seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
18705309300
from time import sleep import csv import requests from lxml import etree from datetime import datetime import pytz urls = ['https://www.eclatparis.com/produits', 'https://www.eclatparis.com/produits?offset=200', 'https://www.eclatparis.com/produits?offset=400', 'https://www.eclatparis.com/produits?offset=600' ] url_header = 'https://www.eclatparis.com' # 存储所有产品的URL的列表 product_urls = [] # 由于要布置到云端,pythonanywhere对selenium的限制太多了, # 直接布置selenium会导致程序无法运行 # 这里的cookies是从本地版的运行中,利用selenium得到的, # 直接使用cookies就可以绕过登录界面 cookies= {'hasCart': 'true', '_ga_ZMDKD43H01': 'GS1.1.1677141224.1.1.1677141248.0.0.0', 'siteUserCrumb': '91m8yMQracXHvtn3hp_zqJZ29UAbVo6aaNclbA8xsq_qVyEboCKRsEBv3EqT4dQmzImPIrdRSieZfpx1drxkGFQAvslwA5temqFq29j_XcmIbFuE51bxgA1TRcZFYz1o', 'SiteUserInfo': '%7B%22authenticated%22%3Atrue%2C%22lastAuthenticatedOn%22%3A%222023-02-23T08%3A34%3A03.898Z%22%2C%22siteUserId%22%3A%2263dc38e82b1d5869bf4988e2%22%2C%22firstName%22%3A%22Wenjie%22%7D', 'crumb': 'BaRQABCJ44v5MTBhMjM1YWRhODA1ZDUxMWU5Y2JhYjY3MmYyNjU5', 'ss_cvt': '1677141232051', 'ss_cvr': 'cb592531-5038-4c16-bff7-3c4d1ae0cf97|1677141232051|1677141232051|1677141232051|1', 'CART': '-B8ztComuxoy8mZfh6NOEGGjxgnUzIdW4JGacILa', '_ga': 'GA1.1.1986290368.1677141224', 'SiteUserSecureAuthToken': 'MXw1OTBmNTNlNy0xZWMyLTQzODctYWMzZS01NjAzZTIwYjEzOWJ8V0w0UE1BQlN3SFYwOFY0WWQyRmtsQmVDR1ktSVV1SVltTVVkZkdGcy1oel9yT21odDY4OXFZUm1IeElMWkRWQg', '_fbp': 'fb.1.1677141224123.561848947'} for url in urls: # get中的cookies是字典类的 # get方法是会阻塞线程的,只有在获取完整个页面的所有数据之后才会进行下面的代码 response =requests.get(url,cookies=cookies) sleep(2) # sleep在这里的作用并不是等待页面加载完成,而是防止过快的爬取导致ip地址被网址suspendus body = etree.HTML(response.content) links = body.xpath( '//a[contains(@class, "grid-item-link")]') for link in links: product_urls.append(url_header + link.get('href')) sleep(2) francetime = pytz.timezone("Europe/Paris") dt = datetime.now(francetime) ###英文格式 timenow =str(dt.year)+' '+str(dt.month)+' '+str(dt.day) filename = timenow + 'product_urls_1.csv' # 将所有产品的URL存储到CSV文件中 headers = ['URL', 'Sold out'] with open(filename, mode='w', newline='') as file: writer = csv.writer(file) writer.writerow(headers) for url in product_urls: writer.writerow([url, '']) # 检查每个产品是否已售罄,将结果添加到CSV文件中 with open(filename, mode='r', newline='') as file: reader = csv.reader(file) next(reader) # 跳过标题行 rows = [] for row in reader: try: response = requests.get(row[0], cookies=cookies) html = etree.HTML(response.content) sold_out = 'Yes' if html.xpath('//div[@class="ProductItem-details-checkout"]//div[@class="product-mark sold-out"]') else '' row[1] = sold_out except Exception as e: print(f"Failed to check product {row[0]}: {e}") rows.append(row) with open(filename, mode='w', newline='') as file: writer = csv.writer(file) writer.writerow(headers) for row in rows: writer.writerow(row) print('done')
qingyi-er-san/aprizo_codes
eclat数据爬取/eclat_云端版.py
eclat_云端版.py
py
3,460
python
en
code
0
github-code
6
27143309324
#!/usr/bin/env python3 from PIL import Image import os path = os.getenv('HOME') + '/supplier-data/images/' for file in os.listdir(path): if (file.endswith('.tiff')): shortFileName = file.rstrip('.tiff') with Image.open(path + file) as im: im.resize((600, 400)).convert('RGB').save(path + shortFileName + ".jpeg", "JPEG")
Mark-C-Hall/Google-IT-Automate-Final
changeImage.py
changeImage.py
py
357
python
en
code
0
github-code
6
3848261767
#!/bin/python3 import sys def staircase(n): for x in range(1, n + 1): if x < n: remain = n - x print(remain * " " + x * "#") else: print(x * "#") if __name__ == "__main__": n = int(input().strip()) staircase(n)
pedroinc/hackerhank
staircase.py
staircase.py
py
280
python
en
code
0
github-code
6
35145658447
import pytest from .task import in_component class Case: def __init__(self, name: str, n: list, vertices: list, edges: list, answer: bool): self._name = name self.n = n self.vertices = vertices self.edges = edges self.answer = answer def __str__(self) -> str: return 'task4_test_{}'.format(self._name) TEST_CASES = [ Case( name='base1', n=4, vertices=[1, 2, 3], edges=[ (1, 2), (2, 3), (1, 3), ], answer=True, ), Case( name='base2', n=4, vertices=[1, 2, 3], edges=[ (1, 2), (3, 4), ], answer=False, ), Case( name='base3', n=4, vertices=[4, 2, 3, 1], edges=[ (1, 2), ], answer=True, ), Case( name='base4', n=2, vertices=[1], edges=[ (1, 2), ], answer=False, ), ] @pytest.mark.parametrize('case', TEST_CASES, ids=str) def test_task3(case: Case) -> None: answer = in_component( n=case.n, vertices=case.vertices, edges=case.edges, ) assert answer == case.answer
renesat/Base-Graph-Contest
tasks/task4/test_public.py
test_public.py
py
1,283
python
en
code
0
github-code
6
18483249694
import pygame import random import sys from pygame.locals import * from config import ( FPS, MODIFIER, WIDTH, HEIGHT, LINETHICKNESS, PADDLESIZE, PADDLEOFFSET, BLACK, GREY, ORIGIN_X, ORIGIN_Y, DIFFICULTY, MAX_SCORE ) def drawArena(): DISPLAYSURF.fill((0, 0, 0)) # draw the outline of arena pygame.draw.rect(DISPLAYSURF, GREY, ((0 ,0), (WIDTH, HEIGHT)), LINETHICKNESS*2) # draw the middle line pygame.draw.line(DISPLAYSURF, GREY, (int(WIDTH/2), 0), (int(WIDTH/2), HEIGHT), int(LINETHICKNESS/4)) def drawPaddle(paddle): # checks boundaries if paddle.bottom > HEIGHT - LINETHICKNESS: paddle.bottom = HEIGHT - LINETHICKNESS elif paddle.top < LINETHICKNESS: paddle.top = LINETHICKNESS # draws the paddle pygame.draw.rect(DISPLAYSURF, GREY, paddle) def drawBall(ball): pygame.draw.rect(DISPLAYSURF, GREY, ball) # moves the ball, returns new position def moveBall(ball, ballDirX, ballDirY): ball.x += (ballDirX * MODIFIER) ball.y += (ballDirY * MODIFIER) return ball # checks for a collision with a wall, and 'bounces' off it. def checkEdgeCollision(ball, ballDirX, ballDirY): if ball.top == (LINETHICKNESS) or ball.bottom == (HEIGHT - LINETHICKNESS): ballDirY = ballDirY * -1 if ball.left == (LINETHICKNESS) or ball.right == (WIDTH - LINETHICKNESS): ballDirX = ballDirX * -1 return ballDirX, ballDirY # checks if the ball has hit a paddle, and 'bounces' off it. def checkPaddleCollision(ball, paddle1, paddle2, ballDirX): if ballDirX == -1 and paddle1.right == ball.left and paddle1.top < ball.top and paddle1.bottom > ball.bottom: return -1 elif ballDirX == 1 and paddle2.left == ball.right and paddle2.top < ball.top and paddle2.bottom > ball.bottom: return -1 else: return 1 # computer "ai" def computerMove(ball, ballDirX, paddle2): # if the ball is moving away from the paddle, center if ballDirX == -1: if paddle2.centery < (HEIGHT/2): paddle2.y += MODIFIER - random.choice(DIFFICULTY) elif paddle2.centery > (HEIGHT/2): paddle2.y -= MODIFIER - random.choice(DIFFICULTY) # if the ball moving towards the paddle, track its movement. elif ballDirX == 1: if paddle2.centery < ball.centery: paddle2.y += MODIFIER - random.choice(DIFFICULTY) else: paddle2.y -= MODIFIER - random.choice(DIFFICULTY) return paddle2 # checks to see if a point has been scored, returns new score def checkScore(ball, p1_score, p2_score): hit = False # reset points if left wall is hit if ball.left == LINETHICKNESS: p2_score += 1 hit = True # awards 1 point to the player if the right wall is hit elif ball.right == WIDTH - LINETHICKNESS: p1_score += 1 hit = True # if no points scored, return score unchanged return p1_score, p2_score, hit # displays the current score on the screen def displayScore(p1_score, p2_score): # player resultP1Surf = BASICFONT.render('Player %s' %(p1_score), True, GREY) resultP1Rect = resultP1Surf.get_rect() resultP1Rect.topright = (100, 25) DISPLAYSURF.blit(resultP1Surf, resultP1Rect) # computer resultP2Surf = BASICFONT.render('Computer %s' %(p2_score), True, GREY) resultP2Rect = resultP2Surf.get_rect() resultP2Rect.topleft = (WIDTH - 150, 25) DISPLAYSURF.blit(resultP2Surf, resultP2Rect) # displays the end of the game def gameOver(): finalSurf = BASICFONT.render('GAME OVER', True, GREY) finalSurfRect = finalSurf.get_rect() finalSurfRect.topright = (WIDTH/2 + 59, HEIGHT/2 - 50) DISPLAYSURF.blit(finalSurf, finalSurfRect) # main function def main(): pygame.init() global DISPLAYSURF FPSCLOCK = pygame.time.Clock() DISPLAYSURF = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('Pongame') # font information global BASICFONT, BASICFONTSIZE BASICFONTSIZE = 20 BASICFONT = pygame.font.Font('freesansbold.ttf', BASICFONTSIZE) # initiate variables and set starting positions # for any future changes made within rectangles ballX = ORIGIN_X ballY = ORIGIN_Y playerOnePosition = playerTwoPosition = int((HEIGHT - PADDLESIZE) /2) p1_score = p2_score = 0 game_over = False # keeps track of the ball's direction ballDirX = -1 # -1 = left 1 = right ballDirY = -1 # -1 = up 1 = down # creates Rectangles for ball and paddles paddle1 = pygame.Rect(PADDLEOFFSET, playerOnePosition, LINETHICKNESS, PADDLESIZE) paddle2 = pygame.Rect(WIDTH - PADDLEOFFSET - LINETHICKNESS, playerTwoPosition, LINETHICKNESS, PADDLESIZE) ball = pygame.Rect(ballX, ballY, LINETHICKNESS, LINETHICKNESS) # draws the starting position of the Arena drawArena() drawPaddle(paddle1) drawPaddle(paddle2) drawBall(ball) pygame.mouse.set_visible(0) while True: # main game loop for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() # mouse movement commands elif event.type == pygame.MOUSEMOTION and not game_over: mousex, mousey = event.pos paddle1.y = mousey if not game_over: drawArena() drawPaddle(paddle1) drawPaddle(paddle2) drawBall(ball) ball = moveBall(ball, ballDirX, ballDirY) ballDirX, ballDirY = checkEdgeCollision(ball, ballDirX, ballDirY) ballDirX = ballDirX * checkPaddleCollision(ball, paddle1, paddle2, ballDirX) p1_score, p2_score, hit = checkScore(ball, p1_score, p2_score) paddle2 = computerMove (ball, ballDirX, paddle2) displayScore(p1_score, p2_score) game_over = p1_score + p2_score == MAX_SCORE if hit: ball.x = ballX = ORIGIN_X ball.y = ballY = ORIGIN_Y hit = False pygame.time.wait(1000) else: gameOver() pygame.display.update() FPSCLOCK.tick(FPS) if __name__=='__main__': main()
samuele-mattiuzzo/pongame
pongame.py
pongame.py
py
6,281
python
en
code
0
github-code
6
13770141152
import time def convert_file(input_file_name, output_file_name, show_xml = False): input_file = open(input_file_name + ".json", 'r', encoding='utf-8') output_file = open(output_file_name + ".xml", 'w', encoding='utf-8') xml = file_to_xml(input_file) output_file.write(xml) input_file.close() output_file.close() # if show_xml: # print(xml) def file_to_xml(file): lines = file.readlines() lines.pop(0) lines.pop(0) lines.pop(-1) lines.pop(-1) tf = True for i in range(len(lines)): lines[i] = lines[i].replace('\n', '').replace('\"', '') if lines[i][-1] == ',': lines[i] = lines[i][:-1] while "%" in lines: lines.remove("%") for i in range(len(lines)): lines[i] = lines[i].replace("\t", "", 2) lines[i] = lines[i].split(": ") for elem in lines: print(elem) xml = "<timetable>\n" for i in range(len(lines)): row = lines[i] if "}" in row[0]: continue if row[0][0] != "\t" and row[1] != '{': xml += "\t" + f"<{row[0]}>{row[1]}</{row[0]}>\n" elif row[0][0] != "\t" and row[1] == '{': xml += "\t" + f"<{row[0]}>\n" j = i + 1 while "}" not in lines[j][0]: key = lines[j][0].replace("\t", "") value = lines[j][1] xml += "\t" * 2 + f"<{key}>{value}</{key}>\n" j += 1 xml += "\t" + f"</{row[0]}>\n" xml += "</timetable>" return xml start_time = time.perf_counter() # convert_file('1', '1') for n in range(10): convert_file("1","1") print(time.perf_counter() - start_time)
Mekek/informatics_lab4
main_task.py
main_task.py
py
1,725
python
en
code
0
github-code
6
72453926907
# -*- coding: utf-8 -*- import pymysql from pymongo import MongoClient class MiddleTable(object): def __init__(self): self.mysql_host = "192.168.10.121" self.mysql_user = 'hzyg' self.mysql_password = '@hzyq20180426..' self.MONGO_HOST = '127.0.0.1' self.MONGO_PORT = 27017 # self.MONGO_USER = '' # self.PSW = '' def open_sql(self, ms_db, mo_db, mo_coll): self.link = pymysql.connect(self.mysql_host, self.mysql_user, self.mysql_password, ms_db) self.link.set_charset('utf8') self.cursor = self.link.cursor() self.client = MongoClient(host=self.MONGO_HOST, port=self.MONGO_PORT) self.mo_db = self.client[mo_db] self.coll = self.mo_db[mo_coll] def input_sql(self): producer_list = self.coll.distinct('corpName', {}) seller_list = self.coll.distinct('corpNameBy', {}) for name in producer_list or seller_list: if name != '/': detail_list = self.coll.find({'$or': [{'corpName': name, 'corpNameBy': name}]}) for detail in detail_list: inspection_id = detail['_id'] produce_name = detail['corpName'] if produce_name != '/': sql = "select id from sys_organization where name='%s'" % produce_name self.cursor.execute(sql) produce_id = self.cursor.fetchone() if not produce_id: break else: produce_id = produce_id[0] else: produce_id = None seller_name = detail['corpNameBy'] if seller_name != '/': sql = "select id from sys_organization where name='%s'" % seller_name self.cursor.execute(sql) seller_id = self.cursor.fetchone() if not seller_id: break else: seller_id = seller_id[0] sql = "select supervise_id from sys_organization_ascription where organization_id='%s'" % seller_id self.cursor.execute(sql) supervise_id = self.cursor.fetchone() supervise_id = supervise_id[0] else: seller_id = None supervise_id = None security_results = detail['newsDetailType'] if security_results >= 54 and security_results <= 76 or security_results == 100: security_results = 1 elif security_results >= 77 and security_results <= 99 or security_results ==101: security_results = 2 data_type = detail['rwly'] if '省抽' in data_type: data_type = 521 elif '国抽' in data_type: data_type = 520 else: data_type = 526 status = detail['status'] notice_date = detail['ggrq'] sql = """INSERT INTO organization_inspection_relation(inspection_id, producer_id, seller_id, security_results, source, data_type, status, notice_date) VALUES("%s","%d", "%d", "%s", "%d", "%d", "%d", "%s")""" % (inspection_id, produce_id, seller_id, security_results, supervise_id, data_type, status, notice_date) self.cursor.execute(sql) self.link.commit() def close_sql(self): self.link.close() mt = MiddleTable() mt.open_sql('yfhunt', 'zhejiang', 'sheng') mt.input_sql() mt.close_sql()
cyndi088/MiddleTables
mongo_to_mysql.py
mongo_to_mysql.py
py
3,882
python
en
code
0
github-code
6
1073007549
import traceback from selenium.webdriver.common.by import By from traceback import print_stack import utilities.logger as log import logging class SeleniumDriver(): log = log.myLogger(logging.DEBUG) def __init__(self, driver): self.driver = driver def getByType(self, locatorType): locatorType = locatorType.lower() if locatorType == "id": return By.ID elif locatorType == "name": return By.NAME elif locatorType == "xpath": return By.XPATH elif locatorType == "css": return By.CSS_SELECTOR elif locatorType == "class": return By.CLASS_NAME elif locatorType == "link": return By.LINK_TEXT else: self.log.info("Locator type " + locatorType + " not correct/supported") return False def getElement(self, locator, locatorType="id"): element = None try: locatorType = locatorType.lower() byType = self.getByType(locatorType) element = self.driver.find_element(byType, locator) self.log.info("Element found with locator: " + locator + " and locatorType: " + locatorType) except: self.log.info("Element not found with locator: " + locator + " and locatorType: " + locatorType) self.log.error("Exception Caught: {}".format(traceback.format_exc())) self.log.error("".join(traceback.format_stack())) return element def elementClick(self, locator="", locatorType = "xpath", element=None): try: if locator: # This means if locator is not empty element = self.getElement(locator, locatorType) element.click() self.log.info("Clicked on element with locator: " + locator + " locatorType: " + locatorType) except: self.log.info("Cannot click on the element with locator: " + locator + " locatorType: " + locatorType) print_stack() def getText(self, locator="", locatorType = "xpath", element=None, info=""): try: if locator: element = self.getElement(locator, locatorType) text = element.text if len(text) != 0: self.log.info("Getting text on element :: " + info) self.log.info("The text is :: '" + text + "'") text = text.strip() except: self.log.error("Failed to get text on element " + info) print_stack() text = None return text def isElementPresent(self, locator="", locatorType = "xpath", element=None): try: if locator: element = self.getElement(locator, locatorType) if len(element) > 0: self.log.info("Element present with locator: " + locator + " locatorType: " + locatorType) return True else: self.log.info("Element not present with locator: " + locator + " locatorType: " + locatorType) return False except: print("Element not found") return False
rchroy/SamsungPhoneTest
base/my_selenium_driver.py
my_selenium_driver.py
py
3,365
python
en
code
0
github-code
6
38255085940
from django.shortcuts import reverse from django.views.generic import TemplateView from django.utils import timezone from hknweb.utils import ( method_login_and_permission, get_semester_bounds, ) from hknweb.events.constants import ATTR from hknweb.events.models import Event, EventType from hknweb.events.utils import format_url from hknweb.utils import get_access_level @method_login_and_permission("events.add_rsvp") class AllRsvpsView(TemplateView): """List of rsvp'd and not rsvp'd events.""" template_name = "events/all_rsvps.html" def get_context_data(self): # Get the start and end time for event filtering start_time, end_time = get_semester_bounds(timezone.now()) if self.request.GET.get("option") == "upcoming": start_time = timezone.now() # Get the current event type event_types = EventType.objects.order_by("type").all() event_types = sorted(event_types, key=lambda e: not (e.type == ATTR.MANDATORY)) event_type = self.request.GET.get("event_type", event_types[0].type) event_type = EventType.objects.filter(type=event_type).first() # Get all events all_events = Event.objects.filter( start_time__gte=start_time, start_time__lte=end_time, access_level__gte=get_access_level(self.request.user), event_type=event_type, ).order_by("start_time") rsvpd_data, not_rsvpd_data = [], [] for event in all_events: if event.rsvp_set.filter(user=self.request.user): data, url = rsvpd_data, "events:unrsvp" waitlisted = event.on_waitlist(self.request.user) else: data, url = not_rsvpd_data, "events:rsvp" waitlisted = False data.append( { "event": event, "action": reverse(url, args=[event.id]), "location": format_url(event.location), "waitlisted": waitlisted, } ) data = [ { ATTR.CLASS: "right-half", ATTR.TITLE: "RSVP'd / Waitlist", ATTR.EVENTS: rsvpd_data, ATTR.DISPLAY_VALUE: "un-RSVP", }, { ATTR.CLASS: "left-half", ATTR.TITLE: "Not RSVP'd", ATTR.EVENTS: not_rsvpd_data, ATTR.DISPLAY_VALUE: "RSVP", }, ] context = { "data": data, "event_types": event_types, "event_type": event_type, } return context
Gabe-Mitnick/hknweb
hknweb/events/views/aggregate_displays/tabular.py
tabular.py
py
2,679
python
en
code
null
github-code
6
43627131674
import heapq import collections class Solution: def assignBikes(self, workers, bikes): dist_map = collections.defaultdict(list) m, n = len(workers), len(bikes) for i in range(m): for j in range(n): w = workers[i] b = bikes[j] dist = abs(w[0]-b[0]) + abs(w[1]-b[1]) heap = dist_map[dist] heapq.heappush(heap, (i, j)) dist_map[dist] = heap assigned_workers = set() assigned_bikes = set() res = [0]*m distances = sorted(list(dist_map.keys())) for d in distances: heap = dist_map[d] while heap: pair = heapq.heappop(heap) if pair[0] not in assigned_workers and pair[1] not in assigned_bikes: res[pair[0]] = pair[1] assigned_workers.add(pair[0]) assigned_bikes.add(pair[1]) return res
MichaelTQ/LeetcodePythonProject
solutions/leetcode_1051_1100/LeetCode1057_CampusBikes.py
LeetCode1057_CampusBikes.py
py
986
python
en
code
0
github-code
6
71477785468
import sys sys.stdin = open('input.txt') ''' #1 5 #2 8 #3 9 ''' # dp로 풀면 안됨 ;; T = int(input()) for tc in range(1, T+1): N = int(input()) # print(tc) # data = [[1000]*(N+1)]+ [[1000]+list(map(int, input().split())) for _ in range(N)] data = [list(map(int, input().split())) for _ in range(N)] new_data = [[0]*N for _ in range(N)] for i in data: print(i) print() for i in range(N): for j in range(N): if i == 0 and j == 0: new_data[i][j] = data[i][j] elif i == 0: new_data[i][j] = max(data[i][j]-data[i][j-1],0) + 1 + new_data[i][j-1] elif j == 0: new_data[i][j] = max(data[i][j]-data[i-1][j],0) + 1 + new_data[i-1][j] else: route1 = max(data[i][j] - data[i-1][j], 0) + new_data[i-1][j] route2 = max(data[i][j] - data[i][j-1], 0) + new_data[i][j-1] # route3 = max(data[i][j] - data[i][j+1], 0) + new_data[i-1][j+1] new_data[i][j] = min(route1, route2) + 1 for i in new_data: print(i) print() print(f'#{tc}', new_data[-1][-1])
YOONJAHYUN/Python
SWEA/5250_최소비용/sol.py
sol.py
py
1,170
python
en
code
2
github-code
6
22837988470
import pandas as pd import networkx as nx import pickle import ast def save_obj(obj, name ): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name ): with open(name + '.pkl', 'rb') as f: return pickle.load(f) df1 = pd.read_csv('../reading_and_cleaning/guest_host_cleaned_podcasts.csv', sep='\t', index_col=0) split_hosts = pd.read_csv('../reading_and_cleaning/split_hosts.csv', sep='\t', index_col=0) guest_durations = pd.read_csv('../reading_and_cleaning/guest_durations.csv', sep='\t', index_col=0) G2 = nx.from_pandas_dataframe(guest_durations, 'guests', 'hosts', edge_attr=['duration'], create_using=nx.Graph()) podcast_info = pd.read_csv('../reading_and_cleaning/meta_podcast_info.csv', sep='\t', index_col=0) host_list = [] for index1, row1 in podcast_info.iterrows(): hosts = ast.literal_eval(row1['Hosts']) for host in hosts: host_list.append(host) host_list = set(host_list) top_host_podcast = {} top_guest_podcast = {} host_podcasts = {} guest_podcasts = {} for node in G2.nodes(): if node in host_list: #print(node) df = split_hosts[split_hosts['hosts']==node] host_durations = df.groupby(['podcast'])['duration'].sum() host_durations = host_durations.reset_index() host_durations = host_durations.sort_values(by='duration', ascending=False) #print(host_durations['podcast']) #top_podcast = host_durations['podcast'][0] top_host_podcast[node] = host_durations['podcast'][0] host_podcasts[node] = host_durations['podcast'].values #print(host_durations['podcast'].values) # for index, row in podcast_info.iterrows(): # if(row['Podcast Name']==top_podcast): # top_cat = ast.literal_eval(row['categories'])[0] # top_category[node] = top_cat #print(node, top_cat) df = df1[df1['guests']==node] guest_durations = df.groupby(['podcast'])['duration'].sum() guest_durations = guest_durations.reset_index() guest_durations = guest_durations.sort_values(by='duration', ascending=False) #top_podcast = guest_durations['podcast'][0] if(len(guest_durations)==0): continue top_guest_podcast[node] = guest_durations['podcast'].iloc[0] guest_podcasts[node] = guest_durations['podcast'].values # for index, row in podcast_info.iterrows(): # if(row['Podcast Name']==top_podcast): # top_cat = ast.literal_eval(row['categories'])[0] # top_category[node] = top_cat save_obj(top_host_podcast, 'top_host_podcast') save_obj(top_guest_podcast, 'top_guest_podcast') save_obj(host_podcasts, 'host_podcasts') save_obj(guest_podcasts, 'guest_podcasts')
brooksjaredc/podcast_network_analysis
analyzing_functions/set_top_podcast.py
set_top_podcast.py
py
2,778
python
en
code
1
github-code
6
17541475306
#https://www.hackerrank.com/challenges/incorrect-regex/problem #Solution # Enter your code here. Read input from STDIN. Print output to STDOUT import re T= int(input()) for i in range(T): S=input() try: res = re.compile(S) print("True") except Exception: print("False")
AbdullaElshourbagy/Hacker-Rank-Solutions
Python/09 - Errors and Exceptions/02_Incorrect_Regex.py
02_Incorrect_Regex.py
py
330
python
en
code
0
github-code
6
21154911963
from layers.layer import Layer import os import hashlib import csv class FileOnlineOutputLayer(Layer): def __init__(self, log_messages, results: dict, filename: str, templates: list, message_headers: list): self.log_messages = log_messages self.filename = filename self.results = results self.templates = templates self.message_headers = message_headers def output_csv(self, filename, messages, headers): with open(filename, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=headers) writer.writeheader() for key, row in messages.items(): writer.writerow(row) def outputResult(self): # import pdb; pdb.set_trace() log_events = dict() eids = dict() for idx, val in self.results.items(): temp = ' '.join(self.templates[val]) if temp not in eids: eids[temp] = hashlib.md5(temp.encode('utf-8')).hexdigest()[0:8] self.log_messages[idx]['EventTemplate'] = temp self.log_messages[idx]['EventTemplate'] = temp self.log_messages[idx]['EventId'] = eids[temp] tot = 0 for temp, eid in eids.items(): log_events[tot] = dict(EventId=eid, EventTemplate=temp) tot += 1 self.message_headers += ['EventId', 'EventTemplate'] event_headers = ['EventId', 'EventTemplate'] self.output_csv(self.filename+'_structured.csv', self.log_messages, self.message_headers) self.output_csv(self.filename+'_templates.csv', log_events, event_headers) def run(self): dirname = os.path.dirname(self.filename) os.makedirs(dirname, exist_ok=True) self.outputResult()
kashanahmed867/ADAL-NN
log_parser/online_logparser/layers/fileonline_output_layer.py
fileonline_output_layer.py
py
1,784
python
en
code
0
github-code
6
70488684987
# accepted on coderun def cards_lost(): # 36.6 n, linears, squares, cubes = get_pars() # pre-calculations: whole_linears = (n * (n + 1)) // 2 whole_squares = (n * (n + 1) * (2 * n + 1)) // 6 whole_cubes = ((n * (n + 1)) // 2) ** 2 # constants: a = whole_linears - linears b = whole_squares - squares c = whole_cubes - cubes print(f'a, b, c: {a, b, c}') # aux pars: b_ = (a ** 2 - b) // 2 c_ = (a ** 3 + 2 * c) // 6 - a * b // 2 print(f'a, b_, c_: {a, b_, c_}') # solving the cubic equation with z variable: # for a start lets do a factorization of the free term: factors = factorize(abs(c_), n) print(f'factors: {factors}') z = -1 for z_ in factors: eq = z_ ** 3 - a * z_ ** 2 + b_ * z_ - c_ # print(f'z: {z_}, eq: {eq}') if eq == 0: # print(f'z: {z_} is root!') z = z_ break print(f'z: {z}') # now let us solve the quadratic equation with x var: d = (a - z) ** 2 - 4 * c_ // z x = (a - z + int(d ** .5)) // 2 print(f'x: {x}') y = a - z - x print(f'y: {y}') return f'{x} {y} {z}' def factorize(num: int, n: int) -> list[int]: factors = set() f_ = 2 while f_ <= n and f_ ** 2 <= num: if num % f_ == 0: factors.add(f_) factors.add(num // f_) f_ += 1 factors.add(num) return sorted(factors) def get_pars(): n = int(input()) linears, squares, cubes = [int(i) for i in input().split()] return n, linears, squares, cubes cards_lost()
LocusLontrime/Python
