "split_wiki_400" in dataset_path: with open("/opt/ml/input/data/preprocess_wiki.json", "r") as f: wiki = json.load(f) new_wiki = dict() for i in tqdm(range(len(wiki))): if len(wiki[str(i)]["text"]) < 800: new_wiki[str(i)] = wiki[str(i)] continue data_list, count = passage_split_400(wiki[str(i)]["text"]) for j in range(count): new_wiki[str(i) + f"_{j}"] = {"text" : data_list[j], "corpus_source" : wiki[str(i)]["corpus_source"], "url" : wiki[str(i)]["url"], "domain" : wiki[str(i)]["domain"], "title" : wiki[str(i)]["title"], "author" : wiki[str(i)]["author"], "html" : wiki[str(i)]["html"],"document_id" : wiki[str(i)]["document_id"]} save_data("../data/wiki-index-split-400.json", new_wiki) if "split_wiki" in dataset_path and dataset_path != "split_wiki_400": with open("/opt/ml/input/data/preprocess_wiki.json", "r") as f: wiki = json.load(f) limit = 0 if "800" in dataset_path: limit = 800 if "1000" in dataset_path: limit = 1000 new_wiki = dict() for i in tqdm(range(len(wiki))): if len(wiki[str(i)]["text"]) < limit: new_wiki[str(i)] = wiki[str(i)] continue data_1, data_2 = passage_split(wiki[str(i)]["text"]) new_wiki[str(i) + f"_1"] = {"text" : data_1, "corpus_source" : wiki[str(i)]["corpus_source"], "url" : wiki[str(i)]["url"], "domain" : wiki[str(i)]["domain"], "title" : wiki[str(i)]["title"], "author" : wiki[str(i)]["author"], "html" : wiki[str(i)]["html"], "document_id" : wiki[str(i)]["document_id"]} new_wiki[str(i) + f"_2"] = {"text" : data_2, "corpus_source" : wiki[str(i)]["corpus_source"], "url" : wiki[str(i)]["url"], "domain" : wiki[str(i)]["domain"], "title" : wiki[str(i)]["title"], "author" : wiki[str(i)]["author"], "html" : wiki[str(i)]["html"], "document_id" : wiki[str(i)]["document_id"]} save_data(f"../data/split_wiki_{limit}.json") def make_mask_dataset(dataset_path, k, tokenizer): base_dataset, opt = None, None if 'default' in dataset_path: base_dataset = get_pickle("../data/preprocess_train.pkl") if 'concat' in dataset_path: base_dataset = get_pickle("../data/concat_train.pkl") k = int(re.findall("\d", dataset_path)[0]) data_processor = DataProcessor(tokenizer) train_dataset, val_dataset = base_dataset['train'], base_dataset['val'] column_names = train_dataset.column_names train_dataset = data_processor.train_tokenizer(train_dataset, column_names) val_dataset = data_processor.val_tokenizer(val_dataset, column_names) model = SentenceTransformer('sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens') mask_dataset = mask_to_tokens(train_dataset, tokenizer, k, model) dataset = DatasetDict({'train': mask_dataset, 'validation': val_dataset}) save_pickle(dataset_path, dataset) return dataset
TEAM-IKYO/Open-Domain-Question-Answering
code/prepare_dataset.py
prepare_dataset.py
py
12,138
python
en
code
24
github-code
6
18164621881
import json # Read the network.json file with open("network.json", "r") as f: network = json.load(f) # Create a set to store all pairs (a, b) such that a follows b but b doesn't follow back a pairs = set() # Iterate over all users in the network for user, data in network.items(): # Get the list of users that the current user follows following = data.get("Connections", []) # Iterate over all users that the current user follows for follower in following: # Check if the follower doesn't follow back the current user if user not in network.get(str(follower), {}).get("Connections", []): pairs.add((user, str(follower))) # Remove mutual follows from the set mutual_follows = {(b, a) for (a, b) in pairs if (b, a) in pairs} pairs -= mutual_follows # Print all pairs (a, b) such that a follows b but b doesn't follow back a if len(pairs) > 0: for pair in pairs: print(pair) # Print the number of such pairs print(f"Number of pairs where 'a' follows 'b' but 'b' doesn't follow back 'a': {len(pairs)}") else: # If there are no such pairs, display that the relationship is completely bidirectional print("The relationship is completely bidirectional.")
GOVINDFROMINDIA/Twitter-Scam-Victims
GraphEvaluation.py
GraphEvaluation.py
py
1,265
python
en
code
0
github-code
6
11464862154
import speech_recognition as sr from requests import get from bs4 import BeautifulSoup from gtts import gTTS from paho.mqtt import publish import os ##### CONFIGURAÇÕES ##### with open('arquivoConfiguraGoogleSpeech.json') as credenciais_google: credenciais_google = credenciais_google.read() executaAcao = False serverMQTT = 'iot.eclipse.org' portaMQTT = 1883 topicoLuz = 'iluminacao/status' hotword = 'verônica' hotwordNoticias = 'notícias' hotwordTemperatura = 'temperatura' hotwordLigarLuz = 'ligar a luz' hotwordDesligarLuz = 'desativar a luz' def monitorarAudio(): microfone = sr.Recognizer() with sr.Microphone() as source: print("Aguardando o Comando: ") audio = microfone.listen(source) try: trigger = microfone.recognize_google_cloud(audio, credentials_json=credenciais_google, language='pt-BR') trigger = trigger.lower() if hotword in trigger and not getStatusTrigger(): print('Comando reconhecido!') respoder('feedback') setStatusTrigger(True) elif getStatusTrigger(): setStatusTrigger(False) return trigger except sr.UnknownValueError: print("Google not understand audio") except sr.RequestError as e: print("Could not request results from Google Cloud Speech service; {0}".format(e)) return None def setStatusTrigger(status): global executaAcao executaAcao = status def getStatusTrigger(): return executaAcao def analisarAcao(comando): if hotwordNoticias in comando: retornarUltimasNoticias() elif hotwordTemperatura in comando: retornarPrevisaoTempo() elif hotwordLigarLuz in comando: publicarNoTopico(topicoLuz, 1) retornarIluminacao(1) elif hotwordDesligarLuz in comando: publicarNoTopico(topicoLuz, 0) retornarIluminacao(0) else: criarAudio(comando.strip(hotword), 'comando') respoder('comando') respoder('notfound') def retornarUltimasNoticias(): site = get('https://news.google.com/news/rss?ned=pt_br&gl=BR&hl=pt') noticias = BeautifulSoup(site.text, 'html.parser') for item in noticias.findAll('item')[:2]: noticia = item.title.text criarAudio(noticia, 'noticia') respoder('noticia') respoder('thau') def retornarPrevisaoTempo(): site = get('http://api.openweathermap.org/data/2.5/weather?id=3462377&q=goiania,br&APPID=1d20fd1ca254ea2797f60e64520675a8&units=metric&lang=pt') clima = site.json() temperatura = clima['main']['temp'] #minima = clima['main']['temp_min'] #maxima = clima['main']['temp_max'] descricao = clima['weather'][0]['description'] mensagem = f'No momento a temperatura é de {temperatura} graus com {descricao}' criarAudio(mensagem, 'clima') respoder('clima') respoder('thau') def retornarIluminacao(status): if status == 1: mensagem = 'A luz foi ligada' else: mensagem = 'A luz foi desligada' criarAudio(mensagem, 'iluminacao') respoder('iluminacao') respoder('thau') def publicarNoTopico(topico, payload): publish.single(topico, payload=payload, qos=1, retain=True, hostname=serverMQTT, port=portaMQTT, client_id="veronica") def criarAudio(texto, nome_arquivo): tts = gTTS(texto, lang='pt-br') path = 'audios/' + nome_arquivo + '.mp3' with open(path, 'wb') as file: tts.write_to_fp(file) def respoder(nome_arquivo): path = 'audios/' + nome_arquivo + '.mp3' os.system('mpg321 ' + path) def __main__(): while True: comando = monitorarAudio() if comando is not None: analisarAcao(comando) __main__()
cicerojmm/assistentePessoalIoT
veronica/veronica.py
veronica.py
py
3,705
python
pt
code
2
github-code
6
12300846904
""" This example illustrates how to display the tree of a single TreeGrower for debugging purpose. """ from sklearn.datasets import make_classification import numpy as np from pygbm.binning import BinMapper from pygbm.grower import TreeGrower from pygbm import plotting rng = np.random.RandomState(0) n_samples = int(1e7) n_leaf_nodes = 5 X, y = make_classification(n_samples=n_samples, n_classes=2, n_features=5, n_informative=3, n_redundant=0, random_state=rng) bin_mapper_ = BinMapper(random_state=rng) X_binned = bin_mapper_.fit_transform(X) gradients = np.asarray(y, dtype=np.float32).copy() hessians = np.ones(1, dtype=np.float32) # First run to trigger the compilation of numba jit methods to avoid recording # the compiler overhead in the profile report. TreeGrower(X_binned, gradients, hessians, max_leaf_nodes=n_leaf_nodes).grow() # New run with to collect timing statistics that will be included in the plot. grower = TreeGrower(X_binned, gradients, hessians, max_leaf_nodes=n_leaf_nodes) grower.grow() plotting.plot_tree(grower)
ogrisel/pygbm
examples/plot_performance_profile_single_small_tree.py
plot_performance_profile_single_small_tree.py
py
1,076
python
en
code
175
github-code
6
24494832097
import requests import pandas as pd from bs4 import BeautifulSoup as bs def get_spy(): url = 'https://www.slickcharts.com/sp500' request = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'}) soup = bs(request.text, "lxml") stats = soup.find('table', class_='table table-hover table-borderless table-sm') df = pd.read_html(str(stats))[0] df['% Chg'] = df['% Chg'].str.strip('()-%') df['% Chg'] = pd.to_numeric(df['% Chg']) df['Chg'] = pd.to_numeric(df['Chg']) return df
reesecake/td_api
util/IndexInfo.py
IndexInfo.py
py
520
python
en
code
0
github-code
6
9790495928
from django.core.files.storage import FileSystemStorage from django.http import FileResponse from django.http import HttpResponseBadRequest from django.http import HttpResponseNotFound from django.http import JsonResponse from rest_framework import mixins from rest_framework import viewsets from rest_framework.decorators import action from rest_framework.response import Response from journeys.errors import ConflictNotResolvedError from journeys.errors import JourneysError from journeys.modifier.conflict.plugins import load_plugins from ..validators.checks_for_cli import default_checks from . import forms from . import logic from . import models from . import serializers def get_supported_features(request): plugins = load_plugins() return JsonResponse({"items": [plugin.ID for plugin in plugins]}) def get_supported_validators(request): return JsonResponse( { "validators": { check.name: { "require_source": check.require_source, "require_root": check.require_root, "description": check.description, } for check in default_checks.values() } } ) class SessionsViewSet( mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.DestroyModelMixin, viewsets.GenericViewSet, ): def get_serializer_class(self): if self.action == "retrieve": return serializers.SessionDetailsSerializer return serializers.SessionSerializer queryset = models.Session.objects.all() # pylint: disable=E1101 def perform_create(self, serializer): session = serializer.save() logic.get_controller(session=session, allow_empty=True) @action(detail=True, methods=["post"]) def source(self, request, pk): session = models.Session.objects.get(pk=pk) # pylint: disable=E1101 system_credentials = None form = forms.SourceForm(request.POST, request.FILES) form.is_valid() if form.errors: # TODO: Fill response content return HttpResponseBadRequest() fs = FileSystemStorage(location=session.working_directory) as3_file = ( fs.save(form.cleaned_data["as3_file"].name, form.cleaned_data["as3_file"]) if "as3_file" in form.cleaned_data and form.cleaned_data["as3_file"] else None ) if "ucs_file" in form.cleaned_data and form.cleaned_data["ucs_file"]: ucs_file = fs.save( form.cleaned_data["ucs_file"].name, form.cleaned_data["ucs_file"] ) ucs_passphrase = form.cleaned_data.get("ucs_passphrase", None) else: system_credentials = models.SystemCredentials( username=form.cleaned_data["username"], password=form.cleaned_data["password"], host=form.cleaned_data["host"], ) try: ucs_file, ucs_passphrase = logic.download_ucs( session=session, system_credentials=system_credentials ) system_credentials.save() except JourneysError: # TODO: Fill response content return HttpResponseBadRequest() clear = True # request.GET.get("clear", False) logic.initialize( session=session, ucs_file=ucs_file, ucs_passphrase=ucs_passphrase, as3_file=as3_file, clear=clear, credentials=system_credentials, ) return Response() @action(detail=True, methods=["post"]) def current_conflict(self, request, pk): session = models.Session.objects.get(pk=pk) # pylint: disable=E1101 conflict_id = request.data["conflict_id"] logic.set_current_conflict(session=session, conflict_id=conflict_id) return Response() @current_conflict.mapping.delete def delete_current_conflict(self, request, pk): session = models.Session.objects.get(pk=pk) # pylint: disable=E1101 logic.reset_current_conflict(session=session) return Response() class SessionFilesViewSet(viewsets.GenericViewSet): lookup_value_regex = r".+" lookup_url_kwarg = "file_path" def retrieve(self, request, session_pk, file_path, *args, **kwargs): session = models.Session.objects.get(pk=session_pk) # pylint: disable=E1101 controller = logic.get_controller(session=session) fs = FileSystemStorage(location=controller.repo_path) try: f = fs.open(file_path) except FileNotFoundError: return HttpResponseNotFound() return FileResponse(f, content_type="application/octet-stream") def update(self, request, session_pk, file_path, *args, **kwargs): session = models.Session.objects.get(pk=session_pk) # pylint: disable=E1101 controller = logic.get_controller(session=session) form = forms.FileUploadFrom(data=request.POST, files=request.FILES) form.full_clean() if form.errors: # TODO: Fill response content return HttpResponseBadRequest() fs = FileSystemStorage(location=controller.repo_path) if fs.exists(file_path): fs.delete(file_path) fs.save(file_path, form.cleaned_data["file"]) return Response(status=202) def delete(self, request, session_pk, file_path, *args, **kwargs): session = models.Session.objects.get(pk=session_pk) # pylint: disable=E1101 controller = logic.get_controller(session=session) fs = FileSystemStorage(location=controller.repo_path) try: fs.delete(file_path) except FileNotFoundError: return HttpResponseNotFound() return Response() class SessionBranchesViewSet(viewsets.GenericViewSet): lookup_value_regex = r".+" class SessionBranchesFilesViewSet(viewsets.GenericViewSet): lookup_value_regex = r".+" lookup_url_kwarg = "file_path" def retrieve( self, request, session_pk, session_branch_pk, file_path, *args, **kwargs ): session = models.Session.objects.get(pk=session_pk) # pylint: disable=E1101 controller = logic.get_controller(session=session) git = controller.repo.git content = git.show(f"{session_branch_pk}:{file_path}") return FileResponse(content, content_type="application/octet-stream") class SessionConflictsViewSet( mixins.ListModelMixin, viewsets.GenericViewSet, ): def get_queryset(self): return models.Conflict.objects.filter( # pylint: disable=E1101 session=self.kwargs["session_pk"] ) def get_serializer_class(self): if self.action == "retrieve": return serializers.ConflictDetailsSerializer return serializers.ConflictSerializer class SessionChangesViewSet( mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.DestroyModelMixin, viewsets.GenericViewSet, ): def get_queryset(self): return models.Change.objects.filter( # pylint: disable=E1101 session=self.kwargs["session_pk"] ).order_by("id") def get_serializer_class(self): if self.action == "retrieve": return serializers.ChangeDetailsSerializer return serializers.ChangeSerializer def create(self, request, session_pk, *args, **kwargs): session = models.Session.objects.get(pk=session_pk) # pylint: disable=E1101 message = request.data.get("message", None) try: logic.process(session=session, commit_name=message) except ConflictNotResolvedError: # TODO: Fill response content return HttpResponseBadRequest() return Response() class SessionDeploymentsViewSet( mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet, ): def get_queryset(self): return models.Deployment.objects.filter( # pylint: disable=E1101 session=self.kwargs["session_pk"] ) def get_serializer_class(self): if self.action == "retrieve": return serializers.DeploymentDetailsSerializer return serializers.DeploymentSerializer @action(detail=True, methods=["get"]) def log(self, request, session_pk=None, pk=None): # TODO: implement return Response({}) @action(detail=True, methods=["get"]) def report(self, request, session_pk=None, pk=None): # TODO: implement return Response({})
wiksla/f5-bigip-journeys-app
journeys/backend/views.py
views.py
py
8,720
python
en
code
0
github-code
6
36152977435
import os, sys, logging from flask import Blueprint, current_app from flask import request, jsonify ml_model_bp = Blueprint('ml_model_bp', __name__) # create a Blueprint object # create 'index' view for testing purposes @ml_model_bp.route('/', methods=["GET", "POST"]) def index(): return "ML model service is running!" # helper method for predict/ endpoint def get_pred(data): """Predict from in-memory data on the fly. """ try: nn_model = current_app.model pred = nn_model.predict(data) pred = pred.tolist() except Exception as e: print(e) pred = [] return pred # create route for prediction @ml_model_bp.route("/predict", methods=["GET", "POST"]) def predict(): """Performs an inference """ if request.method == "POST": data = request.get_json() # sentences come in through JSON current_app.logger.debug(f"Input to \"predict\" endpoint: {data['sentences']}") pred = get_pred( data=data["sentences"]) current_app.logger.debug(f"Sentiment predictions = {pred}") return jsonify({"input": data, "pred": pred}) if request.method == "GET": msg = "Please compose your request in POST type with data." current_app.logger.error(f"Wrong request type {request}.") return jsonify({"msg": msg})
bhavenp/docker_sentiment_analysis
ml_service/ml_model_api/ml_model_blueprint.py
ml_model_blueprint.py
py
1,355
python
en
code
0
github-code
6
72067619709
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Apr 9 13:31:37 2022 @author: basile """ import pandas as pd df = pd.DataFrame(columns=['index', 'prenom', 'nom', 'email', 'groupe', 'mystere']) df.to_csv('priants.csv', index=False) import streamlit as st input = st.text_input("text", key="text") but = st.button("clear text input") if but: st.session_state["text"] = "" st.write(input)
BasileR29/chapelet_tournant
test.py
test.py
py
422
python
en
code
0
github-code
6
13913894709
from __future__ import annotations as _annotations from typing import TYPE_CHECKING import pytest from watchfiles import watch from watchfiles.main import _default_force_polling if TYPE_CHECKING: from .conftest import SetEnv class MockRustNotify: @staticmethod def watch(*args): return 'stop' def __enter__(self): return self def __exit__(self, *args): pass def test_watch_polling_not_env(mocker): m = mocker.patch('watchfiles.main.RustNotify', return_value=MockRustNotify()) for _ in watch('.'): pass m.assert_called_once_with(['.'], False, False, 300, True, False) def test_watch_polling_env(mocker, env: SetEnv): env('WATCHFILES_FORCE_POLLING', '1') m = mocker.patch('watchfiles.main.RustNotify', return_value=MockRustNotify()) for _ in watch('.'): pass m.assert_called_once_with(['.'], False, True, 300, True, False) @pytest.mark.parametrize( 'env_var,arg,expected', [ (None, True, True), (None, False, False), (None, None, False), ('', True, True), ('', False, False), ('', None, False), ('1', True, True), ('1', False, False), ('1', None, True), ('disable', True, True), ('disable', False, False), ('disable', None, False), ], ) def test_default_force_polling(mocker, env: SetEnv, env_var, arg, expected): uname = type('Uname', (), {'system': 'Linux', 'release': '1'}) mocker.patch('platform.uname', return_value=uname()) if env_var is not None: env('WATCHFILES_FORCE_POLLING', env_var) assert _default_force_polling(arg) == expected @pytest.mark.parametrize( 'env_var,arg,expected,call_count', [ (None, True, True, 0), (None, False, False, 0), (None, None, True, 1), ('', True, True, 0), ('', False, False, 0), ('', None, True, 1), ('1', True, True, 0), ('1', False, False, 0), ('1', None, True, 0), ('disable', True, True, 0), ('disable', False, False, 0), ('disable', None, False, 0), ], ) def test_default_force_polling_wsl(mocker, env: SetEnv, env_var, arg, expected, call_count): uname = type('Uname', (), {'system': 'Linux', 'release': 'Microsoft-Standard'}) m = mocker.patch('platform.uname', return_value=uname()) if env_var is not None: env('WATCHFILES_FORCE_POLLING', env_var) assert _default_force_polling(arg) == expected assert m.call_count == call_count
samuelcolvin/watchfiles
tests/test_force_polling.py
test_force_polling.py
py
2,551
python
en
code
1,336
github-code
6
29125164138
from django.conf.urls import include, patterns, url view_location = 'customProfile.views' urlpatterns = patterns(view_location, # Views url(r'^(?P<username>[-\w]+)/', include(patterns(view_location, url(r'^$', 'profileRedirect', {'redirect_url': 'artist:about'}, name='home'), url(r'^news/$', 'artist_news', name='news'), url(r'^shows/$','shows', name='shows'), url(r'^shows/(?P<year>\d{4})/$','shows',name='shows'), url(r'^photos/$', 'artist_photos', name='photos'), ))), ) view_location = 'social_links.views' urlpatterns += patterns(view_location, # Forms url(r'^about/links/edit/$', 'artist_social_links', name='socialLinksForm'), url(r'^photos/links/edit/$', 'artist_photo_links', name='photoLinksForm'), url(r'^music/links/edit/$', 'music_links', name='musicLinksForm'), url(r'^videos/links/edit/$', 'artist_video_links', name='videoLinksForm'), ) view_location = 'artist.views' urlpatterns += patterns(view_location, # Views url(r'^(?P<username>[-\w]+)/', include(patterns(view_location, url(r'^about/$', 'about', name='about'), url(r'^music/$', 'music', name='music'), url(r'^videos/$', 'videos', name='videos'), ))), #Forms url(r'^about/', include(patterns(view_location, url(r'^biography/edit/$', 'biography', name='biographyForm'), url(r'^contact/edit/$', 'contact_info', name='userContactForm'), url(r'^member/add/$', 'members', name='memberForm'), url(r'^member/edit/(?P<member_id>[\.\w-]+)$', 'members', name='memberForm'), url(r'^(?P<contact_type>[\.\w-]+)/edit/$', 'contacts', name='contactForm'), ))), url(r'^music/', include(patterns(view_location, url(r'^album/add/$', 'AddEditAlbum', name='albumForm'), url(r'^album/(?P<album_id>[\.\w-]+)/edit/$', 'AddEditAlbum', name='editAlbumForm'), url(r'^album/(?P<album_id>[\.\w-]+)/tracks/add/$', 'AddEditTracks', name='tracksForm'), #url(r'^interview/add/$', 'interview_form', name='interview_form'), #url(r'^interview/add/(?P<trackID>[\.\w-]+)$', 'interview_form', name='interview_form'), ))), url(r'^videos/', include(patterns(view_location, url(r'^add/$', 'video_form', name='video_form'), url(r'^album/add/$', 'AddEditAlbum', {'success_url': 'artist:video_tracks_form'}, name='video_album_form'), url(r'^album/(?P<album_id>[\.\w-]+)/edit/$', 'AddEditAlbum', {'success_url': 'artist:video_tracks_form'}, name='video_edit_album'), url(r'^album/(?P<album_id>[\.\w-]+)/tracks/add/$', 'add_video_to_album', name='video_tracks_form'), #url(r'^interview-video/add/$', 'interview_video_form', name='interview_video_form'), #url(r'^interview-video/add/(?P<trackID>[\.\w-]+)$', 'interview_video_form', name='interview_video_form'), ))), )
TimBest/ComposersCouch
artist/urls.py
urls.py
py
2,864
python
en
code
1
github-code
6
20232075182
from tradingview.client import TradingViewWebSocketClient, fetch_japan_symbols from datetime import datetime client = TradingViewWebSocketClient() symbols = fetch_japan_symbols() client.add_symbols(symbols[:100]) # client.add_symbols(['TSE:4689']) for x in client.fetch_ohlc(past_bar=302): print(datetime.fromtimestamp(x.bar_time), x)
otomarukanta/tradingview
example_ohlc.py
example_ohlc.py
py
341
python
en
code
0
github-code
6
41664319378
import random import tkinter as tk import tkinter.messagebox import pandas as pd from tkinter import ttk from tkinter import * # import unidecode from tkinter import PhotoImage LARGE_FONT = ("Courier", 20, "bold") MEDIUM_FONT = ("Courier", 15) BACKGROUND_COLOR = "#6699CC" # BACKGROUND_COLOR_ALT = "#B1DDC6" class LanguageWorkout(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) # creating a container container = tk.Frame(self) container.pack(side="top", fill="both", expand=True) tk.Tk.title(self, "Teddy spricht") container.grid_rowconfigure(0, weight=1) container.grid_columnconfigure(0, weight=1) # initializing frames to an empty dictionary self.frames = {} # iterating through a tuple consisting # of the different page layouts for F in (HomePage, WorkoutPage): frame = F(container, self) self.frames[F] = frame frame.config(background=BACKGROUND_COLOR) frame.grid(row=0, column=0, padx=0, pady=0, sticky="nsew") # frame.grid(row=0, column=0, sticky="nsew") # initializing frame of that object from # home page, Spending, Profit etc. respectively with # for loop self.show_frame(HomePage) def show_frame(self, cont): frame = self.frames[cont] frame.tkraise() # first window frame home page class HomePage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) label = ttk.Label(self, text="Hlavná stránka", font=LARGE_FONT, background=BACKGROUND_COLOR, foreground="#FFFFFF") label.grid(row=0, column=0, pady=20, padx=40) # WORKOUT pic_flag = PhotoImage(file="figs/de_to_svk_small.png") pic_flag_resize = pic_flag.subsample(3, 3) button1 = tk.Button(self, text="Prekladat ", font=MEDIUM_FONT, background=BACKGROUND_COLOR, highlightbackground=BACKGROUND_COLOR, foreground="#FFFFFF", image=pic_flag_resize, compound=RIGHT, command=lambda: controller.show_frame(WorkoutPage)) button1.image = pic_flag_resize button1.grid(row=1, column=0, pady=20, padx=40) button2 = tk.Button(self, text="Slovník DE->SVK", width=15, height=1, font=MEDIUM_FONT, background=BACKGROUND_COLOR, highlightbackground=BACKGROUND_COLOR, foreground="#FFFFFF", command=lambda: controller.show_frame(Vocabulary)) button2.grid(row=2, column=0, pady=20, padx=40, ipadx=30, ipady=5) class WorkoutPage(tk.Frame): words = pd.read_csv("data/german_words_1500_SK.csv") dict_words = words.to_dict(orient="records") current_word = dict((random.choice(dict_words))) print(current_word) def __init__(self, parent, controller): tk.Frame.__init__(self, parent) self.question = ttk.Label(self, text=f"Prelož '{self.current_word['German']}'", font=LARGE_FONT, background=BACKGROUND_COLOR, foreground="#FFFFFF") self.question.grid(row=0, column=0, pady=20, padx=40, sticky="w") # USER ENTRY self.translation_entry = ttk.Entry(self, width=15, font=MEDIUM_FONT) self.translation_entry.bind('<Return>', self.checking_answer) self.translation_entry.grid(row=1, column=0, pady=20, padx=40) # CHECK BUTTON self.check_button = Button(self, text="Skontroluj", width=12, height=1, font=MEDIUM_FONT, background=BACKGROUND_COLOR, highlightbackground=BACKGROUND_COLOR, foreground="#FFFFFF", command=self.checking_answer) self.check_button.grid(row=2, column=0, pady=20, padx=40) # BACK HOME BUTTON button2 = ttk.Button(self, text="Spät", command=lambda: controller.show_frame(HomePage)) button2.grid(row=3, column=0, pady=20, padx=40) # BRAIN TEDDY # self.canvas_brain1 = Canvas(self, width=320, height=300) # self.brain1 = PhotoImage(file="images/image843.png") # self.canvas_brain1.create_image(10, 40, anchor=NW, image=self.brain1) # #self.canvas_brain1.config(bg=BACKGROUND_COLOR, highlightthickness=0) # self.canvas_brain1.grid(row=0, column=1, rowspan=3) def random_word(self): self.current_word = (random.choice(self.dict_words)) print(self.current_word["German"].lower()) def checking_answer(self, *args): user_input = unidecode(self.translation_entry.get().lower()) # unidecode removes diacritics answer_split = self.current_word['Slovak'].split('/') # split into possible answers if more than one answer_adjusted = [unidecode(word.lower()) for word in answer_split] # removing diacritics and making lowercase letters print(answer_adjusted) if user_input in answer_adjusted: self.question.config(text=f"Správne!\n{self.current_word['German']} znamená {', '.join(answer_adjusted)}") self.check_button.config(text="Dalšie slovo", command=self.next_word) self.translation_entry.bind('<Shift_R>', self.next_word) else: self.question.config(text=f"'{self.current_word['German']}' znamená {', '.join(answer_adjusted)}") self.check_button.config(text="Dalšie slovo", command=self.next_word) self.translation_entry.bind('<Shift_R>', self.next_word) def next_word(self, *args): self.random_word() self.translation_entry.delete(0, "end") self.check_button.config(text="Skontroluj", command=self.checking_answer) self.question.config(text=f"Prelož '{self.current_word['German']}'") class Vocabulary(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) def save_txt(): with open('data/german_words_1500_SK.csv', 'w', encoding="utf8") as f: f.write(self.text_box.get(1.0, END)) tkinter.messagebox.showinfo(title='Slovník', message='Zmeny boli úspešne uložené.') with open('data/german_words_1500_SK.csv', 'r', encoding="utf8") as f: text = f.read() # scrollbar self.text_scroll = Scrollbar(self) self.text_scroll.grid(row=0, column=2, sticky='ns') # text box self.text_box = Text(self, width=40, height=10, font=MEDIUM_FONT, undo=True, yscrollcommand=self.text_scroll.set) self.text_box.insert(END, text) self.text_box.grid(row=0, column=0, pady=10, padx=0, columnspan=2) # config scrollbar self.text_scroll.config(command=self.text_box.yview) # save button self.save = ttk.Button(self, text='Uložit zmeny', command=save_txt) self.save.grid(row=1, column=0, pady=20, padx=10) # BACK HOME BUTTON button2 = ttk.Button(self, text="Spät", command=lambda: controller.show_frame(HomePage)) button2.grid(row=1, column=1, pady=20, padx=40) app = LanguageWorkout() app.mainloop()
wRajter/teddy_spricht_vSK
main.py
main.py
py
7,699
python
en
code
0
github-code
6
41675138600
# 부녀회장이 될 테야 """ 5 1 7 28 84 210 4 1 6 21 56 126 3 1 5 15 35 70 2 1 4 10 20 35 1 1 3 6 10 15 0 1 2 3 4 5 (0층) 1 2 3 4 5 """ import sys input = sys.stdin.readline T = int(input()) for _ in range(T): floor = int(input()) room = int(input()) info = [[0 for _ in range(room + 1)] for _ in range(floor + 1)] for i in range(room + 1): info[0][i] = i for f in range(1, floor + 1): for r in range(1, room + 1): info[f][r] = info[f - 1][r] + info[f][r - 1] print(info[floor][room])
jisupark123/Python-Coding-Test
