seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
75051539708
# -*- coding: utf-8 -*- r""" tests.test_state ~~~~~~~~~~~~~~~~ Tests for the \p State class including movement mechanics and enumeration of the \p MoveSet class. :copyright: (c) 2019 by Zayd Hammoudeh. :license: MIT, see LICENSE for more details. """ from typing import Tuple import pytest from stratego import Move from stratego.location import Location from stratego.move import MoveStack from stratego.piece import Color from stratego.player import Player from stratego.state import State from testing_utils import STATES_PATH, SMALL_BRD, STD_BRD def _get_move_from_player(plyr: Player, _orig: Tuple[int, int], new: Tuple[int, int]) -> Move: r""" Get the move from (row1, col1) in \p l1 to (row2, col2) in \p l2. :param plyr: Player whose move will be extracted :param _orig: Original location to move from :param new: New location to move to :return: Move corresponding to the move pair """ available_moves = plyr.move_set.avail values = list(available_moves.values()) v = [v for v in values if v.orig == Location(*_orig) and v.new == Location(*new)] assert v return v[0] def _verify_num_pieces_and_move_set_size(state: State, num_red_p: int, num_blue_p: int, num_red_mv: int, num_blue_mv: int): r""" Verifies the number of pieces and size of the \p MoveSet :param state: State of the game :param num_red_p: Number of remaining RED pieces :param num_blue_p: Number of remaining BLUE pieces :param num_red_mv: Number of available moves for RED :param num_blue_mv: Number of available moves for BLUE """ # Standardize assert tests assert state.red.num_pieces == num_red_p assert state.blue.num_pieces == num_blue_p assert len(state.red.move_set) == num_red_mv assert len(state.blue.move_set) == num_blue_mv def test_duplicate_loc_in_state(): r""" Verify that a \p State file with two pieces in same location raises an error """ for dup_file in ["duplicate_loc_red.txt", "duplicate_loc_diff_color.txt"]: duplicate_path = STATES_PATH / dup_file assert duplicate_path.exists(), "Duplicate file path does not exist" with pytest.raises(Exception): State.importer(duplicate_path, STD_BRD) def test_no_flag(): r""" Verify an error is raised if the file has no flag """ # Verify the "clean" passes path = STATES_PATH / "no_flag_clean.txt" assert path.exists(), "No flag test file does not exist" State.importer(path, STD_BRD) # Verify no flag checks are done for both players for file in ["no_flag_red.txt", "no_flag_blue.txt"]: path = STATES_PATH / file assert path.exists(), "No flag test file does not exist" with pytest.raises(Exception): State.importer(path, STD_BRD) # noinspection PyProtectedMember def test_state_basic_moves(): r""" Verify the basic movement mechanics work without issue """ path = STATES_PATH / "state_move_verify.txt" assert path.exists(), "Move verify file does not exist" state = State.importer(path, STD_BRD) # Verify initial state matches expectations _verify_num_pieces_and_move_set_size(state, 7, 7, 4 + 3, 4 + 3) move_stack = MoveStack() # Define a series of moves. Entries in each tuple are: # 0: Original piece location # 1: Piece new location # 2: Number of red pieces # 3: Number of blue pieces # 4: Size of the red move set # 5: Size of the blue move set move_list = [((0, 1), (1, 1), 7, 7, 12, 7), ((9, 1), (8, 1), 7, 7, 12, 12), ((1, 1), (2, 1), 7, 7, 12, 12), ((8, 1), (7, 1), 7, 7, 12, 12), ((2, 1), (3, 1), 7, 7, 12, 12), ((7, 1), (6, 1), 7, 7, 12, 12), ((3, 1), (4, 1), 7, 7, 11, 12), # One less due to blocked by (4, 2) ((6, 1), (5, 1), 7, 7, 11, 11), # One less due to blocked by (5, 2) ((4, 1), (5, 1), 6, 6, 8, 8), # Both lost piece in battle ((9, 3), (6, 3), 6, 6, 8, 18), # Move blue scout ((0, 3), (3, 3), 6, 6, 18, 18), # Move red scout ((6, 3), (6, 5), 6, 6, 18, 23), # Move blue scout ((3, 3), (3, 5), 6, 6, 20, 20), # Move red scout ((6, 5), (6, 4), 6, 6, 23, 23), # Move blue scout ((3, 5), (9, 5), 6, 5, 16, 22), # Red scout attack blue spy ((6, 4), (0, 4), 6, 4, 16, 5) # Blue scout attack red bomb ] printer_out = [] for orig, new, num_red_p, num_blue_p, num_red_mv, num_blue_mv in move_list: orig, new = Location(orig[0], orig[1]), Location(new[0], new[1]) p = state.next_player.get_piece_at_loc(orig) assert p is not None attacked = state.get_other_player(state.next_player).get_piece_at_loc(new) move_stack.push(Move(p, orig, new, attacked)) assert state.update(move_stack.top()) assert state._printer._is_loc_empty(orig) _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) printer_out.append(state.write_board()) # Try to move red bomb then the red flag for orig in [Location(0, 4), Location(0, 6)]: p = state.next_player.get_piece_at_loc(orig) assert p is not None for new in [orig.left(), orig.right]: attacked = state.get_other_player(state.next_player).get_piece_at_loc(new) with pytest.raises(Exception): Move(p, orig, new, attacked) # Verify Undo for i in range(2, len(move_list) + 1): _, _, num_red_p, num_blue_p, num_red_mv, num_blue_mv = move_list[-i] state.undo() assert state.write_board() == printer_out[-i], "Printer mismatch after do/undo" _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) def test_small_direct_attack(): r""" Test making a direct attack """ move_list = [(None, None, None, None, 7, 7, 11, 11), (Color.RED, Color.BLUE, (0, 3), (7, 3), 6, 6, 5, 5) ] _helper_small_test(move_list) def test_small_move_then_attack(): r""" Test making a single move with a scout then a direct attack """ move_list = [(None, None, None, None, 7, 7, 11, 11), (Color.RED, Color.BLUE, (0, 3), (1, 3), 7, 7, 19, 10), (Color.BLUE, Color.RED, (7, 3), (1, 3), 6, 6, 5, 5) ] _helper_small_test(move_list) def test_single_adjacent_scout(): r""" Test making a single move with a scout then a direct attack """ move_list = [(None, None, None, None, 2, 2, 11, 11), (Color.BLUE, Color.BLUE, (2, 4), (2, 3), 1, 1, 0, 0) ] _helper_small_test(move_list, state_file="moveset_two_scouts_adjacent.txt") def test_scout_blocking_scout(): r""" Test making a single move with a scout then a direct attack """ move_list = [(None, None, None, None, 7, 7, 11, 11), (Color.RED, Color.BLUE, (0, 5), (1, 5), 7, 7, 14, 11), (Color.BLUE, Color.RED, (7, 3), (2, 3), 7, 7, 14, 19), (Color.RED, Color.BLUE, (1, 5), (1, 4), 7, 7, 13, 19), (Color.BLUE, Color.RED, (2, 3), (3, 3), 7, 7, 13, 13), (Color.RED, Color.BLUE, (1, 4), (2, 4), 7, 7, 14, 13), (Color.BLUE, Color.RED, (7, 2), (7, 3), 7, 7, 14, 13), (Color.RED, Color.BLUE, (0, 0), (1, 0), 7, 7, 17, 13), (Color.BLUE, Color.RED, (3, 3), (2, 3), 7, 7, 17, 16), (Color.RED, Color.BLUE, (2, 4), (3, 4), 7, 7, 16, 19), (Color.BLUE, Color.RED, (2, 3), (2, 4), 7, 7, 16, 16), (Color.RED, Color.BLUE, (1, 0), (2, 0), 7, 7, 16, 16), (Color.BLUE, Color.RED, (2, 4), (2, 1), 7, 7, 11, 19), (Color.RED, Color.BLUE, (0, 2), (1, 2), 7, 7, 16, 19), (Color.BLUE, Color.RED, (7, 5), (6, 5), 7, 7, 16, 22), (Color.RED, Color.BLUE, (2, 0), (2, 1), 7, 6, 16, 9) ] _helper_small_test(move_list, state_file="moveset_scout_block_scout.txt") # noinspection PyProtectedMember def _helper_small_test(move_info, state_file: str = "moveset_small_direct_attack.txt"): r""" Helper function for testing the movements on the small board :param move_info: List of move information. For :math:`n` moves, the length of \p move_info should be :math:`n+1`. The first element is the initial board configuration. """ path = STATES_PATH / state_file assert path.exists(), "Small direct attack state file not found" state = State.importer(path, SMALL_BRD) _, _, _, _, num_red_p, num_blue_p, num_red_mv, num_blue_mv = move_info[0] _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) # Test doing moves moves, brd = [], [state.write_board()] for col, other_col, l1, l2, num_red_p, num_blue_p, num_red_mv, num_blue_mv in move_info[1:]: plyr, _ = state.get_player(col), state.get_player(other_col) m = _get_move_from_player(plyr, l1, l2) moves.append(m) state.update(moves[-1]) brd.append(state.write_board()) _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) # Test undoing the moves for i in range(1, len(moves) - 1): assert brd[-i] == state.write_board() _, _, _, _, num_red_p, num_blue_p, num_red_mv, num_blue_mv = move_info[-i] _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) assert moves[-i] == state._stack.top() # pylint: disable=protected-access state.rollback() _, _, _, _, num_red_p, num_blue_p, num_red_mv, num_blue_mv = move_info[-i - 1] _verify_num_pieces_and_move_set_size(state, num_red_p, num_blue_p, num_red_mv, num_blue_mv) assert brd[-i - 1] == state.write_board() def test_if_has_move(): r""" Verify the \p piece_has_move method of the \p State class """ path = STATES_PATH / "deep_q_verify.txt" state = State.importer(path, STD_BRD) # Marshall cannot move marshall_loc = Location(0, 0) p = state.get_player(Color.RED).get_piece_at_loc(marshall_loc) assert not state.piece_has_move(p) # Rank3 can move rank3_loc = Location(1, 0) p = state.get_player(Color.RED).get_piece_at_loc(rank3_loc) assert state.piece_has_move(p) # Bomb cannot move bomb_loc = Location(0, 4) p = state.get_player(Color.RED).get_piece_at_loc(bomb_loc) assert not state.piece_has_move(p) # Flag cannot move flag_loc = Location(0, 6) p = state.get_player(Color.RED).get_piece_at_loc(flag_loc) assert not state.piece_has_move(p) # verify pieces with known moves piece_col = (1, 2, 3, 5) for col in piece_col: flag_loc = Location(0, col) p = state.get_player(Color.RED).get_piece_at_loc(flag_loc) assert state.piece_has_move(p) flag_loc = Location(state.board.num_rows - 1, col) p = state.get_player(Color.BLUE).get_piece_at_loc(flag_loc) assert state.piece_has_move(p) # noinspection PyProtectedMember def test_cyclic_move(): state = State.importer(STATES_PATH / "state_move_verify.txt", STD_BRD) assert len(state._stack) == 0, "Move stack to begin with" num_moves = 0 orig, new = (0, 1), (1, 1) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" # Dummy moves to ensure no premature cycle orig, new = (9, 1), (8, 1) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" # Start of cycle orig, new = (0, 0), (1, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" orig, new = (9, 0), (8, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" orig, new = (1, 0), (0, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" orig, new = (8, 0), (9, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" orig, new = (0, 0), (1, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "No cyclic move" orig, new = (9, 0), (8, 0) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 1, "Cyclic move now" orig, new = (1, 1), (0, 1) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 1, "Cyclic move now" orig, new = (8, 1), (9, 1) m = _get_move_from_player(state.next_player, orig, new) state.update(m) num_moves += 1 assert len(state._stack) == num_moves assert len(state.get_cyclic_move()) == 0, "Cycle removed"
ZaydH/stratego
src/tests/test_state.py
test_state.py
py
14,130
python
en
code
0
github-code
6
22844256236
nstations = int(input()) nlines = int(input()) station_lines = {} # station -> lines for i in range(nlines): _, *stations = map(int, input().split()) for st in stations: station_lines.setdefault(st, []).append(i) start, end = map(int, input().split()) #=== from itertools import combinations from collections import deque def solve(station_lines, start, end): line_stations = {} for st, lines in station_lines.items(): for line in lines: line_stations.setdefault(line, set()).add(st) connections = {} for l1,l2 in combinations(line_stations, 2): if line_stations[l1] & line_stations[l2]: # common stations connections.setdefault(l1,[]).append(l2) connections.setdefault(l2,[]).append(l1) start_lines = set(station_lines[start]) end_lines = set(station_lines[end]) dq = deque() dq.extend(station_lines[start]) scores = [None] * nlines for x in start_lines: scores[x] = 0 if start_lines & end_lines: return 0 while dq: l = dq.popleft() score = scores[l] if l not in connections: continue for lc in connections[l]: if scores[lc] is None: scores[lc] = score + 1 dq.append(lc) elif scores[lc] < score: scores[lc] = score + 1 if lc in end_lines: return scores[lc] return None ans = solve(station_lines, start, end) if ans is None: print(-1) else: print(ans)
sergey-ryzhikov/yandex-alogotrain-3.0B
t40.py
t40.py
py
1,563
python
en
code
0
github-code
6
30434077830
#%% # 신호 기록 가져오기 with open('sample_20200601_pointfinger.txt', 'r') as openfile : samples = openfile.readlines() tmp_timests = [ samples[i][:-1] for i in range(len(samples)) if i%3==0 ] tmp_samples = [ samples[i][:-1] for i in range(len(samples)) if i%3==1 ] #%% # 중복된 시간 기록 제거 timests, samples = list(), list() deleted = list() for sinx in range(len(tmp_timests)-1) : if tmp_timests[sinx] != tmp_timests[sinx+1] : samples.append(float(tmp_samples[sinx])) timests.append(float(tmp_timests[sinx].replace('2020-06-01 09:', '')[3:])) if tmp_timests[sinx].replace('2020-06-01 09:', '')[:2] == '26' : timests[-1] += 60 #%% # 플롭 해보기 import matplotlib import matplotlib.pyplot as plt import matplotlib.font_manager as fm import numpy as np fm.get_fontconfig_fonts() matplotlib.rc('font', family=fm.FontProperties(fname='C:/Windows/Fonts/NanumSquarel.ttf').get_name()) def plot(t, s, title='근전도 신호 데이터', xlabel='시간(초)', ylabel='신호 세기', style='-') : T = np.array(t) Y = np.array(s) mat = np.array([T, Y]) plt.figure(figsize=(18, 5)) plt.plot(T, Y, style, ms=15, lw=1) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title, fontsize=15, pad=20) plt.show() plot(timests, samples) #%% # 초기화 시간 제거하기 init_end_inx = 0 while True : if samples[init_end_inx] < 190 : break init_end_inx += 1 timests, samples = timests[init_end_inx:], samples[init_end_inx:] plot(timests[init_end_inx:], samples[init_end_inx:]) # # 기울기 값 계산 # grads = list() # for i in range(1, len(timests)) : # grads.append((samples[i-1]-samples[i])/(timests[i-1]-timests[i])) # plot(timests[1:], np.abs(grads)) #%% # 바이어스 하기 bias_value = 173.5 plot(timests, np.abs(np.array(samples)-bias_value)) #%% #구간 구하기 timespan = [51, 53.5] # 중간 신호 timespan = [53.5, 56.5] # 없는 신호 timespan = [75, 77] # 짧은 신호 timespan = [62, 66] # 긴 신호 span_indice = [0, 0] while span_indice[0] < len(timests) : if timests[span_indice[0]] > timespan[0] : break span_indice[0] += 1 while span_indice[1] < len(timests) : if timests[span_indice[1]] > timespan[1] : break span_indice[1] += 1 span_indice #%% # 푸리에 주기적 곱 bias_samples = abs(np.array(samples)-bias_value)[span_indice[0]:span_indice[1]] low_samples, high_samples = np.copy(bias_samples), np.copy(bias_samples) pass_filter_value = 4 high_samples[bias_samples <= pass_filter_value] = 0 low_samples[bias_samples > pass_filter_value] = 0 plt.figure(figsize=(18, 8)) plt.plot(np.convolve(low_samples, high_samples), '-', ms=1, lw=1) # plt.xlabel("") # plt.ylabel("") # plt.title(title, fontsize=15, pad=20) plt.show() #%% bias_samples = abs(np.array(samples)-bias_value) low_samples, high_samples = np.copy(bias_samples), np.copy(bias_samples) high_samples[bias_samples <= pass_filter_value] = 0 low_samples[bias_samples > pass_filter_value] = 0 step_num = 5 pack_num = 30 pinx = 0 pvalues = list() while pinx+pack_num < len(samples) : pvalues.append(np.sum(np.convolve( low_samples[pinx:pinx+pack_num], high_samples[pinx:pinx+pack_num]))/pack_num) pinx += step_num plot(timests, samples) plot(timests[:len(pvalues)], pvalues) #%% plot(timests[:len(pvalues)], pvalues) #%% # 그룹화하기 ginx = -1 group_area = list() while ginx < len(pvalues) : ginx += 1 while ginx < len(pvalues) and pvalues[ginx] < 1: ginx += 1 tmp = ginx while ginx < len(pvalues) and pvalues[ginx] > 0: ginx += 1 group_area.append((tmp, ginx)) group_area #%% # 최댓값 보기 maximums = list() for area in group_area : if pvalues[area[0]:area[1]] : maximums.append(np.max(pvalues[area[0]:area[1]])) plot([i for i in range(len(group_area)-1)], maximums, style='.') #%% (timests[0] - timests[1]) * 50 #%% # CNN의 입력 행렬 만들기 # 이상점 제거 group_area = group_area[1:-1] #%% # 훈련 데이터 만들기 labels = [] for i in range(19) : labels.append(i) len(labels) #%% def make_train(groups, areas, max_depth=40) : train_list = list() for area in areas : train_set = list() label_set = list() group_span = (area[1] - area[0]) # if group_span : continue inx = 0 while inx < max_depth and inx < group_span : a = labels[int(inx/group_span*len(labels))] # angle v = groups[inx:group_span]+[0 for i in range(max_depth-(group_span-inx))] train_set.insert(0, v) label_set.insert(0, a) inx += 1 if train_set : train_list.append((train_set, label_set)) return train_list trains = make_train(pvalues, group_area) #%% tmp_train_inputs = list(map(lambda l: l[0], trains)) tmp_label_inputs = list(map(lambda l: l[1], trains)) train_inputs = list() label_inputs = list() for i in range(len(tmp_train_inputs)) : for j in range(len(tmp_train_inputs[i])) : train_inputs.append(tmp_train_inputs[i][j]) label_inputs.append(tmp_label_inputs[i][j]) train_inputs = np.array(train_inputs) label_inputs = np.array(label_inputs) print(train_inputs.shape) #%% ### 신경망 학습을 위한 모듈 가져오기 import tensorflow as tf from tensorflow.keras import datasets, layers, Sequential #%% # 모델 만들기 model = Sequential() model.add(layers.Dense(40, activation='relu')) model.add(layers.Dense(50, activation='relu')) model.add(layers.Dense(40, activation='relu')) model.add(layers.Dense(30, activation='relu')) model.add(layers.Dense(len(labels), activation='softmax')) model.build(input_shape=(None, 40)) model.summary() #%% # 훈련 시작 model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.fit(train_inputs, label_inputs, epochs=500) #%% # 모델 평가 test_loss, test_acc = model.evaluate(train_inputs, label_inputs, verbose=2) #%% predicts = list() for i in range(len(train_inputs)) : p = model.predict(train_inputs[i:i+1]).tolist()[0] predicts.append(p) #%% predicts = [ p.index(max(p)) for p in predicts] predicts #%% plot([i for i in range(len(predicts))], predicts, xlabel="필터링된 그룹", ylabel="카테고리", title="예측 데이터") plot([i for i in range(len(predicts))], label_inputs, xlabel="필터링된 그룹", ylabel="카테고리", title="검증 데이터") #%% model.save('./my_model.h5') #%% print(train_inputs[0:1]) #%% # len(pvalues) # #%% # # 스펙트럼 관찰 # import scipy.signal # f, P = scipy.signal.periodogram(np.array(samples), int(1/(timests[1]-timests[0])), nfft=len(samples)) # plt.subplot(211) # plt.plot(f, P) # plt.title("선형 스케일") # plt.subplot(212) # plt.semilogy(f, P) # plt.title("로그 스케일") # plt.tight_layout() # plt.show()
oimq/DoTheEHands
SignalAnalyzer.py
SignalAnalyzer.py
py
6,880
python
en
code
0
github-code
6
17968730699
# Databricks notebook source # MAGIC %md # MAGIC # Train Machine Learning Model # MAGIC # MAGIC This notebook aims to develop and register an MLFlow Model for deployment consisting of: # MAGIC - a machine learning model to predict the liklihood of employee attrition. # MAGIC # MAGIC This example uses an adapted version of the [`IBM HR Analytics Employee Attrition & Performance` dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset) available from Kaggle. # MAGIC # MAGIC > Ensure you have created managed Delta tables in the Hive Metastore with the associated dataset. These [instructions](https://learn.microsoft.com/en-au/azure/databricks/ingestion/add-data/upload-data#upload-the-file) can be used to learn how to upload the dataset. # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC #### Import dependencies and define constants # COMMAND ---------- import json from typing import Dict, Tuple, Union import mlflow import pandas as pd from hyperopt import STATUS_OK, fmin, hp, tpe from mlflow.models.signature import infer_signature from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.metrics import (accuracy_score, f1_score, precision_score, recall_score, roc_auc_score) from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder # define notebook parameters dbutils.widgets.text("curated_dataset_table", "hive_metastore.default.employee_attrition_curated") # define target column TARGET = ["Attrition"] # define categorical feature columns CATEGORICAL_FEATURES = [ "Gender", "Education", "EducationField", "Department", "JobRole", "JobLevel", "PerformanceRating", "JobInvolvement", "JobSatisfaction", "RelationshipSatisfaction", "EnvironmentSatisfaction", "BusinessTravel", "OverTime", "WorkLifeBalance", "MaritalStatus", "StockOptionLevel" ] # define numeric feature columns NUMERIC_FEATURES = [ "Age", "DistanceFromHome", "MonthlyIncome", "NumCompaniesWorked", "PercentSalaryHike", "TotalWorkingYears", "TrainingTimesLastYear", "YearsAtCompany", "YearsInCurrentRole", "YearsSinceLastPromotion", "YearsWithCurrManager" ] # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC #### Define functions to build the model # COMMAND ---------- def prepare_data(df: pd.DataFrame, random_state: int = 2023) -> Tuple[pd.DataFrame, pd.DataFrame]: # change data types of target and features df[TARGET] = df[TARGET].replace({"Yes": 1, "No": 0}) df[NUMERIC_FEATURES] = df[NUMERIC_FEATURES].astype("float") df[CATEGORICAL_FEATURES] = df[CATEGORICAL_FEATURES].astype("str") # split into train and test datasets df_train, df_test = train_test_split( df[CATEGORICAL_FEATURES + NUMERIC_FEATURES + TARGET], test_size=0.20, random_state=random_state ) return df_train, df_test # COMMAND ---------- def make_classifer_pipeline(params: Dict[str, Union[str, int]]) -> Pipeline: """Create sklearn pipeline to apply transforms and a final estimator""" # categorical features transformations categorical_transformer = Pipeline(steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("ohe", OneHotEncoder())] ) # numeric features transformations numeric_transformer = Pipeline(steps=[ ("imputer", SimpleImputer(strategy="median"))] ) # preprocessing pipeline preprocessor = ColumnTransformer( transformers=[ ("numeric", numeric_transformer, NUMERIC_FEATURES), ("categorical", categorical_transformer, CATEGORICAL_FEATURES) ] ) # model training pipeline classifer_pipeline = Pipeline([ ("preprocessor", preprocessor), ("classifier", RandomForestClassifier(**params, n_jobs=-1)) ]) return classifer_pipeline # COMMAND ---------- # define objective function def hyperparameter_tuning(params): mlflow.sklearn.autolog(silent=True) with mlflow.start_run(nested=True): # read and process curated data df = spark.read.table(dbutils.widgets.get( "curated_dataset_table")).toPandas() df_train, df_test = prepare_data(df) # seperate features and target variables x_train, y_train = df_train[CATEGORICAL_FEATURES + NUMERIC_FEATURES], df_train[TARGET] x_test, y_test = df_test[CATEGORICAL_FEATURES + NUMERIC_FEATURES], df_test[TARGET] # train and model estimator = make_classifer_pipeline(params) estimator = estimator.fit(x_train, y_train.values.ravel()) y_predict_proba = estimator.predict_proba(x_test) # train model estimator = make_classifer_pipeline(params) estimator.fit(x_train, y_train.values.ravel()) # calculate evaluation metrics y_pred = estimator.predict(x_test) validation_accuracy_score = accuracy_score( y_test.values.ravel(), y_pred) validation_roc_auc_score = roc_auc_score(y_test.values.ravel(), y_pred) validation_f1_score = f1_score(y_test.values.ravel(), y_pred) validation_precision_score = precision_score( y_test.values.ravel(), y_pred) validation_recall_score = recall_score(y_test.values.ravel(), y_pred) # log evaluation metrics mlflow.log_metric("validation_accuracy_score", validation_accuracy_score) mlflow.log_metric("validation_roc_auc_score", validation_roc_auc_score) mlflow.log_metric("validation_f1_score", validation_f1_score) mlflow.log_metric("validation_precision_score", validation_precision_score) mlflow.log_metric("validation_recall_score", validation_recall_score) # log model input_example = x_test.iloc[0].to_dict() signature = infer_signature(x_train, y_pred) mlflow.sklearn.log_model( estimator, "model", signature=signature, input_example=input_example) return {"loss": -validation_roc_auc_score, "status": STATUS_OK} # COMMAND ---------- def train_model(): # set mlflow tracking uri mlflow_client = mlflow.tracking.MlflowClient(tracking_uri='databricks') mlflow.set_tracking_uri("databricks") # start model training run mlflow.set_experiment("/employee-attrition-classifier") with mlflow.start_run(run_name="employee-attrition-classifier") as run: # define search space search_space = { "n_estimators": hp.choice("n_estimators", range(100, 1000)), "max_depth": hp.choice("max_depth", range(1, 25)), "criterion": hp.choice("criterion", ["gini", "entropy"]), } # hyperparameter tuning best_params = fmin( fn=hyperparameter_tuning, space=search_space, algo=tpe.suggest, max_evals=10, ) # end run mlflow.end_run() return run # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC #### Train and register the machine learning model # COMMAND ---------- # Train model run = train_model() # Retreive model from best run best_run = mlflow.search_runs(filter_string=f"tags.mlflow.parentRunId='{run.info.run_id}'", order_by=[ "metrics.testing_auc DESC"]).iloc[0] # Register model artifact model_name = "employee-attrition" result = mlflow.register_model(f"runs:/{best_run.run_id}/model", model_name) # Return notebook output json_output = json.dumps( {"output": {"MODEL_NAME": result.name, "MODEL_VERSION": result.version}}) dbutils.notebook.exit(json_output) # COMMAND ----------
nfmoore/azure-databricks-mlops-example-scenarios
core/notebooks/train_model.py
train_model.py
py
7,954
python
en
code
2
github-code
6
3360586236
""" 백준 1012 : 유기농 배추 """ """ BFS - Breath first Search 한번 방문한 지점은 절대로 다시 방문하지 않는다. """ from collections import deque import sys input=sys.stdin.readline dx=[-1,1,0,0] dy=[0,0,-1,1] # ( -1, 0) ( 1,0) ( 0,-1) (0,1) def BFS(graph,visit , x, y): deq=deque() deq.append([x,y]) visit[x][y]=True while deq: x,y=deq.popleft() for i in range(4): nx=x+dx[i] ; ny=y+dy[i] if 0<=nx<N and 0<=ny<M and not visit[nx][ny] and graph[nx][ny]==1: # 그래프 안에 있고 방문하지 않은 지점이라면. visit[nx][ny]=True #한번만 방문한다. deq.append([nx,ny]) for i in range(int(input())): M,N,K=map(int,input().split()) # 가로 , 세로 , 배추개수 graph=[ [0]*M for _ in range(N) ] visit=[ [False]*M for _ in range(N) ] for j in range(K): a,b=map(int,input().split()) graph[b][a]=1 count=0 for j in range(N): for k in range(M): if visit[j][k]==False and graph[j][k]==1: #방문하지 않았고 배추가 있는 지역이라면 BFS(graph , visit , j , k) count+=1 print(count)
030831/2023-Winter_Vacation_GroupStudy
1012.py
1012.py
py
1,301
python
ko
code
0
github-code
6
43469204471
from __future__ import annotations import yaml import os import errno __all__ = ["save_setup", "read_setup"] def save_setup(setup: dict, path: str): """ Save Model initialization setup dictionary. Parameters ---------- setup : dict The setup dictionary to be saved to `YAML <https://yaml.org/spec/1.2.2/>`__ file. path : str The file path. If the path not end with ``.yaml``, the extension is automatically added to the file path. See Also -------- read_setup: Read Model initialization setup dictionary. Examples -------- >>> setup, mesh = smash.load_dataset("cance") >>> setup {'structure': 'gr-a', 'dt': 3600, 'start_time': '2014-09-15 00:00', ...} Save setup >>> smash.save_setup(setup, "setup.yaml") Read setup (the reloaded setup keys will be alphabetically sorted) >>> setup_rld = smash.read_setup("setup.yaml") setup_rld {'daily_interannual_pet': True, 'descriptor_name': ['slope', 'dd'], ...} """ if not path.endswith(".yaml"): path = path + ".yaml" with open(path, "w") as f: yaml.dump(setup, f, default_flow_style=False) def read_setup(path: str) -> dict: """ Read Model initialization setup dictionary. Parameters ---------- path : str The file path. Returns ------- dict : A setup dictionary loaded from YAML file. See Also -------- save_setup: Save Model initialization setup dictionary. Examples -------- >>> setup, mesh = smash.load_dataset("cance") >>> setup {'structure': 'gr-a', 'dt': 3600, 'start_time': '2014-09-15 00:00', ...} Save setup >>> smash.save_setup(setup, "setup.yaml") Read setup (the reloaded setup keys will be alphabetically sorted) >>> setup_rld = smash.read_setup("setup.yaml") setup_rld {'daily_interannual_pet': True, 'descriptor_name': ['slope', 'dd'], ...} """ if os.path.isfile(path): with open(path, "r") as f: setup = yaml.safe_load(f) else: raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), path) return setup
DassHydro-dev/smash
smash/io/setup_io.py
setup_io.py
py
2,170
python
en
code
2
github-code
6
13289274017
import os import platform import sys try: from pip._internal.operations import freeze except ImportError: # pip < 10.0 from pip.operations import freeze py_version = sys.version.replace("\n", " ") py_platform = platform.platform() pkgs = freeze.freeze() pip_pkgs = "\n".join( pkg for pkg in pkgs if any( name in pkg for name in { # runhouse "runhouse", # required installs "wheel", "rich", "fsspec", "pyarrow", "sshtunnel", "sshfs", "typer", "skypilot", # aws "awscli", "boto3", "pycryptodome", "s3fs", # azure "azure-cli", "azure-core", # gcp "google-api-python-client", "google-cloud-storage", "gcsfs", # docker "docker", } ) ) print(f"Python Platform: {py_platform}") print(f"Python Version: {py_version}") print() print(f"Relevant packages: \n{pip_pkgs}") print() os.system("sky check") os.system("sky status --refresh")
kalaracey/runhouse
collect_env.py
collect_env.py
py
1,178
python
en
code
null
github-code
6
74175163389
# -*- coding:utf-8 -*- """ 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) """ class Solution: def Fibonacci(self, n): # write code here dp = [0,1] if n>=2: for i in range(2,n+1): dp.append(dp[i-1]+dp[i-2]) return dp[n]
xxxsssyyy/offer-Goal
07斐波那契数列.py
07斐波那契数列.py
py
392
python
zh
code
7
github-code
6
10420754903
from __future__ import annotations import asyncio import os import platform import re from asyncio import IncompleteReadError, StreamReader, StreamWriter from pathlib import Path from typing import TYPE_CHECKING from randovania.patching.patchers.exceptions import UnableToExportError if TYPE_CHECKING: from collections.abc import Callable, Sequence IO_LOOP: asyncio.AbstractEventLoop | None = None def is_windows() -> bool: return platform.system() == "Windows" def is_mac() -> bool: return platform.system() == "Darwin" async def _write_data(stream: StreamWriter, data: str): stream.write(data.encode("UTF-8")) stream.close() async def _read_data(stream: StreamReader, read_callback: Callable[[str], None]): while True: try: line = await stream.readuntil(b"\r") except IncompleteReadError as incomplete: line = incomplete.partial if line: try: decoded = line.decode() except UnicodeDecodeError: decoded = line.decode("latin1") for x in re.split(r"[\r\n]", decoded.strip()): if x: read_callback(x) else: break async def _process_command_async( args: list[str], input_data: str, read_callback: Callable[[str], None], additional_path_entries: Sequence[str] = () ): environment_vars = os.environ.copy() if len(additional_path_entries) > 0: appending_paths = ":".join(additional_path_entries) environment_vars["PATH"] = f"{environment_vars['PATH']}:{appending_paths}" process = await asyncio.create_subprocess_exec( *args, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.STDOUT, env=environment_vars, ) await asyncio.gather( _write_data(process.stdin, input_data), _read_data(process.stdout, read_callback), ) await process.wait() def process_command( args: list[str], input_data: str, read_callback: Callable[[str], None], add_mono_if_needed: bool = True ): if not Path(args[0]).is_file(): raise FileNotFoundError(f"{args[0]} not found") needs_mono = add_mono_if_needed and not is_windows() additional_paths = () if needs_mono: args = ["mono", *args] # Add common Mono paths to PATH, as they aren't there by default if is_mac(): additional_paths = ( "/Library/Frameworks/Mono.framework/Versions/Current/Commands", "/usr/local/bin", "/opt/homebrew/bin", ) work = _process_command_async(args, input_data, read_callback, additional_paths) try: if IO_LOOP is None: if is_windows(): asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy()) asyncio.run(work) else: asyncio.run_coroutine_threadsafe(work, IO_LOOP).result() except FileNotFoundError: if needs_mono: raise UnableToExportError( "Unable to find mono.<br /><br />" "Please install it from the " "<a href='https://www.mono-project.com/download/stable'>official website</a>." ) else: raise
randovania/randovania
randovania/games/prime2/patcher/csharp_subprocess.py
csharp_subprocess.py
py
3,321
python
en
code
165
github-code
6
21764328772