Yandex_fast_recruit_days/Medium/Maps.py
Maps.py
py
1,582
python
en
code
1
github-code
6
4311447480
from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K import numpy as np ################################### #### Constants ################### ################################## def run(X, Y, Xtest = None): _,img_width, img_height,_ = X.shape _, classes = Y.shape #validation_data_dir = 'data/validation' #nb_train_samples = 2000 #nb_validation_samples = 800 epochs = 10 batch_size = 16 #if K.image_data_format() == 'channels_first': # input_shape = (3, img_width, img_height) #else: input_shape = (img_width, img_height, 3) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(classes)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) # this is the augmentation configuration we will use for training train_datagen = ImageDataGenerator() # this is the augmentation configuration we will use for testing: # only rescaling model.fit(X, Y, epochs=10, verbose=1, validation_split=0.2, shuffle=True) #model.fit(X,Y,epochs=25) #a = model.predict(X) #exp_scores = np.exp(a) #probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) #ypred = np.argmax(probs, axis = 1) #Y = np.argmax(Y, axis = 1) #from sklearn.metrics import confusion_matrix, accuracy_score #acc = accuracy_score(Y, ypred) #print acc #xval = X[:int(0.2 * len(X))] #yval = model.predict(xval) #ytrue = Y[:int(0.2 * len(X))] return model.predict(Xtest)
psrikanthm/satellite-image-classification
src/simple_arch.py
simple_arch.py
py
2,151
python
en
code
1
github-code
6
3715152381
""" A simple event-sourced user service """ import datetime import functools import logging import typing import aiohttp.web import faust import strawberry import strawberry.asgi.http import strawberry.asgi.utils import strawberry.graphql import strawberry.types.datetime from faust_avro import App, Record class UserExistsError(Exception): pass class UserDoesNotExistError(Exception): pass ############################################################################## # Models ############################################################################## class User(Record, coerce=True): """The main data model for a user, stored in our table.""" email: str name: str joined: datetime.datetime def __str__(self): return f"{name} <{email}>" class UserKey(Record): key: str class UserCreated(Record, coerce=True): user: User class NameChanged(Record, coerce=True): email: str name: str class UpdatedEmail(Record, coerce=True): old_email: str new_email: str class UserDeleted(Record, coerce=True): email: str class UserRequest(Record, coerce=True): update: typing.Union[UserCreated, NameChanged, UpdatedEmail, UserDeleted] ############################################################################## # App ############################################################################## app = App( "users", broker="kafka://localhost", reply_create_topic=True, topic_partitions=1 ) users_requests = app.topic( "_users_requests", key_type=UserKey, value_type=UserRequest, internal=True ) cleaned_users_requests = app.topic( "users", key_type=UserKey, value_type=UserRequest, internal=True ) users_table = app.Table("users_table", partitions=1) ############################################################################## # Business logic ############################################################################## @functools.singledispatch async def update_handler(msg: typing.Any): raise NotImplementedError(f"No handler for {msg}") @update_handler.register async def user_created(msg: UserCreated): email = msg.user.email if email in users_table: raise UserExistsError(f"User with {email} already exists.") users_table[email] = msg.user @update_handler.register async def name_changed(msg: NameChanged): user = users_table[msg.email] user.name = msg.name users_table[msg.email] = user @update_handler.register async def updated_email(msg: UpdatedEmail): if msg.old_email == msg.new_email: pass if msg.old_email not in users_table: raise UserDoesNotExistError(f"User with {msg.old_email} does not exist.") if msg.new_email in users_table: raise UserExistsError(f"User with {msg.new_email} already exists.") user = users_table[msg.old_email] user.email = msg.new_email users_table[msg.new_email] = user # This is subtle. We jump from the agent for partition new_email over to # the agent for partition old_email and request a delete there. For a # short time, the user will exist under both email addresses. await users_requests.send( key=UserKey(msg.old_email), value=UserRequest(UserDeleted(msg.old_email)) ) @update_handler.register async def deleted_email(msg: UserDeleted): if msg.email not in users_table: raise UserDoesNotExistError(f"User with {msg.email} does not exist.") del users_table[msg.email] ############################################################################## # Agent ############################################################################## @app.agent(users_requests) async def users_svc(requests): async for key, value in requests.items(): try: await update_handler(value.update) await cleaned_users_requests.send(key=key, value=value) yield 200 # OK except UserExistsError: yield 409 # Conflict except UserDoesNotExistError: yield 404 # Not Found except NotImplementedError as e: logging.error(e) yield 501 # Not Implemented except Exception as e: logging.error(e) yield 500 # Internal Server Error @app.agent(cleaned_users_requests) async def cleaned_users_requests(requests): async for value in requests: # Silly, but faust-avro uses the agent to do topic-schema registration pass ############################################################################## # RESTish ############################################################################## @app.page("/users") class users(faust.web.View): async def get(self, request: faust.web.Request) -> faust.web.Response: """List all users""" return self.json(dict(users=dict(users_table.items()))) async def post(self, request: faust.web.Request) -> faust.web.Response: """Create a new user""" data = await request.json() key = UserKey(data["email"]) user = User(**data, joined=datetime.datetime.now()) value = UserRequest(UserCreated(user)) response = await users_svc.ask(key=key, value=value) if response == 200: return self.json(dict(user=user.asdict())) elif response == 409: raise aiohttp.web.HTTPConflict() else: raise aiohttp.web.HTTPInternalServerError() @app.page("/users/{email}") class users_update(faust.web.View): @app.table_route(table=users_table, match_info="email") async def get( self, request: faust.web.Request, *, email: str ) -> faust.web.Response: """Get a specific user""" try: return self.json(dict(user=users_table[email].asdict())) except KeyError: raise aiohttp.web.HTTPNotFound() @app.table_route(table=users_table, match_info="email") async def patch( self, request: faust.web.Request, *, email: str = None ) -> faust.web.Response: """Update a specific user""" data = await request.json() if "name" in data: update = NameChanged(email, data["name"]) elif "new_email" in data: update = UpdatedEmail(email, data["new_email"]) # Note this re-routes what partition we'll send on email = data["new_email"] else: raise aiohttp.web.HTTPBadRequest() response = await users_svc.ask(key=UserKey(email), value=UserRequest(update)) if response == 200: return self.json(dict(user=users_table[email].asdict())) elif response == 404: raise aiohttp.web.HTTPNotFound() elif response == 409: raise aiohttp.web.HTTPConflict() else: raise aiohttp.web.HTTPInternalServerError() ############################################################################## # GraphQLish ############################################################################## @strawberry.type class UserType: email: str name: str joined: strawberry.types.datetime.DateTime @strawberry.type class Query: @strawberry.field def users(self, info, email: str = None) -> typing.List[UserType]: if email is not None: return [users_table[email]] else: return list(users_table.values()) @strawberry.input class CreateUserInput: email: str name: str @strawberry.input class ChangeUserNameInput: email: str name: str @strawberry.input class ChangeUserEmailInput: old_email: str new_email: str @strawberry.type class Mutation: @staticmethod async def ask(email, message): response = await users_svc.ask(key=UserKey(email), value=UserRequest(message)) if response == 200: return else: raise Exception("Failure") @strawberry.mutation async def create_user(self, info, input: CreateUserInput) -> UserType: user = User(email=input.email, name=input.name, joined=datetime.datetime.now()) await Mutation.ask(input.email, UserCreated(user)) return user @strawberry.mutation async def change_user_name(self, info, input: ChangeUserNameInput) -> UserType: await Mutation.ask(input.email, NameChanged(input.email, input.name)) return users_table[input.email] @strawberry.mutation async def change_user_email(self, info, input: ChangeUserEmailInput) -> UserType: await Mutation.ask( input.new_email, UpdatedEmail(input.old_email, input.new_email) ) return users_table[input.new_email] schema = strawberry.Schema(query=Query, mutation=Mutation) # TODO -- routing! Currently this abuses partitions=1 and workers=1 to have consistency. # # Routing is a lot harder in graphql. It potentially needs to happen at the mutation level? # It'd be worth investigating if the response could be the user object itself and/or an # exception object. Serializing them with pickle would be okay since it is python/faust # internal and not intended for outside consumption. @app.page("/graphql") class graphql(faust.web.View): async def get(self, request: faust.web.Request) -> faust.web.Response: html = strawberry.asgi.utils.get_playground_html( "http://localhost:6066/graphql" ) return aiohttp.web.Response(body=html, content_type="text/html") async def execute(self, query, variables=None, context=None, operation_name=None): return await strawberry.graphql.execute( schema, query, variable_values=variables, operation_name=operation_name, context_value=context, ) async def post(self, request: faust.web.Request) -> faust.web.Response: response = await strawberry.asgi.http.get_http_response(request, self.execute) return aiohttp.web.Response( body=response.body, content_type=response.media_type )
trauter/faust-avro
examples/event_sourced_user.py
event_sourced_user.py
py
9,993
python
en
code
0
github-code
6
74416691389
# Ten program pokazuje przykład użycia funkcji range_sum(). def main(): # Utworzenie listy liczb. numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9] # Zsumowanie elementów # o indeksach od 2 do 5. my_sum = range_sum(numbers, 2, 5) # Wyświetlenie obliczonej sumy. print('Suma elementów o indeksach od 2 do 5 wynosi', my_sum) # Funkcja range_sum() zwraca sumę podanego zakresu # elementów listy num_list. Parametr start określa indeks # pierwszego sumowanego elementu. Parametr end # określa indeks ostatniego sumowanego elementu. def range_sum(num_list, start, end): if start > end: return 0 else: return num_list[start] + range_sum(num_list, start + 1, end) # Wywołanie funkcji main(). main()
JeanneBM/Python
Owoce Programowania/R12/04. Recursive3.py
04. Recursive3.py
py
747
python
pl
code
0
github-code
6
40126048193
from openeye import oechem import pickle import os #ifs = oechem.oemolistream(oechem.OEFormat_SDF) #ofs = oechem.oemolostream(oechem.OEFormat_PDB) DRUG_DIR = 'Drugs/Lib' DRUG_DB_OUT = 'Drugs/DB/DB.oeb.gz' DRUG_TITLE_FILE = 'drug_titles.pickle' MAX_TAUTOMERS = 100 def count_molecules(): ifs = oechem.oemolistream() num_molecules = 0 if ifs.open(DRUG_DB_OUT): num_molecules = len(list(ifs.GetOEGraphMols())) return num_molecules def preprocess_titles(): total_molecules = 0 drug_list = os.listdir(DRUG_DIR) drug_titles = {} non_zero_drugs = 0 ifs = oechem.oemolistream() ofs = oechem.oemolostream() if ofs.open(DRUG_DB_OUT): for drug in drug_list: if '.oeb.gz' not in drug: continue drug_name = drug.split('.')[0] drug_path = os.path.join(DRUG_DIR, drug) print(drug_name) drug_titles[drug_name] = [] if ifs.open(drug_path): tautomer_counter = 0 for molecule in ifs.GetOEGraphMols(): total_molecules += 1 title = f"{drug_name}-{molecule.GetTitle()}" drug_titles[drug_name].append(title) molecule.SetTitle(title) oechem.OEWriteMolecule(ofs, molecule) tautomer_counter += 1 if tautomer_counter >= MAX_TAUTOMERS: break if tautomer_counter > 0: non_zero_drugs += 1 pickle.dump(drug_titles, open(DRUG_TITLE_FILE, 'wb')) print(f"Non-zero conformers drug num: {non_zero_drugs}") print(f"Total number of molecules: {total_molecules}") if __name__ == "__main__": preprocess_titles()
AlexandrNP/BindingScoresDRP
openeye_scripts/map_compound_id.py
map_compound_id.py
py
1,779
python
en
code
0
github-code
6
43865403849
from .flags import JobListFlags, JobOutputFlags from .format_options import format_job_options from .job_utils import ( create_job, create_job_link, create_job_output_item, get_job, submit_job_app, update_job, ) __all__ = [ "create_job", "update_job", "submit_job_app", "format_job_options", "get_job", "JobOutputFlags", "create_job_output_item", "create_job_link", "JobListFlags", ]
No767/Kumiko
Bot/Libs/cog_utils/jobs/__init__.py
__init__.py
py
445
python
en
code
20
github-code
6
72742543867
# -*- coding: utf-8 -*- # @Author : yxn # @Date : 2022/1/25 11:26 # @IDE : PyCharm(2021.3.1) Python3.98 from pythonds.basic.stack import Stack def matches(open, close): opens = "([{" closer = ")]}" return opens.index(open) == closer.index(close) def parCheck(brackets): s = Stack() # 1.生成一个空栈 balanced = True index = 0 while index < len(brackets) and balanced: symbol = brackets[index] # 2.从左往右依次取括号 if symbol in "([{": # 左括号->压栈 s.push(symbol) else: # 右括号-> if s.isEmpty(): # 栈空,匹配失败 balanced = False else: # 不空,从栈顶移除 top = s.pop() if not matches(top, symbol): # 与栈顶元素对比,是否匹配 balanced = False index += 1 # 3.继续2 if balanced and s.isEmpty(): return True else: return False if __name__ == '__main__': print(parCheck("([{}])")) print(parCheck("([()]){}")) print(parCheck("()(]}{[])"))
yxn4065/Data-structure-and-algorithm-Python-
04_栈的应用1括号匹配.py
04_栈的应用1括号匹配.py
py
1,139
python
en
code
0
github-code
6
19026984837
from django.shortcuts import render,redirect import json from django.conf import settings import redis from rest_framework.response import Response from django.http import HttpResponse from django.http import JsonResponse import requests from .forms import SomeForm from django.views.decorators.csrf import csrf_exempt from django.http import JsonResponse # Connect to our Redis instance redis_instance = redis.StrictRedis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=0) #view for get and post request @csrf_exempt def manage_items(request, *args, **kwargs): if request.method == 'POST': form = SomeForm(request.POST) if form.is_valid(): item=(form.cleaned_data['name']) item = eval(item) key = list(item.keys())[0] value = item[key] if redis_instance.exists(key): return redirect('failure') else: redis_instance.set(key, value) return redirect('success') else: form = SomeForm() return render(request, 'app1/Home.html') return render(request,'app1/Home.html') #view for post request success message def success(request): return render(request,'app1/success.html') #view for post request failure message def failure(request): return render(request,'app1/failure.html') #view for get request def get_single_key(request): if request.method == 'GET': keyword = request.GET.get('search') value = redis_instance.get(keyword) if value: data = {'key': keyword,'value': value.decode('utf-8'),'msg': 'success'} else: data = {'key': keyword,'value': None,'msg': 'Key Not found'} return render(request,'app1/Home.html',{"data":data}) #view for delete request def delete_key(request): if request.method == 'GET': keyword = request.GET.get('delete') result = redis_instance.delete(keyword) if result == 1: response = {'msg': f"{keyword} successfully deleted"} else: response = {'key': keyword,'value': None,'msg': 'Key Not found'} return render(request,'app1/Home.html',{"response":response})
nischithmk/freshworks_assignment
app1/views.py
views.py
py
2,317
python
en
code
0
github-code
6
1068937513
import numpy as np import gymnasium as gym from pendulum_model import PendulumModel import cvxpy as cp dt3g2l = 3 * 10 / (2 * 1) * 0.05 dt = 0.05 dt3ml2 = 3 * 0.05 / (1 * 1 * 1) class CVX_SQP: def __init__(self): self.N = 30 self.theta_cost_weight = 1 self.theta_dot_cost_weight = 0.1 self.u_cost_weight = 0.001 self.theta = np.zeros(self.N) self.theta_dot = np.zeros(self.N) self.u = np.zeros(self.N) self.lambda_vec = np.zeros(self.N*8+2) self.delta_theta = cp.Variable(self.N) self.delta_theta_dot = cp.Variable(self.N) self.delta_u = cp.Variable(self.N) self.slack_var_1 = cp.Variable(self.N) self.slack_var_2 = cp.Variable(self.N) self.target_value=[] def set_init_traj(self, model_log): self.theta = model_log['theta'] self.theta_dot = model_log['theta_dot'] self.u = model_log['u'] def solve_once(self): cost = 0 constr = [] constr += [self.delta_theta[0] == 0] constr += [self.delta_theta_dot[0] == 0] for i in range(0, self.N - 1): cost += self.theta_cost_weight * cp.square(self.delta_theta[i]) + \ self.theta_dot_cost_weight * cp.square(self.delta_theta_dot[i]) + \ self.u_cost_weight * cp.square(self.delta_u[i]) + \ 0.5 * self.lambda_vec[2+8*i] * cp.square(self.delta_theta[i]) * (-dt3g2l * np.sin(self.theta[i])) + \ self.theta_cost_weight * self.theta[i] * self.delta_theta[i] + \ self.theta_dot_cost_weight * self.theta_dot[i] * self.delta_theta_dot[i] + \ self.u_cost_weight * self.u[i] * self.delta_u[i] # 0.1*cp.square(self.slack_var_1[i])+0.1*cp.square(self.slack_var_2[i]) constr += [dt3g2l * np.cos(self.theta[i]) * self.delta_theta[i] + self.delta_theta_dot[i] + dt3ml2 * self.delta_u[i] - self.delta_theta_dot[i + 1] == -( -self.theta_dot[i + 1] + self.theta_dot[i] + dt3g2l * np.sin(self.theta[i]) + dt3ml2 * self.u[i] ), self.theta[i + 1] + self.delta_theta[i + 1] == self.theta[i] + self.delta_theta[i] + dt * ( self.theta_dot[i] + self.delta_theta_dot[i]), self.theta_dot[i] + self.delta_theta_dot[i] <= 8, self.theta_dot[i] + self.delta_theta_dot[i] >= -8, self.u[i] + self.delta_u[i] <= 2, self.u[i] + self.delta_u[i] >= -2, self.delta_u[i] <= 0.1, self.delta_u[i] >= -0.1, ] problem = cp.Problem(cp.Minimize(cost), constr) problem.solve() print("status:", problem.status) print("optimal value", problem.value) print("optimal var: delta_theta", self.delta_theta.value) print("optimal var: delta_theta_dot", self.delta_theta_dot.value) print("optimal var: delta_u", self.delta_u.value) self.target_value.append(problem.value) for i in range(len(problem.constraints)): self.lambda_vec[i] = problem.constraints[i].dual_value def solve(self): for i in range(30): self.solve_once() self.theta += self.delta_theta.value self.theta_dot += self.delta_theta_dot.value self.u += self.delta_u.value print(self.target_value) def make_env(name): gym_env = gym.make(name, render_mode="human") return gym_env def main(): env = make_env("Pendulum-v1") observation, info = env.reset(seed=1) print(observation) model = PendulumModel() model.reset(observation) print(model.state) model_log = {'theta': [], 'theta_dot': [], 'u': []} for i in range(30): model_log['theta'].append(model.state[0]) model_log['theta_dot'].append(model.state[1]) action = np.random.uniform(-2, 2, 1) # action=np.array([0]) model.step(action) model_log['u'].append(action) model_log['theta'] = np.hstack(model_log['theta']) model_log['theta_dot'] = np.hstack(model_log['theta_dot']) model_log['u'] = np.hstack(model_log['u']) cvx_sqp = CVX_SQP() cvx_sqp.set_init_traj(model_log) cvx_sqp.solve() control = cvx_sqp.u for i in range(200): observation, reward, terminated , truncated , info = env.step(control[i].reshape(1,)) print(observation, reward, control[i]) if __name__ == "__main__": main()
CarlDegio/SQP_Pendulum
cvx_main.py
cvx_main.py
py
4,654
python
en
code
0
github-code
6
16987276200
import socket import sys host = '' port = 9999 # Create a socket conect computers def create_socket(): try: global host, port, s s = socket.socket() except socket.error as e: print("Socket creation error: " + str(e)) # Binding the socket and listening for connections # create socket has to be called before this function def bind_socket(): try: global host, port, s print("Binding the port " + str(port)) s.bind((host, port)) s.listen(5) except socket.error as e: print("Socket binding error: " + str(e)) bind_socket() # function that acepts connections def socket_accept(): conn, address = s.accept() print("connection has been established with address: " + address[0] + " Port: " + str(address[1])) send_comands(conn) conn.close() # function that sends send comands to client def send_comands(conn): while True: cmd = input() if cmd == "quit": conn.close() s.close() sys.exit() str_encoded = str.encode(cmd) if len(str_encoded) > 0: conn.send(str_encoded) client_response = str(conn.recv(1024), "utf-8") print(client_response) def main(): create_socket() bind_socket() socket_accept() if __name__ == "__main__": main()
Pr3d2t0r/reverseShell
server.py
server.py
py
1,363
python
en
code
0
github-code
6
38238085136
import csv from PIL import Image import numpy as np import os X = [] index = 0 for img in os.listdir("base224/"): if img[-3:] == "jpg": image = Image.open("base224/" + img) img2 = image.transpose(Image.FLIP_LEFT_RIGHT) img2.save("base224flip/" + img, "JPEG", quality=224, optimize=True, progressive=True) index += 1 if index % 500 == 0: print(index)
PKUGoodSpeed/FashionAiContest
Kedan/flip_images.py
flip_images.py
py
395
python
en
code
3
github-code
6
70865858108
# -*- coding: utf-8 -*- """ Created on Wed Dec 18 21:54:40 2019 @author: dingxu """ from astropy.io import fits import numpy as np import matplotlib.pyplot as plt from photutils import DAOStarFinder from astropy.stats import sigma_clipped_stats from photutils import CircularAperture import cv2 #import scipy.signal as signal import os import math fitsname1 = 'E:\\BOOTES4\\20181118\\03088\\'+'20181118130518-952-RA.fits' fitsname2 = 'E:\\BOOTES4\\20181118\\03088\\'+'20181118130621-081-RA.fits' onehdu = fits.open(fitsname1) imgdata1 = onehdu[0].data #hdu[0].header copydata1 = np.copy(imgdata1) imgdata1 = np.float32(copydata1) oneimgdata = imgdata1 #oneimgdata = signal.medfilt2d(imgdata1, kernel_size=5) # 二维中值滤波 hang1,lie1 = oneimgdata.shape twohdu = fits.open(fitsname2) imgdata2 = twohdu[0].data #hdu[0].header copydata2 = np.copy(imgdata2) imgdata2 = np.float32(copydata2) twoimgdata = imgdata2 #twoimgdata = signal.medfilt2d(imgdata2, kernel_size=5) # 二维中值滤波 hang2,lie2 = twoimgdata.shape def adjustimage(imagedata, coffe): mean = np.mean(imagedata) sigma = np.std(imagedata) mindata = np.min(imagedata) maxdata = np.max(imagedata) Imin = mean - coffe*sigma Imax = mean + coffe*sigma mindata = max(Imin,mindata) maxdata = min(Imax,maxdata) return mindata,maxdata def displayimage(img, coff, i): minimg,maximg = adjustimage(img, coff) plt.figure(i) plt.imshow(img, cmap='gray', vmin = minimg, vmax = maximg) plt.savefig(str(i)+'.jpg') def findsource(img): mean, median, std = sigma_clipped_stats(img, sigma=3.0) daofind = DAOStarFinder(fwhm=8.5, threshold=5.*std) sources = daofind(img - median) tezhen = np.transpose((sources['xcentroid'], sources['ycentroid'])) #tezhen = np.transpose((sources['xcentroid'], sources['ycentroid'],sources['sharpness'])) positions = np.transpose((sources['xcentroid'], sources['ycentroid'])) return tezhen,positions ###实现找星### tezhen1,positions1 = findsource(oneimgdata) tezhen2,positions2 = findsource(twoimgdata) apertures1 = CircularAperture(positions1, r=5.) apertures2 = CircularAperture(positions2, r=5.) displayimage(oneimgdata,3,0) apertures1.plot(color='blue', lw=1.5, alpha=0.5) displayimage(twoimgdata,3,1) apertures2.plot(color='blue', lw=1.5, alpha=0.5) lenposition1 = len(positions1) lenposition2 = len(positions2) keyimg1 = np.zeros((lenposition1,128),dtype = np.float32) keyimg2 = np.zeros((lenposition2,128),dtype = np.float32) i = 0 j = 0 for i in range(lenposition1): keyimg1[i,0:2] = tezhen1[i,:] for j in range(lenposition2): keyimg2[j,0:2] = tezhen2[j,:] # FLANN 参数设计 FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params,search_params) matches = flann.knnMatch(keyimg1,keyimg2,k=2) lenpipei = 0 temp1 = [] temp2 = [] for i, (m1, m2) in enumerate(matches): if m1.distance < 0.75 * m2.distance:# 两个特征向量之间的欧氏距离,越小表明匹配度越高。 lenpipei = lenpipei+1 temp1.append(m1.queryIdx) temp2.append(m1.trainIdx) hmerge = np.hstack((oneimgdata, twoimgdata)) #水平拼接 displayimage(hmerge, 3, 2) srckp1 = [] srckp2 = [] for i in range(lenpipei): x = temp1[i] y = temp2[i] x10 = positions1[x][0] y10 = positions1[x][1] srckp1.append(x10) srckp1.append(y10) src_pts = np.float32(srckp1).reshape(-1,2) x11 = positions2[y][0] y11 = positions2[y][1] srckp2.append(x11) srckp2.append(y11) dst_pts = np.float32(srckp2).reshape(-1,2) #plt.plot(x10,y10,'*') #plt.plot(x11+lie1,y11,'*') plt.plot([x10,x11+lie1],[y10,y11],linewidth = 0.8) H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) newimg1 = cv2.warpPerspective(imgdata1, H, (lie1,hang1)) addimg = np.float32(newimg1) + np.float32(imgdata2) minusimg = np.float32(newimg1) - np.float32(imgdata2) displayimage(addimg, 3, 3) displayimage(minusimg, 3, 4) def witefits(data,name): os.remove(name + '.fits') grey=fits.PrimaryHDU(data) greyHDU=fits.HDUList([grey]) greyHDU.writeto(name + '.fits') witefits(newimg1,'one') witefits(imgdata2,'two') witefits(minusimg,'minusimg') tempmatrix = np.zeros((3,1),dtype = np.float64) tempmatrix[2] = 1 deltemp = [] for j in range(lenpipei): tempmatrix[0] = src_pts[j][0] tempmatrix[1] = src_pts[j][1] result = np.dot(H,tempmatrix) rx11 = result[0]/result[2] ry11 = result[1]/result[2] delcha = math.sqrt((rx11-dst_pts[j][0])**2 + (ry11-dst_pts[j][1])**2) deltemp.append(delcha) plt.figure(5) plt.plot(deltemp) print(np.mean(deltemp[15:40]))
dingxu6207/newcode
newB4SIFT.py
newB4SIFT.py
py
4,808
python
en
code
0
github-code
6
24739538824