baekjoon/2022-6/bronze/2775.py
2775.py
py
589
python
en
code
1
github-code
6
72743743228
import os import boto3 import json from app.shared.clients.secret_manager import SecretManager def _map_to_auth_response(principal, resource, effect): statement = { "Action": "execute-api:Invoke", "Effect": effect, "Resource": resource } policy_document = { "Version": "2012-10-17", "Statement": [statement] } response = { "principalId": principal, "policyDocument": policy_document } print('Response: ', response) return response def authorize(resource: str, principal: str, basic_string: str) -> str: expected_basic_string = SecretManager().secret(secret_name='API_AUTH_KEY', key_name='BASIC_AUTH_KEY') print(f'AUTH KEY in Secrets Manager: {expected_basic_string}') print(f'AUTH KEY in Request: {basic_string}') if basic_string == expected_basic_string: effect = 'Allow' else: effect = 'Deny' return _map_to_auth_response(principal, resource, effect)
ishwar2303/graphidot-serverless-backend
app/functions/basic_authorizer/basic_authorizer.py
basic_authorizer.py
py
989
python
en
code
0
github-code
6
24512005131
import datetime as dt import warnings import numpy as np import pandas as pd from asgiref.sync import async_to_sync from dateutil.parser import parse from django.core.cache import cache from django.utils import timezone from apps.integration.tasks.sockets.get_kws_object import get_kws_object warnings.filterwarnings("ignore") def get_instrument(underlying: str) -> pd.DataFrame: df = cache.get("OPTION_INSTRUMENTS") return df[df["underlying"] == underlying].reset_index(drop=True) def set_initial_fields_for_instruments(instrument, instruments): tz = timezone.get_current_timezone() instruments["last_price"] = np.nan instruments["exchange_timestamp"] = np.nan instruments["last_trade_time"] = np.nan instruments["oi"] = np.nan instruments["expiry"] = instruments["expiry"].apply( lambda x: parse(f"{x} 15:30:00").replace(tzinfo=tz) ) instruments["str_expiry"] = instruments["expiry"].apply( lambda y: y.strftime("%d-%b-%Y").upper() ) cache.set(f"{instrument}_OPTION_INSTRUMENTS", instruments) def set_instrument_cache(df, instruments, instrument): df = df[ [ "instrument_token", "last_price", "exchange_timestamp", "last_trade_time", "oi", ] ].copy() df.rename(columns={"instrument_token": "kite_instrument_token"}, inplace=True) instruments = instruments.merge(df, how="left", on="kite_instrument_token") instruments["last_price"] = instruments["last_price_y"].fillna( instruments["last_price_x"] ) instruments["exchange_timestamp"] = instruments["exchange_timestamp_y"].fillna( instruments["exchange_timestamp_x"] ) instruments["last_trade_time"] = instruments["last_trade_time_y"].fillna( instruments["last_trade_time_x"] ) instruments["oi"] = instruments["oi_y"].fillna(instruments["oi_x"]) instruments.drop( columns=[ "last_price_x", "last_price_y", "exchange_timestamp_x", "exchange_timestamp_y", "last_trade_time_x", "last_trade_time_y", "oi_x", "oi_y", ], inplace=True, ) cache.set(f"{instrument}_OPTION_INSTRUMENTS", instruments) for websocket_id, instruments_buffer in instruments.groupby("websocket_id"): cache.set( f"{instrument}_{websocket_id}_OPTION_INSTRUMENTS", instruments_buffer.sort_values( ["strike", "option_type"], ignore_index=True ), ) def on_connect(ws, response): ws.subscribe(ws.instrument_tokens) ws.set_mode(ws.MODE_FULL, ws.instrument_tokens) def on_ticks(ws, ticks): instruments = cache.get(f"{ws.instrument}_OPTION_INSTRUMENTS") df = pd.DataFrame(ticks) if not df.empty: set_instrument_cache(df, instruments, ws.instrument) if timezone.localtime().time() > dt.time(15, 30): ws.unsubscribe(ws.instrument_tokens) ws.close() def on_close(ws, code, reason): if not code and not reason: ws.stop() def run_option_websocket(instrument: str) -> None: instruments = get_instrument(instrument) if instruments.empty: return set_initial_fields_for_instruments(instrument, instruments) kws = get_kws_object() kws.instrument = instrument kws.instrument_tokens = instruments["kite_instrument_token"].to_list() kws.on_ticks = on_ticks kws.on_connect = on_connect kws.on_close = on_close kws.connect(threaded=True)
finbyz/trading_child
apps/integration/tasks/sockets/option_websocket.py
option_websocket.py
py
3,575
python
en
code
0
github-code
6
3642629983
from utils.transformers_utils import SiameseRobertaModel,TrainerLogger,get_preds,compute_metrics,update_metrics import numpy as np import pandas as pd from transformers import RobertaTokenizerFast,RobertaConfig,TrainingArguments from datasets import Dataset,DatasetDict #!pip install datasets import evaluate #!pip install evaluate from sklearn.metrics import roc_auc_score,recall_score,f1_score,precision_score,accuracy_score DATASETS_PATH = '../data/datasets' TOKENIZER_PATH = f'../data/tokenizers/tokenizer_opcode_bpe' MODEL_PATH = f'../data/models/roberta_lm' RESULTADOS_PATH = f'../data/resultados' def get_dataset(target,tokenizer=None,remove_columns=None): dataset = pd.read_csv(f'{DATASETS_PATH}/{target}_balanced.csv')[['opcode_nocds',target,'is_valid']]#.sample(300) #dataset['arithmetic'] = np.where(dataset['arithmetic']==1,'Danger','Safe') dataset[target] = np.where(dataset[target]==1,0,1) dataset.columns = ['text','labels','is_valid'] ds = DatasetDict() ds['train'] = Dataset.from_pandas(dataset[~dataset.is_valid].drop('is_valid',axis=1), preserve_index=False) ds['valid'] = Dataset.from_pandas(dataset[dataset.is_valid].drop('is_valid',axis=1), preserve_index=False) if tokenizer!= None: ds = ds.map(lambda x:tokenizer(x["text"],truncation=True,padding='max_length'), batched=True,remove_columns=remove_columns) return ds def get_trainer(ds,model): training_args = TrainingArguments("test_trainer", num_train_epochs=6, no_cuda=False, evaluation_strategy="epoch",#steps #logging_strategy learning_rate= 5e-05, lr_scheduler_type= 'linear', #'linear',#cosine_with_restarts fp16=True ) train_dataset = ds['train'] eval_dataset = ds['valid'] return TrainerLogger( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, ) max_size_sentence = 4048 metric = evaluate.load("accuracy") tokenizer = RobertaTokenizerFast.from_pretrained(TOKENIZER_PATH, max_len=max_size_sentence) config = RobertaConfig( vocab_size=1000, max_position_embeddings=512 + 2, # 514 hidden_size=216, num_attention_heads=6, num_hidden_layers=4, type_vocab_size=1 # id2label={0: 'LABEL_0', 1: 'LABEL_1', 2: 'LABEL_2'} ) resultados = { 'fold': ['f1', 'auc-roc', 'auc-roc-th', 'precision', 'recall', 'accuracy', 'size'], } vulnerabilities = ['access_control', 'arithmetic', 'denial_service', 'front_running', 'reentrancy', 'time_manipulation', 'unchecked_low_calls'] for target in vulnerabilities: print(target) ds = get_dataset(target, tokenizer, ['text']) model = SiameseRobertaModel(config, n_childs=8, pretrained='') trainer = get_trainer(ds, model) trainer.train() y_real_train, y_pred_train = get_preds(model, ds['train']) y_real, y_pred = get_preds(model, ds['valid']) update_metrics(target, resultados, (y_real_train, y_pred_train, y_real, y_pred)) pd.DataFrame(resultados).to_csv(f'{RESULTADOS_PATH}/transfomers_no_lm.csv', index=False) max_size_sentence = 4048 metric = evaluate.load("accuracy") tokenizer = RobertaTokenizerFast.from_pretrained(TOKENIZER_PATH, max_len=max_size_sentence) config = RobertaConfig( vocab_size=1000, max_position_embeddings=512 + 2, # 514 hidden_size=216, num_attention_heads=6, num_hidden_layers=4, type_vocab_size=1 # id2label={0: 'LABEL_0', 1: 'LABEL_1', 2: 'LABEL_2'} ) resultados = { 'fold': ['f1', 'auc-roc', 'auc-roc-th', 'precision', 'recall', 'accuracy', 'size'], } vulnerabilities = ['access_control', 'arithmetic', 'denial_service', 'front_running', 'reentrancy', 'time_manipulation', 'unchecked_low_calls'] for target in vulnerabilities: print(target) ds = get_dataset(target, tokenizer, ['text']) model = SiameseRobertaModel(config, n_childs=8, pretrained=MODEL_PATH) trainer = get_trainer(ds, model) trainer.train() y_real_train, y_pred_train = get_preds(model, ds['train']) y_real, y_pred = get_preds(model, ds['valid']) update_metrics(target, resultados, (y_real_train, y_pred_train, y_real, y_pred)) pd.DataFrame(resultados).to_csv(f'{RESULTADOS_PATH}/transfomers_yes_lm.csv', index=False)
matisyo/vulnerability_detection
Notebooks/8. Transformers Classifier.py
8. Transformers Classifier.py
py
4,686
python
en
code
0
github-code
6
8845375190
from fastapi import APIRouter, Depends from fastapi_pagination import Page, Params from src.admins.dependencies import get_groups_service, get_valid_group from src.admins.models import Group from src.admins.schemas import CreateGroupSchema, GroupOut from src.admins.services import GroupService router = APIRouter() @router.get("/") async def get_groups( params: Params = Depends(), groups_service: GroupService = Depends(get_groups_service) ) -> Page[GroupOut]: return await groups_service.get_all(params=params) @router.post("/") async def create_group( data: CreateGroupSchema, groups_service: GroupService = Depends(get_groups_service) ) -> GroupOut: return await groups_service.create(**data.dict()) @router.get("/{group_id}") async def get_group( group: Group = Depends(get_valid_group) ) -> GroupOut: return group @router.delete("/{group_id}") async def delete_group( group: Group = Depends(get_valid_group) ) -> GroupOut: await group.delete() return group
Qwizi/fastapi-sourcemod
sourcemod_api/src/admins/views/groups.py
groups.py
py
1,015
python
en
code
0
github-code
6
36994780654
# -*- coding:utf-8 -*- from __future__ import print_function from __future__ import division import tensorflow as tf import numpy as np from tqdm import tqdm import os import sys import shutil import time from utils import get_logger import network os.environ["CUDA_VISIBLE_DEVICES"] = "1" sys.path.append('../..') from data_helper import to_categorical from evaluator import cail_evaluator flags = tf.flags flags.DEFINE_bool('is_retrain', False, 'if is_retrain is true, not rebuild the summary') flags.DEFINE_integer('max_epoch', 1, 'update the embedding after max_epoch, default: 1') flags.DEFINE_integer('max_max_epoch', 1000, 'all training epoches, default: 1000') flags.DEFINE_float('lr', 1e-3, 'initial learning rate, default: 1e-3') flags.DEFINE_float('decay_rate', 0.6, 'decay rate, default: 0.65') flags.DEFINE_float('keep_prob', 0.5, 'keep_prob for training, default: 0.5') flags.DEFINE_string("log_file_train", "train.log", "File for log") flags.DEFINE_integer('decay_step', 5000, 'decay_step, default: 5000') flags.DEFINE_integer('valid_step', 2500, 'valid_step, default: 2500') flags.DEFINE_float('last_score12', 0.0, 'if valid_score12 > last_score12, save new model. default: 0.0') FLAGS = flags.FLAGS lr = FLAGS.lr last_score12 = FLAGS.last_score12 settings = network.Settings() summary_path = settings.summary_path ckpt_path = settings.ckpt_path model_path = ckpt_path + 'model.ckpt' log_path = settings.log_path embedding_path = '../../data/word_embedding_256.npy' data_train_path = '../../data/wd_pdQS200/train/' data_valid_path = '../../data/wd_pdQS200/valid/' tr_batches = os.listdir(data_train_path) va_batches = os.listdir(data_valid_path) n_tr_batches = len(tr_batches) n_va_batches = len(va_batches) def get_batch(data_path, batch_id): new_batch = np.load(data_path + str(batch_id) + '.npz') X_batch = new_batch['X'] y_batch = new_batch['y'] return [X_batch, y_batch] def valid_epoch(data_path, sess, model): va_batches = os.listdir(data_path) n_va_batches = len(va_batches) _costs = 0.0 predict_labels_list = list() marked_labels_list = list() for i in range(n_va_batches): [X_batch, y_batch] = get_batch(data_path, i) marked_labels_list.extend(y_batch) y_batch = to_categorical(y_batch) _batch_size = len(y_batch) fetches = [model.loss, model.y_pred] feed_dict = {model.X_inputs: X_batch, model.y_inputs: y_batch, model.batch_size: _batch_size, model.tst: True, model.keep_prob: 1.0} _cost, predict_labels = sess.run(fetches, feed_dict) _costs += _cost predict_labels_list.extend(predict_labels) f1_micro, f1_macro, score12 = cail_evaluator(predict_labels_list, marked_labels_list) return f1_micro, f1_macro, score12 def train_epoch(data_path, sess, model, train_fetches, valid_fetches, train_writer, test_writer, logger): global last_score12 global lr time0 = time.time() batch_indexs = np.random.permutation(n_tr_batches) for batch in tqdm(range(n_tr_batches)): global_step = sess.run(model.global_step) if 0 == (global_step + 1) % FLAGS.valid_step: f1_micro, f1_macro, score12 = valid_epoch(data_valid_path, sess, model) print('Global_step=%d: f1_micro=%g, f1_macro=%g, score12=%g, time=%g s' % ( global_step, f1_micro, f1_macro, score12, time.time() - time0)) logger.info('END:Global_step={}: f1_micro={}, f1_macro={}, score12={}'. format(sess.run(model.global_step), f1_micro, f1_macro, score12)) time0 = time.time() if score12 > last_score12: last_score12 = score12 saving_path = model.saver.save(sess, model_path, global_step+1) print('saved new model to %s ' % saving_path) # training batch_id = batch_indexs[batch] [X_batch, y_batch] = get_batch(data_path, batch_id) y_batch = to_categorical(y_batch) _batch_size = len(y_batch) feed_dict = {model.X_inputs: X_batch, model.y_inputs: y_batch, model.batch_size: _batch_size, model.tst: False, model.keep_prob: FLAGS.keep_prob} summary, _cost, _, _ = sess.run(train_fetches, feed_dict) # the cost is the mean cost of one batch # valid per 500 steps if 0 == (global_step + 1) % 500: train_writer.add_summary(summary, global_step) batch_id = np.random.randint(0, n_va_batches) # 随机选一个验证batch [X_batch, y_batch] = get_batch(data_valid_path, batch_id) y_batch = to_categorical(y_batch) _batch_size = len(y_batch) feed_dict = {model.X_inputs: X_batch, model.y_inputs: y_batch, model.batch_size: _batch_size, model.tst: True, model.keep_prob: 1.0} summary, _cost = sess.run(valid_fetches, feed_dict) test_writer.add_summary(summary, global_step) def main(_): global ckpt_path global last_score12 if not os.path.exists(ckpt_path): os.makedirs(ckpt_path) if not os.path.exists(summary_path): os.makedirs(summary_path) elif not FLAGS.is_retrain: shutil.rmtree(summary_path) os.makedirs(summary_path) if not os.path.exists(summary_path): os.makedirs(summary_path) if not os.path.exists(log_path): os.makedirs(log_path) print('1.Loading data...') W_embedding = np.load(embedding_path) print('training sample_num = %d' % n_tr_batches) print('valid sample_num = %d' % n_va_batches) logger = get_logger(log_path + FLAGS.log_file_train) print('2.Building model...') config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: model = network.Atten_TextCNN(W_embedding, settings) with tf.variable_scope('training_ops') as vs: learning_rate = tf.train.exponential_decay(FLAGS.lr, model.global_step, FLAGS.decay_step, FLAGS.decay_rate, staircase=True) with tf.variable_scope('Optimizer1'): tvars1 = tf.trainable_variables() grads1 = tf.gradients(model.loss, tvars1) optimizer1 = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op1 = optimizer1.apply_gradients(zip(grads1, tvars1), global_step=model.global_step) with tf.variable_scope('Optimizer2'): tvars2 = [tvar for tvar in tvars1 if 'embedding' not in tvar.name] grads2 = tf.gradients(model.loss, tvars2) optimizer2 = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op2 = optimizer2.apply_gradients(zip(grads2, tvars2), global_step=model.global_step) update_op = tf.group(*model.update_emas) merged = tf.summary.merge_all() # summary train_writer = tf.summary.FileWriter(summary_path + 'train', sess.graph) test_writer = tf.summary.FileWriter(summary_path + 'test') training_ops = [v for v in tf.global_variables() if v.name.startswith(vs.name+'/')] if os.path.exists(ckpt_path + "checkpoint"): print("Restoring Variables from Checkpoint...") model.saver.restore(sess, tf.train.latest_checkpoint(ckpt_path)) f1_micro, f1_macro, score12 = valid_epoch(data_valid_path, sess, model) print('f1_micro=%g, f1_macro=%g, score12=%g' % (f1_micro, f1_macro, score12)) sess.run(tf.variables_initializer(training_ops)) train_op2 = train_op1 else: print('Initializing Variables...') sess.run(tf.global_variables_initializer()) print('3.Begin training...') print('max_epoch=%d, max_max_epoch=%d' % (FLAGS.max_epoch, FLAGS.max_max_epoch)) logger.info('max_epoch={}, max_max_epoch={}'.format(FLAGS.max_epoch, FLAGS.max_max_epoch)) train_op = train_op2 for epoch in range(FLAGS.max_max_epoch): print('\nepoch: ', epoch) logger.info('epoch:{}'.format(epoch)) global_step = sess.run(model.global_step) print('Global step %d, lr=%g' % (global_step, sess.run(learning_rate))) if epoch == FLAGS.max_epoch: train_op = train_op1 train_fetches = [merged, model.loss, train_op, update_op] valid_fetches = [merged, model.loss] train_epoch(data_train_path, sess, model, train_fetches, valid_fetches, train_writer, test_writer, logger) # 最后再做一次验证 f1_micro, f1_macro, score12 = valid_epoch(data_valid_path, sess, model) print('END:Global_step=%d: f1_micro=%g, f1_macro=%g, score12=%g' % ( sess.run(model.global_step), f1_micro, f1_macro, score12)) logger.info('END:Global_step={}: f1_micro={}, f1_macro={}, score12={}'. format(sess.run(model.global_step), f1_micro, f1_macro, score12)) if score12 > last_score12: saving_path = model.saver.save(sess, model_path, sess.run(model.global_step)+1) print('saved new model to %s ' % saving_path) logger.info('saved new model to {}'.format(saving_path)) if __name__ == '__main__': tf.app.run()
shelleyHLX/cail
models/Attention_Textcnn/train.py
train.py
py
9,638
python
en
code
77
github-code
6
26244830544
from __future__ import absolute_import, print_function import unittest import poker testdata = ["5H 5C 6S 7S KD 2C 3S 8S 8D TD", "5D 8C 9S JS AC 2C 5C 7D 8S QH", "2D 9C AS AH AC 3D 6D 7D TD QD", "4D 6S 9H QH QC 3D 6D 7H QD QS", "2H 2D 4C 4D 4S 3C 3D 3S 9S 9D"] testwinner = [1, 0, 1, 0, 0] class TestPoker(unittest.TestCase): def testpoker(self): games = [] for line in testdata: hand0, hand1 = line[:14], line[15:] player0 = poker.player(hand0) player1 = poker.player(hand1) game = poker.game() game.set_player(player0, player1) games.append(game) for i in range(5): game = games[i] winner = testwinner[i] self.assertEqual(game.winner(), winner) if __name__ == "__main__": unittest.main()
tak0kada/procon
project euler/python/50/54/poker/tests/test_poker.py
test_poker.py
py
882
python
en
code
0
github-code
6
42810587556
import numpy as np # Color palette palette = { 0: (0, 0, 0), # Undefined (black) 1: (255, 255, 255), # Impervious surfaces (white) 2: (0, 0, 255), # Buildings (dark blue) 3: (0, 128, 0), # Vegetation (light green) 4: (255, 0, 0), # Water (red) } invert_palette = {v: k for k, v in palette.items()} def convert_from_color(arr_3d, palette=invert_palette): """ RGB-color encoding to grayscale labels """ arr_2d = np.zeros((arr_3d.shape[0], arr_3d.shape[1]), dtype=np.uint8) for c, i in palette.items(): m = np.all(arr_3d == np.array(c).reshape(1, 1, 3), axis=2) arr_2d[m] = i return arr_2d def convert_to_color(arr_2d, palette=palette): """ grayscale labels to RGB-color encoding """ arr_3d = np.zeros((arr_2d.shape[0], arr_2d.shape[1], 3), dtype=np.uint8) for c, i in palette.items(): m = arr_2d == c arr_3d[m] = i return arr_3d
nshaud/DeepNetsForEO
OSM/labels.py
labels.py
py
987
python
en
code
468
github-code
6
28726581501
import logging import feedparser import requests from .. import read_list log = logging.getLogger(__name__) class VideoFeed: def __init__(self, known_path, url): self.url = url self.read_list = read_list.ReadList(known_path, url) def is_new(self, item): return self.read_list.is_new(item.id) def fetch(self): try: response = requests.get(self.url) response.raise_for_status() feed = feedparser.parse(response.content) items = feed.entries if len(items) == 0: raise Exception("Empty feed. Is site down?") new_items = list(filter(self.is_new, items)) log.info("Feed contains %d items, %d are new." % (len(items), len(new_items))) # iterate first, then save new read list for i in new_items: yield i self.read_list.save() except Exception: log.exception("Unexpected error with %s", self.url, exc_info=True) def fetch_video_codes(self): raise NotImplementedError def append_to_queue(self, queue_path): codes = self.fetch_video_codes() links = ["\nhttps://www.youtube.com/watch?v=" + v for v in codes] f = open(queue_path, "a") f.writelines(links) f.close()
EliseAv/tubeforme
video_feeds/_base.py
_base.py
py
1,334
python
en
code
0
github-code
6
29644952837
#!/usr/bin/env python3 #-*- coding: utf-8 -*- """DESCRIPTION This module is a list of coding exercises. The intention is to emulate some functions from other languages. """ #================================================================== # Generate a list of divisors #================================================================== def divisors_of(number_to_divide): """Find the integer divisors of <number_to_divide> param: number_to_divide.""" number_to_divide = number_to_divide + 1 possible_divisors_list = list(range(number_to_divide)) if 0 in possible_divisors_list: possible_divisors_list.remove(0) if 1 in possible_divisors_list: possible_divisors_list.remove(1) divisors_list = [1] number_to_divide = number_to_divide - 1 for each_possible_divisor in list(possible_divisors_list): if number_to_divide % each_possible_divisor == 0: divisors_list.append(each_possible_divisor) elif number_to_divide % each_possible_divisor != 0: possible_divisors_list.remove(each_possible_divisor) return divisors_list #================================================================== # Generate a range of prime numbers #================================================================== def prime_range(how_many_primes_you_need): """Return a range of prime numbers. param: how_many_primes_you_need""" primes = [] for each_number in range(how_many_primes_you_need): if len(divisors_of(each_number)) == 2: primes primes.append(each_number) return primes #==================================================== # Partition a lists into sublists of size x #==================================================== def partition_list(working_list, size_of_partition): """ Return a list of lists of the size of <size_of_partition>.""" final_list = [] for each_elem in range(0, len(working_list) + 1, size_of_partition): elem = working_list[each_elem: each_elem + size_of_partition] final_list.append(elem) for each_sublist in final_list: if len(each_sublist) != size_of_partition: final_list.remove(each_sublist) return list(final_list) #================================================================== # Factorial function #================================================================== def factorial_increment(limit_of_factorial_increment): """Return the factorial product of the sequence with limit <limit_of_factorial_increment> """ limit_of_factorial_increment = limit_of_factorial_increment + 1 limit_of_factorial_increment = int(limit_of_factorial_increment) terms_of_factorial_sequence_list = \ list(range(1, limit_of_factorial_increment, 1)) limit_of_factorial_increment = limit_of_factorial_increment - 1 factorial_product = 1 if limit_of_factorial_increment == 1: return 1 elif limit_of_factorial_increment == 0: return 1 while len(terms_of_factorial_sequence_list) != 0: for each_term in terms_of_factorial_sequence_list: if each_term == 1: term, *rest = terms_of_factorial_sequence_list next_term, *next_rest = rest factorial_product = term * next_term terms_of_factorial_sequence_list.remove(term) terms_of_factorial_sequence_list.remove(next_term) elif each_term != 1: term, *rest = terms_of_factorial_sequence_list factorial_product = factorial_product * term terms_of_factorial_sequence_list.remove(term) return factorial_product #================================================================== # Riffle elements of two lists #================================================================== def interleave_lists(first_list, second_list): """Returns a single list with elements of first_list interlaced with elements of second_list.""" first_list = first_list[:] second_list = second_list[:] len_of_first_list = int(len(first_list)) riffled_list = [] if len_of_first_list == 0: return riffled_list else: while len_of_first_list != 0: len_of_first_list -= 1 for each_element in first_list[:]: global riffled_list element_of_first_list, *rest_of_first_list = first_list element_of_second_list, *rest_of_second_list = second_list riffled_list.append(element_of_first_list) riffled_list.append(element_of_second_list) first_list.remove(element_of_first_list) second_list.remove(element_of_second_list) first_list = rest_of_first_list second_list = rest_of_second_list return riffled_list #================================================================== # Prime Factorization #================================================================== def prime_factors(input_number): """ Return a list with prime factors of argument <int_number>. param: input_number Arguments: Integer type input. -> List """ prime_factors_list = [] first_prime = 2 while first_prime**2 <= input_number: while (input_number % first_prime) == 0: prime_factors_list.append(first_prime) input_number //= first_prime first_prime += 1 if input_number > 1: prime_factors_list.append(input_number) return prime_factors_list #================================================================== # Fibonacci Series #================================================================== def fibonacci_range(size_of_fibonacci_range): """Fibonacci series: Returns a list with a sequnce of numbers in which the next is the sum of the las two. Arguments: limit of the series. """ fibonacci_number_list = [1] term, next_term = 0, 1 while True: term, next_term = next_term, term + next_term fibonacci_number_list.append(next_term) if len(fibonacci_number_list) == int(size_of_fibonacci_range): break return fibonacci_number_list #================================================================== # Module runs as script #================================================================== if __name__ == '__main__': fibonacci_range() prime_factors() factorial_increment()
arthur-schopenhauer/Mathematica_Notebooks
trivial_functions.py
trivial_functions.py
py
6,732
python
en
code
0
github-code
6
7775796221
class Node: def __init__(self, item): self.data = item self.next = None class LinkedList: def __init__(self): self.nodeCount = 0 self.head = None self.tail = None def __repr__(self): if self.nodeCount == 0: return 'LinkedList: empty' s = '' curr = self.head while curr is not None: s += repr(curr.data) if curr.next is not None: s += ' -> ' curr = curr.next return s def getAt(self, pos): if pos < 1 or pos > self.nodeCount: return None i = 1 curr = self.head while i < pos: curr = curr.next i += 1 return curr def traverse(self): if not self.head: return [] answer = [] curr = self.head while curr is not None: answer.append(curr.data) curr = curr.next return answer def insertAt(self, pos, newNode): # 요소 삽입 if pos < 1 or pos > self.nodeCount +1: return False if pos == 1: newNode.next = self.head self.head = newNode else: if pos == self.nodeCount + 1: prev = self.tail else: prev = self.getAt(pos-1) newNode.next = prev.next prev.next = newNode if pos == self.nodeCount + 1: # 맨 처음, 맨 마지막 self.tail = newNode self.nodeCount +=1 return True def popAt(self, pos): """ pos가 1일때 self.head = self.head.next pos가 마지막일때 self.tail = prev 유일한 노드를 삭제할 때 유일한 노드 = self.head = 1 , self.tail = 1 :param pos: 위치 :return: """ if pos < 1 or pos > self.nodeCount: raise IndexError result = 0 if pos == 1: if pos == self.nodeCount: # 유일한 노드 self.tail = None result = self.head.data self.head = self.head.next else: prev = self.getAt(pos-1) curr = prev.next prev.next = curr.next result = curr.data if pos == self.nodeCount: self.tail = prev self.nodeCount -= 1; return result a = Node(10) b = Node(20) c = Node(30) L = LinkedList() L2 = LinkedList() L.insertAt(1,a) L.insertAt(2,b) L2.insertAt(1,c) L2.insertAt(2,b) print(L) print(L2)
lowelllll/DataStructure
LinkedList/linked_list.py
linked_list.py
py
2,577
python
en
code
0
github-code
6
71493772028
''' 2D Multiple Circles Problem ''' from lsdo_genie import Genie2D from lsdo_genie.utils.geometric_shapes import Multi_circle import numpy as np num_surface_pts = 25 centers = [[-13.,-0.5],[-7.,2.],[2.,0.],[10.,-4.]] radii = [2.,2.,4.,3.] geom_shape = Multi_circle(centers,radii) surface_points = geom_shape.surface_points(num_surface_pts) surface_normals = geom_shape.unit_normals(num_surface_pts) custom_domain = np.array([ [-18.,18.], [-8.,8.] ]) genie = Genie2D(verbose=True) genie.input_point_cloud( surface_points=surface_points, surface_normals=surface_normals, ) genie.config( domain=custom_domain, max_control_points=30, min_ratio=0.75, ) genie.solve_energy_minimization( Ln=1e0, Lr=1e-4, ) genie.visualize()
LSDOlab/lsdo_genie
examples/2D_examples/ex_circles.py
ex_circles.py
py
758
python
en
code
0
github-code
6
14098850969