# Approach 1 - Breadth-First Search # Time: O(N) # Space: O(N) from collections import deque class Solution: def orangesRotting(self, grid: List[List[int]]) -> int: queue = deque() # build the initial set of rotten oranges fresh_oranges = 0 ROWS, COLS = len(grid), len(grid[0]) for r in range(ROWS): for c in range(COLS): if grid[r][c] == 2: queue.append((r, c)) elif grid[r][c] == 1: fresh_oranges += 1 queue.append((-1, -1)) # Because the while loop will add one more minute when it try to find the neighbors of last rotten orange. Since that the last rotten orange won't affect any other orange so we shouldn't include that round. Also, if there isn't any fresh orange(fresh_orange = 0), the function will simply return -1. minutes_elapsed = -1 directions = [(-1, 0), (0, 1), (1, 0), (0, -1)] while queue: row, col = queue.popleft() if row == -1: # processing of first round is complete minutes_elapsed += 1 if queue: queue.append((-1, -1)) else: # this is rotten orange for d in directions: neighbor_row, neighbor_col = row + d[0], col + d[1] if ROWS > neighbor_row >= 0 and COLS > neighbor_col >= 0: if grid[neighbor_row][neighbor_col] == 1: grid[neighbor_row][neighbor_col] = 2 fresh_oranges -= 1 queue.append((neighbor_row, neighbor_col)) return minutes_elapsed if fresh_oranges == 0 else -1
jimit105/leetcode-submissions
problems/rotting_oranges/solution.py
solution.py
py
1,876
python
en
code
0
github-code
6
72613074749
#Importing the Morse code Letters from letter_morse import ENGLISH_TO_MORSE #Looping through the letters MC_TO_ENGLISH = {} for key, value in ENGLISH_TO_MORSE.items(): MC_TO_ENGLISH[value] = key #Function for converting Eng to Morse def english_to_mc(message): morse = [] for char in message: if char in ENGLISH_TO_MORSE: morse.append(ENGLISH_TO_MORSE[char]) return"".join(morse) #function for converting Morse to Eng def mc_to_english(message): message = message.split(" ") english = [] for code in message: if code in MC_TO_ENGLISH: english.append(MC_TO_ENGLISH[code]) return " ".join(english) #The Input def main(): while True: response = input("Convert Morse to English(1) or English to Morse(2)?").upper() if response == "1" or response =="2": break if response == "1": print("Enter Morse code (with a space after each code): ") morse = input("> ") english = mc_to_english(morse) print("### English version ###") print(english) elif response == "2": print("Enter english text: ") english = input("> ").upper() morse = english_to_mc(english) print("###Morse code Version###") print(morse) if __name__== "__main__": main()
Bophelo11/Morse-Code-convertor
MorseCodeConverterPortfolio/main.py
main.py
py
1,375
python
en
code
0
github-code
6
25363489701
import psycopg2 from users import * from moderators import * def menu(): # Menu voor het kiezen van de verschillende opties. while True: print("Welcome to our program.") menu_choice = int(input("1. Would you like to leave a message?\n" "2. Would you like to log in as a moderator?\n" "3. Would you like to register as a moderator?\n" "4. Would you like to shut down?\n>")) if menu_choice == 1: insert_message() return menu() elif menu_choice == 2: login_moderator() return menu() elif menu_choice == 3: register_moderator() return menu() elif menu_choice == 4: print("Thank you for using our program!") break menu()
DamianPlomp/stationszuil
main.py
main.py
py
850
python
en
code
0
github-code
6
42857124490
import pytest from django.conf import settings from django.test import override_settings from .compat import nullcontext def pytest_configure(): settings.configure( **dict( SECRET_KEY="abcd", INSTALLED_APPS=[ "django.contrib.auth", "django.contrib.sessions", "django.contrib.contenttypes", "rest_framework", "rest_framework_api_key", ], ROOT_URL_CONF="urls", DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } }, ) ) @pytest.fixture def view_with_permissions(): from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response def create_view(*classes): @api_view() @permission_classes(classes) def view(*args): return Response() return view return create_view def _create_user(): from django.contrib.auth import get_user_model User = get_user_model() return User.objects.create_user(username="foo", password="bar") @pytest.fixture( name="backend", params=[ {"header": "HTTP_AUTHORIZATION", "default": "Api-Key {key}"}, { "header": "HTTP_X_API_KEY", "default": "{key}", "set_custom_header_setting": True, }, ], ) def fixture_backend(request) -> dict: backend = request.param if backend.get("set_custom_header_setting"): ctx = override_settings(API_KEY_CUSTOM_HEADER=backend["header"]) else: ctx = nullcontext() with ctx: yield backend @pytest.fixture def create_request(backend): from rest_framework.test import APIRequestFactory, force_authenticate from rest_framework_api_key.models import APIKey request_factory = APIRequestFactory() _MISSING = object() def create( authenticated: bool = False, authorization: str = _MISSING, **kwargs ): headers = {} if authorization is not None: kwargs.setdefault("name", "test") _, key = APIKey.objects.create_key(**kwargs) if callable(authorization): authorization = authorization(key) if authorization is _MISSING: authorization = backend["default"] headers[backend["header"]] = authorization.format(key=key) request = request_factory.get("/test/", **headers) if authenticated: user = _create_user() force_authenticate(request, user) return request return create
thaitl235/djangorestframework-api-key
tests/conftest.py
conftest.py
py
2,739
python
en
code
null
github-code
6
2338682136
import pandas as pd import numpy as np import json from collections import defaultdict from play_by_play import PlayByPlay #define front end variables DATE = '2015-12-25' SEASON = '2015-16' SEASON_TYPE = 'Regular+Season' # 'Regular+Season' or 'Playoffs' HOME_TEAM = 'LAL' def build_df(json): rows = [] for frame_id in json: game_clock = json[frame_id]['time'] quarter = json[frame_id]['quarter'] row = [frame_id, game_clock, quarter] rows.append(row) df = pd.DataFrame(rows, columns = ['frame_id', 'game_clock', 'quarter']) return df def encode_quarter(quarter): if quarter == '1st': return 1 elif quarter == '2nd': return 2 elif quarter == '3rd': return 3 elif quarter == '4th': return 4 else: #doublecheck: is all of OT just 5? 2OT, 3OT,...etc. return 5 def new_json_format(my_dict): ''' better organzition by nesting players on the court info ''' new_dict = defaultdict(dict) for frame_id in ocr_pbp_dict: game_clock = my_dict[frame_id]['game_clock'] quarter = my_dict[frame_id]['game_clock'] team1_id = my_dict[frame_id]['TEAM1_ID'] team1_player1 = my_dict[frame_id]['TEAM1_PLAYER1'] team1_player2 = my_dict[frame_id]['TEAM1_PLAYER2'] team1_player3 = my_dict[frame_id]['TEAM1_PLAYER3'] team1_player4 = my_dict[frame_id]['TEAM1_PLAYER4'] team1_player5 = my_dict[frame_id]['TEAM1_PLAYER5'] team2_id = my_dict[frame_id]['TEAM2_ID'] team2_player1 = my_dict[frame_id]['TEAM2_PLAYER1'] team2_player2 = my_dict[frame_id]['TEAM2_PLAYER2'] team2_player3 = my_dict[frame_id]['TEAM2_PLAYER3'] team2_player4 = my_dict[frame_id]['TEAM2_PLAYER4'] team2_player5 = my_dict[frame_id]['TEAM2_PLAYER5'] #assign to new format json new_dict[frame_id]['game_clock'] = game_clock new_dict[frame_id]['quarter'] = quarter #Team 1 #for organizition, nest another dictionary for the team id and player ids of each team new_dict[frame_id]['team1'] = {} new_dict[frame_id]['team1']['id'] = team1_id new_dict[frame_id]['team1']['players'] = [team1_player1, team1_player2, team1_player3, team1_player4, team1_player5] #Team 2 new_dict[frame_id]['team2'] = {} new_dict[frame_id]['team2']['id'] = team2_id new_dict[frame_id]['team2']['players'] = [team2_player1, team2_player2, team2_player3, team2_player4, team2_player5] return new_dict if __name__ == "__main__": #read in the ocr results with open('./data/ocr_results.json') as ocr: ocr_json = json.load(ocr) #extract play by play data for the game uploaded pbp = PlayByPlay(DATE, SEASON, SEASON_TYPE, HOME_TEAM).get_pbp() #convert from json to DataFrame ocr_df = build_df(ocr_json) #fill in missing frames quarter by taking the last known quarter #future TODO: very small chance the last known quarter is incorrect if missing values occur at transition around 12:00 mark of new quarter ocr_df['quarter'] = ocr_df['quarter'].fillna(method = 'ffill') #convert game clock from string to seconds pbp['TimeSecs'] = [int(a) * 60 + int(b) for a, b in pbp['PCTIMESTRING'].str.split(':')] ocr_df['TimeSecs'] = [int(a) * 60 + int(b) for a, b in ocr_df['game_clock'].str.split(':')] #same for the quarter ocr_df['quarter'] = ocr_df['quarter'].apply(encode_quarter) #using pandas merge_asof to match up the corresponding pbp record for each frame to figure out who is on the court at each frame ocr_pbp = pd.merge_asof(ocr_df.sort_values('TimeSecs'), pbp[['TimeSecs', 'PERIOD','TEAM1_ID','TEAM1_PLAYER1', 'TEAM1_PLAYER2', 'TEAM1_PLAYER3', 'TEAM1_PLAYER4', 'TEAM1_PLAYER5', 'TEAM2_ID', 'TEAM2_PLAYER1', 'TEAM2_PLAYER2', 'TEAM2_PLAYER3', 'TEAM2_PLAYER4','TEAM2_PLAYER5']].sort_values('TimeSecs'), on='TimeSecs', left_by = 'quarter', right_by = 'PERIOD', direction='forward').sort_values('frame_id').drop(columns = ['TimeSecs', 'PERIOD']) #set index for .to_dict method ocr_pbp = ocr_pbp.set_index('frame_id') #convert to dictionary ocr_pbp_dict = ocr_pbp.to_dict(orient='index') #transform to final output form ocr_pbp_new = new_json_format(ocr_pbp_dict) #export the final ocr json with open('./ocr_w_players.json', 'w') as output: json.dump(ocr_pbp_new, output)
nalin1096/DS5500_Player_Tracking_and_Identification_NBA
helpers/play_by_play/pbp_ocr.py
pbp_ocr.py
py
4,444
python
en
code
6
github-code
6
37961270756
import dash_html_components as html import dash from dash.dependencies import Input, Output import dash_table import pandas as pd import dash_core_components as dcc df = pd.read_csv('GraphVisualizationLearning\/data.csv') # print(df['seed'][2]) # print(df['seed']) del df['seed'] # df = df.dropna() dff = df[["Config","time_stamp","testcase","fail_count"]] # print(dff) # print(df.columns[0]) available_project = df['project'].unique() available_date = df['date'].unique() available_config = df['Config'].unique() print(available_project) app = dash.Dash(__name__) PAGE_SIZE = 20 # app.layout = dash_table.DataTable( # id='datatable-paging', # columns=[ # {"name": i, "id": i} for i in df.columns # ], # page_current=0, # page_size=PAGE_SIZE, # page_action='custom' # ) # # # @app.callback( # Output('datatable-paging', 'data'), # [Input('datatable-paging', "page_current"), # Input('datatable-paging', "page_size")]) # def update_table(page_current,page_size): # return df.iloc[ # page_current*page_size:(page_current+ 1)*page_size # ].to_dict('records') # # app.layout = dash_table.DataTable( # id='table-multicol-sorting', # columns=[ # {"name": i, "id": i} for i in df.columns # ], # page_current=0, # page_size=PAGE_SIZE, # page_action='custom', # # sort_action='custom', # sort_mode='multi', # sort_by=[] # ) # # @app.callback( # Output('table-multicol-sorting', "data"), # [Input('table-multicol-sorting', "page_current"), # Input('table-multicol-sorting', "page_size"), # Input('table-multicol-sorting', "sort_by")]) # def update_table(page_current, page_size, sort_by): # # print(sort_by) # if len(sort_by): # dff = df.sort_values( # [col['column_id'] for col in sort_by], # ascending=[ # col['direction'] == 'asc' # for col in sort_by # ], # inplace=False # ) # else: # # No sort is applied # dff = df # # return dff.iloc[ # page_current*page_size:(page_current+ 1)*page_size # ].to_dict('records') app.layout = html.Div( # html.Div([ # html.H1('Post regression analysis') # ]), className="row", children=[ html.Div([ html.Div([ dcc.Dropdown( id='Project', options=[{'label': proj, 'value': proj} for proj in available_project], value='' # value='TimbuktuMPNX', # multi=True ) ], style={'width': '30%', 'display': 'inline-block'}), html.Div([ dcc.Dropdown( id='Date', options=[{'label': date, 'value': date} for date in available_date], # value='27/09/2018' value='' # multi=True ) ], style={'width': '30%', 'display': 'inline-block'}), html.Div([ dcc.Dropdown( id='Config', options=[{'label': config, 'value': config} for config in available_config], # value='27/09/2018' value='' # multi=True ) ], style={'width': '30%', 'display': 'inline-block'}) ]), html.Div( dash_table.DataTable( id='table-paging-with-graph', columns=[ {"name" : i, "id":i} for i in dff.columns ], page_current=0, page_size=20, page_action='custom', filter_action='custom', filter_query='', sort_action='custom', sort_mode='multi', sort_by=[] ), style={'height': 300, 'overflowY': 'scroll'}, className='six columns' ), html.Div( id='table-paging-with-graph-container', className="five columns" ) ] ) operators = [['ge ', '>='], ['le ', '<='], ['lt ', '<'], ['gt ', '>'], ['ne ', '!='], ['eq ', '='], ['contains '], ['datestartswith ']] def split_filter_part(filter_part): for operator_type in operators: for operator in operator_type: if operator in filter_part: name_part, value_part = filter_part.split(operator, 1) name = name_part[name_part.find('{') + 1: name_part.rfind('}')] value_part = value_part.strip() v0 = value_part[0] if (v0 == value_part[-1] and v0 in ("'", '"', '`')): value = value_part[1: -1].replace('\\' + v0, v0) else: try: value = float(value_part) except ValueError: value = value_part # word operators need spaces after them in the filter string, # but we don't want these later return name, operator_type[0].strip(), value return [None] * 3 @app.callback( Output('table-paging-with-graph', "data"), [Input('Project', "value"), Input('table-paging-with-graph', "page_current"), Input('table-paging-with-graph', "page_size"), Input('table-paging-with-graph', "sort_by"), Input('table-paging-with-graph', "filter_query") ]) def update_table(select_proj,page_size,page_current,sort_by, filter): filtering_expressions = filter.split(' && ') dff_proj = df[df['project'] == select_proj] for filter_part in filtering_expressions: col_name, operator, filter_value = split_filter_part(filter_part) if operator in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): # these operators match pandas series operator method names dff_proj = dff_proj.loc[getattr(dff_proj[col_name], operator)(filter_value)] elif operator == 'contains': dff_proj = dff_proj.loc[dff_proj[col_name].str.contains(filter_value)] elif operator == 'datestartswith': # this is a simplification of the front-end filtering logic, # only works with complete fields in standard format dff_proj = dff_proj.loc[dff_proj[col_name].str.startswith(filter_value)] if len(sort_by): dff_proj = dff_proj.sort_values( [col['column_id'] for col in sort_by], ascending=[ col['direction'] == 'asc' for col in sort_by ], inplace=False ) return dff_proj.iloc[ page_current * page_size: (page_current + 1) * page_size ].to_dict('records') if __name__ == '__main__': app.run_server(debug=True)
shashank793/DataVisualisation
venv/simple_graph/create_tabl.py
create_tabl.py
py
6,981
python
en
code
0
github-code
6
22666651676
def main(): # Upper limit is the highest 1_2_3_4_5_6_7_8_9_0 number # while the lower limit is the lowest. # # Returns the first (only) number that matches # the given pattern mathematically. # # The variable i has to end in 0, for the square to also # end with the number 0, therefore += 10 loops. upper = int(1929394959697989990**0.5) lower = int(1020304050607080900**0.5) nums = [0, 9, 8, 7, 6, 5, 4, 3, 2, 1] # Reverse order for while-loop i = lower while i <= upper: x = i**2 num_index = 0 while x > 0: num = x % 10 if num != nums[num_index]: break num_index += 1 x = x // 100 else: return i i += 10 return 0 if __name__ == '__main__': import time start = time.time() print(main()) print(f"Time taken: {round(time.time() - start, 2)}s")
kakuttaja/project-euler
206.py
206.py
py
934
python
en
code
0
github-code
6
438092224
from django.http import HttpResponse from django.shortcuts import redirect, reverse, render from cart.models import Cart, Item, OrderItem, Basket from product_listing.models import Product import cart.forms import datetime from django.contrib.auth import authenticate # Create your views here. def index(request): context={} total = 0 if request.user.is_authenticated: carts = Cart.objects.filter(user=request.user) if carts is not None: this_cart = carts.first() context['cart'] = this_cart context['items'] = Item.objects.filter(cart=this_cart) else: this_cart = Cart(user=request.user) this_cart.save() context['cart'] = this_cart for item in context['items']: total += item.unit_price context['total'] = total return render(request, 'cart/cart.html', context) else: return redirect('/account/login') #def viewCart(request): # context={} # user = request.user # cart = Cart.objects.get(user=user) # context['cart'] = cart # context['items'] = Item.objects.get(cart=cart) # return render(request, "cart.html", context) def modifyCart(request, action, product_id, quantity): context = {} if request.user.is_authenticated: try: user_cart = Cart.objects.get(user=request.user) except: user_cart = Cart.objects.create(user=request.user) if (action=='add'): add_to_cart(request, product_id, quantity) elif (action=='remove'): remove_from_cart(request, product_id, quantity) elif (action=='clear'): clear_cart(request) else: return HttpResponse("Error") else: return reverse(request, 'account/login.html', context) return redirect('/') def add_to_cart(request, product_id, quantity): print('getting to cart"s add to cart') user_cart = Cart.objects.get(user=request.user) product = Product.objects.get(id=product_id) itemsMatching = Item.objects.filter(product=product, cart=user_cart, unit_price=product.price_current) this_item= itemsMatching.first() if this_item is None: item = Item( product=product, cart = user_cart, quantity= quantity, unit_price= product.price_current ) item.save() else: print('ok') new_q = this_item.quantity + quantity itemsMatching.update(quantity=new_q) def remove_from_cart(request, product_id, quantity): this_cart = Cart.objects.get(user=request.user) items = Item.objects.filter(product=product_id, cart=this_cart) if items is not None: item = items.first() if (item.quantity > quantity): item.quantity = item.quantity-quantity else: item.delete() def clear_cart(request): this_cart = Cart.objects.get(user=request.user) for item in this_cart.item_set.all(): item.delete() this_cart.delete() def checkout(request): context={} if request.user.is_authenticated == False: return reverse(request, 'account/login.html',context) try: this_cart = Cart.objects.get(user=request.user) except: return redirect('/cart') if this_cart.item_set.all() is None: form = forms.ShippingForm msg = "Your cart is empty" form.add_error(None, msg) return render (request, 'cart/checkout.html', context) user = request.user baskets = [] items = this_cart.item_set.all() if request.method=='POST': form = cart.forms.ShippingForm(request.POST) if form.is_valid(): try: shipaddr = form.cleaned_data['street_address']+", "+form.cleaned_data['postcode'] for item in items: total = 0 for basket in baskets: if (basket.seller != item.seller): total += 1 else: thisBasket = basket if (total == len(baskets)): thisBasket = Basket( seller = item.product.seller, buyer = user, time = datetime.datetime.now(), shipping_to = shipaddr ) thisBasket.save() baskets.append(thisBasket) orderItem = OrderItem( product_string = item.__str__(), unit_price = item.unit_price, product = item.product, buyer = user, seller = item.product.seller, basket = thisBasket, quantity = item.quantity, shipping_to = shipaddr ) orderItem.save() product = item.product if product.stock > item.quantity: product.stock -= item.quantity else: Product.objects.filter(pk=product.pk).update(stock=0) item.delete() this_cart.delete() except: print('except') return HttpResponse("Please try again") return render(request, 'cart/checkoutsuccess.html', context) else: print('form is invalid') form = cart.forms.ShippingForm context['form'] = form return render (request, 'cart/checkout.html', context) else: form = cart.forms.ShippingForm context['form'] = form return render (request, 'cart/checkout.html', context) def checkoutsuccess(request): return render(request, 'cart/checkoutsuccess.html')
ftaoussi/COMP307---Marketplace
cart/views.py
views.py
py
4,769
python
en
code
0
github-code
6
39702394709
from flask import Blueprint from flask import render_template, url_for, request from flask import make_response, send_from_directory from werkzeug.utils import secure_filename import os from apps.xmind2caseapp import write2excel, xmind2case x2c = Blueprint('x2c',__name__) # workpath = os.getcwd() workpath=os.path.dirname(os.path.realpath(__file__)) upload_dir = os.path.join(workpath, "apps/xmind2caseapp" ,"upload") download_dir = os.path.join(workpath,"apps/xmind2caseapp" , "download") @x2c.route("/index") def x2ch(): return render_template("x2c/x2c.html") @x2c.route("/x2conf") def x2conf(): return render_template("x2c/x2c.html") @x2c.route('/uploader', methods=['GET', 'POST']) def uploader(): # print(os.path.join(workpath)) if request.method == 'POST': f = request.files['file'] if f.filename[f.filename.find("."):]!=".xmind": return "X101" # X101:上传的不是xmind格式 filename = f.filename[:f.filename.find(".")]+".xls" uppath = os.path.join(upload_dir, secure_filename(f.filename)) dopath = os.path.join(download_dir, filename) f.save(uppath) p = xmind2case.xmind2dict(uppath) h = xmind2case.handle_xmind_msg(p) write2excel.writr_to_excel(dopath, h) dpath = url_for("x2c.download_file", filename=filename) print(dpath) return "True+"+dpath else: return 'False+' # return render_template('upload.html') @x2c.route("/download/<filename>", methods=['GET']) def download_file(filename): # directory=os.path.join(workpath,"download") response = make_response(send_from_directory( download_dir, filename, as_attachment=True)) response.headers["Content-Disposition"] = "attachment; filename={}".format( filename.encode().decode('latin-1')) return response
siqyka/QtestTool
x2c.py
x2c.py
py
1,860
python
en
code
0
github-code
6
29127983258
from django.test import TestCase from django.utils.translation import ugettext_lazy as _ from social_links import forms class LinksFormTests(TestCase): def taset_clean_url(self): valid_urls = [['https://www.example.com','https://www.example.com'] ['http://www.example.com','http://www.example.com'] ['www.example.com','http://www.example.com'] ['example.com','http://www.example.com'] ] for url in valid_urls: cleaned_url = forms.clean_url(url[0]) self.assertEqual(cleaned_url, url[1]) def test_socail_form(self): invalid_data_dicts = [ {'data': {'facebook': 'composerscouch.com', 'google_plus': '', 'twitter': ''}, 'error': ('facebook', [_(u'Must be a Facebook URL.')])}, {'data': {'facebook': '', 'google_plus': 'composerscouch.com', 'twitter': ''}, 'error': ('google_plus', [_(u'Must be a Google Plus URL.')])}, {'data': {'facebook': '', 'google_plus': '', 'twitter': 'composerscouch.com'}, 'error': ('twitter', [_(u'Must be a Twitter URL.')])}, ] for invalid_dict in invalid_data_dicts: form = forms.SocialLinksForm(data=invalid_dict['data']) self.failIf(form.is_valid()) self.assertEqual(form.errors[invalid_dict['error'][0]], invalid_dict['error'][1]) valid_data_dicts = [ {'data': {'facebook': 'https://www.facebook.com/thekooksofficial', 'google_plus': 'https://plus.google.com/116651435444058665368/about', 'twitter': 'https://twitter.com/thekooksmusic'},}, ] for valid_dict in valid_data_dicts: form = forms.SocialLinksForm(data=valid_dict['data']) self.failUnless(form.is_valid()) def test_photo_form(self): invalid_data_dicts = [ {'data': {'instagram': 'composerscouch.com', 'tumblr': ''}, 'error': ('instagram', [_(u'Must be a Instagram URL.')])}, {'data': {'instagram': '', 'tumblr': 'composerscouch.com'}, 'error': ('tumblr', [_(u'Must be a Tumblr URL.')])}, ] for invalid_dict in invalid_data_dicts: form = forms.PhotoLinksForm(data=invalid_dict['data']) self.failIf(form.is_valid()) self.assertEqual(form.errors[invalid_dict['error'][0]], invalid_dict['error'][1]) valid_data_dicts = [ {'data': {'instagram': 'http://instagram.com/thekooksmusic/', 'tumblr': 'http://thekooksmusic.tumblr.com/'},}, ] for valid_dict in valid_data_dicts: form = forms.PhotoLinksForm(data=valid_dict['data']) self.failUnless(form.is_valid()) def test_video_form(self): invalid_data_dicts = [ {'data': {'youtube': 'composerscouch.com', 'vimeo': ''}, 'error': ('youtube', [_(u'Must be a Youtube URL.')])}, {'data': {'youtube': '', 'vimeo': 'composerscouch.com'}, 'error': ('vimeo', [_(u'Must be a Vimeo URL.')])}, ] for invalid_dict in invalid_data_dicts: form = forms.VideoLinksForm(data=invalid_dict['data']) self.failIf(form.is_valid()) self.assertEqual(form.errors[invalid_dict['error'][0]], invalid_dict['error'][1]) valid_data_dicts = [ {'data': {'youtube': 'https://www.youtube.com/user/thekooksofficial', 'vimeo': 'http://vimeo.com/davissilis'},}, ] for valid_dict in valid_data_dicts: form = forms.VideoLinksForm(data=valid_dict['data']) self.failUnless(form.is_valid()) def test_music_form(self): invalid_data_dicts = [ {'data': {'bandcamp': 'composerscouch.com', 'itunes': '', 'spotify': '', 'soundcloud': ''}, 'error': ('bandcamp', [_(u'Must be a Bandcamp URL.')])}, {'data': {'bandcamp': '', 'itunes': 'composerscouch.com', 'spotify': '', 'soundcloud': ''}, 'error': ('itunes', [_(u'Must be a iTunes URL.')])}, {'data': {'bandcamp': '', 'itunes': '', 'spotify': 'composerscouch.com', 'soundcloud': ''}, 'error': ('spotify', [_(u'Must be a Spotify URL.')])}, {'data': {'bandcamp': '', 'itunes': '', 'spotify': '', 'soundcloud': 'composerscouch.com'}, 'error': ('soundcloud', [_(u'Must be a SoundCloud URL.')])}, ] for invalid_dict in invalid_data_dicts: form = forms.MusicLinksForm(data=invalid_dict['data']) self.failIf(form.is_valid()) self.assertEqual(form.errors[invalid_dict['error'][0]], invalid_dict['error'][1]) valid_data_dicts = [ {'data': {'bandcamp': 'http://sekinzer.bandcamp.com/track/junk-of-the-heart-cover', 'itunes': 'https://itunes.apple.com/us/artist/the-kooks/id68448386', 'spotify': 'https://play.spotify.com/artist/1GLtl8uqKmnyCWxHmw9tL4', 'soundcloud': 'https://soundcloud.com/kooksmusic'},}, ] for valid_dict in valid_data_dicts: form = forms.MusicLinksForm(data=valid_dict['data']) self.failUnless(form.is_valid())
TimBest/ComposersCouch
social_links/tests/tests_forms.py
tests_forms.py
py
5,893
python
en
code
1
github-code
6
5384553044
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import os __DIR__ = os.path.abspath(os.path.dirname(__file__)) from ply import lex, yacc from .data import Domain, MsgId, MsgStr, MsgStrPlural, MsgStrList, Message class ParserException(Exception): pass DEBUG = 0 tokens = ( 'COMMENT', 'DOMAIN', 'PREV_START', 'PREV_MSGCTXT', 'PREV_MSGID', 'PREV_MSGID_PLURAL', 'PREV_STRING', 'MSGCTXT', 'MSGID', 'MSGID_PLURAL', 'MSGSTR', 'NUMBER', 'STRING' ) t_DOMAIN = r'domain' t_MSGID = r'msgid' t_MSGID_PLURAL = r'msgid_plural' t_MSGSTR = r'msgstr' t_MSGCTXT = r'msgctxt' t_ignore = ' \t' t_prev_ignore = t_ignore literals = '[]' states = ( ('prev', 'exclusive'), ) def t_PREV_START(t): r'\#\|' t.lexer.begin('prev') return t def t_COMMENT(t): r'\#.*\n' t.value = t.value[:-1] return t def t_STRING(t): r'\"(?P<content>([^\\\n]|(\\.))*?)\"' stval = t.lexer.lexmatch.group("content") t.value = stval if stval else '' return t def t_NUMBER(t): r'[0-9]+' t.value = int(t.value) return t t_prev_NUMBER = t_NUMBER def t_newline(t): r'\n+' t.lexer.lineno += len(t.value) def t_error(t): raise SyntaxError("Illegal character %r on %d" % (t.value[0], t.lexer.lineno)) t_prev_error = t_error def t_prev_MSGCTXT(t): r'msgctxt' t.type = 'PREV_MSGCTXT' return t def t_prev_MSGID(t): r'msgid' t.type = 'PREV_MSGID' return t def t_prev_MSGID_PLURAL(t): r'msgid_plural' t.type = 'PREV_MSGID_PLURAL' return t def t_prev_STRING(t): r'\"(?P<content>([^\\\n]|(\\.))*?)\"' t.type = 'PREV_STRING' stval = t.lexer.lexmatch.group("content") t.value = stval if stval else '' return t def t_prev_newline(t): r'\n+' t.lexer.begin('INITIAL') t.lexer.lineno += len(t.value) def p_empty(p): "empty :" pass def p_error(p): raise PerserException(str(p)) def p_po_file(p): """ po_file : po_file comment | po_file domain | po_file message | po_file error | empty """ if len(p) == 2: p[0] = [] else: p[0] = p[1] + [p[2]] def p_comment(p): """ comment : COMMENT """ p[0] = p[1] def p_dommain(p): """ domain : DOMAIN STRING """ p[0] = Domain(p[2]) ## -- message -- ## def p_message(p): """ message : message_intro string_list MSGSTR string_list """ if p[1] and isinstance(p[1], tuple): msgid = MsgId(p[2], ctxt=p[1][1]) prev = p[1][0] else: msgid = MsgId(p[2], ctxt=p[1]) prev = None msgstr = MsgStr(p[4]) p[0] = Message(msgid, msgstr, prev=prev) def p_message_plural(p): """ message : message_intro string_list msgid_pluralform pluralform_list """ if p[1] and isinstance(p[1], tuple): msgid = MsgId(p[2], ctxt=p[1][1], pluralform=p[3]) prev = p[1][0] else: msgid = MsgId(p[2], ctxt=p[1], pluralform=p[3]) prev = None msgstr = MsgStrList(p[4]) p[0] = Message(msgid, msgstr, prev=prev) def p_message_no_msgstrplural(p): """ message : message_intro string_list msgid_pluralform """ raise PercerException("missing 'msgstr[0]' section") def p_message_no_msgidplural(p): """ message : message_intro string_list pluralform_list """ raise PercerException("missing 'msgid_plural' section") def p_message_no_msgstr(p): """ message : message_intro string_list """ raise PercerException("missing 'msgstr' section") ## -- message end -- ## def p_message_intro(p): """ message_intro : msg_intro | prev msg_intro """ if len(p)==3: p[0] = (p[1], p[2]) else: p[0] = p[1] def p_prev(p): """ prev : prev_msg_intro prev_string_list | prev_msg_intro prev_string_list prev_msgid_pluralform """ if len(p)==3: p[0] = MsgId(p[2], ctxt=p[1]) else: p[0] = MsgId(p[2], pluralform=p[3], ctxt=p[1]) def p_msg_intro(p): """ msg_intro : MSGID | MSGCTXT string_list MSGID """ if len(p)==2: return else: p[0] = p[2] def p_prev_msg_intro(p): """ prev_msg_intro : PREV_START PREV_MSGID | PREV_START PREV_MSGCTXT prev_string_list PREV_START PREV_MSGID """ if len(p)==3: return else: p[0] = p[3] def p_msgid_pluralform(p): """ msgid_pluralform : MSGID_PLURAL string_list """ p[0] = p[2] def p_prev_msgid_pluralform(p): """ prev_msgid_pluralform : PREV_MSGID_PLURAL prev_string_list """ p[0] = p[2] def p_pluralform_list(p): """ pluralform_list : pluralform | pluralform_list pluralform """ if len(p)==2: p[0] = [p[1]] else: p[0] = p[1] + [p[2]] def p_pluralform(p): """ pluralform : MSGSTR '[' NUMBER ']' string_list """ p[0] = MsgStrPlural(number=p[3], value=p[5]) def p_string_list(p): """ string_list : STRING | string_list STRING """ if len(p)==2: p[0] = p[1] else: p[0] = p[1] + p[2] def p_prev_string_list(p): """ prev_string_list : PREV_STRING | prev_string_list PREV_STRING """ if len(p)==2: p[0] = p[1] else: p[0] = p[1] + p[2] start = str('po_file') lexer = lex.lex(debug=DEBUG) parser = yacc.yacc(outputdir=__DIR__, debug=DEBUG, write_tables=False) def parse(f): ret = parser.parse(f.read()) parser.restart() return ret
takada-at/ponda
ponda/parser.py
parser.py
py
5,662
python
en
code
0
github-code
6
37269948830
def unboundedKnapsack(n, w, items, weights): if n == 0 or w == 0: return 0 if dp[n][w] != -1: return dp[n][w] if weights[n-1] <= w: dp[n][w] = max(items[n-1]+unboundedKnapsack(n, w-weights[n-1], items, weights), unboundedKnapsack(n-1, w, items, weights)) return dp[n][w] else: dp[n][w] = unboundedKnapsack(n-1, w, items, weights) return dp[n][w] n = 4 items = [10, 40, 50, 70] weights = [1, 3, 4, 5] w = 8 dp = [[-1 for _ in range(w+1)]for _ in range(n+1)] print(unboundedKnapsack(n, w, items, weights))
richiabhi/Self---Dp
unboundedKnapsack memoized.py
unboundedKnapsack memoized.py
py
593
python
en
code
0
github-code
6
34371656679