#!/bin/python import smtplib, os, sys def printBanner(): print("*" * 50) print("* %s " % "Welcome to the SMTP Vrfy enum script.") print("* python %s %s " % (sys.argv[0], "to start execution.")) print("*" * 50) def getUserInput(msg="Default message: "): return raw_input(msg).strip() def pullFileList(file_path=""): file_contents = "" if os.path.isfile(file_path): with open(file_path, "r") as f: file_contents = f.read().splitlines() return file_contents def vrfyUser(user="", smtp_server=""): if user and smtp_server: if "250" not in str(smtp_server.vrfy(user)[0]): return False else: return True else: return None def main(): printBanner() server = getUserInput("SMTP Server to VRFY users: ") if server: smtp_server = smtplib.SMTP(server) else: print("Unable to connect to %s." % server) exit() valid_users = set() users = pullFileList(getUserInput("Path to users list: ")) users = set([user.strip() for user in users if user]) for user in users: if user and vrfyUser(user, smtp_server): print("%s is a valid user" % user) valid_users.add(user) else: print("%s is not a valid user or failed to connect." % user) print("\n\nValid Users:") print("\n".join(valid_users)) if __name__ == '__main__': try: main() except (KeyboardInterrupt): print("^C") exit()
idleninja/smtp_vrfy_enum.py
smtp_vrfy_enum.py
smtp_vrfy_enum.py
py
1,358
python
en
code
0
github-code
6
14536874544
# Callbacks from dash import Input, Output, State from dash.exceptions import PreventUpdate def sidebar_callbacks(app, df): @app.callback( [ Output("brand_dropdwn", 'options'), Output("brand_dropdwn", 'value') ], [ State("date_picker", "start_date"), State("date_picker", "end_date"), ], [ Input("company_dropdwn", 'value') ] ) def get_brand_options(start_date, end_date, company): if company is None or start_date is None or end_date is None: raise PreventUpdate else: get_brand_options.df2 = df[df['NombreDeProductor'] == company] brand_options = [{'label': b, 'value': b} for b in get_brand_options.df2.marca.unique()] return brand_options, None @app.callback( [Output("city_dropdwn", 'options'), Output("city_dropdwn", 'value')], [Input("brand_dropdwn", 'value')]) def get_city_list(marca): if marca is None: raise PreventUpdate else: get_city_list.df3 = get_brand_options.df2[get_brand_options.df2['marca'] == marca] city_options = [{'label': c, 'value': c} for c in get_city_list.df3.Municipio.unique()] return city_options, None @app.callback( [Output("zone_dropdwn", 'options'), Output("zone_dropdwn", 'value')], [Input("city_dropdwn", 'value')]) def get_zone_list(city): if city is None: raise PreventUpdate else: get_zone_list.df4 = get_city_list.df3[get_city_list.df3['Municipio'] == city] zone_options = [{'label': z, 'value': z} for z in get_zone_list.df4.Zona.unique()] return zone_options, None
jmalcovich21/ds4a_tiendareg
callbks/sidebar_calls.py
sidebar_calls.py
py
1,794
python
en
code
0
github-code
6
74883090107
N, M = map(int, input().split()) n_switches = [] switches = [] for i in range(M): ipt = list(map(int, input().split())) n_switches.append(int(ipt[0])) switches.append(ipt[1:]) p = list(map(int, input().split())) ans = 0 # print(n_switches) # print(switches) # print(p) # ランプの光り方のパターンだけ for i in range(2 ** N): ptn = bin(i)[2:].rjust(N, '0') allLight = True # 全ての電球が光っているかどうか(一つでも光っていなければそのパターンは無効) # 電球の数だけ for j in range(M): n_light = 0 # 電球に対するスウィッチの数だけ for k in range(n_switches[j]): # スウィッチが光っていれば if ptn[switches[j][k] - 1] == '1': n_light += 1 if n_light % 2 != p[j]: allLight = False break if allLight: ans += 1 print(ans)
kazuo-mu/at_coder_answers
ABC128/c_switches.py
c_switches.py
py
954
python
ja
code
0
github-code
6
41978223591
from pyspark.sql.types import StructType, StructField, StringType, DateType, FloatType from pyspark.sql import SparkSession from datetime import datetime from task_4 import get_min_or_max_by_ppu import pytest # create a spark session spark = SparkSession.builder.appName("task_0").getOrCreate() # create a test dataframe schema = StructType([ StructField('ndc11', StringType()), StructField('invoice_date', DateType()), StructField('invoice_cost', FloatType()), StructField('invoice_quan', FloatType()), StructField('bu_.customer_name', StringType()), ]) data = [(1, datetime(2020, 1, 15), 40.0, 10.0, 'John'), (1, datetime(2020, 1, 7), 50.0, 10.0, 'Ann'), (1, datetime(2020, 1, 22), 40.0, 2.0, 'Ann'), (1, datetime(2020, 2, 15), 20.0, 10.0, 'John'), (1, datetime(2020, 2, 7), 50.0, 10.0, 'Ann'), (1, datetime(2020, 2, 21), 40.0, 20.0, 'Mathew'), (2, datetime(2020, 2, 22), 50.0, 10.0, 'Carter'), (2, datetime(2020, 2, 22), 40.0, 8.0, 'Ann') ] test_trx_df = spark.createDataFrame(data, schema=schema) @pytest.mark.parametrize('rows, sort, expected_cost, expected_names', [(1, 'min', [40.0, 20.0, 40.0], ['Ann', 'John', 'John']), (1, 'max', [40.0, 50.0, 40.0], ['Ann', 'Ann', 'Ann'])]) def test_get_min_or_max_by_ppu(rows, sort, expected_cost, expected_names): result_df = get_min_or_max_by_ppu(test_trx_df, rows, sort) actual_result = result_df.collect() actual_invoice_cost = [row.invoice_cost for row in actual_result] actual_names = [row['bu_.customer_name'] for row in actual_result] assert actual_invoice_cost == expected_cost assert actual_names == expected_names
rkrvchnk/pyspark_tasks
tests/test_task_4.py
test_task_4.py
py
1,784
python
en
code
0
github-code
6
37430808138
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: TRS wcm 6.x版本infoview信息泄露 referer: http://www.wooyun.org/bugs/wooyun-2012-012957 author: Lucifer description: 文件infoview.do中导致信息泄露。 ''' import sys import requests class trs_wcm_infoview_disclosure_BaseVerify: def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50" } payload = "/wcm/infoview.do?serviceid=wcm6_user&MethodName=getOnlineUsers" vulnurl = self.url + payload try: req = requests.get(vulnurl, headers=headers, timeout=10, verify=False) if r"<USERNAME>" in req.text and r"<Users>" in req.text: return "[+]存在TRS wcm 6.x版本infoview信息泄露漏洞...(中危)\tpayload: "+vulnurl except: return "[-]connect timeout" if __name__ == "__main__": testVuln = trs_wcm_infoview_disclosure_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/cms/trs/trs_wcm_infoview_disclosure.py
trs_wcm_infoview_disclosure.py
py
1,115
python
en
code
1,626
github-code
6
74288480507
from django.urls import include, path from rest_framework.routers import DefaultRouter from seeds.api.views import AudioClipViewSet, BlobViewSet, SuiteViewSet, UserViewSet from seeds.views import index, register router = DefaultRouter() router.register(r"users", UserViewSet, basename="User") router.register(r"suites", SuiteViewSet, basename="Suite") router.register(r"blobs", BlobViewSet, basename="Blob") router.register(r"audioclips", AudioClipViewSet, basename="AudioClip") urlpatterns = [ path("", index, name="index"), path("register", register, name="register"), path("accounts/", include("django.contrib.auth.urls")), # api path("api/v1/", include(router.urls)), ]
jacobshandling/soundseeker
backend/seeds/urls.py
urls.py
py
697
python
en
code
0
github-code
6
8293013280
import cv2 import math path = "img/angle.jpg" img = cv2.imread(path) pointsList = [] def mousePoints(event, x, y, flags, params): if event == cv2.EVENT_LBUTTONDOWN: size = len(pointsList) if size != 0 and size % 3 != 0: cv2.line(img, tuple(pointsList[round((size-1)/3)*3]), (x,y), (0,0,255), 2) cv2.circle(img, (x,y), 5, (0,0,255), cv2.FILLED) pointsList.append([x,y]) def gradient(p1,p2): return (p2[1] - p1[1])/(p2[0]- p1[0]) def getAngle(pointList): p1, p2, p3 = pointList[-3:] m1 = gradient(p1, p2) m2 = gradient(p1, p3) angle_radiance = math.atan((m2-m1)/(1+(m2*m1))) angle_degrees = round(math.degrees(angle_radiance)) cv2.putText(img, str(angle_degrees), (p1[0]-40, p1[1]-20), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2) while True: if len(pointsList) % 3 == 0 and len(pointsList) != 0: getAngle(pointsList) cv2.imshow('Image', img) cv2.setMouseCallback('Image', mousePoints) if cv2.waitKey(1) & 0xFF == ord('q'): pointsList = [] img = cv2.imread(path)
Demohack2022/hacktoberfest2022
Contributors/angle-finder.py
angle-finder.py
py
1,095
python
en
code
8
github-code
6
29564634745
#!/usr/bin/python # -*- encoding: utf-8 -*- from api.thanos_http import xtthanos_user_http, request_data from api.http_api import ResultBase from common.logger import logger from common.get_signature import generate_auth_info def adjust_leverage(leverage,positionSide,symbol): '''调整杠杆倍数''' result = ResultBase() adjust_leverage = request_data.get('adjust_leverage') params = { 'leverage' : leverage, # 杠杆倍数 'positionSide': positionSide, # 持仓方向:LONG;SHORT 'symbol' : symbol # 交易对 } path = adjust_leverage.get('route') + adjust_leverage.get('path') method = adjust_leverage.get('method') headers = generate_auth_info(path=path, method=method,params=params,bodymod='x-www-form-urlencoded') res = xtthanos_user_http.adjust_leverage(headers=headers, params=params) result.status_code = res.status_code result.response = res.json() logger.info(f"调整杠杆倍数 ==>> 返回结果 ==>> {res.text}") return result
shiqilouyang/thanos_test
operation/contract/client/position/adjust_leverage.py
adjust_leverage.py
py
1,084
python
en
code
0
github-code
6
35571671171
import urllib.request as urllib2 #import the library used to query a website from bs4 import BeautifulSoup #import the Beautiful soup functions to parse the data returned from the website import pandas as pd #import pandas to convert list to data frame from openpyxl import load_workbook # INPUT VARIABLES SPECIFIED BY THE USER input1 = input('Please input the column in excel that you want modified (UPPERCASE ONLY): ') input2 = input('\nPlease count the number of the table from the web you would like to parse.\nFor example input 9 if you would like to read from the 9th table listed: ') input3 = input('\nPlease input the number of the column from the table on the web you would like to parse.\nFor example input 3 if you would like to read from the 3rd column: ') input4 = input('\nPlease input the number of the excel sheet that you would like to read from.\n For example from left to right the sheet tbas would be 1,2,3... accordingly: ') input5 = input('\nPlease input the name of the file you would like to read from (extension included).\n For example Verisk Model_Send_Excel_2.xlsx: ') input6 = input('\nPlease input the path where this folder is located on your computer (please include a "/" at the end of the path).\nFor Example ~/Documents/Git/Html_scraping_project/: ') input7 = input('\nPlease input the url containing the table that you want to parse.\nFor example http://www.verisk.com/press-releases/2017/february/verisk-analytics-inc-reports-fourth-quarter-2016-financial-results.html: ') print('\nThe file "temp.xlsx" has now been created in your directory...') #Convert user input into proper indexes def excelColumnToIndex(column): return ord(column) - 65 def tableFromWebToIndex(index): return int(index) - 1 def tableColumnFromWebToIndex(index): return int(index) - 1 def excelSheetToIndex(index): return int(index) - 1 #Set global variabes to correct values EXCEL_COLUMN_INDEX = excelColumnToIndex(input1) TABLE_FROM_WEB_INDEX = tableFromWebToIndex(input2) TABLE_FROM_WEB_COLUMN_INDEX = tableColumnFromWebToIndex(input3) EXCEL_SHEET_INDEX = excelSheetToIndex(input4) FILENAME = input5 PATH = input6 URL = input7 def parseTables(all_tables): parsed_tables = [] for i in range(len(all_tables)-1): table_body = all_tables[i].find('tbody') rows = table_body.find_all('tr') df_temp = [] for row in rows: cols =row.find_all('td') cols = [ele.text.strip() for ele in cols] df_temp.append([ele for ele in cols]) #get rid of empty values parsed_tables.append(df_temp) return parsed_tables def loadExcelDoc(sheet_index): # Open up Faton Excel file xl = pd.ExcelFile(PATH + FILENAME) sheets = xl.sheet_names ## open up the first sheet and print our data df = xl.parse(sheets[sheet_index],header=None) #row_index = df.iloc[0][0] #df = xl.parse(sheets[sheet_index]) #df = df.set_index(row_index) return df def main(): user_agent = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7' headers={'User-Agent':user_agent,} request=urllib2.Request(URL,None,headers) #The assembled request page = urllib2.urlopen(request) data = page.read() # The data #Parse the html in the 'page' variable, and store it in Beautiful Soup format soup = BeautifulSoup(data,'html.parser') #####gather all tables from page into array all_tables = soup.find_all("table", class_="table-blue") parsed_tables = parseTables(all_tables) df_from_web = pd.DataFrame(parsed_tables[TABLE_FROM_WEB_INDEX]) df = loadExcelDoc(EXCEL_SHEET_INDEX) wb = load_workbook(FILENAME, keep_vba = True) wb.get_sheet_names() active_sheet = wb.sheetnames[EXCEL_SHEET_INDEX] ws = wb[active_sheet] # Lets try to match the row index names from the web to the excel doc excel_labels = [i.value for i in ws['A']]# we assume that the labels are always in column A web_labels = df_from_web.loc[:,0] # we assume that the label is always in the first column of the dataframe for i,excel_label in enumerate(excel_labels): for j,web_label in enumerate(web_labels): if excel_label == web_label: #set the cell value in the excel file to match the value found from the web ws[i+1][EXCEL_COLUMN_INDEX].value = df_from_web.loc[j,TABLE_FROM_WEB_COLUMN_INDEX] wb.save("temp.xlsx") ######################################################################### # Lets run our script main()
rich-coleman-gh/Html_scraping_project
main.py
main.py
py
4,466
python
en
code
0
github-code
6
13083798365
# -*- coding: utf-8 -*- import re from setuptools import setup version = re.search( '^__version__\s*=\s*"(.*)"', open('pushscreeps/pushscreeps.py').read(), re.M ).group(1) with open("README.rst", "rb") as f: long_description = f.read().decode("utf-8") setup( name="pushscreeps", packages=["pushscreeps"], entry_points={ "console_scripts": ['pushscreeps = pushscreeps.pushscreeps:main'] }, version=version, description="Python3 script for pushing code to screeps", long_description=long_description, author="Mathias Bøhn Grytemark", author_email="[email protected]", url="https://github.com/mboehn/pushscreeps", install_requires=[ "requests", ], )
mboehn/pushscreeps
setup.py
setup.py
py
744
python
en
code
0
github-code
6
25032770232
#pip install dash dash-renderer dash-html-components dash-core-components plotly import dash import dash_core_components as dcc import dash_html_components as html app = dash.Dash() app.layout = html.Div(children=[ html.H1("Consumo dos clientes"), #separando elementos dos childs por virgula dcc.Dropdown( options=[ {'label': 'Fulano', 'value': "Fulano" }, #value = valor de id {'label': 'Sicrano', 'value': "Sicrano"} #value = valor de id ], value= '' #id do escolhido ), dcc.Graph(id="Fulano", figure = { #Consumo Mensal x Nome dos produtos "data": [{"x": ["pale ale", "weissbier", "itaipava", "skol"], "y": [0, 5, 4, 2], "type":"bar", "name": "Cervejas"}, {"x": ["expresso", "cappuccino", "mocaccino", "cafe4"], "y": [0, 0, 2, 1], "type":"line", "name": "Cafés"}, ], "layout": { "title": "Fulano" } }), dcc.Graph(id="Sicrano", figure = { #Consumo Mensal x Nome dos produtos "data": [{"x": ["pale ale", "weissbier", "itaipava", "skol"], "y": [0, 1, 1, 0], "type":"bar", "name": "Cervejas"}, {"x": ["expresso", "cappucino", "mocaccino", "cafe4"], "y": [7, 0, 3, 2], "type":"line", "name": "Cafés"} ], "layout": { "title": "Sicrano" } }) ]) if __name__ == '__main__': app.run_server(debug=True)
grupoflux/dashboard
dashboard.py
dashboard.py
py
1,527
python
en
code
0
github-code
6
24354798885
import os import torch import gym import gym_donkeycar import time from env.vae_env import VaeEnv from vae.vae import VAE from stable_baselines.sac.policies import MlpPolicy from stable_baselines import SAC VARIANTS_SIZE = 32 DONKEY_SIM_PATH = f"/Applications/donkey_sim.app/Contents/MacOS/sdsim" SIM_HOST="127.0.0.1" DONKEY_SIM_PORT=9091 image_channels = 3 if __name__ == '__main__': #model_path = 'vae-gt-80-160-10k-beta25-150.torch'#for 6 #model_path = 'vae-gt-80-160-18k-beta25-50-loss.torch' model_path = 'vae-gt-30k-50.torch' torch_device = 'cpu' vae = VAE(image_channels=image_channels, z_dim=VARIANTS_SIZE) vae.load_state_dict(torch.load(model_path, map_location=torch.device(torch_device))) vae.to(torch.device(torch_device)) vae.eval() env = gym.make('donkey-generated-track-v0', exe_path=DONKEY_SIM_PATH, host=SIM_HOST, port=DONKEY_SIM_PORT) env.viewer.set_car_config("donkey", (128, 128, 128), "masato-ka", 20) vae_env = VaeEnv(env, vae, device=torch_device) model = SAC.load('donkey8') obs = vae_env.reset() dones=False for step in range(10000): # 500ステップ実行 if step % 10 == 0: print("step: ", step) #if dones: # o = env.reset() # break action, _states = model.predict(obs) obs, rewards, dones, info = vae_env.step(action) # env.render() env.close()
masato-ka/sac-car-racing
run_donkey.py
run_donkey.py
py
1,406
python
en
code
0
github-code
6
35813238442
import typing from typing import Optional from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession, create_async_engine, async_sessionmaker from sqlalchemy.orm import declarative_base from backend.services.database import db if typing.TYPE_CHECKING: pass class Database: def __init__(self, url: str): self._url = url self._engine: Optional[AsyncEngine] = None self._db: Optional[declarative_base] = None self.session: Optional[AsyncSession] = None async def connect(self, *_: list, **__: dict) -> None: self._db = db self._engine = create_async_engine(url=self._url, echo=True) self.session = async_sessionmaker(bind=self._engine, class_=AsyncSession, expire_on_commit=False) async def disconnect(self, *_: list, **__: dict) -> None: if self._engine: await self._engine.dispose()
jendox/tg_bot
backend/services/database/database/base.py
base.py
py
883
python
en
code
0
github-code
6
34653033371
import math, os from dataclasses import dataclass import pygame from const import * @dataclass class Position: sector: int layer: int index: int x: float y: float def __init__(self, sector, layer, index): self.sector = sector self.layer = layer self.index = index sector_angle = self.sector * math.pi / 3 pos_angle = sector_angle + 2 * math.pi / 3 self.x = BOARD_CENTER[0] + 2 * (TILE_SIDE + TILE_PADDING) * (self.layer * math.sin(sector_angle) + self.index * math.sin(pos_angle)) self.y = BOARD_CENTER[1] - 2 * (TILE_SIDE + TILE_PADDING) * (self.layer * math.cos(sector_angle) + self.index * math.cos(pos_angle)) def to_map(self, offset: (float, float) = (0, 0)): return (self.x + offset[0], self.y + offset[1]) def to_coor(self): return (self.sector, self.layer, self.index) def circle_intersect(self, radius: float, pos: (float, float)): return math.sqrt((pos[0] - self.x)**2 + (pos[1] - self.y)**2) <= radius class Resource: textures: dict[str, list[pygame.Surface]] = {} fonts: dict[str, pygame.font.Font] = {} @staticmethod def init(): Resource.textures = { "town": [pygame.image.load(os.path.join("res", "images", "buildings", f"town{i}.png")) for i in range(NUM_PLAYERS)], "farm": [pygame.image.load(os.path.join("res", "images", "buildings", f"farm{i}.png")) for i in range(NUM_PLAYERS)], "soldier": [pygame.image.load(os.path.join("res", "images", "units", f"soldier{i}.png")) for i in range(NUM_PLAYERS)] } for items in Resource.textures.values(): for index, item in enumerate(items): items[index] = pygame.transform.scale(item, PIECE_SIZE).convert_alpha() Resource.fonts = { "system": pygame.font.SysFont("Calibri", 18), "systeml": pygame.font.SysFont("Calibri", 24), }
martin-hanekom/persian-silver-2
src_old/tools.py
tools.py
py
1,951
python
en
code
0
github-code
6
38890746457
import dialogflow_v2 as dialogflow import os path_key = "C:\wilasinee_pj\pj\python\ggthaluangbot-a6aed6caf27a.json" os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = path_key #***************************************************************** project_id = "thaluangbot-lhrv" session_id = "82d12b78-40b4-4028-a8f7-3a6a479cb2f7" language_code = "Thai-th" #**************************************************************** from flask import Flask ,request,abort from linebot import( LineBotApi , WebhookHandler ) from linebot.exceptions import( InvalidSignatureError ) from linebot.models import * import json #************************************** text = input("let's text : ") app = Flask(__name__) def detect_intent_texts(project_id, session_id, texts, language_code): session_client = dialogflow.SessionsClient() session = session_client.session_path(project_id, session_id) print('Session path: {}\n'.format(session)) #for text in texts: text = texts text_input = dialogflow.types.TextInput(text=text, language_code=language_code) query_input = dialogflow.types.QueryInput(text=text_input) response = session_client.detect_intent(session=session, query_input=query_input) return response.query_result.fulfillment_text text_re = detect_intent_texts(project_id,session_id,text,language_code) print(text_re)
wilasineePE/chatbot
index.py
index.py
py
1,363
python
en
code
0
github-code
6
41265462253
import pandas as pd from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split #datamızı okuduk df = pd.read_csv("C:\projects\intropattern\otu.csv") #verinin tranzpozasını alarak left ve rightları column hale getirdik. df=df.T X = df.iloc[:,1:] y = df.iloc[:,0] #test ve veri setlerimizi ayırdık X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # AdaBoost modelimizi oluşturduk.n_estimators, dosyanın bir parçası olarak eğitilen zayıf modellerin sayısını ifade eder. # Zayıf bir model, rastgele tahminden yalnızca biraz daha iyi olan ve tipik olarak tek bir güçlü modelden daha az doğru olan bir modeldir. model = AdaBoostClassifier(n_estimators=100) # Modeli oluşturduk model.fit(X_train, y_train) # Tahminde bulunuyoruz predictions = model.predict(X_test) accuracy = accuracy_score(y_test, predictions) print("Accuracy:", accuracy)
Haticenurcoskunn/Introduction-to-pattern-term-project
binary_classficiton/boosting_algorithms.py
boosting_algorithms.py
py
970
python
tr
code
0
github-code
6
38882380606
from django.db import models from imagekit.models import ImageSpecField from imagekit.processors import ResizeToFill class ImageList(models.Model): def __str__(self): return self.file_name file_path = models.CharField( verbose_name='ファイルパス', max_length=1000, blank=False, null=False, ) file_name = models.CharField( verbose_name='ファイル名', max_length=100, ) class ImageListDetail(models.Model): imageList = models.ForeignKey(ImageList, on_delete=models.CASCADE) def __str__(self): return self.file_path # ファイルパス(オリジナルの画像ファイルパス) file_path = models.CharField( verbose_name='ファイルパス', max_length=500, blank=False, null=False, ) # 画像データ image_data = models.ImageField( verbose_name='画像データ', upload_to='images/', ) # サムネイル thumbnail = ImageSpecField(source="image_data", processors=[ResizeToFill(150,150)], format='JPEG', options={'quality': 60} ) # 表示順 disp_order = models.IntegerField( verbose_name='表示順', blank=False, null=False, )
hogendan/SuzuImage
imagelist/models.py
models.py
py
1,294
python
ja
code
0
github-code
6
20843364345
import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader from torch.utils.data.sampler import WeightedRandomSampler import math from network import Network from losses import WalkerVisitLosses from input_pipeline import get_datasets from utils import evaluate, write_logs, make_weights_for_balanced_classes """ The purpose of this script is to train a simple CNN on mnist and svhn using associative domain adaptation. """ BATCH_SIZE = 200 NUM_EPOCHS = 15 EMBEDDING_DIM = 64 DELAY = 1000 # number of steps before turning on additional losses GROWTH_STEPS = 1000 # number of steps of linear growth of additional losses # so domain adaptation losses are in full strength after `DELAY + GROWTH_STEPS` steps BETA1, BETA2 = 1.0, 0.5 DEVICE = torch.device('cuda:0') SOURCE_DATA = 'svhn' # 'svhn' or 'mnist' SAVE_PATH = 'models/svhn_source' LOGS_PATH = 'logs/svhn_source.json' def train_and_evaluate(): svhn, mnist = get_datasets(is_training=True) source_dataset = svhn if SOURCE_DATA == 'svhn' else mnist target_dataset = mnist if SOURCE_DATA == 'svhn' else svhn weights = make_weights_for_balanced_classes(source_dataset, num_classes=10) sampler = WeightedRandomSampler(weights, len(weights)) source_loader = DataLoader(source_dataset, BATCH_SIZE, sampler=sampler, pin_memory=True, drop_last=True) target_loader = DataLoader(target_dataset, BATCH_SIZE, shuffle=True, pin_memory=True, drop_last=True) val_svhn, val_mnist = get_datasets(is_training=False) val_svhn_loader = DataLoader(val_svhn, BATCH_SIZE, shuffle=False, drop_last=False) val_mnist_loader = DataLoader(val_mnist, BATCH_SIZE, shuffle=False, drop_last=False) print('\nsource dataset is', SOURCE_DATA, '\n') num_steps_per_epoch = math.floor(min(len(svhn), len(mnist)) / BATCH_SIZE) embedder = Network(image_size=(32, 32), embedding_dim=EMBEDDING_DIM).to(DEVICE) classifier = nn.Linear(EMBEDDING_DIM, 10).to(DEVICE) model = nn.Sequential(embedder, classifier) model.train() optimizer = optim.Adam(lr=1e-3, params=model.parameters(), weight_decay=1e-3) scheduler = CosineAnnealingLR(optimizer, T_max=num_steps_per_epoch * NUM_EPOCHS - DELAY, eta_min=1e-6) cross_entropy = nn.CrossEntropyLoss() association = WalkerVisitLosses() text = 'e:{0:2d}, i:{1:3d}, classification loss: {2:.3f}, ' +\ 'walker loss: {3:.3f}, visit loss: {4:.4f}, ' +\ 'total loss: {5:.3f}, lr: {6:.6f}' logs, val_logs = [], [] i = 0 # iteration for e in range(NUM_EPOCHS): model.train() for (x_source, y_source), (x_target, _) in zip(source_loader, target_loader): x_source = x_source.to(DEVICE) x_target = x_target.to(DEVICE) y_source = y_source.to(DEVICE) x = torch.cat([x_source, x_target], dim=0) embeddings = embedder(x) a, b = torch.split(embeddings, BATCH_SIZE, dim=0) logits = classifier(a) usual_loss = cross_entropy(logits, y_source) walker_loss, visit_loss = association(a, b, y_source) if i > DELAY: growth = torch.clamp(torch.tensor((i - DELAY)/GROWTH_STEPS).to(DEVICE), 0.0, 1.0) loss = usual_loss + growth * (BETA1 * walker_loss + BETA2 * visit_loss) else: loss = usual_loss optimizer.zero_grad() loss.backward() optimizer.step() if i > DELAY: scheduler.step() lr = scheduler.get_lr()[0] log = (e, i, usual_loss.item(), walker_loss.item(), visit_loss.item(), loss.item(), lr) print(text.format(*log)) logs.append(log) i += 1 result1 = evaluate(model, cross_entropy, val_svhn_loader, DEVICE) result2 = evaluate(model, cross_entropy, val_mnist_loader, DEVICE) print('\nsvhn loss {0:.3f} and accuracy {1:.3f}'.format(*result1)) print('mnist loss {0:.3f} and accuracy {1:.3f}\n'.format(*result2)) val_logs.append((i,) + result1 + result2) torch.save(model.state_dict(), SAVE_PATH) write_logs(logs, val_logs, LOGS_PATH) train_and_evaluate()
TropComplique/associative-domain-adaptation
train.py
train.py
py
4,289
python
en
code
7