#!/usr/bin/env python # -*- coding: utf-8 -*- """Few more things we might wanna work out here. Our lack of the module :mod:`inspect` is pretty surprising. Refer to either `IPython.core.oinspect` or `xonsh.inspectors` for some good uses of the std lib module. """ from pprint import pformat from pygments import highlight from pygments.formatters.terminal256 import TerminalTrueColorFormatter try: from gruvbox.gruvbox import GruvboxStyle except ImportError: from pygments.styles.inkpot import InkPotStyle style = InkPotStyle() else: style = GruvboxStyle() from IPython.core.getipython import get_ipython from IPython.core.magic import Magics, magics_class, line_magic from IPython.lib.lexers import IPyLexer from IPython.lib.pretty import pprint @magics_class class PrettyColorfulInspector(Magics): """Implementation for a magic function that inspects a given python object. The extension then prints a syntax-highlighted and pretty-printed version of the provided object. """ # Use Pygments to do syntax highlighting lexer = IPyLexer() if GruvboxStyle is not None: style = GruvboxStyle else: style = InkPotStyle formatter = TerminalTrueColorFormatter(style=style) def shell(self): # why the fuck is this returning none return get_ipython() def __repr__(self): return f"<{self.__class__.__name__}>:" @line_magic def ins(self, line=None): """Alias for the `%inspect_obj magic defined here.""" self.inspect(line=line) @line_magic def inspect_obj(self, line=None): """Deviate from the original implementation a bit. In this version, we'll use the IPython lexer used at IPython.lib instead of pygments. Parameters ---------- line : str Line to be evaluated by the IPython shell. Note that this invokes the get_ipython().ev() method. So we might wanna wrap this in a try/except but idk what it'll raise. """ if not line: return # evaluate the line to get a python object python_object = self.shell.ev(line) # Pretty Print/Format the object # Print the output, but don't return anything (otherwise, we'd # potentially get a wall of color-coded text. formatted_dict = pformat(python_object.__dict__) print(highlight(formatted_dict, lexer, formatter).strip()) pprint(python_object) def load_ipython_extension(shell=None): """Add to the list of extensions used by IPython.""" if shell is None: shell = get_ipython() if shell is None: return shell.register_magics(PrettyColorfulInspector) shell.register_magic_function(PrettyColorfulInspector.inspect_obj) shell.register_magic_function(PrettyColorfulInspector.ins) if __name__ == "__main__": load_ipython_extension(get_ipython())
farisachugthai/dynamic_ipython
default_profile/extensions/extension_inspect.py
extension_inspect.py
py
2,946
python
en
code
7
github-code
6
17178723426
import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objects as go import plotly.express as px from sklearn.model_selection import train_test_split from xgboost import XGBRegressor import pickle st.set_page_config(page_title="Air Quality", page_icon="💨", layout='wide', initial_sidebar_state='auto') @st.cache_data def load_data(): df = pd.read_csv("data/model_input.csv") df.drop(['location'],axis=1,inplace=True) df = df[df['lceq_avg'] != 0] airquality = pd.read_csv("data/Air_Quality.csv", delimiter=",") with open('data/xgb_airquality.pkl', 'rb') as f: model = pickle.load(f) return df, airquality, model df, airquality, model = load_data() airquality['time_stamp'] = pd.to_datetime(airquality['time_stamp']) airquality['month'] = airquality['time_stamp'].dt.month airquality['day_month'] = airquality['time_stamp'].dt.day airquality['day_week'] = airquality['time_stamp'].dt.dayofweek.apply(lambda x: 7 if x == 6 else x + 1) airquality['hour'] = airquality['time_stamp'].dt.hour airquality['minute'] = airquality['time_stamp'].dt.minute merged_df = pd.merge(df, airquality, how='left', on=['month', 'day_month', 'day_week', 'hour', 'minute']) new_df = merged_df.drop(['lcpeak_avg', 'lceq_avg', 'v85', 'Telraam data', 'avg_pedestrians', 'avg_bikes', 'avg_cars', 'avg_trucks' ], axis=1) st.title("Air Quality analysis 💨") st.markdown("""In this section, we will analyse the air quality data found in the PurpleAir API. We will start by looking at the data and then we will try to find some correlations between the different variables.""") # Group the data by month and calculate the mean of '2.5_um_count' grouped_df = new_df.groupby('month')['2.5_um_count'].mean().reset_index() expander_corr = st.expander("Correlation heatmap explanation") expander_corr.markdown("We will start by looking at the correlation heatmap of the different variables. This will give us a first idea of the variables that are somewhat correlated with the count of 2.5um particles.") columns_of_interest = ['LC_TEMP', 'LC_DAILYRAIN', 'LC_RAD', 'LC_WINDDIR', 'month', '2.5_um_count'] corr_matrix = new_df[columns_of_interest].corr() # Create the correlation heatmap using Plotly fig = go.Figure(data=go.Heatmap( z=corr_matrix.values, x=corr_matrix.columns, y=corr_matrix.columns, colorscale='RdBu', zmin=-1, zmax=1, colorbar=dict(title="Correlation") )) # Add custom annotations for the correlation values inside each square annotations = [] for i, row in enumerate(corr_matrix.values): for j, value in enumerate(row): annotations.append( dict( x=corr_matrix.columns[j], y=corr_matrix.columns[i], text=str(round(value, 2)), font=dict(color='white' if abs(value) > 0.5 else 'black'), showarrow=False ) ) fig.update_layout( title='Correlation Heatmap', xaxis_title='Variables', yaxis_title='Variables', width=800, height=600, annotations=annotations ) expander_corr.plotly_chart(fig) monthly_avg = new_df.groupby('month')['2.5_um_count'].mean().reset_index() expander_mon = st.expander("Average PM2.5 particles count per Month") expander_mon.markdown("We will now look at the average PM2.5 particles count per Month. We can see that there is a negative correlation between the 2.5_um_count and the month. This shows that the air quality is better during the summer months.") fig = px.line(monthly_avg, x='month', y='2.5_um_count', color_discrete_sequence=['#3366cc']) fig.update_layout(title='Average 2.5_um_count per Month', xaxis_title='Month', yaxis_title='Average 2.5_um_count') expander_mon.plotly_chart(fig) expander_temp = st.expander("Average PM2.5 particles count per Temperature") expander_temp.markdown("We will now look at the average PM2.5 particles count per Temperature. We can see that there is a negative correlation between the 2.5_um_count and the LC_TEMP. This means that when the temperature is higher, the air quality is better.") fig = px.scatter(new_df, x="LC_TEMP", y="2.5_um_count", trendline="ols", animation_frame="month", animation_group="day_month", color="day_month", hover_name="day_month", range_x=[-5, 25], range_y=[0, 40]) fig.update_layout(title='2.5_um_count by LC_TEMP', xaxis_title='LC_TEMP', yaxis_title='2.5_um_count') expander_temp.plotly_chart(fig) merged_df['2.5_um_count'] = merged_df['2.5_um_count'].fillna(method='ffill').rolling(window=10, min_periods=1).mean() merged_df = merged_df.drop(['time_stamp'], axis=1) x = merged_df.drop(['2.5_um_count'], axis=1) y = merged_df['2.5_um_count'] xgb = model expander_imp = st.expander("Feature importance") expander_imp.markdown("We will now look at the feature importance of the different variables. The used model is a XGBoost model, with the target variable being the 2.5_um_count. By looking at the feature importance, we can see which variables are the most important in predicting the 2.5_um_count. We can see that the most important variables are the temporal data and weather conditions.") importance_sorted = sorted(zip(xgb.feature_importances_, x.columns), reverse=True) importance_values_sorted = [imp for imp, _ in importance_sorted] variable_names_sorted = [var for _, var in importance_sorted] fig = px.bar(x=importance_values_sorted, y=variable_names_sorted, orientation='h') fig.update_layout( title='Feature importance', xaxis_title='Importance', yaxis_title='Variables', yaxis=dict( tickmode='array', ticktext=variable_names_sorted, tickvals=variable_names_sorted, showticklabels=True, automargin=True ) ) expander_imp.plotly_chart(fig)
vavald/MDA_streamlit
pages/6_💨_AirQuality.py
6_💨_AirQuality.py
py
5,860
python
en
code
0
github-code
6
11704116245
import platform from tkinter import filedialog from web3 import Web3 from web3.contract import Contract from web3.providers.rpc import HTTPProvider from solcx import install_solc install_solc(version='latest') from solcx import compile_source import subprocess import os import tkinter as tk from PIL import Image, ImageTk import threading import json from dotenv import load_dotenv load_dotenv() PRIVATE_KEY = os.getenv('PRIVATE_KEY') onChainSmartContract = None web3_1 = None web3_2 = None web3_3 = None web3_4 = None def get_sc(filename): current_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(current_dir, filename), 'r') as file: text = file.read() return text def update_storage(map): current_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(current_dir, 'onchaindata.json') try: with open(filename, 'r') as file: maps = json.load(file) except FileNotFoundError: maps = [] maps.append(map) with open(filename, 'w') as file: json.dump(maps, file) def read_storage(name: str): current_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(current_dir, 'onchaindata.json') with open(filename, 'r') as file: maps = json.load(file) for map_data in maps: if map_data['name'] == name: return map_data return None def deploy(w3: Web3, contract: Contract, name: str): sm_transaction = { "from": w3.eth.accounts[0], "maxFeePerGas": w3.to_hex(1000000000000), "maxPriorityFeePerGas": w3.to_hex(0), "gas": w3.to_hex(1000000000000), "nonce": w3.eth.get_transaction_count(w3.eth.accounts[0]), "data": contract.bytecode, 'chainId': w3.eth.chain_id } signedTransaction = w3.eth.account.sign_transaction(sm_transaction, PRIVATE_KEY) transaction_hash = w3.eth.send_raw_transaction(signedTransaction.rawTransaction) tx_receipt = w3.eth.wait_for_transaction_receipt(transaction_hash) contract = w3.eth.contract(address=tx_receipt.contractAddress, abi=contract.abi, bytecode=contract.bytecode) new_map = { 'name': name, 'address': str(contract.address), 'abi': str(contract.abi) } update_storage(new_map) return contract def read(contract: Contract, function_name: str, args: list): if len(args) == 0: # result = contract.functions.askForDeploySmartContract().call() result = contract.functions[function_name]().call() elif len(args) == 1: result = contract.functions[function_name](args[0]).call() elif len(args) == 2: result = contract.functions[function_name](args[0], args[1]).call() else: result = contract.functions[function_name](args[0], args[1], args[2]).call() return result def write(w3: Web3, contract: Contract, function_name: str, args: any): new_transaction = { "from": w3.eth.accounts[0], "to": contract.address, "data": contract.encodeABI(fn_name=function_name, args=args), "gas": w3.to_hex(1000000000000), # "gasPrice": w3.to_wei('0', 'gwei'), "maxFeePerGas": w3.to_hex(1000000000000), "maxPriorityFeePerGas": w3.to_wei(0, 'gwei'), "nonce": w3.eth.get_transaction_count(w3.eth.accounts[0]), 'chainId': w3.eth.chain_id } #"gas": w3.to_hex(6721975), signedTransaction = w3.eth.account.sign_transaction(new_transaction, PRIVATE_KEY) transaction_hash = w3.eth.send_raw_transaction(signedTransaction.rawTransaction) receipt = w3.eth.wait_for_transaction_receipt(transaction_hash) return receipt def init_web3(): global web3_1 global web3_2 global web3_3 global web3_4 web3_1 = Web3(HTTPProvider("http://127.0.0.1:8545")) if web3_1.is_connected(): print("Connected to http://127.0.0.1:8545") else: print("Not connected to http://127.0.0.1:8545") web3_2 = Web3(HTTPProvider("http://127.0.0.1:8546")) if web3_2.is_connected(): print("Connected to http://127.0.0.1:8546") else: print("Not connected to http://127.0.0.1:8546") web3_3 = Web3(HTTPProvider("http://127.0.0.1:8547")) if web3_3.is_connected(): print("Connected to http://127.0.0.1:8547") else: print("Not connected to http://127.0.0.1:8547") web3_4 = Web3(HTTPProvider("http://127.0.0.1:8548")) if web3_4.is_connected(): print("Connected to http://127.0.0.1:8548") else: print("Not connected to http://127.0.0.1:8548") def loadOnChainManager(): compiledSmartContract = compile_source(get_sc("onchainmanager.sol"), output_values=['abi', 'bin']) _, smartContractInterface = compiledSmartContract.popitem() smartContractBytecode = smartContractInterface['bin'] smartContractAbi = smartContractInterface['abi'] global onChainSmartContract onChainSmartContract = web3_1.eth.contract(abi=smartContractAbi, bytecode=smartContractBytecode) count = web3_1.eth.get_transaction_count(web3_1.eth.accounts[0]) sc = read_storage("onchainsc") if sc is None: onChainSmartContract = deploy(web3_1, onChainSmartContract, 'onchainsc') # my_contract = web3_1.eth.contract(address=onChainSmartContract.address, abi=onChainSmartContract.abi) else: onChainSmartContract = web3_1.eth.contract(address=sc["address"], abi=smartContractAbi, bytecode=smartContractBytecode) write(web3_1, onChainSmartContract, 'setAddress1', ["http://127.0.0.1:8546"]) write(web3_1, onChainSmartContract, 'setAddress2', ["http://127.0.0.1:8547"]) write(web3_1, onChainSmartContract, 'setAddress3', ["http://127.0.0.1:8548"]) class Loader(tk.Frame): def __init__(self, parent): super().__init__(parent) parent.title("Progetto Software Security & Blockchain") self.result_text = tk.Text(self) tk.Button(self, text="Avvia le Blockchain", command=self.run_script_threaded).grid(row=1, column=0) tk.Button(self, text="Avvia il Programma", command=self.start_app).grid(row=1, column=1) self.result_text.grid(row=2, column=0, columnspan=2) def run_script_threaded(self): threading.Thread(target=self.run_script).start() # threading.Thread(target=self.init_web3_thread).start() def start_app(self): # self.result_text.insert(tk.END, "Tutte le Blockchain sono state inizializzate correttamente!") # self.result_text.insert(tk.END, "Caricamento del programma... (impiega circa 15 secondi)") homepage = HomePage(self.master) init_web3() loadOnChainManager() def run_script(self): current_dir = os.path.dirname(os.path.abspath(__file__)) system = platform.system() try: if system == 'Windows': dir = os.path.join(current_dir, "init.sh") process = subprocess.Popen([dir], stdout=subprocess.PIPE, shell=True, stderr=subprocess.PIPE, universal_newlines=True) elif system == 'Linux': command = ['bash', os.path.join(current_dir, "init.sh")] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) elif system == 'Darwin': command = ['bash', os.path.join(current_dir, "init.sh")] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) else: print(f"Error: Unsupported system '{system}'") except Exception as e: print("Errore", "File non trovato al percorso " + e) while True: output = process.stdout.readline() if not output and process.poll() is not None: break self.result_text.insert(tk.END, output) self.result_text.see(tk.END) class HomePage(tk.Toplevel): def __init__(self, parent): super().__init__(parent) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # self.geometry(f"{screen_width//2}x{screen_height//2}+{screen_width//4}+{screen_height//4}") self.title("Home Page") current_dir = os.path.dirname(os.path.abspath(__file__)) button1_image = Image.open(os.path.join(current_dir, "receipt_long.png")) button2_image = Image.open(os.path.join(current_dir, "assignment.png")) button3_image = Image.open(os.path.join(current_dir, "tty.png")) button4_image = Image.open(os.path.join(current_dir, "delete.png")) button1_photo = ImageTk.PhotoImage(button1_image) button2_photo = ImageTk.PhotoImage(button2_image) button3_photo = ImageTk.PhotoImage(button3_image) button4_photo = ImageTk.PhotoImage(button4_image) title_label = tk.Label(self, text="Scegli come deployare il tuo smart contract, oppure se richiamare un metodo di uno smart contract esistente.", font=("Arial", 13)) title_label.grid(row=0, column=0, columnspan=3, pady=20) button1 = tk.Button(self, image=button1_photo, text="Deploy il file .sol", compound=tk.TOP, font=("Arial", 12), command=self.button1_clicked) button1.image = button1_photo button1.grid(row=1, column=0, padx=0, pady=10) frame1 = tk.Frame(self, height=100, width=100) frame1.pack_propagate(0) frame1.grid(row=2, column=0, padx=0, pady=10) label1 = tk.Label(frame1, text="Carica il tuo\nfile in solidity\nin cui è scritto\nlo Smart Contract", font=("Arial", 13)) label1.pack(fill=tk.BOTH, expand=1) button2 = tk.Button(self, image=button2_photo, text="Deploy da ABI e Bytecode", compound=tk.TOP, font=("Arial", 12), command=self.button2_clicked) button2.image = button2_photo button2.grid(row=1, column=1, padx=0, pady=10) frame2 = tk.Frame(self, height=100, width=100) frame2.pack_propagate(0) frame2.grid(row=2, column=1, padx=0, pady=10) label2 = tk.Label(frame2, text="Carica il tuo\nSmart Contract\nscrivendo l'ABI\ne il Bytecode", font=("Arial", 13)) label2.pack(fill=tk.BOTH, expand=1) button3 = tk.Button(self, image=button3_photo, text="Chiama metodo", compound=tk.TOP, font=("Arial", 12), command=self.button3_clicked) button3.image = button3_photo button3.grid(row=1, column=2, padx=0, pady=10) frame3 = tk.Frame(self, height=100, width=100) frame3.pack_propagate(0) frame3.grid(row=2, column=2, padx=0, pady=10) label3 = tk.Label(frame3, text="Chiama un\nmetodo di uno\nSmart Contract\nesistente", font=("Arial", 13)) label3.pack(fill=tk.BOTH, expand=1) button4 = tk.Button(self, image=button4_photo, text="Elimina Smart Contract", compound=tk.TOP, font=("Arial", 12), command=self.button4_clicked) button4.image = button4_photo button4.grid(row=1, column=3, padx=0, pady=10) frame4 = tk.Frame(self, height=100, width=100) frame4.pack_propagate(0) frame4.grid(row=2, column=3, padx=0, pady=10) label4 = tk.Label(frame4, text="Elimina uno\nSmart Contract", font=("Arial", 13)) label4.pack(fill=tk.BOTH, expand=1) def get_folder_path(): while True: folder_path = input("Please enter the path of the folder: ") if os.path.isdir(folder_path): return folder_path else: print("Invalid folder path. Please try again.") def button1_clicked(self): soliditypage = SolidityPage(self.master) def button2_clicked(self): abibytecodepage = ABIBytecodePage(self.master) def button3_clicked(self): callmethodpage = MethodsPage(self.master) def button4_clicked(self): deletepage = DeletePage(self.master) class SolidityPage(tk.Toplevel): def __init__(self, parent): super().__init__(parent) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # self.geometry(f"{screen_width//2}x{screen_height//2}+{screen_width//4}+{screen_height//4}") self.title("Deploy file .sol") self.name_label = tk.Label(self, text="Nome:") self.name_label.pack() self.name_entry = tk.Entry(self) self.name_entry.pack() self.file_label = tk.Label(self, text="File:") self.file_label.pack() self.file_entry = tk.Entry(self, state="readonly") self.file_entry.pack() self.browse_button = tk.Button(self, text="Cerca", command=self.browse_file) self.browse_button.pack() frame = tk.Frame(self) self.ok_button = tk.Button(frame, text="Deploy", command=self.ok_button_click) self.ok_button.pack(side=tk.LEFT) self.cancel_button = tk.Button(frame, text="Annulla", command=self.cancel_button_click) self.cancel_button.pack(side=tk.LEFT) frame.pack() def browse_file(self): filetypes = (("Solidity files", "*.sol"), ("All files", "*.*")) filename = filedialog.askopenfilename(filetypes=filetypes) if filename: self.file_entry.config(state="normal") self.file_entry.delete(0, tk.END) self.file_entry.insert(0, filename) self.file_entry.config(state="readonly") def ok_button_click(self): name = self.name_entry.get() filename = self.file_entry.get() if not filename.endswith(".sol"): tk.messagebox.showerror("Error", "Invalid file format. Please select a .sol file.") else: compiledSmartContract = compile_source(get_sc(os.path.basename(filename).split('/')[-1]), output_values=['abi', 'bin']) _, smartContractInterface = compiledSmartContract.popitem() smartContractBytecode = smartContractInterface['bin'] smartContractAbi = smartContractInterface['abi'] receipt = write(web3_1, onChainSmartContract, "getNextAddress", []) logs = onChainSmartContract.events.NextAddressReturned().process_receipt(receipt) nextAddress = logs[0]['args']['nextAddress'] web3_c = Web3(HTTPProvider(nextAddress)) if web3_c.is_connected(): print("Connected to " + nextAddress) customSmartContract = web3_c.eth.contract(abi=smartContractAbi, bytecode=smartContractBytecode) customSmartContract = deploy(web3_c, customSmartContract, name) write(web3_1, onChainSmartContract, 'addContract', [name, str(nextAddress), str(customSmartContract.address), str(smartContractAbi)]) result = read(onChainSmartContract, 'getContract', [name]) print("Result: " + str(result)) show_toast('Lo Smart Contract è stato deployato con successo', '') else: print("Not connected to " + nextAddress) self.destroy() def cancel_button_click(self): self.destroy() class ABIBytecodePage(tk.Toplevel): def __init__(self, parent): super().__init__(parent) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # self.geometry(f"{screen_width//2}x{screen_height//2}+{screen_width//4}+{screen_height//4}") self.title("Deploy da ABI e Bytecode") self.name_label = tk.Label(self, text="Nome:") self.name_label.pack() self.name_entry = tk.Entry(self) self.name_entry.pack() self.abi_label = tk.Label(self, text="ABI:") self.abi_label.pack() self.abi_label = tk.Entry(self) self.abi_label.pack() self.bytecode_label = tk.Label(self, text="Bytecode:") self.bytecode_label.pack() self.bytecode_label = tk.Entry(self) self.bytecode_label.pack() frame = tk.Frame(self) self.ok_button = tk.Button(frame, text="Deploy", command=self.ok_button_click) self.ok_button.pack(side=tk.LEFT) self.cancel_button = tk.Button(frame, text="Annulla", command=self.cancel_button_click) self.cancel_button.pack(side=tk.LEFT) frame.pack() def ok_button_click(self): name = self.name_entry.get() smartContractAbi = self.abi_label.get() smartContractBytecode = self.bytecode_label.get() receipt = write(web3_1, onChainSmartContract, "getNextAddress", []) logs = onChainSmartContract.events.NextAddressReturned().process_receipt(receipt) nextAddress = logs[0]['args']['nextAddress'] web3_c = Web3(HTTPProvider(nextAddress)) if web3_c.is_connected(): print("Connected to " + nextAddress) customSmartContract = web3_c.eth.contract(abi=smartContractAbi, bytecode=smartContractBytecode) customSmartContract = deploy(web3_c, customSmartContract, name) write(web3_1, onChainSmartContract, 'addContract', [name, str(nextAddress), str(customSmartContract.address), str(smartContractAbi)]) result = read(onChainSmartContract, 'getContract', [name]) print("Result: " + str(result)) show_toast('Lo Smart Contract è stato deployato con successo', '') else: print("Not connected to " + nextAddress) self.destroy() def cancel_button_click(self): self.destroy() class MethodsPage(tk.Toplevel): def __init__(self, parent): super().__init__(parent) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # self.geometry(f"{screen_width//2}x{screen_height//2}+{screen_width//4}+{screen_height//4}") self.title("Chiama metodo") self.name_label = tk.Label(self, text="Nome dello Smart Contract:") self.name_label.pack() self.name_entry = tk.Entry(self) self.name_entry.pack() self.function_label = tk.Label(self, text="Nome della Funzione:") self.function_label.pack() self.function_label = tk.Entry(self) self.function_label.pack() self.selected_option = tk.IntVar() self.selected_option.set(0) self.option1 = tk.Radiobutton(self, text='Lettura', variable=self.selected_option, value=0) self.option1.pack(padx=10) self.option2 = tk.Radiobutton(self, text='Scrittura', variable=self.selected_option, value=1) self.option2.pack(padx=10) self.arg1_label = tk.Label(self, text="Arg 1:") self.arg1_label.pack() self.arg1_label = tk.Entry(self) self.arg1_label.pack() self.arg2_label = tk.Label(self, text="Arg 2:") self.arg2_label.pack() self.arg2_label = tk.Entry(self) self.arg2_label.pack() self.arg3_label = tk.Label(self, text="Arg 3:") self.arg3_label.pack() self.arg3_label = tk.Entry(self) self.arg3_label.pack() frame = tk.Frame(self) self.ok_button = tk.Button(frame, text="OK", command=self.ok_button_click) self.ok_button.pack(side=tk.LEFT) self.cancel_button = tk.Button(frame, text="Annulla", command=self.cancel_button_click) self.cancel_button.pack(side=tk.LEFT) frame.pack() def ok_button_click(self): selected_option = self.selected_option.get() name = self.name_entry.get() function = self.function_label.get() arg1 = self.arg1_label.get() arg2 = self.arg2_label.get() arg3 = self.arg3_label.get() data = read(onChainSmartContract, "getContract", [name]) blockChainAddress = data[0] address = data[1] abi = data[2].replace("'", '"').replace('False', 'false').replace('True', 'true') web3_c = Web3(HTTPProvider(blockChainAddress)) if web3_c.is_connected(): print("Connected to " + blockChainAddress) customSmartContract = web3_c.eth.contract(address=address, abi=abi) if arg1 and arg2 and arg3: if selected_option == 0: result = read(customSmartContract, function, [arg1, arg2, arg3]) else: write(web3_c, customSmartContract, function, [arg1, arg2, arg3]) elif arg1 and arg2: if selected_option == 0: result = read(customSmartContract, function, [arg1, arg2]) else: write(web3_c, customSmartContract, function, [arg1, arg2]) elif arg1: if selected_option == 0: result = read(customSmartContract, function, [arg1]) else: write(web3_c, customSmartContract, function, [arg1]) else: if selected_option == 0: result = read(customSmartContract, function, []) else: write(web3_c, customSmartContract, function, []) if selected_option == 0: show_toast('Dati ottenuti correttamente', str(result)) else: show_toast('Dati scritti correttamente', '') self.destroy() else: show_toast('Lo Smart Contract non esiste', 'Deployalo prima di eseguire un suo metodo') print("Not connected to " + blockChainAddress) def cancel_button_click(self): self.destroy() def show_toast(title, description): window = tk.Toplevel() window.overrideredirect(True) window.attributes("-topmost", True) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # window.geometry(f"{500}x{100}+{screen_width//2-50}+{screen_height//2-50}") # create a frame for the toast message frame = tk.Frame(window, bg='white', bd=1, relief=tk.RAISED) frame.pack(side=tk.BOTTOM, padx=10, pady=10) # create a label for the title and add it to the frame title_label = tk.Label(frame, text=title, font=('Arial', 14, 'bold'), fg='black', bg='white') title_label.pack(padx=10, pady=5) # create a label for the description and add it to the frame desc_label = tk.Label(frame, text=description, font=('Arial', 12), fg='gray', bg='white') desc_label.pack(padx=10, pady=5) # function to destroy the window after a short delay def destroy_window(): window.after(3000, window.destroy) window.after(3000, destroy_window) class DeletePage(tk.Toplevel): def __init__(self, parent): super().__init__(parent) # screen_width = root.winfo_screenwidth() # screen_height = root.winfo_screenheight() # self.geometry(f"{screen_width//2}x{screen_height//2}+{screen_width//4}+{screen_height//4}") self.title("Elimina Smart Contract") self.name_label = tk.Label(self, text="Nome:") self.name_label.pack() self.name_entry = tk.Entry(self) self.name_entry.pack() frame = tk.Frame(self) self.ok_button = tk.Button(frame, text="Elimina", command=self.ok_button_click) self.ok_button.pack(side=tk.LEFT) self.cancel_button = tk.Button(frame, text="Annulla", command=self.cancel_button_click) self.cancel_button.pack(side=tk.LEFT) frame.pack() def ok_button_click(self): name = self.name_entry.get() write(web3_1, onChainSmartContract, "deleteContract", [name]) show_toast('Smart Contract eliminato correttamente', '') self.destroy() def cancel_button_click(self): self.destroy() root = tk.Tk() app = Loader(root) app.pack() root.mainloop()
MassimilianoPiccinini/SoftwareSecurity-Blockchain
src/offchain.py
offchain.py
py
23,961
python
en
code
1
github-code
6
19707336879