############################################################################################################ from colorama import * import os import requests import re ############################################################################################################ def search_words_in_file(file_path, words): grabber_found = False with open(file_path, 'r', encoding='utf-8') as file: for line_number, line in enumerate(file): for word in words: if word in line: grabber_found = True os.system('title WARNING GRABBER WAS BEEN FOUNDED!') print(f"{Fore.RED}[!]: {line.strip()}") webhook_regex = r'(https?://(?:www\.)?discord(?:app)?\.com/api/webhooks/[^\s]+)' webhook_match = re.search(webhook_regex, line) if webhook_match: webhook_url = webhook_match.group(1) print(f"{Fore.LIGHTGREEN_EX}[SENDING]{Fore.WHITE} Sending a message to webhook :)") title = '**Found Your Webhook LOL**' description = f'Dont Grab People Nigga [>]: \nIf we see your webhook aigan its getting deleted this is a **WARNING**' color = 0xFF5733 send_embed_to_webhook(webhook_url, title, description, color) if not grabber_found: print(f"{Fore.LIGHTGREEN_EX}NO GRABBER FOUND! :)") os.system('title NO GRABBER FOUND!') ############################################################################################################ def send_embed_to_webhook(webhook_url, title, description, color): embed = { "title": title, "description": description, "color": color } payload = { "username": "RainBow Blooded", "embeds": [embed] } try: response = requests.post(webhook_url, json=payload) response.raise_for_status() print(f"{Fore.LIGHTBLUE_EX}[SENT] {Fore.WHITE}Sent a warning to user's webhook") except requests.exceptions.RequestException as e: print(f"{Fore.LIGHTBLUE_EX}[ERROR] {Fore.WHITE}Failed to send message to webhook: {e}") ############################################################################################################ namefile = input(f"{Fore.LIGHTBLUE_EX}[{Fore.WHITE}>{Fore.LIGHTBLUE_EX}]: {Fore.WHITE}Filename?: ") file_path = f'{namefile}' words = ['b64decode', 'exec', "https://discord.com/api/webhooks/", "__t3mp__", "grabber", "stealer", "Hyperion", "OrionGrabber", "LunarStealer", "__import__('base64')", "__import__('builtins')", ".exec", ";exec", "__import__('tempfile')", "paste.fo", "paste.website", "<string>"] search_words_in_file(file_path, words) rem = input(f"{Fore.YELLOW}[{Fore.WHITE}+{Fore.YELLOW}]: {Fore.WHITE}do you want to remove the file? [y/n]: ") if rem == "y": os.remove(namefile) else: pass ############################################################################################################
OMGmultitools/Anti-Grabber
Anti Grabbee.py
Anti Grabbee.py
py
3,123
python
en
code
0
github-code
6
2052137958
# Program to try and work out the power spectrum import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft, fftfreq, ifft n = 1024 Lx = 100 omg = 2.0*np.pi/Lx x = np.linspace(0, Lx, n) y1 = 1.0*np.cos( 5.0*omg*x) y2 = 1.0*np.sin(10.0*omg*x) y3 = 0.5*np.sin(20.0*omg*x) y = y1 + y2 + y3 act = y1 + y2 yd_true = (omg)*( -5.0*1.0*np.sin(5.0*omg*x) + 10.0*1.0*np.cos(10.0*omg*x) + 20.0*0.5*np.cos(20.0*omg*x)) mean_y = np.mean(y) std_y = np.std(y) var_y = std_y**2.0 print(mean_y, std_y, var_y) # Creates all the necessary frequencies freqs = fftfreq(n) # Arranges the frequencies in ascending order idx = np.argsort(freqs) # wave numbers nwaves = freqs*n nwaves_2pi = omg*nwaves # mask array to be used for power spectra. # ignoring half the values, as they are complex conjucates of the other mask = freqs > 0 # fft values fft_vals = fft(y) # Fourier filtering fft_new = np.copy(fft_vals) fft_new[np.abs(nwaves)==20] = 0.0 # inverse fourier transform to reconstruct the filtered data filt_data = np.real(ifft(fft_new)) # derivative of y in frequency spectrum yd_fft = 1.0j*nwaves_2pi*fft_vals yd_recon = np.real(ifft(yd_fft)) # this is the power spectra ps = 2.0*np.abs(fft_vals/n)**2.0 # power by variance pow_var = ps/var_y*100.0 # freq.power spectra - for variance preserving form fps = ps*freqs #print(fft_vals) #print(np.abs(fft_vals*2.0/n)) print(np.sum(ps[mask])) plt.figure(1) plt.title('Original Signal') plt.plot(x, y, color='xkcd:salmon', label='original') plt.legend() plt.figure(2) plt.plot(nwaves[mask], ps[mask], label='wavenumber vs spectra') plt.title('Power Spectrum Example - wavenumber vs spectra') plt.legend() plt.figure(3) plt.title('Data Filtering example') plt.plot(x, act, color='black', label='theoretical') plt.plot(x, filt_data, color='cyan', label='via fourier filtering') plt.legend() plt.figure(4) plt.title('Derivative of the signal') plt.plot(x, yd_true, color='black', label='theoretical') plt.plot(x, yd_recon, color='cyan', label='via spectral method') plt.legend() plt.show()
arunprasaad2711/Python_IISC_SIAM_2017
Programs_Session3/06_FFT_IFFT_example.py
06_FFT_IFFT_example.py
py
2,057
python
en
code
8
github-code
6
37555045718
# Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) # https://arxiv.org/ftp/arxiv/papers/1702/1702.00288.pdf # reference https://github.com/SSinyu/RED-CNN import os import numpy as np import torch.nn as nn from model import common def make_model(args, parent=False): return REDCNN(args) class REDCNN(nn.Module): def __init__(self, args): super(REDCNN, self).__init__() self.args = args out_ch = args.n_feats in_ch = args.n_colors self.conv1 = nn.Conv2d(in_ch, out_ch, kernel_size=5, stride=1, padding=0) self.conv2 = nn.Conv2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.conv3 = nn.Conv2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.conv4 = nn.Conv2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.conv5 = nn.Conv2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.tconv1 = nn.ConvTranspose2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.tconv2 = nn.ConvTranspose2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.tconv3 = nn.ConvTranspose2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.tconv4 = nn.ConvTranspose2d(out_ch, out_ch, kernel_size=5, stride=1, padding=0) self.tconv5 = nn.ConvTranspose2d(out_ch, in_ch, kernel_size=5, stride=1, padding=0) self.relu = nn.ReLU() def forward(self, x): # encoder residual_1 = x out = self.relu(self.conv1(x)) out = self.relu(self.conv2(out)) residual_2 = out out = self.relu(self.conv3(out)) out = self.relu(self.conv4(out)) residual_3 = out out = self.relu(self.conv5(out)) # decoder out = self.tconv1(out) out += residual_3 out = self.tconv2(self.relu(out)) out = self.tconv3(self.relu(out)) out += residual_2 out = self.tconv4(self.relu(out)) out = self.tconv5(self.relu(out)) out += residual_1 out = self.relu(out) return out
stefenmax/pytorch-template-medical-image-restoration
src-v3/model/redcnn.py
redcnn.py
py
2,084
python
en
code
6
github-code
6
39868308641
from django.db import models from main.model.playlist import Playlist from main.model.track import Track class PlaylistTracks(models.Model): playlist = models.ForeignKey( Playlist, on_delete=models.CASCADE ) # при удалении плейлиста чистится кросс-таблица track = models.ForeignKey( Track, on_delete=models.CASCADE ) # при удалении трека чистится кросс track_order = models.PositiveIntegerField(default=0) def __str__(self): return "%s.%02d~ %s // %s / %s -- %s -- " % ( self.track.pgm.num, self.track.pos, self.track.pgm.name, self.track.artist, self.track.album, self.track.title, ) + "%02d:%02d" % divmod(self.track.duration, 60) class Meta: ordering = ["track_order"] verbose_name_plural = "Треки" verbose_name = "Трек"
artemgv/spacemusic
app/main/model/playlisttracks.py
playlisttracks.py
py
992
python
en
code
0
github-code
6
39697377859
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # index boundaries for time 3D plot nStart = 140000 nEnd = 160000 with open("time_series_stochastic_old.txt", "r") as file: lines = file.readlines() time = [] intensity = [] E_real = [] E_imag = [] for line in lines: time.append(float((line.split(' ')[0]))) intensity.append(float((line.split(' ')[1]))) E_real.append(float((line.split(' ')[2]))) E_imag.append(float((line.split(' ')[3]))) time = np.array(time) intensity = np.array(intensity) E_real = np.array(E_real) E_imag = np.array(E_imag) fig, ax = plt.subplots() fig.set_size_inches(5.9, 4.8) fig.subplots_adjust(top=0.99, bottom=0.15, left=0.16, right=0.95) ax.plot(time, intensity, color="darkblue") ax.set_xlabel(r"time $t$ / ns", fontsize=18.0) ax.set_ylabel(r"intensity $|E|^2$", fontsize=18.0) ax.set_xlim(140.0, 160.0) ax.set_ylim(0.45, 2.05) ax.set_yticks([0.5, 1.0, 1.5, 2.0]) ax.tick_params(axis="x", labelsize=18.0) ax.tick_params(axis="y", labelsize=18.0) ax.grid(color="lightgray") fig, ax = plt.subplots() fig.set_size_inches(5.9, 4.8) plt.rcParams.update({"font.size": 18}) plt.subplots_adjust(top=1.06, bottom=0.05, left=-0.09, right=0.96) ax = plt.axes(projection="3d") ax.plot3D(time[nStart:nEnd], E_real[nStart:nEnd], E_imag[nStart:nEnd], color="darkblue") ax.set_xlabel(r"time $t$ / ns") ax.set_ylabel(r"Re($E$)") ax.set_zlabel(r"Im($E$)") ax.xaxis.labelpad=16 ax.yaxis.labelpad=11 ax.zaxis.labelpad=8 ax.set_xlim(140, 160.0) ax.set_ylim(-1.5, 1.5) ax.set_zlim(-1.1, 1.1) ax.set_xticks([140.0, 145.0, 150.0, 155.0, 160.0]) ax.set_yticks([-1.0, 0.0, 1.0]) ax.set_zticks([-1.0, 0.0, 1.0]) plt.show()
sir-aak/microscopically-derived-rate-equations
plotscripts/mdre_plotscript_spiking_detail.py
mdre_plotscript_spiking_detail.py
py
1,701
python
en
code
1
github-code
6
72357813309
# ============================================================================== # Main runner entry point for the project # Implemented using SAGE math library # # Author: Malo RANZETTI # Date: Spring 2023 # ============================================================================== import os import msidh import sidh import sage.all as sage import time import argparse import numpy as np parser = argparse.ArgumentParser( prog='M-SIDH Demo Runner', description='This program is a demo built using SAGE of proposed countermeasures to the SIDH scheme.', epilog='Written by M.Ranzetti') def test_SIDH(curve, n_rounds=10): # ============================================================================== # TEST SIDH # NIST-LEVEL 5 (AES-256 security) 21s for the runtime # ============================================================================== print("Testing SIDH protocol...") scheme = sidh.create_protocol(sidh.get_curve(curve)) results = [] for i in range(n_rounds): print(f"Round {i+1}/{n_rounds}") results.append(scheme.run()) print(f"Average time: {sum([r[1]for r in results])/n_rounds * 1e-9}s") print(f"Failure count: {sum([1 for r in results if not r[0]])}") average_time = sum([r[1]for r in results])/n_rounds * 1e-9 std = np.std([r[1]for r in results]) failure_count = sum([1 for r in results if not r[0]]) data = { 'settings': curve, 'average_time': average_time, 'std': std, 'failure_count': failure_count } return data def test_MSIDH(filename, n_rounds=10): # ============================================================================== # TEST MSIDH # Current maximum tested: t = 90 // 100 // 200 # GOAL -> t = 572 for AES-128 security # Settings generation: 32.8s // 294.6s // 194.4s # Protocol execution: 5.3s // 35.0s // 320.9s # Currently the biggest bottlenecks are: # - prime verification in EllipticCurve (OVERRIDEN IN SAGE SOURCE CODE) # - computing the generators of the curve (=> there might be a way to optimize this) # # ============================================================================== print("Testing MSIDH protocol...") scheme = msidh.create_protocol_from_file(filename) results = [] for i in range(n_rounds): print(f"Round {i+1}/{n_rounds}") results.append(scheme.run()) print(f"Average time: {sum([r[1]for r in results])/n_rounds * 1e-9}s") print(f"Failure count: {sum([1 for r in results if not r[0]])}") average_time = sum([r[1]for r in results])/n_rounds * 1e-9 std = np.std([r[1]for r in results]) failure_count = sum([1 for r in results if not r[0]]) data = { 'settings': filename.split('AES-')[1].split('.')[0], 'average_time': average_time, 'std': std, 'failure_count': failure_count } return data def gen_MSIDH128(): msidh.create_g128_protocol() def create_msidh(lam): msidh.create_protocol(msidh.MSIDHpArbitrary, lam) def output_data(filename, data): ''' Write the data given as an array into csv format data: dict of the form {name: [data list]} ''' # check if file exists if not os.path.exists(filename): with open(filename, 'w') as f: f.write(','.join(data.keys()) + '\n') with open(filename, 'a') as f: # add a line f.write(','.join([str(v) for v in data.values()]) + '\n') print(f"Data written to {filename}") if __name__ == "__main__": parser.add_argument('-t', '--test', type=str, choices=['sidh', 'msidh'], help='Test to run (sidh, msidh)') parser.add_argument('-c', '--curve', type=str, choices=list(sidh.available_curves.keys()) ,help='Curve to use for SIDH') parser.add_argument('-f', '--file', type=str, help='File to use for MSIDH paramters') parser.add_argument('-r', '--rounds', type=int, default=10, help='Number of rounds to run tests for') parser.add_argument('-g', '--gen', type=int, help='generate MSIDH parameters for a given security level') parser.add_argument('-g128', '--gen128', action='store_true', help='generate MSIDH-128 parameters') args = parser.parse_args() if args.gen: create_msidh(args.gen) elif args.gen128: gen_MSIDH128() elif args.test == 'sidh': if not args.curve: print("Please provide a curve to use for SIDH using -c") exit(1) data = test_SIDH(args.curve, args.rounds) output_data("sidh_results.csv", data) elif args.test == 'msidh': if not args.file: print("Please provide a file to use for MSIDH using -f") print("You can generate a file using -g <security level>") exit(1) data = test_MSIDH(args.file, args.rounds) output_data("msidh_results.csv", data) else: print("Invalid arguments, use -h for help") exit(1)
mrztti/M-SIDH
run.py
run.py
py
5,043
python
en
code
1
github-code
6
25602972286
def sums(items): luvut = {0: 1} x = 0 for i in items: new = {} for j in luvut: summa = i + j new.update({j: 1}) if summa not in luvut: new.update({summa: 1}) x += 1 luvut = new return x # Juho Heiskasen ratkaisu: """ def sums(items): seen_sums = set() for x in items: for u in list(seen_sums): seen_sums.add(x + u) seen_sums.add(x) return len(seen_sums) """ # Tästä opin settien olemassaolon :) # Oma hitaampi ratkaisu listalla: """ def sums(items): items.sort() luvut = [0] x = 0 for i in items: for j in range(len(luvut)): summa = i + luvut[j] if summa not in luvut: luvut.append(summa) x += 1 return x """ if __name__ == "__main__": print(sums([1, 2, 3])) # 6 print(sums([2, 2, 3])) # 5 print(sums([1, 3, 5, 1, 3, 5])) # 18 print(sums([1, 15, 5, 23, 100, 55, 2])) # 121
Noppacase22/DSA-2022
sums.py
sums.py
py
1,076
python
en
code
0
github-code
6
43168508245
import asyncio import json import logging import typing from pathlib import Path import discord from discord.ext import commands from fuzzywuzzy import process from roycemorebot.constants import ( Categories, Channels, Emoji, Guild, MOD_ROLES, StaffRoles, ) log = logging.getLogger(__name__) class Subscriptions(commands.Cog): """User-assigned subscriptions to select announcements.""" def __init__(self, bot: commands.Bot): self.bot = bot self._announcement_roles = self.load_announcement_roles() @commands.Cog.listener() async def on_ready(self) -> None: """Load the announcement roles, but only once guilds are available.""" if self._announcement_roles != {}: return log.info("No announcement roles found, requesting to reload") mod_bot_channel = self.bot.get_channel(Channels.mod_bot_commands) guild = discord.utils.get(self.bot.guilds, id=Guild.guild_id) mod_role = discord.utils.get(guild.roles, id=StaffRoles.mod_role) msg = await mod_bot_channel.send( f"{mod_role.mention}\nNo announcement roles are loaded. Reload?" ) await msg.add_reaction("✅") await msg.add_reaction("❌") try: reaction, user = await self.bot.wait_for( "reaction_add", timeout=300.0, check=lambda r, u: str(r.emoji) in ["✅", "❌"] and r.message == msg and not u.bot, ) except asyncio.TimeoutError: log.info("Reload timed out") await mod_bot_channel.send( "Announcement role reload timeout. Use `?subscriptions reload` " + "to reload the announcement roles." ) else: if str(reaction.emoji) == "✅": log.info(f"Announcement role reload started by {user}") self._announcement_roles = self.reload_announcement_roles() await mod_bot_channel.send( f"{Emoji.ok} Successfully reloaded announcement roles!" ) else: log.info(f"Announcement role reload canceled by {user}") await mod_bot_channel.send( f"{Emoji.no} Announcement role reload canceled. Use " + "`?subscriptions reload` to reload the announcement roles." ) @staticmethod def load_announcement_roles() -> "dict[str, dict[str, typing.Union[int, bool]]]": """Load all the announcement roles from the save file.""" save_file = Path("data", "announcement_roles.json") if save_file.is_file(): log.info("Loaded announcement roles from save file") with save_file.open("r") as f: roles = json.load(f) log.trace(f"File contents: {roles}") return roles else: return {} # Checked later in `on_ready` and loaded from guild. def reload_announcement_roles( self, ) -> "dict[str, dict[str, typing.Union[int, bool]]]": """Reload the list of all the announcement roles in the current guild.""" announcement_roles = {} guild = discord.utils.get(self.bot.guilds, id=Guild.guild_id) clubs_category = discord.utils.get(guild.categories, id=Categories.clubs) log.trace("Starting role reload.") # Get server and event announcements seperately announcement_roles["server"] = { "id": discord.utils.get(guild.roles, name="Server Announcements").id, "club": False, } announcement_roles["event"] = { "id": discord.utils.get(guild.roles, name="Event Announcements").id, "club": False, } for channel in clubs_category.channels: announcement_role = discord.utils.find( lambda role: "Announcements" in role.name and role.name.lower().startswith(channel.name) and role.name.index(" ") == len(channel.name), # prevents overlap guild.roles, ) log.trace(f"Channel: {channel.name}, role: {announcement_role}") announcement_roles[channel.name] = { "id": announcement_role.id, "club": "club" in announcement_role.name.lower(), } log.trace("Saving announcement roles.") save_file = Path("data", "announcement_roles.json") save_file.parent.mkdir(exist_ok=True) with save_file.open("w") as f: json.dump(announcement_roles, f, indent=2) log.info("Announcement role reload finished") return announcement_roles @commands.guild_only() @commands.command(aliases=("sub",)) async def subscribe(self, ctx: commands.Context, announcement_name: str) -> None: """Subscribe to an announcement role on the server.""" all_roles = list(self._announcement_roles.keys()) log.trace(f"All roles: {all_roles}") match_info = process.extractOne( announcement_name, all_roles, score_cutoff=75, ) log.trace(f"Match info: {match_info}") author_ping = ctx.author.mention if match_info: role = discord.utils.get( ctx.guild.roles, id=self._announcement_roles[match_info[0]]["id"] ) log.trace(f"Matched role `{role}` with probability {match_info[1]}") await ctx.author.add_roles( role, reason="User announcements subscription", ) log.info(f"User {ctx.author} subscribed to {role}") if ctx.message.channel.id == Channels.roles: await ctx.send( f"{author_ping}, you have successfully subscribed to {role}.", delete_after=5.0, ) await asyncio.sleep(5.0) await ctx.message.delete() else: await ctx.send( f"{author_ping}, you have successfully subscribed to {role}.", ) else: if ctx.message.channel.id == Channels.roles: await ctx.send( f"{author_ping}, there are no announcement roles with that name.", delete_after=5.0, ) await asyncio.sleep(5.0) await ctx.message.delete() else: await ctx.send( f"{author_ping}, there are no announcement roles with that name." ) @commands.guild_only() @commands.command(aliases=("unsub",)) async def unsubscribe(self, ctx: commands.Context, announcement_name: str) -> None: """Unsubscribe to an announcement role on the server.""" all_roles = list(self._announcement_roles.keys()) log.trace(f"All roles: {all_roles}") match_info = process.extractOne( announcement_name, all_roles, score_cutoff=75, ) log.trace(f"Match info: {match_info}") author_ping = ctx.author.mention if match_info: role = discord.utils.get( ctx.guild.roles, id=self._announcement_roles[match_info[0]]["id"] ) log.trace(f"Matched role `{role}` with probability {match_info[1]}") await ctx.author.remove_roles( role, reason="User announcements unsubscription", ) log.info(f"User {ctx.author} unsubscribed from {role}") if ctx.message.channel.id == Channels.roles: await ctx.send( f"{author_ping}, you have successfully unsubscribed from {role}.", delete_after=5.0, ) await asyncio.sleep(5.0) await ctx.message.delete() else: await ctx.send( f"{author_ping}, you have successfully unsubscribed from {role}.", ) else: if ctx.message.channel.id == Channels.roles: await ctx.send( f"{author_ping}, there are no announcement roles with that name.", delete_after=5.0, ) await asyncio.sleep(5.0) await ctx.message.delete() else: await ctx.send( f"{author_ping}, there are no announcement roles with that name." ) @commands.guild_only() @commands.group( name="subscriptions", aliases=("subs",), invoke_without_command=True ) async def subscriptions_group(self, ctx: commands.Context) -> None: """Commands group for managing announcement subscriptions.""" await ctx.send_help(ctx.command) @commands.guild_only() @subscriptions_group.command(name="list", aliases=("l", "ls")) async def list_subscriptions(self, ctx: commands.Context) -> None: """List all possible announcement subscriptions and their corresponding commands.""" # noqa: B950 embed = discord.Embed( title="Announcement Subscriptions", description="Here are all the possible announcement subscriptions and " + "their commands.", color=discord.Colour.green(), ) all_subs = list(self._announcement_roles.keys()) for subscription in all_subs: club = self._announcement_roles[subscription]["club"] embed.add_field( name=f"{subscription.title()}{' Club' if club else ''} Announcements", value=f"`?subscribe {subscription}`", inline=True, ) if ctx.channel.id == Channels.roles: await ctx.send( f"{ctx.author.mention}, please use a bot channel to run that command.", delete_after=5.0, ) await asyncio.sleep(5.0) await ctx.message.delete() else: await ctx.send(embed=embed) @commands.guild_only() @commands.has_any_role(*MOD_ROLES) @subscriptions_group.command(aliases=("r",)) async def reload(self, ctx: commands.Context) -> None: """Reload the announcement roles save.""" self._announcement_roles = self.reload_announcement_roles() await ctx.send(f"{Emoji.ok} Successfully reloaded announcement roles!") @commands.guild_only() @commands.has_role(StaffRoles.admin_role) @subscriptions_group.command(name="add-club", aliases=("add", "ac", "a-c", "a")) async def add_club( self, ctx: commands.Context, channel_name: str, leaders: commands.Greedy[discord.Member] = None, club: bool = True, *, leader_title: typing.Optional[str] = "Leader", ) -> None: """Create a new club channel with corresponding roles and leaders (if given).""" guild = ctx.guild name = channel_name.replace(" ", "-").lower() # Discord-safe channel names log.info(f"Creating a new club channel at the request of {ctx.author}") leader_names = ( list(map(lambda l: l.name + "#" + l.discriminator, leaders)) if leaders else None ) log.info( f"Name: {name}, leaders: {leader_names}, club: {club}, " + f"leader title: {leader_title}" ) # Create the roles and assign them leader_role = await guild.create_role( name=f"{name.title()}{' Club' if club else ''} {leader_title}", mentionable=True, reason="Club creation", ) ann_role = await guild.create_role( name=f"{name.title()}{' Club' if club else ''} Announcements", mentionable=True, reason="Club creation", ) log.trace(f"Created {leader_role} and {ann_role} role") if leaders: for leader in leaders: await leader.add_roles(leader_role, reason="Club creation") log.trace("Assigned leaders their roles") # Create the channel clubs_category = discord.utils.get(guild.categories, id=Categories.clubs) channel = await clubs_category.create_text_channel( name, overwrites={ discord.utils.get( guild.roles, id=StaffRoles.mod_role ): discord.PermissionOverwrite(view_channel=True, send_messages=True), discord.utils.get( guild.roles, id=StaffRoles.muted_role ): discord.PermissionOverwrite(send_messages=False), leader_role: discord.PermissionOverwrite( view_channel=True, manage_channels=True, manage_permissions=True, send_messages=True, manage_messages=True, ), }, reason="Club creation", ) position = sorted( clubs_category.text_channels, key=lambda channel: channel.name ).index(channel) log.trace(f"Channel index: {position}") await channel.edit(position=position, reason="Club creation") log.trace(f"Created channel {channel} and moved to postition {position}") # Load new announcement roles log.info( "Reloading announcement roles because of new announcement channel " + channel_name ) self._announcement_roles = self.reload_announcement_roles() # Completion message await ctx.send(f"{Emoji.ok} Successfully added club channel!") @commands.guild_only() @commands.has_role(StaffRoles.admin_role) @subscriptions_group.command( name="remove-club", aliases=("remove", "rm-c", "rmc", "rm") ) async def remove_club( self, ctx: commands.Context, club_channel: discord.TextChannel ) -> None: """Delete a club channel and roles.""" log.info( f"Deleteing club channel {club_channel} and roles at the request of " + f"{ctx.author}" ) ann_role = discord.utils.get( ctx.guild.roles, id=self._announcement_roles[club_channel.name]["id"] ) await ann_role.delete(reason="Removing club from server") log.trace("Deleted announcement role") leader_role = discord.utils.find( lambda role: role.name.lower().startswith(club_channel.name), ctx.guild.roles, ) await leader_role.delete(reason="Removing club from server") log.trace("Deleted leader role") await club_channel.delete(reason="Removing club from server") log.trace("Deleted channel") self._announcement_roles = self.reload_announcement_roles() # Completion message await ctx.send(f"{Emoji.ok} Successfully removed club channel!") def setup(bot: commands.Bot) -> None: """Add the Subscriptions cog to the bot.""" bot.add_cog(Subscriptions(bot))
egelja/roycemorebot
roycemorebot/exts/subscriptions.py
subscriptions.py
py
15,209
python
en
code
1
github-code
6
24522571380
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义客户端类 class Client: def __init__(self, model, train_loader, test_loader, lr=0.1): self.model = model self.train_loader = train_loader self.test_loader = test_loader self.optimizer = optim.SGD(self.model.parameters(), lr=lr) def train(self, epochs=1): self.model.train() for epoch in range(epochs): for data, target in self.train_loader: self.optimizer.zero_grad() output = self.model(data) loss = nn.functional.cross_entropy(output, target) loss.backward() self.optimizer.step() def test(self): self.model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in self.test_loader: output = self.model(data) test_loss += nn.functional.cross_entropy(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(self.test_loader.dataset) accuracy = 100. * correct / len(self.test_loader.dataset) return test_loss, accuracy def get_topk_grads(self, k=0.01): grads = [] for param in self.model.parameters(): if param.grad is not None: importance = param.grad.abs().sum() k_ = int(importance.numel() * k) topk_values, _ = torch.topk(param.grad.abs().view(-1), k_) mask = torch.zeros_like(param.grad) mask[param.grad.abs() >= topk_values[-1]] = 1 grads.append(mask * param.grad) return torch.cat(grads) # 定义服务器类 class Server: def __init__(self, clients): self.clients = clients def aggregate(self): grads = None num_grads = 0 for client in self.clients: client_grads = client.get_topk_grads() if grads is None: grads = client_grads else: grads += client_grads num_grads += 1 grads /= num_grads return grads # 定义主函数 def main(): # 加载MNIST数据集 train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) test_dataset = datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) train_loaders = [torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) for _ in range(10)] test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True) # 初始化客户端和服务器 clients = [Client(nn.Sequential(nn.Linear(784, 128), nn.ReLU(), nn.Linear(128, 10)), train_loader, test_loader) for train_loader in train_loaders] server = Server(clients) # 训练和聚合 for round in range(num_rounds): print(f"\nRound {round + 1}") # 客户端训练并计算梯度 grad_list = [] for client in clients: client.train() client_optimizer.zero_grad() # 获取客户端的本地数据 inputs, labels = client.get_data() # 前向传播 outputs = client.model(inputs) # 计算局部loss loss = criterion(outputs, labels) # 反向传播 loss.backward() # 获取梯度并压缩 grad = client.get_topk_grads() grad_list.append(grad) # 服务器聚合梯度并更新模型 server.aggregate(grad_list) server.update_model() # 客户端更新模型 for client in clients: client.update_model(server.model) # 计算并打印全局loss global_loss = evaluate_global_loss(server.model, test_loader, criterion) print(f"Global Loss: {global_loss:.4f}")
huguangs/NIID-Bench-main-master
top-k/main.py
main.py
py
4,358
python
en
code
0
github-code
6
22868199973
from global_function import data_exist, rindex import pickle def Filter_Redundancy(type, query, replace_space, replace_percentage, replace_apostrophe, replace_plus): with open('Resources/redundancy/media search redundancy filter.pck', 'rb') as file: media_search_redundancy = pickle.load(file) for i in range(len(media_search_redundancy)): media_search_redundancy[i][0] = media_search_redundancy[i][0].replace('__social_media_name__', type) media_search_redundancy.sort(key=lambda x : len(x[0]), reverse=True) command = '' for redundancy in media_search_redundancy: if data_exist([redundancy[0]], query, 2): question_word = redundancy[0].split() command_word = query.split() for x in redundancy[1]: if x == len(question_word) - 1: pos = command_word.index(question_word[x]) command = ' '.join(command_word[pos + 1:]) else: pos = command_word.index(question_word[x]) pos1 = rindex(command_word, question_word[x + 1]) command = ' '.join(command_word[pos + 1: pos1]) if command: break if command: query = command break if replace_percentage: query = query.replace('%', '%25') if replace_apostrophe: query = query.replace("'", '%27') if replace_plus: query = query.replace('+', '%2B') query = query.replace(' ', replace_space) return query def Get_Url(type, query, media): url = '' replace_space = '' replace_percentage = False replace_apostrophe = False replace_plus = False for x in media: if type == x['tag']: url = x['url'] replace_space = x['replace space'] replace_percentage = ['replace %'] replace_apostrophe = x["replace '"] replace_plus = x['replace plus'] break url += Filter_Redundancy(type, query, replace_space, replace_percentage, replace_apostrophe, replace_plus) return url
TroySigX/smartbot
mediaSearch.py
mediaSearch.py
py
2,195
python
en
code
2
github-code
6
36813380552
"""empty message Revision ID: 073719702e2e Revises: 23ecd00cae18 Create Date: 2020-03-29 13:31:19.799319 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '073719702e2e' down_revision = '23ecd00cae18' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('task_owners', sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('task_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['task_id'], ['tasks.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('user_id', 'task_id') ) op.drop_table('tags') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('tags', sa.Column('user_id', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('task_id', sa.INTEGER(), autoincrement=False, nullable=False), sa.ForeignKeyConstraint(['task_id'], ['tasks.id'], name='tags_task_id_fkey'), sa.ForeignKeyConstraint(['user_id'], ['users.id'], name='tags_user_id_fkey'), sa.PrimaryKeyConstraint('user_id', 'task_id', name='tags_pkey') ) op.drop_table('task_owners') # ### end Alembic commands ###
koiic/project-tracker
migrations/versions/073719702e2e_.py
073719702e2e_.py
py
1,333
python
en
code
0
github-code
6
15412087448
from django.shortcuts import render from django.http import HttpResponse from django.utils.translation import get_language from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.decorators import login_required from django.conf import settings from . import Checksum from paytm.models import PaytmHistory # Create your views here. @login_required def home(request): return HttpResponse("<html><a href='"+ settings.HOST_URL +"/paytm/payment'>PayNow</html>") def payment(request): MERCHANT_KEY = settings.PAYTM_MERCHANT_KEY MERCHANT_ID = settings.PAYTM_MERCHANT_ID get_lang = "/" + get_language() if get_language() else '' CALLBACK_URL = settings.HOST_URL + get_lang + settings.PAYTM_CALLBACK_URL # Generating unique temporary ids order_id = Checksum.__id_generator__() bill_amount = 100 if bill_amount: data_dict = { 'MID':MERCHANT_ID, 'ORDER_ID':order_id, 'TXN_AMOUNT': bill_amount, 'CUST_ID':'[email protected]', 'INDUSTRY_TYPE_ID':'Retail', 'WEBSITE': settings.PAYTM_WEBSITE, 'CHANNEL_ID':'WEB', #'CALLBACK_URL':CALLBACK_URL, } param_dict = data_dict param_dict['CHECKSUMHASH'] = Checksum.generate_checksum(data_dict, MERCHANT_KEY) return render(request,"payment.html",{'paytmdict':param_dict}) return HttpResponse("Bill Amount Could not find. ?bill_amount=10") @csrf_exempt def response(request): if request.method == "POST": MERCHANT_KEY = settings.PAYTM_MERCHANT_KEY data_dict = {} for key in request.POST: data_dict[key] = request.POST[key] verify = Checksum.verify_checksum(data_dict, MERCHANT_KEY, data_dict['CHECKSUMHASH']) if verify: PaytmHistory.objects.create(user=request.user, **data_dict) return render(request,"response.html",{"paytm":data_dict}) else: return HttpResponse("checksum verify failed") return HttpResponse(status=200)