github-code
6
5707554791
''' activation_key module ''' from dataclasses import dataclass from sqlalchemy import Integer, Column, String, ForeignKey from databases.models.user import User from config.db import db @dataclass class ActivationKey(db.Model): # pylint: disable=too-few-public-methods ''' activation_key model class ''' id: int # pylint: disable=C0103 hash_key: str user_id: int __tablename__ = 'activation_key' id = Column(Integer, primary_key=True) hash_key = Column(String(255), unique=True, nullable=False) user_id = Column(Integer, ForeignKey(User.id), nullable=False) def __repr__(self): return f'ActivationKey {self.id}'
Dolzhenkov-Andrii/api
databases/models/activation_key.py
activation_key.py
py
681
python
en
code
0
github-code
6
12569604796
from rest_framework import permissions from rest_framework.permissions import BasePermission # this class will findout if the user has permission to delete or update the post , to check if logged in user and post owner is same or not class IsOwnerOrReadOnly(BasePermission): message = "you must be the owner of this post " def has_object_permission(self, request, view, obj): my_safe_method = ['PUT'] print(request.user.is_staff) print(request.user.is_superuser) if request.method in my_safe_method: return True return request.user.is_superuser or obj.author == request.user
Maniabhishek/ContentManagementSystem
appcms/api/permissions.py
permissions.py
py
639
python
en
code
0
github-code
6
30323378836
# # # import openpyxl import datetime import pandas as pd from Syne_TestReportMapping import EmpId_Name_Mapping def Emp_Syne_Client_Mapping(inputFormat,empID): Emp_Syne_Client_Mapping={} Emp_Syne_Client_Mapping[empID]=EmpID_Mapping(inputFormat,int(empID)) return Emp_Syne_Client_Mapping def EmpID_Mapping(inputFormat, empID): Map_Syne_UserName = "SYNECHRON USER NAME" Map_Client_UserName = "CLIENT USER NAME" Emp_Name_Mapping = {} dfFormatSyne = pd.read_excel(inputFormat, "Name_UserId_Mapping") df_new = dfFormatSyne[(dfFormatSyne['EMP ID'] == empID)] Syne_UserName_List = [x for x in df_new['SYNECHRON USER NAME'].tolist() if isinstance(x, str)] Client_UserName_List = [x for x in df_new['CLIENT USER NAME'].tolist() if isinstance(x, str)] for syne_Name, Client_Name in zip(Syne_UserName_List,Client_UserName_List): Emp_Name_Mapping[Map_Syne_UserName]=syne_Name Emp_Name_Mapping[Map_Client_UserName]=Client_Name return Emp_Name_Mapping
Aditi9109/TimeSheet
Emp_Syne_ClientMapping.py
Emp_Syne_ClientMapping.py
py
1,013
python
en
code
0
github-code
6
11779793970
import os from scripts.util import read_supertopics, SuperTopic, get_spottopics, DateFormat, read_temp_dist, smooth import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go BOOST = ['raw', # 0 'retweets', # 1 'replies', # 2 'likes', # 3 'retweets_likes', # 4 'replies_likes', # 5 'retweets_replies', # 6 'retweets_likes_replies' # 7 ][0] FILE_SUPERTOPICS = f'data/climate2/topics_big2/supertopics.csv' FILES_TEMP_DIST = { 'keep (majority)': f'data/climate2/topics_big2/temporal_keep_majority/daily/temporal_daily_{BOOST}_abs.json', 'fresh (majority)': f'data/climate2/topics_big2/temporal_fresh_majority/daily/temporal_daily_{BOOST}_abs.json' } FILE_TEMP_DIST = FILES_TEMP_DIST[['keep (majority)', 'fresh (majority)'][0]] BOUNDARY = '2020-03-01' SMOOTHING = 90 EPS = 1e-12 annotations = read_supertopics(FILE_SUPERTOPICS) td_groups, td_topics, td_counts = read_temp_dist(FILE_TEMP_DIST) supertopic_counts = [] st_summed_counts = [] st_topic_counts = [] for st in SuperTopic: t_counts = td_counts.T[annotations[:, st] > 0].sum(axis=0) supertopic_counts.append(t_counts) print(st.name, f'{t_counts.sum():,}') st_summed_counts.append(t_counts.sum()) st_topic_counts.append(sum(annotations[:, st] > 0)) supertopic_counts = np.array(supertopic_counts) BOUND = td_groups.index(BOUNDARY) sts_plot = [SuperTopic.COVID, SuperTopic.Causes, SuperTopic.Impacts, SuperTopic.Solutions, SuperTopic.POLITICS, SuperTopic.Movements, SuperTopic.Contrarian, # SuperTopic.Other, # SuperTopic.Interesting, SuperTopic.NotRelevant ] tweets_per_day = np.sum(td_counts, axis=1) tweets_per_topic = np.sum(td_counts, axis=0) st_plot_counts = supertopic_counts[sts_plot] st_plot_shares = st_plot_counts / tweets_per_day st_plot_shares_smooth = smooth(st_plot_shares, kernel_size=SMOOTHING) subplot_titles = [ f'{st.name}: {sum(annotations[:, st] > 0):,} topics with {int(st_summed_counts[sti]):,} tweets' for sti, st in enumerate(sts_plot) ] os.makedirs('data/climate2/figures/supertopic_shares_split/', exist_ok=True) for i, st in enumerate(sts_plot, start=1): fig = go.Figure(layout={'title': {'text': subplot_titles[i - 1]}}) n_st_tweets = td_counts.T[annotations[:, st] > 0].T n_st_tweets_per_day = n_st_tweets.sum(axis=1) subfig = [] subfig_y = smooth(n_st_tweets.T / (n_st_tweets_per_day + EPS), kernel_size=SMOOTHING) topic_nums = np.arange(annotations.shape[0])[annotations[:, st] > 0] for ti, (y_, yt) in enumerate(zip(subfig_y, n_st_tweets.T)): fig.add_trace(go.Scatter(x=td_groups, y=y_, mode='lines', stackgroup='one', name=f'Topic {topic_nums[ti]} ({int(yt.sum()):,} tweets)')) fig.update_layout(height=1000, width=1000) fig.write_html(f'data/climate2/figures/supertopic_shares_split/supertopic_{st.name}.html') os.makedirs('data/climate2/figures/supertopic_abs_split/', exist_ok=True) for i, st in enumerate(sts_plot, start=1): fig = go.Figure(layout={'title': {'text': subplot_titles[i - 1]}}) n_st_tweets = td_counts.T[annotations[:, st] > 0].T n_st_tweets_per_day = n_st_tweets.sum(axis=1) subfig_y = smooth(n_st_tweets.T, kernel_size=SMOOTHING) topic_nums = np.arange(annotations.shape[0])[annotations[:, st] > 0] for ti, (y_, yt) in enumerate(zip(subfig_y, n_st_tweets.T)): fig.add_trace(go.Scatter(x=td_groups, y=y_, mode='lines', stackgroup='one', name=f'Topic {topic_nums[ti]} ({int(yt.sum()):,} tweets)')) fig.update_layout(height=1000, width=1000) fig.write_html(f'data/climate2/figures/supertopic_abs_split/supertopic_{st.name}.html')
TimRepke/twitter-climate
code/figures/supertopics/stacked_area_charts_interactive_separate.py
stacked_area_charts_interactive_separate.py
py
3,987
python
en
code
1
github-code
6
3423610291
import json from functools import wraps from flask import request from flask.ext.restful import reqparse, Api, Resource from api_json_example import app # Database? We don't need no stinkin database db = {} api = Api(app) def accept_json(func): """ Decorator which returns a 406 Not Acceptable if the client won't accept JSON """ @wraps(func) def wrapper(*args, **kwargs): accept = api.mediatypes() if "*/*" in accept or "application/json" in accept: return func(*args, **kwargs) return {"message": "Request must accept JSON"}, 406 return wrapper def require_json(func): """ Decorator which returns a 415 Unsupported Media Type if the client sends something other than JSON """ @wraps(func) def wrapper(*args, **kwargs): if request.mimetype == "application/json": return func(*args, **kwargs) return {"message": "Request must contain JSON"}, 415 return wrapper class User(Resource): """ A simple RESTful API for a user """ parser = reqparse.RequestParser() method_decorators = [accept_json] def get(self, id): if not id in db: return {"message": "User not found"}, 404 return db[id], 200 @require_json def put(self, id): args = User.parser.parse_args() # Validate arguments if args["name"] and not isinstance(args["name"], basestring): return {"message": "Name must be a string"}, 422 if args["email"] and not isinstance(args["email"], basestring): return {"message": "Email address must be a string"}, 422 if (args["roles"] and not all(isinstance(role, basestring) for role in args["roles"])): return {"message": "Roles must be a strings"}, 422 if id in db: # Edit user # SMELL: Merging could be nicer if args["name"]: db[id]["name"] = args["name"] if args["email"]: db[id]["email"] = args["email"] if args["roles"]: db[id]["roles"] = args["roles"] return db[id], 201, {"Location": "/api/user/{}".format(id)} else: # Create new user if not args["name"] or not args["email"]: return {"message": "Must provide name and email"}, 422 db[id] = { "name": args["name"], "email": args["email"] } if args["roles"]: db[id]["roles"] = args["roles"] else: db[id]["roles"] = [] return db[id], 200 User.parser.add_argument("name", type=str, location="get_json") User.parser.add_argument("email", type=str, location="get_json") User.parser.add_argument("roles", type=list, location="get_json") api.add_resource(User, "/api/user/<int:id>")
sjl421/thinkful-python-code-examples
flask/api_json_example/api_json_example/api.py
api.py
py
2,931
python
en
code
null
github-code
6
6194000945
import os import json from dotenv import load_dotenv load_dotenv() chinput = os.getenv('CHATINPUT') chinput = '-1001799753250 -1001574745581 -1001322515232 -1001725353361' channel_input = [int(i) for i in chinput.split(' ')] choutput = os.getenv('CHATOUTPUT') choutput = '-1001802541407' channel_output = [int(i) for i in choutput.split(' ')] REDIS_URL = os.getenv('REDIS_URL') session = os.getenv("SESSION") api_hash = os.getenv("API_HASH") api_id = os.getenv("API_ID") sentry_env = os.getenv("SENTRY_ENV")
Lj6890/Forwarded
config.py
config.py
py
513
python
en
code
0
github-code
6
37431367661
# -*- coding: utf-8 -*- """ Created on Wed Dec 9 14:32:30 2020 @author: zjerma1 """ import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score from mlxtend.evaluate import bias_variance_decomp #data for final plot x_plot = np.linspace(0,1,num=10) y_plot = np.sin(2*np.pi*x_plot) j = 0 #y_avg = np.array[100] test_error = [] bias = [] variance = [] reg_parameter = [] bias_variance = [] for i in range(8): reg_parameter.append(10**i) reg_parameter.append(10**(-i)) reg_parameter.sort() print(reg_parameter) for j in reg_parameter: error_holder = 0 bias_holder = 0 variance_holder = 0 #generate training data x_data = np.linspace(0,1,num=10).reshape(-1,1) y_data = np.sin(2.0*np.pi*x_plot) + .1*np.random.randn(10) #print(x_plot) #print("\n") #print(y_data) #add polynomials to the model poly_features = PolynomialFeatures(degree=9,include_bias=False) #print(poly_features) #x_data is extened by including its powers x_data_poly = poly_features.fit_transform(x_data) #print(x_data_poly) #Ridge regression or Tikhonov regularizaiton ridge_reg = Ridge(alpha = j ,solver="cholesky") #fit the extended data set ridge_reg.fit(x_data_poly,y_data) #generate the test data set x_new = np.linspace(0,1,num = 100).reshape(100,1) x_new_poly = poly_features.transform(x_new) #print(x_new) #print('\n') #print(x_new_poly) #prediction on the test data set y_new = ridge_reg.predict(x_new_poly) error_holder, bias_holder, variance_holder = bias_variance_decomp(ridge_reg, x_data, y_data, x_new, y_new, loss = 'mse') #bias-variance decomp test_error.append(error_holder) bias.append(bias_holder) variance.append(variance_holder) for j in range(len(bias)): bias[j] = bias[j]**2 for j in range(len(bias)): bias_variance.append(bias[j] + variance[j]) print(test_error) print(bias_variance) plt.plot(reg_parameter, test_error, label = 'test error') plt.plot(reg_parameter, bias, label = 'bias') plt.plot(reg_parameter,variance, label = 'variance') plt.plot(reg_parameter, bias_variance, label = 'bias + variance') plt.xscale('log') plt.legend() plt.show
zjermain/Math-7390-Machine-Learning-Jermain
Homework 2-Bias Variance Decomp.py
Homework 2-Bias Variance Decomp.py
py
2,428
python
en
code
0
github-code
6
14594650315
import tensorflow as tf import pathlib import os import cv2 import numpy as np import tqdm import argparse class TFRecordsGAN: def __init__(self, image_dir="/volumes2/datasets/horse2zebra/trainA", tfrecord_path="data.tfrecords", img_pattern="*.jpgg"): """ :param data_dir: the path to iam directory containing the subdirectories of xml and lines from iam dataset :param tfrecord_path: """ self.image_dir = image_dir self.tfrecord_path = tfrecord_path self.img_pattern = img_pattern self.image_feature_description = \ { 'image': tf.io.FixedLenFeature([], tf.string) } @staticmethod def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) @staticmethod def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) @staticmethod def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _parse_example_function(self, example_proto): # Parse the input tf.Example proto using the dictionary above. return tf.io.parse_example(example_proto, self.image_feature_description) def image_example(self, image_string): feature = { 'image': self._bytes_feature(image_string) } return tf.train.Example(features=tf.train.Features(feature=feature)) def write_tfrecords(self, training=False, dataset_name=""): img_paths = sorted(pathlib.Path(self.image_dir).rglob(self.img_pattern)) with tf.io.TFRecordWriter(self.tfrecord_path) as writer: for img_path in tqdm.tqdm(img_paths): img_string = open(str(img_path), 'rb').read() tf_example = self.image_example(img_string) writer.write(tf_example.SerializeToString()) if training: import json if os.path.exists('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))): with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))) as f: data = json.load(f) if dataset_name in list(data.keys()): print("Dataset {} value was already present but value was updated".format(dataset_name)) else: data = {} data[dataset_name] = len(img_paths) with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path)), 'w') as json_file: json.dump(data, json_file) def decode_strings(self, record): images = tf.io.decode_jpeg(record['image'], 3) return images def read_tfrecords(self): """ Read iam tfrecords :return: Returns an image """ raw_dataset = tf.data.TFRecordDataset(self.tfrecord_path) parsed_dataset = raw_dataset.map(self._parse_example_function) decoded_dataset = parsed_dataset.map(self.decode_strings) return decoded_dataset if __name__ == "__main__": args = argparse.ArgumentParser(description="Create tfrecords with the following settings") args.add_argument("-d", "--dataset", type=str, default=f"no_name_{str(np.random.randint(0, 20000))}", help="Name a dataset to be later used with seg_train script, highly recommended to have one") args.add_argument("--img_dir", "-i", type=str, required=True, help="Directory containing the dataset images") args.add_argument("--save_dir", "-s", type=str, required=True, help="Directory to save the tfrecords") args.add_argument("--img_pat", "-i_p", type=str, default="*.jpg", help="Image pattern/extension in directory, " "glob regex convention") args.add_argument("--visualize", "-v", action="store_true", help="Show 4 samples after creation. As visual check.") args.add_argument("--eval", "-e", action="store_true", help="Set to true in case the records are for evaluation") args = args.parse_args() dataset_name = args.dataset os.makedirs(args.save_dir, exist_ok=True) record_type = "train" if not args.eval else "val" records = TFRecordsGAN(image_dir=f"{args.img_dir}", tfrecord_path=f"{args.save_dir}/{dataset_name}_{record_type}.tfrecords", img_pattern=args.img_pat) records.write_tfrecords(training=True, dataset_name=dataset_name) if not args.eval else records.write_tfrecords() if args.visualize: image_dataset = records.read_tfrecords().batch(1).take(4) cv2.namedWindow("img", 0) for image_features in image_dataset: img = image_features[0, ..., ::-1] cv2.imshow("img", img.numpy()) cv2.waitKey()
AhmedBadar512/Badr_AI_Repo
utils/create_gan_tfrecords.py
create_gan_tfrecords.py
py
5,294
python
en
code
2
github-code
6
21043710164
from datetime import datetime, time from typing import Dict # getting info from administrator def getting_payload() -> Dict: """ this function takes nothing and return a dictionary of the users answers :return: id, company_name, departure_time, arrival_time """ temp_id = int(input("Enter the new plane ID(int):\n")) temp_company_name = input("Enter the company name:\n") # making sure time is in the correct format try: temp_departure_time = input("Enter the departure time => (hh:mm:ss) example, (14:05:20):\n") temp_departure_time = datetime.strptime(temp_departure_time, "%H:%M:%S").time() except ValueError: print("You have entered time in the wrong Format, the system will assign the time to\n" "1:1:1 instead. Feel free to modify the departure time in plane modification") temp_departure_time = time(1, 1, 1) # making sure time is in the correct format try: temp_arrival_time = input("Enter the arrival time => (hh:mm:ss) example, (14:05:20):\n") temp_arrival_time = datetime.strptime(temp_arrival_time, "%H:%M:%S").time() except ValueError: print("You have entered time in the wrong Format, the system will assign the time to\n" "1:1:1 instead. Feel free to modify the arrival time in plane modification") temp_arrival_time = time(1, 1, 1) return { "id": temp_id, "company_name": temp_company_name, "departure_time": temp_departure_time, "arrival_time": temp_arrival_time }
Mohamad-Hachem/Airplane_Booking_System
utils/getting_airplane_information.py
getting_airplane_information.py
py
1,567
python
en
code
0
github-code
6
21617134732
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # SPDX-License-Identifier: GPL-3.0 # # GNU Radio Python Flow Graph # Title: GPS Simulator Playback - 10Msps # Author: Damien Dusha # GNU Radio version: 3.8.1.0 from gnuradio import analog from gnuradio import blocks import pmt from gnuradio import gr from gnuradio.filter import firdes import sys import signal from argparse import ArgumentParser from gnuradio.eng_arg import eng_float, intx from gnuradio import eng_notation from gnuradio import uhd import time class gnss_sim_playback_10MHz_nogui(gr.top_block): def __init__(self): gr.top_block.__init__(self, "GPS Simulator Playback - 10Msps") ################################################## # Variables ################################################## self.samp_rate = samp_rate = 10e6 self.freq = freq = 1575.42e6 ################################################## # Blocks ################################################## self.uhd_usrp_sink_0 = uhd.usrp_sink( ",".join(("", "")), uhd.stream_args( cpu_format="fc32", args='', channels=list(range(0,1)), ), '', ) self.uhd_usrp_sink_0.set_clock_source('external', 0) self.uhd_usrp_sink_0.set_center_freq(freq, 0) self.uhd_usrp_sink_0.set_gain(0, 0) self.uhd_usrp_sink_0.set_antenna('TX/RX', 0) self.uhd_usrp_sink_0.set_samp_rate(samp_rate) # No synchronization enforced. self.blocks_multiply_const_vxx_1_1 = blocks.multiply_const_cc(1.0) self.blocks_multiply_const_vxx_1_0 = blocks.multiply_const_cc(0.25) self.blocks_multiply_const_vxx_1 = blocks.multiply_const_cc(1.0 / (2**12)) self.blocks_interleaved_short_to_complex_0 = blocks.interleaved_short_to_complex(False, False) self.blocks_file_source_0 = blocks.file_source(gr.sizeof_short*1, '/home/damien/bitbucket/gnss-sim/gpssim.bin', False, 0, 0) self.blocks_file_source_0.set_begin_tag(pmt.PMT_NIL) self.blocks_add_xx_0 = blocks.add_vcc(1) self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, 1.0, 0) ################################################## # Connections ################################################## self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx_0, 1)) self.connect((self.blocks_add_xx_0, 0), (self.blocks_multiply_const_vxx_1_0, 0)) self.connect((self.blocks_file_source_0, 0), (self.blocks_interleaved_short_to_complex_0, 0)) self.connect((self.blocks_interleaved_short_to_complex_0, 0), (self.blocks_multiply_const_vxx_1, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.blocks_multiply_const_vxx_1_1, 0)) self.connect((self.blocks_multiply_const_vxx_1_0, 0), (self.uhd_usrp_sink_0, 0)) self.connect((self.blocks_multiply_const_vxx_1_1, 0), (self.blocks_add_xx_0, 0)) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate) def get_freq(self): return self.freq def set_freq(self, freq): self.freq = freq self.uhd_usrp_sink_0.set_center_freq(self.freq, 0) def main(top_block_cls=gnss_sim_playback_10MHz_nogui, options=None): tb = top_block_cls() def sig_handler(sig=None, frame=None): tb.stop() tb.wait() sys.exit(0) signal.signal(signal.SIGINT, sig_handler) signal.signal(signal.SIGTERM, sig_handler) tb.start() tb.wait() if __name__ == '__main__': main()
damiendusha/gnss-sim
gnuradio/gnss_sim_playback_10MHz_nogui.py
gnss_sim_playback_10MHz_nogui.py
py
3,767
python
en
code
3
github-code
6
24526724853
import json from arXivo.models import ArXivoUser from arXivo.serializers import ArXivoUserSerializer, SearchSerializer from arXivo.utils import get_tokens_for_user from django.conf import settings from django.contrib.auth import authenticate from django.http.response import JsonResponse from django.middleware import csrf from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework_simplejwt.tokens import RefreshToken class RegisterView(APIView): serializer_class = ArXivoUserSerializer def post(self, request, format=None): serializer = self.serializer_class(data=request.data) if serializer.is_valid(): serializer.save() csrf.get_token(request) return JsonResponse( {"message": "User Created Successfully"}, status=status.HTTP_200_OK ) else: return JsonResponse( {"message": "There was an error!", "error": serializer.errors}, status=status.HTTP_400_BAD_REQUEST, ) class LoginView(APIView): def post(self, request, format=None): data = request.data response = Response() username = data.get("username", None) user = ArXivoUser.objects.filter(username=username) if not user.exists(): return Response( {"error": "Username does not exist!!"}, status=status.HTTP_403_FORBIDDEN, ) password = data.get("password", None) user = authenticate(username=username, password=password) if user is not None: if user.is_active: data = get_tokens_for_user(user) response.set_cookie( key=settings.SIMPLE_JWT["AUTH_COOKIE"], value=data["access"], expires=settings.SIMPLE_JWT["ACCESS_TOKEN_LIFETIME"], secure=settings.SIMPLE_JWT["AUTH_COOKIE_SECURE"], httponly=settings.SIMPLE_JWT["AUTH_COOKIE_HTTP_ONLY"], samesite=settings.SIMPLE_JWT["AUTH_COOKIE_SAMESITE"], ) response.set_cookie( key="refresh_token", value=data["refresh"], expires=settings.SIMPLE_JWT["REFRESH_TOKEN_LIFETIME"], secure=settings.SIMPLE_JWT["AUTH_COOKIE_SECURE"], httponly=settings.SIMPLE_JWT["AUTH_COOKIE_HTTP_ONLY"], samesite=settings.SIMPLE_JWT["AUTH_COOKIE_SAMESITE"], ) csrf.get_token(request) response.data = {"message": "Login successfully", "data": data} return response else: return Response( {"error": "This account is not active!!"}, status=status.HTTP_403_FORBIDDEN, ) else: return Response( {"error": "Invalid Password!!"}, status=status.HTTP_403_FORBIDDEN, ) class RefreshView(APIView): permission_classes = [IsAuthenticated] def post(self, request, format=None): refresh = RefreshToken(request.COOKIES.get("refresh_token")) response = Response(status=status.HTTP_200_OK) response.set_cookie( key=settings.SIMPLE_JWT["AUTH_COOKIE"], value=refresh.access_token, expires=settings.SIMPLE_JWT["ACCESS_TOKEN_LIFETIME"], secure=settings.SIMPLE_JWT["AUTH_COOKIE_SECURE"], httponly=settings.SIMPLE_JWT["AUTH_COOKIE_HTTP_ONLY"], samesite=settings.SIMPLE_JWT["AUTH_COOKIE_SAMESITE"], ) response.set_cookie( key=settings.SIMPLE_JWT["REFRESH_COOKIE"], value=str(refresh), expires=settings.SIMPLE_JWT["REFRESH_TOKEN_LIFETIME"], secure=settings.SIMPLE_JWT["AUTH_COOKIE_SECURE"], httponly=settings.SIMPLE_JWT["AUTH_COOKIE_HTTP_ONLY"], samesite=settings.SIMPLE_JWT["AUTH_COOKIE_SAMESITE"], ) response.data = {"message": "Tokens Refreshed Successfully"} return response class LogoutView(APIView): permission_classes = [IsAuthenticated] def post(self, request, format=None): response = Response(status=status.HTTP_200_OK) response.delete_cookie(settings.SIMPLE_JWT["AUTH_COOKIE"]) response.delete_cookie(settings.SIMPLE_JWT["REFRESH_COOKIE"]) response.delete_cookie(settings.SIMPLE_JWT["CSRF_COOKIE"]) response.data = {"message": "Logged Out Successfully"} return response class SearchView(APIView): permission_classes = [IsAuthenticated] serializer_class = SearchSerializer def post(self, request, format=None): users = ArXivoUser.objects.filter( username__icontains=request.data["search_term"] ) serializer = self.serializer_class(users, many=True) return JsonResponse({"data": serializer.data}, status=status.HTTP_200_OK) class GetNotificationView(APIView): permission_classes = [IsAuthenticated] def get(self, request, format=None): notif_data = request.user.notification_array notif_pyobj = json.loads(notif_data)["data"] for _notif in notif_pyobj: _notif["seen"] = True request.user.notification_array = json.dumps({"data": notif_pyobj}) request.user.save() return JsonResponse(notif_data, status=status.HTTP_200_OK, safe=False) class SendNotificationView(APIView): permission_classes = [IsAuthenticated] def post(self, request, format=None): other_user = ArXivoUser.objects.get(username=request.data["send_to"]) notif_data = { "filename": request.data["filename"], "address": request.data["address"], "key": request.data["key"], "file_type": request.data["file_type"], "seen": False, "sender": request.user.username, } prev_data = json.loads(other_user.notification_array) prev_data["data"].append(notif_data) other_user.notification_array = json.dumps(prev_data) other_user.save() data = {"reponse": "good_response"} return JsonResponse(data, status=status.HTTP_200_OK)
DebadityaPal/arXivo
backend/arXivo/views.py
views.py
py
6,438
python
en
code
1
github-code
6
23715644007
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models from event.models import Event # Create your models here. class Episode(models.Model): event = models.ForeignKey( Event, on_delete=models.CASCADE, related_name='episode') session_id = models.CharField(max_length=200) archive_id = models.CharField(max_length=200)
emilarran/channelshowdown
channelshowdown/livestream/models.py
models.py
py
396
python
en
code
0
github-code
6
30861890052
#!/usr/bin/env python # Given an integer k and a string s, find the length of the longest substring # that contains at most k distinct characters. # # For example, given s = "abcba" and k = 2, the longest substring with k distinct # characters is "bcb". def longest_substr(s, k): chars_met = 0 chars = [0] * 26 substr = "" tmp = "" for i in range(0, len(s)): index = ord(s[i]) - ord('a') if chars_met < k: substr += s[i] if chars[index] == 0: chars[index] = 1 chars_met += 1 elif chars_met == k and chars[index] == 1: substr += s[i] else: break if len(s[1:]) > len(substr): tmp = longest_substr(s[1:], k) return substr if len(substr) > len(tmp) else tmp assert longest_substr("abcba", 2) == "bcb" assert longest_substr("abcdeff", 2) == "eff" assert longest_substr("abcdffjtheef", 5) == "ffjtheef" print("[+] All tests done.")