# # # -*- coding: utf-8 -*- # # # @Time :2021/3/22 20:56 # # # @Author :huangzg28153 # # # @File :test.py # # # @Software :PyCharm # # import numpy as np # # import pandas as pd # # # type = [0,1,1,1,2,0,1,0,1,2,2,0] # # # ser = [0,1,2,3,4,5,6,0,1,2,3,4] # # # layer = [0,0,0,0,0,1,1,0,0,0,0,1] # # # sample = [0,0,0,0,0,0,0,1,1,1,1,1] # # # # # # df = pd.DataFrame({"type":type,"ser":ser,"layer":layer,"sample":sample}) # # # # # # # # # df.sort_values(by=["ser",'type',"sample","layer"],axis=0) # # # df.sort_values(by=["layer","sample","type","ser"],axis=0) # # # df.sort_values(by=["type","layer","sample","ser"],axis=0) # # # df['order'] = [0,2,4,5,6,9,11,1,3,7,8,10] # # # df = df.sort_values(by=['order'],axis=0) # # # df.sort_values(by=['layer','ser','type','sample'],axis=0) # # # df.sort_values(by=["sample","type",'ser',"layer"],axis=0) # # # # # # ######################################################## # # # df.sort_values(by=['layer',"type","sample","ser"],axis=0).reset_index().index # # # ####################################################### # # # from multiprocess import Process,Manager # # # from pyHGT.data import Graph, renamed_load # # # from pyHGT.data import renamed_load # # # import os # # # import ray # # # Manager().register("Graph", Graph) # # # dir(Manager()) # # # ABSULUTE_DIR = '/data1/huangzg/research/pyHGT_OAG' # # # graph = renamed_load(open(os.path.join(ABSULUTE_DIR + '/data/oag_output', 'graph_CS.pk'), 'rb')) # # # func = lambda graph,inp: print(graph.__dir__()) # # # # # # # graph = Manager().Graph(graph) # # # ray_graph = ray.put(graph) # # ########################### # # # # import oaglog # # from pyHGT.data import renamed_load # # from pyHGT.model import * # # from pyHGT.SubgraphToTorch import SubgraphToTorch # # from warnings import filterwarnings # # filterwarnings("ignore") # # import ray # # import os # # import numpy as np # # import dill # # from collections import defaultdict # # import sys # # import argparse # # oaglog.logger.info("流程开始。。。") # # parser = argparse.ArgumentParser(description='Training GNN on Paper-Venue (Journal) classification task') # # # # ''' # # Dataset arguments # # ''' # # parser.add_argument('--data_dir', type=str, default='/data/oag_output/', # # help='The address of preprocessed graph.') # # parser.add_argument('--subgraphs_dir',type=str,default='/data/sampled_subgraphs/', # # help='The adress of sampled subgraph.') # # parser.add_argument('--model_dir', type=str, default='/model_save/', # # help='The address for storing the models and optimization results.') # # parser.add_argument('--task_name', type=str, default='PV', # # help='The name of the stored models and optimization results.') # # parser.add_argument('--cuda', type=int, default=0, # # help='Avaiable GPU ID') # # parser.add_argument('--domain', type=str, default='_CS', # # help='CS, Medicion or All: _CS or _Med or (empty)') # # ''' # # Model arguments # # ''' # # parser.add_argument('--conv_name', type=str, default='hgt', # # choices=['hgt', 'gcn', 'gat', 'rgcn', 'han', 'hetgnn'], # # help='The name of GNN filter. By default is Heterogeneous Graph Transformer (hgt)') # # parser.add_argument('--n_hid', type=int, default=400, # # help='Number of hidden dimension') # # parser.add_argument('--n_heads', type=int, default=8, # # help='Number of attention head') # # parser.add_argument('--n_layers', type=int, default=4, # # help='Number of GNN layers') # # parser.add_argument('--dropout', type=float, default=0.2, # # help='Dropout ratio') # # parser.add_argument('--sample_depth', type=int, default=6, # # help='How many numbers to sample the graph') # # parser.add_argument('--sample_width', type=int, default=128, # # help='How many nodes to be sampled per layer per type') # # parser.add_argument('--feature_flags', type=tuple, default=('rw','sp'), # # help='which kind of distance feature to use,"random walk","shortest path" or both') # # parser.add_argument('--max_sprw', type=tuple, default=(4, 4), # # help='parameters of distance feature') # # parser.add_argument('--if_sample_mp',type=bool, default=True, # # help="whether sample subgraph with multiprocessing or not") # # parser.add_argument('--sample_n_pool',type=int,default=16, # # help="how many pools to sample subgraph") # # ''' # # Optimization arguments # # ''' # # parser.add_argument('--optimizer', type=str, default='adamw', # # choices=['adamw', 'adam', 'sgd', 'adagrad'], # # help='optimizer to use.') # # parser.add_argument('--data_percentage', type=float, default=1.0, # # help='Percentage of training and validation data to use') # # parser.add_argument('--n_epoch', type=int, default=200, # # help='Number of epoch to run') # # parser.add_argument('--n_pool', type=int, default=4, # # help='Number of process to sample subgraph') # # parser.add_argument('--n_batch', type=int, default=32, # # help='Number of batch (sampled graphs) for each epoch') # # parser.add_argument('--repeat', type=int, default=2, # # help='How many time to train over a singe batch (reuse data)') # # parser.add_argument('--batch_size', type=int, default=256, # # help='Number of output nodes for training') # # parser.add_argument('--clip', type=float, default=0.25, # # help='Gradient Norm Clipping') # # # # args = parser.parse_args() # # # # if args.cuda != -1: # # device = torch.device("cuda:" + str(args.cuda)) # # else: # # device = torch.device("cpu") # # # # ABSULUTE_DIR = '/data1/huangzg/research/pyHGT_OAG' # # # # ###############################################data_preparing######################################################### # # # oaglog.logger.info("读取数据开始。。。") # # # graph = renamed_load(open(os.path.join(ABSULUTE_DIR + args.data_dir, 'graph%s.pk' % args.domain), 'rb')) # # # oaglog.logger.info("读取数据完毕。") # # # # # # from ReadData import read_data, graph_to_dict # # # # # # dict_graph = graph_to_dict(graph) # # # # from multiprocess import Manager, Pool, SharedMemoryManager # # # manager = Manager() # # # graph_temp = manager.dict(dict_graph) # # # # graph = [np.ones(10**8) for i in range(20)] # # # # def mp_test(graph): # # print(id(graph)) # # return 1 # # # # p = Pool(6) # # # # result = p.apply_async(mp_test,graph_temp) # # # @ray.remote # # # class Counter(object): # # # def __init__(self,a): # # # self.n = 0 # # # self.a = a # # # def increment(self): # # # self.n += 1 # # # # # # def read(self,b,m_graph): # # # print("a") # # # self.increment() # # # print(id(m_graph)) # # # del m_graph # # # return self.n * b # # # # # # counters = [Counter.remote(a=0) for i in range(8)] # # # futures = [c.read.remote(2, ray_graph) for c in counters] # # # # # # print('******************************') # # # print(ray.get(futures)) # # # # ray.init() # # @ray.remote # # def func(array, param): # # # print(array.job_id) # # # print(array.task_id) # # # print(array.size) # # # print(type(array)) # # print(id(array)) # # return 1 # # # # # array = np.ones(10**6) # # # Store the array in the shared memory object store once # # # so it is not copied multiple times. # # # graph = {i: np.ones(10**8) for i in range(20)} # # graph = [np.ones(10**8) for i in range(20)] # # array_id = ray.put(graph) # # # # result_ids = [func.remote(array_id, i) for i in range(40)] # # output = ray.get(result_ids) # # ################################################################# # # # # # # ray.get(ray_graph) # # # import ray # # # import asyncio # # # ray.init() # # # # # # import asyncio # # # # # # @ray.remote # # # class AsyncActor: # # # async def run_task(self): # # # print("started") # # # await asyncio.sleep(1) # Network, I/O task here # # # print("ended") # # # # # # actor = AsyncActor.remote() # # # # All 50 tasks should start at once. After 1 second they should all finish. # # # # they should finish at the same time # # # ray.get([actor.run_task.remote() for _ in range(50)]) # # ################################################################### # # # import ray # # # import asyncio # # # ray.init() # # # # # # @ray.remote(num_cpus=40) # # # class AsyncActor: # # # # multiple invocation of this method can be running in # # # # the event loop at the same time # # # async def run_concurrent(self): # # # print("started") # # # await asyncio.sleep(2) # concurrent workload here # # # print("finished") # # # # # # actor = AsyncActor.remote() # # # # # # # regular ray.get # # # ray.get([actor.run_concurrent.remote() for _ in range(80)]) # # # # # # async ray.get # # # await actor.run_concurrent.remote() # # # # ######################################################################## # from multiprocessing import Pool,Manager,shared_memory # from multiprocessing.managers import SharedMemoryManager # import numpy as np # # # a = np.array([np.ones(10**8) for i in range(20)]) # # shm = shared_memory.SharedMemory(create=True, size=a.nbytes) # b = np.ndarray(a.shape, dtype=a.dtype, buffer=shm.buf) # b[:] = a[:] # # def mp_test(graph): # print(id(graph)) # return 1 # # p = Pool(6) # results = [] # for i in range(3): # result = p.apply_async(mp_test, args=(b,)) # results.append(result) # # re = [job.get() for job in results] # ############################################################################ from multiprocessing import Pool import multiprocessing as mp from collections import defaultdict import pandas as pd import os class NewClass(object): def __init__(self, a): self.a = a self.b = {"a":a} self.c = pd.DataFrame(self.b) self.d = {"c":self.c, "b":self.b, "a":a} def my_method(self,e): print(id(self.a)) print(id(self.b)) print(id(self.c)) print(id(self.d)) print(id(e)) defaultdict(lambda :[]) return 1 graph = NewClass([1,3,6]) global graph def my_fun(param,graph): print(os.getpid(), id(graph)) return 1 def my_mp(param): my_fun(param, graph) if __name__ == '__main__': p = Pool(5) jobs = [] for i in range(mp.cpu_count()-1): job = p.apply_async(my_mp, args=(['a','b'],)) jobs.append(job) result = [job.get() for job in jobs] print(result)
hzg0601/cn-annotation
HGT_OAG_cn-annotation/codes/test.py
test.py
py
10,935
python
en
code
0
github-code
6
72621252988
hargaBarang = int(input("Masukkan Harga Barang: ")) uang = int(input("Masukkan Uang Anda: ")) kembalian = uang - hargaBarang pecahan_uang = [100000, 50000, 20000, 10000, 5000, 2000, 1000] if hargaBarang > uang: print("uang anda tidak cukup, dilarang utang disini!") exit() for pecahan in pecahan_uang: jumlah_uang = kembalian // pecahan kembalian %= pecahan print(f"{jumlah_uang} uang sejumlah Rp.{pecahan} ") #nah jumlah_uang itu adalah lembar uang yang dikembalikan nantinya
ArdiansyahAsrifah/LAB_AP_09
H071231016/Praktikum-3/nomor02.py
nomor02.py
py
502
python
id
code
0
github-code
6
18790221797
import torch import decord from decord import cpu, gpu from tqdm import tqdm import json import os import random import numpy as np import pickle def sample_frames(num_frames, vlen, sample='rand', fix_start=None): acc_samples = min(num_frames, vlen) intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) ranges = [] for idx, interv in enumerate(intervals[:-1]): ranges.append((interv, intervals[idx + 1] - 1)) if sample == 'rand': frame_idxs = [random.choice(range(x[0], x[1])) for x in ranges] elif fix_start is not None: frame_idxs = [x[0] + fix_start for x in ranges] elif sample == 'uniform': frame_idxs = [(x[0] + x[1]) // 2 for x in ranges] else: raise NotImplementedError return frame_idxs video_list_train = json.load(open("video_train.json")) video_list_val = json.load(open("video_val.json")) video_list_test = json.load(open("video_test.json")) for video_id in tqdm(video_list_train): if os.path.exists(f"videos/{video_id}.mp4"): video_path = f"videos/{video_id}.mp4" else: video_path = f"videos/{video_id}.mkv" video_reader = decord.VideoReader(video_path, width=512, height=512) decord.bridge.set_bridge('torch') vlen=len(video_reader) for i in range(1,10): frame_idxs = sample_frames(3, vlen, sample="rand") frames = video_reader.get_batch(frame_idxs).byte() frames = frames.permute(0, 3, 1, 2) frame_ids[f"{video_id}_{i}"]=frame_idxs pickle.dump(frames,open(f"allinone_data/images/rand_new/{video_id}_{i}","wb")) for video_id in tqdm(video_list_val+video_list_test): if os.path.exists(f"videos/{video_id}.mp4"): video_path = f"videos/{video_id}.mp4" else: video_path = f"videos/{video_id}.mkv" video_reader = decord.VideoReader(video_path, width=512, height=512, num_threads=1) decord.bridge.set_bridge('torch') vlen=len(video_reader) frame_idxs = sample_frames(3, vlen, sample="uniform") frames = video_reader.get_batch(frame_idxs).byte() frames = frames.permute(0, 3, 1, 2) pickle.dump(frames,open(f"clipbert/images/uniform/{video_id}","wb"))
MILVLG/anetqa-code
clipbert/sample_imgs_clipbert.py
sample_imgs_clipbert.py
py
2,196
python
en
code
6
github-code
6
690172059
'''Refazendo Progressão Aritmética com While''' print('=-='*20) print('Progressão Aritmética') print('=-='*20) primeiro = int(input('Digite o primeiro termo da progressão: ')) razao = int(input('Digite a razão para a progressão: ')) termo = primeiro cont = 1 total = 0 mais = 10 while mais != 0: total = total + mais while cont <= total: print('{} → '.format(termo),end='') termo += razao cont += 1 print('Pausa') mais = int(input('Quantos termos você quer mostrar a mais? ')) print('Progressão finalizada com {} termos mostrados.'.format(total))
thaisouza30/Exercicios-Python3-Curso-em-Video
ex062.py
ex062.py
py
617
python
pt
code
0
github-code
6
39503714070
# The file is object for VICON. This is effective method for storing and # accesing information about the vicon objects import numpy as np import os from VICONMath import transformations as transferOp from VICONFileOperations import rwOperations class ObjectVicon: """The class is object is base class for VICONTrackingObjects and VICONCameraObjects""" def __init__(self, rotation = [0, 0, 0, 1], translation = [0,0,0], name = "temp"): """ Initialize the class, the position orientation and name of object :param rotation: list of roation parameters :param translation: list of translation parameters :param name: name of the object """ self.rotation = rotation # list of parameters self.translation = translation # list of parameters self.name = name self.featureMat = np.zeros((3,1)) self.featurePoints = [] self.featureList = [] self.featureDict = {} def clearFeatures(self): """ Clear all features :return: True """ self.featureDict = {} def setTransformationParameters(self, rotation, translation ): self.rotation = rotation self.translation = translation def transferFeaturesToViconSpace(self) : """ Transfer the features from Object space to target space :return: dict (3D features) """ assert (len(self.featureDict) != 0), "Dicitonary empty!! No object features to transfer" featureList = list(self.featureDict.values()) targetPoints = transferOp.transformPoint3D(featureList, self.rotation, self.translation) targetPoints = targetPoints.tolist() transferedFeatureDict = {} for feature,index in zip(self.featureDict,range(len(targetPoints)) ): transferedFeatureDict[feature] = targetPoints[index] return transferedFeatureDict def transferFeaturesToObjectSpace(self, featureDictViconSpace): """ Transfer feature points from given coordinate system to object space :return: dictionary of features """ assert (len(featureDictViconSpace) != 0), "Given featurelist is empty" featureList = list(featureDictViconSpace.values()) targetPoints = transferOp.transformPoint3D(featureList, self.rotation, self.translation, True) targetPoints = targetPoints.tolist() transferedFeatureDict = {} for feature, index in zip(featureDictViconSpace, range(len(targetPoints)) ): transferedFeatureDict[feature] = targetPoints[index] return transferedFeatureDict def transferPointsToObjectSpace(self, pointList): """ Transfers the list points from given space to Object space using given R and T :return: """ invertedPoints = transferOp.transformPoint3D(pointList, self.rotation , self.translation, True) # R_inv . (P-T) return invertedPoints def transferPointsFromObjectSpace(self, pointList): """ Transfers given list of points from object space to target space using given R and T :return: """ targetPoints = transferOp.transformPoint3D(pointList,self.rotation,self.translation) return targetPoints def setFeatures(self, featuresDict): """ Set the given features in the feature list :param set the features in the dict using given dict :return: True/False """ for feature in featuresDict: self.featureDict[feature] = featuresDict[feature] return True def removeSelectedFeatures(self, features): """ Remove the given features :param featureDict: dict :return: bool """ for feature in features: if feature in self.featureDict: del self.featureDict[feature] return True def filterFeaturesBasedOnObject(self, dict): """ Filter the feature dict to only have features from a specific object :return: dict """ modifiedDict = {} for feature in dict : if self.name in feature: modifiedDict[feature] = dict[feature] return modifiedDict def readFeaturePointsFromFile(self, path, objectFilter = True): """ Reads given *.mp (VICON) file to create feature points for Object :param path: Storage path of the :return: True if success """ if os.path.exists(path) and ".mp" in path: featureDict = rwOperations.readFeaturePointsFromViconFile(path) self.setFeatures(featureDict) return True elif os.path.exists(path) and ".txt" in path: featureDict = rwOperations.readFeaturePointsFromTextFile(path) if objectFilter: objectSpecificDict = self.filterFeaturesBasedOnObject(featureDict) self.setFeatures(objectSpecificDict) return True else: raise ValueError("Given file does not exist ", path) if __name__ == '__main__': rotation = [0 , 0 , 0 , 1] # Identity translation = [0 , 0 , 0 ] # Translation # Test creating points from file filePath = "D:/BirdTrackingProject/VICON_DataRead/VICONDrawingOperations\\9mm_02.mp" objectName = "9mm_02" viconObject = ObjectVicon(rotation, translation, objectName) viconObject.readFeaturePointsFromFile(filePath) viconObject.name = "point" viconObject.readFeaturePointsFromFile("D:\BirdTrackingProject\VICON_DataRead\VICONFileOperations\\temp.txt") print("Print features: ", viconObject.featureDict) # Test creating points without file pointlist = list(viconObject.featureDict.values()) rotationCam1 = [-0.79697172135980876, 0.009835241003934278, 0.056076936965809787, 0.60132746530298287] translationCam1 = [-701.064504485933, -6173.2248621199, 1830.24808693825] cam1Points = [[1415.76135949, - 570.12878565, 7724.00698054], [1427.61481598, - 588.07764951, 7708.65018457], [1433.03420332, - 579.43874105, 7728.08209005], [1439.77318296, - 598.69765411, 7698.82965911]] viconObject.setTransformationParameters(rotationCam1,translationCam1) # transfer points to object space transferedPoints = viconObject.transferPointsFromObjectSpace(cam1Points) print("TF Points:", transferedPoints) reversedPoints = viconObject.transferPointsToObjectSpace(transferedPoints) print("Reversed points:", reversedPoints) transferedDict = viconObject.transferFeaturesToViconSpace() print("TF Points:", transferedDict) reversedDict = viconObject.transferFeaturesToObjectSpace(transferedDict) print("Reversed points:", reversedDict) # Test adding feature and clear the features p = {'1': [0, 0, 0]} viconObject.setFeatures(p) print("Print added features: ", viconObject.featureDict) viconObject.removeSelectedFeatures(p) print("Print removed features: ", viconObject.featureDict) viconObject.clearFeatures() print("Print features after clearance: ", viconObject.featureDict)
hmnaik/smartbarn-mocap
VICONSystem/objectVicon.py
objectVicon.py
py
7,219
python
en
code
1
github-code
6
14132002645
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, DateTime, Float, UniqueConstraint, Index from sqlalchemy.orm import relationship from src.models import Base class GpsRecord(Base): __tablename__ = "gps_record" id = Column(Integer, primary_key=True, index=True) datetime = Column(DateTime(timezone=True)) latitude = Column(Float()) longitude = Column(Float()) altitude = Column(Float(), nullable=True) accuracy = Column(Float(), nullable=True) vertical_accuracy = Column(Float(), nullable=True) description = Column(String, nullable=True) device = Column(String(length=128)) app = Column(String(length=128)) user = Column(String(length=32), default='castel') distance = Column(Float()) Index('device_records', GpsRecord.datetime, GpsRecord.device, GpsRecord.app, GpsRecord.user, unique=True) Index('desc_date_per_app', GpsRecord.datetime.desc(), GpsRecord.device, GpsRecord.app) Index('per_app', GpsRecord.device, GpsRecord.app) Index('desc_date_per_device', GpsRecord.datetime.desc(), GpsRecord.device) Index('desc_date', GpsRecord.datetime.desc())
jmcastellote/whereabouts
src/gps_record/model.py
model.py
py
1,126
python
en
code
0
github-code
6
15912701941
""" Class to deal with the pooling problem (differing amounts of tweets for various days) """ import torch from torch import nn, tensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #device = torch.device("cpu") # will we have a device setting here? to ensure that the data is being processed? (why is this bad practice) class pooling(nn.Module): """A pooling class, so that the forward pass in this variation of the teanet model is lest complex Also, perhaps it can be trained separately? """ def __init__(self, dim, lag): super(pooling, self).__init__() self.dim = dim self.lag = lag # multiple pooling layers? A feed forward neural network? self.adaptive_pooling = nn.AdaptiveMaxPool2d((1, dim)) def forward(self, input): batch_of_tweets = None for x_val in input[0]: processed_tweets = None # iterate through the days in the x_value for day in x_val: processed = self.adaptive_pooling(day.view(1, day.shape[0], day.shape[1])) if(processed_tweets == None): processed_tweets = processed else: processed_tweets = torch.cat((processed_tweets, processed), 1) if(batch_of_tweets == None): batch_of_tweets = processed_tweets.view(1, self.lag, self.dim) else: batch_of_tweets = torch.cat((batch_of_tweets, processed_tweets.view(1, self.lag, self.dim)), 0) return batch_of_tweets.to(device)
biirving/michinaga
src/utils/pooling.py
pooling.py
py
1,583
python
en
code
2
github-code
6
32898453966
from __future__ import print_function import unittest import numpy import irbasis from irbasis_util.two_point_basis import * from irbasis_util.four_point import * from irbasis_util.internal import * from irbasis_util.regression import * from atomic_limit import * def G1_iw_pole_f(n, pole, beta): return 1/(1J * (2 * n + 1) * numpy.pi / beta - pole) def G1_iw_pole_b(n, pole, beta): return 1/(1J * (2 * n) * numpy.pi / beta - pole) def _compute_G4pt_iw(beta, pole, r, nvec): if r == 0: return G1_iw_pole_f(nvec[0], pole, beta) * G1_iw_pole_f(nvec[1], pole, beta) * G1_iw_pole_f(nvec[2], pole, beta) elif r == 1: return G1_iw_pole_f(nvec[0], pole, beta) * G1_iw_pole_f(nvec[1], pole, beta) * G1_iw_pole_f(nvec[3], pole, beta) elif r == 4: return G1_iw_pole_f(nvec[0], pole, beta) * G1_iw_pole_b(nvec[0] + nvec[1] + 1, pole, beta)\ * G1_iw_pole_f(-nvec[3] - 1, pole, beta) elif r == 5: return G1_iw_pole_f(nvec[0], pole, beta) * G1_iw_pole_b(nvec[0] + nvec[1] + 1, pole, beta) \ * G1_iw_pole_f(-nvec[2] - 1, pole, beta) else: raise RuntimeError("Not supported") def _outer_product(Gl1, Gl2, Gl3): tensor12 = Gl1[:, numpy.newaxis] * Gl2[numpy.newaxis, :] return tensor12[:, :, numpy.newaxis] * Gl3[numpy.newaxis, numpy.newaxis, :] def _compute_G4pt_l(b4pt, pole, r): Nl = b4pt.Nl Gl = numpy.zeros((16, Nl, Nl, Nl)) if r >= 0 and r <= 3: Gl[r, :, :, :] = _outer_product( Gl_pole(b4pt.basis_beta_f, pole)[:Nl], Gl_pole(b4pt.basis_beta_f, pole)[:Nl], Gl_pole(b4pt.basis_beta_f, pole)[:Nl]) elif r <= 15: Gl[r, :, :, :] = _outer_product( Gl_pole(b4pt.basis_beta_f, pole)[:Nl], Gl_pole(b4pt.basis_beta_b, pole)[:Nl], Gl_pole(b4pt.basis_beta_f, pole)[:Nl]) else: raise RuntimeError("Not supported") return Gl class TestMethods(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMethods, self).__init__(*args, **kwargs) def test_matsubara(self): Lambda = 10.0 beta = 0.2 wmax = Lambda/beta b4pt = FourPoint(Lambda, beta, 1e-12) Nl = b4pt.Nl pole = 0.2 * wmax n1, n2, n3 = 1, 2, 4 n4 = - n1 - n2 - n3 - 2 prj = b4pt.projector_to_matsubara(n1, n2, n3, n4) # Test No. 1, 2, 5, 6 for r in [0, 1, 4, 5]: giw_4pt = _compute_G4pt_iw(beta, pole, r, numpy.array([n1, n2, n3, n4])) gl_4pt = _compute_G4pt_l(b4pt, pole, r) diff = numpy.abs(numpy.sum(prj * gl_4pt) - giw_4pt) self.assertLess(diff, 1e-10) def test_sampling_points_matsubara(self): Lambda = 10.0 beta = 0.2 alpha = 1e-15 augmented = True wmax = Lambda / beta b4pt = FourPoint(Lambda, beta, 1e-2, augmented) Nl = b4pt.Nl whichl = Nl - 1 pole = 0.2 * wmax # build the sampling frequency structure sp = b4pt.sampling_points_matsubara(whichl) S = b4pt.normalized_S() n_sp = len(sp) prj = numpy.array(b4pt.projector_to_matsubara_vec(sp))[:, :, :, :] prj_mat = prj[:, :, :, :].reshape((n_sp, 16 * Nl**3)) print(Nl, prj_mat.shape) # Build the check frequency structure n1234_check = [] niw = 100 for i, j, k in product(range(-niw, niw, 10), repeat=3): n1234_check.append((i, j, k, - i - j - k - 2)) prj_check = numpy.array(b4pt.projector_to_matsubara_vec(n1234_check))[:, :, :, :] # Test No. 1, 2, 5, 6 for r in [0, 1, 4, 5]: Giwn = numpy.array([ _compute_G4pt_iw(beta, pole, r, n1234) for n1234 in sp]) Giwn_check_ref = numpy.array([_compute_G4pt_iw(beta, pole, r, n1234) for n1234 in n1234_check]) coeffs = ridge_complex(prj_mat, Giwn, alpha).reshape((16, Nl, Nl, Nl)) Giwn_check = numpy.dot(prj_check.reshape((len(n1234_check), 16 * Nl**3)), (coeffs).reshape((16 * Nl**3))) self.assertLessEqual(numpy.amax(numpy.abs(Giwn_check - Giwn_check_ref)), 1e-2) def test_transformation_to_PH(self): self.assertEqual(to_PH_convention(from_PH_convention( (0,1,2) )), (0,1,2)) if __name__ == '__main__': unittest.main()
shinaoka/irbasis_utility
test/python/four_point_test.py
four_point_test.py
py
4,357
python
en
code
6
github-code
6
74884399227
# -*- coding: utf-8 -*- import re import sqlite3 from collections import defaultdict import requests import gnupg class OTCDB(object): gpg_file = 'GPG.db' rating_file = 'RatingSystem.db' def __init__(self, path): self.path = path self.trusted = {} def open_db(self): gpg_path = '{0}/{1}'.format(self.path, self.gpg_file) self.gdb = sqlite3.connect(gpg_path, check_same_thread=False) self.gdb.row_factory = sqlite3.Row rating_path = '{0}/{1}'.format(self.path, self.rating_file) self.rdb = sqlite3.connect(rating_path, check_same_thread=False) self.rdb.row_factory = sqlite3.Row def close_db(self): self.gdb.close() self.rdb.close() def update_db(self): g = self.update_rating_db() r = self.update_gpg_db() def update_rating_db(self): filename = '{0}/{1}'.format(self.path, self.rating_file) url = 'http://bitcoin-otc.com/otc/RatingSystem.db' r = requests.get(url, stream=True) if r.status_code == 200: with open(filename, 'wb') as f: for chunk in r.iter_content(10*1024): f.write(chunk) return True else: return False def update_gpg_db(self): filename = '{0}/{1}'.format(self.path, self.gpg_file) url = 'http://bitcoin-otc.com/otc/GPG.db' r = requests.get(url, stream=True) if r.status_code == 200: with open(filename, 'wb') as f: for chunk in r.iter_content(10*1024): f.write(chunk) return True else: return False def update_trust(self): self.update_db() self.open_db() new_trust = self.assbot_trust() self.close_db() return new_trust def trust_diff(self, old, new): new_keys = set(new.keys()) old_keys = set(old.keys()) added_keys = list(new_keys - old_keys) removed_keys = list(old_keys - new_keys) # add metadata in removed list before we throw it away removed_keys = [(rk, old[rk][0]) for rk in removed_keys] return (added_keys, removed_keys) def assbot_trust(self): assbot_ratings = defaultdict(int) trusted = {} sel = """SELECT nick, rated_user_id, rater_user_id, rating FROM ratings JOIN users ON ratings.rated_user_id = users.id WHERE rater_user_id = 5506 OR rater_user_id IN (SELECT rated_user_id FROM ratings WHERE rater_user_id = 5506) """ cursor = self.rdb.cursor() cursor.execute(sel) results = cursor.fetchall() for row in results: add = 1 if row['rating'] > 0 else -1 assbot_ratings[ row['nick'] ] += add selkey = 'SELECT fingerprint FROM users WHERE lower(nick) = ? AND fingerprint IS NOT NULL' gcursor = self.gdb.cursor() for nick in assbot_ratings: if assbot_ratings[nick] > 0: row = gcursor.execute(selkey, (nick.lower(),)).fetchone() if row: trusted[ row['fingerprint'] ] = (nick, assbot_ratings[nick]) return trusted ## make gpg pubring class GPGManager(object): def __init__(self, gpghome, keyserver=None): self.gpghome = gpghome self.keyserver = keyserver if keyserver else 'hkp://pool.sks-keyservers.net' self.notfound = re.compile('key ([^ ]+) not found on keyserver') self.gpg = gnupg.GPG(homedir=gpghome) self.gpg.keyserver = self.keyserver def recv_keys(self, fingerprints, batch=10): not_found = [] imported = 0 for chunk in chunks(fingerprints, batch): r = self.gpg.recv_keys(*chunk) missing = self.notfound.findall(r.data) for k in missing: if k in chunk: not_found.append(k) imported += r.counts['imported'] return (imported, not_found) def verify(self, data): return self.gpg.verify(data) def delete_keys(self, fingerprints): return self.gpg.delete_keys(fingerprints) def chunks(l, n): """ Yield successive n-sized chunks from l.""" for i in xrange(0, len(l), n): yield l[i:i+n]
extempore/deedbundler
deedbundler/otc.py
otc.py
py
3,668
python
en
code
8
github-code
6
31460291272
''' 颜色特征向量 || (赋权颜色直方向量 拼接 赋权颜色矩向量) // \\ 归一化颜色直方向量 归一化颜色矩向量 // \\ 颜色直方向量√ 颜色矩向量 这里获取颜色直方向量 ''' import tensorflow as tf ''' 下面涉及到的3600,只是假设有3600,图片张数可以变 ''' def getColorStraight(rawImagesList): picsStraightR = [] # 3600张图片的颜色直方向量R分量 3600X86 picsStraightG = [] # 3600张图片的颜色直方向量G分量 3600X86 picsStraightB = [] # 3600张图片的颜色直方向量B分量 3600X86 colorStraightList = [] # 颜色直方向量3600X258,3600张图片,每张图片有258个颜色直方特征 picsStraightRGBList = [picsStraightR, picsStraightG, picsStraightB] # 为下面放picsStraightR/G/B值做准备 for i in range(3): # 3600张图片一次性拿出R/G/B分量,按照专利,选取图片中心的112X112部分作为主要图片 majorImagesList = rawImagesList[:, 56:168, 56:168, i] for j in range(86): # tempListForRGB=[]#存储计算R/G/B各自分量时的数据,3600X86 if j == 0: # 先统计有多少个0 totoalZero = 0 majorImagesListCmpWithZero = tf.math.equal(majorImagesList, 0) # 看看每个数是否为0,真的为T out = tf.cast(majorImagesListCmpWithZero, dtype=tf.float32) # True的时候会变为1,False的时候会变为0 # 统计0的个数 ''' 下面两行代码意思: 上面的out是一个shape为(3600,112,112)3600张图片,宽高112X112, 而一张图片的shape为(1,112,112)所以要单独统计3600张图片中 的0的个数 使得最后的totoalZero 的shape为(3600,),3600个数,每个数代表每张图片0的个数 再将其添加到tempListForRGB 而最后picsStraightR/G/B 先得到的是 86X3600的矩阵,可以之后再转置 ''' totoalZero = tf.reduce_sum(out, axis = 1) totoalZero = tf.reduce_sum(totoalZero, axis = 1) picsStraightRGBList[i].append(totoalZero) # 将0的个数放到列表的第一个位置 else: # 统计非0的个数 ''' 根据专利,将0-255划分为85个区间,也就是每3个数为一个区间,在端点处的值归到其左侧的区间 每个数都必须 j<x<=j+2 例如 1<x<=3 但是当j为1的时候,由于1的左边是0,没有左侧区间所以当J为1的时候 将1统计到其右侧区间 ''' if j == 1: # 当j是1的时候将其放到右侧区间也就是[1-3]这个区间 majorImagesListGT = tf.math.greater_equal(majorImagesList, (j * 3) - 2) else: # J不是1的时候取开区间 majorImagesListGT = tf.math.greater(majorImagesList, (j * 3) - 2) # 由于要将端点值放到其左侧区间,也就是说 [1-3],[4,6],当端点值为4的时候,它是归到[1-3]区间的以此类推 majorImagesListLE = tf.math.less(majorImagesList, (j * 3) + 1) # 还没找到能够一次性提取语句 比如 x>i&& x<=i*3 这种提取方法现在想到的是将他们各自求出来然后再找共同部分 # 经过比较之后的majorImagesListGT,majorImagesListLE,里面的元素是bool类型,只需要两部分均为ture majorImagesGTAndLE = tf.math.equal(majorImagesListGT, majorImagesListLE) # 转为float out = tf.cast(majorImagesGTAndLE, dtype=tf.float32) # 统计 j-2 < x <=j*3+1 的个数 sumMajorImagesGTAndLE = tf.reduce_sum(out, axis=1) sumMajorImagesGTAndLE = tf.reduce_sum(sumMajorImagesGTAndLE, axis=1) picsStraightRGBList[i].append(sumMajorImagesGTAndLE) # 将统计到的数据放进去 picsStraightR = tf.convert_to_tensor(picsStraightRGBList[0])#得到 86X3600 picsStraightR = tf.transpose(picsStraightR)#转置变为3600x86 picsStraightG = tf.convert_to_tensor(picsStraightRGBList[1]) picsStraightG = tf.transpose(picsStraightG) picsStraightB = tf.convert_to_tensor(picsStraightRGBList[2]) picsStraightB = tf.transpose(picsStraightB) #3个3600x86拼接起来得到3600X258这就是颜色直方向量 colorStraightList = tf.concat([picsStraightR,picsStraightG,picsStraightB],axis=1) return colorStraightList
heqisen199966/pythonProject2
work2/colorStraight.py
colorStraight.py
py
5,049
python
zh
code
0
github-code
6
3035513185
# given two strings A and B, write a function to return a list of # all start indices within A where the substring of A is an # anagram of B. for example, if A = "abcdcbac" and B = "abc" then # you want to return [0,4,5] since those are the starting indices # of substrings of A that are anagrams of B A = 'abcdcbac' B = 'abc' B_hash = {} for n in B: B_hash.update({n:True}) indices = [] for i,m in enumerate(A): if i<=(len(A)-len(B)): curr_window = A[i:i+len(B)] A_count = {} for n in curr_window: if B_hash.get(n)==True: if A_count.get(n)==None: A_count.update({n:1}) else: A_count.update({n:A_count[n]+1}) else: A_count = {} if len(A_count)==3: indices.append(i) print(indices)
estimatrixPipiatrix/decision-scientist
key_algos/anagram_substring.py
anagram_substring.py
py
838
python
en
code
0
github-code
6
17286729620
import cv2 import imutils import numpy as np cv2.namedWindow("MyImage") img = cv2.imread("img.jpg") # translated = imutils.translate(img, 25, -75) # rotated = imutils.rotate(img, 45) img = imutils.resize(img, width=600) # url_images = imutils.url_to_image( # "https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png") kernel = np.ones((4, 4)) # conv = cv2.filter2D(img, cv2.CV_16U, kernel) blur = cv2.GaussianBlur(img, (5, 5), 1) cv2.imshow("MyImage", blur) cv2.waitKey(0) cv2.destroyAllWindows()