harishbisht/paytm-django
payments/paytm/views.py
views.py
py
2,130
python
en
code
31
github-code
6
75066284348
import torch import logging import pickle from core.utils import scale_image, save_layer_image from data import image_corruption def evaluate(model, loader, args, perturbation=False, pSize=0, **kwargs): objective_function= kwargs.get('objective_function', None) device = kwargs['device'] if 'epoch' in kwargs: epoch = kwargs['epoch'] ibatch = kwargs["ibatch"] else: epoch = 'Test' ibatch = 0 validloss = 0 for i, (images, _) in enumerate(loader): if i == 200: break corrupt_img, _ = image_corruption(images, args, perturbation=perturbation, pSize=pSize) #blurring, inpainting, noising corrupt_img_scale = scale_image(corrupt_img, args.nBits) restored_img, outsx, _ = model(corrupt_img_scale.to(device), objective_function=objective_function, noisyOuts=args.noisyOuts) validloss += (torch.norm(restored_img.detach().cpu() - images, p='fro')**2).item() #MSE if i == 0: if epoch == 'Test': with open(f'./results/{args.dataset}_{args.constrained}_{pSize}.pkl', 'wb') as ObjFile: pickle.dump((images, corrupt_img, restored_img, epoch, ibatch), ObjFile) save_layer_image(images, corrupt_img, outsx, epoch, ibatch, args, perturbation=False) break del images, corrupt_img, restored_img, outsx, corrupt_img_scale torch.cuda.empty_cache() validloss /= (len(loader)*args.batchSize) logging.debug("Epoch {} - Batch {}, Loss {:.4f}".format(epoch, ibatch, validloss)) return validloss
SMRhadou/UnrolledGlow
core/evaluation.py
evaluation.py
py
1,612
python
en
code
0
github-code
6
31512974964
import json import requests import constants import tokens def make_api_call(access_token, url, method, **kwargs): response = method( url=url, headers={ "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {access_token}", }, **kwargs, ) if not response.ok: raise RuntimeError(f"Error making request to {url}: ", response.content) return response def get_user_id_and_name_from_refresh_token(refresh_token): access_token = tokens.get_access_token(refresh_token) user_response = make_api_call(access_token, constants.API_URL + "/me", requests.get) return user_response.json()["id"], user_response.json()["display_name"] def make_new_playlist(user): response = make_api_call( user.access_token, url=f"{constants.API_URL}/users/{user.user_id}/playlists", method=requests.post, data=json.dumps({"name": constants.DEFAULT_PLAYLIST_NAME, "description": f"Here are your most recently added songs from the last {user.recently_added_delta_days} days"}) ) return response.json()["id"]
rjshearme/spotify_recently_added_playlist
api.py
api.py
py
1,168
python
en
code
0
github-code
6
35608959841
#!/usr/bin/env python try: import orz except ImportError: import os import sys curr_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(curr_path, "D:\Working\OpenRoleZoo\OpenRoleZoo\python")) import orz import os def timestamp(filename): if not os.path.exists(filename): return 0 statinfo = os.stat(filename) return statinfo.st_mtime if __name__ == '__main__': input_dir = 'rawmd' output_dir = 'stamd' filenames = os.listdir(input_dir) count_keep = 0 count_modify = 0 for filename in filenames: if filename[-5:] != '.json': continue name, ext = os.path.splitext(filename) filename_sta = name + '.sta' input_filename = os.path.join(input_dir, filename) output_filename = os.path.join(output_dir, filename_sta) if timestamp(output_filename) < timestamp(input_filename): print('Converting %s' % input_filename) orz.json2sta(input_filename, output_filename) count_modify += 1 else: print('Keeping %s' % input_filename) count_keep += 1 count_total = count_modify + count_keep print("Total: %d. Modified: %d, kept: %d" % (count_total, count_modify, count_keep))
SeetaFace6Open/OpenRoleZoo
python/model2model2.py
model2model2.py
py
1,296
python
en
code
1
github-code
6
70680835069
from flask import Flask from flask import render_template import ffmpeg_streaming from ffmpeg_streaming import Formats import sys app = Flask(__name__) @app.route("/") def streaming(): return render_template('streaming.html') @app.route('/video') def video_server(): video = ffmpeg_streaming.input('pexels_video.mp4') hls = video.hls(Formats.h264()) hls.auto_generate_representations() hls.save_master_playlist('/var/media/hls.m3u8') return hls.output('/var/media/hls.m3u8') def monitor(ffmpeg, duration, time_, time_left, process): per = round(time_ / duration * 100) sys.stdout.write( "\rTranscoding...(%s%%) %s left [%s%s]" % (per, datetime.timedelta(seconds=int(time_left)), '#' * per, '-' * (100 - per)) ) sys.stdout.flush()
ifcassianasl/python_test_rtsp
main.py
main.py
py
764
python
en
code
1
github-code
6
21629194042
import tensorflow as tf from data_structures import UNK_label, PAD_label def TEEmbeddingLayer(size_TE_label_vocab, size_TE_label_embed, TE_label_set): if TE_label_set == 'none': raise NotImplementedError('Can\'t embed TE labels if there are no TE labels') return tf.keras.layers.Embedding(size_TE_label_vocab, size_TE_label_embed, input_shape=(None,)) def get_TE_labels_for_doc(sentence_count, sorted_nodes, word_in_doc_to_tokens_map, TE_label_vocab, TE_label_set, max_sequence_length): # Start by assuming all tokens are padding token_count = sentence_count * max_sequence_length TE_labels = [PAD_label] * token_count # For all actual words, use UNK_label for word_start_index, word_end_index in word_in_doc_to_tokens_map: for k in range(word_start_index, word_end_index + 1): TE_labels[k] = UNK_label # For all words which are nodes, use the TE_label of the node if TE_label_set != 'none': for node in sorted_nodes: if node.start_word_index_in_doc >= 0: # Node has real words (not a meta node or a padding node) start_index = word_in_doc_to_tokens_map[node.start_word_index_in_doc][0] end_index = word_in_doc_to_tokens_map[node.end_word_index_in_doc][1] for k in range(start_index, end_index + 1): if TE_label_set == 'timex_event': TE_labels[k] = node.TE_label else: TE_labels[k] = node.full_label TE_label_ids = [] for TE_label in TE_labels: if TE_label in TE_label_vocab: TE_label_ids.append(TE_label_vocab.get(TE_label)) else: print('WARNING: Label {} not in TE_label_vocab, using {}'.format(TE_label, UNK_label)) TE_label_ids.append(TE_label_vocab.get(UNK_label)) return TE_label_ids
bnmin/tdp_ranking
frozen_bert/te_embedding.py
te_embedding.py
py
1,927
python
en
code
1
github-code
6
779248836
from dataclasses import dataclass from typing import Annotated, List from fastapi import Depends from fastapi_pagination import Page from fastapi_pagination.ext.sqlalchemy import paginate from sqlalchemy import select from sqlalchemy.ext.asyncio import AsyncSession from config.db import get_db_session from readconnect.books.domain.dtos.books_query_params import BooksQueryParams from readconnect.books.domain.models.book_model import Book from readconnect.books.infrastructure.db.entities.book_entity import BookEntity @dataclass() class BooksRepository: db: Annotated[AsyncSession, Depends(get_db_session)] async def create_many(self, new_books: List[Book]): books = [BookEntity(**book) for book in new_books] self.db.add_all(books) await self.db.commit() return books async def find_by_id(self, book_id: str) -> BookEntity: query = select(BookEntity).where(BookEntity.id == book_id) result = await self.db.execute(query) return result.scalar() async def find(self, query: BooksQueryParams) -> Page[Book]: q = select( BookEntity.id, BookEntity.title, BookEntity.isbn, BookEntity.long_description, BookEntity.short_description, BookEntity.published_date, BookEntity.thumbnail_url, BookEntity.page_count, BookEntity.status, ) if query.include_extra_data: q = select(BookEntity).join(BookEntity.authors).join(BookEntity.categories) return await paginate(self.db, q) return await paginate(self.db, q) async def search(self, query: BooksQueryParams) -> Page[Book]: q = select( BookEntity.id, BookEntity.title, BookEntity.isbn, BookEntity.long_description, BookEntity.short_description, BookEntity.published_date, BookEntity.thumbnail_url, BookEntity.page_count, BookEntity.status, ).filter( BookEntity.title.icontains(query.search) | BookEntity.isbn.icontains(query.search) ) if query.include_extra_data: q = ( select(BookEntity) .filter( BookEntity.title.icontains(query.search) | BookEntity.isbn.icontains(query.search) ) .join(BookEntity.authors) .join(BookEntity.categories) ) return await paginate(self.db, q) return await paginate(self.db, q)
YeisonKirax/readconnect-back
src/readconnect/books/infrastructure/db/repository/books_repository.py
books_repository.py
py
2,625
python
en
code
0
github-code
6
11232494681
from collections import defaultdict ENTER = "Enter" LEAVE = "Leave" CHANGE = "Change" ENTER_MESSAGE = "님이 들어왔습니다." LEAVE_MESSAGE = "님이 나갔습니다." class ChatRoom: def __init__(self): super().__init__() def operation(result, command, chatRoom, nicknames, uid="", name=""): if command == ENTER: chatRoom.append(uid) nicknames[uid] = name result.append((uid, ENTER_MESSAGE)) return elif command == LEAVE: chatRoom.remove(uid) result.append((uid, LEAVE_MESSAGE)) return elif command == CHANGE: nicknames[uid] = name return return def solution(record): answer = [] nicknames = defaultdict(str) chatRoom = [] result = [] command, uid, name = "", "", "" for r in record: splited = r.split() if len(splited) == 2: command, uid = splited else: command, uid, name = splited operation(result, command, chatRoom, nicknames, uid, name) answer = list(map(lambda x: nicknames[x[0]]+x[1], result)) return answer if __name__ == "__main__": test = 1 if test == 1: record = ["Enter uid1234 Muzi", "Enter uid4567 Prodo", "Leave uid1234", "Enter uid1234 Prodo", "Change uid4567 Ryan"] print(solution(record))
gatherheart/Solved_PS
KAKAO/2019_KAKAO_1.py
2019_KAKAO_1.py
py
1,378
python
en
code
0
github-code
6
70276262907
import torch import time import argparse from importlib import import_module import numpy as np import utils import train parser = argparse.ArgumentParser(description='BertClassifier') # parser.add_argument('--model', type=str, default='BertFc', help='choose a model') # parser.add_argument('--model', type=str, default='BertCNN', help='choose a model') # parser.add_argument('--model', type=str, default='BertRNN', help='choose a model') # parser.add_argument('--model', type=str, default='BertDPCNN', help='choose a model') # parser.add_argument('--model', type=str, default='ERNIE', help='choose a model') parser.add_argument('--model', type=str, default='ERNIEDPCNN', help='choose a model') args = parser.parse_args() if __name__ == '__main__': print(torch.__version__) # 数据集地址 dataset = 'THUCNews' model_name = args.model x = import_module( 'models.' + model_name) # <module 'models.BertFc' from '/home/hadoop/PycharmProjects/BertClassifier/models/BertFc.py'> config = x.Config(dataset) print(config.model_name) # print(config) np.random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed_all(4) torch.backends.cudnn.deterministic=True # 保证每次运行结果一样 # 加载数据集 start_time=time.time() print('加载数据集') train_data,dev_data,test_data=utils.build_dataset(config) train_iter=utils.build_iterator(train_data,config) test_iter=utils.build_iterator(test_data,config) dev_iter=utils.build_iterator(dev_data,config) time_dif=utils.get_time_dif(start_time) print("模型开始之前,准备数据时间:", time_dif) # for i,(train,label) in enumerate(dev_iter): # if (i%10==0): # print(i,label) # dev contains 10000 items,10000/128=78.125,residue=True,79 batches,the batch 79st only has 16 items # 模型训练,评估与测试 model=x.Model(config).to(config.device) train.train(config,model,train_iter,dev_iter,test_iter)
Jacquelin803/Transformers
BertClassifier/main.py
main.py
py
2,007
python
en
code
1
github-code
6
5489764282
""" Module that provides different readers for trajectory files. It also provides a common interface layer between the file IO packages, namely pygmx and mdanalysis, and mdevaluate. """ from .checksum import checksum from .logging import logger from . import atoms from functools import lru_cache from collections import namedtuple import os from os import path from array import array from zipfile import BadZipFile import builtins import warnings import numpy as np from scipy import sparse from dask import delayed, __version__ as DASK_VERSION try: import pygmx from pygmx.errors import InvalidMagicException, InvalidIndexException, FileTypeError PYGMX_AVAILABLE = True except ImportError: PYGMX_AVAILABLE = False try: with warnings.catch_warnings(): warnings.simplefilter('ignore', category=UserWarning) import MDAnalysis as mdanalysis MADANALYSIS_AVAILABLE = True except ImportError: MADANALYSIS_AVAILABLE = False assert PYGMX_AVAILABLE or MADANALYSIS_AVAILABLE, 'Could not import any file IO package; make sure too install either pygmx or mdanalysis.' class NojumpError(Exception): pass class NoReaderAvailabelError(Exception): pass def open_with_mdanalysis(topology, trajectory, cached=False): """Open a the topology and trajectory with mdanalysis.""" uni = mdanalysis.Universe(topology, trajectory, convert_units=False) if cached is not False: if cached is True: maxsize = 128 else: maxsize = cached reader = CachedReader(uni.trajectory, maxsize) else: reader = BaseReader(uni.trajectory) reader.universe = uni atms = atoms.Atoms( np.stack((uni.atoms.resids, uni.atoms.resnames, uni.atoms.names), axis=1), charges=uni.atoms.charges, masses=uni.atoms.masses ).subset() return atms, reader def open_with_pygmx(topology, trajectory, cached=False, reindex=False, ignore_index_timestamps=False, index_file=None): """Open a topology and trajectory with pygmx.""" try: rd = pygmx.open(trajectory, ignore_index_timestamps=ignore_index_timestamps) except InvalidMagicException: raise InvalidIndexException('This is not a valid index file: {}'.format(trajectory)) except InvalidIndexException: if reindex: try: os.remove(pygmx.index_filename_for_xtc(trajectory)) except FileNotFoundError: pass rd = pygmx.open(trajectory) else: raise InvalidIndexException('Index file is invalid, us reindex=True to regenerate.') if cached is not False: if isinstance(cached, bool): maxsize = 128 else: maxsize = cached reader = CachedReader(rd, maxsize) else: reader = BaseReader(rd) if topology.endswith('.tpr'): atms = atoms.from_tprfile(topology, index_file=index_file) elif topology.endswith('.gro'): atms = atoms.from_grofile(topology, index_file=index_file) return atms, reader def open(topology, trajectory, cached=False, index_file=None, reindex=False, ignore_index_timestamps=False): """ Open a trajectory file with the apropiate reader. Args: filename (str): Trajectory file to open, the reader will be chosen according to the file extension. cached (opt.): If Reader should be cached with lru_cache. If this is True, maxsize for the cache is 128, otherwise the argument is passed as maxsize. Use cached=None to get an unbound cache. reindex (opt.): Regenerate the index of the xtc-file nojump (opt.): If nojump matrixes should be generated. """ if PYGMX_AVAILABLE and trajectory.endswith('.xtc') and topology.endswith(('.tpr', '.gro')): return open_with_pygmx(topology, trajectory, cached=cached, reindex=reindex, ignore_index_timestamps=ignore_index_timestamps, index_file=index_file) elif MADANALYSIS_AVAILABLE: return open_with_mdanalysis(topology, trajectory, cached) else: raise NoReaderAvailabelError('No reader package found, install pygmx or mdanalysis.') def is_writeable(fname): """Test if a directory is actually writeable, by writing a temporary file.""" fdir = os.path.dirname(fname) ftmp = os.path.join(fdir, str(np.random.randint(999999999))) while os.path.exists(ftmp): ftmp = os.path.join(fdir, str(np.random.randint(999999999))) if os.access(fdir, os.W_OK): try: with builtins.open(ftmp, 'w'): pass os.remove(ftmp) return True except PermissionError: pass return False def nojump_filename(reader): directory, fname = path.split(reader.filename) fname = path.join(directory, '.{}.nojump.npz'.format(fname)) if os.path.exists(fname) or is_writeable(directory): return fname else: fname = os.path.join( os.path.join(os.environ['HOME'], '.mdevaluate/nojump'), directory.lstrip('/'), '.{}.nojump.npz'.format(fname) ) logger.info('Saving nojump to {}, since original location is not writeable.'.format(fname)) os.makedirs(os.path.dirname(fname), exist_ok=True) return fname CSR_ATTRS = ('data', 'indices', 'indptr') NOJUMP_MAGIC = 2016 def parse_jumps(trajectory): prev = trajectory[0].whole box = prev.box.diagonal() SparseData = namedtuple('SparseData', ['data', 'row', 'col']) jump_data = ( SparseData(data=array('b'), row=array('l'), col=array('l')), SparseData(data=array('b'), row=array('l'), col=array('l')), SparseData(data=array('b'), row=array('l'), col=array('l')) ) for i, curr in enumerate(trajectory): if i % 500 == 0: logger.debug('Parse jumps Step: %d', i) delta = ((curr - prev) / box).round().astype(np.int8) prev = curr for d in range(3): col, = np.where(delta[:, d] != 0) jump_data[d].col.extend(col) jump_data[d].row.extend([i] * len(col)) jump_data[d].data.extend(delta[col, d]) return jump_data def generate_nojump_matrixes(trajectory): """ Create the matrixes with pbc jumps for a trajectory. """ logger.info('generate Nojump Matrixes for: {}'.format(trajectory)) jump_data = parse_jumps(trajectory) N = len(trajectory) M = len(trajectory[0]) trajectory.frames.nojump_matrixes = tuple( sparse.csr_matrix((np.array(m.data), (m.row, m.col)), shape=(N, M)) for m in jump_data ) save_nojump_matrixes(trajectory.frames) def save_nojump_matrixes(reader, matrixes=None): if matrixes is None: matrixes = reader.nojump_matrixes data = {'checksum': checksum(NOJUMP_MAGIC, checksum(reader))} for d, mat in enumerate(matrixes): data['shape'] = mat.shape for attr in CSR_ATTRS: data['{}_{}'.format(attr, d)] = getattr(mat, attr) np.savez(nojump_filename(reader), **data) def load_nojump_matrixes(reader): zipname = nojump_filename(reader) try: data = np.load(zipname) except (AttributeError, BadZipFile, OSError): # npz-files can be corrupted, propably a bug for big arrays saved with savez_compressed? logger.info('Removing zip-File: %s', zipname) os.remove(nojump_filename(reader)) return try: if data['checksum'] == checksum(NOJUMP_MAGIC, checksum(reader)): reader.nojump_matrixes = tuple( sparse.csr_matrix( tuple(data['{}_{}'.format(attr, d)] for attr in CSR_ATTRS), shape=data['shape'] ) for d in range(3) ) logger.info('Loaded Nojump Matrixes: {}'.format(nojump_filename(reader))) else: logger.info('Invlaid Nojump Data: {}'.format(nojump_filename(reader))) except KeyError: logger.info('Removing zip-File: %s', zipname) os.remove(nojump_filename(reader)) return def correct_nojump_matrixes_for_whole(trajectory): reader = trajectory.frames frame = trajectory[0] box = frame.box.diagonal() cor = ((frame - frame.whole) / box).round().astype(np.int8) for d in range(3): reader.nojump_matrixes[d][0] = cor[:, d] save_nojump_matrixes(reader) class BaseReader: """Base class for trajectory readers.""" @property def filename(self): return self.rd.filename @property def nojump_matrixes(self): if self._nojump_matrixes is None: raise NojumpError('Nojump Data not available: {}'.format(self.filename)) return self._nojump_matrixes @nojump_matrixes.setter def nojump_matrixes(self, mats): self._nojump_matrixes = mats def __init__(self, rd): """ Args: filename: Trajectory file to open. reindex (bool, opt.): If True, regenerate the index file if necessary. """ self.rd = rd self._nojump_matrixes = None if path.exists(nojump_filename(self)): load_nojump_matrixes(self) def __getitem__(self, item): return self.rd[item] def __len__(self): return len(self.rd) def __checksum__(self): if hasattr(self.rd, 'cache'): # Has an pygmx reader return checksum(self.filename, str(self.rd.cache)) elif hasattr(self.rd, '_xdr'): # Has an mdanalysis reader cache = array('L', self.rd._xdr.offsets.tobytes()) return checksum(self.filename, str(cache)) class CachedReader(BaseReader): """A reader that has a least-recently-used cache for frames.""" @property def cache_info(self): """Get Information about the lru cache.""" return self._get_item.cache_info() def clear_cache(self): """Clear the cache of the frames.""" self._get_item.cache_clear() def __init__(self, rd, maxsize): """ Args: filename (str): Trajectory file that will be opened. maxsize: Maximum size of the lru_cache or None for infinite cache. """ super().__init__(rd) self._get_item = lru_cache(maxsize=maxsize)(self._get_item) def _get_item(self, item): """Buffer function for lru_cache, since __getitem__ can not be cached.""" return super().__getitem__(item) def __getitem__(self, item): return self._get_item(item) if DASK_VERSION >= '0.15.0': read_xtcframe_delayed = delayed(pure=True, traverse=False)(pygmx.read_xtcframe) else: read_xtcframe_delayed = delayed(pure=True)(pygmx.read_xtcframe) class DelayedReader(BaseReader): @property def filename(self): if self.rd is not None: return self.rd.filename else: return self._filename def __init__(self, filename, reindex=False, ignore_index_timestamps=False): super().__init__(filename, reindex=False, ignore_index_timestamps=False) self.natoms = len(self.rd[0].coordinates) self.cache = self.rd.cache self._filename = self.rd.filename self.rd = None def __len__(self): return len(self.cache) def _get_item(self, frame): return read_xtcframe_delayed(self.filename, self.cache[frame], self.natoms) def __getitem__(self, frame): return self._get_item(frame) class EnergyReader: """A reader for Gromacs energy files.""" def __init__(self, edrfile): """ Args: edrfile: Filename of the energy file topology (opt.): Filename of the topology, speeds up file io since the length of the energy file is known """ edr = pygmx.open(edrfile) self.time, data = edr.read() self.types, self.units = zip(*edr.types) self.data = data.T def __getitem__(self, type): """ Get time series of an energy type. """ if type in self.types: return self.data[self.types.index(type)] else: raise KeyError('Energy type {} not found in Energy File.'.format(type))
mdevaluate/mdevaluate
mdevaluate/reader.py
reader.py
py
12,347
python
en
code
5
github-code
6
73492056828
#Name: Ishika Soni #Email: [email protected] #Date: October 4, 2021 #This program asks the user for a 6-digit hex number and uses it as the hex code #to stamp 4 turtles of that color into a square. import turtle mess = input("Please enter a 6-digit Hexadecimal number: ") wn = turtle.Screen() alex = turtle.Turtle() alex.shape("turtle") alex.color("#"+mess) for i in range(4): alex.stamp() alex.left(90) alex.forward(100)
issoni/Short-Turtle-Graphics
14colored-square.py
14colored-square.py
py
454
python
en
code
0
github-code
6
5446974377
import numpy as np import scipy as sp import matplotlib import matplotlib.pyplot as plt from matplotlib import cm def func2(x): return np.round(np.random.random()) def func(x,y,z,r): l = np.linalg.norm(np.array([x,y,z])) if(l < r): return 1.0 else: return 0.0 def normalize_signal_1d(signal): nsignal = np.zeros(signal.shape[0], dtype=complex) s0 = signal.max() for i in range(signal.shape[0]): nsignal[i] = signal[i]/s0 return nsignal def normalize_signal_2d(signal): nsignal = np.zeros([signal.shape[0], signal.shape[1]], dtype=complex) s0 = signal.max() for i in range(signal.shape[0]): for j in range(signal.shape[1]): nsignal[i,j] = signal[i,j]/s0 return nsignal def normalize_signal_3d(signal): nsignal = np.zeros([signal.shape[0], signal.shape[1], signal.shape[2]], dtype=complex) s0 = signal.max() for k in range(signal.shape[2]): for i in range(signal.shape[0]): for j in range(signal.shape[1]): nsignal[i,j,k] = signal[i,j,k]/s0 return nsignal def plot_fft_1d_results(vecX, signal, vecK, dft, fft): points = vecX.shape[0] fig, axs = plt.subplots(6, 1) axs[0].plot(vecX, signal,'o') axs[1].plot(vecK, np.real(dft),'-') axs[1].plot(vecK, np.imag(dft),'--') axs[2].plot(vecK, np.real(fft),'-') axs[2].plot(vecK, np.imag(fft),'--') axs[3].plot(vecK, np.abs(dft),'-') axs[4].plot(vecK, np.abs(fft),'-') axs[5].plot(vecK, np.abs(dft),'-') axs[5].plot(vecK, np.abs(fft),'--') plt.show() return def plot_fft_2d_results(signal, dft, fft): diff_abs = np.abs(dft)-np.abs(fft) diff_real = np.real(dft)-np.real(fft) diff_imag = np.imag(dft)-np.imag(fft) cmap = cm.PRGn cmap=cm.get_cmap(cmap) points = signal.shape[0] fig, axs = plt.subplots(3, 2) im00 = axs[0,0].imshow(np.abs(signal), cmap=cmap) im10 = axs[1,0].imshow(np.abs(dft), cmap=cmap) im20 = axs[2,0].imshow(np.abs(fft), cmap=cmap) im01 = axs[0,1].imshow(diff_real, cmap=cmap) im11 = axs[1,1].imshow(diff_imag, cmap=cmap) im21 = axs[2,1].imshow(diff_abs, cmap=cmap) axs[0,0].set_title("signal") axs[1,0].set_title("dft") axs[2,0].set_title("fft") axs[0,1].set_title("real(diff)") axs[1,1].set_title("imag(diff)") axs[2,1].set_title("abs(diff)") fig.colorbar(im00, ax=axs[0,0]) fig.colorbar(im10, ax=axs[1,0]) fig.colorbar(im20, ax=axs[2,0]) fig.colorbar(im01, ax=axs[0,1]) fig.colorbar(im11, ax=axs[1,1]) fig.colorbar(im21, ax=axs[2,1]) fig.tight_layout() plt.show() return def plot_fft_3d_results(signal, dft, fft, nimgs=1): diff_abs = np.abs(dft)-np.abs(fft) diff_real = np.real(dft)-np.real(fft) diff_imag = np.imag(dft)-np.imag(fft) cmap = cm.PRGn cmap=cm.get_cmap(cmap) points = signal.shape[0] fig, axs = plt.subplots(nimgs, 6) img_list = [] for im in range(nimgs): im00 = axs[im,0].imshow(np.abs(signal[im]), cmap=cmap) im10 = axs[im,1].imshow(np.abs(dft[im]), cmap=cmap) im20 = axs[im,2].imshow(np.abs(fft[im]), cmap=cmap) im01 = axs[im,3].imshow(diff_real[im], cmap=cmap) im11 = axs[im,4].imshow(diff_imag[im], cmap=cmap) im21 = axs[im,5].imshow(diff_abs[im], cmap=cmap) fig.colorbar(im00, ax=axs[im,0]) fig.colorbar(im10, ax=axs[im,1]) fig.colorbar(im20, ax=axs[im,2]) fig.colorbar(im01, ax=axs[im,3]) fig.colorbar(im11, ax=axs[im,4]) fig.colorbar(im21, ax=axs[im,5]) axs[0,0].set_title("signal") axs[0,1].set_title("dft") axs[0,2].set_title("fft") axs[0,3].set_title("real(diff)") axs[0,4].set_title("imag(diff)") axs[0,5].set_title("abs(diff)") for im in range(nimgs): for col in range(6): axs[im,col].grid(False) # Hide axes ticks axs[im,col].set_xticks([]) axs[im,col].set_yticks([]) # fig.tight_layout() plt.show() return def apply_dft_1d(signal, vecx, veck, length, points): kspec = np.zeros(points, dtype=complex) dX = length / (points) for i in range(points): gsum = 0.0 for rx in range(points): gsum += dX * signal[rx] * np.exp((-1.0j) * veck[i] * vecx[rx]) kspec[i] = (1.0 / points) * gsum return kspec def apply_dft_2d(signal, vecx, vecy, veckx, vecky, area, points): kspec = np.zeros([points, points], dtype=complex) dA = area / (points**2) for i in range(points): for j in range(points): gsum = 0.0 for ry in range(points): for rx in range(points): gsum += dA * signal[ry,rx] * np.exp((-1.0j) * (veckx[j] * vecx[rx] + vecky[i] * vecy[ry])) kspec[i,j] = (1.0 / area) * gsum return kspec def apply_dft_3d(signal, vecx, vecy, vecz, veckx, vecky, veckz, volume, points): kspec = np.zeros([points, points, points], dtype=complex) dV = volume / (points**3) elems = points**3 count = 0 for k in range(points): for i in range(points): for j in range(points): count += 1 print(":: {} fourier coefficient out of {}.".format(count, elems)) gsum = 0.0 for rz in range(points): for ry in range(points): for rx in range(points): gsum += dV * signal[ry,rx,rz] * np.exp((-1.0j) * (veckx[j] * vecx[rx] + vecky[i] * vecy[ry] + veckz[k] * vecz[rz])) kspec[i,j, k] = (1.0 / volume) * gsum return kspec def apply_fft_1d(signal): kspec = np.fft.fft(signal, norm='ortho') kspec = np.fft.fftshift(kspec) return kspec def apply_fft_2d(signal): kspec = np.fft.fft2(signal, norm='ortho') kspec = np.fft.fftshift(kspec) return kspec def apply_fft_3d(signal): kspec = np.fft.fftn(signal, norm='ortho') kspec = np.fft.fftshift(kspec) return kspec def test_fft1D(): N = 256 a = 1.0 size = 2*N + 1 signal = np.zeros(size) Xfreq = 0.5*a / float(N) # [x, y, z] = np.meshgrid(rfreq * Nrange, rfreq * Nrange, rfreq * Nrange) vecX = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] Kfreq = 2*np.pi/a [vecK] = np.meshgrid(Kfreq*np.arange(-N, N+1)) # for i in range(size): # signal[i] = func(vecX[i]) for i in range(size//4): signal[size//2-i] = 1.0 signal[size//2+i] = 1.0 dft_kspec = apply_dft_1d(signal, vecX, vecK, a, size) fft_kspec = apply_fft_1d(signal) plot_fft_1d_results(vecX, signal, vecK, dft_kspec, fft_kspec) norm_fft_kspec = normalize_signal(fft_kspec) norm_dft_kspec = normalize_signal(dft_kspec) plot_fft_1d_results(vecX, signal, vecK, norm_dft_kspec, norm_fft_kspec) return def test_fft2D(): N = 16 a = 1.0 area = a**2 size = 2*N + 1 signal = np.zeros([size, size]) Xfreq = 0.5*a / float(N) # [x, y, z] = np.meshgrid(rfreq * Nrange, rfreq * Nrange, rfreq * Nrange) vecX = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] vecY = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] Kfreq = 2*np.pi/a [vecKX] = np.meshgrid(Kfreq*np.arange(-N, N+1)) [vecKY] = np.meshgrid(Kfreq*np.arange(-N, N+1)) for i in range(size): for j in range(size): signal[i,j] = func(vecX[i]) for i in range(size//4): for j in range(size//4): signal[size//2-i, size//2-j] = 1.0 signal[size//2+i, size//2-j] = 1.0 dft_kspec = apply_dft_2d(signal, vecX, vecY, vecKX, vecKY, area, size) fft_kspec = apply_fft_2d(signal) plot_fft_2d_results(signal, dft_kspec, fft_kspec) norm_fft_kspec = normalize_signal_2d(fft_kspec) norm_dft_kspec = normalize_signal_2d(dft_kspec) plot_fft_2d_results(signal, norm_dft_kspec, norm_fft_kspec) return def test_fft3D(): N = 6 a = 1.0 volume = a**3 size = 2*N + 1 signal = np.zeros([size, size, size]) Xfreq = 0.5*a / float(N) # [x, y, z] = np.meshgrid(rfreq * Nrange, rfreq * Nrange, rfreq * Nrange) vecX = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] vecY = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] vecZ = np.linspace(-0.5*a, 0.5*a, 2*size + 1)[1:2*size:2] Kfreq = 2*np.pi/a [vecKX] = np.meshgrid(Kfreq*np.arange(-N, N+1)) [vecKY] = np.meshgrid(Kfreq*np.arange(-N, N+1)) [vecKZ] = np.meshgrid(Kfreq*np.arange(-N, N+1)) for k in range(size): for i in range(size): for j in range(size): signal[i,j, k] = func(vecX[j], vecY[i], vecZ[k], a/2) for k in range(size//4): for i in range(size//4): for j in range(size//4): signal[size//2-i, size//2-j, size//2-k] = 1.0 signal[size//2+i, size//2-j, size//2+k] = 1.0 dft_kspec = apply_dft_3d(signal, vecX, vecY, vecZ, vecKX, vecKY, vecKZ, volume, size) fft_kspec = apply_fft_3d(signal) plot_fft_3d_results(signal, dft_kspec, fft_kspec, size) norm_fft_kspec = normalize_signal_3d(fft_kspec) norm_dft_kspec = normalize_signal_3d(dft_kspec) plot_fft_3d_results(signal, norm_dft_kspec, norm_fft_kspec, size) return
mcastrorib/bergman_periodic_solution
python/fft_test.py
fft_test.py
py
9,440
python
en
code
0
github-code
6
74796406586
from torch.utils.tensorboard import SummaryWriter from torchvision import transforms import cv2 from PIL import Image # 1、transform使用Totensor img_path = "../dataset/train/ants/0013035.jpg" img_PIL = Image.open(img_path) tensor_trans = transforms.ToTensor() img_tensor = tensor_trans(img_PIL) # 2、tensor数据类型 writer = SummaryWriter("../logs") writer.add_image("Tensor_img", img_tensor) # 3、normalize print(img_tensor[0, 0, 0]) trans_normal = transforms.Normalize([9, 0, 1], [1, 4, 6]) normal_img = trans_normal(img_tensor) print(normal_img[0, 0, 0]) writer.add_image("normalize", normal_img, 2) # 4、resize print(img_PIL.size) trans_resize = transforms.Resize((512, 512)) img_resize = trans_resize(img_PIL) print(img_resize.size) img_resize_tensor = tensor_trans(img_resize) writer.add_image("resize", img_resize_tensor) # 5、compose trans_resize_2 = transforms.Resize(1080) trans_compose = transforms.Compose([trans_resize_2, tensor_trans]) img_resize_2 = trans_compose(img_PIL) print(img_resize_2.size()) writer.add_image("resize", img_resize_2, 2) # 6、Randomcrop trans_random_crop = transforms.RandomCrop([100, 200]) trans_compose_2 = transforms.Compose([trans_random_crop, tensor_trans]) for i in range(10): img_crop = trans_compose_2(img_PIL) writer.add_image("random_cropHW", img_crop, i) writer.close()