mdolmen/daily_coding_problem
012-longest-substring/solution.py
solution.py
py
987
python
en
code
0
github-code
6
35395868914
from django.db import models from django.urls import reverse from phone_field import PhoneField # Create your models here. class Department(models.Model): """Отдел компании""" name = models.CharField(max_length=200, verbose_name="Название отдела") class Meta: db_table = 'department' ordering = ['name'] def __str__(self): return self.name class Employee(models.Model): """Сотрудник компании""" first_name = models.CharField(max_length=50, verbose_name='Имя') middle_name = models.CharField(max_length=50, verbose_name='Отчество') last_name = models.CharField(max_length=50, verbose_name='Фамилия') birthday = models.DateField(verbose_name='Дата рождения') email = models.EmailField(verbose_name='e-mail') phone = PhoneField(verbose_name='Телефон') begin_work = models.DateField(verbose_name='Начало работы') end_work = models.DateField( blank=True, null=True, help_text='Введите дату увольнения сотрудника', verbose_name='Окончание работы' ) position = models.CharField(max_length=200, verbose_name='Должность') department = models.ForeignKey( Department, on_delete=models.SET_NULL, blank=True, null=True, verbose_name='Отдел') class Meta: db_table = 'employee' ordering = ['last_name', 'first_name', 'middle_name'] def get_absolute_url(self): return reverse('employee-detail', args=[str(self.id)]) def display_last_name(self): return '{0} {1} {2}'.format(self.last_name, self.first_name, self.middle_name) display_last_name.short_description = 'Ф.И.О.' def __str__(self): return self.display_last_name()
zarmoose/eastwood_test
employees/models.py
models.py
py
1,894
python
en
code
0
github-code
6
26214436184
import random when = ["a few years ago", "once upon a time", "last night", "a long time ago", "yesterday"] who = [" rabbit", "squirrel", "turtle", "dog", "cat"] name = ["Ali", "Stan", "Tanisha", "Sehej", "Ram"] where = ["India", "Germany", "Italy", "Romania"] went = ["school", "seminar", "class", "laundry", "restraunt"] happened = ["made new friends", "wrote a book", "had dinner", "did chores"] print(random.choice(when)+ " , " + random.choice(who) + " named " + random.choice(name) + " lived in " + random.choice(where) + " went to a " +random.choice(went) + " and " + random.choice(happened) )
sehej3/Random-Story-Generator
randomStoryGenerator.py
randomStoryGenerator.py
py
613
python
en
code
0
github-code
6
35368433605
import sys def priority(item): p = ord(item) - ord("a") + 1 if p > 0 and p <= 26: return p return ord(item) - ord("A") + 27 total = 0 for line in sys.stdin: rucksack = line.rstrip() compartment_size = len(rucksack) seen = set() for i, item in enumerate(rucksack): if i < compartment_size / 2: seen.add(item) else: if item in seen: total += priority(item) print(priority(item)) break print(total)
tynovsky/advent-of-code-2022
03a.py
03a.py
py
523
python
en
code
0
github-code
6
30354483311
import sys import vtk from vtk.util import vtkConstants try: from vtk.util import numpy_support except ImportError: numpy_support = None import numpy # Enthought library imports. try: from tvtk.array_ext import set_id_type_array HAS_ARRAY_EXT = True except ImportError: HAS_ARRAY_EXT = False # Useful constants for VTK arrays. VTK_ID_TYPE_SIZE = vtk.vtkIdTypeArray().GetDataTypeSize() if VTK_ID_TYPE_SIZE == 4: ID_TYPE_CODE = numpy.int32 elif VTK_ID_TYPE_SIZE == 8: ID_TYPE_CODE = numpy.int64 VTK_LONG_TYPE_SIZE = vtk.vtkLongArray().GetDataTypeSize() if VTK_LONG_TYPE_SIZE == 4: LONG_TYPE_CODE = numpy.int32 ULONG_TYPE_CODE = numpy.uint32 elif VTK_LONG_TYPE_SIZE == 8: LONG_TYPE_CODE = numpy.int64 ULONG_TYPE_CODE = numpy.uint64 BASE_REFERENCE_COUNT = vtk.vtkObject().GetReferenceCount() def getbuffer(array): return getattr(numpy, 'getbuffer', memoryview)(array) def set_id_type_array_py(id_array, out_array): """Given a 2D Int array (`id_array`), and a contiguous 1D numarray array (`out_array`) having the correct size, this function sets the data from `id_array` into `out_array` so that it can be used in place of a `vtkIdTypeArray` in order to set the cells of a `vtkCellArray`. Note that if `shape = id_array.shape` then `size(out_array) == shape[0]*(shape[1] + 1)` should be true. If not you'll get an `AssertionError`. `id_array` need not be contiguous but `out_array` must be. """ assert numpy.issubdtype(id_array.dtype, numpy.signedinteger) assert out_array.flags.contiguous == 1, \ "out_array must be contiguous." shp = id_array.shape assert len(shp) == 2, "id_array must be a two dimensional array." sz = out_array.size e_sz = shp[0]*(shp[1]+1) assert sz == e_sz, \ "out_array size is incorrect, expected: %s, given: %s" % (e_sz, sz) # we are guaranteed contiguous, so these just change the view (no copy) out_shp = out_array.shape out_array.shape = (shp[0], shp[1] + 1) out_array[:, 0] = shp[1] out_array[:, 1:] = id_array out_array.shape = out_shp if not HAS_ARRAY_EXT: set_id_type_array = set_id_type_array_py ###################################################################### # The array cache. ###################################################################### class ArrayCache(object): """Caches references to numpy arrays that are not copied but views of which are converted to VTK arrays. The caching prevents the user from deleting or resizing the numpy array after it has been sent down to VTK. The cached arrays are automatically removed when the VTK array destructs.""" ###################################################################### # `object` interface. ###################################################################### def __init__(self): # The cache. self._cache = {} def __len__(self): return len(self._cache) def __contains__(self, vtk_arr): key = vtk_arr.__this__ return key in self._cache ###################################################################### # `ArrayCache` interface. ###################################################################### def add(self, vtk_arr, np_arr): """Add numpy array corresponding to the vtk array to the cache.""" key = vtk_arr.__this__ cache = self._cache # Setup a callback so this cached array reference is removed # when the VTK array is destroyed. Passing the key to the # `lambda` function is necessary because the callback will not # receive the object (it will receive `None`) and thus there # is no way to know which array reference one has to remove. vtk_arr.AddObserver( 'DeleteEvent', lambda o, e, key=key: self._remove_array(key) ) # Cache the array cache[key] = np_arr def get(self, vtk_arr): """Return the cached numpy array given a VTK array.""" key = vtk_arr.__this__ return self._cache[key] ###################################################################### # Non-public interface. ###################################################################### def _remove_array(self, key): """Private function that removes the cached array. Do not call this unless you know what you are doing.""" try: del self._cache[key] except KeyError: pass ###################################################################### # Setup a global `_array_cache`. The array object cache caches all the # converted numpy arrays that are not copied. This prevents the user # from deleting or resizing the numpy array after it has been sent down # to VTK. ###################################################################### _dummy = None # This makes the cache work even when the module is reloaded. for name in ['array_handler', 'tvtk.array_handler']: if name in sys.modules: mod = sys.modules[name] if hasattr(mod, '_array_cache'): _dummy = mod._array_cache del mod break if _dummy: _array_cache = _dummy else: _array_cache = ArrayCache() del _dummy def get_vtk_array_type(numeric_array_type): """Returns a VTK typecode given a numpy array.""" # This is a Mapping from numpy array types to VTK array types. _arr_vtk = { numpy.dtype('S'): vtkConstants.VTK_UNSIGNED_CHAR, # numpy.character numpy.dtype(numpy.uint8): vtkConstants.VTK_UNSIGNED_CHAR, numpy.dtype(numpy.uint16): vtkConstants.VTK_UNSIGNED_SHORT, numpy.dtype(numpy.int8): vtkConstants.VTK_CHAR, numpy.dtype(numpy.int16): vtkConstants.VTK_SHORT, numpy.dtype(numpy.int32): vtkConstants.VTK_INT, numpy.dtype(numpy.uint32): vtkConstants.VTK_UNSIGNED_INT, numpy.dtype(numpy.uint64): vtkConstants.VTK_UNSIGNED_LONG, numpy.dtype(numpy.float32): vtkConstants.VTK_FLOAT, numpy.dtype(numpy.float64): vtkConstants.VTK_DOUBLE, numpy.dtype(numpy.complex64): vtkConstants.VTK_FLOAT, numpy.dtype(numpy.complex128): vtkConstants.VTK_DOUBLE, } _extra = { numpy.dtype(ID_TYPE_CODE): vtkConstants.VTK_ID_TYPE, numpy.dtype(ULONG_TYPE_CODE): vtkConstants.VTK_UNSIGNED_LONG, numpy.dtype(LONG_TYPE_CODE): vtkConstants.VTK_LONG, } for t in _extra: if t not in _arr_vtk: _arr_vtk[t] = _extra[t] try: return _arr_vtk[numeric_array_type] except KeyError: for key in _arr_vtk: if numpy.issubdtype(numeric_array_type, key): return _arr_vtk[key] raise TypeError( "Couldn't translate array's type to VTK %s" % numeric_array_type ) def get_vtk_to_numeric_typemap(): """Returns the VTK array type to numpy array type mapping.""" _vtk_arr = { vtkConstants.VTK_BIT: numpy.bool_, vtkConstants.VTK_CHAR: numpy.int8, vtkConstants.VTK_SIGNED_CHAR: numpy.int8, vtkConstants.VTK_UNSIGNED_CHAR: numpy.uint8, vtkConstants.VTK_SHORT: numpy.int16, vtkConstants.VTK_UNSIGNED_SHORT: numpy.uint16, vtkConstants.VTK_INT: numpy.int32, vtkConstants.VTK_UNSIGNED_INT: numpy.uint32, vtkConstants.VTK_LONG: LONG_TYPE_CODE, vtkConstants.VTK_UNSIGNED_LONG: ULONG_TYPE_CODE, vtkConstants.VTK_LONG_LONG: numpy.int64, vtkConstants.VTK_ID_TYPE: ID_TYPE_CODE, vtkConstants.VTK_FLOAT: numpy.float32, vtkConstants.VTK_DOUBLE: numpy.float64 } return _vtk_arr def get_numeric_array_type(vtk_array_type): """Returns a numpy array typecode given a VTK array type.""" return get_vtk_to_numeric_typemap()[vtk_array_type] def get_sizeof_vtk_array(vtk_array_type): """Returns the size of a VTK array type.""" _size_dict = { vtkConstants.VTK_BIT: 1, vtkConstants.VTK_CHAR: 1, vtkConstants.VTK_SIGNED_CHAR: 1, vtkConstants.VTK_UNSIGNED_CHAR: 1, vtkConstants.VTK_SHORT: 2, vtkConstants.VTK_UNSIGNED_SHORT: 2, vtkConstants.VTK_INT: 4, vtkConstants.VTK_UNSIGNED_INT: 4, vtkConstants.VTK_LONG: VTK_LONG_TYPE_SIZE, vtkConstants.VTK_UNSIGNED_LONG: VTK_LONG_TYPE_SIZE, vtkConstants.VTK_LONG_LONG: 8, vtkConstants.VTK_ID_TYPE: VTK_ID_TYPE_SIZE, vtkConstants.VTK_FLOAT: 4, vtkConstants.VTK_DOUBLE: 8 } return _size_dict[vtk_array_type] def create_vtk_array(vtk_arr_type): """Internal function used to create a VTK data array from another VTK array given the VTK array type. """ tmp = vtk.vtkDataArray.CreateDataArray(vtk_arr_type) # CreateDataArray sets the refcount to 3 and this causes a severe # memory leak. tmp.SetReferenceCount(BASE_REFERENCE_COUNT) return tmp def array2vtk(num_array, vtk_array=None): """Converts a real numpy Array (or a Python list) to a VTK array object. This function only works for real arrays. Complex arrays are NOT handled. It also works for multi-component arrays. However, only 1, and 2 dimensional arrays are supported. This function is very efficient, so large arrays should not be a problem. Even in cases when no copy of the numpy array data is performed, a reference to the array is cached. The passed array can therefore be deleted safely in all circumstances. Parameters ---------- - num_array : numpy array or Python list/tuple The input array must be 1 or 2D. A copy of the numeric array data passed is made in the following circumstances: 1. A Python list/tuple was passed. 2. A non-contiguous numpy array was passed. 3. A `vtkBitArray` instance was passed as the second argument. 4. The types of the `vtk_array` and the `num_array` are not equivalent to each other. For example if one is an integer array and the other a float. - vtk_array : `vtkDataArray` (default: `None`) If an optional `vtkDataArray` instance, is passed as an argument then a new array is not created and returned. The passed array is itself returned. """ z = numpy.asarray(num_array) shape = z.shape assert len(shape) < 3, \ "Only arrays of dimensionality 2 or lower are allowed!" assert not numpy.issubdtype(z.dtype, numpy.complexfloating), \ "Complex numpy arrays cannot be converted to vtk arrays."\ "Use real() or imag() to get a component of the array before"\ " passing it to vtk." # First create an array of the right type by using the typecode. # Bit arrays need special casing. bit_array = False if vtk_array is None: vtk_typecode = get_vtk_array_type(z.dtype) result_array = create_vtk_array(vtk_typecode) elif vtk_array.GetDataType() == vtkConstants.VTK_BIT: vtk_typecode = vtkConstants.VTK_CHAR result_array = create_vtk_array(vtkConstants.VTK_CHAR) bit_array = True else: vtk_typecode = vtk_array.GetDataType() result_array = vtk_array # Find the shape and set number of components. if len(shape) == 1: result_array.SetNumberOfComponents(1) else: result_array.SetNumberOfComponents(shape[1]) result_array.SetNumberOfTuples(shape[0]) # Ravel the array appropriately. arr_dtype = get_numeric_array_type(vtk_typecode) if numpy.issubdtype(z.dtype, arr_dtype): z_flat = numpy.ravel(z) else: z_flat = numpy.ravel(z).astype(arr_dtype) # Point the VTK array to the numpy data. The last argument (1) # tells the array not to deallocate. result_array.SetVoidArray(getbuffer(z_flat), len(z_flat), 1) if bit_array: # Handle bit arrays -- they have to be copied. Note that bit # arrays are used ONLY when the user has passed one as an # argument to this function. vtk_array.SetNumberOfTuples(result_array.GetNumberOfTuples()) vtk_array.SetNumberOfComponents(result_array.GetNumberOfComponents()) for i in range(result_array.GetNumberOfComponents()): vtk_array.CopyComponent(i, result_array, i) result_array = vtk_array else: # Save a reference to the flatted array in the array cache. # This prevents the user from deleting or resizing the array # and getting into serious trouble. This is only done for # non-bit array cases where the data is not copied. global _array_cache _array_cache.add(result_array, z_flat) return result_array def vtk2array(vtk_array): """Converts a VTK data array to a numpy array. Given a subclass of vtkDataArray, this function returns an appropriate numpy array containing the same data. The function is very efficient since it uses the VTK imaging pipeline to convert the data. If a sufficiently new version of VTK (5.2) is installed then it actually uses the buffer interface to return a view of the VTK array in the returned numpy array. Parameters ---------- - vtk_array : `vtkDataArray` The VTK data array to be converted. """ typ = vtk_array.GetDataType() assert typ in get_vtk_to_numeric_typemap().keys(), \ "Unsupported array type %s" % typ shape = (vtk_array.GetNumberOfTuples(), vtk_array.GetNumberOfComponents()) if shape[0] == 0: dtype = get_numeric_array_type(typ) return numpy.array([], dtype) # First check if this array already has a numpy array cached, # if it does and the array size has not been changed, reshape # that and return it. if vtk_array in _array_cache: arr = _array_cache.get(vtk_array) if shape[1] == 1: shape = (shape[0], ) if arr.size == numpy.prod(shape): arr = numpy.reshape(arr, shape) return arr # If VTK's new numpy support is available, use the buffer interface. if numpy_support is not None and typ != vtkConstants.VTK_BIT: dtype = get_numeric_array_type(typ) result = numpy.frombuffer(vtk_array, dtype=dtype) if shape[1] == 1: shape = (shape[0], ) result.shape = shape return result # Setup an imaging pipeline to export the array. img_data = vtk.vtkImageData() img_data.SetDimensions(shape[0], 1, 1) if typ == vtkConstants.VTK_BIT: iarr = vtk.vtkCharArray() iarr.DeepCopy(vtk_array) img_data.GetPointData().SetScalars(iarr) elif typ == vtkConstants.VTK_ID_TYPE: # Needed since VTK_ID_TYPE does not work with VTK 4.5. iarr = vtk.vtkLongArray() iarr.SetNumberOfTuples(vtk_array.GetNumberOfTuples()) nc = vtk_array.GetNumberOfComponents() iarr.SetNumberOfComponents(nc) for i in range(nc): iarr.CopyComponent(i, vtk_array, i) img_data.GetPointData().SetScalars(iarr) else: img_data.GetPointData().SetScalars(vtk_array) if typ == vtkConstants.VTK_ID_TYPE: r_dtype = get_numeric_array_type(vtkConstants.VTK_LONG) elif typ == vtkConstants.VTK_BIT: r_dtype = get_numeric_array_type(vtkConstants.VTK_CHAR) else: r_dtype = get_numeric_array_type(typ) img_data.Modified() exp = vtk.vtkImageExport() exp.SetInputData(img_data) # Create an array of the right size and export the image into it. im_arr = numpy.empty((shape[0]*shape[1],), r_dtype) exp.Export(im_arr) # Now reshape it. if shape[1] == 1: shape = (shape[0], ) im_arr = numpy.reshape(im_arr, shape) return im_arr def array2vtkCellArray(num_array, vtk_array=None): """Given a nested Python list or a numpy array, this method creates a vtkCellArray instance and returns it. A variety of input arguments are supported as described in the Parameter documentation. If numpy arrays are given, this method is highly efficient. This function is most efficient if the passed numpy arrays have a typecode `ID_TYPE_CODE`. Otherwise a typecast is necessary and this involves an extra copy. This method *always copies* the input data. An alternative and more efficient way to build the connectivity list is to create a vtkIdTypeArray having data of the form (npts,p0,p1,...p(npts-1), repeated for each cell) and then call <vtkCellArray_instance>.SetCells(n_cell, id_list). Parameters ---------- - num_array : numpy array or Python list/tuple Valid values are: 1. A Python list of 1D lists. Each 1D list can contain one cell connectivity list. This is very slow and is to be used only when efficiency is of no consequence. 2. A 2D numpy array with the cell connectivity list. 3. A Python list of 2D numpy arrays. Each numeric array can have a different shape. This makes it easy to generate a cell array having cells of different kinds. - vtk_array : `vtkCellArray` (default: `None`) If an optional `vtkCellArray` instance, is passed as an argument then a new array is not created and returned. The passed array is itself modified and returned. Example ------- >>> a = [[0], [1, 2], [3, 4, 5], [6, 7, 8, 9]] >>> cells = array_handler.array2vtkCellArray(a) >>> a = numpy.array([[0,1,2], [3,4,5], [6,7,8]], 'l') >>> cells = array_handler.array2vtkCellArray(a) >>> l_a = [a[:,:1], a[:2,:2], a] >>> cells = array_handler.array2vtkCellArray(l_a) """ if vtk_array: cells = vtk_array else: cells = vtk.vtkCellArray() assert cells.GetClassName() == 'vtkCellArray', \ 'Second argument must be a `vtkCellArray` instance.' if len(num_array) == 0: return cells ######################################## # Internal functions. def _slow_array2cells(z, cells): cells.Reset() vtk_ids = vtk.vtkIdList() for i in z: vtk_ids.Reset() for j in i: vtk_ids.InsertNextId(j) cells.InsertNextCell(vtk_ids) def _get_tmp_array(arr): try: tmp_arr = numpy.asarray(arr, ID_TYPE_CODE) except TypeError: tmp_arr = arr.astype(ID_TYPE_CODE) return tmp_arr def _set_cells(cells, n_cells, id_typ_arr): vtk_arr = vtk.vtkIdTypeArray() array2vtk(id_typ_arr, vtk_arr) cells.SetCells(n_cells, vtk_arr) ######################################## msg = "Invalid argument. Valid types are a Python list of lists,"\ " a Python list of numpy arrays, or a numpy array." if issubclass(type(num_array), (list, tuple)): assert len(num_array[0]) > 0, "Input array must be 2D." tp = type(num_array[0]) if issubclass(tp, list): # Pure Python list. _slow_array2cells(num_array, cells) return cells elif issubclass(tp, numpy.ndarray): # List of arrays. # Check shape of array and find total size. tot_size = 0 n_cells = 0 for arr in num_array: assert len(arr.shape) == 2, "Each array must be 2D" shp = arr.shape tot_size += shp[0]*(shp[1] + 1) n_cells += shp[0] # Create an empty array. id_typ_arr = numpy.empty((tot_size,), ID_TYPE_CODE) # Now populate it with the ids. count = 0 for arr in num_array: tmp_arr = _get_tmp_array(arr) shp = arr.shape sz = shp[0]*(shp[1] + 1) set_id_type_array(tmp_arr, id_typ_arr[count:count+sz]) count += sz # Now set them cells. _set_cells(cells, n_cells, id_typ_arr) return cells else: raise TypeError(msg) elif issubclass(type(num_array), numpy.ndarray): assert len(num_array.shape) == 2, "Input array must be 2D." tmp_arr = _get_tmp_array(num_array) shp = tmp_arr.shape id_typ_arr = numpy.empty((shp[0]*(shp[1] + 1),), ID_TYPE_CODE) set_id_type_array(tmp_arr, id_typ_arr) _set_cells(cells, shp[0], id_typ_arr) return cells else: raise TypeError(msg) def array2vtkPoints(num_array, vtk_points=None): """Converts a numpy array/Python list to a vtkPoints object. Unless a Python list/tuple or a non-contiguous array is given, no copy of the data is made. Thus the function is very efficient. Parameters ---------- - num_array : numpy array or Python list/tuple The input array must be 2D with `shape[1] == 3`. - vtk_points : `vtkPoints` (default: `None`) If an optional `vtkPoints` instance, is passed as an argument then a new array is not created and returned. The passed array is itself modified and returned. """ if vtk_points: points = vtk_points else: points = vtk.vtkPoints() arr = numpy.asarray(num_array) assert len(arr.shape) == 2, "Points array must be 2 dimensional." assert arr.shape[1] == 3, "Incorrect shape: shape[1] must be 3." vtk_array = array2vtk(arr) points.SetData(vtk_array) return points def array2vtkIdList(num_array, vtk_idlist=None): """Converts a numpy array/Python list to a vtkIdList object. Parameters ---------- - num_array : numpy array or Python list/tuple The input array must be 2D with `shape[1] == 3`. - vtk_idlist : `vtkIdList` (default: `None`) If an optional `vtkIdList` instance, is passed as an argument then a new array is not created and returned. The passed array is itself modified and returned. """ if vtk_idlist: ids = vtk_idlist else: ids = vtk.vtkIdList() arr = numpy.asarray(num_array) assert len(arr.shape) == 1, "Array for vtkIdList must be 1D" ids.SetNumberOfIds(len(arr)) for i, j in enumerate(arr): ids.SetId(i, j) return ids ###################################################################### # Array argument handling functions. ###################################################################### def is_array(arr): """Returns True if the passed `arr` is a numpy array or a List.""" if issubclass(type(arr), (numpy.ndarray, list)): return True return False def convert_array(arr, vtk_typ=None): """Convert the given array to the optional type specified by `vtk_typ`. Parameters ---------- - arr : numpy array/list. - vtk_typ : `string` or `None` represents the type the array is to be converted to. """ if vtk_typ: conv = {'vtkCellArray': array2vtkCellArray, 'vtkPoints': array2vtkPoints, 'vtkIdList': array2vtkIdList} if vtk_typ in conv.keys(): vtk_arr = getattr(vtk, vtk_typ)() return conv[vtk_typ](arr, vtk_arr) elif vtk_typ.find('Array') > -1: try: vtk_arr = getattr(vtk, vtk_typ)() except TypeError: # vtk_typ == 'vtkDataArray' return array2vtk(arr) else: return array2vtk(arr, vtk_arr) else: return arr else: return array2vtk(arr) def is_array_sig(s): """Given a signature, return if the signature has an array.""" if not isinstance(s, str): return False arr_types = ['Array', 'vtkPoints', 'vtkIdList'] for i in arr_types: if s.find(i) > -1: return True return False def is_array_or_vtkarray(arg): """Returns True if the argument is an array/Python list or if it is a vtk array.""" if is_array(arg): return True else: if hasattr(arg, '_vtk_obj'): if is_array_sig(arg._vtk_obj.__class__.__name__): return True return False def get_correct_sig(args, sigs): """Given a list of args and a collection of possible signatures, this function returns the most appropriate signature. This function is only called by deref_array. This implies that one of the signatures has an array type. """ # First do the trivial cases. if sigs is None: return None if len(sigs) == 1: return sigs[0] else: # Non-trivial cases. la = len(args) candidate_sigs = [s for s in sigs if len(s) == la] count = len(candidate_sigs) if count == 0: # No sig has the right number of args. msg = "Insufficient number of arguments to method."\ "Valid arguments are:\n%s" % sigs raise TypeError(msg) elif count == 1: # If only one of the sigs has the right number of args, # return it. return candidate_sigs[0] else: # More than one sig has the same number of args. # Check if args need conversion at all. array_idx = [i for i, a in enumerate(args) if is_array_or_vtkarray(a)] n_arr = len(array_idx) if n_arr == 0: # No conversion necessary so signature info is # useless. return None else: # Need to find the right sig. This is done by finding # the first signature that matches all the arrays in # the argument. for sig in candidate_sigs: array_in_sig = [is_array_sig(s) for s in sig] if array_in_sig.count(True) != len(array_idx): continue bad = False for i in array_idx: if not array_in_sig[i]: bad = True if not bad: return sig # Could not find any valid signature, so give up. return None def deref_vtk(obj): """Dereferences the VTK object from the object if possible. This is duplicated from `tvtk_base.py` because I'd like to keep this module independent of `tvtk_base.py`. """ if hasattr(obj, '_vtk_obj'): return obj._vtk_obj else: return obj def deref_array(args, sigs=None): """Given a bunch of arguments and optional signature information, this converts the arguments suitably. If the argument is either a Python list or a numpy array it is converted to a suitable type based on the signature information. If it is not an array, but a TVTK object the VTK object is dereferenced. Otherwise nothing is done. If no signature information is provided the arrays are automatically converted (this can sometimes go wrong). The signature information is provided in the form of a list of lists. """ ret = [] sig = get_correct_sig(args, sigs) if sig: for a, s in zip(args, sig): if is_array(a) and is_array_sig(s): ret.append(convert_array(a, s)) else: ret.append(deref_vtk(a)) else: for a in args: if is_array(a): ret.append(convert_array(a)) else: ret.append(deref_vtk(a)) return ret