osoulim/Computer-Vision
Python/Week3/pre_proccess.py
pre_proccess.py
py
532
python
en
code
0
github-code
6
17573160892
from flask import Flask, render_template, request, redirect, session, flash from mysqlconnection import connectToMySQL import json app = Flask(__name__) @app.route("/") def index(): mysql = connectToMySQL("leads_and_clients_db") query = "SELECT concat(clients.first_name, ' ', clients.last_name) as name, count(leads.client_id) as leads FROM clients JOIN leads ON leads.client_id = clients.id GROUP BY leads.client_id" all_leads = mysql.query_db(query) print(all_leads) total_leads = 0 for each in all_leads: total_leads += int(each['leads']) print("*************************total number of leads**********************",total_leads) percentage = int(all_leads[0]["leads"])/total_leads print(round(percentage, 3)) return render_template("index.html", template_all_leads = all_leads, template_total_leads = total_leads, json_leads = map(json.dumps, all_leads)) if __name__ == "__main__": app.run(debug = True)
aaronfennig/pythonDjango
flask/flask_mysql/leads_and_clients/server.py
server.py
py
963
python
en
code
0
github-code
6
40510581064
#Avem hardcodat punctele prin care algoritmul detecteaza forma obiectului myVar = { '1': {'Points': 3, 'Form': 'Triunghi'}, '2': {'Points': 4, 'Form': ['Patrat', 'Dreptunghi']}, '3': {'Points': 5, 'Form': 'Pentagon'}, '4': {'Points': 6, 'Form': 'Hexagon'}, '5': {'Points': 7, 'Form': 'Heptagon'}, '6': {'Points': 8, 'Form': 'Cerc'}, '7': {'Points': 12, 'Form': 'Patrat'}, '8': {'Points': 10, 'Form': 'Stea'} } #Declaram o functie care returneaza numele obiectului def getNameOfShape(pointNumber, w, h): for var in myVar: #Se verifica daca variabila pointNumber este egala cu 4 if pointNumber == myVar[var]['Points'] and pointNumber == 4: #In cazul in care rezultatul if-ului este unul pozitiv se va verifica daca obiectul este un patrat sau un dreptunghi if ((float(w)/h) >= 0.95 and (float(w)/h) <= 1.05): return myVar[var]['Form'][0] else: return myVar[var]['Form'][1] #In cazul in care pointNumber-ul este diferit de 4 dar este egal cu alta forma din array, se ve returna valoarea formei elif pointNumber == myVar[var]['Points']: return myVar[var]['Form'] return 0
ConstantinescuAndrei/ShapeDetection
shapeList.py
shapeList.py
py
1,233
python
ro
code
0
github-code
6
14852199031
# coding: utf-8 import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.criterions.label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterion, label_smoothed_nll_loss def root_mean_squared_difference(v1, v2, clip_max=0.3): diff = v1 - v2 # rmsd = diff mean_squared = torch.mean(torch.mul(diff, diff), -1) rmsd = torch.sqrt(mean_squared + 1e-9) # To avoid NaN caused by sqrt(0). if clip_max > 0: rmsd = torch.clamp(rmsd, 0, clip_max) return rmsd @register_criterion('tcvae_spacefusion_loss') class TCVAESpaceFusionCriterion(LabelSmoothedCrossEntropyCriterion): def __init__(self, args, task): super().__init__(args, task) self.eps = args.label_smoothing self.bow_loss_weight = args.bow_loss_weight self.interp_loss_weight = args.interp_loss_weight self.fuse_loss_weight = args.fuse_loss_weight self.euclidean_distance_clip = args.euclidean_distance_clip if args.bow_loss_weight > 0: tgt_dict = task.tgt_dict class_weight = torch.ones(len(tgt_dict)) class_weight[tgt_dict.pad_index] = 0 class_weight[tgt_dict.eos_index] = 0 self.bow_loss_fc = torch.nn.CrossEntropyLoss( weight=class_weight, ignore_index=tgt_dict.pad_index) @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', help='epsilon for label smoothing, 0 means no label smoothing') parser.add_argument('--interp-loss-weight', default=1, type=float, help='alpha') parser.add_argument('--fuse-loss-weight', default=30, type=float, help='beta') parser.add_argument('--euclidean-distance-clip', default=0.3, type=float) def compute_ce_loss(self, model, net_output, sample, reduce=True): nto = net_output[0] lprobs = model.get_normalized_probs(net_output, log_probs=True) target = model.get_targets(sample, net_output) lprobs = lprobs.view(-1, lprobs.size(-1)) target = target.reshape(-1, 1) loss, nll_loss, = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=reduce ) return loss, nll_loss def compute_fuse_loss(self, encoder_out, reduce=True): ''' *NOTE* The fuse_loss is not divided by the batch size to make the scale equal to other losses. The reduction method used in Fairseq is summation over examples in a batch and the averaged fuse_loss over batch is computed only in aggregate_logging_outputs(). ''' prior_out = encoder_out['prior_out'] post_out = encoder_out['post_out'] batch_size = prior_out.shape[0] # Make z_s2s[i] and z_AE[i] close. fuse1 = root_mean_squared_difference( prior_out, post_out, clip_max=self.euclidean_distance_clip ) # Make z_s2s[i] and z_s2s[j] distant. fuse2 = torch.sum(root_mean_squared_difference( prior_out.unsqueeze(1), prior_out.unsqueeze(0), clip_max=self.euclidean_distance_clip ), -1) / (batch_size - 1) # Make z_AE[i] and z_AE[j] distant. fuse3 = torch.sum(root_mean_squared_difference( post_out.unsqueeze(1), post_out.unsqueeze(0), clip_max=self.euclidean_distance_clip ), -1) / (batch_size - 1) fuse_loss = fuse1 - (fuse2 + fuse3) if reduce is True: fuse_loss = fuse_loss.sum() return fuse_loss def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ encoder_out = model.encoder(**sample['net_input']) prev_output_tokens = sample['net_input']['prev_output_tokens'] # z_x -> y prior_decoder_out = model.decoder(prev_output_tokens, encoder_out=encoder_out, latent_variable_type='prior_out') # z_y -> y post_decoder_out = model.decoder(prev_output_tokens, encoder_out=encoder_out, latent_variable_type='post_out') # u*z_x + (1-u)*z_y -> y interp_decoder_out = model.decoder(prev_output_tokens, encoder_out=encoder_out, latent_variable_type='interp_out') prior_loss, prior_nll_loss = self.compute_ce_loss(model, prior_decoder_out, sample, reduce=reduce) post_loss, post_nll_loss = self.compute_ce_loss(model, post_decoder_out, sample, reduce=reduce) interp_loss, interp_nll_loss = self.compute_ce_loss(model, interp_decoder_out, sample, reduce=reduce) # d(x_i, y_i) - d(x_i, x_j) - d(y_i, y_j) fuse_loss = self.compute_fuse_loss(encoder_out, reduce=reduce) # As T-CVAE optimizes cross-entropy and KLD, cross-entropy loss should be computed at sentence level but not at token level to make the scale of the losses compatible. assert self.args.sentence_avg == True if self.args.sentence_avg: # When args.sentence_avg == True, all losses directly used for optimization are the sum of losses computed at sentence level. This is for a case where other loss is added to the cross-entropy. sample_size = sample['target'].size(0) ntokens_per_sent = sample['ntokens'] / sample['target'].size(0) # The losses are divided by the avg. length of the outputs to make the scales of NLL_loss and other losses equal. They are computed at sentence level. prior_loss /= ntokens_per_sent prior_nll_loss /= ntokens_per_sent post_loss /= ntokens_per_sent post_nll_loss /= ntokens_per_sent interp_loss /= ntokens_per_sent interp_nll_loss /= ntokens_per_sent else: sample_size = sample['ntokens'] loss = prior_loss + post_loss + self.interp_loss_weight * interp_loss + self.fuse_loss_weight * fuse_loss # sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens'] prior_mean_norm = torch.sum(torch.norm(encoder_out['prior_mean'], dim=-1)) prior_std_norm = torch.sum(torch.norm(encoder_out['prior_std'], dim=-1)) post_mean_norm = torch.sum(torch.norm(encoder_out['post_mean'], dim=-1)) post_std_norm = torch.sum(torch.norm(encoder_out['post_std'], dim=-1)) loss_log = utils.item(loss.data) if reduce else loss.data logging_output = { 'loss': loss_log, 'nll_loss': utils.item(post_nll_loss.data) if reduce else post_nll_loss.data, 'prior_nll_loss': utils.item(prior_nll_loss.data) if reduce else prior_nll_loss.data, 'post_nll_loss': utils.item(post_nll_loss.data) if reduce else post_nll_loss.data, 'interp_nll_loss': utils.item(interp_nll_loss.data) if reduce else interp_nll_loss.data, 'fuse_loss': utils.item(fuse_loss.data) if reduce else fuse_loss, 'ntokens': sample['ntokens'], 'nsentences': sample['target'].size(0), 'sample_size': sample_size, } logging_output_latent = { 'prior_mean_norm': utils.item(prior_mean_norm.data) if reduce else prior_mean_norm.data, 'prior_std_norm': utils.item(prior_std_norm.data) if reduce else prior_std_norm.data, 'post_mean_norm': utils.item(post_mean_norm.data) if reduce else post_mean_norm.data, 'post_std_norm': utils.item(post_std_norm.data) if reduce else post_std_norm.data, } logging_output.update(logging_output_latent) return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" ntokens = sum(log.get('ntokens', 0) for log in logging_outputs) nsentences = sum(log.get('nsentences', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) aggregated = { 'ntokens': ntokens, 'nsentences': nsentences, 'sample_size': sample_size, 'loss': sum(log.get('loss', 0) for log in logging_outputs) / sample_size / math.log(2) if sample_size > 0 else 0., 'nll_loss': sum(log.get('nll_loss', 0) for log in logging_outputs) / sample_size / math.log(2) if sample_size > 0 else 0., 'prior_nll_loss': sum(log.get('prior_nll_loss', 0) for log in logging_outputs) / sample_size / math.log(2) if sample_size > 0 else 0., 'post_nll_loss': sum(log.get('post_nll_loss', 0) for log in logging_outputs) / sample_size / math.log(2) if sample_size > 0 else 0., 'interp_nll_loss': sum(log.get('interp_nll_loss', 0) for log in logging_outputs) / sample_size / math.log(2) if sample_size > 0 else 0., 'fuse_loss': sum(log.get('fuse_loss', 0) for log in logging_outputs) / nsentences if nsentences > 0 else 0., 'prior_mu': sum(log.get('prior_mean_norm', 0) for log in logging_outputs) / nsentences if nsentences > 0 else 0., 'post_mu': sum(log.get('post_mean_norm', 0) for log in logging_outputs) / nsentences if nsentences > 0 else 0., 'prior_std': sum(log.get('prior_std_norm', 0) for log in logging_outputs) / nsentences if nsentences > 0 else 0., 'post_std': sum(log.get('post_std_norm', 0) for log in logging_outputs) / nsentences if nsentences > 0 else 0., } return aggregated
jack-and-rozz/speculative_sampling
fairseq/extensions/criterions/spacefusion_loss.py
spacefusion_loss.py
py
10,265
python
en
code
0
github-code
6
15067404413
from django.shortcuts import render, redirect from .forms import Registration, Login from django.contrib.auth import authenticate, login, logout from django.contrib import messages from .models import * from .custom_manager import CustomUserManager from django.contrib import messages import uuid from django.conf import settings from django.core.mail import send_mail from django.contrib.auth.decorators import login_required # Create your views here. def registration(request): if request.user.is_authenticated: return redirect('home') form = Registration() if request.method == "POST": email = request.POST.get('email') if CustomUser.objects.filter(email=email).first(): messages.success(request, 'Email is taken.') return redirect('registration') try: auth_token = str(uuid.uuid4()) form = Registration(request.POST) if form.is_valid(): subject = 'Your accounts need to be verified' message = f'Welcome to Online Tiffin Service. Thanks for registering on our website. Follow this link to verify your account http://localhost:8000/user/verify/{auth_token}' email_from = settings.EMAIL_HOST_USER recipient_list = [email] res = send_mail(subject, message, email_from, recipient_list) new_form = form.save(commit=False) new_form.auth_token = auth_token new_form.save() # messages.success(request, 'Registration Successful.') return redirect('token_send') except Exception as e: print(e) return render(request, 'customuser/registration.html', {'form': form}) def login_view(request): if request.user.is_authenticated: return redirect('home') if request.method == "POST": form = Login(request.POST) if request.POST['email'] and request.POST['password']: email = request.POST['email'] try: verify_user = CustomUser.objects.get(email=email) except: messages.error(request, "User with this email address doesn't exits.") return redirect('login') if not verify_user.is_verified: messages.error( request, 'Profile is not verified check your mail.') return redirect('token_send') if form.is_valid(): password = request.POST['password'] user = authenticate(email=email, password=password) if user: login(request, user) messages.success(request, 'Login Successfully.') print("Login Successfully.") return redirect('home') else: messages.error(request, 'Invalid username and password.') return redirect('login') else: messages.error(request, 'Fill both field') return render(request, 'customuser/login.html', {'form': form}) else: form = Login() return render(request, 'customuser/login.html', {'form': form}) def userlogout(request): if request.user.is_authenticated: logout(request) messages.success(request, 'Logout Successfully.') return redirect('home') return redirect('login') def success(request): return render(request, 'customuser/success.html') def token_send(request): return render(request, 'customuser/token_send.html') def verify(request, auth_token): try: profile_obj = CustomUser.objects.filter(auth_token=auth_token).first() if profile_obj: if profile_obj.is_verified: messages.success(request, 'Your account is already verified.') return redirect('login') profile_obj.is_verified = True profile_obj.save() messages.success(request, 'Your account has been verified.') return redirect('login') else: return redirect('/error') except Exception as e: print(e) return redirect('/') def error_page(request): return render(request, 'error.html')
leenabadgujar/Online_Tiffin_Service
CustomUser/views.py
views.py
py
4,317
python
en
code
0
github-code
6
86572452967
#!/usr/bin/env python3 """ Check for and replace aliases with their new names from vk.xml """ import argparse import pathlib import subprocess import sys import xml.etree.ElementTree as et THIS_FILE = pathlib.Path(__file__) CWD = pathlib.Path.cwd() VK_XML = THIS_FILE.parent / 'vk.xml' EXCLUDE_PATHS = [ VK_XML.relative_to(CWD).as_posix(), # These files come from other repos, there's no point checking and # fixing them here as that would be overwritten in the next sync. 'src/amd/vulkan/radix_sort/', 'src/virtio/venus-protocol/', ] def get_aliases(xml_file: pathlib.Path): """ Get all the aliases defined in vk.xml """ xml = et.parse(xml_file) for node in ([] + xml.findall('.//enum[@alias]') + xml.findall('.//type[@alias]') + xml.findall('.//command[@alias]') ): # Some renames only apply to some APIs if 'api' in node.attrib and 'vulkan' not in node.attrib['api'].split(','): continue yield node.attrib['name'], node.attrib['alias'] def remove_prefix(string: str, prefix: str): """ Remove prefix if string starts with it, and return the full string otherwise. """ if not string.startswith(prefix): return string return string[len(prefix):] # Function from https://stackoverflow.com/a/312464 def chunks(lst: list, n: int): """ Yield successive n-sized chunks from lst. """ for i in range(0, len(lst), n): yield lst[i:i + n] def main(paths: list[str]): """ Entrypoint; perform the search for all the aliases and replace them. """ def prepare_identifier(identifier: str) -> str: prefixes_seen = [] for prefix in [ # Various macros prepend these, so they will not appear in the code using them. # List generated using this command: # $ prefixes=$(git grep -woiE 'VK_\w+_' -- src/ ':!src/vulkan/registry/' | cut -d: -f2 | sort -u) # $ for prefix in $prefixes; do grep -q $prefix src/vulkan/registry/vk.xml && echo "'$prefix',"; done # (the second part eliminates prefixes used only in mesa code and not upstream) 'VK_BLEND_FACTOR_', 'VK_BLEND_OP_', 'VK_BORDER_COLOR_', 'VK_COMMAND_BUFFER_RESET_', 'VK_COMMAND_POOL_RESET_', 'VK_COMPARE_OP_', 'VK_COMPONENT_SWIZZLE_', 'VK_DESCRIPTOR_TYPE_', 'VK_DRIVER_ID_', 'VK_DYNAMIC_STATE_', 'VK_FORMAT_', 'VK_IMAGE_ASPECT_MEMORY_PLANE_', 'VK_IMAGE_ASPECT_PLANE_', 'VK_IMAGE_USAGE_', 'VK_NV_', 'VK_PERFORMANCE_COUNTER_UNIT_', 'VK_PIPELINE_BIND_POINT_', 'VK_SAMPLER_ADDRESS_MODE_', 'VK_SHADER_STAGE_TESSELLATION_', 'VK_SHADER_STAGE_', 'VK_STENCIL_OP_', 'VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_', 'VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_', 'VK_STRUCTURE_TYPE_', 'VK_USE_PLATFORM_', 'VK_VERSION_', # Many places use the identifier without the `vk` prefix # (eg. with the driver name as a prefix instead) 'VK_', 'Vk', 'vk', ]: # The order matters! A shorter substring will match before a longer # one, hiding its matches. for prefix_seen in prefixes_seen: assert not prefix.startswith(prefix_seen), f'{prefix_seen} must come before {prefix}' prefixes_seen.append(prefix) identifier = remove_prefix(identifier, prefix) return identifier aliases = {} for old_name, alias_for in get_aliases(VK_XML): old_name = prepare_identifier(old_name) alias_for = prepare_identifier(alias_for) aliases[old_name] = alias_for print(f'Found {len(aliases)} aliases in {VK_XML.name}') # Some aliases have aliases recursion_needs_checking = True while recursion_needs_checking: recursion_needs_checking = False for old, new in aliases.items(): if new in aliases: aliases[old] = aliases[new] recursion_needs_checking = True # Doing the whole search in a single command breaks grep, so only # look for 500 aliases at a time. Searching them one at a time would # be extremely slow. files_with_aliases = set() for aliases_chunk in chunks([*aliases], 500): grep_cmd = [ 'git', 'grep', '-rlP', '|'.join(aliases_chunk), ] + paths search_output = subprocess.run( grep_cmd, check=False, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, ).stdout.decode() files_with_aliases.update(search_output.splitlines()) def file_matches_path(file: str, path: str) -> bool: # if path is a folder; match any file within if path.endswith('/') and file.startswith(path): return True return file == path for excluded_path in EXCLUDE_PATHS: files_with_aliases = { file for file in files_with_aliases if not file_matches_path(file, excluded_path) } if not files_with_aliases: print('No alias found in any file.') sys.exit(0) print(f'{len(files_with_aliases)} files contain aliases:') print('\n'.join(f'- {file}' for file in sorted(files_with_aliases))) command = [ 'sed', '-i', ";".join([f's/{old}/{new}/g' for old, new in aliases.items()]), ] command += files_with_aliases subprocess.check_call(command, stderr=subprocess.DEVNULL) print('All aliases have been replaced') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('paths', nargs=argparse.ZERO_OR_MORE, default=['src/'], help='Limit script to these paths (default: `src/`)') args = parser.parse_args() main(**vars(args))
sailfishos-mirror/mesa
src/vulkan/registry/update-aliases.py
update-aliases.py
py
6,150
python
en
code
1
github-code
6
72331237629
import datacube from datacube.api import * # basic stuff. from collections import defaultdict import time from datetime import datetime import json # dc data comes out as xray arrays import xarray as xr import xarray.ufuncs # gdal related stuff. import gdal from gdalconst import * # np for arrays import numpy as np # Author: AHDS # Creation date: 2016-06-23 # Modified by: # Last modified date: 2016-08-05 class DataAccessApi: """ Class that provides wrapper functionality for the DataCube. """ dc = None api = None # defaults for all the required fields. product_default = 'ls7_ledaps' platform_default = 'LANDSAT_7' def __init__(self): # using both the datacube object and the api. # dc is useful for all data access, api is only really used for metadata # fetching. # hardcoded config location. could parameterize. self.dc = datacube.Datacube(config='/home/localuser/Datacube/data_cube_ui/config/.datacube.conf') #self.dc = datacube.Datacube() self.api = datacube.api.API(datacube=self.dc) """ query params are defined in datacube.api.query """ def get_dataset_by_extent(self, product, product_type=None, platform=None, time=None, longitude=None, latitude=None, measurements=None, output_crs=None, resolution=None): """ Gets and returns data based on lat/long bounding box inputs. All params are optional. Leaving one out will just query the dc without it, (eg leaving out lat/lng but giving product returns dataset containing entire product.) Args: product (string): The name of the product associated with the desired dataset. product_type (string): The type of product associated with the desired dataset. platform (string): The platform associated with the desired dataset. time (tuple): A tuple consisting of the start time and end time for the dataset. longitude (tuple): A tuple of floats specifying the min,max longitude bounds. latitude (tuple): A tuple of floats specifying the min,max latitutde bounds. measurements (list): A list of strings that represents all measurements. output_crs (string): Determines reprojection of the data before its returned resolution (tuple): A tuple of min,max ints to determine the resolution of the data. Returns: data (xarray): dataset with the desired data. """ # there is probably a better way to do this but I'm not aware of it. query = {} if product_type is not None: query['product_type'] = product_type if platform is not None: query['platform'] = platform if time is not None: query['time'] = time if longitude is not None and latitude is not None: query['longitude'] = longitude query['latitude'] = latitude data = self.dc.load(product=product, measurements=measurements, output_crs=output_crs, resolution=resolution, **query) # data = self.dc.load(product=product, product_type=product_type, platform=platform, time=time, longitude=longitude, # latitude=latitude, measurements=measurements, output_crs=output_crs, # resolution=resolution) return data def get_dataset_tiles(self, product, product_type=None, platform=None, time=None, longitude=None, latitude=None, measurements=None, output_crs=None, resolution=None): """ Gets and returns data based on lat/long bounding box inputs. All params are optional. Leaving one out will just query the dc without it, (eg leaving out lat/lng but giving product returns dataset containing entire product.) Args: product (string): The name of the product associated with the desired dataset. product_type (string): The type of product associated with the desired dataset. platform (string): The platform associated with the desired dataset. time (tuple): A tuple consisting of the start time and end time for the dataset. longitude (tuple): A tuple of floats specifying the min,max longitude bounds. latitude (tuple): A tuple of floats specifying the min,max latitutde bounds. measurements (list): A list of strings that represents all measurements. output_crs (string): Determines reprojection of the data before its returned resolution (tuple): A tuple of min,max ints to determine the resolution of the data. Returns: data (xarray): dataset with the desired data in tiled sections. """ # there is probably a better way to do this but I'm not aware of it. query = {} if product_type is not None: query['product_type'] = product_type if platform is not None: query['platform'] = platform if time is not None: query['time'] = time if longitude is not None and latitude is not None: query['longitude'] = longitude query['latitude'] = latitude #set up the grid workflow gw = GridWorkflow(self.dc.index, product=product) #dict of tiles. request_tiles = gw.list_cells(product=product, measurements=measurements, output_crs=output_crs, resolution=resolution, **query) """ tile_def = defaultdict(dict) for cell, tiles in request_tiles.items(): for time, tile in tiles.items(): tile_def[cell, time]['request'] = tile keys = list(tile_def) data_tiles = {} for key in keys: tile = tile_def[key]['request'] data_tiles[key[0]] = gw.load(key[0], tile) """ #cells now return stacked xarrays of data. data_tiles = {} for tile_key in request_tiles: tile = request_tiles[tile_key] data_tiles[tile_key] = gw.load(tile, measurements=measurements) return data_tiles def get_scene_metadata(self, platform, product, longitude=None, latitude=None, crs=None, time=None): """ Gets a descriptor based on a request. Args: platform (string): Platform for which data is requested product_type (string): Product type for which data is requested longitude (tuple): Tuple of min,max floats for longitude latitude (tuple): Tuple of min,max floats for latitutde crs (string): Describes the coordinate system of params lat and long time (tuple): Tuple of start and end datetimes for requested data Returns: scene_metadata (dict): Dictionary containing a variety of data that can later be accessed. """ descriptor_request = {} if platform is not None: descriptor_request['platform'] = platform if longitude is not None and latitude is not None: dimensions = {} longitude_dict = {} latitude_dict = {} time_dict = {} longitude_dict['range'] = longitude latitude_dict['range'] = latitude if crs is not None: longitude_dict['crs'] = crs latitude_dict['crs'] = crs dimensions['longitude'] = longitude_dict dimensions['latitude'] = latitude_dict if time is not None: time_dict['range'] = time dimensions['time'] = time_dict descriptor_request['dimensions'] = dimensions descriptor = self.api.get_descriptor(descriptor_request=descriptor_request) scene_metadata = {} if product in descriptor and len(descriptor[product]['result_min']) > 2: scene_metadata['lat_extents'] = (descriptor[product]['result_min'][1], descriptor[product]['result_max'][1]) scene_metadata['lon_extents'] = (descriptor[product]['result_min'][2], descriptor[product]['result_max'][2]) scene_metadata['time_extents'] = (descriptor[product]['result_min'][0], descriptor[product]['result_max'][0]) scene_metadata['tile_count'] = len(descriptor[product]['storage_units']) scene_metadata['scene_count'] = descriptor[product]['result_shape'][0] scene_metadata['pixel_count'] = descriptor[product]['result_shape'][1] * descriptor[product]['result_shape'][2] scene_metadata['storage_units'] = descriptor[product]['storage_units'] else: scene_metadata = {'lat_extents': (0,0), 'lon_extents': (0,0), 'time_extents': (0,0), 'tile_count': 0, 'scene_count': 0, 'pixel_count': 0, 'storage_units': {}} return scene_metadata def list_acquisition_dates(self, platform, product, longitude=None, latitude=None, crs=None, time=None): """ Get a list of all acquisition dates for a query. Args: platform (string): Platform for which data is requested product_type (string): Product type for which data is requested longitude (tuple): Tuple of min,max floats for longitude latitude (tuple): Tuple of min,max floats for latitutde crs (string): Describes the coordinate system of params lat and long time (tuple): Tuple of start and end datetimes for requested data Returns: times (list): Python list of dates that can be used to query the dc for single time sliced data. """ metadata = self.get_scene_metadata(platform, product, longitude=longitude, latitude=latitude, crs=crs, time=time) #gets a list of times, corrected for utc offset. # (unit[0] + unit[0].utcoffset()) if unit[0].utcoffset() else times = set([unit[0] for unit in metadata['storage_units'].keys()]) return sorted(times) def get_datacube_metadata(self, platform, product): """ Gets some details on the cube and its contents. Args: platform (string): Desired platform for requested data. product (string): Desired product for requested data. Returns: datacube_metadata (dict): a dict with multiple keys containing relevant metadata. """ descriptor = self.api.get_descriptor({'platform': platform}) datacube_metadata = {} if product in descriptor: datacube_metadata['lat_extents'] = (descriptor[product]['result_min'][1], descriptor[product]['result_max'][1]) datacube_metadata['lon_extents'] = (descriptor[product]['result_min'][2], descriptor[product]['result_max'][2]) datacube_metadata['time_extents'] = (descriptor[product]['result_min'][0], descriptor[product]['result_max'][0]) datacube_metadata['tile_count'] = len(descriptor[product]['storage_units']) datacube_metadata['scene_count'] = descriptor[product]['result_shape'][0] datacube_metadata['pixel_count'] = descriptor[product]['result_shape'][1] * descriptor[product]['result_shape'][2] else: datacube_metadata = {'lat_extents': (0,0), 'lon_extents': (0,0), 'time_extents': (0,0), 'tile_count': 0, 'scene_count': 0, 'pixel_count': 0} return datacube_metadata
ceos-seo/Data_Cube_v2
ui/django_site_v2/data_cube_ui/utils/data_access_api.py
data_access_api.py
py
11,474
python
en
code
26
github-code
6
34953476775
from django.shortcuts import render_to_response from read_num.models import get_seven_read_data, get_today_hot_data, get_yesterday_hot_data from django.contrib.contenttypes.models import ContentType from blog.models import Blog from django.utils import timezone from django.db.models import Sum from django.core.cache import cache import datetime def home(request): blog_content_type = ContentType.objects.get_for_model(Blog) dates, read_nums = get_seven_read_data(blog_content_type) #获取七天热门博客缓存数据 seven_hot_data = cache.get('seven_hot_data') if seven_hot_data is None: seven_hot_data = get_seven_hot_data() cache.set('seven_hot_data', seven_hot_data, 3600) context = {} context['dates'] = dates context['read_nums'] = read_nums context['today_hot_data'] = get_today_hot_data(blog_content_type) context['yesterday_hot_data'] = get_yesterday_hot_data(blog_content_type) context['seven_hot_data'] = seven_hot_data return render_to_response('home.html', context) def get_seven_hot_data(): today = timezone.now().date() date = today - datetime.timedelta(days=6) blogs = Blog.objects \ .filter(read_details__date__lte=today, read_details__date__gt=date) \ .values('id', 'title') \ .annotate(read_num_sum=Sum('read_details__read_num')) \ .order_by('-read_num_sum') return blogs[:7]
shane-constantine/mysite
mysite/views.py
views.py
py
1,499
python
en
code
0
github-code
6
21355104515