ccbit1997/pytorch_learning
src/learn_transform.py
learn_transform.py
py
1,344
python
en
code
0
github-code
6
37562147384
"""helper ============= Helper functions for inventory scripts. """ __author__ = "Balz Aschwanden" __email__ = "[email protected]" __copyright__ = "Copyright 2017, University of Basel" __credits__ = ["Balz Aschwanden"] __license__ = "GPL" import json import os import socket def get_hostname(): """Return FQDN for this host.""" return socket.gethostname() def get_simple_hostname(fqdn): """Convert FQDN and return simple host name.""" simple_hostname = fqdn.split(".")[0] return simple_hostname def format_output(output): """Return results in Ansible JSON syntax. Ansible requirements are documented here: http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html """ return json.dumps(output, sort_keys=True, indent=4, separators=(",", ": ")) def write_cache(cache_file, output): """Format and write inventory cache to file.""" with open(cache_file, "w") as cache: for line in format_output(output): cache.write(line) def read_cache(cache_file): """Read cache file and return content or False.""" if not os.path.isfile(cache_file): return False with open(cache_file, "r") as cache: return cache.read() if __name__ == "__main__": pass
ANTS-Framework/ants
antslib/inventory/helper.py
helper.py
py
1,278
python
en
code
42
github-code
6
24981950749
fishlist = list(map(int, open('2021\D6\input.txt','r').read().split(',') )) print(fishlist) days = 256 numfish = [] numfish.append([0]*7) # old fish 0 -> 6 numfish.append([0]*2) # new fish 0 -> 1 out = 0 for fish in fishlist: numfish[0][fish] += 1 for day in range(days): temp = [0]*7 for i in range(7): temp[i-1] = numfish[0][i] temp[6] += numfish[1][0] numfish[1][0] = numfish[1][1] numfish[1][1] = numfish[0][0] numfish[0] = temp # update total number of fish out = 0 for count in numfish[0]: out += count for count in numfish[1]: out += count print(f'D{day+1}: {out}')
elliotcoy/AdventOfCode2021
2021/D6/P2.py
P2.py
py
677
python
en
code
0
github-code
6
35413595898
# -*- coding:utf-8 -*- import random import pygame class BoardManager: WALL = 0 FOOD = 1 NONE = 2 HEAD = 3 BODY = 4 def __init__(self, x_blocks, y_blocks, block_width, origin_x, origin_y, caption): self.x_blocks = x_blocks self.y_blocks = y_blocks # NONE的方块 self.non_blocks = None self.total_len = x_blocks * y_blocks self.blocks_status = None self.block_width = block_width self.screen = None self.origin_x = origin_x self.origin_y = origin_y self.caption = caption pygame.init() def init_board(self, bg_color=(0, 0, 0), caption=None): pygame.display.set_caption(caption or self.caption) board_x, board_y = self.x_blocks * (1 + self.block_width) + \ 2 * self.origin_x, (self.y_blocks + 1) * (self.block_width + 1) + self.origin_y self.screen = pygame.display.set_mode((board_x, board_y), 0, 32) self.blocks_status = [[self.NONE for _ in range(self.y_blocks)] for _ in range(self.x_blocks)] self.non_blocks = self._gen_non_blocks() pygame.display.update() self.set_bg_color(bg_color) def set_bg_color(self, color=(0, 0, 0)): self.screen.fill(color) pygame.display.update() def _gen_non_blocks(self): non_blocks = [] for i in range(0, self.x_blocks): for j in range(0, self.y_blocks): non_blocks.append((i, j)) return non_blocks # 显示网格线 def show_pods(self, color=(255, 255, 255)): start_pos_x, start_pos_y = self.origin_x, self.origin_y end_pos_x, end_pos_y = self.origin_x, (self.block_width + 1) * self.y_blocks + self.origin_y # 先画竖线 for c_index in range(0, self.x_blocks + 1): pygame.draw.line(self.screen, color, (start_pos_x, start_pos_y), (end_pos_x, end_pos_y), 1) start_pos_x = end_pos_x = start_pos_x + 1 + self.block_width start_pos_x, start_pos_y = self.origin_x, self.origin_y end_pos_x, end_pos_y = self.origin_x + (self.block_width + 1) * self.x_blocks, self.origin_y # 画横线 for r_index in range(0, self.y_blocks + 1): pygame.draw.line(self.screen, color, (start_pos_x, start_pos_y), (end_pos_x, end_pos_y), 1) start_pos_y = end_pos_y = start_pos_y + 1 + self.block_width pygame.display.flip() def show_wall(self, color=(255, 0, 0)): start_pos_x, start_pos_y = self.origin_x, self.origin_y end_pos_x, end_pos_y = self.origin_x + (self.block_width + 1) * self.x_blocks, \ (self.block_width + 1) * self.y_blocks + self.origin_y pygame.draw.line(self.screen, color, (start_pos_x, start_pos_y), (end_pos_x, start_pos_y)) pygame.draw.line(self.screen, color, (start_pos_x, start_pos_y), (start_pos_x, end_pos_y)) pygame.draw.line(self.screen, color, (end_pos_x, start_pos_y), (end_pos_x, end_pos_y)) pygame.draw.line(self.screen, color, (start_pos_x, end_pos_y), (end_pos_x, end_pos_y)) pygame.display.flip() def draw_block(self, x, y, color=(111, 111, 111)): pos_x = self.origin_x + x * (self.block_width + 1) + 1 pos_y = self.origin_y + y * (self.block_width + 1) + 1 pygame.draw.rect(self.screen, color, (pos_x, pos_y, self.block_width, self.block_width), 0) pygame.display.update((pos_x, pos_y, self.block_width, self.block_width)) def set_block(self, pos, status): old_status = self.blocks_status[pos[0]][pos[1]] if old_status == status: return self.blocks_status[pos[0]][pos[1]] = status if old_status == self.NONE: self.non_blocks.remove(pos) if status == self.NONE: self.non_blocks.append(pos) def get_status(self, pos): x, y = pos[0], pos[1] if x < 0 or x >= self.x_blocks or y < 0 or y > self.y_blocks: return self.WALL return self.blocks_status[x][y] def gen_food(self, color=(255, 0, 0)): index = random.randint(0, len(self.non_blocks) - 1) block_pos = self.non_blocks[index] pos_x = self.origin_x + block_pos[0] * (self.block_width + 1) + 1 pos_y = self.origin_y + block_pos[1] * (self.block_width + 1) + 1 rect = (pos_x, pos_y, self.block_width, self.block_width) self.set_block(block_pos, self.FOOD) pygame.draw.rect(self.screen, color, rect, 0) pygame.display.update(rect) def show_score_and_speed(self): pass def show_game_over(self): pass def show_pause(self): pass def show_start(self): pass
coderwf/pygames
glutsnake/board.py
board.py
py
4,748
python
en
code
0
github-code
6
6606127726
dx = [0, 0, 1, -1] dy = [-1, 1, 0, 0] def solution(game_board, table): def rotate(): tmp = [] for elm in block_piece: start_x, start_y = elm[0] space = [(0, 0)] for x, y in elm[1:]: space.append((start_y-y, x-start_x)) space.sort(key=lambda x: (-x[1], x[0])) tmp.append(space) return tmp def check_can_insert(): cnt = 0 for idx1, space in enumerate(empty_space): for idx2, piece in enumerate(block_piece): if filled[idx1] or used[idx2]: continue if space == piece: cnt += len(space) filled[idx1] = 1 used[idx2] = 1 return cnt def search_space(target, start_x, start_y, flag): space = [(0, 0)] stack = [(start_x, start_y)] target[start_x][start_y] = flag while stack: x, y = stack.pop() for i in range(4): nx = x + dx[i] ny = y + dy[i] if 0 <= nx < n and 0 <= ny < n: if (flag and not target[nx][ny]) or (not flag and target[nx][ny]): space.append((nx-start_x, ny-start_y)) stack.append((nx, ny)) target[nx][ny] = flag space.sort(key=lambda x: (-x[1], x[0])) return space answer = 0 n = len(game_board) empty_space = [] # 빈 공간 block_piece = [] # 사용가능한 조각 for x in range(n): for y in range(n): if not game_board[x][y]: empty_space.append(search_space(game_board, x, y, 1)) if table[x][y]: block_piece.append(search_space(table, x, y, 0)) filled = [0 for _ in range(len(empty_space))] used = [0 for _ in range(len(block_piece))] for _ in range(4): answer += check_can_insert() block_piece = rotate() return answer
JeongGod/Algo-study
hyeonjun/18week/p84021.py
p84021.py
py
2,031
python
en
code
7
github-code
6
34787406936
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from wordcloud_process import wordcloud_img from article_loader import ArticleLoader article_loader = ArticleLoader('english_corpora.yaml') articles = article_loader.load() def feature_and_matrix(articles, **kwargs): tfid_vectorizer = TfidfVectorizer(**kwargs) matrix = tfid_vectorizer.fit_transform(articles) return tfid_vectorizer.get_feature_names(), matrix.A def produce_wordcloud(features, vector, file_name): wordcloud_img(dict((k, v) for k, v in zip(features, vector) if v != 0.), file_name) features, matrix = feature_and_matrix(articles, stop_words='english') for i, vector in enumerate(matrix): produce_wordcloud(features, vector, f'image/English_News_{i}.png') print(f'1-gram TF-IDF cosine similarity: {cosine_similarity(matrix)[0, 1]}') features, matrix = feature_and_matrix(articles, stop_words='english', ngram_range=(2, 3)) for i, vector in enumerate(matrix): produce_wordcloud(features, vector, f'image/English_News_{i}_2+3-gram.png') print(f'2-gram + 3-gram TF-IDF cosine similarity: '\ f'{cosine_similarity(matrix)[0, 1]}')
is3ka1/NLP-Practice
week1/english_news_analyse.py
english_news_analyse.py
py
1,252
python
en
code
0
github-code
6
21836192189
import sys from pprint import pprint sys.stdin = open('../input.txt', 'r') N = int(input()) dp = [[0] * 10 for _ in range(N)] dp[0] = [1] * 10 for i in range(1, N): # 행 for j in range(10): # 열 for k in range(j, 10): dp[i][k] += dp[i-1][j] print(sum(dp[N-1]) % 10007)
liza0525/algorithm-study
BOJ/boj_11057_increasing_number.py
boj_11057_increasing_number.py
py
298
python
en
code
0
github-code
6
25172905892
#%% import pandas as pd import altair as alt import numpy as np from sklearn.neighbors import NearestNeighbors alt.data_transformers.disable_max_rows() #%% RADICL_file="/home/vipink/Documents/FANTOM6/HDBSCAN_RADICL_peak/data/processed/chr16_filter_df.csv" #%% radicl_df = pd.read_csv(RADICL_file,delimiter="\t") # Observe likely PCR duplicates (tiny minority) #%% dedup_radicl_df = (radicl_df.loc[:,['chrom','start','end','strand','DNA_start','DNA_end','DNA_strand']] .drop_duplicates()) # %% plus_strand_space_df = (dedup_radicl_df .query("strand == '+'") .loc[:,['start','DNA_start']] .reset_index() ) #%% nbrs = NearestNeighbors(n_neighbors=2, metric='euclidean',radius=25).fit(plus_strand_space_df.to_numpy()) distances, indices = nbrs.kneighbors(plus_strand_space_df.to_numpy()) # %% read_neighbour_df = (plus_strand_space_df .assign(closest_DNA=np.abs(plus_strand_space_df.loc[indices[:,0],'DNA_start'].to_numpy() - plus_strand_space_df.loc[indices[:,1],'DNA_start'].to_numpy()), closest_RNA=np.abs(plus_strand_space_df.loc[indices[:,0],'start'].to_numpy() - plus_strand_space_df.loc[indices[:,1],'start'].to_numpy()))) # %% dna_dist_cdf = (read_neighbour_df .sort_values('closest_DNA') .groupby('closest_DNA') .agg(read_count=('start','count')) .reset_index() .assign(cread=lambda df_:df_.read_count.cumsum()/plus_strand_space_df.shape[0]) .rename(columns={'closest_DNA':'distance'}) .assign(end='DNA')) rna_dist_cdf = (read_neighbour_df .sort_values('closest_RNA') .groupby('closest_RNA') .agg(read_count=('start','count')) .reset_index() .assign(cread=lambda df_:df_.read_count.cumsum()/plus_strand_space_df.shape[0]) .rename(columns={'closest_RNA':'distance'}) .assign(end='RNA')) tot_df = pd.concat([rna_dist_cdf,dna_dist_cdf]) # %% (alt.Chart(tot_df.assign(log_val=lambda df_:np.log10(df_.distance + 1))) .mark_line(opacity=0.6).encode( x="log_val:Q", y='cread:Q', color="end" )) # %%
princeps091-binf/HDBSCAN_RADICL_peak
scripts/RADICL_read_neighbourhood.py
RADICL_read_neighbourhood.py
py
2,053
python
en
code
0
github-code
6
6597568149
from numpy.polynomial import Polynomial as P from numpy import polynomial print("Interpolação de Newton") pontos = [] k = 0 while True: k += 1 while True: print("Digite as coordenadas do ", k, "º ponto separados por espaço:", end="\nf para finalizar \n") l = input() if l == "f".lower(): break l = l.split() if len(l) == 2: break else: print("Entrada inválida, tente novamente!") if l == "f".lower(): break for i in range(len(l)): l[i] = float(l[i]) pontos.append(l) l = [] for i in range(len(pontos)): l.append(pontos[i][1]) tabela = [] tabela.append(l) for i in range(len(pontos) - 1): l = [] for j in range(len(pontos) - i - 1): dif = (tabela[i][j + 1] - tabela[i][j]) / (pontos[j + 1 + i][0] - pontos[j][0]) l.append(dif) tabela.append(l) difdiv = [] for i in range(len(tabela)): difdiv.append(tabela[i][0]) somatorio = 0 for i in range(1, len(pontos)): produtorio = 1 for k in range(i): produtorio *= (P([-pontos[k][0], 1])) somatorio += difdiv[i] * produtorio Pn = difdiv[0] + somatorio funcao = list(Pn) texto = "" for i in range(len(funcao)): if funcao[i] == 0: continue elif i == 0: texto += str(funcao[i]) else: texto += " + " + str(funcao[i]) texto += ("*x^%o" % (i)) print("Pn(x) :") print(texto) s = input( "Deseja calcular Pn(x) dado um valor de x? \n [S/N]").lower() if s == "s": print("Pn(x) em qual ponto?") p = float(input()) print("Pn(%a) é igual a %a" % (p, Pn(p))) print("Raízes de Pn(x): ", polynomial.polynomial.polyroots(list(Pn))) s = input( "Encontrar os valores de x dado um valor de Pn(x)? \n [S/N]") if s == "s": print("Valores de x para qual valor de Pn(x)") p = float(input()) print("para Pn(x)=%a temos: " % p, polynomial.polynomial.polyroots(list(Pn - P([p]))), "Obs: Se houver, j = raiz de menos 1") print("(x,Pn(x))") for i in range(len(pontos)): print("(%a,%a)" % (pontos[i][0], round(Pn(pontos[i][0]), 4)))
fernandoajn/calculo-numerico
metodos/newton.py
newton.py
py
2,151
python
pt
code
1
github-code
6
70622403067
class Car : addr = '서울' #static 변수 역할 __slots__ = ['name', 'price', 'company'] # 슬롯 . 이 클래스가 가질 수 있는 멤버변수명을 미리 지정해 줄 수 있다. def __init__(self, **args): if 'name' in args: # self.add(value) #이런식으로 넣을 수 없음 의미가없다. self.name = args['name'] if 'price' in args: self.price = args.get('price') if 'company' in args: self.company = args.get('company') def info(self): if 'name' in self.__dict__: print(f'자동차명: {self.name} ', end="\t") if 'price' in self.__dict__: print(f'가격: {self.price}', end="\t") if 'company' in self.__dict__: print(f'회사: {self.company}', end="\t") c = Car(name='그랜저', price='4000', company='현대') c2 = Car(name='모닝', price='2100') c.info() c2.info() print(c.addr) print(c2.addr) #c2.addr = '부산' # 올바른방식은 Class 명 . 으로 접근해야한다
Yang-Seungjae/Python
test.py
test.py
py
1,048
python
ko
code
0
github-code
6
3721769844
import io import time from openpyxl import Workbook import openpyxl as O import speedtest import re import sys import psycopg2 from psycopg2 import Error from datetime import datetime import hashlib from .connection import Connection cn=Connection() class SpeedPage(): def asking_name(self): print("Введите ваше ИМЯ:") author=input() return author def asking_serial_number(self): print("Введите ваш Серийный номер:") s=input() serialno=s.replace("S/N: ","") return serialno def id_of_test(self): try: connection = psycopg2.connect(user="dssadmin", password="dssadmin", host="10.10.2.180", port="5432", database="devices") cursor = connection.cursor() cursor.execute(""" SELECT MAX(testId) FROM testhistory """) result = cursor.fetchall() for i in result: testId = i[0] + 1 except (Exception, Error) as error: print("Ошибка при работе с PostgreSQL", error) finally: if connection: cursor.close() connection.close() return testId def port_number(self): print("Какой это порт:") port_number=input() return port_number def speedtest_database(self,author,serialno,testId,pretty_serialno,port_number,j): for i in range(1,3): current_date = datetime.now().strftime("%Y-%m-%d") current_time = datetime.now().strftime("%H:%M:%S") start_time=datetime.now() st=speedtest.Speedtest(secure=True) st.get_best_server() download_number=st.download() print("Ваша входящяя скорость:", end=' ') download_speed=self.test_download_test(download_number) print(download_speed) upload_number=st.upload() print("Ваша исходящяя скорость:", end=' ') upload_speed=self.test_upload_test(upload_number) print(upload_speed) stop_time=datetime.now() duration=str((stop_time - start_time).seconds)+' сек' self.excel_uploading(download_speed,upload_speed,j,pretty_serialno,port_number) print("Количество времени потраченная на тест:", end=' ') print(duration) print("Тест номер:", end=' ') print(testId) cn.connect_to_database(author,serialno,testId,download_speed,upload_speed, duration,current_date,current_time,port_number) def pretty_speed(self,speed): unit = 'bps' kmg = ['', 'K', 'M', 'G'] i = 0 while speed >= 1000: speed /= 1000 i += 1 return "{:.2f}".format(speed) + ' ' + kmg[i] + unit def speed_measure(self,speed): i=0 while speed >= 1000: speed /= 1000 i+=1 return speed def pretty_file_format(self,serialno): encoding='.xlsx' return serialno+encoding def test_download_test(self,download_number): download_speed=self.speed_measure(download_number) download_beauty_speed = self.pretty_speed(download_number) if(download_speed<100): print("FAIL", end=' ') return download_beauty_speed def test_upload_test(self,upload_number): upload_speed=self.speed_measure(upload_number) upload_beauty_speed = self.pretty_speed(upload_number) if(upload_speed<100): print("FAIL", end=' ') return upload_beauty_speed def create_excel_file(self,serialno): wb=Workbook() ws=wb.active wb.save(filename=serialno) def excel_uploading(self,download_speed,upload_speed,i,serialno,port_number): Excel_file=serialno Excel_worksheet="Sheet" i=i+1 wb=O.load_workbook(Excel_file) ws=wb[Excel_worksheet] ws.cell(i,1).value=port_number ws.cell(1,1).value='Port Number' ws.cell(1,2).value='Download Speed' ws.cell(1,3).value='Upload Speed' ws.cell(i,2).value=download_speed ws.cell(i,3).value=upload_speed wb.save(Excel_file) wb.close()
Astarota/SpeedTestCLI
pages/speed_page.py
speed_page.py
py
3,737
python
en
code
0
github-code
6
29192430322
# Hack 1: InfoDB lists. Build your own/personalized InfoDb with a list length > 3, create list within a list as illustrated with Owns_Cars InfoDb = [] # List with dictionary records placed in a list InfoDb.append({ "FirstName": "Joan", "LastName": "Mir", "Number": 36, "Team": "Suzuki Ecstar", "Age": "24", "Results":["3","2","4","DNF", "2"] }) InfoDb.append({ "FirstName": "Marc", "LastName": "Marquez", "Number": 93, "Team": "Repsol Honda", "Age": "29", "Results":["1","DNF","DNF","2", "1"] }) InfoDb.append({ "FirstName": "Valentino", "LastName": "Rossi", "Number": 46, "Team": "Monster Energy Yamaha", "Age": "43", "Results":["10","DNF","9","11", "13"] }) InfoDb.append({ "FirstName": "Jorge", "LastName": "Martin", "Number": 89, "Team": "Ducati Lenovo", "Age": "24", "Results":["4","3","1","DNF", "5"] }) def printe(f): print(f["FirstName"], f["LastName"]) #the Firstname or LastName of InfoDb print("\t Number:", f["Number"]) # the f is the f string in python print("\t Team:", f["Team"]) # it is another way of formatting print("\t Age:", f["Age"]) print("\t Results:", f["Results"]) def for_loop(): for f in InfoDb: print(10*"~", "For Loops", 10*"~") printe(f) def while_loop(): f = 0 while f < len(InfoDb): print(10*"~", "While Loops", 10*"~") printe(InfoDb[f]) f = f+1 def recursive_loop(f): if f == len(InfoDb): # this makes sure that the f is equal to the length of InfoDb return f # this puts f outside, so the second if statement can use it if f == 0: print("~"*10 + "Recursive Loops" + "~"*10) printe(InfoDb[f]) print("~"*10 + "Recursive Loops" + "~"*10) recursive_loop(f + 1)
kkwan0/Tri-3-Kurtis-Kwan
week1/infoDB.py
infoDB.py
py
2,157
python
en
code
0
github-code
6
8909257357
import numpy as np import cv2 import os from PIL import Image X = 10 # 0 Y = 105 # 95 WIDTH = 215 # 356 HEIGHT = 440 # 440 def process_img(original_img): processed_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY) processed_img = cv2.resize(processed_img, (10, 20)) return processed_img def grab_screen(): if not os.path.isfile('./image_data/FIFO'): os.mkfifo('./image_data/FIFO') os.system('screencapture -x -tjpg -R{},{},{},{} ./image_data/FIFO'.format(X, Y, WIDTH, HEIGHT)) with Image.open('./image_data/FIFO') as fifo: screen = fifo processed_screen = process_img(np.array(screen)) return processed_screen
sebastianandreasson/tetris_tensorflow
grab_screen.py
grab_screen.py
py
671
python
en
code
0
github-code
6
6748902164
import cv2 import numpy as np import face_recognition import os from datetime import datetime import keyboard import os import pandas as pd train_data_path = os.path.join('artifacts', "attendance.csv") os.makedirs(os.path.dirname(train_data_path), exist_ok=True) columns =['Name','Time'] test = [] train = pd.DataFrame(test, columns=columns) train.to_csv(train_data_path, index=False) def take_attendance(): path = 'uploads' images = [] class_names = [] my_list = os.listdir(path) print(my_list) for cl in my_list: cur_image = cv2.imread(f'{path}/{cl}') images.append(cur_image) class_names.append(os.path.splitext(cl)[0]) print(class_names) def find_encodings(images): encode_list = [] for img in images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) encode = face_recognition.face_encodings(img)[0] encode_list.append(encode) return encode_list def mark_attendance(name): with open('artifacts/attendance.csv','r+') as f: my_data_list = f.readlines() name_list = [] for line in my_data_list: entry = line.split(',') name_list.append(entry[0]) if name not in name_list: now = datetime.now() dt_string = now.strftime('%H:%M:%S') f.writelines(f'\n{name}, {dt_string}') encode_list_known = find_encodings(images) print("Encoding complete") cap = cv2.VideoCapture(0) web=True while web: success, img = cap.read() img_s = cv2.resize(img, (0,0), None, 0.25,0.25) img_s = cv2.cvtColor(img_s, cv2.COLOR_BGR2RGB) faces_cur_frame = face_recognition.face_locations(img_s) encode_cur_frame = face_recognition.face_encodings(img_s, faces_cur_frame) for encode_face, face_loc in zip(encode_cur_frame, faces_cur_frame): matches = face_recognition.compare_faces(encode_list_known, encode_face) face_dis = face_recognition.face_distance(encode_list_known, encode_face) print(face_dis) match_index = np.argmin(face_dis) if matches[match_index]: name = class_names[match_index].upper() print(name) y1,x2,y2,x1 = face_loc y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4 cv2.rectangle(img, (x1,y1),(x2,y2),(0,255,0),2) cv2.rectangle(img, (x1,y2-35),(x2,y2),(0,255,0), cv2.FILLED) cv2.putText(img, name, (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2) mark_attendance(name) cv2.imshow('Webcam',img) cv2.waitKey(1) if keyboard.is_pressed('q'): web=False # if key 'q' is pressed cv2.destroyAllWindows()
aruneer007/attendance
face.py
face.py
py
2,859
python
en
code
0
github-code
6
9580721700
""" Tomasulo main module. """ import argparse import logger from machine import Machine def main(): """ Main entry point. Parses command line argument and begins execution. :return: None """ parser = argparse.ArgumentParser(description='Simulate execution of DLX code on a Tomasulo processor.') parser.add_argument('-f', type=str, dest='filename', required=True, help='The input file. Must be a .hex file.') parser.add_argument('-v', '--verbose', action='store_true', help='Increase output verbosity.') args = parser.parse_args() logger.setLogLevel(1 if args.verbose else 0) # Run machine = Machine() machine.loadProgram(args.filename) machine.run() if __name__ == '__main__': main()
kaledj/TomasuloSim
tomasulo.py
tomasulo.py
py
751
python
en
code
0
github-code
6
7946627355
from cs50 import get_float # The coins quarter = 25 dime = 10 nickel = 5 penny = 1 # Counter for change owed counter = 0 # To get the number from user while True: dollars = get_float("Change owed: ") if dollars >= 0: break # Converting to cents cents = int(round(dollars * 100)) # Calculating the result while cents != 0: if cents >= quarter: cents -= quarter counter += 1 continue elif cents >= dime: cents -= dime counter += 1 continue elif cents >= nickel: cents -= nickel counter += 1 continue elif cents >= penny: cents -= penny counter += 1 continue # Printing the result print(counter)
eiliaJafari/CS50X-2021
ProblemSets/6/cash.py
cash.py
py
774
python
en
code
0
github-code
6
73951878269
""" faster """ class Solution: def countArrangement(self, N: int) -> int: li=list(range(0,N+1)) # 1-indexing # 0 is useless self.ans=0 def backtrack(right): # swap from RHS # from RHS is better since larger numbers are less likely to be Beautiful # if we start from left to right there will be too many false hopes if right==0: # reach the left bound self.ans+=1 for left in range(right,0,-1): li[left],li[right]=li[right],li[left] if li[right] % right == 0 or right % li[right] == 0: # if Beautiful for this pos `right` then go deeper backtrack(right-1) li[left],li[right]=li[right],li[left] backtrack(N) return self.ans """ slower """ class Solution: def countArrangement(self, N: int) -> int: def beautiful(num,pos): return num % pos == 0 or pos % num == 0 nums=list(range(N,0,-1)) # n ~ 1 counter=[1]*(N+1) # 0th is useless self.ans=0 def backtrack(pos): if pos == 0: # means all pos are filled self.ans+=1 for num in nums: # try on all nums # all numbers N~1 # try on large num first if counter[num]>0 and beautiful(num,pos): # if still not used up then we can use it # check if beautiful counter[num]-=1 backtrack(pos-1) # go fill the next one counter[num]+=1 backtrack(N) # start from the last pos return self.ans
y56/leetcode
526. Beautiful Arrangement/solns.py
solns.py
py
1,643
python
en
code
0
github-code
6
24436690438
from __future__ import annotations import idaapi import pyphrank.utils as utils from pyphrank.ast_analyzer import CTreeAnalyzer, TFG from pyphrank.cfunction_factory import CFunctionFactory from pyphrank.type_flow_graph_parts import Node, UNKNOWN_SEXPR def get_funcname(func_ea: int) -> str: return idaapi.get_name(func_ea) class FunctionManager: def __init__(self, cfunc_factory=None): if cfunc_factory is None: cfunc_factory = CFunctionFactory() self.func_factory = cfunc_factory def get_tfg(self, func_ea:int) -> TFG: if not utils.is_func_start(func_ea): utils.log_warn(f"{hex(func_ea)} is not a function") cfunc = self.get_cfunc(func_ea) if cfunc is None: nop_node = Node(Node.EXPR, UNKNOWN_SEXPR) analysis = TFG(nop_node) else: analysis = CTreeAnalyzer(cfunc).lift_cfunc() return analysis def get_cfunc(self, func_ea:int) -> idaapi.cfunc_t|None: return self.func_factory.get_cfunc(func_ea) def get_func_details(self, func_ea: int): func_tinfo = self.get_func_tinfo(func_ea) if func_tinfo is None: return None func_details = idaapi.func_type_data_t() rv = func_tinfo.get_func_details(func_details) if not rv: utils.log_warn(f"failed to get func details in {get_funcname(func_ea)}") return None return func_details def get_args_count(self, func_ea:int) -> int: cfunc = self.get_cfunc(func_ea) if cfunc is None: return 0 return len(cfunc.arguments) def get_cfunc_lvar_type(self, func_ea:int, var_id:int) -> idaapi.tinfo_t: func_tif = self.get_func_tinfo(func_ea) if func_tif is not None and var_id > func_tif.get_nargs(): arg_type = func_tif.get_nth_arg(var_id) if not utils.is_tif_correct(arg_type): arg_type = utils.UNKNOWN_TYPE if arg_type is not utils.UNKNOWN_TYPE: return arg_type arg_type = self.get_arg_type(func_ea, var_id) if not utils.is_tif_correct(arg_type): arg_type = utils.UNKNOWN_TYPE if arg_type is not utils.UNKNOWN_TYPE: return arg_type cfunc = self.get_cfunc(func_ea) if cfunc is None: utils.log_warn(f"failed to get variable type, because of decompilation failure in {get_funcname(func_ea)}") return utils.UNKNOWN_TYPE if len(cfunc.lvars) <= var_id: print("ERROR:", "var id is too big.") return utils.UNKNOWN_TYPE var = cfunc.lvars[var_id] arg_type = var.type().copy() if not utils.is_tif_correct(arg_type): arg_type = utils.UNKNOWN_TYPE return arg_type def set_lvar_tinfo(self, func_ea:int, var_id:int, var_type:idaapi.tinfo_t): cfunc = self.get_cfunc(func_ea) if cfunc is None: utils.log_warn(f"failed to change variable type, because of decompilation failure in {get_funcname(func_ea)}") return var = cfunc.lvars[var_id] # var.set_user_type() # var.set_final_lvar_type(var_type) info = idaapi.lvar_saved_info_t() info.ll = var info.type = var_type info.name = var.name rv = idaapi.modify_user_lvar_info(func_ea, idaapi.MLI_TYPE, info) assert rv, "Failed to modify lvar" self.func_factory.clear_cfunc(func_ea) def get_cfunc_lvar(self, func_ea: int, lvar_id:int): cfunc = self.get_cfunc(func_ea) if cfunc is None: return None return cfunc.lvars[lvar_id] def get_arg_type(self, func_ea:int, arg_id:int) -> idaapi.tinfo_t: # XXX do not refactor this into one liner, # XXX because ida will lose arg type somewhere along the way fdet = self.get_func_details(func_ea) if fdet is None: utils.log_warn(f"failed to get func details in {get_funcname(func_ea)}") return utils.UNKNOWN_TYPE if len(fdet) <= arg_id: return utils.UNKNOWN_TYPE return fdet[arg_id].type.copy() def set_arg_type(self, func_ea:int, arg_id:int, arg_type:idaapi.tinfo_t): if isinstance(arg_type, str): arg_type = utils.str2tif(arg_type) func_details = self.get_func_details(func_ea) if func_details is None: utils.log_warn(f"failed to change argument type (no func details) in {get_funcname(func_ea)}") return func_details[arg_id].type = arg_type.copy() new_func_tinfo = idaapi.tinfo_t() rv = new_func_tinfo.create_func(func_details) assert rv, "Failed to create func tinfo from details" rv = idaapi.apply_tinfo(func_ea, new_func_tinfo, 0) assert rv, "Failed to apply new tinfo to function" self.func_factory.clear_cfunc(func_ea) def get_func_tinfo(self, func_ea:int) -> idaapi.tinfo_t: tif = idaapi.tinfo_t() if idaapi.get_tinfo(tif, func_ea) and tif.is_correct(): return tif cfunc = self.get_cfunc(func_ea) if cfunc is not None: cfunc.get_func_type(tif) if tif.is_correct(): return tif if utils.is_movrax_ret(func_ea): rv = utils.str2tif("__int64 (*)()") return rv.copy() utils.log_warn(f"failed to get tinfo for {hex(func_ea)} {get_funcname(func_ea)}") return utils.UNKNOWN_TYPE def get_funcptr_tinfo(self, func_ea:int) -> idaapi.tinfo_t: tif = self.get_func_tinfo(func_ea) if tif is utils.UNKNOWN_TYPE: return utils.UNKNOWN_TYPE rv = tif.create_ptr(tif) if rv is False: utils.log_warn(f"failed to change tinfo of {str(tif)}") return utils.UNKNOWN_TYPE return tif def get_nargs(self, func_ea:int) -> int: tif = self.get_func_tinfo(func_ea) if tif is None: return 0 return tif.get_nargs() def get_lvars_counter(self, func_ea:int) -> int: cfunc = self.get_cfunc(func_ea) if cfunc is None: return 0 counter = 0 for lv in cfunc.get_lvars(): if lv.name == '': continue counter += 1 return counter def get_lvar_name(self, func_ea:int, lvar_id:int) -> str: lvar = self.get_cfunc_lvar(func_ea, lvar_id) if lvar is None: return "" return lvar.name
Mizari/phrank
pyphrank/function_manager.py
function_manager.py
py
5,588
python
en
code
51
github-code
6
35492004084
from ninja import Router from ninja import NinjaAPI, File from ninja.files import UploadedFile from django.http import HttpResponse from RECOGNIZE.text_reader import OCR_Reader import io import PIL.Image as Image import cv2 import os import time import json import uuid import requests router = Router() path = __file__ splited = path.split("/") path="" for i in splited[1:-1]: path += "/"+i @router.post("/recognize") def Recognize_Plate(request,file: UploadedFile = File(...)): try: # print(url) # experiment_id = str(time.strftime("%Y-%m-%d_%H-%M-%S")) # os.system("wget "+url+" -O /root/LACTURE/PLATNOMER_RECOGNIZE/RECOGNIZE/img/"+experiment_id+".jpg") # image = cv2.imread("/root/LACTURE/PLATNOMER_RECOGNIZE/RECOGNIZE/img/"+experiment_id+".jpg") data = file.read() image = Image.open(io.BytesIO(data)) uuids = str(uuid.uuid4()) image.save(path+"/img/"+uuids+".png") ############## SAVE ################# img = Image.open(path+"/img/"+uuids+".png") box = (600, 300, 1100, 700) img2 = img.crop(box) img2.save(path+"/croping/"+uuids+".png") ############## CROP ################# imageread = cv2.imread(path+"/croping/"+uuids+".png") reader = OCR_Reader(False) image, text, boxes = reader.read_text(imageread) return { "message":"success", "data" : text, "name" : uuids+".png" } except BaseException as err: print(str(err)) return { "message" : "error" } @router.get("/img/nocrop/{name}") def ImgaeNoCrop(request,name:str): try: with open(path+"/img/"+name, 'rb') as image_file: # Read the image content image_data = image_file.read() # Set the content type header response = HttpResponse(content_type='image/jpeg') # Set the content of the response to the image data response.write(image_data) return response except BaseException as err: return { "message" : "Internal server error" } @router.get("/img/crop/{name}") def ImgaeNoCrop(request,name:str): try: with open(path+"/croping/"+name, 'rb') as image_file: # Read the image content image_data = image_file.read() # Set the content type header response = HttpResponse(content_type='image/jpeg') # Set the content of the response to the image data response.write(image_data) return response except BaseException as err: return { "message" : "Internal server error" }