enthought/mayavi
tvtk/array_handler.py
array_handler.py
py
27,563
python
en
code
1,177
github-code
6
19304565869
# -*- coding: utf-8 -*- from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from time import sleep from selenium.webdriver.chrome.options import Options import pandas as pd import requests """ options = webdriver.ChromeOptions() options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') driver = webdriver.Chrome(ChromeDriverManager().install(), options=options) driver.get('https://shifucon.ppihgroup.com/staffpage/') print(driver) elemname = driver.find_element_by_id("login_email") elemname.send_keys('0167938') elemname = driver.find_element_by_id("login_pass") elemname.send_keys('3104chalo') log_in = driver.find_element_by_class_name('btn btn-lg btn-primary btn-block') log_in.click() """ def main(): options = Options() options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') #options.add_argument('--disable-features=VizDisplayCompositor') browser = webdriver.Chrome(ChromeDriverManager().install(), options=options) browser.get("https://scraping-for-beginner.herokuapp.com/login_page") username = browser.find_element_by_id('username') username.send_keys("imanishi") userpass = browser.find_element_by_id('password') userpass.send_keys("ki") log_in = browser.find_element_by_id('login-btn') log_in.click() NAME = browser.find_element_by_id("name") print("名前:", NAME.text) COM = browser.find_element_by_id("company") print("所属企業:", COM.text) birthday = browser.find_element_by_id("birthday") print("生年月日:", birthday.text) birthplace = browser.find_element_by_id("come_from") print("出身地:", birthplace.text) hobby = browser.find_element_by_id("hobby") print("趣味:", hobby.text) #要素一つ elemth = browser.find_element_by_tag_name("th") #要素複数 elemth = browser.find_elements_by_tag_name("th") print(elemth[0].text) key = [] for i in elemth: key.append(i.text) value = [] elemtd = browser.find_elements_by_tag_name("td") for i in elemtd: value.append(i.text) sleep(5) browser.quit() df = pd.DataFrame() df["項目"] = key df["値"] = value print(df) df.to_csv("講師情報.csv", index = False) if __name__ == '__main__': main()
satoshi-python/109
train_sele.py
train_sele.py
py
2,427
python
en
code
0
github-code
6
33068133857
import sys import argparse import importlib commands = { 'train': { 'script': 'ocr4all_pixel_classifier.scripts.train', 'main': 'main', 'help': 'Train the neural network. See more via "* train --help"' }, 'predict': { 'script': 'ocr4all_pixel_classifier.scripts.predict', 'main': 'main', 'help': 'Predict a result with the neural network. See more via "* predict --help"' }, 'predict-json': { 'script': 'ocr4all_pixel_classifier.scripts.predict_json', 'main': 'main', 'help': 'Predict a result with the neural network, input via JSON. See more via "* predict --help"' }, 'create-dataset-file': { 'script': 'ocr4all_pixel_classifier.scripts.create_dataset_file', 'main': 'main', 'help': 'Create a dataset file' }, 'compute-image-normalizations': { 'script': 'ocr4all_pixel_classifier.scripts.compute_image_normalizations', 'main': 'main', 'help': 'Compute image normalizations' }, 'compute-image-map': { 'script': 'ocr4all_pixel_classifier.scripts.generate_image_map', 'main': 'main', 'help': 'Generates color map' }, 'migrate-model': { 'script': 'ocr4all_pixel_classifier.scripts.migrate_model', 'main': 'main', 'help': 'Convert old model to new format' }, } def main(): # Pretty print help for main programm usage = 'page-segmentation <command> [<args>]\n\nCOMMANDS:' # Add all commands to help max_name_length = max(len(name) for name, _ in commands.items()) for name, command in commands.items(): usage += '\n\t{name:<{col_width}}\t{help}'.format(name=name, col_width=max_name_length, help=command["help"]) parser = argparse.ArgumentParser(usage=usage) parser.add_argument('command', help='The sub command to execute, see COMMANDS') args = parser.parse_args(sys.argv[1:2]) sys.argv = sys.argv[:1] + sys.argv[2:] if args.command in commands.keys(): command = commands[args.command] command_module = importlib.import_module(command['script']) command_main = getattr(command_module, command['main']) command_main() else: print('Unrecognized command') parser.print_help() exit(1) if __name__ == "__main__": main()
OMMR4all/ommr4all-page-segmentation
ocr4all_pixel_classifier/scripts/main.py
main.py
py
2,358
python
en
code
2
github-code
6
22905238470
import tensorflow as tf import argparse import sys sys.path.insert(0, "../CycleGAN-TensorFlow") import model # nopep8 # Transform image bitstring to float tensor def preprocess_bitstring_to_float_tensor(input_bytes, image_size): input_bytes = tf.reshape(input_bytes, []) # Transform bitstring to uint8 tensor input_tensor = tf.image.decode_png(input_bytes, channels=3) # Convert to float32 tensor input_tensor = tf.image.convert_image_dtype(input_tensor, dtype=tf.float32) input_tensor = input_tensor / 127.5 - 1.0 # Ensure tensor has correct shape input_tensor = tf.reshape(input_tensor, [image_size, image_size, 3]) # CycleGAN's inference function accepts a batch of images # So expand the single tensor into a batch of 1 input_tensor = tf.expand_dims(input_tensor, 0) return input_tensor # Transform float tensor to image bitstring def postprocess_float_tensor_to_bitstring(output_tensor): # Convert to uint8 tensor output_tensor = (output_tensor + 1.0) / 2.0 output_tensor = tf.image.convert_image_dtype(output_tensor, tf.uint8) # Remove the batch dimension output_tensor = tf.squeeze(output_tensor, [0]) # Transform uint8 tensor to bitstring output_bytes = tf.image.encode_png(output_tensor) output_bytes = tf.identity(output_bytes, name="output_bytes") return output_bytes # Export graph to ProtoBuf def export_graph(): graph = tf.Graph() with graph.as_default(): # Instantiate a CycleGAN cycle_gan = model.CycleGAN(ngf=64, norm="instance", image_size=FLAGS.image_size) # Create placeholder for image bitstring # This is the first injection layer input_bytes = tf.placeholder(tf.string, shape=[], name="input_bytes") # Preprocess input (bitstring to float tensor) input_tensor = preprocess_bitstring_to_float_tensor(input_bytes, FLAGS.image_size) # Get style transferred tensor output_tensor = cycle_gan.G.sample(input_tensor) # Postprocess output output_bytes = postprocess_float_tensor_to_bitstring(output_tensor) # Instantiate a Saver saver = tf.train.Saver() with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) # Access variables and weights from last checkpoint latest_ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) saver.restore(sess, latest_ckpt) # Export graph to ProtoBuf output_graph_def = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [output_bytes.op.name]) tf.train.write_graph(output_graph_def, FLAGS.protobuf_dir, FLAGS.model_name + "_v" + str(FLAGS.version), as_text=False) # Wrap a SavedModel around ProtoBuf # Necessary for using the tensorflow-serving RESTful API def build_saved_model(): # Instantiate a SavedModelBuilder # Note that the serve directory MUST have a model version subdirectory builder = tf.saved_model.builder.SavedModelBuilder(FLAGS.serve_dir + "/" + str(FLAGS.version)) # Read in ProtoBuf file with tf.gfile.GFile(FLAGS.protobuf_dir + "/" + FLAGS.model_name + "_v" + str(FLAGS.version), "rb") as protobuf_file: graph_def = tf.GraphDef() graph_def.ParseFromString(protobuf_file.read()) # Get input and output tensors from GraphDef # These are our injected bitstring layers [inp, out] = tf.import_graph_def(graph_def, name="", return_elements=["input_bytes:0", "output_bytes:0"]) with tf.Session(graph=out.graph) as sess: # Signature_definition expects a batch # So we'll turn the output bitstring into a batch of 1 element out = tf.expand_dims(out, 0) # Build prototypes of input and output input_bytes = tf.saved_model.utils.build_tensor_info(inp) output_bytes = tf.saved_model.utils.build_tensor_info(out) # Create signature for prediction signature_definition = tf.saved_model.signature_def_utils.build_signature_def( # nopep8 inputs={"input_bytes": input_bytes}, outputs={"output_bytes": output_bytes}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME) # Add meta-information builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_definition }) # Create the SavedModel builder.save() def main(_): print("Exporting model to ProtoBuf...") export_graph() print("Wrapping ProtoBuf in SavedModel...") build_saved_model() print("Exported successfully!") print("""Run the server with: tensorflow_model_server --rest_api_port=8501 """ "--model_name=saved_model --model_base_path=$(path)") if __name__ == "__main__": # Instantiate an arg parser parser = argparse.ArgumentParser() # Establish default arguments parser.add_argument("--checkpoint_dir", type=str, default="../CycleGAN-TensorFlow/" "checkpoints/20180628-1208", help="Path to checkpoints directory") parser.add_argument("--protobuf_dir", type=str, default="../CycleGAN-TensorFlow/protobufs", help="Path to protobufs directory") parser.add_argument("--model_name", type=str, default="model", help="Model name") parser.add_argument("--serve_dir", type=str, default="serve", help="Path to serve directory") parser.add_argument("--version", type=int, default=1, help="Model version number") parser.add_argument("--image_size", type=int, default=64, help="Image size") # Parse known arguments FLAGS, unparsed = parser.parse_known_args() # Run the tensorflow app tf.app.run(argv=[sys.argv[0]] + unparsed)
tmlabonte/tendies
minimum_working_example/export_graph_for_serving.py
export_graph_for_serving.py
py
6,953
python
en
code
37
github-code
6
38152844484
from typing import List from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.chrome.options import Options class PathsParser: def __init__(self): # if url changed replace it caps = DesiredCapabilities().CHROME caps["pageLoadStrategy"] = "eager" # setting the "eager" parameter so as not to wait for the full download options = Options() options.add_argument("--headless") # setting for hide the browser while running self.driver = webdriver.Chrome(desired_capabilities=caps, options=options) def check_existence(self, page: webdriver) -> bool: """ This method input page and checks if the last page :param page: :return flag: """ flag = True xpath = "//strong[text()='No results available']" try: page.find_element(By.XPATH, xpath) flag = False except Exception: pass return flag def parse_urls(self) -> List: """ This method parse all available url contains rows with articles :return page_list: """ page_list = [] counter_page = 0 flag = True current_page = 'https://www.aceee.org/news?keys=&field_' \ 'authors_target_id=&field_related_programs_target_id' \ '=&field_related_topics_target_id=&' \ 'sort_bef_combine=created_DESC&' \ 'sort_by=created&sort_order=DESC&page={}' while flag: current_url = current_page.format(counter_page) self.driver.get(current_url) flag = self.check_existence(self.driver) if not flag: break page_list.extend(self.parse_paths(current_url)) print(current_url, '--- complete!') counter_page += 1 self.driver.quit() return page_list def parse_paths(self, url: str) -> List: """ Get rows with articles paths :param url: :return path_list: """ path_list = [] self.driver.get(url) rows = self.driver.find_elements(By.CLASS_NAME, 'views-row') for row in rows: path_list.append( row.find_element(By.TAG_NAME, 'a').get_attribute('href') ) return path_list
stolzor/test_task
models/paths_parser.py
paths_parser.py
py
2,546
python
en
code
1
github-code
6
42123297938
from collections import namedtuple import numpy as np from ...utils.interpolation.levels import ( # noqa LevelsDefinition as ConversionLevelsDefinition, ) INPUT_REQUIRED_FIELDS = dict( export_format=str, levels_method=(None, str), levels_number=(None, int), levels_dzmin=(None, float), levels_ztop=(None, float), comment=(None, str), campaign=(None, str), source_domain=(None, str), reference=(None, str), # AUTHOR=CREATOR author=(None, str), modifications=(None, str), # CASE=FLIGHT case=(None, str), adv_temp=[0, 1], adv_theta=[0, 1], adv_thetal=[0, 1], adv_qv=[0, 1], adv_qt=[0, 1], adv_rv=[0, 1], adv_rt=[0, 1], rad_temp=[0, 1, "adv"], rad_theta=[0, 1, "adv"], rad_thetal=[0, 1, "adv"], forc_omega=[0, 1], forc_w=[0, 1], forc_geo=[0, 1], nudging_u=(0, np.nan, float), nudging_v=(0, np.nan, float), nudging_temp=(0, np.nan, float), nudging_theta=(0, np.nan, float), nudging_thetal=(0, np.nan, float), nudging_qv=(0, np.nan, float), nudging_qt=(0, np.nan, float), nudging_rv=(0, np.nan, float), nudging_rt=(0, np.nan, float), surfaceType=["ocean", "land", "mixed"], surfaceForcing=["ts", "Flux", "surfaceFlux"], surfaceForcingWind=["z0", "ustar", "z0_traj"], nudging_method_scalar_traj=(None, str), nudging_time_scalar_traj=(None, float), nudging_height_scalar_traj=(None, float), nudging_transition_scalar_traj=(None, float), nudging_method_momentum_traj=(None, str), nudging_time_momentum_traj=(None, float), nudging_height_momentum_traj=(None, float), nudging_transition_momentum_traj=(None, float), ) ConversionDefinition = namedtuple( "ConversionDefinition", ["export_format", "levels", "name", "metadata", "parameters"], ) ConversionParametersDefinition = namedtuple( "ConversionParametersDefinition", [ "adv_temp", "adv_theta", "adv_thetal", "adv_qv", "adv_qt", "adv_rv", "adv_rt", "rad_temp", "rad_theta", "rad_thetal", "forc_omega", "forc_w", "forc_geo", "nudging_u", "nudging_v", "nudging_temp", "nudging_theta", "nudging_thetal", "nudging_qv", "nudging_qt", "nudging_rv", "nudging_rt", "surfaceType", "surfaceForcing", "surfaceForcingWind", "nudging_parameters_scalar_traj", "nudging_parameters_momentum_traj", ], ) ConversionNudgingDefinition = namedtuple( "ConversionNudgingDefinition", [ "method", "time", "height", "transition", ], ) ConversionMetadataDefinition = namedtuple( "ConversionMetadataDefinition", [ "comment", "campaign", "source_domain", "reference", "author", "modifications", "case", ], )
EUREC4A-UK/lagtraj
lagtraj/forcings/conversion/input_definitions.py
input_definitions.py
py
2,969
python
en
code
8
github-code
6
35004893553
# programmers 위클리 챌린지 2주차 def solution(scores): answer = '' i_len = len(scores) temp_arr = [0 for _ in range(i_len)] for i in range(i_len): for j in range(i_len): temp_arr[j] = scores[j][i] max_val = max(temp_arr) min_val = min(temp_arr) max_self, min_self = False, False if max_val == temp_arr[i]: max_self = True if min_val == temp_arr[i]: min_self = True selfOK = False selfScore = 0 if not max_self and not min_self: selfOK = True for j in range(i_len): if max_self and i != j and max_val == temp_arr[j]: selfOK = True if min_self and i != j and min_val == temp_arr[j]: selfOK = True selfScore = sum(temp_arr) if not selfOK: selfScore -= temp_arr[i] selfScore /= (i_len-1) else: selfScore /= i_len answer += classify(selfScore) return answer def classify(score): if score >= 90: return 'A' elif 80 <= score < 90: return 'B' elif 70 <= score < 80: return 'C' elif 50 <= score < 70: return 'D' else: return 'F' print(solution([[100,90,98,88,65],[50,45,99,85,77],[47,88,95,80,67],[61,57,100,80,65],[24,90,94,75,65]]))
Inflearn-everyday/study
wookiist/programmers/week2.py
week2.py
py
1,368
python
en
code
5
github-code
6
27577948701
from django.urls import path from .views import (HomePageView, MessageView, UserProfile, delete_message, spam_message, AddReview, AbouUs, ContactUs, ReviewView, SettingsView, EditProfile) urlpatterns = [ path('', HomePageView.as_view(), name='home'), path('profile/', UserProfile.as_view(), name='user_profile'), # path('profile/edit/<int:pk>', EditProfile.as_view(), name='edit_profile'), path('profile/edit/<str:username>', EditProfile, name='edit_profile'), path('about/', AbouUs.as_view(), name='about'), path('contact/', ContactUs.as_view(), name='contact'), path('review/', ReviewView, name='review'), path('review/add/', AddReview, name='add_review'), path('settings/', SettingsView, name='settings'), path('message/<str:username>/', MessageView, name='message'), path('delete/<int:m_id>/', delete_message, name='delete'), path('spam/<int:m_id>/', spam_message, name='spam'), ]
Afeez1131/Anonymous-v1
anonymous/urls.py
urls.py
py
954
python
en
code
0
github-code
6
1068948273
import numpy as np from matplotlib import pyplot as plt from scipy.optimize import minimize import gymnasium as gym import imageio from pendulum_model import PendulumModel # Constants g = 10.0 # gravitational acceleration l = 1.0 # length of the pendulum m = 1.0 # mass of the pendulum dt = 0.05 # time step n = 100 # number of time steps x0 = np.zeros(3 * n) class ScipySolver: def __init__(self): self.theta0 = np.pi self.theta_dot0 = 0.0 @staticmethod def objective(x): theta = x[:n] theta_dot = x[n:2 * n] u = x[2 * n:] cost = np.sum(theta ** 2) + 0.1 * np.sum(theta_dot ** 2) + 0.001 * np.sum(u ** 2) return cost def dynamics(self, x): theta = x[:n] theta_dot = x[n:2 * n] u = x[2 * n:] constraints = [] constraints.append(theta[0] - self.theta0) constraints.append(theta_dot[0] - self.theta_dot0) for t in range(n - 1): constraints.append(theta_dot[t + 1] - ( theta_dot[t] + (3 * g * dt) / (2 * l) * np.sin(theta[t]) + (3 * dt) / (m * l ** 2) * u[t])) constraints.append(theta[t + 1] - (theta[t] + theta_dot[t+1] * dt)) return np.array(constraints) @staticmethod def plot_results(theta, theta_dot, u): time = np.linspace(0, dt * n, n) plt.figure(figsize=(10, 8)) # Plot theta plt.subplot(3, 1, 1) plt.plot(time, theta) plt.ylabel('Theta (rad)') plt.title('Optimal Control Results') # Plot theta_dot plt.subplot(3, 1, 2) plt.plot(time, theta_dot) plt.ylabel('Theta_dot (rad/s)') # Plot u plt.subplot(3, 1, 3) plt.plot(time, u) plt.ylabel('Control Input (u)') plt.xlabel('Time (s)') plt.tight_layout() plt.show() def solve(self): env = make_env("Pendulum-v1") observation, info = env.reset(seed=4) model = PendulumModel() model.reset(observation) model_log = [] self.theta0 = model.state[0] self.theta_dot0 = model.state[1] x0[:n] = np.linspace(self.theta0, 0, n) # x0[:n] = self.theta0 x0[n:2 * n] = np.linspace(self.theta_dot0, 0, n) # x0[n:2] = self.theta_dot0 for i in range(100): model_log.append(model.state) action = np.array([0.0]) model.step(action) model_log.append(action) model_log = np.hstack(model_log) # Initial guess # Bounds theta_dot_bounds = (-8, 8) u_bounds = (-2, 2) bounds = [(None, None)] * n + [theta_dot_bounds] * n + [u_bounds] * n # Constraints constraints = {'type': 'eq', 'fun': self.dynamics} # Optimize result = minimize(self.objective, x0, method='trust-constr', bounds=bounds, constraints=constraints, options={'gtol': 1e-5}) print(result) if result.success: theta_opt = result.x[:n] theta_dot_opt = result.x[n:2 * n] u_opt = result.x[2 * n:] print(theta_opt) print(theta_dot_opt) print(u_opt) else: print("Optimization failed.") theta_opt = result.x[:n] theta_dot_opt = result.x[n:2 * n] u_opt = result.x[2 * n:] print(theta_opt) print(theta_dot_opt) print(u_opt) frames = [] for i in range(100): observation, reward, terminated, truncated, info = env.step(u_opt[i].reshape(1, )) print(observation, reward, u_opt[i]) frame = env.render() frames.append(frame) imageio.mimsave('pendulum_run.gif', frames, duration=1.0 / 20) self.plot_results(theta_opt, theta_dot_opt, u_opt) def make_env(name): gym_env = gym.make(name, render_mode='rgb_array') return gym_env if __name__ == "__main__": scipy_solve = ScipySolver() scipy_solve.solve()
CarlDegio/SQP_Pendulum
scipy_trust.py
scipy_trust.py
py
4,069
python
en
code
0
github-code
6
12611003899
from ..utils import * ## # Minions class OG_006: """Vilefin Inquisitor""" play = Summon(CONTROLLER, "OG_006b") class OG_006b: """The Tidal Hand""" requirements = {PlayReq.REQ_NUM_MINION_SLOTS: 1} activate = Summon(CONTROLLER, "OG_006a") class OG_221: """Selfless Hero""" deathrattle = GiveDivineShield(RANDOM_FRIENDLY_MINION) class OG_229: """Ragnaros, Lightlord""" events = OWN_TURN_END.on(Heal(RANDOM(FRIENDLY + DAMAGED_CHARACTERS), 8)) class OG_310: """Steward of Darkshire""" events = Summon(CONTROLLER, MINION + (CURRENT_HEALTH == 1)).on( GiveDivineShield(Summon.CARD) ) ## # Spells class OG_223: """Divine Strength""" requirements = {PlayReq.REQ_MINION_TARGET: 0, PlayReq.REQ_TARGET_TO_PLAY: 0} play = Buff(TARGET, "OG_223e") OG_223e = buff(+1, +2) class OG_273: """Stand Against Darkness""" requirements = {PlayReq.REQ_NUM_MINION_SLOTS: 1} play = Summon(CONTROLLER, "CS2_101t") * 5 class OG_311: """A Light in the Darkness""" play = DISCOVER(RandomMinion()).then(Buff(Discover.CARDS, "OG_311e")) OG_311e = buff(+1, +1) ## # Weapons class OG_222: """Rallying Blade""" play = Buff(FRIENDLY_MINIONS + DIVINE_SHIELD, "OG_222e") OG_222e = buff(+1, +1) class OG_198: """Forbidden Healing""" requirements = {PlayReq.REQ_TARGET_TO_PLAY: 0} def play(self): mana = self.controller.mana yield SpendMana(CONTROLLER, mana) yield Heal(TARGET, mana * 2)
jleclanche/fireplace
fireplace/cards/wog/paladin.py
paladin.py
py
1,409
python
en
code
645
github-code
6
859001844
from __future__ import division from vistrails.core.modules.vistrails_module import Module from vistrails.core.modules.module_registry import get_module_registry from vistrails.core.modules.basic_modules import List, String from engine_manager import EngineManager from map import Map def initialize(*args,**keywords): reg = get_module_registry() reg.add_module(Map) reg.add_input_port(Map, 'FunctionPort', (Module, '')) reg.add_input_port(Map, 'InputList', (List, '')) reg.add_input_port(Map, 'InputPort', (List, '')) reg.add_input_port(Map, 'OutputPort', (String, '')) reg.add_output_port(Map, 'Result', (List, '')) def finalize(): EngineManager.cleanup() def menu_items(): return ( ("Start new engine processes", lambda: EngineManager.start_engines()), ("Show information on the cluster", lambda: EngineManager.info()), ("Change profile", lambda: EngineManager.change_profile()), ("Cleanup started processes", lambda: EngineManager.cleanup()), ("Request cluster shutdown", lambda: EngineManager.shutdown_cluster()), )
VisTrails/VisTrails
vistrails/packages/parallelflow/init.py
init.py
py
1,195
python
en
code
100
github-code
6
27580622561
from django.shortcuts import render, HttpResponse, get_object_or_404, HttpResponseRedirect from .models import fizzURL from django.views import View from fiz.utils import create_shortcode from .forms import SubmitURLForm class HomeView(View): ''' for a CBV, post and get function will be written separately, unlike FBV which handles the two by itself ''' def get(self, request): form = SubmitURLForm return render(request, 'fiz/home.html', {'form': form, 'title': 'Fiz.co'}) def post(self, request): form = SubmitURLForm(request.POST) if form.is_valid(): new_url = form.cleaned_data['url'] obj, created = fizzURL.objects.get_or_create(url=new_url) context = { 'obj': obj, 'created': created, } if created: template = 'fiz/created.html' else: template= 'fiz/already-exist.html' return render(request, template, context) class FizCBV(View): def get(self, request, shortcode): obj = get_object_or_404(fizzURL, shortcode=shortcode) return HttpResponseRedirect(obj.url)
Afeez1131/shortener
fiz/views.py
views.py
py
1,203
python
en
code
0
github-code
6
72995173628
import os import time import sys import pickle import gzip #import numpy as np import zlib try: import eosapi producer = eosapi.Producer() print('This DL example is not supported anymore, a turly AI on blockchain will not looks like this.') print('Please make sure you are running the following command before test') print('./pyeos/pyeos --manual-gen-block --debug -i') except Exception as e: print(e) def init(): ''' psw = 'PW5Kd5tv4var9XCzvQWHZVyBMPjHEXwMjH1V19X67kixwxRpPNM4J' wallet.open('mywallet') wallet.unlock('mywallet',psw) ''' key1 = 'EOS61MgZLN7Frbc2J7giU7JdYjy2TqnfWFjZuLXvpHJoKzWAj7Nst' key2 = 'EOS5JuNfuZPATy8oPz9KMZV2asKf9m8fb2bSzftvhW55FKQFakzFL' if not eosapi.get_account('mnist'): with producer: r = eosapi.create_account('inita', 'mnist', key1, key2) assert r with producer: r = eosapi.set_contract('mnist', '../../programs/pyeos/contracts/mnist/mnist.py', '../../programs/pyeos/contracts/mnist/mnist.abi', eosapi.py_vm_type) assert r def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the jth position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network.""" e = np.zeros((10, 1)) e[j] = 1.0 return e def test(): producer() p = os.path.join(os.getcwd(), '../../programs/pyeos/contracts/mnist') sys.path.insert(0, p) import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() print('load done!') training_data = list(training_data) txids = [] counter = 0 for d in training_data[:1]: data = pickle.dumps([d, ]) data = zlib.compress(data) # print(data) r = eosapi.push_action('mnist', 'train', data, ['mnist'], {'mnist':'active'}) assert r print(r.transaction_id) if r.transaction_id in txids: raise 'dumplicate ts id' txids.append(r.transaction_id) counter += 1 if counter % 50 == 0: print(counter) with producer: pass producer() if __name__ == '__main__': sys.path.insert(0, '..') import mnist net = mnist.Network([784, 30, 10]) import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() training_data = list(training_data) # print(data) # data0 = np.reshape(data[0], (784, 1)) # data1 = vectorized_result(data[1]) net.SGD(training_data[:1], 1, 1, 3.0, test_data=None)