# # @lc app=leetcode.cn id=762 lang=python3 # # [762] 二进制表示中质数个计算置位 # # @lc code=start class Solution: def countPrimeSetBits(self, left: int, right: int) -> int: primes = {2,3,5,7,11,13,17,19,23,29,31} def get_bits(n): cnt = 0 while n!=0: n &= (n-1) cnt += 1 return cnt return len([n for n in range(left, right+1) if get_bits(n) in primes]) # @lc code=end
Alex-Beng/ojs
FuckLeetcode/762.二进制表示中质数个计算置位.py
762.二进制表示中质数个计算置位.py
py
478
python
en
code
0
github-code
6
3602691667
""" Description: 使用 Bokeh,基于各国家创建一个 CPI 和童工数据的散点图。 拓展: Bokeh(http://bokeh.pydata.org/)是一个 Python 绘图库,能够用相当简单的命令来绘制更 复杂的图表类型。如果想要创建一个条形图、散点图或时间序列图,尝试Bokeh,看看是 否合适。使用 Bokeh,基于各国家创建一个 CPI 和童工数据的散点图。 """ from bokeh.plotting import figure, show, output_file # NOTE: You'll need to have 'africa_cpi_cl' table from Chapter 9 to use this # code. def scatter_point(chart, x, y, marker_type): # 定义一个函数,scatter_point,接受一个图表、x 轴和 y 轴值、标记的类型(圆形、正方形、矩形),并且添加这些点到图表中。 chart.scatter(x, y, marker=marker_type, line_color="#6666ee", fill_color="#ee6666", fill_alpha=0.7, size=10) # 图表的 scatter 方法需要两个必需的参数(x 轴和 y 轴)和一些不同的关键参数,为这些点添加样式(包括颜色、透明度、大小)。这行代码传递了边缘颜色和填充颜色以及大小和透明度到函数中。 chart = figure(title="Perceived Corruption and Child Labor in Africa") # 使用函数 figure创建图表,同时传入一个标题。 output_file("scatter_plot.html") # 使用函数output_file 定义输出的文件。这会在你运行代码的文件夹下创建文件scatter_plot.html。 for row in africa_cpi_cl.rows: scatter_point(chart, float(row['CPI 2013 Score']), float(row['Total (%)']), 'circle') # 对于每一行数据,使用CPI得分作为x 轴,童工雇用率作为 y 轴,添加一个数据点。 show(chart) # 在浏览器窗口中展示这张图表。
lafitehhq/PythonBook
Python-03数据处理/Reference/code/chp10-presentation-数据展示/chart_bokeh_使用Bokeh绘图1.0.py
chart_bokeh_使用Bokeh绘图1.0.py
py
1,776
python
zh
code
2
github-code
6
2990307783
import time import turtle from drawing.draw import draw_from_function from drawing.util import ( write_function_name, clear_screen, fill_background, set_up_screen, ) from breed.babies import BabyMaker from plants.plants import ( tree, daisy, cyclamen, foxglove, generated_flower, good_flower, func__14_23, ) if __name__ == "__main__": f1 = func__14_23 set_up_screen() draw_from_function(f1, start=(400, 400), incremental=True) while True: pass
SimonCarryer/mutant_flowers
draw_flower.py
draw_flower.py
py
514
python
en
code
6
github-code
6
74363301949
#!/usr/bin/python3 ''' A Simple addition module ''' def add_integer(a, b=98): ''' a function that add two integers or floats. ''' if type(a) is not int and type(a) is not float: raise TypeError('a must be an integer') if type(b) is not int and type(b) is not float: raise TypeError('b must be an integer') result = int(a) + int(b) return result if __name__ == '__main__': from doctest import testfile testfile('test/0-add_integer.txt')
ugwujustine/alx-higher_level_programming
0x07-python-test_driven_development/0-add_integer.py
0-add_integer.py
py
484
python
en
code
0
github-code
6
16786521432
from flask import render_template, flash, redirect, url_for, request, jsonify, current_app, g, send_from_directory from flask_login import login_required, login_user, logout_user, current_user from app import db from app.helper import clean_list, normalize, convertArrayToString, convertStringToArray, prepFullAddressSearch, Marker, Error, tryconvert, allowed_file from app.project import bp from app.models import User, Post, Project, ProjectImage, Address, Link, Tag, UserRole from app.main.forms import PostForm, SearchForm, EditAddressForm, TaggingForm, DemoForm, ReviewForm, HiddenDataForm from app.project.forms import ProjectCreateInitialForm, EditProjectForm, ProjectFilterForm, PhotoForm from app.service import GoogleMaps_api, AWS_api from datetime import datetime from guess_language import guess_language from flask_googlemaps import GoogleMaps, Map import geocoder import os import flask_s3 import boto3 @bp.before_request def before_request(): if current_user.is_authenticated: current_user.last_seen = datetime.utcnow() db.session.commit() g.search_form = SearchForm() def save_tags(asset, func): # form = ProjectCreateInitialForm(request.form) form = func(request.form) tags_data_array = list(map(lambda v: tryconvert(v, v, int), convertStringToArray(form.tags.data))) for element in tags_data_array: exists = db.session.query(db.exists().where(Tag.id == element)).scalar() if not exists: # TODO: Defaulting category_id to 0; Either create a logic that can self categorize itself or create a process so that tags are created are automatically in a "bucket" category. # BUG: Newly created tags' name property is not visible from admin panel. Name is however viewable from app view. tag = Tag(category_id=0, name=element) db.session.add(tag) else: tag = Tag.query.get(element) asset.add_tag(tag) db.session.commit() @bp.route('/explore', methods=['GET', 'POST']) @login_required def explore(): geo = geocoder.ip('me') page = request.args.get('page', 1, type=int) projects = Project.query.order_by(Project.timestamp.desc()).paginate(page, current_app.config['POSTS_PER_PAGE'], False) filtered = list(filter(lambda x: x.site.lat != None, projects.items)) # avgLat = sum(project.site.lat for project in filtered)/len(filtered) avgLat = geo.latlng[0] # avgLng = sum(project.site.lng for project in filtered)/len(filtered) avgLng = geo.latlng[1] #TODO: Preset center and markers according to filter mymap = Map( identifier="view-map", lat=avgLat, lng=avgLng, markers=[(project.site.lat, project.site.lng) for project in filtered], style="height:400px;width:100%;margin:0;" ) next_url = url_for('project.explore', page=projects.next_num) \ if projects.has_next else None prev_url = url_for('project.explore', page=projects.prev_num) \ if projects.has_prev else None return render_template('index.html', title='Explore', projects=projects.items, next_url=next_url, prev_url=prev_url, mymap=mymap) @bp.route('/create', methods=['GET', 'POST']) @login_required def create(): if not current_user.is_authenticated: flash('You need to be a registered user to create projects.') return redirect(url_for('main.index')) form = ProjectCreateInitialForm() if form.validate_on_submit(): g = GoogleMaps_api() citystate = form.city.data + ' ' + form.state.data full_address = prepFullAddressSearch(form.address1.data, form.address2.data, citystate, form.zipcode.data) exists = db.session.query(db.exists().where(Address.full_address == full_address)).scalar() if not exists: print('form address1: {}, form city: {}, form state: {}'.format(form.address1.data, form.city.data, form.state.data)) geocode = g.getGeocode(form.address1.data, form.city.data, form.state.data) address = Address(address1=form.address1.data, address2=form.address2.data, city=form.city.data, state = form.state.data, zipcode=form.zipcode.data, country=form.country.data, full_address=full_address, lat=geocode['lat'], lng=geocode['lng']) db.session.add(address) else: address = Address.query.filter_by(full_address=full_address).first() project = Project(name=form.name.data, creator=current_user, site=address) db.session.add(project) save_tags(project, ProjectCreateInitialForm) db.session.commit() flash('Congratulations, you just created a project and address!') return redirect(url_for('project.upload', project_id=project.id)) return render_template('project/create.html', title='Create', form=form) @bp.route('/upload', methods=['GET', 'POST']) def upload(*args, **kwargs): form = HiddenDataForm() form.data.data = request.args.get('project_id') or args if request.method == 'POST': for key, f in request.files.items(): if key.startswith('file'): f.save(os.path.join(current_app.config['UPLOADED_PATH'], 'project{}-{}'.format(form.data.data, f.filename))) #TODO: Give user opportunity to add more image related data here if form.validate_on_submit(): s3 = boto3.client( "s3", aws_access_key_id=current_app.config['S3_ACCESS_KEY'], aws_secret_access_key=current_app.config['S3_SECRET_ACCESS_KEY'] ) project = Project.query.filter_by(id=form.data.data).first() uploadFileNames = [] sourceDir = os.path.join(current_app.config['APP_ROOT'], 'app/static/uploads/') for (sourceDir, dirname, filename) in os.walk(sourceDir): uploadFileNames.extend(filename) break for filename in uploadFileNames: sourcepath = sourceDir + filename print('########### SOURCEPATH: {}'.format(sourcepath)) with open(sourcepath, 'rb') as data: s3.upload_fileobj( data, current_app.config['S3_BUCKET_NAME'], filename, ExtraArgs={ "ACL": 'public-read', "ContentType": filename.rsplit('.', 1)[1].lower() } ) object_url = "https://s3-us-west-2.amazonaws.com/{}/{}".format(current_app.config['S3_BUCKET_NAME'], filename) project_image = ProjectImage(description='this is a static description placeholder... will need to refactor', image_url=object_url, image_project=project, photo_uploader=current_user) db.session.add(project_image) db.session.commit() return redirect(url_for('project.project', project_id=form.data.data)) return render_template('upload.html', form=form) # @bp.route('/upload-old', methods=['GET', 'POST']) # def upload(project_id): # if form.validate_on_submit(): # f = form.photo.data # filename = secure_filename(f.filename) # f.save(os.path.join( # app.instance_path, 'photos', filename # )) # return redirect(url_for('project.project', project_id=project_id)) # return render_template('upload.html', form=form) @bp.route('/timeline/<address_id>') def view_timeline(address_id): address = Address.query.filter_by(id=address_id).first() projects = Project.query.filter_by(address_id=address_id) mymap = Map( identifier="view-map", lat=address.lat, lng=address.lng, markers=[(address.lat, address.lng)], style="height:400px;width:100%;margin:0;" ) ##TODO: Add functionality that allows user to start the process of creating a review return render_template('project/timeline.html', title='Timeline', mymap=mymap, projects=projects) @bp.route('/<project_id>', methods=['GET', 'POST']) def project(project_id): form = PostForm() if form.validate_on_submit(): language = guess_language(form.body.data) if language == 'UNKNOWN' or len(language) > 5: language = '' project = Project.query.filter_by(id=project_id).first_or_404() post = Post(body=form.body.data, author=current_user, commented_project=project, language=language) post.save() flash('Your post is now live!') return redirect(url_for('project.project', project_id=project_id)) page = request.args.get('page', 1, type=int) project = Project.query.filter_by(id=project_id).first_or_404() user = User.query.filter_by(username=project.creator.username).first() mymap = Map( identifier="view-map", lat=project.site.lat, lng=project.site.lng, markers=[(project.site.lat, project.site.lng)], style="height:400px;width:100%;margin:0;", fit_markers_to_bounds = True ) posts = project.posts.order_by(Post.timestamp.desc()).paginate(page, current_app.config['POSTS_PER_PAGE'], False) images = project.images.all() next_url = url_for('project.project', username=user.username, page=posts.next_num) \ if posts.has_next else None prev_url = url_for('project.project', username=user.username, page=posts.prev_num) \ if posts.has_prev else None return render_template('project/project.html', user=user, project=project, form=form, posts=posts.items, next_url=next_url, prev_url=prev_url, mymap=mymap, images=images) @bp.route('/image/<id>', methods=['GET', 'POST']) def viewProjectImage(id): project_image = ProjectImage.query.filter_by(id=id).first() return project_image.image_url @bp.route('/photo-form', methods=['POST']) @login_required def review_form(): form = PhotoForm() form.project_id.data = request.form['project_id'] return render_template('_comment.html', form=form) #TODO: Include Photo submission and refactor this. There has to be a better way to do this. @bp.route('/edit_project/<project_id>', methods=['GET', 'POST']) @login_required def edit_project(project_id): project = Project.query.filter_by(id=project_id).first_or_404() form = EditProjectForm() if form.validate_on_submit(): project.name = form.name.data project.headline = form.headline.data project.description = form.description.data project.completion_date = form.completion_date.data address = Address.query.get(project.address_id) address.address1 = form.address1.data address.address2 = form.address2.data address.city = form.city.data address.state = form.state.data address.zipcode = form.zipcode.data address.country = form.country.data save_tags(project, ProjectCreateInitialForm) flash('Your changes have been saved.') return redirect(url_for('project.project', project_id=project.id)) elif request.method == 'GET': form.name.data = project.name form.headline.data = project.headline form.description.data = project.description form.completion_date.data = project.completion_date form.address1.data = project.site.address1 form.address2.data = project.site.address2 form.city.data = project.site.city form.state.data = project.site.state form.zipcode.data = project.site.zipcode form.country.data = project.site.country #BUG: tags not populating form.tags.data = convertArrayToString(project.tags.all()) return render_template('project/edit_project.html', title='Edit Project', form=form) @bp.route('/favorite/<project_id>') @login_required def favorite(project_id): project = Project.query.filter_by(id=project_id).first() if project is None: flash('Project not found.') return redirect(url_for('project.project', project_id=project_id)) if current_user.is_favorited(project): flash('You already favorited this project.') return redirect(url_for('project.project', project_id=project_id)) current_user.favorite(project) db.session.commit() flash('You favorited this project!') return redirect(url_for('project.project', project_id=project_id)) @bp.route('/unfavorite/<project_id>') @login_required def unfavorite(project_id): project = Project.query.filter_by(id=project_id).first() if project is None: flash('Project not found.') return redirect(url_for('project.project', project_id=project_id)) if not current_user.is_favorited(project): flash('You already unfavorited this project.') return redirect(url_for('project.project', project_id=project_id)) current_user.unfavorite(project) db.session.commit() flash('You unfavorited this project!') return redirect(url_for('project.project', project_id=project_id)) ##TODO: The contribution feature will need to be refactored; Feature will need the following: 1) contribution request form will need to allow users to indicate which project they are trying to contribute to and attach proof of contribution, 2) send email to platform support for verification, 3) support to send email back to approve or decline contribution request, 4) verified contributors will be identified as verified @bp.route('/contribute/<project_id>') @login_required def contribute(project_id): project = Project.query.filter_by(id=project_id).first() if project is None: flash('Project not found.') return redirect(url_for('project.project', project_id=project_id)) if current_user.has_contributed(project): flash('You already unfavorited this project.') return redirect(url_for('project.project', project_id=project_id)) current_user.contribute(project) db.session.commit() flash('You contributed to this project!') return redirect(url_for('project.project', project_id=project_id)) @bp.route('/uncontribute/<project_id>') @login_required def uncontribute(project_id): project = Project.query.filter_by(id=project_id).first() if project is None: flash('Project not found.') return redirect(url_for('project.project', project_id=project_id)) if not current_user.has_contributed(project): flash('You already uncontributed this project.') return redirect(url_for('project.project', project_id=project_id)) current_user.uncontribute(project) db.session.commit() flash('You uncontributed to this project!') return redirect(url_for('project.project', project_id=project_id))
iamjasonkuo/househunt
app/project/routes.py
routes.py
py
14,693
python
en
code
0
github-code
6
41685965854
from utils import Position import copy import pickle def load_cache(file: str) -> dict: try: with open(file, 'rb') as f: cache = pickle.load(f) except FileNotFoundError: cache = {} return cache def save_cache(cache, file: str): with open(file, 'wb') as f: pickle.dump(cache, f) def minimax(position: Position, depth=0, alpha=float('-inf'), beta=float('inf'), maximizing_player: int = 1, cache=None) -> int: if cache is None: cache = {} if position.key in cache: return cache[position.key] outcome = position.result if type(outcome) == int: return outcome * (10 - depth) if maximizing_player == 1: maxEval = float('-inf') for child in position.get_children(): eval_ = minimax(position=child, depth=depth + 1, alpha=alpha, beta=beta, maximizing_player=-1, cache=cache) maxEval = max(maxEval, eval_) alpha = max(alpha, eval_) if alpha >= beta: break cache[position.key] = maxEval return maxEval elif maximizing_player == -1: minEval = float('inf') for child in position.get_children(): eval_ = minimax(position=child, depth=depth + 1, alpha=alpha, beta=beta, maximizing_player=1, cache=cache) minEval = min(minEval, eval_) beta = min(beta, eval_) if alpha >= beta: break cache[position.key] = minEval return minEval def get_best_move(position: Position, maximizing_player: int = 1, cache: dict = None): best_value = float('-inf') if maximizing_player == 1 else float('inf') best_move = (None, None) for i in range(3): for j in range(3): if position.position[i][j] == 0: new_position = copy.deepcopy(position) new_position.make_move((i, j)) value = minimax(position=new_position, depth=0, maximizing_player=-maximizing_player, cache=cache) if maximizing_player == 1 and value > best_value: best_value = value best_move = (i, j) elif maximizing_player == -1 and value < best_value: best_value = value best_move = (i, j) return best_move
Epico-Coder/TicTacToe
ai.py
ai.py
py
2,357
python
en
code
0
github-code
6
33230034244
# EKF SLAM - adding one landmark. # # slam_09_b_slam_add_landmark # Claus Brenner, 20 JAN 13 from lego_robot import * from math import sin, cos, pi, atan2, sqrt from numpy import * from slam_f_library import write_cylinders, write_error_ellipses class ExtendedKalmanFilterSLAM: def __init__(self, state, covariance, robot_width, scanner_displacement, control_motion_factor, control_turn_factor): # The state. This is the core data of the Kalman filter. self.state = state self.covariance = covariance # Some constants. self.robot_width = robot_width self.scanner_displacement = scanner_displacement self.control_motion_factor = control_motion_factor self.control_turn_factor = control_turn_factor # Currently, the number of landmarks is zero. self.number_of_landmarks = 0 @staticmethod def g(state, control, w): x, y, theta = state l, r = control if r != l: alpha = (r - l) / w rad = l/alpha g1 = x + (rad + w/2.)*(sin(theta+alpha) - sin(theta)) g2 = y + (rad + w/2.)*(-cos(theta+alpha) + cos(theta)) g3 = (theta + alpha + pi) % (2*pi) - pi else: g1 = x + l * cos(theta) g2 = y + l * sin(theta) g3 = theta return array([g1, g2, g3]) @staticmethod def dg_dstate(state, control, w): theta = state[2] l, r = control if r != l: alpha = (r-l)/w theta_ = theta + alpha rpw2 = l/alpha + w/2.0 m = array([[1.0, 0.0, rpw2*(cos(theta_) - cos(theta))], [0.0, 1.0, rpw2*(sin(theta_) - sin(theta))], [0.0, 0.0, 1.0]]) else: m = array([[1.0, 0.0, -l*sin(theta)], [0.0, 1.0, l*cos(theta)], [0.0, 0.0, 1.0]]) return m @staticmethod def dg_dcontrol(state, control, w): theta = state[2] l, r = tuple(control) if r != l: rml = r - l rml2 = rml * rml theta_ = theta + rml/w dg1dl = w*r/rml2*(sin(theta_)-sin(theta)) - (r+l)/(2*rml)*cos(theta_) dg2dl = w*r/rml2*(-cos(theta_)+cos(theta)) - (r+l)/(2*rml)*sin(theta_) dg1dr = (-w*l)/rml2*(sin(theta_)-sin(theta)) + (r+l)/(2*rml)*cos(theta_) dg2dr = (-w*l)/rml2*(-cos(theta_)+cos(theta)) + (r+l)/(2*rml)*sin(theta_) else: dg1dl = 0.5*(cos(theta) + l/w*sin(theta)) dg2dl = 0.5*(sin(theta) - l/w*cos(theta)) dg1dr = 0.5*(-l/w*sin(theta) + cos(theta)) dg2dr = 0.5*(l/w*cos(theta) + sin(theta)) dg3dl = -1.0/w dg3dr = 1.0/w m = array([[dg1dl, dg1dr], [dg2dl, dg2dr], [dg3dl, dg3dr]]) return m def predict(self, control): """The prediction step of the Kalman filter.""" # covariance' = G * covariance * GT + R # where R = V * (covariance in control space) * VT. # Covariance in control space depends on move distance. # --->>> Put your code here. # Hints: # - The number of landmarks is self.number_of_landmarks. # - eye(n) is the numpy function which returns a n x n identity matrix. # - zeros((n,n)) returns a n x n matrix which is all zero. # - If M is a matrix, M[0:2,1:5] returns the submatrix which consists # of the rows 0 and 1 (but not 2) and the columns 1, 2, 3, 4. # This submatrix operator can be used on either side of an assignment. # - Similarly for vectors: v[1:3] returns the vector consisting of the # elements 1 and 2, but not 3. # - All matrix and vector indices start at 0. G3 = self.dg_dstate(self.state, control, self.robot_width) left, right = control left_var = (self.control_motion_factor * left)**2 +\ (self.control_turn_factor * (left-right))**2 right_var = (self.control_motion_factor * right)**2 +\ (self.control_turn_factor * (left-right))**2 control_covariance = diag([left_var, right_var]) V = self.dg_dcontrol(self.state, control, self.robot_width) R3 = dot(V, dot(control_covariance, V.T)) # Now enlarge G3 and R3 to accomodate all landmarks. Then, compute the # new covariance matrix self.covariance. new_offset = 2*self.number_of_landmarks G = zeros((3 + new_offset, 3 + new_offset)) G[0:3, 0:3] = G3 G[3:, 3:] = eye(new_offset, new_offset) R = zeros((3 + new_offset, 3 + new_offset)) R[0:3, 0:3] = R3 self.covariance = dot(G, dot(self.covariance, G.T)) + R # state' = g(state, control) self.state[0:3] = self.g(self.state[0:3], control, self.robot_width) def add_landmark_to_state(self, initial_coords): """Enlarge the current state and covariance matrix to include one more landmark, which is given by its initial_coords (an (x, y) tuple). Returns the index of the newly added landmark.""" # --->>> Put here your new code to augment the robot's state and # covariance matrix. # Initialize the state with the given initial_coords and the # covariance with 1e10 (as an approximation for "infinity". # Hints: # - If M is a matrix, use M[i:j,k:l] to obtain the submatrix of # rows i to j-1 and colums k to l-1. This can be used on the left and # right side of the assignment operator. # - zeros(n) gives a zero vector of length n, eye(n) an n x n identity # matrix. # - Do not forget to increment self.number_of_landmarks. # - Do not forget to return the index of the newly added landmark. I.e., # the first call should return 0, the second should return 1. landmark_index = self.number_of_landmarks old_offset = 2*self.number_of_landmarks self.number_of_landmarks += 1 new_offset = 2*self.number_of_landmarks covarianceN = zeros((3 + new_offset, 3 + new_offset)) covarianceN[0:3+old_offset, 0:3+old_offset] = self.covariance covarianceN[-2,-2] = covarianceN[-1,-1] = 1e10 self.covariance = covarianceN state_prime = zeros(3 + new_offset) state_prime[0:3+old_offset] = self.state state_prime[-2] = initial_coords[0] state_prime[-1] = initial_coords[1] self.state = state_prime return landmark_index def get_landmarks(self): """Returns a list of (x, y) tuples of all landmark positions.""" return ([(self.state[3+2*j], self.state[3+2*j+1]) for j in xrange(self.number_of_landmarks)]) def get_landmark_error_ellipses(self): """Returns a list of all error ellipses, one for each landmark.""" ellipses = [] for i in xrange(self.number_of_landmarks): j = 3 + 2 * i ellipses.append(self.get_error_ellipse( self.covariance[j:j+2, j:j+2])) return ellipses @staticmethod def get_error_ellipse(covariance): """Return the position covariance (which is the upper 2x2 submatrix) as a triple: (main_axis_angle, stddev_1, stddev_2), where main_axis_angle is the angle (pointing direction) of the main axis, along which the standard deviation is stddev_1, and stddev_2 is the standard deviation along the other (orthogonal) axis.""" eigenvals, eigenvects = linalg.eig(covariance[0:2,0:2]) angle = atan2(eigenvects[1,0], eigenvects[0,0]) return (angle, sqrt(eigenvals[0]), sqrt(eigenvals[1])) if __name__ == '__main__': # Robot constants. scanner_displacement = 30.0 ticks_to_mm = 0.349 robot_width = 155.0 # Filter constants. control_motion_factor = 0.35 # Error in motor control. control_turn_factor = 0.6 # Additional error due to slip when turning. # Arbitrary start position. initial_state = array([500.0, 0.0, 45.0 / 180.0 * pi]) # Covariance at start position. initial_covariance = zeros((3,3)) # Setup filter. kf = ExtendedKalmanFilterSLAM(initial_state, initial_covariance, robot_width, scanner_displacement, control_motion_factor, control_turn_factor) # Just to test the algorithm, add one landmark. kf.add_landmark_to_state((400.0, 700.0)) # To make the error ellipse visible, set a smaller variance. if kf.number_of_landmarks > 0: kf.covariance[-2,-2] = 300.0**2 # 300 mm in x. kf.covariance[-1,-1] = 500.0**2 # 500 mm in y. # Read data. logfile = LegoLogfile() logfile.read("robot4_motors.txt") # Loop over all motor tick records and all measurements and generate # filtered positions and covariances. # This is the EKF SLAM loop. f = open("ekf_slam_add_landmarks.txt", "w") for i in xrange(len(logfile.motor_ticks)): # Prediction. control = array(logfile.motor_ticks[i]) * ticks_to_mm kf.predict(control) # End of EKF SLAM - from here on, data is written. # Output the center of the scanner, not the center of the robot. print >> f, "F %f %f %f" % \ tuple(kf.state[0:3] + [scanner_displacement * cos(kf.state[2]), scanner_displacement * sin(kf.state[2]), 0.0]) # Write covariance matrix in angle stddev1 stddev2 stddev-heading form e = ExtendedKalmanFilterSLAM.get_error_ellipse(kf.covariance) print >> f, "E %f %f %f %f" % (e + (sqrt(kf.covariance[2,2]),)) # Write estimates of landmarks. write_cylinders(f, "W C", kf.get_landmarks()) # Write error ellipses of landmarks. write_error_ellipses(f, "W E", kf.get_landmark_error_ellipses()) f.close()
jfrascon/SLAM_AND_PATH_PLANNING_ALGORITHMS
06-SLAM/CODE/slam_09_b_slam_add_landmark_question.py
slam_09_b_slam_add_landmark_question.py
py
10,329
python
en
code
129
github-code
6
4135669430
#!/usr/bin/env python3 # Covariance Calculation from doc2vec model import numpy as np import gensim.models import gensim import sys import pickle from helpers import get_name def compute_covariance_matrix(model_name, to_json=True): model = gensim.models.Doc2Vec.load(model_name) doctags = list(model.docvecs.doctags) N = len(doctags) X = [] for x in doctags: X.append(model.docvecs[x]) X = np.array(X) # R[i, j] = R[j, i] = dot(vi, vj) / (norm(vi) * norm(vj)) R = np.corrcoef(X) if to_json: RR = {} for x, dx in enumerate(doctags): for y, dy in enumerate(doctags): RR[get_name(dx), get_name(dy)] = R[x,y] return doctags, RR else: return doctags, R if __name__ == '__main__': model_name = sys.argv[1] doctags, R = compute_covariance_matrix(model_name) pickle.dump(R, open('corrcoef.pickle', 'wb+'))
papachristoumarios/sade
sade/corrcoef.py
corrcoef.py
py
930
python
en
code
8
github-code
6
3549042262
from django import forms from catalog.models import Category, Product class ProductAdminForm(forms.ModelForm): class Meta: model = Product fields = ['name', 'slug','brand','sku','price','old_price',\ 'is_active','is_bestseller','is_featured','quantity',\ 'description','meta_keywords','meta_description', \ 'categories','image','thumbnail','image_caption'] def clean_price(self): if self.cleaned_data['price'] <= 0: raise forms.ValidationError('Price must be greater than zero.') return self.cleaned_data['price']
Hamfri/shopping
catalog/forms.py
forms.py
py
626
python
en
code
0
github-code
6
10190974986
import numpy as np import neural import random #my_seed = 95 #random.seed(my_seed) #np.random.seed(my_seed) # Load data f = open('seeds_dataset.csv', 'r') features = [] labels = [] rows = f.readlines() for row in rows: values = [float(x) for x in row.split(',')] features.append(values[:-1]) # Ignore last column label = int(values[-1]) if label == 1: labels.append([1, 0, 0]) elif label == 2: labels.append([0, 1, 0]) else: labels.append([0, 0, 1]) # Split data in training and testing X_train, X_test, y_train, y_test = [], [], [], [] for i in range(len(features)): if random.random() > 0.25: X_train.append(features[i]) y_train.append(labels[i]) else: X_test.append(features[i]) y_test.append(labels[i]) X_train = np.array(X_train, dtype=np.float128).T y_train = np.array(y_train, dtype=np.float128).T X_test = np.array(X_test, dtype=np.float128).T y_test = np.array(y_test, dtype=np.float128).T print(X_train.shape) print(y_train.shape) # First train nn = neural.NeuralNetwork([7, 5, 3],activations=['sigmoid', 'sigmoid']) nn.train(X_train, y_train, epochs=1000, batch_size=64, lr = 0.1) # Evaluate print(y_test) _, output = nn.feed_forward(X_test) y_prime = [x.index(max(x)) for x in output] percent_errors = [] for i in range(len(y)): percent_errors.append(abs((y_prime[i] - y[i]) / y[i])) mean_error = sum(percent_errors) / len(percent_errors) print("Mean percent error: {0:.2f}%".format(float((mean_error * 100).astype(str)))) print("Max error: {0:.2f}%".format(float((max(percent_errors) * 100).astype(str)))) print("Min error: {0:.2f}%".format(float((min(percent_errors) * 100).astype(str)))) print("Accuracy: {0:.2f}%".format(float(((1-mean_error) * 100).astype(str))))
peterapps/NumpyNeural
seeds2.py
seeds2.py
py
1,713
python
en
code
0
github-code
6
30357262081
from threading import Thread from time import sleep from traits.api import HasTraits, Int, Button from traitsui.api import View, Item, VGroup class ThreadDemo(HasTraits): # The thread specific counters: thread_0 = Int() thread_1 = Int() thread_2 = Int() # The button used to start the threads running: start = Button('Start Threads') # The count of how many threads ae currently running: running = Int() view = View( VGroup( Item('thread_0', style='readonly'), Item('thread_1', style='readonly'), Item('thread_2', style='readonly'), ), '_', Item('start', show_label=False, enabled_when='running == 0'), resizable=True, width=250, title='Monitoring threads', ) def _start_changed(self): for i in range(3): Thread( target=self.counter, args=('thread_%d' % i, (i * 10 + 10) / 1000.0), ).start() def counter(self, name, interval): self.running += 1 count = 0 for i in range(200): setattr(self, name, count) count += 1 sleep(interval) self.running -= 1 # Create the demo: demo = ThreadDemo() # Run the demo (if invoked from the command line): if __name__ == '__main__': demo.configure_traits()