fakhrilak/image_recognize
RECOGNIZE/index.py
index.py
py
2,687
python
en
code
0
github-code
6
35010781963
from grafo.Grafo import * from collections import deque class EdmondsKarp: def __init__(self, grafo: Grafo) -> None: self.grafo = grafo self.fluxo = {arco: 0 for arco in self.grafo.arcos.values()} self.fluxo = {} for arco in self.grafo.arcos.values(): self.fluxo[(arco.vertice1.indice, arco.vertice2.indice)] = 0 self.fluxo[(arco.vertice2.indice, arco.vertice1.indice)] = 0 for arco in list(self.grafo.arcos.values()): if (arco.vertice2.indice, arco.vertice1.indice) not in self.grafo.arcos: self.grafo.arcos[(arco.vertice2.indice, arco.vertice1.indice)] = Arco(arco.vertice2, arco.vertice1, 0) arco.vertice2.vizinhos_saintes.append(arco.vertice1) def buscaLargura(self, s: int, t: int) -> dict: parent = {s: None} queue = deque([s]) while queue: u = queue.popleft() for v in self.grafo.vizinhos_saintes(u): if v.indice not in parent and self.grafo.arcos[(u, v.indice)].peso - self.fluxo[(u, v.indice)] > 0: parent[v.indice] = u if v.indice == t: return parent queue.append(v.indice) return None def execute(self) -> None: self.processarAlgoritmo() self.imprimir() def processarAlgoritmo(self) -> None: s = 1 t = len(self.grafo.vertices) max_flow = 0 while True: parent = self.buscaLargura(s, t) if parent is None: break path_flow = float("Inf") v = t while v != s: u = parent[v] path_flow = min(path_flow, self.grafo.arcos[(u, v)].peso - self.fluxo[(u, v)]) v = u max_flow += path_flow v = t while v != s: u = parent[v] self.fluxo[(u, v)] += path_flow self.fluxo[(v, u)] -= path_flow v = u self.max_flow = max_flow def imprimir(self) -> None: print("O fluxo máximo possível é %d" % self.max_flow)
jdanprad0/INE5413-Grafos
Atividade-03-Grafos/algoritmos_t3/edmondsKarp/EdmondsKarp.py
EdmondsKarp.py
py
2,190
python
en
code
0
github-code
6
6159961636
import json a = { "name": "ivo", "age": "22" } def serialize_to(path, data): json_string = json.dumps(a, indent=4) with open(file, "w") as f: f.write(json_string) def unserialize_from(path): with open(path, "r") as f: contents = f.read() return json.loads(contents)
Vencislav-Dzhukelov/101-3
week3/3-Panda-Social-Network/panda_json.py
panda_json.py
py
316
python
en
code
0
github-code
6
18101264424
from typing import List, Tuple from unittest import TestCase, main class Solution: def longestPalindrome(self, s: str) -> str: def func(left: int, right: int, longest: str) -> str: """returns the longest palindromic substring using left and right index""" longest_length = len(longest) while 0 <= left and right < l and s[left] == s[right]: length = right - left + 1 if longest_length < length: longest = s[left : right + 1] longest_length = length left -= 1 right += 1 return longest l = len(s) longest = s[0] for i in range(l): longest = func(i - 1, i + 1, longest) longest = func(i, i + 1, longest) return longest class Test(TestCase): s = Solution() data: List[Tuple[str, str]] = [ ("cbbd", "bb"), ("aaaa", "aaaa"), ("babad", "bab"), ] def test_solution(self): for input, expected in self.data: self.assertEqual(self.s.longestPalindrome(input), expected) if __name__ == "__main__": main()
hirotake111/leetcode_diary
leetcode/longest_palindromic_substring/solution.py
solution.py
py
1,187
python
en
code
0
github-code
6
25408409971
from FemFrameTool import read_fun, read_vel from RPData import RPData # from IntegratorST import integrate_by_st_vert, integrate_by_st_vem import numpy as np import pandas as pd def calc_area_field(relative_path): area = read_fun(relative_path + 'field_1.fun') return area def calc_height_field(relative_path): height = read_fun(relative_path + 'h.fun') return height def calc_volume_field(relative_path): volume = calc_height_field(relative_path) return volume def calc_sandiness_field(relative_path): sandiness = read_fun(relative_path + 'e.fun') return sandiness def calc_perm_field(relative_path): perm = read_fun(relative_path + 'perm.fun') return perm def calc_collector_field(relative_path): e = calc_sandiness_field(relative_path) h = calc_height_field(relative_path) collector = e * h return collector def calc_poro_field(relative_path): poro = read_fun(relative_path + 'm.fun') return poro def calc_poro_volume_field(relative_path): e = calc_sandiness_field(relative_path) h = calc_height_field(relative_path) m = calc_poro_field(relative_path) poro_volume = e * m * h return poro_volume def calc_init_water_saturation_field(relative_path): s0 = read_fun(relative_path + 's0.fun') return s0 def calc_init_store_oil_field(relative_path): e = calc_sandiness_field(relative_path) h = calc_height_field(relative_path) m = calc_poro_field(relative_path) s0 = calc_init_water_saturation_field(relative_path) stock_oil = e * h * m * (1 - s0) return stock_oil def calc_current_water_saturation_field(relative_path): s = read_fun(relative_path + 's.fun') return s def calc_current_store_oil_field(relative_path): e = calc_sandiness_field(relative_path) h = calc_height_field(relative_path) m = calc_poro_field(relative_path) s = calc_current_water_saturation_field(relative_path) stock_oil = e * h * m * (1 - s) return stock_oil def calc_velocity_field(relative_path): velocity = read_vel(relative_path + 'resvelo.vel') return velocity def calc_press_field(relative_path): press = read_fun(relative_path + 'result.fun') return press def calc_ph_field(relative_path): p = calc_press_field(relative_path) h = calc_height_field(relative_path) ph = p * h return ph def calc_mh_field(relative_path): m = calc_poro_field(relative_path) h = calc_height_field(relative_path) mh = m * h return mh def calc_conductivity_water(relative_path, mu_water): k = calc_perm_field(relative_path) h = calc_height_field(relative_path) return k * h / mu_water def calc_conductivity_mixture(relative_path, mu_water, mu_oil): k = calc_perm_field(relative_path) h = calc_height_field(relative_path) s = calc_current_water_saturation_field(relative_path) k_mu = mu_water / mu_oil ofp = RPData(relative_path + 'relpermFVM.rp') return k * h * phi(s, ofp) / mu_water def phi(s, ofp): n = s.__len__() ph = np.zeros(n, dtype = float) for i in range(n): ph[i] = ofp.fi(s[i]) return ph def calc_t_field(relative_path): t = read_fun(relative_path + 't.fun') return t def integral_jacob(grid): j = np.zeros(grid.Nelem) for i in range(grid.Nelem): x1 = grid.vert[grid.elem_vert[i][0]][0] y1 = grid.vert[grid.elem_vert[i][0]][1] x2 = grid.vert[grid.elem_vert[i][1]][0] y2 = grid.vert[grid.elem_vert[i][1]][1] x3 = grid.vert[grid.elem_vert[i][2]][0] y3 = grid.vert[grid.elem_vert[i][2]][1] j[i] = ((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1)) / 2 return j def integrate_by_st_vert(grid, color, jacob, field): integral_color = np.zeros(len(color)) for i in range(grid.Nelem): for j in range(grid.elem_nvert[i]): for k in range(len(color)): if grid.vert_color[grid.elem_vert[i][j]] == list(color[k].color): f = (field[grid.elem_vert[i][0]] + field[grid.elem_vert[i][1]] + field[grid.elem_vert[i][2]]) / 3 integral_color[k] = integral_color[k] + (jacob[i] * f) / 3 return integral_color def integrate_by_st_vert_for_t(grid, color, jacob, t, tau, field): integral_color = np.zeros(len(color)) for i in range(grid.Nelem): for j in range(grid.elem_nvert[i]): for k in range(len(color)): if tau - t[grid.elem_vert[i][j]] > 0: if grid.vert_color[grid.elem_vert[i][j]] == list(color[k].color): f = (field[grid.elem_vert[i][0]] + field[grid.elem_vert[i][1]] + field[grid.elem_vert[i][2]]) / 3 integral_color[k] = integral_color[k] + (jacob[i] * f) / 3 else: continue return integral_color def integrate_by_st_vem(grid, color, jacob, field, field_u, ku): integral_color = np.zeros(len(color)) u = ku * np.median(field_u) for i in range(grid.Nelem): if field_u[i] - u > 0: for j in range(grid.elem_nvert[i]): for k in range(len(color)): if grid.vert_color[grid.elem_vert[i][j]] == list(color[k].color): f = (field[grid.elem_vert[i][0]] + field[grid.elem_vert[i][1]] + field[grid.elem_vert[i][2]]) / 3 integral_color[k] = integral_color[k] + (jacob[i] * f) / 3 else: continue return integral_color def calc_all_params(relative_path, grid, color, config): jacob = integral_jacob(grid) ku = config.ku mu_water = config.mu_water mu_oil = config.mu_oil path_rel_phase_perm = config.path_relative_phase_permeability output_values = [] output_values.append( ('Area', integrate_by_st_vert(grid, color, jacob, calc_area_field(relative_path)))) output_values.append( ('Volume_ST', integrate_by_st_vert(grid, color, jacob, calc_volume_field(relative_path)))) output_values.append( ('Volume_collector', integrate_by_st_vert(grid, color, jacob, calc_collector_field(relative_path)))) output_values.append( ('Volume_poro', integrate_by_st_vert(grid, color, jacob, calc_poro_volume_field(relative_path)))) output_values.append( ('Stock_oil', integrate_by_st_vert(grid, color, jacob, calc_init_store_oil_field(relative_path)))) output_values.append( ('Stock_current_oil', integrate_by_st_vert(grid, color, jacob, calc_current_store_oil_field(relative_path)))) output_values.append( ('Stock_6', integrate_by_st_vem( grid, color, jacob, calc_init_store_oil_field(relative_path), calc_velocity_field(relative_path), ku))) output_values.append(('p*h', integrate_by_st_vert(grid, color, jacob, calc_ph_field(relative_path)))) output_values.append(('m*h', integrate_by_st_vert(grid, color, jacob, calc_mh_field(relative_path)))) output_values.append( ('m_i_water', integrate_by_st_vert( grid, color, jacob, calc_conductivity_water(relative_path, mu_water))/output_values[1][1])) output_values.append( ('m_i', integrate_by_st_vert( grid, color, jacob, calc_conductivity_mixture(relative_path, mu_water, mu_oil))/output_values[1][1])) return output_values def calc_t_param(relative_path, grid, color, config): jacob = integral_jacob(grid) # tau = config.tau # sor = config.sor # неснижаемая нефтенасыщенность t = calc_t_field(relative_path) m = calc_poro_field(relative_path) h = calc_height_field(relative_path) so = 1 - calc_current_water_saturation_field(relative_path) # (1-s) нефтенасыщенность tau = 2 # sor = 0.0001 # неснижаемая нефтенасыщенность # tau_arr = np.linspace(np.min(t), np.max(t), 10) t[t == np.inf] = np.NaN df = pd.DataFrame(t) tau_arr = np.linspace(df.min(), 0.0046, 2) # tau_arr = np.linspace(df.min(), df.max(), 10) general_field = m * h * (so - sor) arr_st_t_tau = [] for i in range(tau_arr.__len__()): arr_st_t_tau.append(integrate_by_st_vert_for_t(grid, color, jacob, t, tau_arr[i], general_field)) output_values = [] for i in range(arr_st_t_tau.__len__()): output_values.append((str(tau_arr[i]), arr_st_t_tau[i])) return output_values if __name__ == '__main__': raise SystemExit("CalcParamClass.py это не основное приложение!") else: print('CalcParamClass.py Используется как библиотека!')
brilliantik/Color_ST_Integrate
CalcParam.py
CalcParam.py
py
7,887
python
en
code
0
github-code
6
13974817829
from pydantic import BaseModel, Field from typing import List, Union import pydantic from .validators import validate_polygon, validate_is_plane_orthogonal_to_polygon, validate_plane_normal_is_not_zero class Point3DModel(BaseModel): __root__: List[float] = Field(..., min_items=3, max_items=3) class PlaneModel(BaseModel): point: Point3DModel = Field() normal: Point3DModel = Field() @pydantic.validator('normal', always=True) @classmethod def validate_plane_normal_is_not_zero(cls, value): validate_plane_normal_is_not_zero(value.__root__) return value class Point2DModel(BaseModel): __root__: List[float] = Field(..., min_items=2, max_items=2) def to_3D(self) -> Point3DModel: return Point3DModel(__root__=[*self.__root__, 0]) class EmptyPolygonModel(BaseModel): __root__: List[Point2DModel] = Field(..., min_items=0, max_items=0) class PolygonModel(BaseModel): __root__: List[Point2DModel] = Field(..., min_items=3) @classmethod def get_polygon_normal(cls) -> Point3DModel: return Point3DModel(__root__=[0, 0, 1]) @classmethod def get_polygon_plane(cls) -> PlaneModel: return PlaneModel( point=Point3DModel(__root__=[0, 0, 0]), normal=cls.get_polygon_normal() ) @pydantic.validator('__root__', always=True) @classmethod def validate_is_polygon_convex(cls, value): points = [v.__root__ for v in value] validate_polygon(points) return value class SplittingRequestData(BaseModel): polygon: PolygonModel = Field() plane: PlaneModel = Field() @pydantic.root_validator(skip_on_failure=True) @classmethod def validate_is_plane_orthogonal_to_polygon(cls, values): plane_normal = values['plane'].normal polygon_normal = PolygonModel.get_polygon_normal() validate_is_plane_orthogonal_to_polygon( plane_normal.__root__, polygon_normal.__root__, ) return values class SplittingResponseData(BaseModel): polygon1: PolygonModel = Field() polygon2: Union[PolygonModel, EmptyPolygonModel] = Field()
mikheev-dev/polygon_splitter
src/data_model.py
data_model.py
py
2,164
python
en
code
1
github-code
6
33551925024
import requests as rq from dotenv import load_dotenv import os import smtplib import sys class FPL: URL = 'https://fantasy.premierleague.com/api/bootstrap-static/' def __init__(self): self.response_raw = rq.get(FPL.URL) load_dotenv() self.email_sent = os.getenv('EMAIL_SENT') self.app_pw = os.getenv('APP_PW') self.email = os.getenv('EMAIL') if self.response_raw.status_code != 200: self.send_email('error', str(self.response_raw.status_code) + ";" + self.response_raw.text) self.shit_hit_the_fan = True return self.shit_hit_the_fan = False self.response = self.response_raw.json() self.tot_players = int(self.response['total_players']) def send_email(self, setting: str = 'normal', error_message: str = ''): if setting == 'normal': message = 'Subject: {}\n\n{}'.format("FPL REGISTRATION IS OPEN", "GO GET THEM") elif setting == 'ping': message = 'Subject: {}\n\n{}'.format("PING FPL", "Script is working") else: message = 'Subject: {}\n\n{}'.format("ERROR FPL", error_message) try: s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login(self.email, self.app_pw) s.sendmail(self.email, self.email, message) s.quit() return True except Exception as e: print(e) return False def run(self): if 0 < self.tot_players < 1_000_000: if self.email_sent is None: if self.send_email(): with open(".env", "a") as f: f.write("EMAIL_SENT=1") def ping(self): if self.send_email('ping'): pass if __name__ == '__main__': fpl = FPL() if not fpl.shit_hit_the_fan: if len(sys.argv) == 1: fpl.run() else: fpl.ping()
FilleDille/fpl_reg_chaser
main.py
main.py
py
1,966
python
en
code
0
github-code
6
35416632908
import logging import battle.main import memory.main import screen import xbox FFXC = xbox.controller_handle() logger = logging.getLogger(__name__) def yojimbo(gil_value: int = 263000): logger.info("Yojimbo overdrive") screen.await_turn() memory.main.wait_frames(6) if not screen.turn_aeon(): return while memory.main.battle_menu_cursor() != 35: xbox.menu_up() memory.main.wait_frames(6) xbox.menu_b() logger.info("Selecting amount") memory.main.wait_frames(15) battle.main.calculate_spare_change_movement(gil_value) logger.info(f"Amount selected: {gil_value}") xbox.tap_b() xbox.tap_b() xbox.tap_b() xbox.tap_b() xbox.tap_b() return
coderwilson/FFX_TAS_Python
battle/overdrive.py
overdrive.py
py
723
python
en
code
14
github-code
6
5480419217
import os import requests from bs4 import BeautifulSoup import re import time import sys user_agent = 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.82 Safari/537.36' def get_music_data(url): """ 用于获取歌曲列表中的歌曲信息 """ headers = {'User-Agent':user_agent} webData = requests.get(url,headers=headers).text soup = BeautifulSoup(webData,'lxml') find_list = soup.find('ul',class_="f-hide").find_all('a') tempArr = [] for a in find_list: music_id = a['href'].replace('/song?id=','') music_name = a.text tempArr.append({'id':music_id,'name':music_name}) return tempArr def get(values,output_path): """ 用于下载歌曲 """ downNum = 0 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' for x in values: x['name'] = re.sub(rstr, "_", x['name'])# 替换字符串中的匹配项 if not os.path.exists(output_path + os.sep + x['name'] + '.mp3'): print('[*] '+ x['name'] + '.mp3 下载中...') url = 'http://music.163.com/song/media/outer/url?id=' + x['id'] + '.mp3' try: save_file(url , output_path + os.sep + x['name'] + '.mp3') downNum = downNum + 1 print('[+] '+ x['name'] + '.mp3 下载完成 !') except: print('[+] '+ x['name'] + '.mp3 下载失败 !') print('[+] 共计下载完成歌曲 ' + str(downNum) + ' 首 !') def save_file(url,path): """ 用于保存歌曲文件 """ headers = {'User-Agent':user_agent,'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8','Upgrade-Insecure-Requests':'1'} response = requests.get(url,headers=headers) f = open(path, 'wb') f.write(response.content) f.flush() def poc_head(): print(""" __ _______.___._____.___. __________ __ .__.__ / \ / \__ | |\__ | | \______ \ ____ _______/ |_|__| | ____ \ \/\/ // | | / | | | _// __ \\____ \ __\ | | _/ __ \ \ / \____ | \____ | | | \ ___/| |_> > | | | |_\ ___/ \__/\ / / ______| / ______|____|____|_ /\___ > __/|__| |__|____/\___ > \/ \/ \/ /_____/ \/ \/|__| \/ author 昊辰 博客: www.haochen1204.com 公众号: 霜刃信安 """) def main(): url = '' output_path = sys.argv[0][0:len(sys.argv[0])-len(os.path.basename(sys.argv[0]))]+'music_'+time.strftime('%Y%m%d%H%M', time.localtime()) poc_head() url = input('请输入歌单的网址:').replace("#/","") if not os.path.exists(output_path): os.makedirs(output_path) music_list = get_music_data(url) print('[+] 歌单获取成功! 共计',len(music_list),'首歌曲!') get(music_list,output_path) print('[+] 歌曲存放目录为 '+output_path+' 文件') print('[+] 程序运行结束 10秒后自动退出') time.sleep(10) main()
haochen1204/Reptile_WYYmusic
网易云爬虫.py
网易云爬虫.py
py
3,336
python
en
code
1
github-code
6
35177658753
import numpy as np from sklearn.model_selection import train_test_split class ToyDataset: def __init__(self, min_len, max_len): self.SOS = "<s>" self.EOS = "/<s>" self.characters = list("abcd") self.int2char = self.characters # 1 for SOS, 1 for EOS, 1 for padding self.char2int = {c: i+3 for i, c in enumerate(self.characters)} self.min_str_len = min_len self.max_str_len = max_len self.max_seq_len = max_len + 2 self.vocab_size = len(self.characters) + 3 def get_dataset(self, num_samples): inp_set = [] tar_set = [] for _ in range(num_samples): i, t = self._sample() inp_set.append(i) tar_set.append(t) return inp_set, tar_set def split_dataset(self, inp_set, tar_set, test_ratio=0.2): return train_test_split(inp_set, tar_set, test_size=test_ratio) def _sample(self): random_len = np.random.randint(self.min_str_len, self.max_str_len+1) random_char = np.random.choice(self.characters, random_len) inp = [self.char2int.get(c) for c in random_char] tar = inp[::-1] inp = [1] + inp + [2] tar = [1] + tar + [2] inp = np.pad(inp, (0, self.max_str_len+2-len(inp)), 'constant', constant_values='0') tar = np.pad(tar, (0, self.max_str_len+2-len(tar)), 'constant', constant_values='0') return inp, tar def char_index(self, char): if char == self.SOS: return 1 elif char == self.EOS: return 2 else: return self.char2int[char] def index_char(self, index): if index == 0: return ":" elif index == 1: return self.SOS elif index == 2: return self.EOS else: return self.characters[index-3] if __name__ == '__main__': toy = ToyDataset(5, 10) inp_set, tar_set = toy.get_dataset(10) input_train, input_val, target_train, target_val = toy.split_dataset(inp_set, tar_set, 0.2)
xuzhiyuan1528/tf2basic
Seq2Seq/Utils.py
Utils.py
py
2,080
python
en
code
0
github-code
6
25205799104
# -*- coding: utf-8 -*- """ Abstract class for detectors """ import abc class Embedder(abc.ABC): @abc.abstractmethod def embed(self): 'Return embed features' return NotImplemented @abc.abstractmethod def get_input_shape(self): 'Return input shape' return NotImplemented from easydict import EasyDict as edict import mxnet as mx import numpy as np import cv2 from skimage import transform as trans class ArcFace_Embedder(Embedder): def get_input_shape(self): pass def do_flip(self, data): for idx in range(data.shape[0]): data[idx,:,:] = np.fliplr(data[idx,:,:]) return data def __init__(self): modeldir = './model/insight_face/model-r50-am-lfw/model' gpuid = 0 ctx = mx.gpu(gpuid) self.nets = [] image_shape = [3, 112, 112] modeldir_=modeldir+',0' for model in modeldir_.split('|'): vec = model.split(',') assert len(vec)>1 prefix = vec[0] epoch = int(vec[1]) print('loading',prefix, epoch) net = edict() net.ctx = ctx net.sym, net.arg_params, net.aux_params = mx.model.load_checkpoint(prefix, epoch) #net.arg_params, net.aux_params = ch_dev(net.arg_params, net.aux_params, net.ctx) all_layers = net.sym.get_internals() net.sym = all_layers['fc1_output'] net.model = mx.mod.Module(symbol=net.sym, context=net.ctx, label_names = None) net.model.bind(data_shapes=[('data', (1, 3, image_shape[1], image_shape[2]))]) net.model.set_params(net.arg_params, net.aux_params) #_pp = prefix.rfind('p')+1 #_pp = prefix[_pp:] #net.patch = [int(x) for x in _pp.split('_')] #assert len(net.patch)==5 #print('patch', net.patch) self.nets.append(net) def align(self, detections): warped_images=[] for det in detections: raw_face_image = det['face_img'] #plt.imshow(raw_face_image) #plt.show() image_size = [112,112] src = np.array([ [30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041] ], dtype=np.float32 ) if image_size[1]==112: src[:,0] += 8.0 offset = ([ [det['face_bbox'][0],det['face_bbox'][1]], [det['face_bbox'][0],det['face_bbox'][1]], [det['face_bbox'][0],det['face_bbox'][1]], [det['face_bbox'][0],det['face_bbox'][1]], [det['face_bbox'][0],det['face_bbox'][1]] ]) npoint= np.array(det['face_keypoint']) - np.array(offset) dst = npoint#.reshape( (2,5) ).T tform = trans.SimilarityTransform() tform.estimate(dst, src) M = tform.params[0:2,:] warped = cv2.warpAffine(raw_face_image,M,(image_size[1],image_size[0]), borderValue = 0.0) #plt.imshow(warped) warped_images.append(warped) return warped_images def embed(self, detections): det_with_face = [ det for det in detections if det['face_img'] is not None] if len(det_with_face)==0: return detections aligned_face_images = self.align(det_with_face) embeds =[] # Image_based Detection time per face : 0.018270 # for image in aligned_face_images: # image = np.transpose( image, (2,0,1) ) # F = None # for net in self.nets: # embedding = None # #ppatch = net.patch # for flipid in [0,1]: # _img = np.copy(image) # if flipid==1: # #plt.imshow(np.transpose( _img, (1,2,0) )[:,:,::-1]) # #plt.show() # _img = self.do_flip(_img) # #plt.imshow(np.transpose( _img, (1,2,0) )[:,:,::-1]) # #plt.show() # input_blob = np.expand_dims(_img, axis=0) # data = mx.nd.array(input_blob) # db = mx.io.DataBatch(data=(data,)) # net.model.forward(db, is_train=False) # _embedding = net.model.get_outputs()[0].asnumpy().flatten() # #print(_embedding.shape) # if embedding is None: # embedding = _embedding # else: # embedding += _embedding # _norm=np.linalg.norm(embedding) # embedding /= _norm # if F is None: # F = embedding # else: # F += embedding # #F = np.concatenate((F,embedding), axis=0) # _norm=np.linalg.norm(F) # F /= _norm # embeds.append(F) # Batch_based Detection time per face : 0.004155 batch_images = [] for image in aligned_face_images: image = np.transpose( image, (2,0,1) ) for flipid in [0,1]: _img = np.copy(image) if flipid==1: _img = self.do_flip(_img) batch_images.append(_img) input_blob = np.array(batch_images) data = mx.nd.array(input_blob) db = mx.io.DataBatch(data=(data,)) for net in self.nets: net.model.forward(db, is_train=False) _embedding = net.model.get_outputs()[0].asnumpy()#.flatten() tmp = [] for i in range(0,len(_embedding),2): mean_flip = (_embedding[i]+_embedding[i+1])/2 _norm=np.linalg.norm(mean_flip) mean_flip/= _norm tmp.append( mean_flip ) embeds.append(tmp) # Instead of adding up, we temporary replace with mean embeds = np.mean(embeds,axis=0) for det, emb in zip(det_with_face, embeds): det['face_embed'] = emb return detections def embed_imgs(self, images): aligned_face_images = images embeds =[] # Batch_based Detection time per face : 0.004155 batch_images = [] for image in aligned_face_images: image = np.transpose( image, (2,0,1) ) for flipid in [0,1]: _img = np.copy(image) if flipid==1: _img = self.do_flip(_img) batch_images.append(_img) input_blob = np.array(batch_images) data = mx.nd.array(input_blob) db = mx.io.DataBatch(data=(data,)) for net in self.nets: net.model.forward(db, is_train=False) _embedding = net.model.get_outputs()[0].asnumpy()#.flatten() tmp = [] for i in range(0,len(_embedding),2): mean_flip = (_embedding[i]+_embedding[i+1])/2 _norm=np.linalg.norm(mean_flip) mean_flip/= _norm tmp.append( mean_flip ) embeds.append(tmp) return embeds # TEST CODES if __name__ == '__main__': import time import matplotlib.pyplot as plt import glob import os os.chdir('../../') import src.detector.detectors as detectors # Detector and Embedder Y_MTCNN = detectors.Yolov2_MTCNN() embed=ArcFace_Embedder() # Load Images paths = glob.glob('./src/face_reid/test_images/*.jpg') paths.sort() dets = [] for img_path in paths: test_img=cv2.imread(img_path) s = time.time() result_Y = Y_MTCNN.predict(test_img) dets.append(result_Y[0]) e = time.time() print('Detection time per frame : %f'%(e-s)) vis_img = test_img.copy() for track in result_Y: x1, y1, x2, y2 = track['person_bbox'] color = np.random.randint(low=0,high=255,size=3) color = (int(color[0]),int(color[1]),int(color[2])) cv2.rectangle(vis_img,(x1, y1), (x2, y2),color,5) fx1, fy1, fx2, fy2 = track['face_bbox'] cv2.rectangle(vis_img, (x1+fx1, y1+fy1), (x1+fx2, y1+fy2), color, 5) for pt in track['face_keypoint']: cv2.circle(vis_img, (x1+pt[0], y1+pt[1]), 5, color,5 ,1) plt.imshow(vis_img[:,:,::-1]) plt.show() # Test Code s = time.time() dets = embed.embed(dets) embed_features = [det['face_embed'] for det in dets] e = time.time() print('Detection time per face : %f'%((e-s)/len(dets))) dis_chart = np.zeros((len(embed_features),len(embed_features))) for i in range(len(embed_features)): for j in range(len(embed_features)): dis_chart[i,j]= np.sqrt( np.sum( np.square(embed_features[i] - embed_features[j]))+1e-12 ) sim_chart = np.zeros((len(embed_features),len(embed_features))) for i in range(len(embed_features)): for j in range(len(embed_features)): sim_chart[i,j]= np.dot( embed_features[i], embed_features[j].T ) ''' if len(detections)>0: have_face_indexs =[] input_dets =[] for idx,det in enumerate(detections): if det['face_img'] is not None: have_face_indexs.append(idx) input_dets.append(det) if len(input_dets)>0: emb_results = self.FACE_EMBEDDER.embed(input_dets) for i,e in zip(have_face_indexs,emb_results): detections[i]['face_embed'] = e '''
chunhanl/ElanGuard_Public
src/face_reid/embedders.py
embedders.py
py
10,556
python
en
code
13
github-code
6
17176402024
import datetime import h5py import librosa import numpy as np import os import pandas as pd import soundfile as sf import sys import time import localmodule # Define constants. data_dir = localmodule.get_data_dir() dataset_name = localmodule.get_dataset_name() orig_sr = localmodule.get_sample_rate() negative_labels = localmodule.get_negative_labels() clip_length = int(0.500 * orig_sr) # a clip lasts 500 ms args = sys.argv[1:] unit_str = args[0] units = localmodule.get_units() # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Generating " + dataset_name + " clips for " + unit_str + ".") print("h5py version: {:s}".format(h5py.__version__)) print("librosa version: {:s}".format(librosa.__version__)) print("numpy version: {:s}".format(np.__version__)) print("pandas version: {:s}".format(pd.__version__)) print("soundfile version: {:s}".format(sf.__version__)) print("") # Create directory for original (i.e. non-augmented) clips. predictions_name = "_".join([dataset_name, "baseline-predictions"]) predictions_dir = os.path.join(data_dir, predictions_name) recordings_name = "_".join([dataset_name, "full-audio"]) recordings_dir = os.path.join(data_dir, recordings_name) annotations_name = "_".join([dataset_name, "annotations"]) annotations_dir = os.path.join(data_dir, annotations_name) dataset_wav_name = "_".join([dataset_name, "audio-clips"]) dataset_wav_dir = os.path.join(data_dir, dataset_wav_name) os.makedirs(dataset_wav_dir, exist_ok=True) original_dataset_wav_dir = os.path.join(dataset_wav_dir, "original") os.makedirs(original_dataset_wav_dir, exist_ok=True) # Create directory corresponding to the recording unit. unit_dir = os.path.join(original_dataset_wav_dir, unit_str) os.makedirs(unit_dir, exist_ok=True) # Open full night recording. samples = [] annotation_name = unit_str + ".txt" annotation_path = os.path.join(annotations_dir, annotation_name) df = pd.read_csv(annotation_path, sep='\t') recording_name = unit_str + ".flac" recording_path = os.path.join(recordings_dir, recording_name) full_night = sf.SoundFile(recording_path) n_positive_samples = 0 n_negative_samples = 0 # Export every annotation either as positive (flight call) or negative (alarm). for index, row in df.iterrows(): # Compute center time of the annotation bounding box. begin_time = float(row["Begin Time (s)"]) end_time = float(row["End Time (s)"]) mid_time = 0.5 * (begin_time + end_time) sample = int(orig_sr * mid_time) sample_str = str(sample).zfill(9) # Compute center frequency of the annotation bounding box. low_freq = float(row["Low Freq (Hz)"]) high_freq = float(row["High Freq (Hz)"]) mid_freq = 0.5 * (low_freq + high_freq) freq_str = str(int(mid_freq)).zfill(5) if "Calls" in row and row["Calls"] in negative_labels: label_str = "0" n_negative_samples = n_negative_samples + 1 else: label_str = "1" n_positive_samples = n_positive_samples + 1 clip_list = [unit_str, sample_str, freq_str, label_str, "original.wav"] clip_str = "_".join(clip_list) # Read. sample_start = sample - int(0.5 * clip_length) full_night.seek(sample_start) data = full_night.read(clip_length) # Export. clip_path = os.path.join(unit_dir, clip_str) sf.write(clip_path, data, orig_sr) samples.append(sample) # The number of false positives to be added to the dataset is equal to the # difference between the number of annotated positives and # the number of annotated negatives. n_false_positives = n_positive_samples - n_negative_samples print("Number of positives: " + str(n_positive_samples) + ".") print("Number of negatives: " + str(n_negative_samples) + ".") print("Number of false positives (clips fooling baseline detector): " + str(n_false_positives) + ".") print("Total number of clips: " + str(2*n_positive_samples) + ".") print("") # Load probabilities of the baseline prediction model. prediction_name = unit_str + ".npy" prediction_path = os.path.join(predictions_dir, prediction_name) prob_matrix = np.load(prediction_path) # Retrieve timestamps corresponding to decreasing confidences. prob_samples = (prob_matrix[:, 0] * orig_sr).astype('int') probs = prob_matrix[:, 1] sorting_indices = np.argsort(probs)[::-1] sorted_probs = probs[sorting_indices] sorted_prob_samples = prob_samples[sorting_indices] sorted_prob_samples = sorted_prob_samples # The exported false positives correspond to the timestamps with highest # confidences under the condition that they are 12000 samples (500 ms) apart # from all previously exported clips. prob_counter = 0 false_positive_counter = 0 while false_positive_counter < n_false_positives: prob_sample = sorted_prob_samples[prob_counter] dists = [np.abs(sample-prob_sample) for sample in samples] min_dist = np.min(dists) if min_dist > clip_length: # Append sample to growing list. samples.append(prob_sample) sample_str = str(prob_sample).zfill(9) # By convention, the frequency of a false positive example is 0 Hz. freq_str = str(0).zfill(5) clip_list = [unit_str, sample_str, freq_str, "0", "original.wav"] false_positive_counter = false_positive_counter + 1 clip_str = "_".join(clip_list) # Read. sample_start = prob_sample - int(0.5 * clip_length) full_night.seek(sample_start) data = full_night.read(clip_length) # Export. clip_path = os.path.join(unit_dir, clip_str) sf.write(clip_path, data, orig_sr) prob_counter = prob_counter + 1 # Print elapsed time. print(str(datetime.datetime.now()) + " Finish.") elapsed_time = time.time() - int(start_time) elapsed_hours = int(elapsed_time / (60 * 60)) elapsed_minutes = int((elapsed_time % (60 * 60)) / 60) elapsed_seconds = elapsed_time % 60. elapsed_str = "{:>02}:{:>02}:{:>05.2f}".format(elapsed_hours, elapsed_minutes, elapsed_seconds) print("Total elapsed time: " + elapsed_str + ".")