learnforpractice/pyeos
programs/pyeos/tests/python/mnist/t.py
t.py
py
2,645
python
en
code
131
github-code
6
42420354636
import sqlite3 from tkinter import * from tkinter import messagebox #Nombre la Base de Datos db = "timerSIAT.db" busca = Tk() busca.iconbitmap('buscar.ico') busca.title("Buscar Numero de Serie") busca.geometry("330x250") uno=Label(busca, text=" ") uno.place(x = 30, y = 70) dos=Label(busca, text=" ") dos.place(x = 155, y = 70) tres=Label(busca, text=" " ) tres.place(x = 30, y = 110) cuatro=Label(busca, text=" ") cuatro.place(x = 155, y = 110) cinco=Label(busca, text=" " ) cinco.place(x = 30, y = 150) seis=Label(busca, text=" ") seis.place(x = 155, y = 150) def Busca_Serial(): if NSerie.get() == '': messagebox.showerror("Error", "Ingresa un Numero de Serie") else: conexionbuscar = sqlite3.connect(db) cursorbuscar = conexionbuscar.cursor() data = NSerie.get() cursorbuscar.execute(f"SELECT fechahora,empleado,tiempo FROM log WHERE serie='{data}'") usuario = cursorbuscar.fetchone() if usuario: uno.configure(text="Fecha de Prueba") dos.configure(text=" "+str(usuario[0])) tres.configure(text="Numero de Empleado") cuatro.configure(text=" "+str(usuario[1])) cinco.configure(text="Tiempo de Prueba") seis.configure(text=" "+str(usuario[2])) else: uno.configure(text=" ") dos.configure(text=" ") tres.configure(text=" ") cuatro.configure(text=" ") cinco.configure(text=" ") seis.configure(text=" ") messagebox.showerror("Error", "No se encontro Numero de Serie") conexionbuscar.close() busca.mainloop() def Limpiar(): uno.configure(text=" ") dos.configure(text=" ") tres.configure(text=" ") cuatro.configure(text=" ") cinco.configure(text=" ") seis.configure(text=" ") NSerie = StringVar() Label(busca, text = "Numero de Serie ").place(x = 30,y = 30) Entry(busca, textvariable=NSerie).place(x = 155, y = 30) Button(busca, text = "BUSCAR", command = Busca_Serial, activebackground = "green", activeforeground = "white").place(x = 50, y = 190) Button(busca,text = "BORRAR", command = Limpiar, activebackground = "RED", activeforeground = "white").place(x = 250, y = 190) Label(busca).place(x = 155, y = 70) Label(busca).place(x = 155, y = 110) # Mostrar la ventana busca.mainloop()
AnaNicoSerrano88/Timmer-SIAT
Buscar_Serie.py
Buscar_Serie.py
py
2,474
python
es
code
0
github-code
6
34252791072
import argparse import json import os from flask import Flask, render_template, request import openai import requests import base64 app = Flask(__name__) # Configure OpenAI API credentials openai.api_key = 'OPEN_API_KEY' @app.route('/') def index(): return render_template('index.html') @app.route('/search', methods=['POST']) def search(): search_query = request.form['search'] if("picture" in search_query): process(search_query) return render_template('index.html', search_query=False, results=True) else: results = search_openai(search_query) return render_template('index.html', search_query=search_query, results=results) def search_openai(query): response = openai.Completion.create( engine='text-davinci-003', # Use the GPT-3.5 engine prompt=query, max_tokens=4000, # Adjust the response length as needed temperature=0.7, # Adjust the temperature for response randomness n=1, # Generate a single response stop=None, # Optional stop sequence to end the response timeout=10, # Optional timeout for the API request ) return response.choices[0].text.strip() def process(prompt): parser = argparse.ArgumentParser() parser.add_argument("-p", "--prompt", help="Text to image prompt:", default='an isometric view of a miniature city, tilt shift, bokeh, voxel, vray render, high detail') parser.add_argument("-n", "--number", help="Number of images generated", default=1) parser.add_argument("-s", "--size", help="Image size: 256, 512 or 1024", default=256) args = parser.parse_args() api_key ="OPEN_API_KEY" url = 'https://api.openai.com/v1/images/generations' custom_headers = { "Content-Type": "application/json", "Authorization": "Bearer " + api_key, } reqBody = { "prompt": prompt, "n": int(args.number), "size": f'{args.size}x{args.size}', "response_format": "b64_json" } res = requests.post(url, data=json.dumps(reqBody), headers=custom_headers, ) # print(r) # print(r.url) # print(r.status_code) # print(res.text) # print(r.content) res_json = json.loads(res.text) for i in range(0, len(res_json['data'])): img_file_name = 'image.jpeg' folder="static" file_path = os.path.join(folder, img_file_name) with open(file_path, 'wb') as f: f.write(base64.urlsafe_b64decode(res_json['data'][i]['b64_json'])) if __name__ == '__main__': app.run(debug=True)
Guhan-jb/HippoGPT
Hippo_GPT/main.py
main.py
py
2,661
python
en
code
0
github-code
6
26826965262
# Brainfuck interpreter made in Desmos graphing calculator # https://www.desmos.com/calculator/sfjibaru0n # This is a python script that converts bf code to the numbers used in Desmos import re CODE_MAP = {"+": 0, "-": 1, ">": 2, "<": 3, ".": 4, ",": 5, "[": 6, "]": 7} with open(f"test.bf", "r") as f: code = f.read() code = re.sub("[^><\+-\.,\[\]]", "", code) out = "[" for char in code: out += str(CODE_MAP[char]) + "," out += "]" print(out)
idkhow2type/brainfuck
interpreters/desmos.py
desmos.py
py
459
python
en
code
0
github-code
6
37204853562
import logging import logging.config import os import yaml from commons.path import LOG_PATH, CONFIG_PATH class MyLog: def __init__(self, file_name, config_path=CONFIG_PATH, handel_name='server', level=logging.INFO): """ 自定义日志对象 :param config_path: 自定义日志配置文件 :param file_name: 自定义日志的日志名称 :param handel_name: 自定义的handler的名称, 如果自己定义了一个handler在config文件里面的话,可以修改此值,否则不要修改 :param level: 自定义的日志等级 """ self.config_path = config_path self.file_name = LOG_PATH + file_name self.handler = handel_name self.level = level def setup_logging(self, env_key='LOG_CFG'): """ | **@author:** Prathyush SP | Logging Setup """ value = os.getenv(env_key, None) if value: self.config_path = value if os.path.exists(self.config_path): with open(self.config_path, 'rt', encoding="utf-8") as f: try: config = yaml.safe_load(f.read()) logconfig = config['logConfig'] logconfig['handlers']['file']['filename'] = self.file_name logging.config.dictConfig(logconfig) except Exception as e: print(e) print('Error in Logging Configuration. Using default configs') logging.basicConfig(level=self.level) else: logging.basicConfig(level=self.level) print('Failed to load configuration file. Using default configs') def get_loger(self): self.setup_logging() loger = logging.getLogger(self.handler) return loger if __name__ == '__main__': logger = MyLog('../config.yaml','tjk.log').get_loger() logger.info("testssss")
tangjikuo/pdfHandlerSite
commons/logs.py
logs.py
py
1,948
python
en
code
0
github-code
6
13919204702
from odoo import _, api, fields, models from odoo.exceptions import ValidationError class PublicHolidays(models.Model): _name = "public.holidays" _description = "Public Holidays" @api.depends("date") def _compute_weekday(self): """Compute weekday based on the date.""" for day in self: day.weekday = day.date.strftime("%A") if day.date else "" partner_id = fields.Many2one("res.partner", string="Supplier") date = fields.Date("Date", required=True) weekday = fields.Char(compute="_compute_weekday", string="Day") reason = fields.Char("Reason") @api.constrains("date") def _check_holiday(self): """ Check for the overlapping record Raises: ValidationError: If there's an overlapping record. """ for holiday in self: domain = [ ("date", "=", holiday.date), ("partner_id", "=", holiday.partner_id.id), ("id", "!=", holiday.id), ] if self.search_count(domain): raise ValidationError( _("Already, That day has been declared as holiday!") )
onesteinbv/ProjectManagement
project_team_leave_management/models/public_holidays.py
public_holidays.py
py
1,197
python
en
code
1
github-code
6
21529723220
import logging import sys import re import time import json def run(ctx): # Get the ticket data from the context ticket = ctx.config.get('data').get('ticket') ticket_srn = ticket.get('srn') # Create GraphQL client graphql_client = ctx.graphql_client() #query ticket endpoint for swimlanes queryTicketsForSwimlanes = (''' { Tickets (where: { srn: {op:EQ, value:"'''+ ticket_srn + '''"}}) { items { swimlaneSRNs } } } ''') variables = { } logging.info('Searching for swimlanes of ticket {}'.format(ticket_srn)) r_ticket_swimlanes = graphql_client.query(queryTicketsForSwimlanes, variables) swimlaneList = r_ticket_swimlanes['Tickets']['items'][0]['swimlaneSRNs'] # get resourceIDs of the Swimlanes of the tickets querySwimlanes =(''' query Swimlanes ($swimlaneSRNs: [String]){Swimlanes (where: {srn: {op:IN_LIST, values:$swimlaneSRNs}} ) { items { resourceId }}} ''') #Build the variable to use the query variables = ('{"swimlaneSRNs": [') for resourceId in swimlaneList: variables += '"'+resourceId+'",' variables = variables[ : -1] variables += ']}' logging.info('Searching for resourceIds of swimlanes {}'.format(swimlaneList)) r_swimlanes = graphql_client.query(querySwimlanes, variables) group_srns = None # Loop through each of the custom fields and set the values that we need for customField in ticket.get('customFields'): if 'value' not in customField.keys(): continue name = customField['name'] value = customField['value'] if name == 'AD Group': group_srns = value.strip('][').split(',') # Built query for groups group_filter = "" for srn in group_srns: #get each individual group and put in the proper format to work in the graphQL below group_filter += ('{srn: { op:CONTAINS, value: '+srn+'}}') #GraphQL query for the groups queryADUsersByGroup = (''' query ActiveDirectoryUsersInGroup { Users( where: { and: [ { and: [ { active: { op: EQ, value: true } } { type: { op: EQ, value: ActiveDirectoryUser } } ] } { isMemberOf: { count: { op: GT, value: 0 } items: { and: [ { or: [ ''' + group_filter + '''] } {} ] } } } ] } ) { count items { userName name } } } ''') # get emails, names from AD groups variables = { } logging.info('Searching for users in AD groups: {}'.format(group_srns)) r_AD_query = graphql_client.query(queryADUsersByGroup, variables) # Query for the current users of the platform querySonraiUsers = 'query sonraiusers{SonraiUsers {items{ email } } }' variables = { } logging.info('Searching for existing Platform users') r_platform_users = graphql_client.query(querySonraiUsers, variables) # Query for users on the invite list querySonraiInvites = 'query sonraiinvites{SonraiInvites {items {email} } }' variables = { } logging.info('Searching for users already invited') r_invited_users = graphql_client.query(querySonraiInvites, variables) # Only allowing this script to assign "Data Viewer" role role = "srn:supersonrai::SonraiRole/DataViewer" #build pendingRolesAssigners from role and swimlanes pending_role_assigners = '"pendingRoleAssigners":[ ' for sw in r_swimlanes['Swimlanes']['items']: pending_role_assigners += ( '{"roleSrn": "'+role+'",') pending_role_assigners += ( '"scope": "'+sw['resourceId']+'"},') #remove the last comma from the pending role assigners pending_role_assigners = pending_role_assigners[ : -1] pending_role_assigners += ']' # invite user mutation mutation_invite = '''mutation inviteUser($input: [SonraiInviteCreator!]!) { CreateSonraiInvites(input: $input) { items { srn resourceId email dateSent expiry isPending pendingRoleAssignments { items { srn role { items { srn name }} scope } } } } }''' for email in r_AD_query['Users']['items']: invite_user = True #check if the userName is in the invite list for already_invited in r_invited_users['SonraiInvites']['items']: if email['userName'] == already_invited['email']: invite_user = False #check if the userName is in the platform user list for already_added in r_platform_users['SonraiUsers']['items']: if email['userName'] == already_added['email']: invite_user = False if invite_user: variables = ( '{ "input" : { ' + '"email":"' +email['userName']+ '",' '"name":"' + email['name'] + '",' + pending_role_assigners + '} }') logging.info('inviting users {}'.format(email['userName'])) r_create_invite = graphql_client.query(mutation_invite, variables)
sonraisecurity/sonrai-bots
remediation/azure/add_sonrai_platform_user/bot.py
bot.py
py
5,348
python
en
code
5
github-code
6
32522069165
from codigo.funcionesAuxiliares import * import time import copy #Algoritmo principal, realiza las llamadas a las funciones necesarias para obtener la salida esperada. #Cada una de estas funciones están descritas en el archivo codigo/funcionesAuxiliares.py def clustering(iteraciones_prueba, datos_entrada, tipo_input, num_cluster, criterio_parada, numero_iteraciones, circunferencias_entrada): estadisticas = [] tiempo = time.time() for i in range(iteraciones_prueba): # 0. Leer datos datos = leer_datos(datos_entrada) similitud_cluster = True # 1. Inicialización de circunferencias iniciales (centro y radio de cada una) circunferencias = [] if tipo_input == 1: inicializar_datos(datos, num_cluster, circunferencias) else: circunferencias = copy.deepcopy(circunferencias_entrada) # 2. Repetir (hasta condición de parada) if criterio_parada == 0: iteraciones = criterio_iteraciones(numero_iteraciones, datos, circunferencias) else: iteraciones = criterio_similitud(similitud_cluster, circunferencias, datos) # 3. Asignar cada punto únicamente a su cluster de mayor grado de pertenencia, asignar_puntos(circunferencias, datos, estadisticas) datos_salida = mostrar_resultados(datos, estadisticas, iteraciones, iteraciones_prueba, tiempo) return datos_salida
sergioperez1998/ProyectoClusteringIA
codigo/clustering.py
clustering.py
py
1,446
python
es
code
0
github-code
6
70472477627
import numpy as np import matplotlib.pyplot as plt # data to plot n_groups = 5 meso4 = (0.5, 0.65, 0.84, 0.7,0.51) capsule = (0.84, 0.89, 0.96, 0.95, 0.88) xception = (0.93, 0.97, 0.98, 0.95, 0.88) gan = (0.72, 0.73, 0.86, 0.86, 0.72) spectrum = (0.81, 0.83, 0.98, 0.67, 0.57) headpose = (0.64, 0.64, 0.64, 0.64, 0.62) visual = (0.96, 0.96, 0.97, 0.84, 0.69) # create plot fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 rects1 = plt.barh(index, meso4, bar_width, alpha=opacity, color='b', label='meso4') rects2 = plt.barh(index + bar_width, capsule, bar_width, alpha=opacity, color='g', label='capsule') rects3 = plt.barh(index + 2*bar_width, capsule, bar_width, alpha=opacity, color='r', label='xception') # plt.xlabel('Person') # plt.ylabel('Scores') plt.title('Scores by person') plt.yticks(index + bar_width, ('meso4', 'capsule', 'xception', 'gan')) plt.legend() plt.tight_layout() plt.show()
phuc180155/GraduationThesis
dfd_benchmark/plot_image/more_bar_chart.py
more_bar_chart.py
py
981
python
en
code
2
github-code
6
20513626833
from selenium import webdriver from time import sleep # validateText = "Option3" driver = webdriver.Chrome(executable_path="/home/chaitanya/Documents/software/drivers/chromedriver_linux64/chromedriver") driver.get("https://rahulshettyacademy.com/AutomationPractice/") # Positive case driver.find_element_by_css_selector("input#name").send_keys("Option3") validateText = driver.find_element_by_xpath("//input[@id='name']").text driver.find_element_by_xpath("//input[@value='Alert']").click() alert = driver.switch_to.alert assert validateText in alert.text sleep(5) alert.accept() # Negative case driver.find_element_by_id("confirmbtn").click() # validateText = driver.find_element_by_xpath("//input[@value='Confirm']").text # assert validateText in alert.text sleep(5) alert.dismiss()
ChaithanyaRepo/PythonTesting
PythonSelenium/alerts.py
alerts.py
py
788
python
en
code
0
github-code
6
31355510321
import unittest import pyproj import simplegrid as sg class TestNearest(unittest.TestCase): def test_nearest_sw_corner(self): geod = pyproj.Geod(ellps='sphere') mg = sg.gridio.read_mitgridfile('./data/tile005.mitgrid', 270, 90) i,j,dist = sg.util.nearest(-128.,67.5,mg['XG'],mg['YG'],geod) self.assertEqual((i,j),(0,0)) self.assertAlmostEqual(dist,1.20941759e-09) def test_nearest_ne_corner(self): geod = pyproj.Geod(ellps='sphere') mg = sg.gridio.read_mitgridfile('./data/tile005.mitgrid', 270, 90) i,j,dist = sg.util.nearest(-115.,-88.17570,mg['XG'],mg['YG'],geod) self.assertEqual((i,j),(270,90)) self.assertAlmostEqual(dist,1.14379740) def test_nearest_center(self): geod = pyproj.Geod(ellps='sphere') mg = sg.gridio.read_mitgridfile('./data/tile005.mitgrid', 270, 90) i,j,dist = sg.util.nearest(-83.,-24.310,mg['XG'],mg['YG'],geod) self.assertEqual((i,j),(135,45)) self.assertAlmostEqual(dist,6.2719790) if __name__=='__main__': unittest.main()
nasa/simplegrid
simplegrid/tests/test_nearest.py
test_nearest.py
py
1,096
python
en
code
5
github-code
6
6545029693
from sqlalchemy.orm import Session from . import models, schemas def get_items(db: Session, skip: int = 0, limit: int = 100): return db.query(models.Item).offset(skip).limit(limit).all() def create_objective(db: Session, objective: schemas.ObjectiveBase): db_objective = models.Objective(**objective.dict()) db.add(db_objective) db.commit() db.refresh(db_objective) return db_objective def update_objective(db: Session, objective_id: int, objective: schemas.ObjectiveBase): db_objective = db.query(models.Objective).filter(models.Objective.id == objective_id).first() db_objective.title = objective.title db_objective.order = objective.order db.commit() db.refresh(db_objective) return db_objective def delete_objective(db: Session, objective_id: int): db_objective = db.query(models.Objective).filter(models.Objective.id == objective_id).delete() db.commit() return db_objective
yaseralnajjar/Fast-API-Sample
my_app/crud.py
crud.py
py
949
python
en
code
1
github-code
6
31543780794
lines = [] print("\n\tEnter lines: \n") while True : string = input("\t") if string == '': break lines.append(string) print("\n\tThe lines you entered are:\n") for i in lines: print('\t' + i) print()
Shobhit0109/programing
EveryOther/Practical File/python/P9.py
P9.py
py
232
python
en
code
0
github-code
6
1171875743
#!/usr/bin/env python import ROOT class DefineHistograms: """Class to define all histograms to be filled for SMELLIE analysis Attributes: t_res (TH1D) : time residual histogram for all events t_res_beam (TH1D) : time residual histogram for direct beam light t_res_double (TH1D) : time residual histogram for late pulses t_res_psup (TH1D) : time residual histogram for PSUP reflections t_res_avin (TH1D) : time residual histogram for far side AV reflections t_res_avout (TH1D) : time residual histogram for near side AV reflections t_res_scatt (TH1D) : time residual histogram for scattered photons t_res_multi (TH1D) : time residual histogram for multiple optical interactions angle_time (TH2D) : PMT angle with respect to the fibre direction vs time residual for all events angle_time_beam (TH2D) : PMT angle with respect to the fibre direction vs time residual for direct beam light angle_time_double (TH2D) : PMT angle with respect to the fibre direction vs time residual for late pulses angle_time_scatt (TH2D) : PMT angle with respect to the fibre direction vs time residual for scattered photons angle_time_avin (TH2D) : PMT angle with respect to the fibre direction vs time residual for far side AV reflections angle_time_avout (TH2D) : PMT angle with respect to the fibre direction vs time residual for near side AV reflections angle_time_psup (TH2D) : PMT angle with respect to the fibre direction vs time residual for PSUP reflections angle_time_multi (TH2D) : PMT angle with respect to the fibre direction vs time residual for multiple optical interactions z_time (TH2D) : PMT z coordinate vs time residual for all events z_time_beam (TH2D) : PMT z coordinate vs time residual for direct beam light z_time_double (TH2D) : PMT z coordinate vs time residual for late pulses z_time_scatt (TH2D) : PMT z coordinate vs time residual for scattered photons z_time_avin (TH2D) : PMT z coordinate vs time residual for far side AV reflections z_time_avout (TH2D) : PMT z coordinate vs time residual for near side AV reflecitons z_time_psup (TH2D) : PMT z coordinate vs time residual for PSUP reflections z_time_multi (TH2D) : PMT z coordinate vs time residual for multiple optical interactions theta_phi (TH2D) : PMT theta coordinate vs PMT phi coordinate for all events theta_phi_beam (TH2D) : PMT theta coordinate vs PMT phi coordinate for direct beam light theta_phi_double (TH2D) : PMT theta coordinate vs PMT phi coordinate for late pulses theta_phi_scatt (TH2D) : PMT theta coordinate vs PMT phi coordinate for scattered photons theta_phi_avin (TH2D) : PMT theta coordinate vs PMT phi coordinate for far side AV reflections theta_phi_avout (TH2D) : PMT theta coordinate vs PMT phi coordinate for near side AV reflections theta_phi_psup (TH2D) : PMT theta coordinate vs PMT phi coordinate for PSUP reflections theta_phi_multi (TH2D) : PMT theta coordinate vs PMT phi coordinate for multiple interactions h_theta (TH1D) : PMT theta coordinate for all events h_theta_beam (TH1D) : PMT theta coordinate for direct beam light h_theta_double (TH1D) : PMT theta coordinate for late pulses h_theta_scatt (TH1D) : PMT theta coordinate for scattered photons h_theta_avin (TH1D) : PMT theta coordinate for far side AV reflections h_theta_avout (TH1D) : PMT theta coordinate for near side AV reflections h_theta_psup (TH1D) : PMT theta coordinate for PSUP reflections h_theta_multi (TH1D) : PMT theta coordinate for multiple optical interactions h_phi (TH1D) : PMT phi coordinate for all events h_phi_beam (TH1D) : PMT phi coordinate for direct beam light h_phi_double (TH1D) : PMT phi coordinate for late pulses h_phi_scatt (TH1D) : PMT phi coordinate for scattered photons h_phi_avin (TH1D) : PMT phi coordinate for far side AV reflections h_phi_avout (TH1D) : PMT phi coordinate for near side AV reflections h_phi_psup (TH1D) : PMT phi coordinate for PSUP reflections h_phi_multi (TH1D) : PMT phi coordinate for multiple optical interactions h_nhits (TH1D) : Number of hits for all events """ def __init__(self): self.t_res = ROOT.TH1D("time_residual", "", 600, -20.0, 500.0) self.t_res_beam = ROOT.TH1D("time_residual_beam", "", 500, -20.0, 300.0) self.t_res_double = ROOT.TH1D("time_residual_double", "", 500, -20.0, 300.0) self.t_res_psup = ROOT.TH1D("time_residual_psup", "", 500, -20.0, 300.0) self.t_res_avin = ROOT.TH1D("time_residual_avin", "", 500, -20.0, 300.0) self.t_res_avout = ROOT.TH1D("time_residual_avout", "", 500, -20.0, 300.0) self.t_res_scatt = ROOT.TH1D("time_residual_scatt", "", 500, -20.0, 300.0) self.t_res_multi = ROOT.TH1D("time_residual_multi", "", 500, -20.0, 300.0) self.angle_time_beam = ROOT.TH2D("angle_time_beam", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_double = ROOT.TH2D("angle_time_double", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time = ROOT.TH2D("angle_time", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_scatt = ROOT.TH2D("angle_time_scatt", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_avin = ROOT.TH2D("angle_time_avin", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_avout = ROOT.TH2D("angle_time_avout", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_psup = ROOT.TH2D("angle_time_psup", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.angle_time_multi = ROOT.TH2D("angle_time_multi", "", 150, -20.0, 300.0, 100, 0.0, 200.0) self.z_time = ROOT.TH2D("z_time", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_beam = ROOT.TH2D("z_time_beam", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_double = ROOT.TH2D("z_time_double", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_scatt = ROOT.TH2D("z_time_scatt", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_avin = ROOT.TH2D("z_time_avin", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_avout = ROOT.TH2D("z_time_avout", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_psup = ROOT.TH2D("z_time_psup", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.z_time_multi = ROOT.TH2D("z_time_multi", "", 150, -20.0, 300.0, 1000, -10000.0, 10000.0) self.theta_phi = ROOT.TH2D("theta_phi", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_beam = ROOT.TH2D("theta_phi_beam", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_double = ROOT.TH2D("theta_phi_double", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_scatt = ROOT.TH2D("theta_phi_scatt", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_avin = ROOT.TH2D("theta_phi_avin", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_avout = ROOT.TH2D("theta_phi_avout", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_psup = ROOT.TH2D("theta_phi_psup", "", 100, -3.5, 3.5, 100, 0, 3.5) self.theta_phi_multi = ROOT.TH2D("theta_phi_multi", "", 100, -3.5, 3.5, 100, 0, 3.5) self.h_theta = ROOT.TH1D("theta", "", 100, 0.0, 3.5) self.h_theta_beam = ROOT.TH1D("theta_beam", "", 100, 0.0, 3.5) self.h_theta_double = ROOT.TH1D("theta_double", "", 100, 0.0, 3.5) self.h_theta_scatt = ROOT.TH1D("theta_scatt", "", 100, 0.0, 3.5) self.h_theta_avin = ROOT.TH1D("theta_avin", "", 100, 0.0, 3.5) self.h_theta_avout = ROOT.TH1D("theta_avout", "", 100, 0.0, 3.5) self.h_theta_psup = ROOT.TH1D("theta_psup", "", 100, 0.0, 3.5) self.h_theta_multi = ROOT.TH1D("theta_multi", "", 100, 0.0, 3.5) self.h_phi = ROOT.TH1D("phi", "", 100, -3.5, 3.5) self.h_phi_beam = ROOT.TH1D("phi_beam", "", 100, -3.5, 3.5) self.h_phi_double = ROOT.TH1D("phi_double", "", 100, -3.5, 3.5) self.h_phi_scatt = ROOT.TH1D("phi_scatt", "", 100, -3.5, 3.5) self.h_phi_avin = ROOT.TH1D("phi_avin", "", 100, -3.5, 3.5) self.h_phi_avout = ROOT.TH1D("phi_avout", "", 100, -3.5, 3.5) self.h_phi_psup = ROOT.TH1D("phi_psup", "", 100, -3.5, 3.5) self.h_phi_multi = ROOT.TH1D("phi_multi", "", 100, -3.5, 3.5) self.h_nhits = ROOT.TH1D("number_of_hits","",200,0.0,1000.0)