enthought/traitsui
traitsui/examples/demo/Advanced/Multi_thread_demo.py
Multi_thread_demo.py
py
1,376
python
en
code
290
github-code
6
5469207228
#ライブラリ、モジュールをインポート import pandas as pd import openpyxl as px from openpyxl.formatting.rule import CellIsRule from openpyxl.styles import Color, PatternFill #ブック名入力 tdname=input('testdataName?') edname=input('editordataName?') #読み込んだブックの同じテストのデータをDataFrameに格納 td=pd.read_excel(tdname,header=1,sheet_name=0) ed=pd.read_excel(edname,header=1,sheet_name=0) #テストデータのラベルの部分をリストに変換 tdlabel=td.columns.values tdlabel=tdlabel.tolist() #テストデータのラベルの長さを格納(後のループ処理(rangeの引数)に使用) l=len(tdlabel) #DataFrameの定義 #定義不要かもしれない add=pd.DataFrame() result=pd.DataFrame() #エディタデータ成形 #テストデータラベルの項目名と正規表現でマッチする部分のエディタデータを検索、成形 for i in range(l): add = ed.loc[:,ed.columns.str.match(tdlabel[i])] result = pd.concat([result,add],axis=1) #TrueFalse判定 tf=pd.DataFrame() tf=td==result #出力ブックの名前指定 outname=input('outputName?') #各データを1ブック2シートに出力 with pd.ExcelWriter(outname) as writer: tf.to_excel(writer,sheet_name='TrueFalse') td.to_excel(writer,sheet_name='TestData') result.to_excel(writer,sheet_name='EditorData') #FALSEを強調表示する条件付き書式設定 wb=px.load_workbook(outname) ws=wb['TrueFalse'] ws.conditional_formatting.add('A1:AZ100',CellIsRule(operator='equal',formula=['FALSE'], fill=PatternFill(start_color='FF0000', end_color='FF0000', fill_type='solid'))) white=px.styles.PatternFill(patternType='solid', fgColor='000000', bgColor='000000') ws['A1'].fill=white ws.conditional_formatting.add('A1:AZ100',CellIsRule(operator='equal',formula=[''], fill=PatternFill(start_color='000000', end_color='000000', fill_type='solid'))) wb.save(outname)
kobayu0902art/work_snippets
reshape/reshape_v1.4_1.py
reshape_v1.4_1.py
py
2,175
python
ja
code
0
github-code
6
70929712188
# -*- coding: utf-8 -*- """ Created on Wed Sep 6 17:20:25 2023 @author: Gilberto """ "" # streamlit_app.py import io import base64 import streamlit as st import pandas as pd from datetime import datetime from mortgagestyle_v2 import MortgageStyle from straightline_v2 import StraightLineAmortization from SOFRDataExtractor import SOFRDataExtractor # Assuming the previous code is saved in this file import streamlit as st def homepage(): st.title("Amortization Calculator Home") # Background Information st.header("Background Information") st.markdown(""" This application helps to generate an amortization schedule, which is a table detailing each periodic payment on an amortizing loan. **Types of Amortization:** - **Mortgage Style:** - **Hybrid Style:** - **Straight Line:** """) # Application Features st.header("Application Features") st.markdown(""" - Calculate Mortgage Style, Hybrid Style, and Straight Line Amortizations. - Supports both fixed and floating interest rates. - Downloadable amortization schedule in Excel format. """) # How to Use st.header("How to Use") st.markdown(""" 1. Enter the required details such as Settlement Date, Maturity Date, Notional Amount, etc. 2. Choose the type of Amortization: Mortgage Style, Hybrid Style, or Straight Line. 3. For floating rate, upload the SOFR data file and select the reset frequency. 4. Click on the "Generate Amortization" button to view the amortization table. 5. You can also download the table in Excel format using the provided link. """) # Details about SOFR_Data file st.header("SOFR Data Formatting and Source") st.markdown(""" **Formatting Requirements for the SOFR Data File:** - The file should be in `.xls` or `.xlsx` format. - Ensure the file contains columns labeled 'Date' and 'Rate'. - Data should be sorted chronologically. - Rates should be in decimal form (e.g., 0.03 for 3%). -A sample format for the data can be found in github If you don't have the SOFR data file, you can obtain the required data from: [Pensford Resources - Forward Curve](https://www.pensford.com/resources/forward-curve) """) # Details about contacting st.header("Contact info") st.markdown(""" **If you find any errors or have any question please feel free to reach out via LinkedIn:** https://www.linkedin.com/in/gil-de-la-cruz-vazquez-62049b125/""") def apply_floating_rate(df, f, spread): for i in range(len(df)): if i == 0: continue # No change for the first period df.at[i, 'Period Interest'] = round(df.at[i, 'Outstanding Balance'] * (f(i) + spread) / 12,2) # Applying spread to the SOFR rate df.at[i, 'Period Payment'] = round(df.at[i, 'Period Interest'] + df.at[i, 'Principal Payment'],2) df.at[i, 'Outstanding Balance'] = df.at[i-1, 'Outstanding Balance'] - df.at[i, 'Principal Payment'] return df def main(): st.title("Amortization Calculator") # Input parameters settlement_date = st.date_input("Settlement Date", datetime(2022, 8, 1)) maturity_date = st.date_input("Maturity Date", datetime(2032, 8, 1)) first_payment_date = st.date_input("First Payment Date", datetime(2022, 9, 1)) notional_amount = st.number_input("Notional Amount", value=600000.0, step=5000.0) rate = st.number_input("Rate (%)", value=7.03, step=0.01) basis_numerator = st.selectbox("Basis Numerator", ["ACT", "30"]) basis_denominator = st.selectbox("Basis Denominator", [360, 365]) payment_frequency = st.selectbox("Frequency", ["1M", "3M", "6M"]) amortization_years = st.number_input("Amortization Years", value=25, step=1) # Output format selection output_format = st.selectbox("Output Format", ["Simple Amortization", "P+I"]) # Choose amortization type amortization_type = st.selectbox("Choose Amortization Type", ["Mortgage Style", "Hybrid Style", "Straight Line"]) rate_type = st.selectbox("Rate Type", ["Fixed", "Floating"]) if rate_type == "Floating": sofr_file = st.file_uploader("Upload SOFR Data File", type=['xls', 'xlsx']) spread = st.number_input("Enter Spread (%)", min_value=0.0, max_value=10.0, value=0.0, step=0.1) / 100.0 # Spread in percentage if sofr_file: data_extractor = SOFRDataExtractor(sofr_file) months_duration = st.selectbox("Reset Frequency", ["1M", "3M", "6M"]) if months_duration == "1M": f = data_extractor.interpolate_curve(data_extractor.data_1m) elif months_duration == "3M": f = data_extractor.interpolate_curve(data_extractor.data_3m) else: # For 6M, using 3M data for simplicity. Ideally, you'd have 6M data f = data_extractor.interpolate_curve(data_extractor.data_3m) if st.button("Generate Amortization"): if amortization_type == "Mortgage Style": mortgage = MortgageStyle( settlement_date, maturity_date, first_payment_date, notional_amount, rate, basis_numerator, basis_denominator, amortization_years, payment_frequency ) df = mortgage.create_mortgage_style_amort() elif amortization_type == "Hybrid Style": mortgage = MortgageStyle( settlement_date, maturity_date, first_payment_date, notional_amount, rate, basis_numerator, basis_denominator, amortization_years, payment_frequency ) df = mortgage.create_hybrid_style_amort() else: sla = StraightLineAmortization( settlement_date, maturity_date, first_payment_date, notional_amount, rate, basis_numerator, basis_denominator, amortization_years, payment_frequency ) df = sla.generate_schedule() if rate_type == "Floating": df = apply_floating_rate(df, f, spread) df['Interest Rate (%)'] = (df['Period Interest'] / df['Outstanding Balance'].shift(1)) * 12 * 100 df['Interest Rate (%)'] = df['Interest Rate (%)'].round(2) # Calculate additional columns for P+I if 'Period Payment' in df.columns and 'Outstanding Balance' in df.columns: df['Remaining Notional Balance'] = df['Outstanding Balance'] - df['Principal Payment'] if 'Period Payment' in df.columns and 'Principal Payment' in df.columns: df['Period Interest'] = df['Period Payment'] - df['Principal Payment'] # Customize output format if output_format == "Simple Amortization": columns = ['Period Start Date', 'Period End Date', 'Outstanding Balance'] else: # "P+I" columns = ['Payment Number', 'Period Start Date', 'Period End Date', 'Outstanding Balance', 'Period Payment', 'Principal Payment', 'Period Interest', 'Remaining Notional Balance'] if rate_type == "Floating": df = apply_floating_rate(df, f, spread) df['Interest Rate (%)'] = (df['Period Interest'] / df['Outstanding Balance'].shift(1)) * 12 * 100 df['Interest Rate (%)'] = df['Interest Rate (%)'].round(2) # Set the first period's interest rate to the SOFR rate for the first period plus spread first_period_rate = f(0) + spread df.at[0, 'Interest Rate (%)'] = round(first_period_rate*100,2) # Convert to annual rate in percentage columns.append('Interest Rate (%)') # Only add this column if rate_type is Floating df = df[columns] # Display the dataframe st.write(df) # Download link for Excel towrite = io.BytesIO() downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False, engine='openpyxl') towrite.seek(0) b64 = base64.b64encode(towrite.read()).decode() st.markdown(f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="amortization.xlsx">Download Excel File</a>', unsafe_allow_html=True) if __name__ == "__main__": page = st.sidebar.radio("Select Page", ["Home", "Amortization Calculator"]) if page == "Home": homepage() else: main()
gdelacruzv/Amortization_calculator
Amortization_app_V4.py
Amortization_app_V4.py
py
8,584
python
en
code
0
github-code
6
70940682109
#this is how to get code output in py print( "This is my first code in python. Hello python") #this is how to declare a variable # variable has a name then after an equal sign the value subject_name = "Tom" another_name = "Jerry" there_shows_name = subject_name + " & " + another_name print("This is a cartoon show name:", there_shows_name) #that was a string type variable #there are 3 types of variable # variable types = numaric , string , boolean #now will write numeric type of variable. zero = 0 one = 1 first_digit = 2 second_digit = 4 third_digit = 6 fourth_digit = 8 #now i'm going to create a math operation with these variable plus_result = first_digit + zero minus_result = fourth_digit - third_digit multiply_result = first_digit * one divided_result = second_digit / first_digit print(plus_result) print(minus_result) print(multiply_result) print(divided_result) #all operation seems good #now i'm going to write boolean types of variable is_cold = False is_hot = True print(is_cold , "&" , is_hot) #three types variable was completely showed #iput # niw i m writting code input input("this is an input. you can write here") user_name = input("enter your user name") user_password = input("enter your password") user_age = input("Inter your age") age_int = int(user_age) #now i'm going to learn decition/ condition making #in_ proggraming its call if else #now i'm going to write some if else condition mobilePrice = 5000 haveMoney = 4999 if mobilePrice < haveMoney: print("I will buy a mobile") else: print("calculator is better") #this condition making code is work #now we should play with if else.. .. ..
ahmadbinraees/basicConcepts
src/basic.py
basic.py
py
1,664
python
en
code
0
github-code
6
39614840706
#!/usr/bin/env python3 import sys import os import time from datetime import datetime import textwrap import argparse import platform try: import influxdb except ImportError: print("Trying to Install required module: influxdb\n") os.system('python3 -m pip install influxdb') time.sleep(5) def fioinput(ip, port, database, hostname): client = influxdb.InfluxDBClient(host=ip, port=8086) try: client.ping() client.create_database(database) client.switch_database(database) except: print("!!Was unable to connect to the Influxdb!!\ \nPlease check that the IP address and port information is correct.\ \nKilling the fio session as well.\ \n") os.system('pkill fio') quit() # minimal format found here: https://www.andypeace.com/fio_minimal.html for line in sys.stdin: fullfio_data = line.split(",") fullfio_data = fullfio_data[0].split(";") # Run info terseversion = fullfio_data[0] fioversion = fullfio_data[1] jobname = fullfio_data[2] # Read IO info readtotalio = (int(fullfio_data[5]) / 1024) readbandwidthio = (int(fullfio_data[6]) / 1024) readiopsio = fullfio_data[7] readpercent = float(fullfio_data[43].strip('%')) # Read Submission Latency info rdsubmissionmin = int(fullfio_data[9]) rdsubmissionmax = int(fullfio_data[10]) rdsubmissionmean = int(float(fullfio_data[11])) rdsubmissiondeviation = int(float(fullfio_data[12])) # Read Completion Latency info rdcompletionmin = int(fullfio_data[13]) rdcompletionmax = int(fullfio_data[14]) rdcompletionmean = int(float(fullfio_data[15])) rdcompletiondeviation = int(float(fullfio_data[16])) # Read Total Latency info rdtotalmin = int(fullfio_data[37]) rdtotalmax = int(fullfio_data[38]) rdtotalmean = int(float(fullfio_data[39])) rdtotaldeviation = int(float(fullfio_data[40])) # Write IO info writetotalio = (int(fullfio_data[46]) / 1024) writebandwidthio = (int(fullfio_data[47]) / 1024) writeiopsio = fullfio_data[48] writepercent = float(fullfio_data[84].strip('%')) # Write Submission Latency info wrsubmissionmin = int(fullfio_data[50]) wrsubmissionmax = int(fullfio_data[51]) wrsubmissionmean = int(float(fullfio_data[52])) wrsubmissiondeviation = int(float(fullfio_data[53])) # Write Completion Latency info wrcompletionmin = int(fullfio_data[54]) wrcompletionmax = int(fullfio_data[55]) wrcompletionmean = int(float(fullfio_data[56])) wrcompletiondeviation = int(float(fullfio_data[57])) # Write Total Latency info wrtotalmin = int(fullfio_data[78]) wrtotalmax = int(fullfio_data[79]) wrtotalmean = int(float(fullfio_data[80])) wrtotaldeviation = int(float(fullfio_data[81])) # IO depth distribution iodepth01 = float(fullfio_data[92].strip('%')) iodepth02 = float(fullfio_data[93].strip('%')) iodepth04 = float(fullfio_data[94].strip('%')) iodepth08 = float(fullfio_data[95].strip('%')) iodepth16 = float(fullfio_data[96].strip('%')) iodepth32 = float(fullfio_data[97].strip('%')) iodepth64 = float(fullfio_data[98].strip('%')) # Block size # Bandwidth / IOPS if readiopsio == "0": readblocksize = float(0) else: readblocksize = round((int(readbandwidthio) / int(readiopsio)) * 1024, 1) if writeiopsio == "0": writeblocksize = float(0) else: writeblocksize = round((int(writebandwidthio) / int(writeiopsio)) * 1024, 1) # Calculate percentage of read vs write IOPS totaliops = int(readiopsio) + int(writeiopsio) readiopspercentage = int(readiopsio) / int(totaliops) writeiopspercentage = int(writeiopsio) / int(totaliops) # CPU Usage cpuuser = float(fullfio_data[87].strip('%')) cpusystem = float(fullfio_data[88].strip('%')) # print("Read IOPS % : "+str(readiopspercentage)) # print("Write IOPS % : "+str(writeiopspercentage)) current_time = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ') print(current_time+" | Job Name: "+jobname+" | Read IOPS: "+readiopsio+" | Write IOPS: "+writeiopsio+" | Block(read/write): "+str(readblocksize)+" / "+str(writeblocksize), end='\r') sys.stdout.flush() json_body = [ { "measurement": "FIO", "tags": { "runId": jobname, "hostname": hostname }, "time": current_time, "fields": { "Read_IOPS": int(readiopsio), "Read_Percentage": readpercent, "Read_Total_I/O_(MB)": readtotalio, "Read_bandwidth_(MB/s)": readbandwidthio, "Read_Latency_Submission_min": rdsubmissionmin, "Read_Latency_Submission_max": rdsubmissionmax, "Read_Latency_Submission_mean": rdsubmissionmean, "Read_Latency_Submission_deviation": rdsubmissiondeviation, "Read_Latency_Completion_min": rdcompletionmin, "Read_Latency_Completion_max": rdcompletionmax, "Read_Latency_Completion_mean": rdcompletionmean, "Read_Latency_Completion_deviation": rdcompletiondeviation, "Read_Latency_Total_min": rdtotalmin, "Read_Latency_Total_max": rdtotalmax, "Read_Latency_Total_mean": rdtotalmean, "Read_Latency_Total_deviation": rdtotaldeviation, "Write_IOPS": int(writeiopsio), "Write_Percentage": writepercent, "Write_Latency_Submission_min": wrsubmissionmin, "Write_Latency_Submission_max": wrsubmissionmax, "Write_Latency_Submission_mean": wrsubmissionmean, "Write_Latency_Submission_deviation": wrsubmissiondeviation, "Write_Latency_Completion_min": wrcompletionmin, "Write_Latency_Completion_max": wrcompletionmax, "Write_Latency_Completion_mean": wrcompletionmean, "Write_Latency_Completion_deviation": wrcompletiondeviation, "Write_Latency_Total_min": wrtotalmin, "Write_Latency_Total_max": wrtotalmax, "Write_Latency_Total_mean": wrtotalmean, "Write_Latency_Total_deviation": wrtotaldeviation, "Write_Total_I/O_(MB)": writetotalio, "Write_bandwidth_(MB/s)": writebandwidthio, "Read Block Size (KB)": readblocksize, "Write Block Size (KB)": writeblocksize, "CPU User": cpuuser, "CPU System": cpusystem, "IOdepthdist01": iodepth01, "IOdepthdist02": iodepth02, "IOdepthdist04": iodepth04, "IOdepthdist08": iodepth08, "IOdepthdist16": iodepth16, "IOdepthdist32": iodepth32, "IOdepthdist64": iodepth64, "Read_IOPS_Percentage": readiopspercentage, "Write_IOPS_Percentage": writeiopspercentage } } ] client.write_points(json_body) def main(): parser = argparse.ArgumentParser( prog='fio_to_influxdb', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent('''\ The following options must be added to the fio command for this script to function --status-interval=1 --minimal Example usage: fio instructionfile.fio --status-interval=1 --minimal | fio_to_influxdb.py -- ''')) parser.add_argument("-ip", default='localhost',help="IP or DNS name of host running influxdb. Default is localhost", type=str) parser.add_argument("-port", default='8086',help="Port used to connect to influxdb. Default is 8086", type=int) parser.add_argument("-database", default='fio',help="Name of database created in influxdb. Default is fio", type=str) parser.parse_args() args = parser.parse_args() print(\ "\nConnecting to influx database with the following parameters\n\ \tIP/DNS: "+args.ip+"\n\ \tPort: "+str(args.port)+"\n\ \tDatabase: "+args.database+"\n\ " ) # Get OS host name hostname = platform.uname()[1] fioinput(args.ip, args.port, args.database, hostname) print("\n\nJob complete\n") main()
philcanman/fio-to-influxdb
fio_to_influxdb.py
fio_to_influxdb.py
py
9,043
python
en
code
1
github-code
6
75131855228
from datetime import datetime import pymysql import json as j import flask as f from flask import Flask, redirect from flask import request from flask import send_from_directory from flaskext.mysql import MySQL app=Flask(__name__, static_url_path="") #Povezivanje sa bazom(parametri) mysql=MySQL(cursorclass=pymysql.cursors.DictCursor) app.config["MYSQL_DATABASE_USER"] = "root" app.config["MYSQL_DATABASE_PASSWORD"] = "root" app.config["MYSQL_DATABASE_DB"] = "racunarske_komponente_shop" app.config["MYSQL_DATABASE_HOST"] = "localhost" mysql.init_app(app) #Korisnici #Provera autenticnosti korisnika @app.route("/korisnici", methods=["POST"]) def dobaviKorisnike(): prijava = request.get_json() cursor = mysql.get_db().cursor() cursor.execute("SELECT * FROM korisnici") korisnici = cursor.fetchall() for korisnik in korisnici: if korisnik["korisnicko_ime"] == prijava["korisnicko_ime"]: if korisnik["lozinka"] == prijava["lozinka"]: return f.jsonify(korisnik) return "greska" #Registracija korisnika @app.route("/dodajKorisnika", methods=["POST"]) def dodajKorisnika(): data = request.get_json() db = mysql.get_db() cursor = db.cursor() cursor.execute("SELECT * FROM korisnici") korisnici = cursor.fetchall() for korisnik in korisnici: if korisnik["korisnicko_ime"] == data["korisnicko_ime"]: return "greska" upit = '''INSERT INTO korisnici(korisnicko_ime, lozinka, ime, prezime, adresa, email) VALUES(%s, %s, %s, %s, %s, %s)''' cursor.execute(upit, (data["korisnicko_ime"], data["lozinka"], data["ime"], data["prezime"], data["adresa"], data["email"])) db.commit() return "uspesno" #Izmena korisnika @app.route("/izmeniKorisnika/<int:id>", methods=["POST"]) def izmeniKorisnika(id): data = request.json print(data) db = mysql.get_db() cursor = db.cursor() upit = '''UPDATE korisnici SET korisnicko_ime=%s, lozinka=%s, ime=%s, prezime=%s, adresa=%s, email=%s WHERE id=%s''' cursor.execute(upit, (data["korisnicko_ime"], data["lozinka"], data["ime"], data["prezime"], data["adresa"], data["email"], id)) db.commit() return "uspesno" #Komponente #Dobavi komponente @app.route("/komponente", methods=["GET"]) def dobaviKomponente(): cursor = mysql.get_db().cursor() cursor.execute("SELECT * FROM komponente") rows = cursor.fetchall() return f.jsonify(rows) #Racuni #Dodaj racun @app.route("/dodavanjeKupovine", methods=["POST"]) def dodajKupovinu(): data = request.get_json() if(data["kolicinaKomponente"] == 0): return "nemanastanju" db = mysql.get_db() cursor = db.cursor() upit = '''UPDATE komponente SET kolicina = kolicina - 1 WHERE id=%s and kolicina > 0''' cursor.execute(upit, (data["id_komponente"])) db.commit() upit = '''INSERT INTO kupovine(datum_vreme, id_korisnika, naziv_proizvoda, cena) VALUES(%s, %s, %s, %s)''' now = datetime.now() formatted_date = now.strftime('%Y-%m-%d %H:%M:%S') data["datum_vreme"] = formatted_date cursor.execute(upit, (data["datum_vreme"], data["id_korisnika"], data["naziv_proizvoda"], data["cena"])) db.commit() return "uspesno" #Pokretanje aplikacije app.run("192.168.0.13",port=5000, debug=True)
haribate98/Android
FlaskZaProjekat/main.py
main.py
py
3,497
python
en
code
1
github-code
6
43956557150
from flask import flash from db import db # Feedback function for registered users def feedback(user_id, message): sql = "INSERT INTO messages (user_id, message) VALUES (:user_id, :message)" db.session.execute(sql, {"user_id":user_id, "message":message}) db.session.commit() flash("Kiitos palautteestasi") # Feedback function for non-registered users def anonymous_feedback(email, message): sql = "INSERT INTO messages (email, message) VALUES (:email, :message)" db.session.execute(sql, {"email":email, "message":message}) db.session.commit() flash("Kiitos palautteestasi") # returns all messages (feedback) def get_messages(): sql = "SELECT COALESCE(U.username, '-'), M.message, COALESCE(M.email, '-') FROM messages M LEFT JOIN users U ON M.user_id=U.id" result = db.session.execute(sql) messages = result.fetchall() db.session.commit() return messages
asianomainen/tsoha-s2020-tuntivarausjarjestelma
messages.py
messages.py
py
909
python
en
code
0
github-code
6
30353743561
# Author: Varun Hiremath <[email protected]> # Enthought library imports. from traits.api import Instance, Enum from traitsui.api import View, Group, Item from tvtk.api import tvtk # Local imports from mayavi.filters.filter_base import FilterBase from mayavi.core.pipeline_info import PipelineInfo ###################################################################### # `ExtractVectorComponents` class. ###################################################################### class ExtractVectorComponents(FilterBase): """ This wraps the TVTK ExtractVectorComponents filter and allows one to select any of the three components of an input vector data attribute.""" # The version of this class. Used for persistence. __version__ = 0 # The actual TVTK filter that this class manages. filter = Instance(tvtk.ExtractVectorComponents, args=(), allow_none=False) # The Vector Component to be extracted component = Enum('x-component', 'y-component', 'z-component', desc='component of the vector to be extracted') input_info = PipelineInfo(datasets=['any'], attribute_types=['any'], attributes=['vectors']) output_info = PipelineInfo(datasets=['any'], attribute_types=['any'], attributes=['any']) view = View(Group(Item(name='component')), resizable=True ) ###################################################################### # `Filter` interface. ###################################################################### def update_pipeline(self): # Do nothing if there is no input. inputs = self.inputs if len(inputs) == 0 or len(inputs[0].outputs) == 0: return fil = self.filter self.configure_connection(fil, inputs[0]) fil.update() self._component_changed(self.component) ###################################################################### # Non-public interface. ###################################################################### def _component_changed(self, value): # Obtain output from the TVTK ExtractVectorComponents filter # corresponding to the selected vector component if len(self.inputs) == 0 or len(self.inputs[0].outputs) == 0: return if value == 'x-component': self._set_outputs([self.filter.vx_component]) elif value == 'y-component': self._set_outputs([self.filter.vy_component]) elif value == 'z-component': self._set_outputs([self.filter.vz_component]) self.render()
enthought/mayavi
mayavi/filters/extract_vector_components.py
extract_vector_components.py
py
2,728
python
en
code
1,177
github-code
6
30791829002
from scipy.fftpack import dct, idct # implement 2D DCT def dct2(a): return dct(dct(a.T, norm='ortho').T, norm='ortho') # implement 2D IDCT def idct2(a): return idct(idct(a.T, norm='ortho').T, norm='ortho') import cv2 import numpy as np import matplotlib.pylab as plt # read lena RGB image and convert to grayscale im =cv2.imread("G:/Classical Object Detection/1.jpg",0) imF = dct2(im) rows, cols = imF.shape imF2=np.array([[0 for i in range(cols)] for j in range(rows)]) print(imF2.shape) for i in range(imF.shape[0]//10): for j in range(imF.shape[1]//10): imF2[i][j]=imF[i][j] im1 = idct2(imF2) # check if the reconstructed image is nearly equal to the original image print(np.allclose(im, im1)) # True # plot original and reconstructed images with matplotlib.pylab plt.gray() plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('original image', size=10) plt.subplot(122), plt.imshow(im1), plt.axis('off'), plt.title('reconstructed image (DCT+IDCT)', size=10) plt.show()
NadiaFaramarzi/ClassicalObjectDetection
Codes/DCT(discrete cosine transform).py
DCT(discrete cosine transform).py
py
1,048
python
en
code
0
github-code
6
44593105346
# script to create scatter plot for mean intensity ranking in three emotion # categories. refer to readme for more information about survey and ranking # task. # 18 November 2018, Pulkit Singh import pandas as pd import seaborn as sns import matplotlib.pyplot as plt #----------------------------------------------------------------------------# # Sadness Category sad_labels = ['displeased', 'unhappy', 'sad', 'dejected', 'miserable', 'heartbroken', 'depressed'] sad_means = [1.38, 1.94, 2.56, 3.44, 4.22, 4.33, 4.38] sad_x = list(range(1, len(sad_means) + 1)) # plotting means sad_plt, sad_ax = plt.subplots(figsize=(9, 9)) sad_ax = sns.scatterplot(sad_x, sad_means, marker="") # annotating data points for i in range(len(sad_means)): sad_ax.annotate(sad_labels[i], (sad_x[i], sad_means[i])) plt.xlabel("Words in 'sadness' category") plt.ylabel("Average intensity ranking \n") plt.title("Average intensity ranking of 'sadness' category words") plt.xlim((0, 10)) plt.ylim((1, 5)) plt.xticks([], []) plt.savefig("IR_mean_sadness.png") #----------------------------------------------------------------------------# # Anger Category anger_labels = ['irked', 'annoyed', 'irritated', 'mad', 'incensed', 'angry', 'infuriated', 'enraged'] anger_means = [1.83, 1.94, 2.44, 2.88, 3.22, 3.38, 4.55, 4.72] anger_x = list(range(1, len(anger_means) + 1)) # plotting means anger_plt, anger_ax = plt.subplots(figsize=(9, 9)) anger_ax = sns.scatterplot(anger_x, anger_means, marker="") # annotating data points for i in range(len(anger_means)): anger_ax.annotate(anger_labels[i], (anger_x[i], anger_means[i])) plt.xlabel("Words in 'anger' category") plt.ylabel("Average intensity ranking \n") plt.title("Average intensity ranking of 'anger' category words") plt.xlim((0, 10)) plt.ylim((1, 5)) plt.xticks([], []) plt.savefig("IR_mean_anger.png") #----------------------------------------------------------------------------# # Fear Category fear_labels = ['afraid', 'scared', 'intimidated', 'alarmed', 'distressed', 'frightened', 'horrified', 'terrified'] fear_means = [2.27, 2.27, 2.33, 2.38, 2.66, 3.05, 4.38, 4.55] fear_x = list(range(1, len(fear_means) + 1)) # plotting means fear_plt, fear_ax = plt.subplots(figsize=(9, 9)) fear_ax = sns.scatterplot(fear_x, fear_means, marker="") # annotating data points for i in range(len(fear_means)): fear_ax.annotate(fear_labels[i], (fear_x[i], fear_means[i])) plt.xlabel("Words in 'fear' category") plt.ylabel("Average intensity ranking \n") plt.title("Average intensity ranking of 'fear' category words") plt.xlim((0, 10)) plt.ylim((1, 5)) plt.xticks([], []) plt.savefig("IR_mean_fear.png") #----------------------------------------------------------------------------#
pulkitsingh/IW-Emoji-Intensity
Emotion Word Survey/Word Intensity Ranking/Scatter plots mean/intensityRanking_mean.py
intensityRanking_mean.py
py
2,743
python
en
code
0
github-code
6
654986927
#!/usr/bin/env python import argparse from .. import view_container def tobool(inp): return inp.lower() in ('y', '1', 'ok', 't') parser = argparse.ArgumentParser(description='Display datasets in h5 or n5/zarr container.') parser.add_argument('path', type=str, help='path to container') parser.add_argument('--ndim', type=int, default=3, help='expected number of dimensions') parser.add_argument('--exclude_names', type=str, nargs='+', default=None, help='names of datasets that will not be loaded') parser.add_argument('--include_names', type=str, nargs='+', default=None, help='names of datasets that will ONLY be loaded') parser.add_argument('--load_into_memory', type=tobool, default='n', help='whether to load all data into memory') parser.add_argument('--n_threads', type=int, default=1, help='number of threads used by z5py') def main(): args = parser.parse_args() view_container(args.path, args.ndim, args.exclude_names, args.include_names, args.load_into_memory, args.n_threads) if __name__ == '__main__': main()
constantinpape/heimdall
heimdall/scripts/view_container.py
view_container.py
py
1,184
python
en
code
20
github-code
6
21940354299