BirdVox/bv_context_adaptation
src/001_generate-audio-clips.py
001_generate-audio-clips.py
py
6,126
python
en
code
8
github-code
6
31854187897
# 歌词解析程序 # 歌词管理器 <> 词句 import time import os # 建立数据模型,储存一句歌词的相关信息 class LrcItem: time = 0.0 # 以秒为单位的时间 seg = "" # 一句歌词 def __init__(self, time, seg): self.time = time self.seg = seg # 歌词管理器,负责通过时间获取歌词 class LrcManager: lrcList = [] # 设置歌词路径 def set_lrc_path(self, path): self.lrcList = [] # 清空作用 # 打开歌词文件 lines_list = self.open_lrc_file(path) # 解析歌词,创建歌词对象,存储数据 self.anazy_lines(lines_list) # 根据时间排序 self.sort_lrc_items() def open_lrc_file(self, path): file = open(path, "r") return file.readlines() def anazy_lines(self, lines_list): for line in lines_list: self.anazy_line(line) def anazy_line(self, line): l = line.split("]") # [00:00.00] 用右括号进行拆分 if l[1] == "": # 没有I[1],I[1]不存在则直接返回 return # 建立模型 ret = self.get_time_from_string(l[0]) # l[0]表示时间,获取之 if ret: # 或者写成 if ret!= None,表示如果ret为真 lrc_item = LrcItem(ret, l[1]) # LrcItem不在本类里,所有没有self. self.lrcList.append(lrc_item) def get_time_from_string(self, string): # [03:20.08 [ti m = string[1:3] # 获取分 s = string[4:] # 获取秒 if not m.isdigit(): # 如果不是全数字,则返回,可以看看双截棍前面部分,存在分钟不是全数字的情况 return None return int(m) * 60 + float(s) # 返回总的秒数 # 对歌词进行排序 时间从大到小 # 冒泡排序法,了解下,以后遇到也基本是一样的 def sort_lrc_items(self): for i in range(0, len(self.lrcList)): for j in range(0, len(self.lrcList) - i - 1): if self.lrcList[j].time < self.lrcList[j + 1].time: # 比较时间,永远把小的放在后面 item = self.lrcList[j] self.lrcList[j] = self.lrcList[j + 1] self.lrcList[j + 1] = item def show_lrc_items(self): #循环打印 for item in self.lrcList: print(item.time, item.seg) # 根据给的时间返回歌词 def get_lrc_for_time(self, t): # 注意时间从大到小排序 for item in self.lrcList: if item.time < t: return item.seg # 结束函数并返回歌词 return "" # 给的时间太小,不返回任何东西 lrc = LrcManager() lrc.set_lrc_path("周杰伦双截棍(Live).lrc") # lrc.show_lrc_items() t = 0 while True: time.sleep(1) x = os.system('cls') t += 1 print(lrc.get_lrc_for_time(t))
920630yzx/python_course
pycharm学习-进阶篇/面向对象的程序设计/4.1歌词(项目).py
4.1歌词(项目).py
py
2,916
python
zh
code
0
github-code
6
8385108161
from __future__ import absolute_import from __future__ import print_function import argparse from lxml import etree parser = argparse.ArgumentParser( description='Create tls links from sumo net as needed by tls_csv2SUMO.py. You have to edit the link number ' + 'field (preset with g). The comment gives the link number shown on demand in SUMO-GUI') parser.add_argument('net', help='Input file name') args = parser.parse_args() doc = etree.parse(args.net) connections = {} for conn in doc.xpath('//connection'): if 'linkIndex' in conn.attrib: # use traffic light id and right adjusted number for sorting and as # comment numIndex = conn.attrib['linkIndex'] index = conn.attrib['tl'] + ';' + numIndex.zfill(3) connections[index] = conn.attrib['from'] + '_' + conn.attrib['fromLane'] + \ ';' + conn.attrib['to'] + '_' + conn.attrib['toLane'] # print record # print conn.attrib['from'], conn.attrib['to'], # conn.attrib['linkIndex'] for conn in sorted(connections): # print conn, connections[conn] print("link;g;{};0".format(connections[conn]).ljust(50) + '#' + str(conn).rjust(3))
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/tls/createTlsCsv.py
createTlsCsv.py
py
1,181
python
en
code
17
github-code
6
35279730803
from flask import Flask, url_for, render_template, request, flash, redirect, session, abort, jsonify import RPi.GPIO as GPIO import subprocess, os, logging import ipdb from config import Config from time import sleep '''initial VAR''' # Light GPIO RELAIS_4_GPIO = 2 # Water GPIO RELAIS_WATER_GPIO = 22 logging.basicConfig( filename='server.log', level=logging.DEBUG, format='[%(asctime)s] %(levelname)s:%(message)s', datefmt='%m/%d/%Y %I:%M:%S %p' ) app = Flask(__name__) app.config.from_object(Config) TOKEN = app.config['TOKEN'] '''functions''' # Turn the light on @app.route('/accendilucicortile', methods=['POST']) def lights_on(): token = request.json.get('token', None) if token != TOKEN: logging.debug('not authorized access') return jsonify({"msg": "Unauthorized"}), 400 elif token == TOKEN: logging.debug('Turn the lights on') GPIO.output(RELAIS_4_GPIO, GPIO.LOW) logging.debug('Lights are on') return jsonify({"msg": "Lights on"}), 200 else: return jsonify({"msg": "This should never happen"}), 200 # lights off @app.route('/spegnilucicortile', methods=['POST']) def lights_off(): token = request.json.get('token', None) if token != TOKEN: logging.debug('not authorized access') return jsonify({"msg": "Unauthorized"}), 400 elif token == TOKEN: logging.debug('Turn the lights off') GPIO.output(RELAIS_4_GPIO, GPIO.HIGH) logging.debug('Lights are off') return jsonify({"msg": "Lights off"}), 200 else: return jsonify({"msg": "This should never happen"}), 200 # water on @app.route('/accendiacqua', methods=['POST']) def water_on(): token = request.json.get('token', None) if token != TOKEN: logging.debug('not authorized access') return jsonify({"msg": "Unauthorized"}), 400 elif token == TOKEN: GPIO.output(RELAIS_WATER_GPIO, GPIO.LOW) logging.debug('Starting irrigation') sleep(5) if GPIO.input(RELAIS_WATER_GPIO): logging.error('Irrigation not started') else: logging.debug('Irrigation correctly started') return "<h1>Irrigation is on</h1>" else: return jsonify({"msg": "This should never happen"}), 200 # water off @app.route('/spegniacqua', methods=['POST']) def water_off(): token = request.json.get('token', None) if token != TOKEN: logging.debug('not authorized access') return jsonify({"msg": "Unauthorized"}), 400 elif token == TOKEN: GPIO.output(RELAIS_WATER_GPIO, GPIO.HIGH) logging.debug('Stopping Irrigation') sleep(5) if GPIO.input(RELAIS_WATER_GPIO): logging.debug('Irrigation correctly stopped') else: logging.error('Irrigation not stopped') return "<h1>Irrigation is off</h1>" else: return jsonify({"msg": "This should never happen"}), 200 if __name__ == '__main__': logging.info('starting up') GPIO.setmode(GPIO.BCM) GPIO.setup(RELAIS_4_GPIO,GPIO.OUT, initial=GPIO.HIGH) #lights off if GPIO.input(RELAIS_4_GPIO): logging.debug('Luce spenta') else: logging.debug('Luce accesa') GPIO.setup(RELAIS_WATER_GPIO, GPIO.OUT, initial=GPIO.HIGH) #water off if GPIO.input(RELAIS_WATER_GPIO): logging.debug('Irrigazione spenta') else: logging.debug('Irrigazione accesa') app.secret_key = os.urandom(12) try: app.run( debug=True, host='0.0.0.0', port=5000 ) except: logging.info('exception') finally: GPIO.output(RELAIS_WATER_GPIO, GPIO.HIGH) GPIO.cleanup()
oldgiova/python-api-webservice-lightscontrol
main.py
main.py
py
3,747
python
en
code
0
github-code
6
31211285971
''' TAREA5 Determina el tamaño de muestra requerido por cada lugar decimal de precisión del estimado obtenido para el integral, comparando con Wolfram Alpha para por lo menos desde uno hasta siete decimales; representa el resultado como una sola gráfica o de tipo caja-bigote o un diagrama de violin. ''' from math import exp, pi import numpy as np def g(x): return (2 / (pi * (exp(x) + exp(-x)))) wolf = str(0.0488340) #con 7 decimales vg = np.vectorize(g) X = np.arange(-8, 8, 0.001) # ampliar y refinar Y = vg(X) # mayor eficiencia from GeneralRandom import GeneralRandom generador = GeneralRandom(np.asarray(X), np.asarray(Y)) desde = 3 hasta = 7 pedazo = 10 # desde 1 hasta 1000000 hasta cuantos = 200 # 200 def parte(replica): V = generador.random(pedazo)[0] return ((V >= desde) & (V <= hasta)).sum() import multiprocessing if __name__ == "__main__": state = 0 with multiprocessing.Pool(2) as pool: while (True): montecarlo = pool.map(parte, range(cuantos)) integral = sum(montecarlo) / (cuantos * pedazo) num = str((pi / 2) * integral) pedazo = pedazo + 100 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and state == 0: # 1er Decimal print("Se logra el primer decimal con:", pedazo, "pedazos. Dado que:", num[2], " es igual a", wolf[2]) state = 1 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and state == 1: # 2do Decimal print("Se logra el segunda decimal con:", pedazo, "pedazos. Dado que:", num[3], " es igual a", wolf[3]) state = 2 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and num[4] == wolf[4] and state == 2: # 3er Decimal print("Se logra el tercer decimal con:", pedazo, "pedazos. Dado que:", num[4], " es igual a", wolf[4]) state = 3 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and num[4] == wolf[4] and num[5] == wolf[5] and state == 3: # 4to Decimal print("Se logra el cuarto decimal con:", pedazo, "pedazos. Dado que:", num[5], " es igual a", wolf[5]) state = 4 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and num[4] == wolf[4] and num[5] == wolf[5] and num[6] == wolf[6] and state == 4: # 5to Decimal print("Se logra el quinto decimal con:", pedazo, "pedazos. Dado que:", num[6], " es igual a", wolf[6]) state = 5 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and num[4] == wolf[4] and num[5] == wolf[5] and num[6] == wolf[6] and num[7] == wolf[7] and state == 5: # 6to Decimal print("Se logra el sexto decimal con:", pedazo, "pedazos. Dado que:", num[7], " es igual a", wolf[7]) state = 6 if num[0] == wolf[0] and num[1] == wolf[1] and num[2] == wolf[2] and num[3] == wolf[3] and num[4] == wolf[4] and num[5] == wolf[5] and num[6] == wolf[6] and num[7] == wolf[7] and num[8] == wolf[8] and state == 6: # 7mo Decimal print("Se logra el septimo decimal con:", pedazo, "pedazos. Dado que:", num[8], " es igual a", wolf[8]) break print(pedazo, num)
Elitemaster97/Simulacion
Tarea5/Tarea5.1.py
Tarea5.1.py
py
3,447
python
es
code
0
github-code
6
40140601153
import streamlit as st import pandas as pd st.set_page_config(layout="wide") col1, col2 = st.columns([3, 1]) option = None df = pd.read_csv('reuters_summaries.csv') with col2: st.write("") st.write("") st.write("") st.write("") st.write("") option = st.selectbox('', ['Crude Oil', 'Biofuel']) with col1: st.title('REUTERS') st.divider() if option == 'Crude Oil': #df = pd.read_csv('crude_oil_summary_new.csv') df_crude = df[df['keyword']=='crude oil'] for index, series in df_crude.iterrows(): st.markdown("### [{}]({})".format(series['title'], series['link'])) st.markdown("*{}*".format(series['published'])) st.markdown('**Keywords: {}**'.format(series['keywords'])) st.write(series['summary']) st.divider() if option == 'Biofuel': #df = pd.read_csv('biofuel_summary_new.csv') df_bio = df[df['keyword']=='biofuel'] for index, series in df_bio.iterrows(): st.markdown("### [{}]({})".format(series['title'], series['link'])) st.markdown("*{}*".format(series['published'])) st.markdown('**Keywords: {}**'.format(series['keywords'])) st.write(series['summary']) st.divider()
Jayanth-Shanmugam/news-articles-summarization
pages/Reuters.py
Reuters.py
py
1,302
python
en
code
0
github-code
6
21107944564
from classification.image_to_array import imageTonpv from classification.cnn_class import cnn_class import csv from os import listdir from os.path import isfile, join import cv2 import numpy as np def finalReport(label_ids = [], cids_test = [], class_count=[], class_viability =[], path = '', model='' ): viability_ratio = [] num_counting = [] num_viability = [] label_set = sorted(set(label_ids)) for img_ids in label_set: count = 0 viability = 0 for index, ids in enumerate(label_ids): if ids == img_ids: if class_count[index] < class_viability[index]: class_viability[index] = class_count[index] count = count + class_count[index] viability = viability + class_viability[index] if count < viability: viability = count # fix bug if count == 0: viability_ratio.append(0) else: viability_ratio.append(float(viability/count)) num_counting.append(count) num_viability.append(viability) label_format = [] for index, ids in enumerate(label_set): label_format.append(str(format(ids, '05d')) + '_') import time timestr = time.strftime("%Y%m%d-%H%M%S") out = open(path + '/classification/' + str(timestr) + 'FINAL_REPORT' + model + '_' + 'CNN_csv.csv', 'a', newline='') csv_write = csv.writer(out, dialect='excel') csv_write.writerow(label_format) csv_write.writerow(viability_ratio) csv_write.writerow(num_counting) csv_write.writerow(num_viability) def saveasSpectrum(label_ids = [], cids_test = [], class_count=[], class_viability =[],path = '', model='' ): onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] save_path = path + '/classification/' DETECTION_test = np.load('classification/npv/VIABILITY/' + model + '/detection.npy') label_set = sorted(set(label_ids)) for index, folder in enumerate(onlyfiles): raw = cv2.imread(path + '\\' + folder) ind = folder.split('RGB')[0] new_imageBGR = raw for index_ids, ids in enumerate(label_ids): if list(label_set)[index] == ids and not len(DETECTION_test[index_ids]) == 0: count = class_count[index_ids] viability = class_viability[index_ids] if count < viability: viability = count if count == 0: green_level = 0 red_level = 255 blue_level = 255 else: green_level = int(255 * viability / count) red_level = int(255 * (1 - viability / count)) blue_level = 0 color_spectrum = (blue_level, green_level, red_level) for position in DETECTION_test[index_ids]: new_imageBGR[position[0], position[1]] = color_spectrum cv2.imwrite(save_path + ind + model + '.png', new_imageBGR) def classifyMain(folder_test = '', folder_train = '', analysis_type = dict()): # counting model and viability model if not analysis_type["predict_type"] == 0: if analysis_type["model_type"] == 1: # step 1.0 background preprocess and npv convert imageTonpv(folder_test, 'UNET') # step 2.0 load model weight and predict label_ids, cids_test, class_count = cnn_class(folder_test, 'UNET', 'COUNTING') label_ids, cids_test, class_viability = cnn_class(folder_test, 'UNET', 'VIABILITY') # step 3.0 save final csv results and live-dead markers finalReport(label_ids, cids_test, class_count, class_viability, folder_test, 'UNET') saveasSpectrum(label_ids, cids_test, class_count, class_viability, folder_test, 'UNET') print("U-NET complete") elif analysis_type["model_type"] == 0: # step 1.0 background preprocess and npv convert imageTonpv(folder_test, 'watershed') # step 2.0 load model weight and predict label_ids, cids_test, class_count = cnn_class(folder_test, 'watershed', 'COUNTING') label_ids, cids_test, class_viability = cnn_class(folder_test, 'watershed', 'VIABILITY') # step 3.0 save final csv results and live-dead markers finalReport(label_ids, cids_test, class_count, class_viability, folder_test, 'watershed') saveasSpectrum(label_ids, cids_test, class_count, class_viability, folder_test, 'WATERSHED') print("watershed complete") elif analysis_type["model_type"] == 2: # step 1.0 background preprocess and npv convert imageTonpv(folder_test, 'UW') # step 2.0 load model weight and predict label_ids, cids_test, class_count = cnn_class(folder_test, 'UW', 'COUNTING') label_ids, cids_test, class_viability = cnn_class(folder_test, 'UW', 'VIABILITY') # step 3.0 save final csv results and live-dead markers finalReport(label_ids, cids_test, class_count, class_viability, folder_test, 'UW') saveasSpectrum(label_ids, cids_test, class_count, class_viability, folder_test, 'UW') print("U-NET watershed complete") print("classify complete")
chenxun511happy/Cartilage-Net
classification/ClassifyMain.py
ClassifyMain.py
py
5,545
python
en
code
1
github-code
6
73573186747
import requests addresses = { "TXA2WjFc5f86deJcZZCdbdpkpUTKTA3VDM": "energyRateModelContract", "TSe1pcCnU1tLdg69JvbFmQirjKwTbxbPrG": "sTRXImpl", "TU3kjFuhtEo42tsCBtfYUAZxoqQ4yuSLQ5": "sTRXProxy", "TNoHbPuBQrVanVf9qxUsSvHdB2eDkeDAKD": "marketImpl", "TU2MJ5Veik1LRAgjeSzEdvmDYx7mefJZvd": "marketProxy", } json_ori = { "contractAddress": "", "contractName": "", "projectId": 2, "remark": "", "accessToken": "tronsmart" } for address, name in addresses.items(): json = json_ori.copy() json['contractAddress'] = address json['contractName'] = name resp = requests.post("https://mining.ablesdxd.link" + "/admin/upsertContractIntoWhiteList", json=json) print(f"{address} {name} {resp.text}")
dpneko/pyutil
contract_whitelist.py
contract_whitelist.py
py
733
python
en
code
0
github-code
6
74306420987
from dataclasses import dataclass from sqlalchemy import (Boolean, Column, DateTime, ForeignKey, Integer, MetaData, Numeric, String, Table, create_engine) metadata = MetaData() @dataclass class IOLModel: sql_path: str def __post_init__(self): self.metadata = MetaData() self.model_tables() self.create_engine() self.create_database() def model_tables(self): """Create table models""" self.asset_class_country = Table( 'asset_class_country', self.metadata, Column('id', Integer(), primary_key=True, autoincrement = True), Column('asset_class', String(20), nullable=False), Column('country', String(20), nullable=False) ) self.fci_info = Table( 'fci_info', self.metadata, Column('symbol', String(20), primary_key=True, unique=True, nullable=False), Column('desc', String(50)), Column('type', String(20)), Column('adm_type', String(20)), Column('horizon', String(20)), Column('profile', String(20)), Column('yearly_var', Numeric(5,5)), Column('monthly_var', Numeric(5,5)), Column('investment', String(300)), Column('term', String(2)), Column('rescue', String(2)), Column('report', String(250)), Column('regulation', String(250)), Column('currency', String(20)), Column('country', String(20)), Column('market', String(20)), Column('bloomberg', String(20)), ) self.screen_last_price = Table( 'screen_last_price', self.metadata, Column('country', String(20), nullable=False), Column('asset_class', String(20), nullable=False), Column('screen', String(20), nullable=False), Column('symbol', String(20), primary_key=True, unique=True, nullable=False), Column('desc', String(50)), Column('date_time', DateTime()), Column('open', Numeric(12,2)), Column('high', Numeric(12,2)), Column('low', Numeric(12,2)), Column('close', Numeric(12,2)), Column('bid_q', Numeric(12,2)), Column('bid_price', Numeric(12,2)), Column('ask_price', Numeric(12,2)), Column('ask_q', Numeric(12,2)), Column('vol', Numeric(12,2)), ) self.screens_country_instrument = Table( 'screens_country_instrument', self.metadata, Column('id', Integer(), primary_key=True, autoincrement = True), Column('country', String(20), nullable=False), Column('asset_class', String(20), nullable=False), Column('screen', String(20), nullable=False), ) self.symbol_daily = Table( 'symbol_daily', self.metadata, Column('id', Integer(), primary_key=True, autoincrement = True), Column('symbol', String(20), nullable=False), Column('market', String(20), nullable=False), Column('date', DateTime()), Column('open', Numeric(12,2)), Column('high', Numeric(12,2)), Column('low', Numeric(12,2)), Column('close', Numeric(12,2)), Column('vol', Numeric(12,2)), ) self.symbol_info = Table( 'symbol_info', self.metadata, Column('symbol', String(20), primary_key=True, unique=True, nullable=False), Column('market', String(20)), Column('desc', String(50)), Column('country', String(20)), Column('type', String(20)), Column('term', String(2)), Column('currency', String(20)), ) self.symbol_last_price = Table( 'symbol_last_price', self.metadata, Column('id', Integer(), primary_key=True, autoincrement = True), Column('symbol', String(20)), Column('type', String(20)), Column('date_time', DateTime()), Column('open', Numeric(12,2)), Column('high', Numeric(12,2)), Column('low', Numeric(12,2)), Column('close', Numeric(12,2)), Column('bid_q', Numeric(12,2)), Column('bid_price', Numeric(12,2)), Column('ask_price', Numeric(12,2)), Column('ask_q', Numeric(12,2)), Column('vol', Numeric(12,2)), Column('desc', String(50)), Column('market', String(20)), Column('currency', String(20)), Column('country', String(20)), Column('term', String(2)), Column('lote', Numeric(12,2)), Column('lamina_min', Numeric(12,2)), Column('q_min', Numeric(12,2)), Column('shown', Boolean()), Column('buyable', Boolean()), Column('sellable', Boolean()), ) self.symbol_options = Table( 'symbol_options', self.metadata, Column('underlying', String(20)), Column('date_time', DateTime()), Column('symbol', String(20), primary_key=True, unique=True, nullable=False), Column('type', String(20)), Column('expire', DateTime()), Column('days_expire', Numeric(3)), Column('desc', String(50)), Column('strike', Numeric(12,2)), Column('open', Numeric(12,2)), Column('high', Numeric(12,2)), Column('low', Numeric(12,2)), Column('close', Numeric(12,2)), Column('bid_ask', Numeric(12,2)), # Column('bid_price', Numeric(12,2)), # Column('ask_price', Numeric(12,2)), # Column('ask_q', Numeric(12,2)), Column('vol', Numeric(12,2)), Column('var', Numeric(12,2)), # Column('market', String(20)), # Column('currency', String(20)), Column('country', String(20)), # Column('term', String(2)), # Column('lote', Numeric(12,2)), # Column('lamina_min', Numeric(12,2)), # Column('q_min', Numeric(12,2)), # Column('shown', Boolean()), # Column('buyable', Boolean()), # Column('sellable', Boolean()), ) def create_engine(self): """Create an SQLite DB engine""" self.engine = create_engine(f'sqlite:///{self.sql_path}') def create_database(self): """Create DataBase from engine""" self.metadata.create_all(self.engine) # cookies = Table('cookies', metadata, # Column('cookie_id', Integer(), primary_key=True), # Column('cookie_name', String(50), index=True), # Column('cookie_recipe_url', String(255)), # Column('cookie_sku', String(55)), # Column('quantity', Integer()), # Column('unit_cost', Numeric(12, 2)) # ) # users = Table('users', metadata, # Column('user_id', Integer(), primary_key=True), # Column('customer_number', Integer(), autoincrement=True), # Column('username', String(15), nullable=False, unique=True), # Column('email_address', String(255), nullable=False), # Column('phone', String(20), nullable=False), # Column('password', String(25), nullable=False), # Column('created_on', DateTime(), default=datetime.now), # Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now) # ) # orders = Table('orders', metadata, # Column('order_id', Integer(), primary_key=True), # Column('user_id', ForeignKey('users.user_id')) # ) # line_items = Table('line_items', metadata, # Column('line_items_id', Integer(), primary_key=True), # Column('order_id', ForeignKey('orders.order_id')), # Column('cookie_id', ForeignKey('cookies.cookie_id')), # Column('quantity', Integer()), # Column('extended_cost', Numeric(12, 2)) # ) # engine = create_engine('sqlite:///:memory:') # metadata.create_all(engine)
fscorrales/apys
src/apys/models/iol_model.py
iol_model.py
py
7,935
python
en
code
0
github-code
6
39386351985
from board import Board from piece import Grid_Point #variable controlling board size size = 8 current_player = 'O' def main(): #create board and current player string selection = 0 global size global current_player #loop until player starts game while(selection != '1'): #print welcome message and menu options print("Welcome to Reversi") print("Please select a menu option") print("\t1: Play Game") print("\t2: Show Rules") print("\t3: Change Settings \n") selection = input("Please select: ") if(selection == '1'): print("Game Starting... \n") elif(selection == '2'): #print rules print("RULES: ") print("\tPlayers O and X take turns placing their respective pieces on the board.") print("\tPieces must be placed on open cell that sandwhiches at least one opponent piece either vertically, horizontally, or diagonally.") print("\tAll opposing pieces that are sandwhiched flip are flipped over and become friendly pieces.") print("\tIf a player has no legal moves, their turn is skipped.") print("\tThe game continues until a player has no pieces left, there are no empty tiles left, or neither player has a legal move.") print("\tThe player with more pieces on the board at the end wins. \n") elif(selection == '3'): #get player choice on starting player and grid size print("SETTINGS:") inp = input("Please enter the grid size (default 8): ") #catch illegal inputs and set it to default if it is try: size = int(inp) if(size <= 4): raise ValueError except ValueError: print("Invalid size entered, set to default of 8") size = 8 inp = input("Please enter which player starts first O or X (default O): ").upper() #catch illegal inputs and set it to default if it is if(inp != 'X' or inp != 'O'): print("Invalid starting player, set to default of O") current_player = 'O' else: current_player = inp else: print("Unknown selection, please choose again \n") pass input("Input any key to continue: ") #create the board global brd brd = Board(size) #enter the main game loop gameLoop() def gameLoop(): global current_player global brd #variable for checking if both players have skipped their turns in order to terminate if neither player has moves turn_skipped = False while(1): #print the board print(brd) #get the current piece count o_num, x_num = brd.get_piece_count() #get all possible moves for the current player possible_moves = brd.get_available_moves(current_player) #if a player has no possible moves and the previous player did not skip their turn, skip the current_players turn if(not possible_moves and not turn_skipped): turn_skipped = True print("\nTurn Skipped!\n") if current_player == 'X': current_player = 'O' else: current_player = 'X' continue #if the previous player has skipped their turn or either play has 0 pieces, the game is over so check who wins elif((not possible_moves and turn_skipped) or o_num == 0 or x_num == 0): print(f'Current Score: {o_num} O\'s, {x_num} X\'s \n') if(o_num < x_num): print('Player X wins!') quit() elif(o_num > x_num): print('Player O wins') quit() else: print('Its a tie!') quit() #resset turn skipped to false if a player has a legal move turn_skipped = False #print out the player, current score, and possible moves print(f'Current Score: {o_num} O\'s, {x_num} X\'s \n') print(f'Player {current_player}\'s turn: ') print(f'Possible Moves: {possible_moves}\n') desired_position = () allowed = False #get a legal input for a position while(not allowed): inp = input("Please enter which position you'd like (row, col) or 'exit' to terminate program:") #terminate program on exit if(inp == 'exit'): print('program terminating...') quit() #otherwise split the input vals = [x.strip() for x in inp.split(',')] #a proper input is a list with length 2, where each element is a numeric string if (not (isinstance(vals, list) and len(vals) == 2 and vals[0].isdigit() and vals[1].isdigit())): print('Please enter a valid input!') continue #if the input is legal, convert it to a grid_point #grid point auto incriments its input for Human printing so need to subtract one from the human input which is already in that form desired_position = Grid_Point(int(vals[0]) - 1, int(vals[1]) - 1) #if the desired position is in the possible moves, its legal, otherwise they must select a new point allowed = desired_position in possible_moves if(not allowed): print("Please enter a legal move\n") #add the current player's piece to their desired position. Also handles flipping pieces brd.add_piece(desired_position, current_player) #switch the current player if current_player == 'X': current_player = 'O' else: current_player = 'X' if __name__ == "__main__": main()
dank-dan-k/Reversi
main.py
main.py
py
6,101
python
en
code
0
github-code
6
30039234138
from django.views.decorators.http import require_http_methods from django.http import JsonResponse from django.http import HttpResponse from .service.login import Login from .service.report import uploadData from .service.getdata import getRoadMap import json # Create your views here. @require_http_methods(["GET", "POST"]) def wx_test(request): response = {} try: # json_result = json.loads(request.body) # print(request.body) # process.decode_json(json_result) response['ok'] = 1 except Exception as e: response['msg'] = str(e) response['ok'] = 0 return JsonResponse(response) # 登录函数 @require_http_methods(["GET"]) def login(request): response = {} try: code = request.GET.get('code') # print(code) response = Login(code) except Exception as e: response['msg'] = str(e) response['ok'] = 0 return JsonResponse(response) # 上传数据函数 @require_http_methods(["POST"]) def uploaddata(request): response = {} try: json_result = json.loads(request.body) response = uploadData(json_result['data']) except Exception as e: response['msg'] = str(e) response['ok'] = 0 return JsonResponse(response) # 获取路线图函数 @require_http_methods(["GET"]) def getroadmap(request): response = {} try: response = getRoadMap() except Exception as e: response['msg'] = str(e) response['ok'] = 0 return JsonResponse(response)
luzy99/road_smoothness_detection
road_detect_server/my_server/wx/views.py
views.py
py
1,542
python
en
code
0
github-code
6
70102817469
from RedditClient import RedditClient class RedditGold(RedditClient): def __init__(self): super().__init__() self.full_name = None self.months = None self.username = None def generate_body(self): body = {} if self.full_name != None: body['fullname'] = self.full_name if self.months != None: body['months'] = self.months if self.username != None: body['username'] = self.username return body def delete_body(self): self.full_name = None self.months = None self.username = None
cthacker-udel/Python-Reddit-API
RedditGold.py
RedditGold.py
py
625
python
en
code
1
github-code
6
14279541024
from collections import defaultdict from intcode.intcode import read_program, VM import matplotlib.pyplot as plt DIRECTION_LEFT = (-1, 0) DIRECTION_RIGHT = (1, 0) DIRECTION_UP = (0, -1) DIRECTION_DOWN = (0, 1) TURN_LEFT = 0 TURN_RIGHT = 1 COLOR_BLACK = 0 COLOR_WHITE = 1 next_direction_left = { DIRECTION_UP: DIRECTION_LEFT, DIRECTION_LEFT: DIRECTION_DOWN, DIRECTION_DOWN: DIRECTION_RIGHT, DIRECTION_RIGHT: DIRECTION_UP } next_direction_right = { DIRECTION_UP: DIRECTION_RIGHT, DIRECTION_RIGHT: DIRECTION_DOWN, DIRECTION_DOWN: DIRECTION_LEFT, DIRECTION_LEFT: DIRECTION_UP } def compute_position_to_color(initial_state, inital_color): position_to_color = defaultdict(lambda: COLOR_BLACK) position = (0, 0) direction = DIRECTION_UP position_to_color[position] = inital_color vm = VM(initial_state) running = True while running: try: current_color = position_to_color[position] vm.send_input(current_color) color = vm.get_output() turn = vm.get_output() position_to_color[position] = color direction = next_direction(direction, turn) position = next_position(position, direction) except StopIteration: running = False return position_to_color def next_direction(current_direction, turn): if turn == TURN_LEFT: return next_direction_left[current_direction] else: return next_direction_right[current_direction] def next_position(position, direction): dx, dy = direction x, y = position return (x + dx, y + dy) def draw(position_to_color): white_positions = [position for position, color in position_to_color.items() if color == COLOR_WHITE] x, y = zip(*white_positions) plt.scatter(x, y, s=20) plt.ylim((10, -20)) plt.show() if __name__ == "__main__": initial_state = read_program("input.txt") position_to_color = compute_position_to_color(initial_state, COLOR_BLACK) print("Part 1:", len(position_to_color)) position_to_color = compute_position_to_color(initial_state, COLOR_WHITE) draw(position_to_color)
bwdvolde/advent-of-code-2019
day11/solution.py
solution.py
py
2,178
python
en
code
0
github-code
6
36942823350
import turtle window = turtle.Screen() window.bgcolor("black") shapeA = turtle.Turtle() shapeB = turtle.Turtle() shapeC = turtle.Turtle() shapeD = turtle.Turtle() shapeA.sety(100) shapeA.pencolor("red") for i in range(3): shapeA.pensize(3) shapeA.fd(50) shapeA.left(120) shapeB.setx(-100) shapeB.pencolor("blue") for i in [1, 2, 3, 4]: shapeB.pensize(3) shapeB.fd(50) shapeB.right(90) shapeC.pencolor("purple") shapeC.pensize(3) shapeC.circle(30) shapeD.setx(25) shapeD.sety(-25) shapeD.pencolor("yellow") shapeD.pensize(3) shapeD.fd(100) window.exitonclick()
Sir-Lance/CS1400
shit.py
shit.py
py
590
python
en
code
0
github-code
6
26969763906
import os from utils.util import make_dir_under_root, read_dirnames_under_root OUTPUT_ROOT_DIR_NAMES = [ 'masked_frames', 'result_frames', 'optical_flows' ] class RootInputDirectories: def __init__( self, root_videos_dir, root_masks_dir, video_names_filename=None ): self.root_videos_dir = root_videos_dir self.root_masks_dir = root_masks_dir if video_names_filename is not None: with open(video_names_filename, 'r') as fin: self.video_dirnames = [ os.path.join(root_videos_dir, line.split()[0]) for line in fin.readlines() ] else: self.video_dirnames = read_dirnames_under_root(root_videos_dir) self.mask_dirnames = read_dirnames_under_root(root_masks_dir) def __len__(self): return len(self.video_dirnames) class RootOutputDirectories: def __init__( self, root_outputs_dir, ): self.output_root_dirs = {} for name in OUTPUT_ROOT_DIR_NAMES: self.output_root_dirs[name] = \ make_dir_under_root(root_outputs_dir, name) def __getattr__(self, attr): if attr in self.output_root_dirs: return self.output_root_dirs[attr] else: raise KeyError( f"{attr} not in root_dir_names {self.output_root_dirs}") class VideoDirectories: def __init__( self, root_inputs_dirs, root_outputs_dirs, video_name, mask_name ): self.name = f"video_{video_name}_mask_{mask_name}" rid = root_inputs_dirs rod = root_outputs_dirs self.frames_dir = os.path.join(rid.root_videos_dir, video_name) self.mask_dir = os.path.join(rid.root_masks_dir, mask_name) self.masked_frames_dir = os.path.join(rod.masked_frames, self.name) self.results_dir = os.path.join(rod.result_frames, self.name) self.flows_dir = os.path.join(rod.optical_flows, video_name)