slangrock/SCUNC
define_histograms.py
define_histograms.py
py
8,867
python
en
code
0
github-code
6
31280623414
__author__ = 'Vincent' from sqlalchemy import * from threading import Thread from threading import Event from gps import * from utils.bdd import * from utils.functions import * class GpsThread(Thread): def __init__(self, session_db, event): Thread.__init__(self) self.db_session = session_db self.recording_interval = 0 self.track_session_id = 0 self.can_run = Event() self.stop_program = Event() self.event = event def set_recording_inteval(self, recording_interval): self.recording_interval = recording_interval def set_track_session_id(self, track_session_id): self.track_session_id = track_session_id def run(self): session = gps(mode=WATCH_ENABLE) while not self.stop_program.isSet(): self.can_run.wait() while not self.stop_program.isSet() and self.can_run.isSet(): # get the gps datas if session.waiting(): datas = session.next() if datas['class'] == "TPV": self.event.set() # create gps datas and insert it gps_data = GPSData(latitude=session.fix.latitude, longitude=session.fix.longitude, speed=session.fix.speed, date_time=func.strftime('%Y-%m-%d %H:%M:%f', datetime.now()), session_id=self.track_session_id) log.log("Insert: " + str(gps_data), log.LEVEL_DEBUG) self.db_session.add(gps_data) self.db_session.commit() self.event.clear() time.sleep(self.recording_interval) log.log("GpsThread stopped !!", log.LEVEL_DEBUG) session = None def pause(self): log.log("GpsThread pausing ....", log.LEVEL_DEBUG) self.can_run.clear() def resume(self): log.log("GpsThread resuming ....", log.LEVEL_DEBUG) self.can_run.set() def stop(self): log.log("GpsThread stopping ....", log.LEVEL_DEBUG) self.stop_program.set() self.resume()
capic/KartTrackerCore
threads/gps_thread.py
gps_thread.py
py
2,197
python
en
code
0
github-code
6
43627739614
class Solution: # ends0: if we meet 0, we can append 0 to all existing ends0 + ends1 # ends0 = ends0 + ends1 # # ends1: if we meet 1, we can append 1 to all existing ends0 + ends1 # and also adding "1" # ends1 = ends0 + ends1 + 1 # # example: # num 1 0 1 1 # end0Count 0 1 1 1 # end1Count 1 1 3 5 # end0Arr [] [10] [10] [10] # end1Arr [1] [1] [11, 101, 1] [101, 111, 1011, 11, 1] def numberOfUniqueGoodSubsequences(self, binary: str) -> int: MOD = 10**9 + 7 ends0 = 0 ends1 = 0 has0 = 0 for i, c in enumerate(binary): if c == '1': ends1 = (ends0 + ends1 + 1) % MOD else: ends0 = (ends0 + ends1) % MOD has0 = 1 return (ends0 + ends1 + has0) % MOD def test(self): test_cases = [ '001', '11', '101', ] for binary in test_cases: res = self.numberOfUniqueGoodSubsequences(binary) print('res: %s' % res) print('-='*30 + '-') if __name__ == '__main__': Solution().test()
MichaelTQ/LeetcodePythonProject
solutions/leetcode_1951_2000/LeetCode1987_NumberOfUniqueGoodSubsequences.py
LeetCode1987_NumberOfUniqueGoodSubsequences.py
py
1,320
python
en
code
0
github-code
6
21188009718
""" Module for city related models. """ from sqlalchemy import Column, String, Integer, ForeignKey from sqlalchemy.orm import relationship from data import CONFIG from models import Base CONSUMPTION_RATES = CONFIG.get("game.cities.consumption") class City(Base): """ Model for tracking city data. """ __tablename__ = "City" id = Column(Integer, primary_key=True) name = Column(String, unique=True, nullable=False) population = Column(Integer, nullable=False) location_id = Column( Integer, ForeignKey("Location.id"), unique=True, nullable=False, index=True ) location = relationship("Location") resources = relationship("CityResource", cascade="all, delete-orphan") def __str__(self) -> str: return f"{self.name}" def __repr__(self) -> str: return ( "City(" f"id={self.id}, " f"name='{self.name}', " f"location={self.location}, " f"population={self.population}, " f"location_id={self.location_id})" ) @property def json(self): """ Get json data to send to client. """ return { "id": self.id, "position": self.location.coordinate.json, "name": self.name, "population": self.population, "resources": {slot.resource.name: slot for slot in self.resources}, } class CityResource(Base): """ Model for tracking which resources a city has. """ __tablename__ = "CityResource" id = Column(Integer, primary_key=True) amount = Column(Integer, nullable=False) city_id = Column(Integer, ForeignKey("City.id"), nullable=False, index=True) city = relationship("City") resource_id = Column( Integer, ForeignKey("ResourceType.id"), nullable=False, index=True ) resource = relationship("ResourceType", uselist=False) def __str__(self) -> str: return f"{self.city} has {self.amount} {self.resource}" def __repr__(self) -> str: return ( "CityResource(" f"id={self.id}, " f"amount={self.amount}, " f"city_id={self.city_id}, " f"resource_id={self.resource_id})" ) @property def price(self): """ Return price per unit of held resource. """ saturation = max(self.amount, self.city.population / 2) / ( self.city.population * CONSUMPTION_RATES[self.resource.name] ) return self.resource.base_cost / saturation @property def amount_in_market(self): """ Return amount of resources available in market for players to purchase. """ reserved = self.city.population * 2 if reserved > self.amount: return 0 return self.amount - reserved @property def json(self): """ Send json data for client. """ return {"amount": self.amount, "price": self.price}
Jordan-Cottle/Game-Design-Capstone
StarcorpServer/starcorp/models/city.py
city.py
py
2,949
python
en
code
1
github-code
6
41244932240
'''Crie um programa que tenha uma tupla com várias palavras (não usar acentos). Depois disso, você deve mostrar, para cada palavra, quais são as vogais''' tupla = ('andre', 'camila', 'davi', 'isabella') for palavra in tupla: print(f'\nNa palavra {palavra} temos as vogais: ', end='') for letra in palavra: if letra.lower() in 'aeiou': print(letra, end=' ') ''' Primeiro, definimos a tupla de palavras: tupla = ('andre', 'camila', 'davi', 'isabella'). Em seguida, iniciamos um loop for para percorrer cada palavra na tupla: for palavra in tupla:. Para cada palavra na tupla, imprimimos a mensagem inicial com a palavra atual: print(f'\nNa palavra {palavra} temos as vogais: ', end=''). O uso de \n antes da mensagem imprime uma nova linha para cada palavra. Agora, iniciamos um segundo loop for para percorrer cada letra na palavra atual: for letra in palavra:. Para cada letra na palavra, verificamos se ela é uma vogal. Usamos letra.lower() para converter a letra para minúscula e garantir uma comparação case-insensitive. A condição if letra.lower() in 'aeiou': verifica se a letra está presente na string de vogais. Se a letra for uma vogal, a imprimimos seguida de um espaço em branco: print(letra, end=' '). O uso de end=' ' substitui a quebra de linha padrão por um espaço em branco, permitindo que as vogais sejam impressas lado a lado. Após o término do segundo loop for, o fluxo do programa volta para o primeiro loop for, avançando para a próxima palavra na tupla. Esse processo se repete para cada palavra na tupla até que todas as palavras tenham sido percorridas.'''
andrematos90/Python
CursoEmVideo/Módulo 3/Desafio 077.py
Desafio 077.py
py
1,633
python
pt
code
0
github-code
6
17694953325
from Transformer import Transformer from MultiHeadAttention import MultiHeadAttention from tqdm import tqdm from Metrics import grad from Metrics import loss_function from Metrics import loss_function2 from Metrics import accuracy_function from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelEncoder from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from einops import rearrange import tensorflow as tf import os import numpy as np import joblib import pandas as pd import logging import sqlite3 as sql import time num_layers = int(os.environ["TRANSFORMER_LAYERS"]) d_model = int(os.environ["W2V_EMBED_SIZE"]) dff = int(os.environ["TRANSFORMER_DFF"]) num_heads = int(os.environ["TRANSFORMER_HEADS"]) batch_size = int(os.environ["BATCH_SIZE"]) training = bool(int(os.environ["TRAINING"])) epochs = int(os.environ["EPOCHS"]) max_seq_len = 200 class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, d_model: int, warmup_steps=4000): super(CustomSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps ** -1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) learning_rate = CustomSchedule(d_model) optimus_prime = None adm_optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) epoch_loss = tf.keras.metrics.Mean(name='train_loss') epoch_accuracy = tf.keras.metrics.Mean(name='train_accuracy') train_step_signature = [ tf.TensorSpec(shape=([batch_size, None]), dtype=tf.float32), tf.TensorSpec(shape=([batch_size]), dtype=tf.float32) ] add_att_layer = tf.keras.layers.AdditiveAttention() softmax = tf.keras.layers.Softmax() lr = LogisticRegression() s1 = tf.keras.Sequential([ tf.keras.layers.Dense(512), tf.keras.layers.Dense(4), tf.keras.layers.Softmax() ]) @tf.function(input_signature=train_step_signature) def train_step(log_batch: tf.Tensor, labels: tf.Tensor): transformer_input = tf.tuple([ log_batch, # <tf.Tensor: shape=(batch_size, max_seq_len), dtype=float32> labels # <tf.Tensor: shape=(batch_size, num_classes), dtype=float32> ]) with tf.GradientTape() as tape: Rs, _ = optimus_prime.call(transformer_input) # a_s = add_att_layer([Rs, Rs]) # y = softmax(a_s * Rs) y = Rs loss = tf.py_function(loss_function, [labels, y], tf.float32) pred = s1(y) labels = tf.cast(labels, tf.int64) # Optimize the model grads = tape.gradient(loss, optimus_prime.trainable_variables) adm_optimizer.apply_gradients(zip(grads, optimus_prime.trainable_variables)) # Tracking Progress epoch_loss.update_state(loss) # Adding Batch Loss epoch_accuracy.update_state(accuracy_function(labels, pred)) logging.basicConfig(format='%(asctime)s %(levelname)s | %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) def database_builder(path: str) -> pd.DataFrame(): logger.info('Building DataFrame ...') (_, _, files) = next(os.walk(path)) sql_query = 'SELECT * FROM logs' data = [] for f in files: if '.db' in f: conn = create_connection(path + f) d = pd.read_sql_query(sql_query, conn) data.append(d) logger.info('...complete!') return pd.concat(data) def create_connection(path: str) -> sql.Connection: """ Creates a database connection :param path: str path to database object :return sql.Connection a connection to the database """ try: conn = sql.connect(path) logger.info('Connected to database ' + path) return conn except sql.Error as e: logger.warning(e) def get_max_length_(dataset: pd.DataFrame, buffer_size: float) -> int: return int((1 + buffer_size) * dataset['log'].str.len().max()) def process_batch(dataset: pd.DataFrame, vocabulary: dict, max_seq_len: int, idx: int, labels: dict) -> tuple: logs = np.zeros((batch_size, max_seq_len)) y_true = np.empty((batch_size,)) start_window = idx * batch_size end_window = (idx + 1) * batch_size for log_idx, log in enumerate(dataset['log'][start_window:end_window]): for seq_idx, word in enumerate(log.split()): if seq_idx >= max_seq_len: break logs[log_idx, seq_idx] = vocabulary[word] if word in vocabulary.keys() else 0 y_true[log_idx] = labels[dataset['label'][log_idx]] return tf.convert_to_tensor(logs, dtype=tf.float32), tf.convert_to_tensor(y_true, dtype=tf.float32) if __name__ == '__main__': logging.info('Loading assets') word_embedding_matrix = joblib.load("/results/w2v_weights.joblib") vocabulary = joblib.load("/results/vocab_dict.joblib") dataset = database_builder('/database/') dataset = dataset.sample(frac=1).reset_index(drop=True) max_seq_len = 200 # get_max_length_(dataset, 0.0) vocab_size = len(vocabulary) logging.info('Processing logs for training') label_unique = dataset['label'].unique() lbp = LabelEncoder().fit(label_unique) binary_labels = lbp.transform(label_unique) log_labels = {} for idx, label in enumerate(label_unique): log_labels.update({ label: binary_labels[idx] }) n_logs = len(dataset.index) n_iter = n_logs // batch_size remainder = n_logs % batch_size attns = [] optimus_prime = Transformer( num_layers, d_model, num_heads, dff, vocab_size, word_embedding_matrix, max_seq_len, rate=0.1) optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) checkpoint_path = "./checkpoints/train" checkpoint = tf.train.Checkpoint(step=tf.Variable(1), transformer=optimus_prime, optimizer=optimizer) checkpoint_manager = tf.train.CheckpointManager(checkpoint, checkpoint_path, max_to_keep=5) # if a checkpoint exists, restore the latest checkpoint. if checkpoint_manager.latest_checkpoint: checkpoint.restore(checkpoint_manager.latest_checkpoint) print('Latest checkpoint restored!!') for epoch in tqdm(range(epochs)): start = time.time() epoch_loss.reset_states() epoch_accuracy.reset_states() for idx in range(n_iter): log_batch, labels = process_batch(dataset, vocabulary, max_seq_len, idx, log_labels) # Returns Eager Tensor for Predictions train_step(log_batch, labels) checkpoint.step.assign_add(1) if int(checkpoint.step) % 10 == 0: save_path = checkpoint_manager.save() print(f'Saved checkpoint for step {int(checkpoint.step)}: {save_path}') print(f'Loss {epoch_loss.result():.3f}, Accuracy: {epoch_accuracy.result():.3%}') print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch, epoch_loss.result(), epoch_accuracy.result())) print(f'Time taken for 1 epoch: {time.time() - start:.2f} secs\n')
whytheevanssoftware/log-analyzer
training/__main__.py
__main__.py
py
7,572
python
en
code
2
github-code
6
5504018518
# https://www.hackerrank.com/challenges/zipped/problem N, X = map(int, input().split()) data = [] for _ in range(X): subject_marks = list(map(float, input().split())) data.append(subject_marks) tuples = zip(*data) for element in tuples: print(sum(element) / X)
Nikit-370/HackerRank-Solution
Python/zipped.py
zipped.py
py
275
python
en
code
10
github-code
6
34029348872
import matplotlib.pyplot as plt import numpy as np """ Plot of success rate for a single NN with different control horizons """ # testing_result = [47.74, 52.76, 61.81, 63.82, 50.75] # baseline_result = [44.72, 45.73, 51.25, 52.26, 46.73] testing_result = [48, 53, 62, 64, 51] baseline_result = [45, 46, 51, 52, 47] # labels = ['1.5', '1', '0.5', '0.25', '0.15'] labels = ['0.67', '1', '2', '4', '6.67'] # x = np.arange(len(labels)) x_coordinate = np.asarray([1, 2, 3, 4, 5]) fig, ax = plt.subplots() ax.set_ylabel('Success rate (%)', fontsize=12) ax.set_xlabel('Replanning frequency (Hz)', fontsize=12) ax.set_title('Success rate with different replanning frequencies', fontsize=12) ax.set_xticks(x_coordinate) ax.set_xticklabels(labels) ax.set_yticks(np.arange(45, 65, 5)) plt.plot(x_coordinate, testing_result, 'o-', label='WayPtNav-ReachabilityCost') plt.plot(x_coordinate, baseline_result, 's-', label='WayPtNav-HeuristicsCost') # for i, value in enumerate(testing_result): # x = x_coordinate[i] # y = testing_result[i] # if i == 0: # scatter = ax.scatter(x, y, marker='x', color='red', label='Ours') # else: # scatter = ax.scatter(x, y, marker='x', color='red') # ax.text(x + 0.05, y + 0.05, value, fontsize=9) # # # for i, value in enumerate(baseline_result): # x = x_coordinate[i] # y = baseline_result[i] # if i == 0: # ax.scatter(x, y, marker='o', color='blue', label='Baseline') # else: # ax.scatter(x, y, marker='o', color='blue') # ax.text(x + 0.05, y + 0.05, value, fontsize=9) ax.legend(loc='lower right') ax.set_aspect(aspect=0.2) plt.show() plot_path = '/home/anjianl/Desktop/project/WayPtNav_paper/plots/ctrlhorizon_success_rate.png' fig.savefig(plot_path)
SFU-MARS/WayPtNav-reachability
executables/Plots_for_papers/Anjian/plot_ctrlhorizon_successful_rate.py
plot_ctrlhorizon_successful_rate.py
py
1,763
python
en
code
3
github-code
6
42739926570
# -*- coding = utf-8 -*- """ the :mod `dataset` module provides the dataset class and other subclasses which are used for managing datasets """ import pandas as pd import numpy as np class Dataset: """base class for loading datasets Note that you should never instantiate the class :class: `Dataset` class directly, and just use the below available methods for loading datasets. """ def __init__(self,cfg): self._cfg = cfg self.movies = pd.read_csv(self._cfg.DATASET.MOVIE_SET) self.ratings_train = pd.read_csv(self._cfg.DATASET.TRAIN_SET) self.ratings_test = pd.read_csv(self._cfg.DATASET.TEST_SET) self.user_list_train = self.ratings_train['userId'].drop_duplicates().values.tolist() self.user_list_test = self.ratings_test['userId'].drop_duplicates().values.tolist() self.user_list = self.user_list_train + self.user_list_test self.user_list = list(set(self.user_list)) self.movie_list = self.movies['movieId'].drop_duplicates().values.tolist() self.genre_list = self.movies['genres'].values.tolist() self.movie_type_list = self.get_movie_type_list(self.genre_list) self.user_map_train, self.user_map_reverse_train = self.get_list_index_map(self.user_list_train) self.user_map_test, self.user_map_reverse_test = self.get_list_index_map(self.user_list_test) self.type_map, self.type_map_reverse = self.get_list_index_map(self.movie_type_list) self.user_map, self.user_map_reverse = self.get_list_index_map(self.user_list) self.movie_map, self.movie_map_reverse = self.get_list_index_map(self.movie_list) self.movie_type_features = self.get_movie_type_features(self.movies) def get_movie_type_features(self,movies): """ get the movie type features, tf-idf matrix """ movie_type_features = np.zeros((len(self.movie_list),len(self.movie_type_list))) for row in self.movies.itertuples(index=True,name="Pandas"): movie_id = self.movie_map[getattr(row,'movieId')] movie_types = getattr(row,'genres').split('|') for movie_type in movie_types: if movie_type != '(no genres listed)': movie_type_index = self.type_map[movie_type] movie_type_features[movie_id,movie_type_index] = 1 return movie_type_features # tfidf matri def get_list_index_map(self,list): """ get the index map of a list """ index_map = {} index_map_reverse = {} for i,item in enumerate(list): index_map[item] = i index_map_reverse[i] = item return index_map, index_map_reverse def get_movie_type_list(self,genres_list): """ get the movie type list """ movie_type_list = [] for item in genres_list: movie_types = item.split('|') for movie_type in movie_types: if movie_type not in movie_type_list and movie_type != '(no genres listed)': movie_type_list.append(movie_type) return movie_type_list def get_trainset(self): """ get the trainset @return: (trainset,user_map,movie_map,type_map) """ return (self.ratings_train,self.user_map,self.movie_map,self.movie_type_features) def get_testset(self): """ get the testset @return: (testset,user_map,movie_map,type_map) """ return (self.ratings_test,self.user_map,self.movie_map,self.movie_type_features) def get_movie_name_by_movie_id(self,movie_id): """ get the movie name by movie id """ return self.movies[self.movies['movieId'] == movie_id]['title'].values[0] if __name__ == '__main__': from config import cfg dataset = Dataset(cfg) # print(dataset.user_list) # print(dataset.movie_list) # print(dataset.movie_type_list) print(dataset.type_map) print(dataset.type_map_reverse) # print(dataset.user_map) # print(dataset.user_map_reverse) # print(dataset.movie_map) # print(dataset.movie_map_reverse) # genres type list print(dataset.type_map.keys()) # ['Adventure', 'Animation', 'Children', 'Comedy', 'Fantasy', 'Romance', 'Drama', 'Action', 'Crime', 'Thriller', 'Horror', 'Mystery', 'Sci-Fi', 'Documentary', 'IMAX', 'War', 'Musical', 'Western', 'Film-Noir']
Jack-Lio/RecommenderSystem
dataset.py
dataset.py
py
4,487
python
en
code
0
github-code
6
31101340357
from django.urls import path from . import views app_name = "public" urlpatterns = [ path("", views.index, name="index"), path("about", views.about, name="about"), path("upload_dataset", views.upload_dataset, name="upload_dataset"), path("train_model", views.train_model, name="train_model"), path("test_model", views.test_model, name="test_model"), ]
pdagrawal/ml_playground
ml_playground/apps/public/urls.py
urls.py
py
374
python
en
code
0
github-code
6
11735637618
"""Add md5 and sha256 columns to File Revision ID: d128b94f9a63 Revises: 59d249ebf873 Create Date: 2021-10-24 14:54:30.381535 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'd128b94f9a63' down_revision = '59d249ebf873' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('files', sa.Column('md5', sa.LargeBinary(length=16), nullable=True)) op.add_column('files', sa.Column('sha256', sa.LargeBinary(length=32), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('files', 'sha256') op.drop_column('files', 'md5') # ### end Alembic commands ###
retroherna/rhinventory
alembic/versions/d128b94f9a63_add_md5_and_sha256_columns_to_file.py
d128b94f9a63_add_md5_and_sha256_columns_to_file.py
py
806
python
en
code
1
github-code
6
38961246021
#it is used to check the quatitity import re p1="a+"#occurance of a ,+ isused tocheck the occurance p2="a*"#it will check for all a occurance p3="a?"#it all position of a p4="a{2}"#it will check only 2 occurances of a p5="a{2,3}"#it will check min 2 num of a and max 3 num of a p6="[Kl" p=re.finditer(p3,"KL38C2280") count=0 for i in p: count+=1 print(i.start())# to find the position of mtching print(i.group())# which object is matching print("Count",count)
Aswin2289/LuminarPython
LuminarPythonPrograms/RegularExper/Quantifiers.py
Quantifiers.py
py
472
python
en
code
0
github-code
6
8717939176
from threading import Thread from time import sleep from .. import Command, BaseTask from ... import app_manager class MeasureWeight(BaseTask): """ Measures weight and saves it to database. Extra parameters: - 'device_id': str - ID of target device, - 'sleep_period': float - measurement period """ def __init__(self, config): self.__dict__.update(config) required = ['sleep_period', 'device_id', 'task_id'] self.validate_attributes(required, type(self).__name__) self.device = app_manager.deviceManager.get_device(self.device_id) super(MeasureWeight, self).__init__(config) def start(self): """ Start the task. """ t = Thread(target=self._run) t.start() def _run(self): while self.is_active: cmd = Command(self.device_id, "1", [], self.task_id) self.device.post_command(cmd) cmd.await_cmd() cmd.save_data_to_db() sleep(int(self.sleep_period)) def end(self): """ End the task. """ self.is_active = False
SmartBioTech/DeviceControl
app/workspace/tasks/SICS.py
SICS.py
py
1,134
python
en
code
2
github-code
6
75261205308
import torch from tqdm import tqdm def evaluate(model, loader, device): """ Evaluation function to calculate loss and accuracy on Val/test dataset Args: model (nn.Module): model to be evaluated on the give dataset loader (DataLoader): Validation/Test dataloader to evaluate the model on. device (torch.device): The device (CPU/GPU) to perform the evalutation on. """ model.to(device) model.eval() correct = 0 total = 0 running_loss = 0.0 criterion = torch.nn.CrossEntropyLoss() with torch.no_grad(): for images, labels in loader: images, labels = images.to(device), labels.to(device) # Forward pass outputs = model(images) predicted = torch.argmax(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() loss = criterion(outputs, labels) running_loss += loss.item() accuracy = 100 * correct / total avg_loss = running_loss / len(loader) model.train() return accuracy, avg_loss, correct
iMvijay23/Dinov2SSLImageCL
evaluate.py
evaluate.py
py
1,112
python
en
code
7
github-code
6
42206728289
import torch from torch import nn from torch.autograd import Variable import torch.functional as F from torch.optim import Adam from torchvision.models import resnet50 # self from vis import Vis import vars from data_loader import get_data_loader from test import test def train(epoch, model, train_loader, criterion, optimizer, vis): model.train() for i, (data, label) in enumerate(train_loader): data = Variable(data).cuda() # gpu label = Variable(label).cuda() # gpu optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() if i % 30 == 0: status = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch + 1, i * len(data), len(train_loader.dataset), 100. * i / len(train_loader), loss.item()) print(status) vis.update_train(x=torch.Tensor([epoch + i/len(train_loader)]), y=torch.Tensor([loss.item()]), status=status) if __name__ == '__main__': # load data and init train_loader, test_loader = get_data_loader() vis = Vis('bba_race resnet') # model model = resnet50() input_size = model.fc.in_features model.fc = nn.Linear(input_size, 20) # output 20 category # load exist # checkpoints = vars.checkpoint_path + 'res_net50_0.14.pt' checkpoints = '' if checkpoints: model.load_state_dict(torch.load(checkpoints)) # load exist model model.cuda() # gpu # criterion, optimizer criterion = nn.CrossEntropyLoss().cuda() # gpu optimizer = Adam(model.parameters(), lr=0.01) epoches = 1 for epoch in range(epoches): train(epoch, model, train_loader, criterion, optimizer, vis) # save the model torch.save(model.state_dict(), vars.checkpoint_path + 'res_net50_{}.pt'.format(epoch)) test(epoch, model, test_loader, criterion, vis)
DragonChen-TW/2018_bba_race
model/train.py
train.py
py
1,970
python
en
code
0
github-code
6