r"""Format notebooks using the TensorFlow docs style. Install the tensorflow-docs package: $ python3 -m pip install -U [--user] git+https://github.com/tensorflow/docs Usage: $ python3 -m tensorflow_docs.tools.nbfmt [options] notebook.ipynb [...] See the TensorFlow notebook template: https://github.com/tensorflow/docs/blob/master/tools/templates/notebook.ipynb And the TensorFlow docs contributor guide: https://www.tensorflow.org/community/contribute/docs """ import enum import json import os import pathlib import re import sys import textwrap from typing import Any, Dict, List from absl import app from absl import flags from tensorflow_docs.tools.nbfmt import notebook_utils OSS = True flags.DEFINE_integer( "indent", 2, "Indention level for pretty-printed JSON.", lower_bound=0) flags.DEFINE_bool("oss", None, "Use OSS formatting.") flags.DEFINE_bool("remove_outputs", False, "Remove output cells from the notebook") flags.DEFINE_bool("test", False, "Test if the notebook is formatted (useful for CI).") FLAGS = flags.FLAGS def clean_notebook(data: Dict[str, Any], nb_source: str, filepath: pathlib.Path, remove_outputs: bool, indent: int) -> bytes: """The main notebook formatting logic. Args: data: object representing a parsed JSON notebook. nb_source: JSON string of entire notebook contents. filepath: String of notebook filepath passed to the command-line. remove_outputs: Boolean to clear cell output. indent: Integer indicating the number of spaces to indent the JSON. Returns: A byte string for the JSON formatted notebook. """ clean_root(data, filepath) # Top-level notebook fields. clean_cells(data, nb_source, remove_outputs) update_license_cells(data) nbjson = json.dumps(data, sort_keys=True, ensure_ascii=False, indent=indent) if not OSS: # Serialization differences in environments. str_replaces = {"<": r"\u003c", ">": r"\u003e", "&": r"\u0026"} for str_from, str_to in str_replaces.items(): nbjson = nbjson.replace(str_from, str_to) return (nbjson + "\n").encode("utf-8") def clean_root(data: Dict[str, Any], filepath: pathlib.Path) -> None: """Deletes extra top-level notebook fields and metadata. Jupyter format spec: https://nbformat.readthedocs.io/en/latest/format_description.html Args: data: object representing a parsed JSON notebook. filepath: String of notebook filepath passed to the command-line. """ # These top-level fields are required: notebook_utils.del_entries_except( data, keep=["cells", "metadata", "nbformat_minor", "nbformat"]) # All metadata is optional according to spec, but we use some of it. notebook_utils.del_entries_except( data["metadata"], keep=["accelerator", "colab", "kernelspec"]) metadata = data.get("metadata", {}) colab = metadata.get("colab", {}) # Set top-level notebook defaults. data["nbformat"] = 4 data["nbformat_minor"] = 0 # Colab metadata notebook_utils.del_entries_except( colab, keep=["collapsed_sections", "name", "toc_visible"]) colab["name"] = os.path.basename(filepath) colab["toc_visible"] = True metadata["colab"] = colab # Kernelspec metadata kernelspec = metadata.get("kernelspec", {}) notebook_utils.del_entries_except(kernelspec, keep=["display_name", "name"]) supported_kernels = {"python3": "Python 3", "swift": "Swift"} kernel_name = kernelspec.get("name") if kernel_name not in supported_kernels: kernel_name = "python3" # Notebook defaults to Python3 (same as Colab). kernelspec["name"] = kernel_name kernelspec["display_name"] = supported_kernels[kernel_name] metadata["kernelspec"] = kernelspec data["metadata"] = metadata def _clean_code_cell(cell_data: Dict[str, Any], remove_outputs: bool) -> None: """Clean an individual code cell and optionally remove outputs. Args: cell_data: object representing a parsed JSON cell. remove_outputs: Boolean to clear cell output. """ if remove_outputs: cell_data["outputs"] = [] cell_data["execution_count"] = None # Ensure outputs field exists since part of the nbformat spec. if cell_data.get("outputs", None) is None: cell_data["outputs"] = [] # Spec allows null or int (null is Colab default). if cell_data.get("execution_count") == 0: cell_data["execution_count"] = None def _clean_metadata_colab(cell_metadata: Dict[str, Any], remove_outputs: bool) -> None: """Clean up a cell's `metadata.colab` field. Remove all `metadata.colab` contents except for `metadata.colab.resources`, if present. The Colab resources are used to embed data within the notebook and can be treated like output cells (kept unless explicitly removed). Args: cell_metadata: object representing the parsed JSON metadata from a cell. remove_outputs: Boolean to clear cell output. """ colab = cell_metadata.pop("colab", {}) # If no outputs, just clear out `metadata.colab`. if remove_outputs: return # Clear around `resources` if not empty. Otherwise, clear out `metata.colab`. if colab.get("resources"): notebook_utils.del_entries_except(colab, keep=["resources"]) cell_metadata["colab"] = colab def clean_cells(data: Dict[str, Any], nb_source: str, remove_outputs: bool) -> None: """Remove empty cells and clean code cells. Args: data: Object representing a parsed JSON notebook. nb_source: JSON string of entire notebook contents. remove_outputs: Boolean True to remove code cell outputs, False to keep. """ # Clear leading and trailing newlines. for cell in data["cells"]: cell_source = cell["source"] while cell_source and cell_source[0] == "\n": cell_source.pop(0) while cell_source and cell_source[-1] == "\n": cell_source.pop() cell["source"] = cell_source # Remove empty cells. data["cells"] = [cell for cell in data["cells"] if any(cell["source"])] # Clean cell metadata. cell_count = 0 for cell in data["cells"]: cell_count += 1 cell_metadata = cell.get("metadata", {}) if "id" not in cell_metadata: cell_metadata["id"] = notebook_utils.generate_cell_id( cell["source"], cell_count) notebook_utils.del_entries_except( cell_metadata, keep=["id", "cellView", "colab"]) _clean_metadata_colab(cell_metadata, remove_outputs) cell["metadata"] = cell_metadata # The presence of this field indicates that ouputs are already saved. has_outputs = True if '"output_type"' in nb_source else False for cell in data["cells"]: if cell["cell_type"] == "code": _clean_code_cell(cell, remove_outputs) if has_outputs and remove_outputs: notebook_utils.warn("Removed the existing output cells.") def update_license_cells(data: Dict[str, Any]) -> None: """Format license cell to hide code pane from the Colab form. Args: data: object representing a parsed JSON notebook. """ # This pattern in Apache and MIT license boilerplate. license_re = re.compile(r"#@title.*License") for idx, cell in enumerate(data["cells"]): src_text = "".join(cell["source"]) if license_re.search(src_text): # Hide code pane from license form metadata = cell.get("metadata", {}) metadata["cellView"] = "form" data["cells"][idx]["metadata"] = metadata class Status(enum.Enum): PASS = 0 FAIL = 1 def format_nb( *, notebooks: List[str], remove_outputs: bool = False, indent: int = 2, test: bool = False, ) -> Status: """Formats a notebook.""" found_error = False # Track errors for final return code. test_fail_notebooks = [] paths, err_paths = notebook_utils.collect_notebook_paths(notebooks) if err_paths: found_error = True test_fail_notebooks.extend(err_paths) for path in paths: print(f"Format notebook: {path}", file=sys.stderr) data, source = notebook_utils.load_notebook(path) if not data: found_error = True test_fail_notebooks.append(path) continue # Returns formatted JSON byte string. expected_output = clean_notebook(data, source, path, remove_outputs, indent) if test: # Compare formatted contents with original file contents. src_bytes = path.read_bytes() if expected_output != src_bytes: test_fail_notebooks.append(path) else: path.write_bytes(expected_output) if test: if test_fail_notebooks: error_template = textwrap.dedent(""" [test] The following notebooks are not formatted: {notebooks} Please install `nbfmt` and format: $ python3 -m pip install -U --user git+https://github.com/tensorflow/docs $ python3 -m tensorflow_docs.tools.nbfmt notebook.ipynb """) notebooks = "\n".join([f"- {str(fp)}" for fp in test_fail_notebooks]) print(error_template.format(notebooks=notebooks), file=sys.stderr) return Status.FAIL else: print("[test] Notebooks are formatted", file=sys.stderr) return Status.PASS if found_error: return Status.FAIL return Status.PASS def main(argv): if len(argv) <= 1: raise app.UsageError("Missing arguments.") if FLAGS.oss is not None: global OSS OSS = FLAGS.oss exit_code = format_nb( notebooks=argv[1:], remove_outputs=FLAGS.remove_outputs, indent=FLAGS.indent, test=FLAGS.test) if exit_code == Status.FAIL: sys.exit(1) else: sys.exit(0) if __name__ == "__main__": app.run(main)
tensorflow/docs
tools/tensorflow_docs/tools/nbfmt/__main__.py
__main__.py
py
9,543
python
en
code
5,917
github-code
6
71245917627
import time import numpy as np from testing import Ptot import matplotlib.pyplot as plt if __name__ == "__main__": div = int(1e4) # number of tests Q = int(8e6)//div # population size N = int(40e6)//div R = 0 Ip_arr = np.arange(500, 3000) # FNR variations Ptot_arr_save = [] Ptot_arr_save.append(Ip_arr) FNR = 0.2 start_time = time.time() Ptot_arr = [Ptot(Q, I = Ip, S = N - Ip - R, R = R, Q = Q, \ b = 2, FNR = FNR, FPR = 0.05, replacement = True) for Ip in Ip_arr] Ptot_arr_save.append(Ptot_arr) np.savetxt("testing_data_replacement_true_CA.dat", np.c_[Ptot_arr_save].T) print("--- %s seconds ---" % (time.time() - start_time)) print(Ptot_arr_save) plt.figure() plt.plot(Ptot_arr_save[0], Ptot_arr_save[1]) plt.show()
lubo93/disease-testing
sampling/testing_analytical_replacement_true_CA.py
testing_analytical_replacement_true_CA.py
py
881
python
en
code
2
github-code
6
21313993250
class CryptoTool: def DecypherFromTranslation(self, Message, CryptedKey, UncryptedKey): Message = Message.upper() CryptedKey = CryptedKey.upper() UncryptedKey = UncryptedKey.upper() Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" translatedAlphabet = "" result = "" for letter in Alphabet: letterIndex = UncryptedKey.find(letter) if (letterIndex != -1): translatedAlphabet += CryptedKey[letterIndex] else: translatedAlphabet += letter for letter in Message: letterIndex = translatedAlphabet.find(letter) if (letterIndex != -1): result += Alphabet[letterIndex] else: result += letter print(result) #print result if __name__ == "__main__": # To be able to execute binary version in Windows correctly freeze_support # function is called before anything else in the main program # http://docs.python.org/library/multiprocessing.html#multiprocessing.freeze_support crypto = CryptoTool() crypto.DecypherFromTranslation("NSTK KD KTTKSTK TUTD VRAK AK KKTK","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("DUADK RN BKXTDKX UG NBXTR WDN","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("HKKUTT AK BUDXK KUADTKT NAS KD XT","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("XKBKTKF BKXK KUR. KKIXKD TNXAK","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("UA VRUTTKF ANTK RPUHKIAX.","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("AKIUABXKF RPNUXXKAX","KEXKNATNK RD-L I","SYREADIAE JX-F C") crypto.DecypherFromTranslation("KEXKNATNK RD-L I","KEXKNATNK RD-L I","SYREADIAE JX-F C")
yenshin/test-proto-tuto
CryptoTool/cryptotool.py
cryptotool.py
py
1,847
python
en
code
0
github-code
6
74147618108
# coding:utf-8 """ Django administration setup @author: Sébastien Renard <[email protected]> @license: AGPL v3 or newer (http://www.gnu.org/licenses/agpl-3.0.html) """ from django.contrib import admin from django.utils.translation import gettext_lazy as _ from billing.models import ClientBill, SupplierBill from billing.forms import ClientBillForm, SupplierBillForm from core.admin import ReturnToAppAdmin class BillAdmin(ReturnToAppAdmin): list_display = ["id", "bill_id", "lead", "state", "amount", "creation_date", "due_date", "payment_date", "comment"] ordering = ("-creation_date",) actions = None list_filter = ["state", "creation_date", "due_date", "payment_date"] search_fields = ["lead__name", "lead__client__organisation__name", "comment", "lead__paying_authority__contact__name", "lead__paying_authority__company__name", "lead__client__contact__name", "lead__client__organisation__company__name"] class ClientBillAdmin(BillAdmin): fieldsets = [ (_("Description"), {"fields": ["lead", "bill_id", "bill_file"]}), (_("Amounts"), {"fields": ["amount", "vat", "amount_with_vat", ]}), (_("Dates"), {"fields": ["creation_date", "due_date", "payment_date", ]}), (_("State"), {"fields": ["state", "comment", ]}), (_("Link with expenses"), {"fields": ["expenses", "expenses_with_vat", ]}), ] class SupplierBillAdmin(BillAdmin): search_fields = BillAdmin.search_fields + ["supplier__contact__name", "supplier__company__name"] list_display = list(BillAdmin.list_display) # Copy list before changing it list_display.insert(2, "supplier") fieldsets = [ (_("Description"), {"fields": ["supplier", "lead", "bill_id", "supplier_bill_id", "bill_file"]}), (_("Amounts"), {"fields": ["amount", "vat", "amount_with_vat", ]}), (_("Dates"), {"fields": ["creation_date", "due_date", "payment_date", ]}), (_("State"), {"fields": ["state", "comment", ]}), (_("Link with expenses"), {"fields": ["expenses", "expenses_with_vat", ]}), ] admin.site.register(ClientBill, ClientBillAdmin) admin.site.register(SupplierBill, SupplierBillAdmin)
digitalfox/pydici
billing/admin.py
admin.py
py
2,334
python
en
code
122
github-code
6
16906648825
'''Пример использования функции filter.''' from random import randint lst = [randint(1, 10) for el in range(1, 10)] print(f"Начальный список: {lst}") # Вариант решения без функции filter # Создаем новый список только с четными элементами списка lst new_lst = [] for el in lst: if el % 2 == 0: new_lst.append(el) print(f"Список четных элеметов без применения filter: {new_lst}") # Новое решение lst = list(filter(lambda x: not x % 2, lst)) print(f'Список четных элеметов c применением filter: {lst}')
AlexLep1n/Python
lesson-6/app_3.py
app_3.py
py
705
python
ru
code
0
github-code
6
1544319758
from fastapi import FastAPI, UploadFile, Form,File import cloudinary import cloudinary.uploader from fastapi.middleware.cors import CORSMiddleware app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Configure Cloudinary credentials cloudinary.config( cloud_name='moibit', api_key='368643671927417', api_secret='q2l37dcCA701JQlidDMoJaFtOY4' ) @app.post('/upload') async def upload_file(file: UploadFile = File(...), upload_name: str = Form(...)): try: # Upload the file to Cloudinary result = cloudinary.uploader.upload(file.file, public_id=upload_name) return f"File uploaded successfully. Public ID: {result['public_id']}" except Exception as e: return f"Error uploading file: {str(e)}", 500 if __name__ == '__main__': import uvicorn uvicorn.run(app, host='0.0.0.0', port=8000)
naman360/courtledger
scripts/main.py
main.py
py
961
python
en
code
0
github-code
6
15206133090
"""Tests for utils.""" import unittest import torch from chemicalx.utils import segment_softmax class TestPipeline(unittest.TestCase): """Test the utils.""" def test_segment_softmax(self): """Set up the test case with some data.""" logit = torch.FloatTensor([-0.5, -2.5, 0.5, 1.5]) number_of_segments = torch.LongTensor([2]) segmentation_index = torch.LongTensor([0, 0, 1, 1]) index = torch.LongTensor([0, 1, 2, 3]) temperature = torch.LongTensor([2, 2, 2, 2]) truth = torch.FloatTensor([0.7311, 0.2689, 0.3775, 0.6225]) segment_s = segment_softmax(logit, number_of_segments, segmentation_index, index, temperature) difference = torch.sum(torch.abs(truth - segment_s)) assert difference < 0.001
AstraZeneca/chemicalx
tests/unit/test_utils.py
test_utils.py
py
789
python
en
code
672
github-code
6
1976029717
from django.db import models from equipas.models import Equipa # Create your models here. class Campeonato(models.Model): campeonato_id = models.AutoField(primary_key=True) modalidade = models.ForeignKey('Modalidade', models.DO_NOTHING) nome = models.CharField(max_length=100) epoca = models.CharField(max_length=20) datainicio = models.DateField(blank=True, null=True) datafim = models.DateField(blank=True, null=True) class Meta: managed = False db_table = 'campeonato' class Modalidade(models.Model): modalidade_id = models.AutoField(primary_key=True) designacao = models.CharField(max_length=100) class Meta: managed = False db_table = 'modalidade' class Participante(models.Model): equipa = models.OneToOneField(Equipa, models.DO_NOTHING, primary_key=True) campeonato = models.ForeignKey(Campeonato, models.DO_NOTHING) class Meta: managed = False db_table = 'participante' unique_together = (('equipa', 'campeonato'),)
OliveiraRP/django-webapp
src/webapp/campeonatos/models.py
models.py
py
1,039
python
pt
code
0
github-code
6
31131850381
import jwt from fastapi import FastAPI, HTTPException from pydantic import BaseModel import requests import time import uvicorn from fastapi.middleware.cors import CORSMiddleware # GLOBALS app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) last_token_expiration = 0 # send request to apple for token revoke # MODEL revokeURL = "https://appleid.apple.com/auth/revoke" teamID = "5NMJ2A479W" filename = "AuthKey_73YATAJ963.p8" keyID = "73YATAJ963" tokenType = "access_token" class RevokeTokenModel(BaseModel): clientID: str token: str tokenTypeGint: str def generate_tokenv2(bundleID): with open(filename, "r") as f: private_key = f.read() team_id = teamID client_id = bundleID key_id = keyID validity_minutes = 20 timestamp_now = int(time.time()) timestamp_exp = timestamp_now + (60 * validity_minutes) # Assuming `last_token_expiration` is a class variable defined somewhere else # cls.last_token_expiration = timestamp_exp data = { "iss": team_id, "iat": timestamp_now, "exp": timestamp_exp, "aud": "https://appleid.apple.com", "sub": client_id } token = jwt.encode( payload=data, key=private_key.encode('utf-8'), algorithm="ES256", headers={"kid": key_id} ) return token def generate_token(bundleID): with open(filename, "r") as f: private_key = f.read() team_id = teamID client_id = bundleID key_id = keyID validity_minutes = 20 timestamp_now = int(time.time()) timestamp_exp = timestamp_now + (60 * validity_minutes) data = { "iss": team_id, "iat": timestamp_now, "exp": timestamp_exp, "aud": "https://appleid.apple.com", "sub": client_id } token = jwt.encode(payload=data, key=private_key, algorithm="ES256", headers={"kid": key_id}) return token def revoke_token_request(client_secret: str, clientID: str, tokenTypeGint: str, token: str): data = { "client_id": clientID, "client_secret": client_secret, "token": token, "token_type_hint": tokenTypeGint } response = requests.post(revokeURL, data=data) print(response) if response.status_code == 200: return True else: # You can raise an HTTPException here if you want to handle the error differently print(f"\n\nRESPONSE -> {response.text}\n\n") with open("logs.txt", "w+") as f: f.write(response.text) print("ERROR") raise HTTPException(status_code=response.status_code, detail=response.text) @app.post("/revoke") def revokeToken(token: str, clientID: str): client_secret = generate_token(bundleID=bundleID) with open("log1.txt", "w+") as f: f.write(client_secret) revoked = revoke_token_request(token=token, clientID=clientID, tokenTypeGint=tokenType, client_secret=client_secret) return {"token_revoked": revoked} apple_token_revocation_url = 'https://appleid.apple.com/auth/token' @app.post('/revoke-token') async def revoke_token(token: str): if not token: raise HTTPException(status_code=400, detail='Token is missing.') try: response = requests.post( apple_token_revocation_url, data={ 'token': token, 'client_id': 'your_client_id', 'client_secret': 'your_client_secret', } ) print(f"STATUS CODE: {response.status_code}") if response.status_code == 200: return {'success': True} else: raise HTTPException(status_code=400, detail='Token revocation failed.') except requests.RequestException as e: raise HTTPException(status_code=500, detail='Internal server error.') # if __name__ == "__main__": # uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True) # token = "eyJraWQiOiJZdXlYb1kiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwczovL2FwcGxlaWQuYXBwbGUuY29tIiwiYXVkIjoiY29tLmZvb3RiYWxsdGFya293LmNvbSIsImV4cCI6MTY5MTI2MTI0OCwiaWF0IjoxNjkxMTc0ODQ4LCJzdWIiOiIwMDE3NTguNmQ4ODZlMzQwNDkyNDA1ZThmODU0ZDkxZDRjZGMwNTguMTUyNyIsImNfaGFzaCI6InI2NjNWbTYxbTR0VkJfckxyRkZhSnciLCJlbWFpbCI6IjhmMnBza2t2dGhAcHJpdmF0ZXJlbGF5LmFwcGxlaWQuY29tIiwiZW1haWxfdmVyaWZpZWQiOiJ0cnVlIiwiaXNfcHJpdmF0ZV9lbWFpbCI6InRydWUiLCJhdXRoX3RpbWUiOjE2OTExNzQ4NDgsIm5vbmNlX3N1cHBvcnRlZCI6dHJ1ZX0.TkZtkIgljXOhCc1bp4YAx77yfZOBYz6iHDE3fxIi_l4oSjwOjM1xxUr9rkKEnOriJgHBChTop-CmGlM3zvh4taXwP_ZTb-xzQL9UeQtElM53f9l4w2j-PWfGrjxiX8Dyuyor-vbcxlKtUIcsVFIcDikHWQsI1iLYU40mn7x-399MdSFqyKqIarfk1P6TuBK3Fwf9EBYvPWrizXfFV1v5Kc-7p1mEbV3OChrMXEgLAvmhUWcFg95GKzhglbnHg2NOSWijeDfDFTuZC8EEPDplEhV86RzLi47jrksGReGQteVl8-LobLusceFrvRB-xAIWstEDl6al9SJ4dIAanGnBVA" # bundleID = "com.footballtarkow.com" # keyID = "73YATAJ963" # client_secret = generate_tokenv2(bundleID) # revoke_token_request(client_secret,bundleID,tokenType, token)
BoogieManN8/FootballTrainerHelper
main.py
main.py
py
5,139
python
en
code
0
github-code
6
18132737377
# In this project, I'm going to desgin a user infterface for translating difference languages in real time # Library Used: google trans, textblob import googletrans import textblob import customtkinter from tkinter import END # Adding languages language = googletrans.LANGUAGES translator = googletrans.Translator() lang_value = list(language.values()) lang_short = language.keys() def Translate(): # Get the language to translate to_language = to_language_menu.get() # Perform the translation from_text = from_language_input_box.get(1.0,END) for idx, val in language.items(): if val == to_language: lan_ = idx words = translator.translate(from_text, dest=lan_) # Show the translation to_language_input_box.delete(0.0, END) to_language_input_box.insert(0.0,words.text) # 使用者介面 # 設定系統相關參數 customtkinter.set_appearance_mode("System") customtkinter.set_default_color_theme("green") # APP 整體框架 app = customtkinter.CTk() app.title("Jay's Translator") app.geometry("750x500") # From-language selector from_language_menu = customtkinter.CTkLabel(master=app,text="Please Enter any language:") from_language_menu.grid(row=0, column=0, padx=50, pady=20, ) # To-language selector to_language_menu = customtkinter.CTkOptionMenu(master=app,values=lang_value) to_language_menu.grid(row=0, column=1, padx=50, pady=20, ) # to-language input box(Inputbox) to_language_input_box = customtkinter.CTkTextbox(app, width=150, height=150) to_language_input_box.grid(row=1, column=1, padx=50, pady=20, ) # from-language input box(Inputbox) from_language_input_box = customtkinter.CTkTextbox(app, width=150, height=150) from_language_input_box.grid(row=1, columns=1, padx=50, pady=20, ) # translate button translate_button = customtkinter.CTkButton(app, text='Translate',command=Translate) translate_button.grid(row=2, column=0, padx=(180,0), pady=20, sticky='w',columnspan=3) app.mainloop()
JayChen1060920909/Projects
Real Time Translation.py
Real Time Translation.py
py
2,191
python
en
code
1
github-code
6
3844969159
#! /usr/bin/python2 import pefile import os import array import math import pickle import time # from sklearn.externals import joblib import joblib import sys from .ModulePredict import data_extraction from .XKendworld import pure_import import pymongo import hashlib myclient = pymongo.MongoClient('DATABASE_URL') mydb = myclient["DATABASE"] mycol = mydb["COLLECTION"] def checkpre(filepath): clf = joblib.load(os.path.join( os.path.dirname(os.path.realpath(__file__)), 'classifier/classifier.pkl' )) with open('classifier/features.pkl', 'rb') as f: features = pickle.load(f) data = data_extraction(repathfile(filepath)) pe_features = list(map(lambda x:data[x], features)) res= clf.predict([pe_features])[0] return (['Malicious', 'Legitimate'][res]) def hashcheck(filepath): pe = pefile.PE(repathfile(filepath)) fp = open(repathfile(filepath),'rb') data = fp.read() return hashlib.md5(data).hexdigest() def procedureXK001(filepath): clf = joblib.load(os.path.join( os.path.dirname(os.path.realpath(__file__)), 'classifierxk/classifierxk.pkl' )) with open('classifierxk/featuresxk.pkl', 'rb') as f: features = pickle.load(f) data = pure_import(repathfile(filepath)) pe_features = list(map(lambda x:data[x], features)) res= clf.predict([pe_features])[0] return (['Adware','Backdoor','Keylogger','Ransomware','Rootkit','Spyware','Trojan','Virus','Worm'][res]) def repathfile(filepath): return os.path.join(os.path.dirname(os.path.realpath(__file__)) + filepath) def savestorage(filepath): return os.remove(repathfile(filepath)) def sample_extraction(filepath): pe = pefile.PE(repathfile(filepath)) fp = open(repathfile(filepath),'rb') data = fp.read() y = [] y.append(len(data)) if pe.FILE_HEADER.Machine == 0x14C: y.append("Architecture : 32 Bits Binary") elif pe.FILE_HEADER.Machine == 0x8664: y.append("Architecture : 64 Bits Binary") y.append(hashlib.md5(data).hexdigest()) y.append(hashlib.sha1(data).hexdigest()) y.append(hashlib.sha256(data).hexdigest()) val = pe.FILE_HEADER.TimeDateStamp y.append(time.asctime(time.gmtime(val))) return y def db_saving(filepath): pe = pefile.PE(repathfile(filepath)) fp = open(repathfile(filepath),'rb') data = fp.read() dbstr= {} dbstr["dataSize"] = len(data) if pe.FILE_HEADER.Machine == 0x14C: dbstr["arch"] = "32 Bits Binary" elif pe.FILE_HEADER.Machine == 0x8664: dbstr["arch"] = "64 Bits Binary" dbstr["md5"] = hashlib.md5(data).hexdigest() dbstr["sha1"] = hashlib.sha1(data).hexdigest() dbstr["sha256"] = hashlib.sha256(data).hexdigest() val = pe.FILE_HEADER.TimeDateStamp dbstr["timestamp"] =time.asctime(time.gmtime(val)) if checkpre(filepath) == "Legitimate": dbstr['status'] = "Legitimate" else : dbstr['status'] = "Malicious" dbstr['type'] = procedureXK001(filepath) x = mycol.insert_one(dbstr) return dbstr
fadzniaidil/imawa
malwr/CheckingFile.py
CheckingFile.py
py
3,102
python
en
code
1
github-code
6
28900645911
from keras.models import * from keras.layers import * import keras from dlblocks.keras_utils import allow_growth , showKerasModel allow_growth() from dlblocks.pyutils import env_arg import tensorflow as tf from Utils import Trainer class GiretTwoCell(keras.layers.Layer): def __init__(self, cell_1 , cell_2 , nHidden , **kwargs): self.cell_1 = cell_1 self.cell_2 = cell_2 self.nHidden = nHidden self.state_size = [nHidden,nHidden] super(GiretTwoCell, self).__init__(**kwargs) def build(self, input_shape): nHidden = self.nHidden input_shape_n = ( input_shape[0] , input_shape[1]- 2 ) # print "pp", input_shape_n # self.cell_1.build(input_shape_n) # self.cell_2.build(input_shape_n) self._trainable_weights += ( self.cell_1.trainable_weights ) self._trainable_weights += ( self.cell_2.trainable_weights ) self._non_trainable_weights += ( self.cell_1.non_trainable_weights ) self._non_trainable_weights += ( self.cell_2.non_trainable_weights ) self.built = True def call(self, inputs, states): nHidden = self.nHidden gate_val_1 = inputs[ : , 0:1] gate_val_2 = inputs[ : , 1:2] inputs = inputs[ : , 2: ] gate_val_1 = K.repeat_elements(gate_val_1 , nHidden , -1 ) # shape # bs , hidden gate_val_2 = K.repeat_elements(gate_val_2 , nHidden , -1 ) # shape # bs , hidden _ , [h1 , c1 ] = self.cell_1.call( inputs , states ) _ , [h2 , c2 ] = self.cell_2.call( inputs , states ) h = gate_val_1*h1 + gate_val_2*h2 + (1 - gate_val_1 - gate_val_2 )*states[0] c = gate_val_1*c1 + gate_val_2*c2 + (1 - gate_val_1 - gate_val_2 )*states[1] return h, [h , c ] class GIRNet_SeqLab(Trainer): def build_model(self): config = self.config embed = Embedding( self.config['vocab_size'] , self.config['embed_dim'] , mask_zero=True) rnn_hi = LSTM( self.config['nHidden'] , return_sequences=True ) rnn_en = LSTM( self.config['nHidden'] , return_sequences=True ) # en inp_en = Input(( self.config['sent_len'] , )) x = embed(inp_en) x = rnn_en( x ) out_en = TimeDistributed(Dense( config['n_class_en'] , activation='softmax'))(x) # hi inp_hi = Input(( self.config['sent_len'] , )) x = embed(inp_hi) x = rnn_hi( x ) out_hi = TimeDistributed(Dense( config['n_class_hi'] , activation='softmax'))(x) cell_combined = GiretTwoCell( rnn_hi.cell , rnn_en.cell , self.config['nHidden'] ) inp_enhi = Input(( self.config['sent_len'] , )) x = embed(inp_enhi ) x_att = x x_att = Bidirectional(LSTM(32 , return_sequences=True))( x ) bider_h = x_att x_att = TimeDistributed( Dense(3, activation='softmax') )(x_att) x_att = Lambda(lambda x : x[... , 1: ])(x_att) x = Concatenate(-1)([x_att , x ]) x = RNN(cell_combined , return_sequences=True )( x ) out_enhi = TimeDistributed(Dense( self.config['n_class_enhi'] , activation='softmax'))(x) self.model = Model( [inp_hi , inp_en , inp_enhi ] , [ out_hi , out_en , out_enhi ] ) Trainer.build_model( self ) # jjj """ config = {} config['epochs'] = 4 config['dataset'] = "/tmp/postag_prepped.h5" config['exp_name'] = 'pos_girnet_1l' config['embed_dim'] = 50 config['vocab_size'] = 30003 config['nHidden'] = 100 config['sent_len'] = 150 config['n_class_en'] = 45 config['n_class_hi'] = 25 config['n_class_enhi'] = 19 model = GIRNet_SeqLab( exp_location="./ttt" , config_args = config ) model.train() """
divamgupta/mtl_girnet
sequence_labeling/girnet.py
girnet.py
py
3,916
python
en
code
6
github-code
6
17396933652
from django.http import HttpResponse def hello(req): return HttpResponse('Hello, World !!') def hello_html(req): src = [] src.append('<!doctype html>') src.append('<html>') src.append('<head>') src.append('<meta charset="utf-8">') src.append('<title>Hello, World</title>') src.append('</head>') src.append('<body>') src.append('<h1 style="color:#F4A346;">Hello, World!!</h1>') src.append('</body>') src.append('</html>') return HttpResponse('\n'.join(src)) from django.shortcuts import render from django.views.generic import TemplateView class HelloTemplateView(TemplateView): template_name = 'hello.html' def get(self, request, *args, **kwargs): context = super(TemplateView, self).get_context_data(**kwargs) return render(self.request, self.template_name, context)
RyoJ/hellopython
hello/views.py
views.py
py
853
python
en
code
0
github-code
6