amjltc295/Free-Form-Video-Inpainting
src/utils/directory_IO.py
directory_IO.py
py
2,029
python
en
code
323
github-code
6
70779220668
import math import os import re from ast import literal_eval from dataclasses import dataclass import numpy as np import pandas as pd import torch import torch.nn as nn from accelerate.logging import get_logger from accelerate.utils import is_tpu_available from sklearn.metrics import accuracy_score, average_precision_score, roc_auc_score logger = get_logger(__name__, "INFO") @dataclass class Task: name: str num_classes: int property: str def get_task(task_name): if re.findall("mortality|readmission|los", task_name): return Task(task_name, 1, "binary") elif re.findall("diagnosis", task_name): return Task(task_name, 17, "multilabel") elif re.findall("creatinine|platelets", task_name): return Task(task_name, 5, "multiclass") elif re.findall("wbc|bicarbonate|sodium", task_name): return Task(task_name, 3, "multiclass") elif re.findall("hb", task_name): return Task(task_name, 4, "multiclass") # To Load & Save n_epoch class N_Epoch: def __init__(self): self.epoch = 0 def __call__(self): return self.epoch def increment(self): self.epoch += 1 def state_dict(self): return {"epoch": self.epoch} def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"] def load_model(path, model): state_dict = torch.load(path, map_location="cpu") if "pred_model.model.embed_positions.weight" in state_dict: del state_dict["pred_model.model.embed_positions.weight"] model.load_state_dict(state_dict, strict=False) return model def get_max_seq_len(args): df = pd.read_csv( os.path.join( args.input_path, f"{args.pred_time}h", f"{args.src_data}_cohort.csv" ), usecols=["time", "hi_start"], ) if args.time >= 0: df["hi_start"] = df["hi_start"].map(literal_eval).map(lambda x: x[args.time]) else: df["hi_start"] = 0 max_seq_len = df.apply( lambda x: x["time"].count(",") + 1 - x["hi_start"], axis=1 ).max() max_seq_len = math.ceil(max_seq_len / 128) * 128 return max_seq_len class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__( self, patience=7, verbose=True, delta=0, compare="increase", metric="avg_auroc" ): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.target_metric_min = 0 self.delta = delta self.compare_score = self.increase if compare == "increase" else self.decrease self.metric = metric def __call__(self, target_metric): update_token = False score = target_metric if self.best_score is None: self.best_score = score if self.compare_score(score): self.counter += 1 logger.info( f"EarlyStopping counter: {self.counter} out of {self.patience} ({target_metric:.6f})", main_process_only=True, ) if self.counter >= self.patience: self.early_stop = True else: self.best_score = score if self.verbose: logger.info( f"Validation {self.metric} {self.compare_score.__name__}d {self.target_metric_min:.6f} --> {target_metric:.6f})", main_process_only=True, ) self.target_metric_min = target_metric self.counter = 0 update_token = True return update_token def increase(self, score): if score < self.best_score + self.delta: return True else: return False def decrease(self, score): if score > self.best_score + self.delta: return True else: return False def state_dict(self): return { "best_score": self.best_score, "counter": self.counter, "early_stop": self.early_stop, "target_metric_min": self.target_metric_min, } def load_state_dict(self, state_dict): self.best_score = state_dict["best_score"] self.counter = state_dict["counter"] self.early_stop = state_dict["early_stop"] self.target_metric_min = state_dict["target_metric_min"] def reset(self): self.counter = 0 self.early_stop = False def log_from_dict(metric_dict, split, n_epoch): log_dict = {"epoch": n_epoch, split: metric_dict} return log_dict class PredLoss: def __init__(self, args): self.args = args # How to drop na in binary?? self.bce = nn.BCELoss(reduction="sum") self.ce = nn.NLLLoss(reduction="sum", ignore_index=-1) self.sim = nn.CosineSimilarity(dim=-1) def __call__(self, output, reprs): # NOTE: If null label is too many in binary/multilabel, it will be cause a nan loss. losses, preds, truths, masks = {}, {}, {}, {} loss_total = 0 # To suport Rag Retriever tasks = [i for i in self.args.tasks if i.name in output["target"].keys()] for task in tasks: pred = output["pred"][task.name] target = output["target"][task.name] if task.property == "binary": # Calculate mask for -1(NaN) mask = (target != -1).bool() pred = mask * pred target = mask * target loss = self.bce(pred, target) elif task.property == "multilabel": # Calculate mask for -1(NaN) mask = (target.sum(axis=-1) > 0).bool().unsqueeze(-1) pred = mask * pred target = mask * target loss = self.bce(pred, target) / task.num_classes elif task.property == "multiclass": mask = (target.sum(axis=-1) > 0).bool().unsqueeze(-1) nl = (pred + 1e-10).log() # For numerical Stability pred = mask * pred nl = mask * nl target = mask * target loss = self.ce(nl, target.argmax(dim=1)) else: raise NotImplementedError() losses[task.name] = loss / self.args.local_batch_size preds[task.name] = pred truths[task.name] = target masks[task.name] = mask loss_total += loss logging_outputs = { # SHould detach or not?? "loss_total": loss_total, "preds": preds, "truths": truths, "losses": losses, "masks": masks, } return loss_total, logging_outputs class BaseMetric: def __init__(self, args, target): self.args = args self._update_target = target self.is_tpu = is_tpu_available() self.reset() def reset(self): raise NotImplementedError() def __call__(self, out, accelerator=None): raise NotImplementedError() def get_metrics(self): raise NotImplementedError() def gather(self, accelerator, *args): if accelerator is not None: args = accelerator.gather_for_metrics(args) args = [(i if i.shape else i.unsqueeze(0)) for i in args] if len(args) == 1: return args[0] else: return args @property def compare(self): return "decrease" if "loss" in self.update_target else "increase" @property def update_target(self): return self._update_target class PredMetric(BaseMetric): def __init__(self, args, target="avg_auroc"): self.tasks = args.tasks super().__init__(args, target) def reset(self): self.losses = {k.name: [] for k in self.tasks} self.truths = {k.name: [] for k in self.tasks} self.preds = {k.name: [] for k in self.tasks} self.masks = {k.name: [] for k in self.tasks} def __call__(self, out, accelerator=None): # NOTE: On train step, only compute metrics for the master process tasks = [i for i in self.tasks if i.name in out["preds"].keys()] for task in tasks: mask = out["masks"][task.name] if task.property != "binary": mask = mask.squeeze(-1) truth = out["truths"][task.name] pred = out["preds"][task.name] loss = out["losses"][task.name] truth, pred, mask, loss = self.gather(accelerator, truth, pred, mask, loss) self.truths[task.name].append(truth.detach().cpu().float().numpy()) self.preds[task.name].append(pred.detach().cpu().float().numpy()) self.losses[task.name].append(loss.detach().cpu().float().numpy()) self.masks[task.name].append(mask.detach().cpu().numpy()) def get_metrics(self): # For REMed tasks = [i for i in self.tasks if len(self.preds[i.name]) != 0] for task in tasks: self.losses[task.name] = np.concatenate(self.losses[task.name], 0) self.truths[task.name] = np.concatenate(self.truths[task.name], 0) self.preds[task.name] = np.concatenate(self.preds[task.name], 0) self.masks[task.name] = np.concatenate(self.masks[task.name], 0) self.truths[task.name] = self.truths[task.name][self.masks[task.name]] self.preds[task.name] = self.preds[task.name][self.masks[task.name]] self.epoch_dict = {} for task in tasks: self.epoch_dict[task.name + "_loss"] = np.mean(self.losses[task.name]) self.epoch_dict[task.name + "_auprc"] = self.auprc(task) self.epoch_dict[task.name + "_auroc"] = self.auroc(task) self.epoch_dict[task.name + "_acc"] = self.acc(task) self.epoch_dict["avg_loss"] = np.mean( [self.epoch_dict[k] for k in self.epoch_dict.keys() if "loss" in k] ) self.epoch_dict["avg_auprc"] = np.mean( [self.epoch_dict[k] for k in self.epoch_dict.keys() if "auprc" in k] ) self.epoch_dict["avg_auroc"] = np.mean( [self.epoch_dict[k] for k in self.epoch_dict.keys() if "auroc" in k] ) self.epoch_dict["avg_acc"] = np.mean( [self.epoch_dict[k] for k in self.epoch_dict.keys() if "acc" in k] ) self.reset() return self.epoch_dict def auroc(self, task): return roc_auc_score( self.truths[task.name], self.preds[task.name], average="micro", multi_class="ovr", ) def auprc(self, task): return average_precision_score( self.truths[task.name], self.preds[task.name], average="micro", ) def acc(self, task): if task.property in ["binary", "multilabel"]: return accuracy_score( self.truths[task.name].round(), self.preds[task.name].round() ) elif task.property == "multiclass": return accuracy_score( self.truths[task.name].argmax(axis=1), self.preds[task.name].argmax(axis=1), ) else: raise NotImplementedError()
starmpcc/REMed
src/utils/trainer_utils.py
trainer_utils.py
py
11,900
python
en
code
8
github-code
6
3337680824
def multiply(num1: str, num2: str) -> str: print(int(num1)*int(num2)) if num1 == '0' or num2 == '0': return '0' jin_nums = 0 nums_list = [] # 存放所有想加的结果 # nn1=list(num1) # nn1.reverse() # nn2=list(num2) # nn2.reverse() for i in range(len(num1)-1,0,-1): print('-------') nums = [] for j in range(len(num2)-1,0,-1): ss = int(num1[i]) * int(num2[j]) + jin_nums jin_nums=0 if ss >= 10: jin_nums = ss // 10 ss = ss % 10 nums.append(ss) if jin_nums!=0: nums.append(jin_nums) jin_nums=0 nums.reverse() nums_list.append(nums) print(nums) nums_sum='0' count=0 for nums in nums_list: nums=nums+['0']*count nums_sum=str_add(nums_sum,nums) count+=1 return nums_sum def str_add(s1,s2): # s1=list(s1) # s2=list(s2) # s1.reverse() # s2.reverse() if len(s1)>len(s2): min_s=s2 max_s=s1 else: min_s = s1 max_s = s2 new_s=[] jin=0 for i in range(len(max_s)-1,0,-1): if i<len(min_s): mi = 0 else: mi = min_s[i] ma=max_s[i] he=int(mi)+int(ma)+jin if he>=10: jin=1 he-=10 else: jin=0 new_s.append(str(he)) if jin!=0: new_s.append(str(jin)) new_s.reverse() return ''.join(new_s) s1="123123" s2="123" #print(multiply(s1,s2),'-') str_add('1024','998')
zml1996/learn_record
leet_code/字符串相乘.py
字符串相乘.py
py
1,594
python
en
code
2
github-code
6
29272947400
import pymongo import json from pymongo import MongoClient from bson import json_util def StatImages(): client = MongoClient('mongodb://0.0.0.0:27017/') db = client['diplom_mongo_1'] posts = db.posts data = posts.find({"type": "image"}) count = 0 weight = 0 copies = 0 copiesId = {} copiesIdList = [] imgFormat = {} for item in data: count += 1 weight += item['weight'] if (imgFormat.get(item)): imgFormat[item['format']] += 1 else: imgFormat[item['format']] = 1 flag = False for item1 in data: if item != item1: if (item['md5'] == item1['md5']) and (item1['id'] not in copiesIdList): if(flag): copies += 1 copiesId[item['id']].append(item1['id']) copiesIdList.append(item1['id']) else: copies += 2 copiesId[item['id']] = [] copiesId[item['id']].append(item1['id']) flag = True copiesIdList.append(item['id']) copiesIdList.append(item1['id']) print(copiesIdList)
dethdiez/viditory_analyzer
api/stat.py
stat.py
py
964
python
en
code
0
github-code
6
39763237198
s1=input() s2=input() s1=s1.lower() s2=s2.lower() b=[] for i in s1: if i in s2: if i==' ': continue if ord(i) not in b: b.append(ord(i)) print(len(b))
gokinahemalatha/codemind-python
common_characters_-II.py
common_characters_-II.py
py
193
python
en
code
0
github-code
6
5435410186
import turtle import time import random abstand = time.sleep(0.1) fenster = turtle.Screen() fenster.title("Israa @snake spiel") fenster.setup(width=500, height=500) fenster.bgcolor("black") Kopf = turtle.Turtle() Kopf.color("red") Kopf.penup() Kopf.goto(0,0) Kopf.shape("square") Kopf.direction="stop" tortue = turtle.Turtle() tortue.color("yellow") tortue.penup() tortue.goto(0,100) tortue.shape("turtle") def move(): if Kopf.direction == "up": y = Kopf.ycor() Kopf.sety(y+1) if Kopf.direction == "right": x = Kopf.xcor() Kopf.setx(x+1) if Kopf.direction == "left": x = Kopf.xcor() Kopf.setx(x-1) if Kopf.direction == "down": y = Kopf.ycor() Kopf.sety(y-1) def up(): Kopf.direction = "up" def down(): Kopf.direction = "down" def left(): Kopf.direction = "left" def right(): Kopf.direction = "right" fenster.listen() fenster.onkeypress(up , "Up") fenster.onkeypress(right , "Right") fenster.onkeypress(left , "Left") fenster.onkeypress(down , "Down") erweiterung = [] while True: fenster.update() move() if Kopf.distance(tortue) < 20: y = random.randint(-255 , 255) x = random.randint(-255 , 255) tortue.goto(x,y) tortueNew = turtle.Turtle() tortueNew.color("green") tortueNew.penup() tortueNew.shape("square") erweiterung.append(tortueNew) for i in range(len(erweiterung) -1, 0 , -1): x = erweiterung[i-1].xcor() y = erweiterung[i-1].ycor() erweiterung[i].goto(x,y) if len(erweiterung) > 0: x = Kopf.xcor() y = Kopf.ycor() erweiterung[0].goto(x,y) abstand fenster.mainloop()
Israti/MeineProjekte
Snack.py
Snack.py
py
1,816
python
de
code
0
github-code
6
42432941077
import pandas as pd import numpy as np import math class Node: def __init__(self, fkey=None, fval=None, output=None, children=None): self.fkey = fkey # 特征名 self.fval = fval # 特征值 self.output = output # 当前节点的输出值 self.children = {} if children is None else children # 子节点 class ID3: def __init__(self, eps=0.01): self.eps = eps # 最小信息熵增益阈值 self.tree = None # 决策树 # 计算数据集的信息熵 def entropy(self, y): n = len(y) unique, counts = np.unique(y, return_counts=True) entropy = 0 for i in range(len(unique)): pi = counts[i] / n entropy += -pi * math.log2(pi) return entropy # 计算数据集按某个特征划分后的信息熵 def conditional_entropy(self, X, y, fkey, fval): instances = X[fkey] indices = np.where(instances == fval) y_subset = y[indices] entropy_subset = self.entropy(y_subset) return entropy_subset # 计算信息熵增益 def information_gain(self, X, y, fkey): n = len(y) entropy_before = self.entropy(y) entropy_after = 0 unique, counts = np.unique(X[fkey], return_counts=True) for i in range(len(unique)): pi = counts[i] / n entropy_after += pi * self.conditional_entropy(X, y, fkey, unique[i]) gain = entropy_before - entropy_after return gain # 生成决策树 def fit(self, X, y, feature_names): self.tree = self._build_tree(X, y, feature_names) # 递归生成决策树 def _build_tree(self, X, y, feature_names): # 生成当前节点 node = Node() # 当前数据集中所有输出值相同 if len(np.unique(y)) == 1: node.output = y[0] return node # 当前数据集中没有特征可划分 if len(feature_names) == 0: node.output = np.bincount(y).argmax() return node # 选择信息熵增益最大的特征 gain_max = -1 for fkey in feature_names: gain = self.information_gain(X, y, fkey) if gain > gain_max: gain_max = gain best_fkey = fkey # 当信息熵增益小于阈值时,停止划分 if gain_max < self.eps: node.output = np.bincount(y).argmax() return node # 根据最佳特征划分数据集 unique, counts = np.unique(X[best_fkey], return_counts=True) for i in range(len(unique)): fval = unique[i] indices = np.where(X[best_fkey] == fval) X_subset = X.iloc[indices].drop(columns=[best_fkey]) y_subset = y[indices] if len(y_subset) == 0: child_node = Node() child_node.output = np.bincount(y).argmax() else: feature_names_subset = feature_names.copy() feature_names_subset.remove(best_fkey) child_node = self._build_tree(X_subset, y_subset, feature_names_subset) child_node.fkey = best_fkey child_node.fval = fval node.children[fval] = child_node return node # 预测输出值 def predict(self, X_test): y_pred = [] for i in range(len(X_test)): node = self.tree while node.children: fval = X_test[node.fkey][i] if fval not in node.children: break node = node.children[fval] y_pred.append(node.output) return np.array(y_pred) df = pd.read_csv('data.csv') X = df.drop(columns=['PlayTennis']) y = df['PlayTennis'] feature_names = X.columns.tolist() # 训练模型 model = ID3() model.fit(X, y, feature_names) # 预测输出值 X_test = pd.DataFrame({'Outlook': ['Sunny', 'Rainy', 'Overcast'], 'Temperature': ['Cool', 'Mild', 'Hot'], 'Humidity': ['Normal', 'High', 'High'], 'Wind': ['Weak', 'Strong', 'Weak']}) y_pred = model.predict(X_test) print(y_pred)
mygithub-gyq/gyq2023.github.io
聚类算法/ID3.py
ID3.py
py
4,300
python
en
code
0
github-code
6
34892249806
import IsPrime def str_to_int(l): k = [] for i in l: i = int(i) k.append(i) return k def IsPrimeUserList(): user_input = input("Enter a list of numbers: ") l = user_input.split(" ") l = str_to_int(l) k = [] for i in l: if IsPrime.IsPrime(i): k.append(i) return k #print(str_to_int([1, 2, 3])) #print(IsPrimeUserList())
ekloberdanz/python
isPrimeUserList.py
isPrimeUserList.py
py
395
python
en
code
0
github-code
6
12015658480
import numpy as np import collections # it is optional to use collections from operator import itemgetter, attrgetter # prediction function is to predict label of one sample using k-NN def predict(X_train, y_train, one_sample, k, lambda_value = 1): one_sample = np.array(one_sample) X_train = np.array(X_train) y_distance = [] for vector in X_train: y_distance.append(distancesquare(vector, one_sample)) index = 0 y_distance = np.array(y_distance) # np.argsort returns the index of sorted ndarray index = np.argsort(y_distance) # by plugging in the index, we sort the distance and the labels by the distance. y = np.array(y_train[index]) y_distance = y_distance[index] label = [0 for y in range(10)] # Simple KNN gives wrong answer. Use Weighted KNN instead # Normalize the distances of 1~kth NN by dividing the distances with k+1th NN's distance # https://epub.ub.uni-muenchen.de/1769/1/paper_399.pdf page 7 for i in range(k): label[y[i]] += weight(y_distance[i]/y_distance[k], lambda_value) prediction = label.index(max(label)) ############################ return prediction def distancesquare(pos1, pos2): d = np.sum(np.square(pos1 - pos2)) return d def weight(distance, lambda_value): w = np.exp(- distance / lambda_value) return w # accuracy function is to return average accuracy for test or validation sets def accuracy(X_train, y_train, X_test, y_test, k, lambda_value = 1): # You can use def prediction above. ## Fill In Your Code Here ## acc = 0 for test_x, test_y in zip(X_test, y_test): acc += test_y == predict(X_train, y_train, test_x, k, lambda_value) acc = acc / len(y_test) ############################ return acc # stack_accuracy_over_k is to stack accuracy over k. You can use def accuracy above. def stack_accuracy_over_k(X_train, y_train, X_val, y_val): accuracies = [] ## Fill In Your Code Here ## for k in range(1, 21): accuracies.append(accuracy(X_train, y_train, X_val, y_val, k)) ############################ assert len(accuracies) == 20 return accuracies def stack_accuracy_over_lambda(X_train, y_train, X_val, y_val): accuracies = [] k = 3 lambdas = list(100/(2**i) for i in range(20)) ## Fill In Your Code Here ## for lambda_value in lambdas: accuracies.append(accuracy(X_train, y_train, X_val, y_val, k, lambda_value = lambda_value)) ############################ assert len(accuracies) == 20 return accuracies def stack_accuracy_on_k_and_lambda(X_train, y_train, X_val, y_val): accuracies = [] lambdas = list(100/(2**i) for i in range(10)) ## Fill In Your Code Here ## for k in range(1, 21): for lambda_value in lambdas: accuracies.append(accuracy(X_train, y_train, X_val, y_val, k, lambda_value = lambda_value)) accuracies = np.array(accuracies) accuracies = accuracies.reshape((20,10)) ############################ assert accuracies.shape == (20, 10) return accuracies
arkincognito/EEE3314-02Assignments
P04_2.py
P04_2.py
py
3,080
python
en
code
0
github-code
6
72612614909
"""trt_face_detection.py This script demonstrates how to do real-time face detection with TensorRT optimized retinaface engine. """ import os import cv2 import time import argparse import pycuda.autoinit # This is needed for initializing CUDA driver from utils.camera import add_camera_args, Camera from utils.display import open_window, set_display, show_fps from utils.face_detection import TRT_RetinaFace from utils.prior_box import PriorBox from data import cfg_mnet WINDOW_NAME = 'Face_detection' def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time face detection with TensorRT optimized ' 'retinaface model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument( '-m', '--model', type=str, required=True, help=('[retinaface]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 320, 640)')) args = parser.parse_args() return args def loop_and_detect(cam, trt_retinaface, priors, cfg): """Continuously capture images from camera and do face detection. # Arguments cam: the camera instance (video source). trt_retinaface: the TRT_RetinaFace face detector instance. priors: priors boxes with retinaface model cfg: retinaface model parameter configure """ full_scrn = False fps = 0.0 tic = time.time() while True: if cv2.getWindowProperty(WINDOW_NAME, 0) < 0: break img = cam.read() if img is None: break facePositions, landmarks = trt_retinaface.detect(priors, cfg, img) for (x1, y1, x2, y2), landmark in zip(facePositions, landmarks): cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.circle(img, (landmark[0], landmark[1]), 1, (0, 0, 255), 2) cv2.circle(img, (landmark[2], landmark[3]), 1, (0, 255, 255), 2) cv2.circle(img, (landmark[4], landmark[5]), 1, (255, 0, 255), 2) cv2.circle(img, (landmark[6], landmark[7]), 1, (0, 255, 0), 2) cv2.circle(img, (landmark[8], landmark[9]), 1, (255, 0, 0), 2) img = show_fps(img, fps) cv2.imshow(WINDOW_NAME, img) toc = time.time() curr_fps = 1.0 / (toc - tic) # calculate an exponentially decaying average of fps number fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05) tic = toc key = cv2.waitKey(1) if key == 27: # ESC key: quit program break elif key == ord('F') or key == ord('f'): # Toggle fullscreen full_scrn = not full_scrn set_display(WINDOW_NAME, full_scrn) def main(): args = parse_args() if not os.path.isfile('retinaface/%s.trt' % args.model): raise SystemExit('ERROR: file (retinaface/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cfg = cfg_mnet input_size = args.model.split('-')[-1] input_shape = (int(input_size), int(input_size)) priorbox = PriorBox(cfg, input_shape) priors = priorbox.forward() trt_retinaface = TRT_RetinaFace(args.model, input_shape) open_window( WINDOW_NAME, 'Camera TensorRT Face Detection Demo', cam.img_width, cam.img_height) loop_and_detect(cam, trt_retinaface, priors, cfg) cam.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
d246810g2000/tensorrt
face_recognition/trt_face_detection.py
trt_face_detection.py
py
3,588
python
en
code
35
github-code
6
24670591384
from AcceptNumbers import * def main(): num = int(input("Enter number of elements: ")) if(num <= 0): print("Enter positive number") return numList = acceptNNumbers(num) print("Maximum of given numbers is:", max(numList)) if(__name__ == "__main__"): main()
SnehalKaranje/python
list/MaxFromList.py
MaxFromList.py
py
297
python
en
code
0
github-code
6
7239186990
import cv2 as cv import numpy as np import imutils path = "/home/pks/Downloads/Assignment/IVP/mini project/" def orientation(image): ''' Rotate the image before any operation based on the pos. of roll no. box w.r.t number table ''' row, col = image.shape[:2] thresh = cv.Canny(image, 40, 90) thresh = cv.dilate(thresh, None, iterations=1) '''Find max (Number table) and 2nd max (Roll no. box) contour''' cnts = cv.findContours(thresh.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key=lambda x: cv.contourArea(x), reverse=True) c1, c2 = cnts[:2] rect1, rect2 = cv.minAreaRect(c1), cv.minAreaRect(c2) box1, box2 = cv.boxPoints(rect1), cv.boxPoints(rect2) # Max box1 = sorted(box1, key=lambda x: x[0]) r_most1, l_most1 = box1[-1], box1[0] # 2nd Max box2 = sorted(box2, key=lambda x: x[0]) r_most2, l_most2 = box2[-1], box2[0] C1, C2 = min(col, row), max(col, row) x,y = 600, 800 pts1 = np.float32([[0,row], [0,0], [col,row], [col,0]]) '''Roll no box is at right of number table, rotate left''' if l_most2[0] >= r_most1[0]: pts2 = np.float32([[x,y], [0,y], [x,0], [0,0]]) elif r_most2[0] <= l_most1[0]: '''Opposite, rotate right''' pts2 = np.float32([[0,0], [x,0], [0,y], [x,y]]) else: return image M = cv.getPerspectiveTransform(pts1,pts2) image = cv.warpPerspective(image,M,(x,y)) return image '''END''' def intersection_bw_2_lines(l1, l2): ''' Returns point of intersection between 2 lines Parameters: l1 : line1 l2 : line2 Returns: x and y coordinate of point of intersection of l1 and l2 ''' rho1, theta1 = l1 rho2, theta2 = l2 A = np.array([ [np.cos(theta1), np.sin(theta1)], [np.cos(theta2), np.sin(theta2)] ]) B = np.array([[rho1], [rho2]]) x0, y0 = np.linalg.solve(A, B) x0, y0 = int(np.round(x0)), int(np.round(y0)) return [x0, y0] def remove_mult_lines(set_of_lines, dist): ''' Replaces all close lines within some threshold distance with a single one Parameters: set_of_lines : rho, theta value of all the lines dist : maximum allowed distance b/w two seperate lines Returns: Well-seperated set of lines (in rho, theta form) ''' temp, temp_lines = [], [] set_of_lines = sorted(set_of_lines, key=lambda x: (abs(x[0]), x[1])) temp.append(set_of_lines[0]) for index,point in enumerate(set_of_lines): if abs(abs(point[0])-abs(temp[-1][0])) <= dist: temp.append(point) if index == len(set_of_lines)-1: temp_lines.append(temp[len(temp)//2]) # temp_lines.append(np.median(temp, axis=0)) else: temp_lines.append(temp[len(temp)//2]) # temp_lines.append(np.median(temp, axis=0)) temp = [point] if index == len(set_of_lines)-1: temp_lines.append(point) return temp_lines def extract_roi(image): ''' Extract the marks-table from the image and divide it into cells Parametrs: image : Given image Returns: extracted table and four points of each rectangular cell ''' image = orientation(image.copy()) image = cv.resize(image.copy(), (600, 800)) cv.imshow("org", image) cv.waitKey(0) # Convert to gray image gr_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # Thresholding thresh = cv.Canny(gr_image, 40, 120) # Closing kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (2, 3)) thresh = cv.morphologyEx(thresh, cv.MORPH_CLOSE, kernel) row, col = image.shape[:2] cv.imshow("thresh", thresh) cv.waitKey(0) # ROI Detection <--start--> cnts = cv.findContours(thresh.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) c = max(cnts, key=cv.contourArea) cnt = [list(el[0]) for el in c] '''Removing some araeas not needed''' b_r = max(cnt, key=lambda x: x[0]+x[1]) b_l = min(cnt, key=lambda x: x[0]-x[1]) b_r[1] = b_r[1] - 35 b_l[1] = b_l[1] - 35 m = (b_l[1]-b_r[1]) / (b_l[0]-b_r[0]) a, b, c = 1, (-1)*m, m*b_l[0] - b_l[1] org_sign = a*0 + b*0 + c thresh_r = np.array([np.array([(a*i + b*j + c) for j in range(col)]) for i in range(row)]) if org_sign > 0: thresh[thresh_r < 0] = 0 else: thresh[thresh_r > 0] = 0 '''END''' '''Contour detection for extract the ROI''' cnts = cv.findContours(thresh.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) c = max(cnts, key=cv.contourArea) cnt = [list(el[0]) for el in c] '''Four corners ofthe ROI''' b_r = max(cnt, key=lambda x: x[0]+x[1]) t_l = min(cnt, key=lambda x: x[0]+x[1]) t_r = max(cnt, key=lambda x: x[0]-x[1]) b_l = min(cnt, key=lambda x: x[0]-x[1]) b_r[0], b_r[1] = b_r[0] + 2, b_r[1] + 0 b_l[0], b_l[1] = b_l[0] - 2, b_l[1] + 0 t_r[0], t_r[1] = t_r[0] + 2, t_r[1] - 2 t_l[0], t_l[1] = t_l[0] - 2, t_l[1] - 2 '''Extract only the ROI''' w,h = 800, 600 # pts1 = np.float32(crop) pts1 = np.float32([t_l, t_r, b_l, b_r]) # w,h = image.shape pts2 = np.float32([[0,0], [h,0], [0,w], [h,w]]) M = cv.getPerspectiveTransform(pts1,pts2) image = cv.warpPerspective(image,M,(h,w)) # ROI Detection <--end--> cv.imshow("org", image) cv.waitKey(0) gr_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # TODO : Canny edge detection parameters edges = cv.Canny(gr_image, 45, 90) cv.imshow("edges", edges) cv.waitKey(0) # Hough Line Detection lines = cv.HoughLines(edges,1,np.pi/180,150) # Removing multiple ambiguous Lines <--start--> points = np.array([[line[0][0], line[0][1]] for line in lines]) pi_val = np.pi v1 = list(filter(lambda x: x[1]>=0 and x[1]<pi_val/4, points)) v2 = list(filter(lambda x: x[1]>=(3*pi_val)/4 and x[1]<(5*pi_val)/4, points)) v3 = list(filter(lambda x: x[1]>=(7*pi_val)/4 and x[1]<=pi_val*2, points)) vertical = v1 + v2 + v3 h1 = list(filter(lambda x: x[1]>=pi_val/4 and x[1]<(3*pi_val)/4, points)) h2 = list(filter(lambda x: x[1]>=(5*pi_val)/4 and x[1]<(7*pi_val)/4, points)) horizontal = h1 + h2 h_lines = remove_mult_lines(horizontal, 15) v_lines = remove_mult_lines(vertical, 15) lines = h_lines + v_lines # # Removing multiple ambiguous Lines <--end--> # Drawing the lines line_image = image.copy() for rho, theta in lines: # rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv.line(line_image,(x1,y1),(x2,y2),(0,0,255),1) cv.imshow("lines", line_image) cv.waitKey(0) ret_cell = [] # Detecting cells counter = 1 if len(h_lines) >= 14: start = 1 else: start = 0 for i in range(start,len(h_lines)-1): for j in range(1,len(v_lines)-1): hl1, hl2 = h_lines[i], h_lines[i+1] vl1, vl2 = v_lines[j], v_lines[j+1] p1 = intersection_bw_2_lines(hl1, vl1) p2 = intersection_bw_2_lines(hl1, vl2) p3 = intersection_bw_2_lines(hl2, vl1) p4 = intersection_bw_2_lines(hl2, vl2) ret_cell.append([p1, p2, p3, p4]) # cell = image[p1[1]:p3[1]+1, p1[0]:p2[0]+1] # cv.imwrite(path + "img" + str(counter) + ".jpg", cell) # counter = counter + 1 cv.destroyAllWindows() return image, ret_cell
pritamksahoo/III-IV-YEAR-Assignments
IVP/extract_ROI.py
extract_ROI.py
py
8,042
python
en
code
2
github-code
6
21071664643
from dataclasses import dataclass from typing import Union import numpy as np from matplotlib import pyplot as plt @dataclass class SpeakerSegment: start: int = 0 end: Union[int, None] = None @dataclass class SplitStuff4Tw: threshold_value: float split_index: int class CustomSegmentationStrategy: def __init__(self, analyze_only_seconds: int = 30): self.analyze_only_seconds = analyze_only_seconds self.min_seconds_preferred = 6 self.max_seconds_preferred = 15 self.sampling_rate = 16000 self.step_size = 200 self.step_size_seconds = self.step_size / 16000 self.number_steps = int(self.analyze_only_seconds / self.step_size_seconds) self.median_probs = None self.trig_sum = None self.silence_seconds = 0.3 self.silence_window_nr_steps = int(self.silence_seconds / self.step_size_seconds) self.trigger_window_seconds = 4.0 self.trigger_window_nr_steps = int(self.trigger_window_seconds / self.step_size_seconds) def is_silence(self, buffer_window): if np.mean(buffer_window) < self.trig_sum: return True return False def is_above_threshold(self, buffer_window): if np.mean(buffer_window) > self.trig_sum: return True return False def convert_steps_to_samples(self, steps): # 1 step is 200 samples or self.step_size return steps * self.step_size def create_better_split_long_length(self, buffer): mid_of_clip = int(len(buffer) / 2) # 2 seconds each side two_seconds = 2 * 16000 / self.step_size thresholds = [] for step_range in range(int(mid_of_clip - two_seconds), int(mid_of_clip + two_seconds), self.silence_window_nr_steps): threshold_value = np.mean(buffer[step_range + self.silence_window_nr_steps]) thresholds.append(SplitStuff4Tw(split_index=int(step_range + self.silence_window_nr_steps / 2), threshold_value=threshold_value)) best_split = sorted(thresholds, key=lambda x: x.threshold_value, reverse=False)[0].split_index return best_split def create_better_split_short_length(self): pass def segment(self, speaker_vads: np.ndarray): self.median = np.median(speaker_vads) self.trig_sum = 0.89 * self.median + 0.08 final_segments = [] is_speech = False current_buffer = [] temp_speaker_values = None for i in range(len(speaker_vads)): current_activation = speaker_vads[i] current_buffer.append(current_activation) if not len(current_buffer) >= self.trigger_window_nr_steps: continue if not is_speech and self.is_above_threshold(current_buffer): is_speech = True temp_speaker_values = SpeakerSegment(start=self.convert_steps_to_samples(i - len(current_buffer) + 1)) elif is_speech: # If this but we are not above threshold, check if we are in silence for last steps if self.is_silence(buffer_window=current_buffer[:-self.silence_window_nr_steps]): if len(current_buffer) > self.sampling_rate * self.max_seconds_preferred / self.step_size: # find_better split # Todo: Do this recursively split_index = self.create_better_split_long_length(buffer=current_buffer) temp_speaker_values.end = self.convert_steps_to_samples( i - (len(current_buffer) - split_index) - 1) final_segments.append(temp_speaker_values) temp_speaker_values = SpeakerSegment( start=self.convert_steps_to_samples(i - (len(current_buffer) - split_index) + 1), end=self.convert_steps_to_samples(i)) final_segments.append(temp_speaker_values) temp_speaker_values = None is_speech = False current_buffer = [] elif len(current_buffer) < self.sampling_rate * self.min_seconds_preferred / self.step_size: pass #Since we want at least x seconds, we continue here else: temp_speaker_values.end = self.convert_steps_to_samples(i) final_segments.append(temp_speaker_values) temp_speaker_values = None is_speech = False current_buffer = [] else: # If not above threshold, then keep window constant current_buffer.pop(0) return final_segments def plot_VAD(self, array_yo): x = [self.step_size_seconds * i for i in range(self.number_steps)] plt.plot(x, array_yo[:self.number_steps]) plt.show()
centre-for-humanities-computing/Gjallarhorn
data_processing/custom_segmentation.py
custom_segmentation.py
py
5,069
python
en
code
1
github-code
6